
[ Team Unknown ]

        
More Effective C#: 50 Specific Ways to Improve Your C#

By Bill Wagner
...............................................
Publisher: Addison Wesley Professional
Pub Date: October 07, 2008
Print ISBN-10: 0-321-48589-0
Print ISBN-13: 978-0-321-48589-2
Web ISBN-10: 0-321-58048-6
Web ISBN-13: 978-0-321-58048-1
Pages: 336
Slots: 1.0  

Table of Contents  | Index

This is the Safari online edition of the printed book.

"Shining a bright light into many of the dark corners of C# 3.0, this book not only covers the 'how,'
but also the 'why,' arming the reader with many field-tested methods for wringing the most from the
new language features, such as LINQ, generics, and multithreading. If you are serious about
developing with the C# language, you need this book."

–Bill Craun, Principal Consultant, Ambassador Solutions, Inc.

"More Effective C# is an opportunity to work beside Bill Wagner. Bill leverages his knowledge of C#
and distills his expertise down to some very real advice about programming and designing
applications that every serious Visual C# user should know. More Effective C# is one of those rare
books that doesn't just regurgitate syntax, but teaches you how to use the C# language."

–Peter Ritchie, Microsoft MVP: Visual C#

"More Effective C# is a great follow-up to Bill Wagner's previous book. The extensive

C# 3.0 and LINQ coverage is extremely timely!"

–Tomas Restrepo, Microsoft MVP: Visual C++, .NET, and Biztalk Server

"As one of the current designers of C#, it is rare that I learn something new about the language by
reading a book. More Effective C# is a notable exception. Gently blending concrete code and deep
insights, Bill Wagner frequently makes me look at C# in a fresh light–one that really makes it shine.
More Effective C# is at the surface a collection of very useful guidelines. Look again. As you read
through it, you'll find that you acquire more than just the individual pieces of advice; gradually you'll
pick up on an approach to programming in C# that is thoughtful, beautiful, and deeply pleasant.
While you can make your way willy-nilly through the individual guidelines, I do recommend reading
the whole book–or at least not skipping over the chapter introductions before you dive into specific
nuggets of advice. There's perspective and insight to be found there that in itself can be an important
guide and inspiration for your future adventures in C#."

–Mads Torgersen, Program Manager, Visual C#, Microsoft
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"Bill Wagner has written an excellent book outlining the best practices for developers who work with
the C# language. By authoring More Effective C#, he has again established himself as one of the
most important voices in the C# community. Many of us already know how to use C#. What we need
is advice on how to hone our skills so that we can become wiser programmers. There is no more
sophisticated source of information on how to become a first-class C# developer than Bill Wagner's
book. Bill is intelligent, thoughtful, experienced, and skillful. By applying the lessons from this book
to your own code, you will find many ways to polish and improve the work that you produce."

–Charlie Calvert, Community Program Manager, Visual C#, Microsoft

In More Effective C#, Microsoft C# MVP and Regional Director Bill Wagner introduces fifty brand-
new ways to write more efficient and more robust software. This all-new book follows the same
format as Wagner's best-selling Effective C# (Addison-Wesley, 2005), providing clear, practical
explanations, expert tips, and plenty of realistic code examples.

Wagner shows how to make the most of powerful innovations built into Microsoft's new C# 3.0 and
.NET Framework 3.5, as well as advanced C# language capabilities not covered in his previous book.
Drawing on his unsurpassed C# experience, the author reveals new best practices for working with
LINQ, generics, metaprogramming, and many other features. He also uncovers practices that
compromise performance or reliability and shows exactly how to avoid them.

More Effective C# shows how to

Use generics to express your design intent more effectively

Master advanced generics techniques, such as constraints, method constraints, and generic
specialization

Use the multithreaded techniques you'll need to work with the .NET framework every day

Express modern design idioms using the rich palette of C# language features

Successfully mix object oriented and functional programming constructs

Create composable interfaces and avoid confusion in public interfaces

Use extension methods to separate contracts from implementation

Program successfully with C# closures and anonymous types

Write more effective LINQ queries

Make the most of LINQ Lazy Evaluation Queries and Lambda Expressions

Distinguish and convert between delegates and expression trees

Efficiently utilize nullable types and partial classes

Use implicit properties for mutable, nonserializable data

You're already a successful C# programmer–this book can help you become an outstanding one.
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Praise for More Effective C#
"Shining a bright light into many of the dark corners of C# 3.0, this book not only covers the
'how,' but also the 'why,' arming the reader with many field-tested methods for wringing the
most from the new language features, such as LINQ, generics, and multithreading. If you are
serious about developing with the C# language, you need this book."

—Bill Craun, Principal Consultant, Ambassador Solutions, Inc.

"More Effective C# is an opportunity to work beside Bill Wagner. Bill leverages his knowledge of
C# and distills his expertise down to some very real advice about programming and designing
applications that every serious Visual C# user should know. More Effective C# is one of those
rare books that doesn't just regurgitate syntax, but teaches you how to use the C# language."

—Peter Ritchie, Microsoft MVP: Visual C#

"More Effective C# is a great follow-up to Bill Wagner's previous book. The extensive C# 3.0 and
LINQ coverage is extremely timely!"

—Tomas Restrepo, Microsoft MVP: Visual C++, .NET, and Biztalk Server

"As one of the current designers of C#, it is rare that I learn something new about the language
by reading a book. More Effective C# is a notable exception. Gently blending concrete code and
deep insights, Bill Wagner frequently makes me look at C# in a fresh light—one that really
makes it shine. More Effective C# is at the surface a collection of very useful guidelines. Look
again. As you read through it, you'll find that you acquire more than just the individual pieces of
advice; gradually you'll pick up on an approach to programming in C# that is thoughtful,
beautiful, and deeply pleasant. While you can make your way willy-nilly through the individual
guidelines, I do recommend reading the whole book—or at least not skipping over the chapter
introductions before you dive into specific nuggets of advice. There's perspective and insight to
be found there that in itself can be an important guide and inspiration for your future adventures
in C#."

—Mads Torgersen, Program Manager, Visual C#, Microsoft

"Bill Wagner has written an excellent book outlining the best practices for developers who work
with the C# language. By authoring More Effective C#, he has again established himself as one
of the most important voices in the C# community. Many of us already know how to use C#.
What we need is advice on how to hone our skills so that we can become wiser programmers.
There is no more sophisticated source of information on how to become a first-class C#
developer than Bill Wagner's book. Bill is intelligent, thoughtful, experienced, and skillful. By
applying the lessons from this book to your own code, you will find many ways to polish and
improve the work that you produce."

—Charlie Calvert, Community Program Manager, Visual C#, Microsoft



              



[ Team Unknown ]

              

C# Programming Bill Wagner Addison Wesley Professional More Effective C#: 50 Specific Ways to Improve Your
C#

Effective Software Development Series
Scott Meyers, Consulting Editor

The Effective Software Development Series provides expert advice on all aspects of modern
software development. Books in the series are well written, technically sound, of lasting value, and
tractable length. Each describes the critical things the experts almost always do—or almost always
avoid doing—to produce outstanding software.

Scott Meyers (author of the Effective C++ books and CD) conceived of the series and acts as its
consulting editor. Authors in the series work with Meyers and with Addison-Wesley Professional's
editorial staff to create essential reading for software developers of every stripe.

Titles in the Series

Elliotte Rusty Harold, Effective XML: 50 Specific Ways to Improve Your XML 0321150406

Ted Neward, Effective Enterprise Java 0321130006

Diomidis Spinellis, Code Reading: The Open Source Perspective 0201799405

Diomidis Spinellis, Code Quality: The Open Source Perspective 0321166078

Bill Wagner, Effective C#: 50 Specific Ways to Improve Your C# 0321245660
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Introduction
When Anders Hejlsberg first showed Language-Integrated Query (LINQ) to the world at the 2005
Professional Developers Conference (PDC), the C# programming world changed. LINQ justified several
new features in the C# language: extension methods, local variable type inference, lambda
expressions, anonymous types, object initializers, and collection initializers. C# 2.0 set the stage for
LINQ by adding generics, iterators, static classes, nullable types, property accessor accessibility, and
anonymous delegates. But all these features are useful outside LINQ: They are handy for many
programming tasks that have nothing to do with querying data sources.

This book provides practical advice about the features added to the C# programming language in the
2.0 and 3.0 releases, along with advanced features that were not covered in my earlier Effective C#:
50 Specific Ways to Improve Your C# (Addison-Wesley, 2004). The items in More Effective C# reflect
the advice I give developers who are adopting C# 3.0 in their professional work. There's a heavy
emphasis on generics, an enabling technology for everything in C# 2.0 and 3.0. I discuss the new
features in C# 3.0; rather than organize the topics by language feature, I present these tips from the
perspective of recommendations about the programming problems that developers can best solve by
using these new features.

Consistent with the other books in the Effective Software Development Series, this book contains self-
contained items detailing specific advice about how to use C#. The items are organized to guide you
from using C# 1.x to using C# 3.0 in the best way.

Generics are an enabling technology for all new idioms that are part of C# 3.0. Although only the first
chapter specifically addresses generics, you'll find that they are an integral part of almost every item.
After reading this book, you'll be much more comfortable with generics and metaprogramming.

Of course, much of the book discusses how to use C# 3.0 and the LINQ query syntax in your code.
The features added in C# 3.0 are very useful in their own right, whether or not you are querying data
sources. These changes in the language are so extensive, and LINQ is such a large part of the
justification for those changes, that each warrants its own chapter. LINQ and C# 3.0 will have a
profound impact on how you write code in C#. This book will make that transition easier.

Who Should Read This Book?

This book was written for professional software developers who use C#. It assumes that you have
some familiarity with C# 2.0 and C# 3.0. Scott Meyers counseled me that an Effective book should be
a developer's second book on a subject. This book does not include tutorial information on the new
language features added as the language has evolved. Instead, I explain how you can integrate these
features into your ongoing development activities. You'll learn when to leverage the new language
features in your development activities, and when to avoid certain practices that will lead to brittle
code.

In addition to some familiarity with the newer features of the C# language, you should have an
understanding of the major components that make up the .NET Framework: the .NET CLR (Common



Language Runtime), the .NET BCL (Base Class Library), and the JIT (Just In Time) compiler. This book
doesn't cover .NET 3.0 components, such as WCF (Windows Communication Foundation), WPF
(Windows Presentation Foundation), and WF (Windows Workflow Foundation). However, all the idioms
presented apply to those components as well as any other .NET Framework components you happen
to prefer.

About the Content

Generics are the enabling technology for everything else added to the C# language since C# 1.1.
Chapter 1 covers generics as a replacement for System.Object and casts and then moves on to
discuss advanced techniques such as constraints, generic specialization, method constraints, and
backward compatibility. You'll learn several techniques in which generics will make it easier to express
your design intent.

Multicore processors are already ubiquitous, with more cores being added seemingly every day. This
means that every C# developer needs to have a solid understanding of the support provided by the
C# language for multithreaded programming. Although one chapter can't cover everything you need
to be an expert, Chapter 2 discusses the techniques you'll need every day when you write
multithreaded applications.

Chapter 3 explains how to express modern design idioms in C#. You'll learn the best way to express
your intent using the rich palette of C# language features. You'll see how to leverage lazy evaluation,
create composable interfaces, and avoid confusion among the various language elements in your
public interfaces.

Chapter 4 discusses how to use the enhancements in C# 3.0 to solve the programming challenges you
face every day. You'll see when to use extension methods to separate contracts from implementation,
how to use C# closures effectively, and how to program with anonymous types.

Chapter 5 explains LINQ and query syntax. You'll learn how the compiler maps query keywords to
method calls, how to distinguish between delegates and expression trees (and convert between them
when needed), and how to escape queries when you're looking for scalar results.

Chapter 6 covers those items that defy classification. You'll learn how to define partial classes, work
with nullable types, and avoid covariance and contravariance problems with array parameters.

Regarding the Sample Code

The samples in this book are not complete programs. They are the smallest snippets of code possible
that illustrate the point. In several samples the method names substitute for a concept, such as
AllocateExpensiveResource(). Rather than read pages of code, you can grasp the concept and
quickly apply it to your professional development. Where methods are elided, the name implies what's
important about the missing method.

In all cases, you can assume that the following namespaces are specified:

using System;
using System.Collections.Generic;
using System.Linq;
using System.Text;

Where types are used from other namespaces, I've explicitly included the namespace in the type.



In the first three chapters, I often show C# 2.0 and C# 3.0 syntax where newer syntax is preferred
but not required. In Chapters 4 and 5 I assume that you would use the 3.0 syntax.

Making Suggestions and Providing Feedback

I've made every effort to remove all errors from this book, but if you believe you have found an error,
please contact me at bill.wagner@srtsolutions.com. Errata will be posted to
http://srtsolutions.com/blogs/MoreEffectiveCSharp.
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1. Working with Generics
Without a doubt, C# 2.0 added a feature that continues to have a big impact on how you write C#
code: generics. Many articles and papers have been written about the advantages of using generics
over the previous versions of the C# collections classes, and those articles are correct. You gain
compile-time type safety and improve your applications' performance by using generic types rather
than weakly typed collections that rely on System.Object.

Some articles and papers might lead you to believe that generics are useful only in the context of
collections. That's not true. There are many other ways to use generics. You can use them to create
interfaces, event handlers, common algorithms, and more.

Many other discussions compare C# generics to C++ templates, usually to advocate one as better
than the other. Comparing C# generics to C++ templates is useful to help you understand the syntax,
but that's where the comparison should end. Certain idioms are more natural to C++ templates, and
others are more natural to C# generics. But, as you'll see in Item 2 a bit later in this chapter, trying to
decide which is "better" will only hurt your understanding of both of them. Adding generics required
changes to the C# compiler, the Just In Time (JIT) compiler, and the Common Language Runtime
(CLR). The C# compiler takes your C# code and creates the Microsoft Intermediate Language (MSIL,
or IL) definition for the generic type. In contrast, the JIT compiler combines a generic type definition
with a set of type parameters to create a closed generic type. The CLR supports both those concepts
at runtime.

There are costs and benefits associated with generic type definitions. Sometimes, replacing specific
code with a generic equivalent makes your program smaller. At other times, it makes it larger.
Whether or not you encounter this generic code bloat depends on the specific type parameters you
use and the number of closed generic types you create.

Generic class definitions are fully compiled MSIL types. The code they contain must be completely
valid for any type parameters that satisfy the constraints. The generic definition is called a generic
type definition. A specific instance of a generic type, in which all the type parameters have been
specified, is called a closed generic type. (If only some of the parameters are specified, it's called an
open generic type.)

Generics in IL are a partial definition of a real type. The IL contains the placeholder for an instantiation
of a specific completed generic type. The JIT compiler completes that definition when it creates the
machine code to instantiate a closed generic type at runtime. This practice introduces a tradeoff
between paying the increased code cost for multiple closed generic types and gaining the decreased
time and space required in order to store data.

Different closed generic types may or may not produce different runtime representations of the code.
When you create multiple closed generic types, the JIT compiler and the CLR perform some
optimizations to minimize the memory pressure. Assemblies, in IL form, are loaded into data pages.
As the JIT compiler translates the IL into machine instructions, the resulting machine code is stored in
read-only code pages.



This process happens for every type you create, generic or not. With nongeneric types, there is a 1:1
correspondence between the IL for a class and the machine code created. Generics introduce some
new wrinkles to that translation. When a generic class is JIT-compiled, the JIT compiler examines the
type parameters and emits specific instructions depending on the type parameters. The JIT compiler
performs a number of optimizations to fold different type parameters into the same machine code.
First and foremost, the JIT compiler creates one machine version of a generic class for all reference
types.

All these instantiations share the same code at runtime:

List <string> stringList = new List<string>();
List<Stream> OpenFiles = new List<Stream>();
List<MyClassType> anotherList = new List<MyClassType>();

The C# compiler enforces type safety at compile time, and the JIT compiler can produce a more
optimized version of the machine code by assuming that the types are correct.

Different rules apply to closed generic types that have at least one value type used as a type
parameter. The JIT compiler creates a different set of machine instructions for different type
parameters. Therefore, the following three closed generic types have different machine code pages:

List<double> doubleList = new List<double>();
List<int> markers = new List<int>();
List<MyStruct> values = new List<MyStruct>();

This may be interesting, but why should you care? Generic types that will be used with multiple
different reference types do not affect the memory footprint. All JIT-compiled code is shared.
However, when closed generic types contain value types as parameters, that JIT-compiled code is not
shared. Let's dig a little deeper into that process to see how it will be affected.

When the runtime needs to JIT-compile a generic definition (either a method or a class) and at least
one of the type parameters is a value type, it goes through a two-step process. First, it creates a new
IL class that represents the closed generic type. I'm simplifying, but essentially the runtime replaces T
with int, or the appropriate value type, in all locations in the generic definition. After that
replacement, it JIT-compiles the necessary code into x86 instructions. This two-step process is
necessary because the JIT compiler does not create the x86 code for an entire class when loaded;
instead, each method is JIT-compiled only when first called. Therefore, it makes sense to do a block
substitution in the IL and then JIT-compile the resulting IL on demand, as is done with normal class
definitions.

This means that the runtime costs of memory footprint add up in this way: one extra copy of the IL
definition for each closed generic type that uses a value type, and a second extra copy of machine
code for each method called in each different value type parameter used in a closed generic type.

There is, however, a plus side to using generics with value type parameters: You avoid all boxing and
unboxing of value types, thereby reducing the size of both code and data for value types.
Furthermore, type safety is ensured by the compiler; thus, fewer runtime checks are needed, and that
reduces the size of the codebase and improves performance. Furthermore, as discussed in Item 8,
creating generic methods instead of generic classes can limit the amount of extra IL code created for
each separate instantiation. Only those methods actually referenced will be instantiated. Generic
methods defined in a nongeneric class are not JIT-compiled.



This chapter discusses many of the ways you can use generics and explains how to create generic
types and methods that will save you time and help you create usable components. I also cover when
and how to migrate .NET 1.x types (in which you use System.Object) to .NET 2.0 types, in which you
specify type parameters.
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Item 1. Use Generic Replacements of 1.x Framework API Classes

The first two releases of the .NET platform did not support generics. Your only choice was to code
against System.Object and add appropriate runtime checks to ensure that the runtime type of the
object was what you expected, usually a specific type derived from System.Object. This practice was
even more widespread in the .NET Framework, because the framework designers were creating a
library of lower-level components that would be used by everyone.

System.Object is the ultimate base class for every type you or anyone else creates. That led to the
obvious decision to use System.Object as a substitute for "whatever type you want to use in this
space." Unfortunately, that's all the compiler knows about your types. This means that you must code
everything very defensively—and so must everyone who uses your types. Whenever you have
System.Object as a parameter or a return type, you have the potential to substitute the wrong type.
That's a cause for runtime errors in your code.

With the addition of generics, those days are gone. If you've been using .NET for any period of time,
you've probably adopted the habit of using many classes and interfaces that now should be cast aside
in favor of an updated generic version. You can improve the quality of your code by replacing
System.Object with generic type parameters. Why? It's because it's much harder to misuse generic
types by supplying arguments of the wrong type.

If correctness isn't enough to motivate you to replace your old System.Object code with generic
equivalents, maybe performance will get you interested. .NET 1.1 forced you to use the ultimate base
class of System.Object and dynamically cast objects to the expected type before using them. The 1.1
versions of any class or interface require that you box and unbox value types every time you coerce
between the value type and the System.Object type. Depending on your usage, that requirement
may have a significant impact on performance. Of course, it applies only with value types. But, as I
said earlier, the weakly typed systems from the 1.1 days require both you and your users to author
defensive code to test the runtime type of your parameters and return types. Even when that code
functions correctly, it adds runtime performance costs. And it's worse when it fails; the runtime costs
probably include stack walks and unwinding when casts throw exceptions and the runtime searches for
the proper catch clause. You run the risk of everything from costly application slowdown to abnormal
application termination.

A good look at the .NET Framework 2.0 shows you how much you can transform your code by using
generics. The obvious starting point is the System.Collections.Generics namespace, followed by
the System.Collections.ObjectModel namespace. Every class that is part of the
System.Collections namespace has a new, improved counterpart in System.Collections.Generics.
For example, ArrayList has been superseded by List<T>, Stack has been replaced by Stack<T>,
Hashtable has been replaced by Dictionary<K,V>, and Queue has been replaced by Queue<T>. In
addition, there are a few new collections, such as SortedList<T> and LinkedList<T>.

The addition of these classes meant the addition of generic interfaces. Again, the
System.Collections.Generics namespace points to the obvious examples. The original IList
interface has been extended with IList<T>. All the collections-based interfaces have been similarly



upgraded: IDictionary<K,V> replaces IDictionary, IEnumerable<T> extends IEnumerable,
IComparer<T> replaces IComparer, and ICollection<T> replaces ICollection.

I say "extends" and "replaces" deliberately. Many of the generic interfaces derive from their
nongeneric counterparts, extending the classic capability with upgraded, type-specific versions. Other
classic interfaces are not part of the signature of the newer interfaces. For a variety of reasons, the
newer interface method signatures aren't consistent with the classic interfaces. When that happened,
the framework designers chose not to tie the new interface definitions to an outdated interface.

The .NET 2.0 Framework has added an IEquatable<T> interface to minimize the potential errors
involved in overriding System.Object.Equals:

public interface IEquatable<T>
{
    bool Equals(T other);
}

You should add support for this interface wherever you would have overwritten
System.Object.Equals.

If you need to perform comparisons on a type defined in another library, the .NET 2.0 Framework has
also added a new equality interface in the generic collections namespace: IEqualityComparer<T>.
This interface has two methods: Equals and GetHashCode.

public interface IEqualityComparer<T>
{
    int Equals( T x, T y);
    int GetHashCode(T obj);
}

You can create a helper class that implements IEqualityComparer<T> for any third-party type you
use today. This class works like any class that implements the 1.1 version of IHashCodeProvider. It
enables you to create type-safe equality comparisons for your types, deprecating the old versions
based on System.Object. You'll almost never need to write a full implementation of
IEqualityComparer<T> yourself. Instead, you can use the EqualityComparer<T> class and its
Default property. For example, you would write the following EmployeeComparer class, derived from
EqualityComparer<T>, to test the equality of Employee objects created in another library:

public class EmployeeComparer : EqualityComparer<Employee>
{
    public override bool Equals(Employee x, Employee y)
    {
        return EqualityComparer<Employee>.Default.Equals(x, y);
    }

    public override int GetHashCode(Employee obj)
    {
        return EqualityComparer<Employee>.Default.
            GetHashCode(obj);
    }
}



The Default property examines the type argument, T. If the type implements IEquatable<T>, then
Default returns an IEqualityComparer<T> that uses the generic interface. If not, Default returns an
IEqualityComparer<T> that uses the System.Object virtual methods Equals() and GetHashCode().
In this way, EqualityComparer<T> guarantees the best implementation for you.

These methods illustrate one essential fact to remember about generic types: The more fundamental
the algorithm, such as equality, the more likely it is that you will want a generic type definition. When
you create fundamental algorithms that have several variations, you'll want the compile-time checking
you get with generic type definitions.

To show you what I mean, let's browse through the System namespace to learn from the other generic
classes that are available in the .NET 2.0 Framework. I'm taking you on this tour for two reasons.
First, if you've been using C# for a while, you've already developed 1.1 habits that don't include these
classes. You should change those habits to incorporate the improvements offered by the generic
versions. Second, the framework classes provide a great set of examples for the kinds of problems
you can solve using generics.

I mentioned that the System.Collections.Generic namespace contains an IComparer<T> interface
to improve on the classic IComparer interface. Well, the System namespace also contains a generic
compare interface: IComparable<T>.

public interface IComparable<T>
{
    int CompareTo(T other);
}

The obvious analog is the old-style IComparable interface:

// 1.1 Comparable signature
public interface IComparable
{
    int CompareTo(object other);
}

The gains provided by the typical implementation show exactly when the generic version is superior.
Here's a snippet of code from Item 9 in my earlier book Effective C#: 50 Specific Ways to Improve
Your C# (Addison-Wesley, 2004):

// Code from the Customer struct (a value type)
public int CompareTo(object right)
{
    if (!(right is Customer))
        throw new ArgumentException("Argument not a customer",
            "right");
    Customer rightCustomer = (Customer)right;
    return Name.CompareTo(rightCustomer.Name);
}



The IComparable<T> version is much simpler than the IComparable version, which relies on
System.Object:

public int CompareTo(Customer right)
{
    return Name.CompareTo(right.Name);
}

You gain four advantages by creating and using generic interfaces, because generic interfaces are
type-safe. Notice the difference between the implementation of IComparable and IComparable<T>.
The IComparable<T> version is much smaller, because the runtime type checking needed for the
IComparable version is enforced by the compiler when you implement IComparable<T>. Therefore,
you create less code, and that code does the same work. The generic version is also faster; you've
removed some error checking. In addition, the generic version avoids any boxing and unboxing, along
with the type conversions. Finally, the generic version does not emit any runtime errors. All those
runtime errors that are generated by the nongeneric version are caught by the compiler in the generic
version.

Of course, there are times when using System.Object makes sense. Your design may include
comparing objects that are not related by type (or by inheritance) but may have similar properties. In
that situation, you should implement the classic interfaces in addition to the newer generic versions
(see Item 10 later in this chapter). Suppose you have used a third-party e-commerce system that
must integrate with your own legacy shipping system. Both systems have the concept of an Order.
Those two concepts are not related in any way by inheritance:

namespace ThirdPartyECommerceSystem
{
    public class Order
    {
        // details elided
    }
}

You would modify your own order system to include the classic interfaces so that it would support
equality for both kinds of Order objects:

namespace InternalShippingSystem
{
    public class Order : IEquatable<Order>,
        IComparable<Order>
    {
        #region IEquatable<Order> Members
        public bool Equals(Order other)
        {
            // elided
            return true;
        }
        #endregion

        #region IComparable<Order> Members
        public int CompareTo(Order other)



        {
            // elided
            return 0;
        }
        #endregion

        public override bool Equals(object obj)
        {
            if (obj is Order)
                return this.Equals((Order)obj);
            else if (obj is ThirdPartyECommerceSystem.Order)
                return this.Equals
                    ((ThirdPartyECommerceSystem.Order)obj);
                throw new ArgumentException(
                    "Object type not supported", "obj");
        }
        public bool Equals(ThirdPartyECommerceSystem.Order
            other)
        {
            bool equal = true;
            // tests elided
            return equal;
        }
    }
}

The classic interfaces can support this kind of relationship between unrelated types that represent the
same concept. This isn't a design I would intentionally add to my system, but when you must get
libraries from different vendors to work together with similar concepts, it is the best option.

Examine the code carefully, and notice that the code overriding System.Object.Equals() reports
problems using runtime errors instead of compile-time errors.

Whenever you can replace System.Object with the correct type, you'll get compile-time type safety,
along with some performance gains. Clearly, IComparable<T> is preferred to IComparable in almost
all cases. In fact, almost any 1.x interface that used System.Object has been updated and replaced
with a generic equivalent. The only obvious counterexample is ICloneable, which has not been
updated with a generic equivalent. Implementing ICloneable is discouraged. See Krzysztof Cwalina
and Brad Abrams, Framework Design Guidelines: Conventions, Idioms, and Patterns for Reusable .NET
Libraries (Addison-Wesley, 2005), pp. 221–222.

One of the most commonly used generic additions in the .NET 2.0 Framework is the nullable generic
type. Nullable types are implemented using two complementary type definitions: the Nullable<T>
struct, and the static Nullable class. The Nullable<T> struct is the wrapper for any value type that
needs to also represent a null value (see Item 45, Chapter 6). For the moment, it's enough to know
that one generic type handles the relationship between a nullable type and the underlying value type
instance that it should represent.

To support nullable value types, the base class library added a static Nullable class and a
Nullable<T> generic structure. The static Nullable class contains some generic methods that you
can use to work with nullable types. Nullable.GetUnderlyingType(Type t) returns the type of the
underlying object in a Nullable<T>; in other words, the following actual runtime type compares two



nullables of the same type and determines whether they are equal:

Nullable.Compare<T> (Nullable<T> left, Nullable<T> right);

Together, these classes provide the functionality that the C# compiler uses to implement your
requests for nullable types.

The .NET Framework designers also added some utility delegates using generics that you can use (and
they use) to handle common patterns. For example, suppose you want to create a callback that visits
every element of a generic collection. Using IEnumerable<T>, you could visit each element using a
simple foreach loop:

List<MyType> theList = new List<MyType>();
foreach (MyType thing in theList)
    thing.DoSomething();

You can replace DoSomething with any function that matches the System.Action delegate:

public delegate void Action<T>(T obj);

A simple generic function can now visit every item in a collection and perform some action on each
element:

public static void EnumerateAll<T>(IEnumerable<T>
theCollection,
    Action<T> doIt)
{
    foreach (T thing in theCollection)
        doIt(thing);
}

Of course, in C# 3.0, you should prefer to create this as an extension method:

public static void EnumerateAll<T>(this IEnumerable<T>
theCollection,
    Action<T> doIt)
{
    foreach (T thing in theCollection)
        doIt(thing);
}

When you want to sort an array of objects that doesn't implement IComparable<T>, you can supply a
delegate that matches the System.Comparison delegate:

delegate int Comparison<T>( T x, T y);

This delegate is used in List.Sort<T>(Comparison<T> comparison), an overload of Sort() that



allows you to specify your own comparison method.

There are also a couple of delegates that you can use to transform objects contained in a collection in
a type-safe manner. The System.Converter delegate converts one input object into a corresponding
output:

public delegate TOutput Converter<TInput, TOutput>(TInput
    input);

This delegate lets you write a generic method that transforms a sequence of one type into a sequence
of another type:

public IEnumerable<TOutput> Transform<TInput, TOutput>(
    IEnumerable<TInput> theCollection,
    Converter<TInput, TOutput> transformer)
{
    foreach (TInput source in theCollection)
        yield return transformer(source);
}

transform contains two type parameters: TInput and TOutput. They represent the input and output
types for the transform. System.Converter uses the same convention to describe the two types.

Sometimes you want to perform a test on every object of a collection. To do that, you create a
method that uses the System.Predicate delegate:

delegate bool Predicate<T>(T obj)

Another simple modification lets you create a sequence of all the elements of a sequence that pass a
test:

public IEnumerable<T> Test<T> (IEnumerable<T> theCollection,
Predicate<T> test)
{
    foreach (T source in theCollection)
        if ( test( source ) )
            yield return source;
}

Generics also can help you implement events with a lot less hand-written code. In .NET 1.1, you had
to create a class derived from EventArgs, then create the delegate definition, and then create an
event definition to match the delegate. It's not difficult, but it's terribly repetitive. Instead, the .NET
2.0 Framework includes a generic definition for an event handler:

public delegate void EventHandler<TEventArgs>(
    object sender, TEventArgs args)
    where TEventArgs: EventArgs



This replaces the most repetitive of the custom code you needed to create the delegate. The separate
delegate and event definitions might look like this:

public delegate void MyEventHandler(object sender,
    MyEventArgs args);
public event MyEventHandler OnRaiseMyEvent;

Instead, you now have this:

public event EventHandler<MyEventArgs> OnRaiseMyEvent;

It's a small saving, but it adds up when you're defining numerous events.

That covers the major generic additions to the System namespace, but there is one more important
addition to mention: System.ComponentModel.BindingList<T>. Creating a type that implemented
IBindingList in the .NET 1.x Framework was a boring and painful task. Also, most of that code was
very similar, and it had little to do with the actual type being placed in the list. But IBindingList,
ICancelAddNew, and CurrencyManager work together, so there were many opportunities to make
mistakes. For example, if you wanted to create a class that implemented IBindingList for a typical
employee class, it would take you several pages of code. In .NET 2.0, it's simply this:

System.ComponentModel.BindingList<Employee>

What could be easier?

That concludes the tour of the major generic classes in the .NET 2.0 Framework. You can see that
using generics means that you write less error-checking code, because now the compiler validates the
types of parameters and return values in those places where you had to do it before. Generics are a
big win, so get to know the generic definitions in the framework, and use them.

The final question is what to do with your current 1.1 code assets that have better generic
equivalents. I recommend that you replace that code with its generic equivalent at your earliest
convenience, but don't create a separate task simply to use generics. Code that already works is fine
as it is. But as soon as you update or modify it, you encounter new opportunities to create bugs that
the compiler would find for you. When you undertake a large task on any nongeneric class, start by
replacing the pertinent definitions with the generic equivalent, and let the compiler help you find the
remaining issues.

This item presents the case for changing any habits you have of building code using the classic
nongeneric application programming interface (API) in favor of using the newer generic versions. It
will be easier to use your libraries correctly, and harder to use them incorrectly. You'll leverage the
compiler to do more type checking for you. By using the generic delegate definitions, you'll be better
able to leverage the C# 3.0 enhancements that let the compiler infer types, freeing you to think about
algorithms and logic. The sooner your code uses generics instead of nongeneric counterparts wherever
possible, the sooner you'll be able to leverage the newest language features.
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Item 2. Define Constraints That Are Minimal and Sufficient

The constraints you declare on your type parameters specify the must-have behaviors your class
needs in order to accomplish its work. A type that doesn't satisfy all your constraints simply won't
work. Balance that against the fact that every constraint you impose could mean more work for
developers who want to use your type. The right choice varies from task to task, but either extreme is
wrong. If you don't specify any constraints, you must perform more checks at runtime: You'll perform
more casts, possibly using reflection and generating more runtime errors if your users misuse your
type. Specifying unneeded constraints means making too much work for the users of your class. Your
goal is to find the middle ground, where you specify what you need but not everything you want.

Constraints enable the compiler to expect capabilities in a type parameter beyond those in the public
interface defined in System.Object. When you create a generic type, the C# compiler must generate
valid IL for the generic type definition. While doing so, the compiler must create a valid assembly even
though the compiler has only limited knowledge of the actual type that may be used to substitute for
any type parameters. Without any guidance from you, the compiler can only assume the most basic
capabilities about those types: the methods exposed by System.Object. The compiler cannot enforce
any assumptions you have made about your types. All the compiler knows is that your types must
derive from System.Object. (This means that you cannot create unsafe generics using pointers as
type parameters.) Assuming only the capabilities of System.Object is very limiting. The compiler will
emit errors on anything not defined in System.Object. This includes even such fundamental
operations as new T(), which is hidden if you define a constructor that has parameters.

You use constraints to communicate (to both the compiler and users) any assumptions you've made
about the generic types. Constraints communicate to the compiler that your generic type expects
functionality not included in System.Object's public interface. This communication helps the compiler
in two ways. First, it helps when you create your generic type: The compiler asserts that any generic
type parameter contains the capabilities you specified in your constraints. Second, the compiler
ensures that anyone using your generic type defines type parameters that meet your specifications.

The alternative is for you to perform a lot of casting and runtime testing. For example, the following
generic method does not declare any constraints on T, so therefore it must check for the presence of
the IComparable<T> interface before using those methods.

// Without constraints
public bool AreEqual<T>(T left, T right)
{
    if (left == null)
        return right == null;

    if (left is IComparable<T>)
    {
        IComparable<T> lval = left as IComparable<T>;
        return lval.CompareTo(right) == 0;
    }



    else // failure
    {
        throw new ArgumentException(
            "Type does not implement IComparable<T>",
            "left");
    }
}

The equivalent method is much simpler if you specify that T must implement IComparable<T>:

public bool AreEqual<T>(T left, T right)
    where T : IComparable<T>
{
    return left.CompareTo(right) == 0;
}

This second version trades runtime errors for compile-time errors. You write less code, and the
compiler prevents those runtime errors that you must code against in the first version. Without the
constraint, you don't have good options for reporting an obvious programmer error. You need to
specify the necessary constraints on your generic types. Not doing so would mean that your class
could easily be misused, producing exceptions or other runtime errors when client programmers guess
wrong. They'll guess wrong often, because the only way client programmers can determine how to use
your class is to read your documentation. Being a developer yourself, you know how likely that is.
Using constraints helps the compiler enforce the assumptions you've already made. It minimizes the
number of runtime errors and the likelihood of misuse.

But it's easy to go too far in defining constraints. The more constraints you place on the generic type
parameters, the less often your generic class can be used by the client programmers you're trying to
help. Although you need to specify the necessary constraints, you also need to minimize the number
of constraints you place on your generic parameters.

There are a number of ways that you can minimize the constraints you specify. One of the most
common ways is to ensure that your generic types don't require functionality that they can do without.
For example, let's look at IEquatable<T>. It's a common interface, and certainly one that many
developers would implement when creating new types. You could rewrite the AreEqual method using
Equals:

public static AreEqual<T>(T left, T right)
{
    return left.Equals(right);
}

What's interesting about this version of AreEqual is that if AreEqual<T>() is defined in a generic class
declaring the IEquatable<T> constraint, it will call IEquatable<T>.Equals. Otherwise, the C#
compiler cannot assume that IEquatable<T> is present. The only Equals() method in scope is
System.Object.Equals().

This example illustrates the major difference between C# generics and C++ templates. In C#, the
compiler must generate IL using only the information specified in constraints. Even if the type
specified for a specific instantiation has a better method, it won't be used unless it was specified when



the generic type was compiled.

IEquatable<T> is certainly a more efficient way to test equality when it is implemented on the type.
You avoid the runtime tests necessary to implement a proper override of System.Object.Equals().
You avoid the boxing and unboxing that would be necessary if the type used as your generic type were
a value type. If you are highly performance conscious, IEquatable<T> also avoids the small overhead
of a virtual method call.

So asking your client developers to support IEquatable<T> is a good thing. But does it rise to the
level of a constraint? Must everyone using your class implement IEquatable<T> when there is a
perfectly good System.Object.Equals method that works correctly, if somewhat less efficiently? I
recommend that you use the preferred method (IEquatable<T>) if available, but transparently
downgrade to the less preferred API method (Equals()) if the preferred method is not available. You
can do that by creating your own internal methods that are overloaded based on the capabilities you
support. Essentially, this is the original AreEqual() method I show at the beginning of this item. This
approach takes more work, but we'll look at how to query a type for capabilities and use the best
interface available in the type parameter, without mandating extra work on the part of client
developers.

Sometimes mandating a constraint is too limiting for the use of a class, and you should instead view
the presence or absence of a particular interface or base class as an upside rather than a mandate. In
those cases, you should code your methods to consider the case when the type parameter may
provide extra benefits, but those enhanced functions may not always be available. This is the design
implemented in Equatable<T> and Comparable<T>.

You can extend this technique to other constraints when there are generic and nongeneric
interfaces—for example, IEnumerable and IEnumerable<T>.

The other location you need to carefully consider is the default constructor constraint. Some of the
time, you can replace the new() constraint by replacing new calls with a call to default(). The latter is
a new operator in C# that initializes a variable to its default value. This operator creates the default 0
bit pattern for value types and returns null for reference types. So replacing new() with default()
may often mean introducing either the class or value constraints. Notice that the semantics of
default() are very different from the semantics for new() when you're working with reference types.

You'll often see code that uses default() in generic classes that need default values for objects of the
type parameters. Following is a method that searches for the first occurrence of an object that
satisfies a predicate. If the sought object exists, it is returned. Otherwise, a default value is returned.

public static T FirstOrDefault<T>(this IEnumerable<T> sequence,
    Predicate<T> test)
{
    foreach (T value in sequence)
        if (test(value))
            return value;

    return default(T);
}

Contrast that with this method. It wraps a factory method to create an object of type T. If the factory
method returns null, then the method returns the value returned by the default constructor.



public delegate T FactoryFunc<T>();
public static T Factory<T>(FactoryFunc<T> makeANewT)
    where T : new()
{
    T rVal = makeANewT();
    if (rVal == null)
        return new T();
    else
        return rVal;
}

The method that uses default() needs no constraints. The method that calls new T() must specify
the new() constraint. Also, because of the test for null, the behavior is very different for value types,
as compared with reference types. Value types cannot be null. Therefore, the clause under the if
statement will never be executed. Factory<T> can still be used with value types, even though it
checks for a null value internally. The JIT compiler (which replaces T with the specific type) will
remove the null test if T is a value type.

You should pay careful attention to constraints for new(), struct, and class. The foregoing example
shows you that adding any of those constraints creates assumptions about how an object will be
constructed, whether or not the default value for an object is all zeros or a null reference, and whether
or not instances of your generic type parameter can be constructed inside the generic class. Ideally,
you should avoid any of these three constraints whenever you can. Think carefully about whether you
must have those assumptions for your generic types. Often, you've merely created an assumption in
your own mind ("Of course I can call new T()") when there is a suitable alternative (such as
default(T)). Pay careful attention to the assumptions you've implicitly made. Remove those that
aren't truly necessary.

To communicate your assumptions to your client programmers, you need to specify constraints.
However, the more constraints you specify, the less often your class can be used. The whole point of
creating a generic type is to create a type definition that can be used efficiently in as many scenarios
as possible. You need to balance the safety of specifying constraints against the extra work required
by client programmers to deal with every extra constraint. Strive for the minimal set of assumptions
you need, but specify all the assumptions you make as constraints.
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Item 3. Specialize Generic Algorithms Using Runtime Type
Checking

You can easily reuse generics by simply specifying new type parameters. A new instantiation with new
type parameters means a new type having similar functionality.

All this is great, because you write less code. However, sometimes being more generic means not
taking advantage of a more specific, but clearly superior, algorithm. The C# language rules take this
into account. All it takes is for you to recognize that your algorithm can be more efficient when the
type parameters have greater capabilities, and then to write that specific code. Furthermore, creating
a second generic type that specifies different constraints doesn't always work. Generic instantiations
are based on the compile-time type of an object, and not the runtime type. If you fail to take that into
account, you can miss possible efficiencies.

For example, suppose you write a class that provides a reverse-order enumeration on a sequence of
items:

public sealed class ReverseEnumerable<T> : IEnumerable<T>
{
    private class ReverseEnumerator : IEnumerator<T>
    {
        int currentIndex;
        IList<T> collection;

        public ReverseEnumerator(IList<T> srcCollection)
        {
            collection = srcCollection;
            currentIndex = collection.Count;
        }

        #region IEnumerator<T> Members
        public T Current
        {
            get { return collection[currentIndex]; }
        }
        #endregion

        #region IDisposable Members
        public void Dispose()
        {
            // No implementation needed.
            // No protected Dispose() needed
            // because this class is sealed.
        }
        #endregion



        #region IEnumerator Members
        object System.Collections.IEnumerator.Current
        {
            get { return this.Current; }
        }

        public bool MoveNext()
        {
            return --currentIndex >= 0;

        }

        public void Reset()
        {
            currentIndex = collection.Count;
        }
        #endregion
    }

    IEnumerable<T> sourceSequence;
    IList<T> originalSequence;

    public ReverseEnumerable(IEnumerable<T> sequence)
    {
        sourceSequence = sequence;
    }

    #region IEnumerable<T> Members
    public IEnumerator<T> GetEnumerator()
    {
        // Create a copy of the original sequence,
        // so it can be reversed.
        if (originalSequence == null)
        {
            originalSequence = new List<T>();
            foreach (T item in sourceSequence)
                originalSequence.Add(item);
        }
        return new ReverseEnumerator(originalSequence);
    }
    #endregion

    #region IEnumerable Members
    System.Collections.IEnumerator
        System.Collections.IEnumerable.GetEnumerator()
    {
        return this.GetEnumerator();
    }
    #endregion
}



This implementation assumes the least amount of information from its arguments. The
ReverseEnumerable constructor assumes that its input parameter supports IEnumerable<T>, and
that's it. IEnumerable<T> does not provide any random access to its elements. Therefore, the only
way to reverse the list is shown in the body of ReverseEnumerator<T>.GetEnumerator(). Here, if the
constructor is being called for the first time, it walks the entire input sequence and creates a copy.
Then the nested class can walk the list of items backward.

It works, and when the actual input collection does not support random access of the sequence, that's
the only way to create a reverse enumeration of a sequence. In practice, though, this code is ugly.
Many collections you work with support random access, and this code is highly inefficient in those
cases. When the input sequence supports IList<T>, you've created an extra copy of the entire
sequence for no good reason. Let's make use of the fact that many of the types that implement
IEnumerable<T> also implement IList<T> and improve the efficiency of this code.

The only change is in the constructor of the ReverseEnumerable<T> class:

public ReverseEnumerable(IEnumerable<T> sequence)
{
    sourceSequence = sequence;
    // If sequence doesn't implement IList<T>,
    // originalSequence is null, so this works
    // fine.
    originalSequence = sequence as IList<T>;
}

Why don't we simply create a second constructor using IList<T>? That helps when the compile-time
type of the parameter is IList<T>. But it doesn't work in some cases—for example, when the
compile-time type of a parameter is IEnumerable<T> but the runtime type implements IList<T>. To
catch those cases, you should provide both the runtime check and the compile-time overload.

public ReverseEnumerable(IEnumerable<T> sequence)
{
    sourceSequence = sequence;
    // If sequence doesn't implement IList<T>,
    // originalSequence is null, so this works
    // fine.
    originalSequence = sequence as IList<T>;
}

public ReverseEnumerable(IList<T> sequence)
{
    sourceSequence = sequence;
    originalSequence = sequence;
}

IList<T> enables a more efficient algorithm than does IEnumerable<T>. You haven't forced
consumers of this class to provide more functionality, but you have made use of greater capabilities
when they have provided it.

That change handles the vast majority of cases, but there are collections that implement
ICollection<T> without implementing IList<T>. In those cases, there are still inefficiencies. Look



again at the ReverseEnumerable<T>.GetEnumerator() method.

public IEnumerator<T> GetEnumerator()
{
    // Create a copy of the original sequence,
    // so it can be reversed.
    if (originalSequence == null)
    {
        originalSequence = new List<T>();
        foreach (T item in sourceSequence)
            originalSequence.Add(item);
    }
    return new ReverseEnumerator(originalSequence);
}

The code that creates the copy of the input sequence will execute more slowly than needed if the
source collection implements ICollection<T>. The following method adds a Count property that you
can use to initialize the final storage:

public IEnumerator<T> GetEnumerator()
{
    // Create a copy of the original sequence,
    // so it can be reversed.
    if (originalSequence == null)
    {
        if (sourceSequence is ICollection<T>)
        {
            ICollection<T> source = sourceSequence
               as ICollection<T>;
            originalSequence = new List<T>(source.Count);
        }
        else
            originalSequence = new List<T>();
        foreach (T item in sourceSequence)
            originalSequence.Add(item);
    }
    return new ReverseEnumerator(originalSequence);
}

The code I've shown here is similar to the code in the List<T> constructor that creates a list from an
input sequence:

List<T>(IEnumerable<T> inputSequence);

There's one side point I want to cover before we leave this item. You'll notice that all the tests I make
in the ReverseEnumerable<T> are runtime tests on the runtime parameter. This means that you
assume a runtime cost to query for the extra capabilities. In almost all cases, the cost of the runtime
test is much less than the cost of copying the elements.

You may be thinking that we've looked at all the possible uses of the ReverseEnumerable<T> class.



But there is still one variation: the string class. string provides methods that have random access to
the characters, such as IList<char>, but string does not implement IList<char>. Using the more-
specific methods requires writing more-specific code inside your generic class. The
ReverseStringEnumerator class (shown next), which is nested inside the ReverseEnumerable<T>, is
straightforward. Notice that the constructor uses the string's Length parameter, and the other
methods are almost the same as in the ReverseEnumerator<T> class.

private class ReverseStringEnumerator : IEnumerator<char>
{
    private string sourceSequence;
    private int currentIndex;

    public ReverseStringEnumerator(string source)
    {
        sourceSequence = source;
        currentIndex = source.Length;
    }

    #region IEnumerator<char> Members
    public char Current
    {
        get { return sourceSequence[currentIndex]; }
    }
    #endregion

    #region IDisposable Members
    public void Dispose()
    {
       // no implementation
    }
    #endregion

    #region IEnumerator Members
    object System.Collections.IEnumerator.Current
    {
        get { return sourceSequence[currentIndex]; }
    }

    public bool MoveNext()
    {
        return --currentIndex >= 0;
    }

    public void Reset()
    {
        currentIndex = sourceSequence.Length;
    }
    #endregion
}

To complete the specific implementation, the ReverseEnumerable<T>.GetEnumerator() needs to look



at the proper type and create the right enumerator type:

public IEnumerator<T> GetEnumerator()
{
    // String is a special case:
    if (sourceSequence is string)
    {
        // Note the cast because T may not be a
        // char at compile time
        return new ReverseStringEnumerator
            (sourceSequence as string)
            as IEnumerator<T>;
    }

    // Create a copy of the original sequence,
    // so it can be reversed.
    if (originalSequence == null)
    {
        if (sourceSequence is ICollection<T>)
        {
            ICollection<T> source = sourceSequence
                as ICollection<T>;
            originalSequence = new List<T>(source.Count);
        } else
            originalSequence = new List<T>();
        foreach (T item in sourceSequence)
            originalSequence.Add(item);
    }
    return new ReverseEnumerator(originalSequence);
}

As before, the goal is to hide any specialized implementations inside the generic class. This is a bit
more work, because the string class specialization requires a completely separate implementation of
the inner class.

You'll also note that the implementation of GetEnumerator() requires a cast when the
ReverseStringEnumerator is used. At compile time, T could be anything, and therefore it might not
be a char. The cast is safe; the only path through the code ensures that T is a char, because the
sequence is a string. That's OK, because it is safely hidden inside the class and won't pollute the public
interface. As you can see, the existence of generics does not completely remove the need to
occasionally convince the compiler that you know more than it does.

This small sample shows how you can create generic classes that work with the fewest formal
constraints and still use specific constraints that will provide a better implementation when the type
parameter supports enhanced functionality. That provides the best compromise between maximum
reuse and the best implementation you can write for a particular algorithm.
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Item 4. Use Generics to Force Compile-Time Type Inference

Patterns are a way to standardize the implementation of common algorithms that are not directly
supported by the language or the framework. A pattern is a recipe you can follow when solving a well-
known problem. The purpose of a pattern is to provide some level of thought reuse when there is
limited code reuse. When pattern reuse isn't optimal, it's because it's hard to abstract away all the
specific parts of a pattern in code.

Creating generic classes can help you write reusable code that implements many common patterns.
The essence of a pattern is that there are common algorithms and code that are supported by and
used by types that are specific to each application. You can't use generics for every possible pattern,
but generics can give you a great way to minimize the amount of code needed to create and support a
given pattern.

The collection classes in the .NET Framework demonstrate this capability in a number of methods that
implement a form of the enumerator pattern. List<T>.Find (Predicate<T> match) finds the first
element in which a given condition has been met. The List class also contains similar methods for
FindAll, TRueForAll, ForEach, and others. These particular methods may not represent the kind of
earth-shattering brilliance you'd expect me to cover. But the design idiom is instructive, because it
shows you when the same pattern can apply to you. The collection class now contains the common
algorithm to enumerate all nodes in the collection. Client code need only supply the logic that is to be
applied on each item in the collection.

Following this pattern means that the .NET Framework designers did not need to anticipate all the use
cases for examining or modifying each of the elements in your collection. Instead, they provided the
generic method to visit each element and call a function you define with each element. You examine
all the elements for a variety of reasons: searching for something, testing the values of the elements,
or transforming the values of the elements.

The .NET designers provided you with the mechanisms to define your own tests, or predicates, for
each of those actions. In fact, you can write those predicates inline as anonymous methods, the
subject of Item 18 (Chapter 3).

In the same way, you can create implementations of many design patterns by defining the proper
delegates or events in the form of predicates. Those generic implementations of patterns can be
reused whenever you need to implement that same pattern.

Let's look at two patterns that are good examples of creating implementations that are easy to reuse
and hard to misuse. The simplest is a class that supports serialization using the XML Serializer. A
nongeneric version of a class that serializes any arbitrary type works like this:

public static class XmlPersistenceManager
{
    public static object LoadFromFile(Type typeToLoad,
        string filePath)



    {
        XmlSerializer factory = new XmlSerializer(typeToLoad);
        if (File.Exists(filePath))
        {
            using (TextReader r = new StreamReader(filePath))
            {
                object rVal = factory.Deserialize(r);
                return rVal;
            }
        }
        return default(object);
    }

    public static void SaveToFile(string filePath, object obj)
    {
        Type theType = obj.GetType();
        XmlSerializer factory = new XmlSerializer(theType);

        using (TextWriter w = new StreamWriter(filePath,
            false))
        {
            factory.Serialize(w, obj);
        }
    }
}

This works, but it's not an easy type to use. Developers who use your class must specify the Type
parameters. They can't be inferred.

Well, time passes and you need to serialize another type. There are quite a few locations that call
these two methods—sometimes with the same type, at other times with different types. That's
probably OK, but there are several shortcomings in this code. The first is type safety: Every time you
call the LoadFromFile method, you must cast or convert the return value. At some point, you'll need
the cast, but you certainly want to limit the number of locations as best you can.

There's also a hidden inefficiency in this code. Every call to either of these methods creates a new
XmlSerializer. Depending on the application, this action creates quite a few more XmlSerializer
objects than you need. It's true that the framework designers worked to minimize the cost of creating
these objects, but it still creates and destroys more temporary objects than necessary. You might
think of making this change:

// Don't use. There's a bug in caching
// the XmlSerializer.
public static class XmlPersistenceManager
{
    // cache the serializer once it's created:
    private static XmlSerializer factory;

    public static object LoadFromFile(Type typeToLoad,
        string filePath)
    {
        if (factory == null)



            factory = new XmlSerializer(typeToLoad);
        if (File.Exists(filePath))
        {
            using (TextReader r = new StreamReader(filePath))
            {
                object rVal = factory.Deserialize(r);
                return rVal;
            }
        }
        return null;
    }

    public static void SaveToFile(string filePath, object obj)
    {
        Type theType = obj.GetType();
        if (factory == null)
            factory = new XmlSerializer(theType);

        using (TextWriter w = new StreamWriter(filePath,
            false))
        {
            factory.Serialize(w, obj);
        }
    }
}

It looks simple: Create the XmlSerializer once, and cache it for the rest of time. It may even pass
your unit tests. But that's a false sense of security. The first application that uses the
XmlPersistenceManager with more than one class will have problems. Each XmlSerializer is tied to
a specific Type class. It knows how to serialize only that type. Using it with another Type instance
causes an exception.

You could modify the class by storing a hashtable of XmlSerializer objects mapped to the Type
instance they use. But that means writing more code, work that the compiler and JIT engine can do
for you. (Yes, you can add multiple types to the XmlSerializer instance, but that's not the correct
answer in this case.)

It shouldn't take you long to see that you've essentially copied an algorithm and have made a couple
of substitutions. Well, that's exactly what the compiler does with generics. So you write this:

// Caching works, because a new
// generic instance is created for each distinct T
public static class GenericXmlPersistenceManager<T>
{
    // cache the serializer once it's created:
    private static XmlSerializer factory;

    public static T LoadFromFile(string filePath)
    {
        if (factory == null)
            factory = new XmlSerializer(typeof (T));
        if (File.Exists(filePath))



        {
            using (TextReader r = new StreamReader(filePath))
            {
                T rVal = (T)factory.Deserialize(r);
                return rVal;
            }
        }
        return default(T);
    }

    public static void SaveToFile(string filePath, T data)
    {
        if (factory == null)
            factory = new XmlSerializer(typeof(T));

        using (TextWriter w = new StreamWriter(filePath,
            false))
        {
            factory.Serialize(w, data);
        }
    }
}

Next, you get the requirement to stream XML nodes to an open output stream. You can make a few
small changes to your generic class, and everyone benefits:

public static class GenericXmlPersistenceManager<T>
{
    // cache the serializer once it's created:
    private static XmlSerializer factory;

    public static T LoadFromFile(string filePath)
    {
        if (File.Exists(filePath))
        {
            using (XmlReader inputStream = XmlReader.Create(
                filePath))
            {
                return ReadFromStream(inputStream);
            }
        }
        return default(T);
    }

    public static void SaveToFile(string filePath, T data)
    {
        using (XmlWriter writer = XmlWriter.Create(filePath))
        {
            AddToStream(writer, data);
        }
    }



    public static void AddToStream(
        System.Xml.XmlWriter outputStream,  T data)
    {
        if (factory == null)
            factory = new XmlSerializer(typeof(T));
        factory.Serialize(outputStream, data);
    }

    public static T ReadFromStream(
        System.Xml.XmlReader inputStream)
    {
        if (factory == null)
            factory = new XmlSerializer(typeof(T));
        T rVal = (T)factory.Deserialize(inputStream);
        return rVal;
    }
}

Another advantage of this version is that the compiler can infer the type parameter for the save
methods. The load methods use the type parameter only as a return type, so the load methods still
require that developers specify the type parameters. The final lesson from the generic XML serializer is
that any fixes or enhancements are immediately available to all implementations that use this
implementation.

Many times you'll find that you create algorithms that use the type of an object to implement the
algorithm. In that case, you can often create a single generic version of the algorithm by abstracting
away the type parameters into generic parameters. Then the compiler can create the specific versions
for you.
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Item 5. Ensure That Your Generic Classes Support Disposable
Type Parameters

Constraints do two things for you and users of your class. First, using constraints transforms runtime
errors into compiler errors. Second, constraints provide a clear set of documentation for users of your
class as to what is expected when they create an instantiation of your parameterized type. But you
can't use constraints to specify what a type parameter can't do. In almost all cases, you don't care
what capabilities a type parameter has beyond those your type expects and uses. But in the special
case of a type parameter that implements IDisposable, you have some extra work on your hands.

Real-world examples that demonstrate this issue become complicated rather quickly, so I've
fabricated a simple example to show how this issue occurs and how to rectify it in your code. The
problem occurs when you have a generic method that needs to create and use an instance of the type
parameter in one of its methods:

public interface IEngine
{
    void DoWork();
}

public class EngineDriver<T> where T : IEngine, new()
{
    public void GetThingsDone()
    {
        T driver = new T();
        driver.DoWork();
    }
}

You may have introduced a resource leak if T implements IDisposable. In every case where you
create a local variable of type T, you need to check whether T implements IDisposable, and, if so,
dispose of it correctly:

public void GetThingsDone()
{
    T driver = new T();
    using (driver as IDisposable)
    {
        driver.DoWork();
    }
}

This may look a bit confusing if you've never seen that sort of cast in a using statement, but it works.



The compiler creates a hidden local variable that stores a reference to the driver cast as an
IDisposable. If T does not implement IDisposable, then the value of this local variable is null. In
those cases, the compiler does not call Dispose(), because it checks against null before doing this
extra work. However, in all cases where T implements IDisposable, the compiler generates a call to
the Dispose() method upon exiting the using block.

That's a fairly simple idiom: Wrap local instances of type parameters in a using statement. You need
to use the cast I've shown here, because T may or may not implement IDisposable.

Your life gets more complicated when your generic class needs to create and use an instance of the
type parameters as member variables. Your generic class now owns a reference to a type that may
implement IDisposable.

This means that your generic class must implement IDisposable. You need to have your class check
whether the resource implements IDisposable, and, if so, it must dispose of that resource:

public sealed class EngineDriver<T> : IDisposable
    where T : IEngine, new()
{
    // It's expensive to create, so initialize to null
    private T driver;
    public void GetThingsDone()
    {
        if (driver == null)
            driver = new T();
        driver.DoWork();
    }

    #region IDisposable Members
    public void Dispose()
    {
        IDisposable resource = driver as IDisposable;

        if (resource != null)
        {
            resource.Dispose();
        }
        // Calling Dispose multiple times is OK.
    }
    #endregion
}

Your class picked up quite a bit of baggage on this round. You have the added work of implementing
IDisposable. Second, you've added the sealed keyword to the class. It's either that or implement the
full IDisposable pattern to allow derived classes to also use your Dispose() method. (See Cwalina
and Abrams, Framework Design Guidelines, pp. 248–261.) Sealing the class means that you don't
need that extra work. However, it does limit the users of your class, who can no longer derive a new
type from your class.

Finally, notice that this class, as coded, can't guarantee that you don't call Dispose() on the driver
more than once. That's allowed, and any type that implements IDisposable must support multiple
calls to Dispose(). That's because there isn't a class constraint on T, so you can't set driver to null



before exiting the Dispose method. (Remember that value types cannot be set to null.)

In practice, you often can avoid this design by changing the interface of the generic class somewhat.
You can move the Dispose responsibility outside the generic class and remove the new() constraint by
moving the ownership outside this generic class:

public class EngineDriver<T> where T : IEngine
{
    private T driver;
    public EngineDriver(T driver)
    {
        this.driver = driver;
    }

    public void GetThingsDone()
    {
        driver.DoWork();
    }
}

Of course, the comment in the earlier listing implies that creating a T object might be very expensive.
This latest version ignores that concern. In the end, how you solve this problem depends on many
other factors in your application design. But one thing is certain: If you create instances of any of the
types described by your generic class's type parameters, you must consider that those types may
implement IDisposable. You must code defensively and ensure that you don't leak resources when
those objects go out of scope.

Sometimes you can do that by refactoring the code so that it does not create those instances. At other
times the best design is to create and use local variables, writing the code to dispose of them if
needed. Finally, the design may call for lazy creation of instances of the type parameters and
implementing IDisposable in the generic class. It's a bit more work, but it is necessary work if you
want to create a class that is useful.
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Item 6. Use Delegates to Define Method Constraints on Type
Parameters

At first glance, the constraint mechanism in C# seems too restrictive: You can specify only a single
base class, interfaces, class or struct, and a parameterless constructor. That leaves a lot out. You can't
specify static methods (which include any operators), and you can't specify any other constructors.
From one perspective, the constraints defined by the language can satisfy every contract. You could
use parameters to define an IFactory<T> interface that creates T objects. You can define IAdd<T> to
add T objects and use the static operator + defined on T (or use some other method that adds T
objects). But that's not a good way to solve this problem. It's a lot of extra work, and it obscures your
basic design.

Let's consider the Add() example. If your generic class needed an Add() method on T, you'd need to
perform several tasks: You would create an IAdd<T> interface. You'd code against that interface. So
far, that's not too bad. But every developer who wants to use your generic class would need to do
even more work. They'd need to create a class that implements IAdd<T>, define the methods needed
for IAdd<T>, and then specify the closed generic class for your generic class definition. To call one
method, you've made developers create a class simply to match an API signature. That introduces
quite a bit of friction and confusion for developers who want to use your class.

But it doesn't have to be that way. You can specify a delegate signature that matches the method your
generic class needs to call. It doesn't mean any more work for you, the author of the generic class.
But it saves a great deal of work for the developers who are using your generic class.

Here's how you would define a generic class that needs some method that adds two objects of type T.
You don't even need to define your own delegate definition; the System.Func<T1, T2, TOutput>
delegate matches the signature you need. Here is a generic method that adds two objects, using a
supplied method that implements Add:

public static class Example
{
    public static T Add<T>(T left, T right,
        Func<T, T, T> AddFunc)
    {
        return AddFunc(left, right);
    }
}

Developers using your class can use type inference and lambda expressions to define the method that
should be called when your generic class needs to call AddFunc(). You would call the Add generic
method using a lambda expression like this:

int a = 6;
int b = 7;



int sum = Example.Add(a, b, (x, y) => x + y);

The C# compiler infers the types and return values from the lambda expression as equivalent to an
anonymous delegate. If your users are not familiar with lambda syntax, they could use an anonymous
delegate to call Add() in this way:

int sum2 = Example.Add(a,b, delegate(int x, int y)
{
    return x + y;
});

In both cases, in the class containing this code snippet, the C# compiler creates a private static
method that returns the sum of the two integers. The name of the method is generated by the
compiler. The compiler also creates a Func<T,T,T> delegate object and assigns the method pointer to
that compiler-generated method. Finally, the compiler passes that delegate to the generic
Example.Add() method.

I've used the lambda syntax to specify the method that defines the delegate to show why you should
create delegate-based interface contracts. The code is a contrived example, but the concept is what's
important. When it's unwieldy to use an interface to define a constraint, you can define a method
signature and a delegate type that suits your needs. Then you add an instance of that delegate to the
list of the parameters of the generic method. The developers using your class can use a lambda
expression to define that method, writing much less code, in a much clearer fashion. Developers using
your class need to create the lambda expression that defines the method functionality they need.
There's no extra code to support the syntax of interface-based constraints.

More often, you'll want to use delegate-based contracts to create algorithms that operate on
sequences. Imagine you need to write code that combines samples taken from various mechanical
probes and turns these two sequences into a single sequence of points.

Your point class might look like this:

public class Point
{
    public double X
    {
        get;
        private set;
    }
    public double Y
    {
        get;
        private set;
    }
    public Point(double x, double y)
    {
        this.X = x;
        this.Y = y;
    }
}



The values you've read from your device are List<double> sequences. You need a way to create a
sequence by repeatedly calling the Point(double,double) constructor with each successive X,Y pair.
Point is an immutable type. You can't call the default constructor and then set the X and Y properties.
But neither can you create a constraint that specifies parameters on a constructor. The solution is to
define a delegate that takes two parameters and returns a point. Again, it's already in the .NET
Framework 3.5:

delegate TOutput Func<T1, T2, TOutput>(T1 arg1, T2 arg2);

In this example, T1 and T2 are the same type: double. A generic method that creates an output
sequence looks like this:

public static IEnumerable<TOutput> Merge<T1, T2, TOutput>
    (IEnumerable<T1> left, IEnumerable<T2> right,
    Func<T1, T2, TOutput> generator)
{
    IEnumerator<T1> leftSequence = left.GetEnumerator();
    IEnumerator<T2> rightSequence = right.GetEnumerator();
    while (leftSequence.MoveNext() && rightSequence.MoveNext())
    {
        yield return generator(leftSequence.Current,
            rightSequence.Current);
    }
}

Merge enumerates both input sequences, and for each pair of items in the input sequence, it calls the
generator delegate, returning the newly constructed Point object. (See Item 19, Chapter 3.) The
delegate contract specifies that you need a method that constructs the output type from two different
inputs. Notice that Merge is defined so that the two input types don't need to be the same type. You
could create key/value pairs of disparate types using this same method. You'd just need a different
delegate.

You would call Merge this way:

double[] xValues = { 0, 1, 2, 3, 4, 5, 6, 7, 8, 9,
    0, 1, 2, 3, 4, 5, 6, 7, 8, 9 };
double[] yValues = { 0, 1, 2, 3, 4, 5, 6, 7, 8, 9,
    0, 1, 2, 3, 4, 5, 6, 7, 8, 9 };

List<Point> values = new List<Point>(
    Utilities.Merge(xValues, yValues,
    (x, y) => new Point(x, y)));

Again, I've used the lambda expression syntax. It's equivalent to the same call with an anonymous
delegate:

List<Point> values2 = new List<Point>(
    Utilities.Merge(xValues, yValues,
    delegate(double x, double y)



    {
        return new Point(x, y);
    }));

As before, the compiler generates a private static method, instantiates a delegate object using a
reference to that method, and passes that delegate object to the Merge() method.

In the general case, any method your generic class needs to call can be replaced by a specific
delegate. These first two examples contain a delegate that is called for a generic method. This practice
works even if your type needs the delegate method in many locations. You can create a generic class
in which one of the class type parameters is a delegate. Then, when you create an instance of the
class, you assign a member of the class to a delegate of that type.

The following simple example caches a delegate that reads a point from a stream and calls that
delegate to convert the text input to a Point. The first step is to add a constructor to the Point class
that reads a point from a file:

public Point(System.IO.TextReader reader)
{
    string line = reader.ReadLine();
    string[] fields = line.Split(',');
    if (fields.Length != 2)
        throw new InvalidOperationException(
            "Input format incorrect");
    double value;
    if (!double.TryParse(fields[0], out value))
        throw new InvalidOperationException(
            "Could not parse X value");
    else
        X = value;

    if (!double.TryParse(fields[1], out value))
        throw new InvalidOperationException(
            "Could not parse Y value");
    else
        Y = value;
}

Creating the collection class requires some indirection. You can't enforce a constraint that your generic
type includes a constructor that takes parameters. However, you can mandate a method that does
what you want. You define a delegate type that constructs a T from a file:

public delegate T CreateFromStream<T>(TextReader reader);

Next, you create the container class, and the constructor of that container takes an instance of the
delegate type as a parameter:

public class InputCollection<T>
{
    private List<T> thingsRead = new List<T>();



    private readonly CreateFromStream<T> readFunc;

    public InputCollection(CreateFromStream<T> readFunc)
    {
        this.readFunc = readFunc;
    }

    public void ReadFromStream(TextReader reader)
    {
        thingsRead.Add(readFunc(reader));
    }

    public IEnumerable<T> Values
    {
        get { return thingsRead; }
    }
}

When you instantiate an InputCollection, you supply the delegate:

InputCollection<Point> readValues = new
    InputCollection<Point>(
    (inputStream) => new Point(inputStream));

This sample is simple enough that you'd probably create the nongeneric class instead. However, this
technique will help you build generic types that rely on behavior that cannot be specified by a normal
constraint.

Often, the best way to express your design is to use class constraints or interface constraints to
specify your constraints. The .NET Base Class Library (BCL) does that in many places, expecting your
types to implement IComparable<T>, or IEquatable<T>, or IEnumerable<T>. That's the right design
choice, because those interfaces are common and are used by many algorithms. Also, they are clearly
expressed as interfaces: A type implementing IComparable<T> declares that it supports an ordering
relation. A type implementing IEquatable<T> declares that it supports equality.

However, if you need to create a custom interface contract to support only a particular generic method
or class, you may find that it's much easier for your users to use delegates to specify that contract as
a method constraint. Your generic type will be easy to use, and the code calling it will be easy to
understand. Whether it's the presence of an operator, another static method, a delegate type, or some
other construction idiom, you can define some generic interfaces for the constraint, and you can
create a helper type that implements that interface so that you can satisfy the constraints. Don't let a
semantic contract that's not directly compatible with constraints stop you from enforcing your design.
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Item 7. Do Not Create Generic Specialization on Base Classes or
Interfaces

Introducing generic methods can make it highly complicated for the compiler to resolve method
overloads. Each generic method can match any possible substitute for each type parameter.
Depending on how careful you are (or aren't), your application will behave very strangely. When you
create generic classes or methods, you are responsible for creating a set of methods that will enable
developers using that class to safely use your code with minimal confusion. This means that you must
pay careful attention to overload resolution, and you must determine when generic methods will
create better matches than the methods developers might reasonably expect.

Examine this code, and try to guess the output:

public class MyBase
{
}

public interface IMessageWriter
{
    void WriteMessage();
}

public class MyDerived : MyBase, IMessageWriter
{
    #region IMessageWriter Members
    void IMessageWriter.WriteMessage()
    {
        Console.WriteLine("Inside MyDerived.WriteMessage");
    }
    #endregion
}

public class AnotherType : IMessageWriter
{
    #region IMessageWriter Members
    public void WriteMessage()
    {
        Console.WriteLine("Inside AnotherType.WriteMessage");
    }
    #endregion
}

class Program
{
    static void WriteMessage(MyBase b)



    {
        Console.WriteLine("Inside WriteMessage(MyBase)");
    }

    static void WriteMessage<T>(T obj)
    {
        Console.Write("Inside WriteMessage<T>(T):  ");
        Console.WriteLine(obj.ToString());
    }

    static void WriteMessage(IMessageWriter obj)
    {
        Console.Write(
            "Inside WriteMessage(IMessageWriter):  ");
        obj.WriteMessage();
    }

    static void Main(string[] args)
    {
        MyDerived d = new MyDerived();
        Console.WriteLine("Calling Program.WriteMessage");
        WriteMessage(d);
        Console.WriteLine();

        Console.WriteLine(
            "Calling through IMessageWriter interface");
        WriteMessage((IMessageWriter)d);
        Console.WriteLine();
        Console.WriteLine("Cast to base object");
        WriteMessage((MyBase)d);
        Console.WriteLine();

        Console.WriteLine("Another Type test:");
        AnotherType anObject = new AnotherType();
        WriteMessage(anObject);
        Console.WriteLine();

        Console.WriteLine("Cast to IMessageWriter:");
        WriteMessage((IMessageWriter)anObject);
    }
}

Some of the comments might make it a giveaway, but make your best guess before looking at the
output. It's important to understand how the existence of generic methods affects the method
resolution rules. Generics are almost always a good match, and they wreak havoc with our
assumptions about which methods get called. Here's the output:

Calling Program.WriteMessage
Inside WriteMessage<T>(T):  Item14.MyDerived

Calling through IMessageWriter interface
Inside WriteMessage(IMessageWriter):



    Inside MyDerived.WriteMessage

Cast to base object
Inside WriteMessage(MyBase)

Another Type test:
Inside WriteMessage<T>(T):  Item14.AnotherType

Cast to IMessageWriter:
Inside WriteMessage(IMessageWriter):
    Inside AnotherType.WriteMessage

The first test shows one of the more important concepts to remember: WriteMessage<T>(T obj) is a
better match than WriteMessage(MyBase b) for an object that is derived from MyBase. That's because
the compiler can make an exact match by substituting MyDerived for T in that message, and
WriteMessage(MyBase) requires an implicit conversion. The generic method is better. This concept
will become even more important when you see the extension methods defined in the Queryable and
Enumerable classes added in C# 3.0. Generic methods are always perfect matches, so they win over
base class methods.

The next two tests show how you can control this behavior by explicitly invoking the conversion (either
to MyBase or to an IMessageWriter type). And the last two tests show that the same type of behavior
is present for interface implementations even without class inheritance.

Name resolution rules are interesting, and you can show off your arcane knowledge about them at
geek cocktail parties. But what you really need is a strategy to create code that ensures that your
concept of "best match" agrees with the compiler's concept. After all, the compiler always wins this
battle.

It's not a good idea to create generic specializations for base classes when you intend to support the
class and all its descendents. It's equally error prone to create generic specializations for interfaces.
But numeric types do not present those pitfalls. There is no inheritance chain between integral and
floating-point numeric types. As Item 2 explains, often there are good reasons to provide specific
versions of a method for different value types. Specifically, the .NET Framework includes specialization
on all numeric types for Enumerable.Max<T>, Enumerable.Min<T>, and similar methods. But it's best
to use the compiler instead of adding runtime checks to determine the type. That's what you're trying
to avoid by using generics in the first place, right?

// Not the best solution
// this uses runtime type checking
static void WriteMessage<T>(T obj)
{
    if (obj is MyBase)
        WriteMessage(obj as MyBase);
    else if (obj is IMessageWriter)
        WriteMessage((IMessageWriter)obj);
    else
    {
        Console.Write("Inside WriteMessage<T>(T):  ");
        Console.WriteLine(obj.ToString());
    }
}



This code might be fine, but only if there are only a few conditions to check. It does hide all the ugly
behavior from your customers, but notice that it introduces some runtime overhead. Your generic
method is now checking specific types to determine whether they are (in your mind) a better match
than the one the compiler would choose if left to its own devices. Use this technique only when it's
clear that a better match is quite a bit better, and measure the performance to see whether there are
better ways to write your library to avoid the problem altogether.

Of course, this is not to say that you should never create more-specific methods for a given
implementation. Item 3 shows how to create a better implementation when advanced capabilities are
available. The code in Item 3 creates a reverse iterator that adapts itself correctly when advanced
capabilities are created. Notice that the Item 3 code does not rely on generic types for any name
resolution. Each constructor expresses the various capabilities correctly to ensure that the proper
method can be called at each location. However, if you want to create a specific instantiation of a
generic method for a given type, you need to create that instantiation for that type and all its
descendents. If you want to create a generic specialization for an interface, you need to create a
version for all types that implement that interface.
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Item 8. Prefer Generic Methods Unless Type Parameters Are
Instance Fields

It's easy to fall into the habit of limiting yourself to generic class definitions. But often, you can more
clearly express utility classes by using a nongeneric class that contains numerous generic methods.
The reason, again, is that the C# compiler must generate valid IL for an entire generic class based on
the constraints specified. One set of constraints must be valid for the entire class. A utility class that
contains generic methods can specify different constraints for each method. Those different
constraints can make it much easier for the compiler to find the best match and therefore much easier
for your clients to use your algorithms.

Also, each type parameter need satisfy the constraints only for the methods in which it is used. With
generic classes, in contrast, the type parameters must satisfy all the constraints defined for the
complete class. As you expand a class over time, it becomes much more constraining if the type
parameters are specified on the class level rather than at the method level. After two releases you'll
wish you'd specified your generic methods at the method level. Here's one simple guideline: If a type
needs type-level data members, especially data members involving the type parameter, make it a
generic class. Otherwise, use generic methods.

Let's consider a simple example that contains generic Min and Max methods:

public static class Utils<T>
{
    public static T Max(T left, T right)
    {
        return Comparer<T>.Default.Compare(left, right) < 0 ?
            right : left;
    }

    public static T Min(T left, T right)
    {
        return Comparer<T>.Default.Compare(left, right) < 0 ?
            left : right;
    }
}

At first review, it seems to work perfectly. You can compare numbers:

double d1 = 4;
double d2 = 5;
double max = Utils<double>.Max(d1, d2);

You can compare strings:



string foo = "foo";
string bar = "bar";
string sMax = Utils<string>.Max(foo, bar);

You're happy, and you head home. But folks who are using your class aren't so happy. You'll notice
that every call in the preceding code snippets needs to explicitly specify the type parameter. That's
because you've created a generic class instead of a set of generic methods. The extra work is an
annoyance, but there are deeper problems here. Many of the built-in types already have accessible
Max and Min methods defined. Math.Max() and Math.Min() are defined for all the numeric types.
Instead of using those, your generic class always picks up the version you've created using
Comparer<T>. That works, but it forces extra runtime checks to determine whether a type implements
IComparer<T>, followed by a call to the correct method.

Naturally, you'd like to have your users automatically pick up the best method possible. That's much
easier if you create generic methods in a nongeneric class.

public static class Utils
{
    public static T Max<T>(T left, T right)
    {
        return Comparer<T>.Default.Compare(left, right) < 0 ?
            right : left;
    }

    public static double Max(double left, double right)
    {
        return Math.Max(left, right);
    }
    // versions for other numeric types elided

    public static T Min<T>(T left, T right)
    {
        return Comparer<T>.Default.Compare(left, right) < 0 ?
            left : right;
    }
    public static double Min(double left, double right)
    {
        return Math.Min(left, right);
    }
    // versions for other numeric types elided
}

This Utils class is no longer a generic class. Instead, it has several overloads of both Min and Max.
Those specific methods are more efficient than the generic version (see Item 3). Better still, users no
longer need to specify which version they call:

double d1 = 4;
double d2 = 5;
double max = Utils.Max(d1, d2);



string foo = "foo";
string bar = "bar";
string sMax = Utils.Max(foo, bar);

double? d3 = 12;
double? d4 = null;
double? Max2 = Utils.Max(d3, d4).Value;

If there is a specific version of the parameter type, the compiler calls that version. If there isn't a
specific version, the compiler calls the generic version. Furthermore, if you later extend the Utils
class with more versions for different specific types, the compiler will immediately pick them up.

It's not only static utility classes that should use generic methods instead of a generic class. Consider
this simple class, which builds a comma-separated list of items:

public class CommaSeparatedListBuilder
{
    private StringBuilder storage = new StringBuilder();

    public void Add<T>(IEnumerable<T> items)
    {
        foreach (T item in items)
        {
            if (storage.Length > 0)
                storage.Append(", ");
            storage.Append("\"");
            storage.Append(item.ToString());
            storage.Append("\"");
        }
    }

    public override string ToString()
    {
        return storage.ToString();
    }
}

As coded, this lets you create any number of disparate types in the list. Whenever you use a new type,
a new version of Add<T> is generated by the compiler. If you had instead applied the type parameter
to the class declaration, every CommaSeparatedListBuilder would be forced to hold only one type.
Either approach is valid, but the semantics are very different.

This sample is simple enough that you could replace the type parameter with System.Object. But the
concept is one you can apply often. You can use a catchall generic method in a nongeneric class to
create different specialized methods in the class. This class does not use T in its fields but uses it only
as a parameter to methods in the public API. Using different types in place of the parameters to that
method doesn't mean that you need a different instantiation.

Obviously, not every generic algorithm is suited for generic methods instead of a generic class. Some
simple guidelines can help you determine which to use. In two cases you must make a generic class:
The first occurs when your class stores a value of one of the Type parameters as part of its internal



state. (Collections are an obvious example.) The second occurs when your class implements a generic
interface. Except for those two cases, you can usually create a nongeneric class and use generic
methods. You'll end up with more granularity in your options for updating the algorithms in the future.

Look again at the code for the preceding sample. You'll see that the second Utils class does not force
the callers to explicitly declare each type in each call to one of the generic methods. When possible,
the second version is a better API solution, for a number of reasons. First, it's simpler for callers.
When you don't specify the Type parameter, the compiler picks the best possible method. That
practice gives you, the library developer, many options moving forward. If you find that a specific
implementation is better, your callers automatically get the specific method you created. If, on the
other hand, your methods force callers to specify all the Type parameters, they will continue to use
the generic methods even though you have provided a better alternative.
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Item 9. Prefer Generic Tuples to Output and Ref Parameters

One common problem for many developers is how to create a method signature for methods that
logically return more than one item. Many developers turn to ref or out parameters in those cases.
But it's better to define generic tuples that can return multiple discrete values. A tuple is nothing
more than a composite with n elements.

There are many reasons this is a better plan. Let's begin with immutability. Ref parameters make it
harder to create immutable objects.

Here is a simplified class that represents an employee as an immutable type:

public class Employee
{
    private readonly string firstName;
    private readonly string lastName;
    private readonly decimal salary;
    public string FirstName
    {
        get { return firstName; }
    }
    public string LastName
    {
        get { return lastName; }
    }
    public decimal Salary
    {
        get { return salary; }
    }
    public Employee(string firstName, string lastName,
        decimal salary)
    {
        this.firstName = firstName;
        this.lastName = lastName;
        this.salary = salary;
    }
    public override string ToString()
    {
        return string.Format("{1}, {0} salary: {2}",
            lastName, firstName, salary);
    }
}

You could read an employee definition from the console like this:



string last = Console.ReadLine();
string first = Console.ReadLine();
string salary = Console.ReadLine();
Employee emp = new Employee(first, last,
    decimal.Parse(salary));

Of course, decimal.Parse could throw an exception if the input string for salary does not parse
correctly. That leads us down the path of TRyParse:

string last = Console.ReadLine();
string first = Console.ReadLine();
string salaryString  = Console.ReadLine();
decimal salary = 0;
bool okSalary = decimal.TryParse(salaryString, out salary);
if (okSalary)
{
    Employee emp = new Employee(first, last, salary);
    Console.WriteLine(emp);
}

For the most trivial of examples, we've added quite a bit of code. This problem gets worse as
programs get larger.

Also, ref and out parameters make polymorphism much more difficult. Consider this simple definition
of a Person and Employee hierarchy:

public class Person
{
    private readonly string firstName;
    private readonly string lastName;
    public string FirstName
    {
        get { return firstName; }
    }
    public string LastName
    {
        get { return lastName; }
    }
    public Person(string firstName, string lastName)
    {
        this.firstName = firstName;
        this.lastName = lastName;
    }
}
public class Employee : Person
{
    private readonly decimal salary;
    public decimal Salary
    {
        get { return salary; }



    }
    public Employee(string firstName, string lastName,
        decimal salary) :
        base (firstName, lastName)
    {
        this.salary = salary;
    }
    public override string ToString()
    {
        return string.Format("{1}, {0} salary: {2}",
            LastName, FirstName, salary);
    }
}

Later, someone makes this method to support changing a person's last name:

static void ChangeName(ref Person p, string newLastName)
{
    p = new Person(p.FirstName, newLastName);
}

ChangeName() cannot be called with an employee object. That's a good thing, because it wouldn't
work. This method would transform an Employee (or any other derived object) into a Person. You're
losing information. Of course, you also can't write a single method to take an Employee object. That
won't compile for any of the base classes. Using ref parameters means you must create a different
overload for every type that you intend to support. That's because ref parameters are not covariant
or contravariant. When you're using the ref modifier, you cannot use a derived class (or a base class)
object when a base class object is expected. However, return values are covariant: A method can
create a type derived from the type declared in the method signature. Mix in a little local variable type
inference, and developers can make use of types up or down an inheritance hierarchy much more
easily.

The effect is similar to the problems outlined in Item 47 (Chapter 6) on array parameters and
covariance. The only difference is that in the case of ref parameters, the compiler does a little better
job of type checking.

Both of our samples use single ref parameters and void return types. In those cases, you can simply
change the method declarations to return a new object of the proper type:

static Person ChangeName(Person p, string newLastName)
    { // elided}
static Employee ChangeName(Employee p, string newLastName)
    { // elided}

It's more complicated when you have two logical return values. In those cases, you can use generics
to define a tuple to return a type that contains all the fields you wish to support. Here is a simple
generic definition that supports two return values:

public struct Tuple<T1, T2> : IEquatable<Tuple<T1, T2>>
{



    private readonly T1 first;
    public T1 First
    {
       get { return first; }
    }

    private readonly T2 second;
    public T2 Second
    {
        get { return second; }
    }

    public Tuple(T1 f, T2 s)
    {
        first = f;
        second = s;
    }
    // Implementation of IEquatable<Tuple<T1, T2>> elided
}

You may recognize that this class definition looks very similar to the
System.Collections.Generic.KeyValuePair generic type. However, its purpose is very different, so
I prefer making a new type. Next, this class is a specific tuple—a pair—that contains two elements.
Obviously you can extend this technique for any general tuple you need: three, four, five, or more
fields.

This tuple can be the return type for any method that has two logical return values. It's an obvious
extension to create a tuple having more than two values. By creating and using tuple classes, you
avoid the need to create ref and out parameters for multiple logical methods. That will make it easier
to compose method calls that work with these tuples.

For example, the following method shows how you would use the tuple structure to return the nearest
city and its temperature in a Tuple:

public static Tuple<string, decimal> FindTempForNearestCity
    (string soughtCity)
{
    string city = "algorithmElided";
    decimal temp = decimal.MinValue; // really cold.
    return new Tuple<string, decimal>(city, temp);
}

To call it you would use a similar structure:

Tuple<string, decimal> weather =
    FindTempForNearestCity("NearHere");

You probably don't like the way the Tuple definition obscures the real meaning of the type. I don't,
either. Thankfully, neither did the C# language designers. They created an extension to the using
declaration that enables you to specify an alias for any closed generic type:



using CityTemperature = Tuple<string, decimal>;

The method implementation now reads much more clearly:

public static CityTemperature FindTempForNearestCity
    (string soughtCity)
{
    string city = "algorithmElided";
    decimal temp = decimal.MinValue; // really cold.
    return new CityTemperature(city, temp);
}

The assignment statement when the method gets called also becomes clearer:

CityTemperature weather = FindTempForNearestCity("NearHere");

Some of this may look as if I'm simply rearranging method signatures. However, as you get further
into C# 3.0 and you begin using increasingly functional programming constructs, you'll find that this
technique becomes much more important. Methods that take out and ref parameters do not support
composition very well. Methods returning a single value (however complex that value might be)
compose better.

Ref and out parameters imply that a method can create an object that matches the declared type.
Polymorphism implies that more-derived types can always be substituted when a base type is
expected. However, the opposite is true when a method creates that object for you. It must create a
more-derived type when your calling code expects a base type. These two rules mean that, by and
large, out and ref parameters cannot use polymorphism in any real way. Your algorithms will be
much easier to use when you restructure them to return multiple values in a generic tuple.
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Item 10. Implement Classic Interfaces in Addition to Generic
Interfaces

So far, the items in this chapter have explored all the wonderful benefits of generics. It would be great
if we could just ignore everything that predated generics support in .NET and C#. But a developer's
life isn't that simple, for a variety of reasons. Your classes will be much more useful if you support the
classic nongeneric interfaces in addition to the generic interfaces you'll want to support in new
libraries. This recommendation applies to (1) your classes and the interfaces they support, (2) public
properties, and even (3) the elements you choose to serialize.

Let's examine why you need to consider support for these nongeneric interfaces, and let's look at how
to support these classic interfaces while still encouraging the users of your class to use the newer
generic versions. Let's start with a simple implementation of a Name class that stores the names of
people in an application:

public class Name :
    IComparable<Name>,
    IEquatable<Name>
{
    public string First
    {
        get;
        set;
    }

    public string Last
    {
        get;
        set;
    }
    public string Middle
    {
        get;
        set;
    }

    #region IComparable<Name> Members
    public int CompareTo(Name other)
    {
        if (other == null)
            return 1; // Any non-null object > null.
        int rVal = Comparer<string>.Default.Compare
            (Last, other.Last);
        if (rVal != 0)
            return rVal;



        rVal = Comparer<string>.Default.Compare
            (First, other.First);
        if (rVal != 0)
            return rVal;
        return Comparer<string>.Default.Compare(Middle,
            other.Middle);
    }
    #endregion

    #region IEquatable<Name> Members
    public bool Equals(Name other)
    {
        if (Object.ReferenceEquals(other, null))
            return false;
        // Semantically equivalent to using
        // EqualityComparer<string>.Default
        return Last == other.Last &&
            First == other.First &&
            Middle == other.Middle;
    }
    #endregion

    // other details elided
}

All the core capabilities of the equality and ordering are implemented in terms of the generic (and
type-safe) versions. Also, you can see that I've deferred the null checks in CompareTo() to the default
string comparer. That saves quite a bit of code and provides the same semantics.

But a generic implementation does not play well with any code written using the .NET 1.x methods.
What's more, you may need to integrate types from various systems that represent the same logical
type. Suppose you purchase an e-commerce system from one vendor and a fulfillment system from a
different vendor. Both systems have the concept of an order: Store.Order and Shipping.Order. You
need an equality relationship between those two types. Generics don't do that very well. You'll need a
cross-type comparer. Further, you may need to store both types of Order in a single collection. Again,
a generic type won't do.

Instead, you need a method that checks for equality using System.Object, perhaps something like
this:

public static bool CheckEquality(object left, object right)
{
    if (left == null)
        return right == null;
    return left.Equals(right);
}

Calling the CheckEquality() method using two person objects would yield unexpected results.
Instead of calling the IEquatable<Name>.Equals() method, CheckEquality() would call
System.Object.Equals()! You'll get the wrong answer, because System.Object.Equals() will use
reference semantics, and you've overridden IEquatable<T>.Equals to follow value semantics.



If the CheckEquality() method is in your code, you can create a generic version of CheckEquality
that calls the right method:

public static bool CheckEquality<T>(T left, T right)
    where T : IEquatable<T>
{
    if (left == null)
        return right == null;

    return left.Equals(right);
}

Of course, that solution isn't available to you if CheckEquality() isn't in your codebase but is in a
third-party library or even the .NET BCL. You must override the classic Equals method to call the
IEquatable<T>.Equals method you've written:

public override bool Equals(object obj)
{
    if (obj.GetType() == typeof(Name))
        return this.Equals(obj as Name);
    else return false;
}

After this modification, almost any method that checks for equality on Name types works correctly.
Notice that I'm checking the type of the obj parameter against the type of Name before using the as
operator to convert to a Name. You might think that this check is redundant, because the as operator
returns null if obj is not a type that's convertible to Name. That assumption misses some conditions:
The as operator will call user-defined conversions, and that is not the behavior you want. Also, if a
class is derived from Name, the as operator will return a Name pointer to the object. The objects aren't
equal, even if their Name portions are.

Next, overriding Equals means overriding GetHashCode:

public override int GetHashCode()
{
    int hashCode = 0;
    if (Last != null)
        hashCode ^= Last.GetHashCode();
    if (First != null)
        hashCode ^= First.GetHashCode();
    if (Middle != null)
        hashCode ^= Middle.GetHashCode();
    return hashCode;
}

Again, this simply expands the public API to ensure that your type plays well with version 1.x code.

If you want to completely ensure that you have covered all your bases, you need to handle a few
operators. Implementing IEquality<T> means implementing operator ==, and that also means



implementing operator !=.

public static bool operator ==(Name left, Name right)
{
    if (left == null)
        return right == null;
    return left.Equals(right);
}
public static bool operator !=(Name left, Name right)
{
    if (left == null)
        return right != null;
    return !left.Equals(right);
}

That's enough of equality. The Name class also implements IComparable<T>. You're going to run into
the same conditions with ordering relations as you do with equality relations. There's a lot of code out
there that expects you to implement the class IComparable interface. You've already written the
algorithm, so you should just go ahead and add the IComparable interface to the list of implemented
interfaces and create the proper method:

public class Name :
    IComparable<Name>,
    IEquatable<Name>,
    IComparable
{
    #region IComparable Members
    int IComparable.CompareTo(object obj)
    {
        if (obj.GetType() != typeof(Name))
            throw new ArgumentException(
                "Argument is not a Name object");
        return this.CompareTo(obj as Name);
    }
    #endregion
    // other details elided
}

Notice that the classic interface is defined using explicit interface implementation. This practice
ensures that no one accidentally gets the classic interface instead of the preferred generic interface. In
normal use, the compiler will choose the generic method over the explicit interface method. Only
when the called method has been typed to the classic interface (IComparable) will the compiler
generate a call to that interface member.

Of course, implementing IComparable<T> implies that there is an ordering relation. You should
implement the less-than (<) and greater-than (>) operators:

public static bool operator <(Name left, Name right)
{
    if (left == null)
        return right != null;



    return left.CompareTo(right) < 0;
}
public static bool operator >(Name left, Name right)
{
    if (left == null)
        return false;
    return left.CompareTo(right) < 0;
}

In the case of the Name type, because it both defines an ordering relation and defines equality, you
should implement the <= and >= operators:

public static bool operator <=(Name left, Name right)
{
    if (left == null)
        return true;
    return left.CompareTo(right) <= 0;
}
public static bool operator >=(Name left, Name right)
{
    if (left == null)
        return right == null;
    return left.CompareTo(right) >= 0;
}

You must understand that the ordering relations are independent of the equality relations. You can
define types in which equality is defined but ordering relations are not defined. And you can define
types that implement an ordering relation and do not define equality relations.

The preceding code more or less implements the semantics provided by the Equatable<T> and
Comparer<T>. The Default property of each of those classes contains code that determines whether
the type parameter, T, implements a type-specific equality or comparison test. If it does, those type-
specific versions are used. If it does not, the System.Object overrides are used.

I've concentrated on the comparison and ordering relations to demonstrate the incompatibilities
between the old and the new (generic) style of interfaces. These incompatibilities can catch you in
other ways, too. IEnumerable<T> inherits from IEnumerable. But full-featured collection interfaces do
not: ICollection<T> does not inherit from ICollection, and IList<T> does not inherit from IList.
However, because IList<T> and ICollection<T> both inherit from IEnumerable<T>, both of those
interfaces include classic IEnumerable support.

In most cases, adding classic interface support is a simple matter of adding methods having the
correct signature to your class. As with the IComparable<T> and IComparable, you should explicitly
implement the classic interface IComparable to encourage calling code to use the new versions. Visual
Studio and other tools provide wizards that create stubs for the interface methods.

There are many new interfaces and types available in .NET Framework 2.0. They are great additions,
and they improve the type safety of the code in your applications and libraries. You should embrace
them, but you also should realize that not everyone in the entire world has yet moved there. You
should continue to support the analogous classic interfaces, although you should implement them
using explicit interface implementation to avoid accidental misuse.
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2. Multithreading in C#
Moore's law has changed. Our computers continue to get faster, but not by increasing clock speed.
Instead, computers are getting faster by adding cores. As this trend continues, your daily life will
include more multithreaded programs than it currently does.

Multithreaded programming is difficult, and it's easy to get it wrong. Subtle bugs occur when threads
switch in a particular location. Unless you examine every line of code in your program and consider
what happens if a task is switched, something likely will go wrong later. Somewhere, someday, a task
switch will happen at a different location from one you reproduced in your testing, and your program
will break. That makes it hard to code your programs correctly and even harder to verify them. So
even as multithreaded programs become more prevalent, they continue to be more difficult than
equivalent single-threaded applications.

This short chapter won't make you an expert in multithreaded programs, but these items contain the
most common recommendations you should follow when writing .NET multithreaded programs. For
comprehensive coverage of multithreaded techniques, I recommend Joe Duffy's book Concurrent
Programming on Windows Vista: Architecture, Principles, and Patterns (Addison-Wesley, 2008). With
that important disclaimer, let's look at the challenges that make multithreaded programming more
complicated than sequential programming.

Running a sequential program in parallel can introduce a great many problems. Let's start with this
simple definition of a bank account:

public class BankAccount
{
    public string AccountNumber
    {
        get;
        private set;
    }

    public decimal Balance
    {
        get;
        private set;
    }

    public BankAccount(string accountNumber)
    {
        AccountNumber = accountNumber;
    }

    public void MakeDeposit(decimal amount)
    {



        Balance += amount;
    }
    public decimal MakeWithdrawal(decimal amount)
    {
        if (Balance > amount)
        {
            Balance -= amount;
            return amount;
        }
        return 0M;
    }
}

This code is so simple that you can almost validate it by inspection. But it will fail miserably in a
multithreaded environment. Why? It's because this code contains many possible race conditions. The
deposit and withdrawal methods are actually several operations. The += operation involves retrieving
the current balance from memory and placing it in the register. Then the CPU performs the addition
operation. After that, the new value is stored back into the proper memory location.

The problem is that having multiple cores means that different threads in your application may be
running on different cores at the same time. Timing issues among multiple threads means that
different threads may interleave their reads and writes to the same memory location, causing data
errors. Consider this scenario:

Thread A starts the operation for depositing $10,000.1.

Thread A retrieves the current balance of $2,000.2.

Thread B starts the operation for depositing $4,000.3.

Thread B retrieves the current balance of $2,000.4.

Thread B computes the new balance of $6,000.5.

Thread A computes the new balance of $12,000.6.

Thread A stores the result of $12,000.7.

Thread B stores the new balance of $6,000.8.

In this way, the interleaved operations cause errors in previously correct (for a single-threaded
world) code.

9.

These race conditions occur because this class does not have any synchronization primitives for any
of the operations that produce side effects. Both the Deposit() and the Withdrawal() methods
produce side effects: They change observable state in addition to returning any new value. Those
methods depend on the current state of the system when the method is called; for example, a
withdrawal fails if the account doesn't have sufficient funds. Methods that don't have side effects have
less need for synchronization. They don't depend on the current state, so having state change during
the execution of a method doesn't change the results.



The fix for our bank account sample seems simple: Add some locking primitives.

public void MakeDeposit(decimal amount)
{
    lock (syncHandle)
    {
        Balance += amount;
    }
}
public decimal MakeWithdrawal(decimal amount)
{
    lock (syncHandle)
    {
        if (Balance > amount)
        {
            Balance -= amount;
            return amount;
        }
    }
    return 0M;
}

That's better, but now we've introduced a situation in which deadlocks are possible. Suppose a
customer has more than one bank account: a savings account and a checking account. Customers will
want to make transfers—withdraw from one account and put the money into another account.
Logically, that's a single operation. But at the machine level, it's many operations. You make a
withdrawal from one account (itself a multistep operation) and then make a deposit into the other
account (also a multistep operation). You'd think this would work: Your code would make the
withdrawal while holding the lock on one account. Then it would acquire a second lock on the second
account and make the deposit.

But if multiple threads are trying to make multiple transfers, a deadlock can occur. Deadlocks happen
when each of, say, two threads holds a lock that the other thread needs to do its work. Each thread
holds on to its lock indefinitely. Neither can get the lock it needs. Time passes, and nothing happens.
Your application looks as if it has crashed. It hasn't, but it's waiting for something that will never
happen.

A lesser problem than deadlocks is livelocks. Livelocks involve a complicated locking mechanism that
creates a distinction between reading and writing shared data. It's safe to let multiple readers
examine a piece of data. However, only one writer may modify the data at one time. Furthermore,
when that one writer is modifying the data, no readers may examine the data. In a livelock, there are
so many readers examining the data that no writers can ever get in. The data effectively becomes
read-only.

There's no way around it: Multithreaded programming is hard. It adds complexity to everything you
do. But multithreaded programs are the future, so every C# developer needs at least a rudimentary
knowledge of multithreaded techniques.

The .NET Framework creates multiple threads in a number of places: In Web applications and Web
services, for example, ASP.NET worker threads are created for each new request. The remoting
libraries do the same thing for incoming calls to a service. Some timer event handlers are called on
new threads, and Windows Communication Foundation (WCF) libraries use more than one thread. You



can also call asynchronous versions of Web service calls.

You will use at least some of these techniques. You need to understand something about
multithreaded techniques if you are going to be successful in .NET.
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Item 11. Use the Thread Pool Instead of Creating Threads

You can't know the optimum number of threads that should be created for your application. Your
application may run on a machine with multiple cores now, but it's almost certain that whatever
number of cores you assume today will be wrong six months from now. Furthermore, you can't control
for the number of threads that the CLR will create for its own tasks, such as the garbage collector. On
a server application, such as ASP.NET or WCF services, each new request is handled by a different
thread. That makes it very hard for you, as an application or class library developer, to optimize for
the proper number of threads on the target system. However, the .NET thread pool has all the
knowledge necessary to optimize the number of active threads on the target system. Furthermore, if
you have created too many tasks and threads for the target machine, the thread pool queues up
additional requests until a new background thread is available.

The .NET thread pool performs much of the work to handle thread resource management for you. It
manages those resources in such a way that you get better performance when your application starts
background tasks repeatedly and doesn't interact with those tasks very closely.

QueueUserWorkItem uses the thread pool to manage resources for you. When you add an item, it is
executed when a thread is available. Depending on the number of running tasks and the size of the
thread pool, execution may be immediate or it may wait for a new thread resource to become
available. The thread pool starts with a number of ready threads per processer and a second set of
read I/O completion threads. The exact number is version dependent. If you start queuing additional
tasks, the thread pool starts creating additional threads in the pool, depending on available memory
and other resources.

I don't cover the thread pool implementation in exhaustive detail, because the purpose of using the
thread pool is to off-load much of that work and make it the framework's problem. In short, the
number of threads in the thread pool grows to provide you the best mix of available threads and the
minimum amount of allocated and unused resources. You queue up a worker item, and when a thread
is available, it executes your thread procedure. The thread pool's job is to make sure that a thread
becomes available quickly. Essentially, you fire the request and forget it.

The thread pool also manages the end-of-task cycle automatically. When a task finishes, the thread is
not destroyed; instead, it is returned to a ready state so that it is available for another task. The
thread is again available for other work, as needed by the thread pool. This next task need not be the
same task; the thread can execute any other long-running method your application has in mind. You
simply call QueueUserWorkItem with another target method, and your thread pool will manage the
work for that method as well.

There's one other important way that the thread pool helps you manage your tasks running in other
threads. All threads belonging to the thread pool used by QueueUserWorkItem are background
threads. This means that you don't need to clean up those threads before your application exits. If
your application exits while these background threads are running, the system stops those tasks and
unloads everything related to your application. You need to ensure that you stop all non-background
threads in your application before the system will unload your application. If you don't, you can easily



end up with an application that no longer does anything and yet consumes resources.

On the other hand, because background threads are killed without warning, you need to be careful
how you access system resources to ensure that application termination at the wrong time doesn't
leave the system in an unstable state. In many cases, when a thread is terminated, the runtime raises
a ThreadAbortException on that thread. When an application terminates with background threads
running, those background threads receive no notification that the application is terminating. They are
simply stopped. If your threads may leave system resources in an unstable state, you should not use
background threads. Thankfully, those cases are the minority.

The system manages the number of tasks that are active in a thread pool. The thread pool starts tasks
based on the amount of system resources available. If the system is currently operating at close to
capacity, the thread pool waits to start new tasks. However, if the system is lightly loaded, the thread
pool launches additional tasks immediately. You don't need to write your own load-balancing logic.
The thread pool manages that for you.

You might think that the optimal number of tasks would be equal to the number of cores in the target
machine. That's not the worst strategy to take, but it's simplistic in its analysis, and it's almost
certainly not the best answer. Wait time, contention for resources other than the CPU, and other
processes outside your control all have an effect on the optimal number of threads for your
application. If you create too few threads, you'll end up not getting the best performance for your
application as cores sit idle. Having way too many threads means that your target machine will spend
too much time scheduling threads and too little time executing the work performed by them.

To give you some general guidance, I wrote a small application that uses the Hero of Alexandria
algorithm to calculate square roots. It's general guidance, because each algorithm has unique
characteristics. In this case, the core algorithm is simple and does not communicate with other
threads to perform its work.

You start by making a guess at the square root of a number. A simple starting guess is 1. To find the
next approximation, you find the average of (1) the current guess and (2) the original number divided
by the current guess. For example, to find the square root of 10, you'd make a guess of 1. The next
guess is (1 + (10/1)) / 2, or 5.5. You continue to repeat the steps until the guess converges at the
answer. Here's the code:

public static class Hero
{
    private const double TOLERANCE = 1.0E-8;
    public static double FindRoot(double number)
    {
        double guess = 1;
        double error = Math.Abs(guess * guess - number);

        while (error > TOLERANCE)
        {
            guess = (number / guess + guess) / 2.0;
            error = Math.Abs(guess * guess - number);
        }
        return guess;
    }
}



To examine the performance characteristics of the thread pool against manually created threads and
against a single-threaded version of the application, I wrote test harnesses that perform repeated
calculations against this algorithm:

private static double OneThread()
{
    Stopwatch start = new Stopwatch();
    start.Start();
    for (int i = LowerBound; i < UpperBound; i++)
    {
        double answer = Hero.FindRoot(i);
    }
    start.Stop();
    return start.ElapsedMilliseconds;
}

private static double ThreadPoolThreads(int numThreads)
{
    Stopwatch start = new Stopwatch();
    using (AutoResetEvent e = new AutoResetEvent(false))
    {
        int workerThreads = numThreads;

        start.Start();
        for (int thread = 0; thread < numThreads; thread++ )
            System.Threading.ThreadPool.QueueUserWorkItem(
                (x) =>
                {
                    for (int i = LowerBound;
                        i < UpperBound; i++)
                    {
                        // Call the calculation.
                        if (i % numThreads == thread)
                        {
                            double answer = Hero.FindRoot(i);
                        }

                    }

                    // Decrement the count.
                    if (Interlocked.Decrement(
                        ref workerThreads) == 0)
                    {
                        // Set the event.
                        e.Set();
                    }
                });

        // Wait for the signal.
        e.WaitOne();

        // Get out.



        start.Stop();
        return start.ElapsedMilliseconds;
    }
}

private static double ManualThreads(int numThreads)
{
    Stopwatch start = new Stopwatch();
    using (AutoResetEvent e = new AutoResetEvent(false))
    {
        int workerThreads = numThreads;

        start.Start();
        for (int thread = 0; thread < numThreads; thread++)
        {
            System.Threading.Thread t = new Thread(
                () =>
                {
                    for (int i = LowerBound;
                        i < UpperBound; i++)
                    {
                        // Call the calculation.
                        if (i % numThreads == thread)
                        {
                            double answer = Hero.FindRoot(i);
                        }
                    }
                    // Decrement the count.
                    if (Interlocked.Decrement(
                        ref workerThreads) == 0)
                    {
                        // Set the event.
                        e.Set();
                    }
                });
            t.Start();
        }
        // Wait for the signal.
        e.WaitOne();

        // Get out.
        start.Stop();
        return start.ElapsedMilliseconds;
    }
}

The single-threaded version is straightforward. Both of the multithreaded versions use lambda syntax
(see Item 6 in Chapter 1) to define the actions performed in the background threads. As I say in Item
6, you could replace the lambda expressions with anonymous delegates:

System.Threading.ThreadPool.QueueUserWorkItem(



    delegate(object x)
    {
        for (int i = LowerBound; i < UpperBound; i++)
        {
            // Call the calculation.
            if (i % numThreads == thread)
            {
                double answer = Hero.FindRoot(i);
            }

        }

        // Decrement the count.
        if (Interlocked.Decrement(
            ref workerThreads) == 0)
        {
            // Set the event.
            e.Set();
        }
    });

Changing to using an explicit method and explicitly creating the delegate requires quite a bit of
reorganization. A number of local method variables (the reset event, the number of threads, and the
current thread index) are defined in the outer method and used inside the background thread. The C#
compiler creates a closure (see Item 33, in Chapter 4, and Item 41, in Chapter 5) when you use the
lambda syntax for inline methods. In addition, notice that you can specify lambda syntax even for
multiple-statement methods, and not only single expressions.

This main program produces timing for the single-threaded version and both multithreaded versions
so that you can see the effect of adding threads using both algorithms. Figure 2.1 shows the resulting
graph. There are a few things to learn from this example. First, the manually created threads have
much more overhead compared with the thread pool threads. If you create more than ten threads,
threading overhead becomes the main performance bottleneck. Even with this algorithm, in which
there isn't much wait time, that's not good.

Figure 2.1. The effects of calculation time for the single-threaded and multithreaded
versions using System.Threading.Thread versus

System.Threading.ThreadPool.QueueUserWorkItem. The Y axis shows the time (in
milliseconds) per 100,000 calculations on a dual-core laptop.

[View full size image]



Using the thread pool, you must queue more than 40 items before the overhead dominates the work
time. And that's on a dual-core laptop. Server-class machines with more cores would be efficient with
more threads. Having more threads than cores is often the smart choice. However, that choice is
highly dependent on the application and on the amount of time the application's threads spend waiting
for resources.

Two important factors result in the higher performance of the thread pool compared with creating your
own threads manually. First, the thread pool reuses threads as they become available for work. When
you manually create new threads, you must create a new thread for each new task. The creation and
destruction of those threads take more time than the .NET thread pool management.

Second, the thread pool manages the active number of threads for you. If you create too many
threads, the system queues them up, and they wait to execute until enough resources are available.
QueueUserWorkItem hands work to the next available thread in the thread pool and does some thread
resource management for you. If all the threads in the application's thread pool are busy, it queues
tasks to wait for the next available thread.

The farther you move down the road into a world with increasing numbers of cores, the more likely it
is that you'll be creating multithreaded applications. If you're creating server-side applications in .NET
with WCF, ASP.NET, or .NET remoting, you're already creating multithreaded applications. Those .NET
subsystems use the thread pool to manage thread resources, and you should, too. You'll find that the
thread pool introduces less overhead, and that leads to better performance. Also, the .NET thread pool
does a better job of managing the number of active threads that should be performing work than you
can manage at the application level.
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Item 12. Use BackgroundWorker for Cross-Thread
Communication

Item 11 shows a sample that started various numbers of background tasks using
ThreadPool.QueueUserWorkItem. Using this API method is simple, because you have off-loaded most
of the thread management issues to the framework and the underlying operating system (OS). There's
a lot of functionality you can simply reuse, so QueueUserWorkItem should be your default tool of
choice when you need to create background threads that execute tasks in your application.
QueueUserWorkItem makes several assumptions about how you should be performing your work.
When your design doesn't match those assumptions, you'll have more work to do. Instead of creating
your own threads using System.Threading.Thread, you should use
System.ComponentModel.BackgroundWorker. The BackgroundWorker class is built on top of
ThreadPool and adds many features for interthread communication.

The single most important issue you must deal with is exceptions in your WaitCallback, the method
that does the work in the background thread. If any exceptions are thrown from that method, the
system will terminate your application. It doesn't simply terminate that one background thread; it
terminates the entire application. This behavior is consistent with other background thread API
methods, but the difference is that QueueUserWorkItem doesn't have any built-in capability to handle
reporting errors.

In addition, QueueUserWorkItem does not give you any built-in methods to communicate between the
background threads and the foreground thread. It doesn't provide any built-in means for you to detect
completion, track progress, pause tasks, or cancel tasks. When you need those capabilities, you can
turn to the BackgroundWorker component, which is built on top of the QueueUserWorkItem
functionality.

The BackgroundWorker component was built on top of the System.ComponentModel.Component class
to facilitate design-level support. However, BackgroundWorker is quite useful in code that doesn't
include the designer support. In fact, most of the time when I use BackgroundWorker, it is not in a
form class.

The simplest use of BackgroundWorker is to create a method that matches the delegate signature,
attach that method to BackgroundWorker's DoWork event, and then call the RunWorkerAsync()
method of BackgroundWorker:

BackgroundWorker backgroundWorkerExample =
    new BackgroundWorker();
backgroundWorkerExample.DoWork += new
    DoWorkEventHandler(backgroundWorkerExample_DoWork);
backgroundWorkerExample.RunWorkerAsync();

// elsewhere:
void backgroundWorkerExample_DoWork(object sender,
    DoWorkEventArgs e)



{
    // body of the work elided
}

In this pattern, BackgroundWorker performs exactly the same function as
ThreadPool.QueueUserWorkItem. The BackgroundWorker class performs its background tasks using
ThreadPool and by using QueueUserWorkItem internally.

The power of BackgroundWorker comes with the framework that is already built in for these other
common scenarios. BackgroundWorker uses events to communicate between the foreground and
background threads. When the foreground thread launches a request, BackgroundWorker raises the
DoWork event on the background thread. The DoWork event handler reads any parameters and begins
doing the work.

When the background thread procedure has finished (as defined by the exit of the DoWork event
handler), BackgroundWorker raises the RunWorkerCompleted event on the foreground thread, as
shown in Figure 2.2. The foreground thread can now do any necessary postprocessing after the
background thread has completed.

Figure 2.2. The BackgroundWorker class can report completion to an event handler defined in
the foreground thread. You register the event handler for the completion event, and

BackgroundWorker raises that event when your DoWork delegate has completed execution.

In addition to the events raised by BackgroundWorker, properties can be manipulated to control how
the foreground and background thread interact. The WorkerSupportsCancellation property lets
BackgroundWorker know that the background thread knows how to interrupt an operation and exit.
The WorkerReportsProgress property informs BackgroundWorker that the worker procedure will



report progress to the foreground thread at regular intervals, as shown in Figure 2.3. In addition,
BackgroundWorker forwards cancellation requests from the foreground thread to the background
thread. The background thread procedure can check the CancellationPending flag and stop
processing if necessary.

Figure 2.3. The BackgroundWorker class supports multiple events to request cancellation of
the current task, reporting of progress to the foreground task, completion, and error

reporting. BackgroundWorker defines the protocol and raises the events necessary to support
any of these communication mechanisms. To report progress, your background procedure
must raise an event defined on BackgroundWorker. Your foreground task code must request

that these extra events be raised and must register handlers on these events.

Finally, BackgroundWorker has a built-in protocol to report errors that occur in the background thread.
In Item 11 (earlier in this chapter) I explain that exceptions cannot be thrown from one thread to
another. If an exception is generated in the background thread and is not caught by the thread
procedure, the thread will be terminated. Worse, the foreground thread does not receive any
notification that the background thread has stopped processing. BackgroundWorker solves this
problem by adding an Error property to DoWorkEventArgs and propagating that property to the Error
property in the result arguments. Your worker procedure catches all exceptions and sets them to the
error property. (Note that this is one of the rare occasions when catching all exceptions is
recommended.) Simply return from the background thread procedure, and handle the error in the
event handler for the foreground results.

Earlier I said that I often use BackgroundWorker in classes that aren't the Form class, and even in non-
Windows Forms applications, such as services or Web services. This works fine, but it does have some
caveats. When BackgroundWorker determines that it is running in a Windows Forms application and
the form is visible, the ProgressChanged and RunWorkerCompleted events are marshaled to the
graphical user interface (GUI) thread via a marshaling control and Control.BeginInvoke (see Item 16
later in this chapter). In other scenarios, those delegates are simply called on a free thread pool



thread. As you will see in Item 16, that behavior may affect the order in which events are received.

Finally, because BackgroundWorker is built on QueueUserWorkItem, you can reuse BackgroundWorker
for multiple background requests. You need to check the IsBusy property of BackgroundWorker to see
whether BackgroundWorker is currently running a task. When you need to have multiple background
tasks running, you can create multiple BackgroundWorker objects. Each will share the same thread
pool, so you have multiple tasks running just as you would with QueueUserWorkItem. You need to
make sure that your event handlers use the correct sender property. This practice ensures that the
background threads and foreground threads are communicating correctly.

BackgroundWorker supports many of the common patterns that you will use when you create
background tasks. By using it you can reuse that implementation in your code, adding any of those
patterns as needed. You don't have to design your own communication protocols between foreground
and background threads.
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Item 13. Use lock() as Your First Choice for Synchronization

Threads need to communicate with each other. Somehow, you need to provide a safe way for various
threads in your application to send and receive data. However, sharing data between threads
introduces the potential for data integrity errors in the form of synchronization issues. Therefore, you
need to be certain that the current state of every shared data item is consistent. You achieve this
safety by using synchronization primitives to protect access to the shared data. Synchronization
primitives ensure that the current thread is not interrupted until a critical set of operations is
completed.

There are many primitives available in the .NET BCL that you can use to safely ensure that access to
shared data is synchronized. Only one pair of them—Monitor.Enter() and Monitor.Exit()—was
given special status in the C# language. Monitor.Enter() and Monitor.Exit() implement a critical
section block. Critical sections are such a common synchronization technique that the language
designers added support for them using the lock() statement. You should follow that example and
make lock() your primary tool for synchronization.

The reason is simple: The compiler generates consistent code, but you may make mistakes some of
the time. The C# language introduces the lock keyword to control synchronization for multithreaded
programs. The lock statement generates exactly the same code as if you used Monitor.Enter() and
Monitor.Exit() correctly. Furthermore, it's easier and it automatically generates all the exception-
safe code you need.

However, under two conditions Monitor gives you necessary control that you can't get when you use
lock(). First, be aware that lock is lexically scoped. This means that you can't enter a Monitor in one
lexical scope and exit it in another when using the lock statement. Thus, you can't enter a Monitor in
a method and exit it inside a lambda expression defined in that method (see Item 41, Chapter 5). The
second reason is that Monitor.Enter supports a time-out, which I cover later in this item.

You can lock any reference type by using the lock statement:

public int TotalValue
{
    get
    {
        lock(syncHandle)
        {
            return total;
        }
    }
}

public void IncrementTotal()
{
    lock (syncHandle)



    {
        total++;
    }
}

The lock statement gets the exclusive monitor for an object and ensures that no other thread can
access the object until the lock is released. The preceding sample code, using lock(), generates the
same IL as the following version, using Monitor.Enter() and Monitor.Exit():

public void IncrementTotal()
{
    object tmpObject = syncHandle;
    System.Threading.Monitor.Enter(tmpObject);
    try
    {
        total++;
    }
    finally
    {
        System.Threading.Monitor.Exit(tmpObject);
    }
}

The lock statement provides many checks that help you avoid common mistakes. It checks that the
type being locked is a reference type, as opposed to a value type. The Monitor.Enter method does
not include such safeguards. This routine, using lock(), doesn't compile:

public void IncrementTotal()
{
    lock (total) // compiler error: can't lock value type
    {
        total++;
    }
}

But this does:

public void IncrementTotal()
{
    // really doesn't lock total.
    // locks a box containing total.
    Monitor.Enter(total);
    try
    {
        total++;
    }
    finally
    {
        // Might throw exception
        // unlocks a different box containing total



        Monitor.Exit(total);
    }
}

Monitor.Enter() compiles because its official signature takes a System.Object. You can coerce
total into an object by boxing it. Monitor.Enter() actually locks the box containing total. That's
where the first bug lurks. Imagine that thread 1 enters IncrementTotal() and acquires a lock. Then,
while incrementing total, the second thread calls IncrementTotal(). Thread 2 now enters
IncrementTotal() and acquires the lock. It succeeds in acquiring a different lock, because total gets
put into a different box. Thread 1 has a lock on one box containing the value of total. Thread 2 has a
lock on another box containing the value of total. You've got extra code in place, and no
synchronization.

Then you get bitten by the second bug: When either thread tries to release the lock on total, the
Monitor.Exit() method throws a SynchronizationLockException. That's because total goes into
yet another box to coerce it into the method signature for Monitor.Exit, which also expects a
System.Object type. When you release the lock on this box, you unlock a resource that is different
from the resource that was used for the lock. Monitor.Exit() fails and throws an exception.

Of course, some bright soul might try this:

public void IncrementTotal()
{
    // doesn't work either:
    object lockHandle = total;
    Monitor.Enter(lockHandle);
    try
    {
        total++;
    }
    finally
    {
        Monitor.Exit(lockHandle);
    }
}

This version doesn't throw any exceptions, but neither does it provide any synchronization protection.
Each call to IncrementTotal() creates a new box and acquires a lock on that object. Every thread
succeeds in immediately acquiring the lock, but it's not a lock on a shared resource. Every thread
wins, and total is not consistent.

There are subtler errors that lock also prevents. Enter() and Exit() are two separate calls, so you
can easily make the mistake of acquiring and releasing different objects. This action may cause a
SynchronizationLockException. But if you happen to have a type that locks more than one
synchronization object, it's possible to acquire two different locks in a thread and release the wrong
one at the end of a critical section.

The lock statement automatically generates exception-safe code, something many of us humans
forget to do. Also, it generates more-efficient code than Monitor.Enter() and Monitor.Exit(),
because it needs to evaluate the target object only once. So, by default, you should use the lock
statement to handle the synchronization needs in your C# programs.



However, there is one limitation to the fact that lock generates the same MSIL as Monitor.Enter( ).
The problem is that Monitor.Enter() waits forever to acquire the lock. You have introduced a
possible deadlock condition. In large enterprise systems, you may need to be more defensive in how
you attempt to access critical resources. Monitor.TryEnter( ) lets you specify a time-out for an
operation and attempt a workaround when you can't access a critical resource.

public void IncrementTotal()
{
    if (!Monitor.TryEnter(syncHandle, 1000)) // wait 1 second
        throw new PreciousResourceException
            ("Could not enter critical section");
    try
    {
        total++;
    }
    finally
    {
        Monitor.Exit(syncHandle);
    }
}

You can wrap this technique in a handy little generic class:

public sealed class LockHolder<T> : IDisposable
    where T : class
{
    private T handle;
    private bool holdsLock;

    public LockHolder(T handle, int milliSecondTimeout)
    {
        this.handle = handle;
        holdsLock = System.Threading.Monitor.TryEnter(
            handle, milliSecondTimeout);
    }

    public bool LockSuccessful
    {
        get { return holdsLock; }
    }

    #region IDisposable Members
    public void Dispose()
    {
        if (holdsLock)
            System.Threading.Monitor.Exit(handle);
        // Don't unlock twice
        holdsLock = false;
    }
    #endregion
}



You would use this class in the following manner:

object lockHandle = new object();

using (LockHolder<object> lockObj = new LockHolder<object>
    (lockHandle, 1000))
{
    if (lockObj.LockSuccessful)
    {
        // work elided
    }
}
// Dispose called here.

The C# team added implicit language support for Monitor.Enter() and Monitor.Exit() pairs in the
form of the lock statement because it is the most common synchronization technique that you will
use. The extra checks that the compiler can make on your behalf make it easier to create
synchronization code in your application. Therefore, lock() is the best choice for most synchronization
between threads in your C# applications.

However, lock is not the only choice for synchronization. In fact, when you are synchronizing access
to numeric types or are replacing a reference, the System.Threading.Interlocked class supports
synchronizing single operations on objects. System.Threading.Interlocked has a number of
methods that you can use to access shared data so that a given operation completes before any other
thread can access that location. It also gives you a healthy respect for the kinds of synchronization
issues that arise when you work with shared data.

Consider this method:

public void IncrementTotal()
{
    total++;
}

As written, interleaved access could lead to an inconsistent representation of the data. An increment
operation is not a single machine instruction. The value of total must be fetched from main memory
and stored in a register. Then the value of the register must be incremented, and the new value from
the register must be stored back into the proper location in main memory. If another thread reads the
value after the first thread, the second thread grabs the value from main memory but before storing
the new value, thereby causing data inconsistency.

Suppose two threads interleave calls to IncrementTotal. THRead A reads the value of 5 from total.
At that moment, the active thread switches to thread B. Thread B reads the value of 5 from total,
increments it, and stores 6 in the value of total. At this moment, the active thread switches back to
thread A. Thread A now increments the register value to 6 and stores that value in total. As a result,
IncrementTotal() has been called twice—once by thread A, and once by thread B—but because of
untimely interleaved access, the end effect is that only one update has occurred. These errors are
hard to find, because they result from interleaved access at exactly the wrong moment.



You could use lock() to synchronize this operation, but there is a better way. The Interlocked class
has a simple method that fixes the problem: InterlockedIncrement. If you rewrite IncrementTotal
as follows, the increment operation cannot be interrupted and both increment operations will always
be recorded:

public void IncrementTotal()
{
    System.Threading.Interlocked.Increment(ref total);
}

The Interlocked class contains other methods to work with built-in data types.
Interlocked.Decrement() decrements a value. Interlocked.Exchange() switches a value with a
new value and returns the current value. You'd use Interlocked.Exchange() to set new state and
return the preceding state. For example, suppose you want to store the user ID of the last user to
access a resource. You can call Interlocked.Exchange() to store the current user ID while at the
same time retrieving the previous user ID.

Finally, there is the CompareExchange() method, which reads the value of a piece of shared data and,
if the value matches a sought value, updates it. Otherwise, nothing happens. In either case,
CompareExchange returns the preceding value stored at that location. In the next section, Item 14
shows how to use CompareExchange to create a private lock object inside a class.

The Interlocked class and lock() are not the only synchronization primitives available. The Monitor
class also includes the Pulse and Wait methods, which you can use to implement a
consumer/producer design. You can also use the ReaderWriterLockSlim class for those designs in
which many threads are accessing a value that few threads are modifying. ReaderWriterLockSlim
contains several improvements over the earlier version of ReaderWriterLock. You should use
ReaderWriterLockSlim for all new development.

For most common synchronization problems, examine the Interlocked class to see whether you can
use it to provide the capabilities you need. With many single operations, you can. Otherwise, your first
choice is the lock() statement. Look beyond those only when you need special-purpose locking
capability.
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Item 14. Use the Smallest Possible Scope for Lock Handles

When you write concurrent programs, you want to localize the synchronization primitives to the best
of your ability. The more places there are in an application where you can use a synchronization
primitive, the more difficult it will be to avoid deadlocks, missing locks, or other concurrent
programming issues. It's a matter of scale: The more places you have to look, the harder it will be to
find a particular issue.

In object-oriented programming, you use private member variables to minimize (not remove, but
minimize) the number of locations you need to search for state changes. In concurrent programs, you
want to do the same thing by localizing the object that you use to provide synchronization.

Two of the most widely used locking techniques are just plain wrong when seen from that viewpoint.
lock(this) and lock(TypeOf(MyType)) have the nasty effect of creating your lock object based on a
publicly accessible instance.

Suppose you write code like this:

public class LockingExample
{
    public void MyMethod()
    {
        lock (this)
        {
            // elided
        }
    }
    // elided
}

Now suppose that one of your clients—let's call him Alexander—figures he needs to lock something.
Alexander writes this:

LockingExample x = new LockingExample();
lock (x)
    x.MyMethod();

That type of locking strategy can easily cause deadlock. Client code has acquired a lock on the
LockingExample object. Inside MyMethod, your code acquires another lock on the same object. That's
all fine and good, but one day soon, different threads will lock the LockingExample object from
somewhere in the program. Deadlock issues happen, and there's no good way to find where the lock
was acquired. It could be anywhere.



You need to change your locking strategy. There are three strategies to avoid this problem.

First, if you are protecting an entire method, you can use MethodImplAttribute to specify that a
method is synchronized:

[MethodImpl(MethodImplOptions.Synchronized)]
public void IncrementTotal()
{
    total++;
}

Of course, that's not the most common practice.

Second, you can mandate that a developer can create a lock only on the current type or the current
object. Namely, you recommend that everyone use lock(this) or lock(MyType). That would work—if
everyone followed your recommendation. It relies on all clients in the entire world knowing that they
can never lock on anything except the current object or the current type. It will fail, because it can't
be enforced.

The best answer is the third choice. In general cases, you can create a handle that can be used to
protect access to the shared resources of an object. That handle is a private member variable and
therefore cannot be accessed outside the type being used. You can ensure that the object used to
synchronize access is private and is not accessible by any nonprivate properties. That policy ensures
that any lock primitives on a given object are local to a given location.

In practice, you create a variable of System.Object to use as a synch handle. Then you lock that
handle when you need to protect access to any of the members of the class. But you need to be a bit
careful when you create the synch handle. You want to make sure that you do not end up with extra
copies of the synch handle because you've had threads interleave memory access at the wrong time.
The Interlocked class's CompareExchange method tests a value and replaces it if necessary. You can
use that method to ensure that you allocate exactly one synch handle object in your type.

Here's the simplest code:

private object syncHandle = new object();

public void IncrementTotal()
{
    lock (syncHandle)
    {
        // code elided
    }
}

You may find that you don't often need the lock and you want to create the synch object only when
you need it. In those cases, you can get a little fancier with the synch handle creation:

private object syncHandle;

private object GetSyncHandle()
{



    System.Threading.Interlocked.CompareExchange(
        ref syncHandle, new object(), null);
    return syncHandle;
}

public void AnotherMethod()
{
    lock (GetSyncHandle())
    {
        // ... code elided
    }
}

The syncHandle object is used to control access to any of the shared resources in your class. The
private method GetSyncHandle() returns the single object that acts as the synch target. The
CompareExchange call, which can't be interrupted, ensures that you create only one copy of the synch
handle. It compares the value of syncHandle with null, and, if syncHandle is null, then
CompareExchange creates a new object and assigns that object to syncHandle.

That handles any locking that you might do for instance methods, but what about static methods? The
same technique works, but you create a static synch handle so that there is one synch handle that is
shared by all instances of the class.

Of course, you can lock sections of code that are smaller than a single method. You can create
synchronization blocks around any section of code inside a method (or, for that matter, a property
accessor or indexer). However, whatever the scope is, you need to do what you can to minimize the
scope of locked code.

public void YetAnotherMethod()
{
    DoStuffThatIsNotSynchronized();
    int val = RetrieveValue();
    lock (GetSyncHandle())
    {
        // ... code elided
    }
    DoSomeFinalStuff();
}

If you create or use a lock inside a lambda expression, however, you must be careful. The C# compiler
creates a closure around lambda expressions. This, combined with the deferred execution model
supported by C# 3.0 constructs, means that it will be difficult for developers to determine when the
lexical scope of the lock ends. That makes this approach more prone to deadlock issues, because
developers may not be able to determine whether code is inside a locked scope.

I close with a couple of other recommendations on locking. If you find that you want to create
different locking handles for different values in your class, that is a strong indication that you should
break the current class into multiple classes. The class is trying to do too many things. If you need to
protect access to some variables and use other locks to protect other variables in the class, that's a
strong indication that you should split the class into different types having different responsibilities. It



will be much easier to control the synchronization if you view each type as a single unit. Each class
that holds shared data—data that must be accessed or updated by different threads—should use a
single synchronization handle to protect access to those shared resources.

When you decide what to lock, pick a private field that's not visible to any callers. Do not lock a
publicly visible object. Locking publicly visible objects requires that all developers always and forever
follow the same practice, and it enables client code to easily introduce deadlock issues.
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Item 15. Avoid Calling Unknown Code in Locked Sections

At one end of the scale are problems that are caused by not locking enough. Then when you begin
creating locks, the next most likely problem is that you may create deadlocks. Deadlocks occur when a
thread blocks on a resource already held by another. In the .NET Framework, you can have a special
case in which cross-thread calls are marshaled in such a way that they emulate synchronous calls. It's
possible to have two threads deadlocked when only one resource is locked. (Item 16, in the next
section, demonstrates one such situation.)

You've already learned one of the simplest ways to avoid this problem: Item 13 discusses how using a
private nonvisible data member as the target of the lock localizes the locking code in your application.
But there are other ways to introduce a deadlock. If you invoke unknown code from inside a
synchronized region of code, you introduce the possibility that another thread will deadlock your
application.

For example, suppose you write code like this to handle a background operation:

public class WorkerClass
{
    public event EventHandler<EventArgs> RaiseProgress;
    private object syncHandle = new object();

    public void DoWork()
    {
        for(int count = 0; count < 100; count++)
        {
            lock (syncHandle)
            {
                System.Threading.Thread.Sleep(100);
                progressCounter++;
                if (RaiseProgress != null)
                    RaiseProgress(this, EventArgs.Empty);
            }
        }
    }

    private int progressCounter = 0;
    public int Progress

    {
        get

        {
            lock (syncHandle)
                return progressCounter;



        }
    }
}

The raiseProgress() method notifies all listeners of updated progress. Note that any listeners can be
registered to handle that event. In a multithreaded program a typical event handler might look like
this:

static void engine_RaiseProgress(object sender, EventArgs e)
{
    WorkerClass engine = sender as WorkerClass;
    if (engine != null)
        Console.WriteLine(engine.Progress);
}

Everything runs fine, but only because you got lucky. It works because the event handler runs in the
context of the background thread.

However, suppose this application were a Windows Forms application, and you needed to marshal the
event handler back to your UI thread (see Item 16). Control.Invoke marshals the call to the UI
thread, if necessary. Furthermore, Control.Invoke blocks the original thread until the target delegate
has completed. That sounds innocent enough. You're operating on a different thread now, but that
should be just fine.

The second important action causes the whole process to deadlock. Your event handler makes a
callback into the engine object in order to get the status details. The Progress accessor, now running
on a different thread, can't acquire the same lock.

The Progress accessor locks the synchronization handle. That looks correct from the local context of
this object, but it's not. The UI thread is trying to lock the same handle already locked in the
background thread. But the background thread is suspended waiting for the event handler to return,
and the background thread already has the synch handle locked. You're deadlocked.

Table 2.1 shows the call stack. The table shows why it's difficult to debug these problems. This
scenario has eight methods on the call stack between the first lock and the second attempted lock.
Worse, the thread interleaving happens inside the framework code. You may not even see it.

Table 2.1. Call Stack for Code That Marshals
Execution Between a Background Thread and a

Foreground Thread That Updates a Window
Display



Method Thread

DoWork BackgroundThread

raiseProgress BackgroundThread

OnUpdateProgress BackgroundThread

engine_OnUpdateProgress BackgroundThread

Control.Invoke BackgroundThread

UpdateUI UIThread

Progress (property
access)

UIThread (deadlock)

The root problem is that you've tried to reacquire a lock. Because you cannot know what actions may
be taken by code outside your control, you should try to avoid invoking the callback from inside the
locked region. In this example, this means that you must raise the progress-reporting event from
outside the locked section:

public void DoWork()
{
    for(int count = 0; count < 100; count++)
    {
        lock (syncHandle)
        {
            System.Threading.Thread.Sleep(100);
            progressCounter++;
        }
        if (RaiseProgress != null)
            RaiseProgress(this, EventArgs.Empty);
    }
}

Now that you've seen the problem, it's time to make sure you understand the various ways that calls
to unknown code might creep into your applications. Obviously, raising any publicly accessible event is
a callback. Invoking a delegate that was passed as a parameter, or set through a public API, is a
callback. Invoking a lambda expression that's passed in as a parameter might also be calling unknown
code (see Item 40, Chapter 5).

Those sources of unknown code are rather easy to spot. But there is another possible location lurking
in most classes: virtual methods. Any virtual method you invoke can be overridden by a derived class.
That derived class, in turn, can invoke any method (public or protected) in your class. Any of those
invocations can try to lock a shared resource again.

No matter how it happens, the pattern is similar. Your class acquires a lock. Then, while still in the
synchronized section, it invokes a method that calls code beyond your control. That client code is an
open-ended set of code that may eventually trace back into your class, even on another thread. You
can't do anything to prevent that open-ended set of code from doing something that might be evil. So
instead, you must prevent the situation: Don't call unknown code from inside locked sections of your



code.
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Item 16. Understand Cross-Thread Calls in Windows Forms and
WPF

If you've done any Windows Forms programming, you've seen that occasionally an event handler
throws an InvalidOperationException with the cryptic message, "Cross-thread operation not valid:
Control accessed from a thread other than the thread it was created on." One of the most annoying
behaviors associated with cross-thread calls in Windows Forms is that sometimes they work, and
sometimes they don't. That behavior has been changed in Windows Presentation Foundation (WPF). In
WPF, cross-thread invocations always fail. At least that makes it easier to find and fix them before you
ship an application.

In Windows Forms, the fix is to check the Control.InvokeRequired property and then use
ControlInvoke() if InvokeRequired is true. In WPF, you use the
System.Windows.Threading.Dispatcher methods Invoke() and BeginInvoke(). In both cases,
there is a lot happening in those two steps, and you have other options. Those two API methods do
more work than you might think. And, under some conditions, they do not work correctly. Because
these methods exist to handle cross-thread calls, you can introduce subtle race conditions if you use
them incorrectly—or even correctly if you don't understand how they work.

The underlying reason for this code is the same in both Windows Forms and WPF: Windows controls
use the Component Object Model (COM) single-threaded apartment (STA) model because those
underlying controls are apartment-threaded. Furthermore, many of the controls use the message
pump for many operations. This model says that all function calls to each control must be on the
same thread that created the control. Invoke (and BeginInvoke and EndInvoke) marshals method
calls to the proper thread. The underlying code for both models is similar, so I focus the discussion on
the Windows Forms API. When there are differences in the calling conventions, I give both versions.
There's quite a bit of complicated code doing this, but we'll get to the bottom of it.

First, let's look at a simple bit of generic code that will make your life much easier when you run into
this situation. Anonymous delegates provide a shortcut for wrapping small methods that are used
only in one context. Unfortunately, anonymous delegates don't work with methods—such as
Control.Invoke—that use the abstract System.Delegate type. This means that you need to define a
nonabstract delegate type and assign it when you use Control.Invoke.

private void OnTick(object sender, EventArgs e)
{
    Action action = () =>
        toolStripStatusLabel1.Text =
            DateTime.Now.ToLongTimeString();
    if (this.InvokeRequired)
        this.Invoke(action);
    else
        action();
}



C# 3.0 has tightened this code quite a bit. The System.Core.Action delegate defines a concrete
delegate type for a method that takes no parameters and has a void return. The lambda syntax
supports a concise definition of the body. If you still need to support C# 2.0, you need to create this
extra code:

delegate void Invoker();
private void OnTick20(object sender, EventArgs e)
{
    Action action = delegate()
    {
        toolStripStatusLabel1.Text =
            DateTime.Now.ToLongTimeString();
    };
    if (this.InvokeRequired)
        this.Invoke(action);
    else
        action();
}

In WPF, you use the System.Threading.Dispatcher object attached to the control to perform the
marshaling:

private void UpdateTime()
{
    Action action = () => textBlock1.Text =
        DateTime.Now.ToString();
    if (System.Threading.Thread.CurrentThread !=
        textBlock1.Dispatcher.Thread)
    {
        textBlock1.Dispatcher.Invoke
            (System.Windows.Threading.DispatcherPriority.Normal,
            action);
    }
    else
    {
        action();
    }
}

That idiom further obscures the actual logic of the event handler, making the code less readable and
harder to maintain. It also introduces a delegate definition whose only purpose is to provide a method
signature for the abstract delegate.

A small bit of generic coding can make that much easier. The following ControlExtensions static
class contains generic methods for any invoke delegate having up to two parameters. You can add
more overloads by adding more parameters. Further, it contains methods that use those delegate
definitions to call the target, either directly or through the marshaling provided by Control.Invoke.

public static class ControlExtensions
{



    public static void InvokeIfNeeded(this Control ctl,
        Action doit)
    {
        if (ctl.InvokeRequired)
            ctl.Invoke(doit);
        else
            doit();
    }

    public static void InvokeIfNeeded<T>(this Control ctl,
        Action<T> doit, T args)
    {
        if (ctl.InvokeRequired)
            ctl.Invoke(doit, args);
        else
            doit(args);
    }
}

Using InvokeIfNeeded greatly simplifies the code that handles events in a (possibly) multithreaded
environment:

private void OnTick(object sender, EventArgs e)
{
    this.InvokeIfNeeded(() => toolStripStatusLabel1.Text =
        DateTime.Now.ToLongTimeString());
}

You can create a similar set of extensions for WPF controls:

public static class WPFControlExtensions
{
    public static void InvokeIfNeeded(
        this System.Windows.Threading.DispatcherObject ctl,
        Action doit,
        System.Windows.Threading.DispatcherPriority priority)
    {
        if (System.Threading.Thread.CurrentThread !=
            ctl.Dispatcher.Thread)
        {
            ctl.Dispatcher.Invoke(priority,
                doit);
        }
        else
        {
            doit();
        }
    }
    public static void InvokeIfNeeded<T>(
        this System.Windows.Threading.DispatcherObject ctl,



        Action<T> doit,
        T args,
        System.Windows.Threading.DispatcherPriority priority)
    {
        if (System.Threading.Thread.CurrentThread !=
            ctl.Dispatcher.Thread)
        {
            ctl.Dispatcher.Invoke(priority,
                doit, args);
        }
        else
        {
            doit(args);
        }
    }
}

The WPF version does not have an InvokeRequired() method call. Instead, you examine the identity
of the current thread and compare it to the thread on which all control interaction should take place.
DispatcherObject is the base class for many of the WPF controls. It handles the dispatch operations
between threads for WPF controls. Also, notice that in WPF, you can specify the priority for the event
handler action. That's because WPF applications use two UI threads. One thread handles the UI
rendering pipeline so that the UI can always continue to render any animations or other actions. You
can specify the priority to control which actions are more important for your users: either the
rendering or the handling of a particular background event.

This code has several advantages. The body of the event handler logic is read inside the event
handler, even though it is using an anonymous delegate definition. It's much more readable and easier
to maintain than using Control.IsInvokeRequired and ControlInvoke in your application code.
Inside the ControlExtensions class, the generic method handles the check for InvokeRequired, or
comparing thread identities, meaning that you don't need to remember it each time. I don't use these
methods if I know I'm writing code for a single-threaded application, but if I think my code might end
up in a multithreaded environment, I use this version for generality.

To support C# 2.0, you have extra work to do. You can't use the extension method syntax nor the
lambda expression syntax. Thus, the code becomes this slightly more verbose version:

// Define your own versions of Action:
public delegate void Action;
public delegate void Action<T>(T arg);
// versions with 3, 4 parameters elided.

public static class ControlExtensions
{
    public static void InvokeIfNeeded(Control ctl, Action doit)
    {
        if (ctl.InvokeRequired)
            ctl.Invoke(doit);
        else
            doit();
    }



    public static void InvokeIfNeeded<T>( Control ctl,
        Action<T> doit, T args)
    {
        if (ctl.InvokeRequired)
            ctl.Invoke(doit, args);
        else
            doit(args);
    }
}

// Elsewhere:

private void OnTick20(object sender, EventArgs e)
{
    ControlExtensions.InvokeIfNeeded(this, delegate()
    {
        toolStripStatusLabel1.Text =
          DateTime.Now.ToLongTimeString();
    });
}

Before you use this idiom in all your event handlers, let's look closely at the work done by
InvokeRequired and Control.Invoke. These aren't free calls, and it's not advisable to simply apply
this idiom everywhere. Control.InvokeRequired determines whether the current code, on the one
hand, is executing on the thread that created the control or, on the other hand, is executing on
another thread and therefore needs to be marshaled. In most cases, this property contains a
reasonably simple implementation. It checks the current thread ID and compares it to the thread ID
for the control in question. If they match, Invoke is not required. If they don't match, Invoke is
required. That comparison doesn't take much time. You'll notice that the WPF version of the extension
methods do exactly the same check.

But there are some interesting edge cases. Suppose the control in question has not yet been created.
That can happen when a parent control has been created and the current control is in the process of
being instantiated. The C# object exists, but the underlying window handle is still null. In that case,
there's nothing to compare. The framework wants to help you out, and that takes time. The
framework walks the tree of parent controls to see whether any of them has been created. If the
framework finds a window that has been created, that window is used as the marshaling window.
That's a reasonably safe conclusion, because parent controls are responsible for creating child
controls. This approach guarantees that the child controls will be created on the same thread as the
parent control found by the framework. After finding a suitable parent control, the framework
performs the same check mentioned earlier, checking the current thread ID against the control thread
ID.

But, of course, if the framework can't find any parent window that's been created, the framework
needs to find some kind of window. If none of the windows in the hierarchy exists, the framework
looks for the parking window, a special window that's used to hide from you some of the strange
behavior of the Win32 API. In short, there are some changes to windows that require destroying and
re-creating the Win32 windows. (Modifying certain styles requires a window be destroyed and re-
created.) The parking window is used to hold child windows whenever a parent window must be
destroyed and re-created. During that time, there is a period when the UI thread can be found only
from the parking window.



In WPF, some of this has been simplified through the use of the Dispatcher class. Each thread has a
dispatcher. The first time you ask a control for its dispatcher, the library looks to see whether that
thread already has a dispatcher. If it does, the library returns that dispatcher. If not, a new
Dispatcher object is created and associated with the control and its thread.

But there are still holes and possible failures. It's possible that none of the windows is yet created,
even the parking window. In that case, InvokeRequired always returns false, indicating that you don't
need to marshal the call to another thread. This situation is somewhat dangerous, because it has a
chance of being wrong, but it's the best that the framework can do. Any method call you make that
requires the window handle to exist will fail. There's no window, so trying to use it will fail. On the
other hand, marshaling will certainly fail. If the framework can't find any marshaling control, then
there's no way for the framework to marshal the current call to the UI thread. The framework chooses
a possible later failure instead of a certain immediate failure. Luckily, this situation is rather rare in
practice. In WPF, the Dispatcher contains extra code to protect against this situation.

Let's summarize what you've learned about InvokeRequired. Once your controls are created,
InvokeRequired is reasonably fast and always safe. However, if the target control has not been
created, InvokeRequired can take much longer, and if none of the controls has been created,
InvokeRequired takes a long time to give you an answer that's probably not even correct. Even
though Control.InvokeRequired can be a bit expensive, it's still quite a bit cheaper than a call to
Control.Invoke when it's not necessary. In WPF, some of the edge cases have been optimized and
work better than they do in the Windows Forms implementation.

Now let's look at Control.Invoke and what it does. (Control.Invoke can do quite a bit of work, so
this discussion is greatly simplified.) First, there's the special case when you've called Invoke even
though you're running on the same thread as the control. It's a short-circuit path, and the framework
simply calls your delegate. Calling Control.Invoke() when InvokeRequired() returns false means
that your code does a bit of extra work, but it is safe.

The interesting case happens when you actually need to call Invoke. ControlInvoke handles the
cross-thread calls by posting a message to the target control's message queue. Control.Invoke
creates a private structure that contains everything needed to call the delegate. That includes all
parameters, a copy of the call stack, and the delegate target. The parameters are copied to avoid any
modification of the value of the parameters before the target delegate is called (remember that this is
a multithreaded world.)

After this structure is created and added to a queue, a message is posted to the target control.
Control.Invoke then does a combination of spin-wait and sleep while it waits for the UI thread to
process the message and invoke the delegate. This part of the process contains an important timing
issue. When the target control processes the Invoke message, it doesn't simply process one delegate.
It processes all Invoke delegates in the queue. If you always use the synchronous version of
Control.Invoke, you won't see any effects. However, if you mix Control.Invoke and
Control.BeginInvoke(), you'll see different behavior. I return to this toward the end of this item, but
for now, understand that the control's WndProc processes every waiting Invoke message whenever it
processes any Invoke messages. You have a little more control in WPF, because you can control the
priority of the asynchronous operation. You can instruct the dispatcher to queue the message for
processing (1) based on system or application conditions, (2) in the normal order, or (3) as a high-
priority message.

Of course, these delegates can throw exceptions, and exceptions can't cross thread boundaries. The
control wraps the call to your delegate in a try/catch block and catches all exceptions. Any
exceptions are copied into a structure that is examined in the worker thread after the UI thread has



finished its processing.

After the UI thread process finishes, Control.Invoke looks for any exceptions that were thrown from
the delegate on the UI thread. If there are any exceptions, Invoke rethrows them on the background
thread. If there aren't any exceptions, normal processing continues. As you can see, that's quite a bit
of processing to call a method.

Control.Invoke blocks the background thread while the marshaled call is being processed. It gives
the impression of synchronous behavior even though multiple threads are involved.

But that may not be what you need for your application. Many times, a progress event is raised by a
worker thread and you want the worker thread to continue processing rather than wait for a
synchronous update to the UI. That's when you use BeginInvoke. This method does much of the same
processing as Control.Invoke. However, after posting the messages to the target control,
BeginInvoke returns immediately rather than wait for the target delegate to finish. BeginInvoke
allows you to post a message for future processing and immediately unblock the calling thread. You
can add corresponding generic asynchronous methods to the ControlExtensions class to make it
easier to process cross-thread UI calls asynchronously. You gain less benefit from these methods than
the earlier ones, but for consistency, let's add them to the ControlExtensions class:

public static void QueueInvoke(this Control ctl, Action doit)
{
    ctl.BeginInvoke(doit);
}

public static void QueueInvoke<T>(this Control ctl,
    Action<T> doit, T args)
{
    ctl.BeginInvoke(doit, args);
}

The QueueInvoke method does not test InvokeRequired first. That's because you may want to invoke
a method asynchronously even if you are currently executing on the UI thread. BeginInvoke() does
that for you. Control.Invoke posts the message to the control and returns. The target control
processes that message when it next checks its message queue. It's not really asynchronous if
BeginInvoke is called on the UI thread. Rather, the processing is still synchronous; you just perform
the action some time after the current operation.

I'm ignoring the Asynch result returned from BeginInvoke. In practice, UI updates rarely have return
values. That makes it much easier to process those messages asynchronously. Simply call
BeginInvoke and expect the delegate methods to be invoked at some later time. You need to code
these delegate methods defensively, because any exceptions are swallowed in the cross-thread
marshaling.

Before we finish this item, let's clean up a loose end inside the control's WndProc. Recall that when
WndProc receives the Invoke message WndProc processes every delegate on InvokeQueue. You can
run into timing problems if you expect events to be processed in a certain order and you are using a
mixture of Invoke and BeginInvoke. You can guarantee that the delegates called by
Control.BeginInvoke (or Control.Invoke) are processed in the order they are received.
BeginInvoke adds a delegate to the queue. Any later calls to Control.Invoke process all messages
on the queue, including those previously added with a call to BeginInvoke(). Processing a delegate
"some time later" means that you can't control when "some time later" actually happens. Processing a



delegate "now" means that the application processes all waiting asynchronous delegates and then
processes this one. It is possible that one of the waiting delegate targets for BeginInvoke will change
program state before your Invoke delegate is called. You need to code defensively and ensure that
you recheck program state inside the delegate rather than rely on the state passed from some time in
the past when Control.Invoke was called.

Very simply, this version of the original handler rarely displays the extra text:

private void OnTick(object sender, EventArgs e)
{
    this.InvokeAsynch(() => toolStripStatusLabel1.Text =
        DateTime.Now.ToLongTimeString());
    toolStripStatusLabel1.Text += "  And set more stuff";
}

That's because the code invokes the first change by queuing up the message, and the change is made
when the next messages are handled. That's after the next statement adding more text to the label.

Invoke and InvokeRequired do quite a bit of work on your behalf. All this work is required because
Windows Forms controls are built on the single-threaded apartment model. That legacy behavior
continues under the new WPF libraries. Underneath all the new .NET Framework code, the Win32 API
and window messages are still lurking. That message passing and thread marshaling can lead to
unexpected behavior. You need to understand what those methods do and work with their behavior.

              



[ Team Unknown ]

              

C# Programming Bill Wagner Addison Wesley Professional More Effective C#: 50 Specific Ways to Improve Your
C#

3. C# Design Practices
Software design is usually independent of the programming language you use. Still, to produce any
running software you must express those designs in a programming language. There are many ways
to express the same concept in any language, including C#. To produce the best possible software,
you must express your designs in the clearest possible code. That clarity enables other developers to
immediately understand your design intent, making it easier to maintain and extend their applications
in the future. This chapter discusses how you can best express common designs in the C# language.
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Item 17. Create Composable APIs for Sequences

You've probably written code that contains loops. In most programs, you tend to write algorithms that
operate more often on a sequence of items than on a single item. It's common to use keywords such
as foreach, for loops, while, and so on. As a result, you create methods that take a collection as
input, examine or modify it or its items, and return a different collection as output.

The problem is that the strategy of operating on entire collections introduces a lot of inefficiencies.
That's because it's rare that you have only one operation to perform. More likely, you'll perform
several transformations between the source collection and the ultimate result. Along the way, you
create collections (perhaps large ones) to store the interim results. You don't begin the next step,
even on the first item, until the preceding step has completely finished. Furthermore, this strategy
means iterating the collection once for every transformation. That increases the execution time for
algorithms that contain many transformations of the elements.

Another alternative is to create one method that processes every transformation in one loop,
producing the final collection in one iteration. That approach improves your application's performance
by iterating the collection only once. It also lowers the application's memory footprint because it
doesn't create collections of N elements for every step. However, this strategy sacrifices reusability.
You're far more likely to reuse the algorithm for each individual transformation than you would for a
multistep operation.

C# iterators enable you to create methods that operate on a sequence but process and return each
element as it is requested. C# 2.0 adds the yield return statement, which lets you create methods
that return sequences. These iterator methods have a sequence as one input (expressed as
IEnumerable<T>) and produce a sequence as output (another IEnumerable<T>). By leveraging the
yield return statement, these iterator methods do not need to allocate storage for the entire
sequence of elements. Instead, these methods ask for the next element on the input sequence only
when needed, and they produce the next value on the output sequence only when the calling code
asks for it.

It's a shift from your usual way of thinking to create input and output parameters from
IEnumerable<T> or from a specific instance of IEnumerable<T>. That's why many developers don't do
it. But making that shift provides many benefits. For example, you naturally create building blocks
that can be combined in many ways, promoting reuse. Moreover, you can apply multiple operations
while iterating a sequence only once, increasing runtime efficiency. Each iterator method executes the
code to produce the Nth element when that element is requested and not before. This deferred
execution model (see Item 37, Chapter 5) means that your algorithms use less storage space and
compose better (see Item 40, Chapter 5) than traditional imperative methods. And, as libraries
evolve, you'll be able to assign different operations to different CPU cores, promoting even better
performance. Further, the bodies of these methods often do not make any assumptions about the
types that they operate on. This means that you can turn these methods into generic methods to gain
more reuse.

To see the benefits of writing iterator methods, let's take a simple example and examine the



translation. The following method takes as its input an array of integers and writes all the unique
values to the output console:

public static void Unique(IEnumerable<int> nums)
{
    Dictionary<int, int> uniqueVals =
        new Dictionary<int, int>();

    foreach (int num in nums)
    {
        if (!uniqueVals.ContainsKey(num))
        {
            uniqueVals.Add(num, num);
            Console.WriteLine(num);
        }
    }
}

It's a simple method, but you can't reuse any of the interesting parts. But chances are, this search for
unique numbers would be useful in other places in your program.

Suppose that instead you wrote the routine this way:

public static IEnumerable<int> Unique(IEnumerable<int> nums)
{
    Dictionary<int, int> uniqueVals = new
        Dictionary<int, int>();
    foreach (int num in nums)
    {
        if (!uniqueVals.ContainsKey(num))
        {
            uniqueVals.Add(num, num);
            yield return num;
        }
    }
}

Unique returns a sequence that contains the unique numbers. Here's how you use it:

foreach (int num in Unique(nums))
    Console.WriteLine(num);

It may look as if we haven't gained anything—or even as if the second version is much less
efficient—but that's not the case. I added several tracing statements to the Unique method that will
help you see how methods like Unique do their magic.

This is the updated Unique:

public static IEnumerable<int> Unique(IEnumerable<int> nums)
{



    Dictionary<int, int> uniqueVals =
        new Dictionary<int, int>();
    Console.WriteLine("\tEntering Unique");
    foreach (int num in nums)
    {
       Console.WriteLine("\tevaluating {0}", num);
       if (!uniqueVals.ContainsKey(num))
       {
           Console.WriteLine("\tAdding {0}", num);
           uniqueVals.Add(num, num);
           yield return num;
           Console.WriteLine
              ("\tReentering after yield return");
       }
   }
   Console.WriteLine("\tExiting Unique ");
}

When you run this version, here's the output:

       Entering Unique
       evaluating 0
       Adding 0
0
       Reentering after yield return
       evaluating 3
       Adding 3
3
       Reentering after yield return
       evaluating 4
       Adding 4
4
       Reentering after yield return
       evaluating 5
       Adding 5
5
       Reentering after yield return
       evaluating 7
       Adding 7
7
       Reentering after yield return
       evaluating 3
       evaluating 2
       Adding 2
2
       Reentering after yield return
       evaluating 7
       evaluating 8
       Adding 8
8
       Reentering after yield return



       evaluating 0
       evaluating 3
       evaluating 1
       Adding 1
1
       Reentering after yield return
       Exiting Unique

The yield return statement plays an interesting trick: It returns a value and retains information
about its current location and the current state of its internal iteration. You've got a method that
operates on an entire sequence: Both the input and the output are iterators. Internally, the iteration
continues to return the next item in the output sequence while it keeps track of its current location in
the input sequence. That's a continuation method. Continuation methods keep track of their state
and resume execution at their current location when code enters them again.

The fact that Unique() is a continuation method provides two important benefits. First, that's what
enables the deferred evaluation of each element. Second, and more important, the deferred execution
provides a composability that would be difficult to achieve if each method had its foreach loop.

Notice that Unique() does not exploit the fact that the input sequence contains integers. It is an
excellent candidate to be converted to a generic method:

public static IEnumerable<T> UniqueV3<T>
    (IEnumerable<T> sequence)
{
    Dictionary<T, T> uniqueVals = new Dictionary<T, T>();
    foreach (T item in sequence)
    {
        if (!uniqueVals.ContainsKey(item))
        {
            uniqueVals.Add(item, item);
            yield return item;
        }
    }
}

The true power of an iterator method like this comes when you compose it into a many-step process.
Suppose you want the final output to be a sequence containing the square of each of the unique
numbers. Square as an iterator method is a simple set of code:

public static IEnumerable<int> Square(IEnumerable<int> nums)
{
    foreach (int num in nums)
        yield return num * num;
}

The call location is a simple nested call:

foreach (int num in Square(Unique(nums)))
    Console.WriteLine("Number returned from Unique: {0}", num);



No matter how many different iterator methods you call, the iteration happens only once. In
pseudocode, the algorithm proceeds as though it were written as shown in Figure 3.1.

Figure 3.1. Items are pulled through a series of iterator methods. When each iterator
method is ready for the next item, that item is pulled from the iterator method it uses for a

source sequence. Only one element is at a given stage of the process at a given time.

The code in Figure 3.1 illustrates the composability of multiple iterator methods. These multiple
iterator methods do their work in one enumeration of the entire sequence. In contrast, traditional
implementation idioms would have a new iteration of the entire sequence for each action.

When you build iterator methods that take one sequence as input and one sequence as output, other
ideas emerge. For example, you can combine two sequences to form a single sequence:

public static IEnumerable<string> Join(
    IEnumerable<string> first,
    IEnumerable<string> second)
{
    using (IEnumerator<string> firstSequence =
        first.GetEnumerator())
    {
        using (IEnumerator<string> secondSequence =
            second.GetEnumerator())
        {
            while (firstSequence.MoveNext() &&
                secondSequence.MoveNext())
            {
                yield return string.Format("{0} {1}",
                    firstSequence.Current,
                    secondSequence.Current);
            }
        }
    }
}

As shown in Figure 3.2, Join forms a single sequence that concatenates each pair of items in two
different string sequences, returning a sequence of those concatenations. And yes, Join is another



possible generic method, although it's a bit more complicated than Unique. That's the subject of Item
6, Chapter 1.

Figure 3.2. Join pulls individual items from two different source sequences. As each new
output is requested, one element is pulled from each of the source sequences. Those two

elements are combined into one output value, and that value is passed in the output
sequence.

The Square() iterator method shows that iterator methods can modify the source elements, modifying
the contents of the sequences as part of its processing. The Unique() iterator method shows how an
iterator method can modify the sequence itself as part of its processing: Only the first copy of each
value is returned by the Unique() iterator method. However, iterator methods do not mutate the
source sequence. Instead, they produce a new sequence as output. If the sequence contains reference
types, however, the items may be modified.

These iterator methods fit together like a child's marble chute toy—you know, the kind where you drop
in marbles one at a time, and they proceed to roll through tubes and past obstacles, tripping various
action features along the way. The marbles don't group at each obstacle; the first marbles may be
several obstacles ahead of the last ones. Each iterator method performs one action on each element of
the input sequence, adding the new object to the output sequence. Individually, iterator methods do
very little. But because these methods are based on a single input and output stream, it's easy to
combine them. If you create these small iterator methods, it is much simpler to create complicated
algorithms that are a single pipeline of many small transformations.
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Item 18. Decouple Iterations from Actions, Predicates, and
Functions

I've just discussed using yield return to create methods that operate on sequences rather than
individual data types. As you gain experience with these methods, you'll often find code that has two
portions: a portion that modifies the iteration of a sequence, and a portion that performs an action on
each element in the sequence. For example, you might want to iterate only those items in a list that
match certain criteria, or you might want to sample every Nth element or skip groups of elements.

These latter enumerations are distinct from the actions you might perform on every element that
matches the criteria. Maybe you're writing different reports with the data, or summing certain values,
or even modifying the properties of the items in the collection. No matter what you are doing, the
enumeration pattern is not related to the action performed, and the two things should be handled
separately. Putting them together means tighter coupling and probably duplicated code.

The reason many developers combine various operations into one method is that the portion to be
customized falls between the standard opening and closing parts. The only way to customize the inner
portion of such an algorithm is to pass a method call or function object to the enclosing method. In
C#, the way to do that is to use delegates to define the inner operation. With the advent of generics
and anonymous delegates in C# 2.0, it is relatively easy to create these operations so that they can
be customized easily for various uses. In the following samples, I show both the anonymous delegate
syntax (C# 2.0) and the even more concise lambda expression syntax added in C# 3.0.

There are two main idioms that you use with anonymous delegates: functions and actions. You'll also
find references to a special case of function: a predicate. A predicate is a Boolean method that
determines whether an element in a sequence matches some condition. An action delegate performs
some action on an element in the collection. These method signatures are so common that the .NET
library contains definitions for Action<T>, Func<T, TResult>, and Predicate<T>.

namespace System
{
    public delegate bool Predicate<T>( T obj);
    public delegate void Action<T>( T obj);
    public delegate TResult Func<T, TResult>(T arg);
}

For example, the List<T>.RemoveAll() method is a method with a predicate. The following
invocation removes all instances of 5 from a list of integers:

// RemoveAll using anonymous delegate syntax
myInts.RemoveAll(
    delegate(int collectionMember)
    {
        return collectionMember == 5;



    });

// RemoveAll using lambda syntax
myInts.RemoveAll((collectionMember) => collectionMember == 5);

Internally, List<T>.RemoveAll() calls your delegate method (defined earlier anonymously)
successively for every item in the list. Whenever the delegate returns true, that element is removed
from the list. (It's a bit more complicated, because RemoveAll() actually creates new internal storage
so that the original list isn't modified during the enumeration, but that's an implementation-specific
detail.)

Action methods are called successively for every item in the collection. The List<T>.ForEach()
method contains an example. The following invocation prints to the console every integer in the
collection.

// ForEach using an anonymous delegate
myInts.ForEach(delegate(int collectionMember)
{
    Console.WriteLine(collectionMember);
});

// ForEach using a lambda
myInts.ForEach((collectionMember) =>
    Console.WriteLine(collectionMember));

Sure, that's boring, but the concept can be extended to any action you might need performed. The
anonymous delegate performs the action, and the ForEach method calls the anonymous method on
each element in the collection.

With these two methods, you can see different ways to expand the techniques to execute complex
operations on collections. Let's look again at other examples of operations wherein you can save code
by using predicates and actions.

Filter methods use Predicate to perform their tests. Predicate defines which objects should be
passed or blocked by the filter. Following the advice in Item 17 (earlier in this chapter), you can build
a generic filter that returns a sequence of all items that meet some criterion.

public static IEnumerable<T> Filter<T>
    (IEnumerable<T> sequence,
    Predicate<T> filterFunc)
{
    if (filterFunc == null)
        throw new ArgumentNullException
           ("Predicate must not be null");
    foreach (T item in sequence)
       if (filterFunc(item))
           yield return item;
}

Each element in the input sequence is evaluated using the Predicate method. If the Predicate



returns true, that element is returned as part of the output sequence. Any developer can write a
method on a type that tests a condition, and the method will be compatible with this filter method.

You can also sample a sequence and return every Nth element:

public static IEnumerable<T> EveryNthItem<T>(
    IEnumerable<T> sequence, int period)
{
    int count = 0;
    foreach (T item in sequence)
        if (++count % period == 0)
            yield return item;
}

You can apply that filter to any sequence you want, sampling only selected items.

An Action delegate can be used in combination with any enumeration pattern. Here, we create a
transform method that builds a new sequence from an existing sequence by calling a method:

public delegate T Transformer<T>(T element);
public static IEnumerable<T> Transform<T>(
    IEnumerable<T> sequence, Transformer<T> method)
{
    foreach( T element in sequence)
        yield return method(element);
}

Here's how you would call transform to convert a sequence of integers into a sequence containing the
squares of those integers:

// transform as anonymous delegate
foreach (int i in Transform(myInts, delegate(int value)
    {
        return value * value;
    }))
    Console.WriteLine(i);
// Transform as lambda
foreach (int i in Transform(myInts, (value)=> value * value))
    Console.WriteLine(i);

The TRansform method need not return the same type of element. You can modify the transform
method to support changes from one type to another:

public delegate Tout Transformer<Tin,Tout>(Tin element);
public static IEnumerable<Tout> Transform<Tin,Tout>(
    IEnumerable<Tin> sequence, Transformer<Tin,Tout> method)
{
    foreach (Tin element in sequence)
        yield return method(element);
}



And you call this version as follows:

// Anonymous Delegate
foreach (string s in Transform(myInts, delegate(int value)
{
    return value.ToString();
}))
    Console.WriteLine(s);

// Lambda:
foreach (string s in Transform(myInts, (value)
    => value.ToString()))
    Console.WriteLine(s);

As you saw in Item 17, it isn't difficult to write or use any of these methods. The key is that you've
separated two distinct operations: (1) iterating a sequence and (2) operating on the individual
elements in the sequence. You've applied anonymous delegates or lambda expressions to create
building blocks that you can use in various ways with various techniques. Any of these routines can be
used as larger building blocks in your applications. You can implement many modifications to a
sequence as a function (including the special case of predicates), and you can use an action delegate
(or similar definition) to manipulate the items in a collection while enumerating a subset of the
elements.
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Item 19. Generate Sequence Items as Requested

Iterator methods do not necessarily need to take a sequence as an input parameter. An iterator
method that uses the yield return approach can create a new sequence, essentially becoming a
factory for a sequence of elements. Instead of creating the entire collection before proceeding with
any operations, you create the values only as requested. This means that you avoid creating elements
that aren't used by the consumers of the sequence.

Let's look at a simple example that generates a sequence of integral numbers. You might write it like
this:

static IList<int> CreateSequence(int numberOfElements,
    int startAt, int stepBy)
{
    List<int> collection =
        new List<int>(numberOfElements);
    for (int i = 0; i < numberOfElements; i++)
        collection.Add(startAt + i * stepBy);

    return collection;
}

It works, but it has many deficiencies compared with using yield return to create the sequence.
First, this technique assumes that you're putting the results into a List<double>. If clients want to
store the results in some other structure, such as BindingList<double>, they must convert it:

BindingList<int> data = new
    BindingList<int>(CreateSequence(100, 0, 5));

There may be a subtle bug lurking in that construct. The BindingList<T> constructor does not copy
the elements of the list but instead uses the same storage location as the list given in the constructor.
If the storage location used to initialize the BindingList<T> is reachable by other code, you could
introduce data integrity errors. Multiple references are synonyms for the same storage location.

Moreover, creating the entire list doesn't give client code a chance to stop the generation function
based on a specified condition. The CreateSequence method always generates a requested number of
elements. As written, it can't be stopped if the user wants to stop the process—for paging or for any
other reason.

Also, this method could be the first stage of several transformations on a sequence of data (see Item
17 earlier in this chapter). In that case, this method would be a bottleneck in the pipeline: Every
element would have to be created and added to the internal collection before the next step could
continue.



You can remove all those limitations by making the generation function an iterator method:

static IEnumerable<int> CreateSequence(int numberOfElements,
    int startAt, int stepBy)
{
    for (int i = 0; i < numberOfElements; i++)
        yield return startAt + i * stepBy;
}

The core logic is still the same: It generates a sequence of numbers.

It is important to note that there is a change in the way this version executes. Each time code
enumerates the sequence, it regenerates the sequence of numbers. Because the code always
generates the same sequence of numbers, this change does not affect the behavior. This version does
not make any assumptions about what the client code will do with that storage location. If the client
code wants values as a List<double>, there's a constructor that takes an IEnumerable<double> as
the initial collection:

List<int> listStorage = new List<int>(
    CreateSequence(100, 0, 5));

That's necessary to ensure that only one sequence of numbers is generated. You would create a
BindingList<double> collection this way:

BindingList<int> data = new
    BindingList<int>(CreateSequence(100,0,5).ToList());

This code might look a bit inefficient. The BindingList<T> class does not support a constructor that
takes an IEnumerable<T>. It really isn't inefficient, though, because BindingList holds the reference
to the existing list; it doesn't create another copy. ToList() creates one list object that contains all
the elements in the sequence generated by CreateSequence. That List object is also held by
BindingList<int>.

It's easy to stop the enumeration if you use the following method. You simply don't ask for the next
element. The code works with both versions of CreateSequence(). However, if you use the first
implementation of CreateSequence(), all 1,000 elements are generated, no matter where in the
collection the caller wishes to stop enumerating the list. Using the enumerator version, the generation
short-circuits as soon as the first nonconforming value is found. That can result in a significant
performance improvement.

// Using an anonymous delegate
IEnumerable<int> sequence = CreateSequence(10000, 0, 7).
    TakeWhile(delegate(int num) { return num < 1000; });

// using lambda notation
IEnumerable<int> sequence = CreateSequence(10000, 0, 7).
    TakeWhile((num) => num < 1000);

Of course, any condition can be used to determine when the enumeration should stop. You can check



to see whether the user wishes to continue, poll another thread for input, or do anything else needed
by your application. The enumerator method provides a simple means of interrupting the enumeration
anywhere in the sequence. This deferred execution means that only the elements requested are
generated. Essentially, client code requests that an algorithm create a new element only when that
element is actually used in the algorithm.

However, you should use this idiom only when your algorithm actually creates the sequence. It does
not serve any purpose to use an iterator method to return a collection that already exists:

// Values added elsewhere
private List<string> labels = new List<string>();

// No value: creating a second compiler-generated
// Enumerator class
public IEnumerable<string> LabelsBad()
{
    foreach (string label in labels)
        yield return label;
}

// List<string> already supports an enumerator
public IEnumerable<string> LabelsBetter()
{
    return labels;
}

Any collection already contained in your type will support IEnumerable<T> for whatever type it stores.
There's no need to add code to support the concept.

It's best to generate sequence items only when each item is requested by the consumer of the
sequence. You'll avoid doing extra work when the consumer needs only a portion of the algorithm to
perform its work. It may be a small savings, or the savings may be much greater if the cost of
creating elements is large. In any case, the code that creates the sequence will be clearer when you
generate the sequence items only as needed.
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Item 20. Loosen Coupling by Using Function Parameters

Developers often reach for the most familiar language features to describe contracts between
components. For most developers, that means defining a base class or an interface to declare the
methods needed by a new class and then coding against those defined interfaces. Often that is the
correct answer, but using function parameters can make it easier for other developers to create code
that can work with your components and libraries. Using function parameters means that your
component is not responsible for creating the concrete type of the classes it needs. Rather, your
component uses any dependencies through an abstract definition.

You should be familiar with the separation of interfaces and classes. But sometimes even defining and
implementing an interface are too cumbersome for a particular usage. Probably you'll most often use
traditional object-oriented techniques, but these other techniques can make for a simpler API. You can
create contracts by using delegates to minimize the requirements on client code.

The challenge for you is to isolate your work from these dependencies and from assumptions you
implicitly make about the client developers who use your code. There are various reasons for this
difficulty from both sides of your code. The more your code relies on other pieces, the harder it is to
unit-test or use your code in other environments. From the other side, the more closely you rely on a
particular implementation pattern from those developers who use your code, the more constraints you
place on them.

You can use function parameters to decouple your components from the code that uses those
components. However, each of those possible techniques comes with a cost. There is more work for
you, and a little less clarity for your users, if you adopt techniques that loosen the coupling between
code that must work together. You need to balance the potential needs of client developers against
the lack of understanding that decoupled techniques can provide. In addition, implementing looser
coupling—by using delegates or other communication mechanisms—also means that you need to work
around some of the checking that the compiler provides for you.

At one end of the spectrum, you have likely specified a base class for your client classes. Doing so is
the simplest way for clients to develop code that works with your component. The contract is clear:
Derive from this specified base class, implement these known abstract (or other virtual) methods, and
it just works. In addition, you can implement any common functionality in the abstract base class.
Users of your component do not need to reimplement any of that code.

From your component's perspective, this approach is also a little less work. You can assume that
certain behavior has been implemented. The compiler won't allow someone to build a derived class
without providing an implementation for all the abstract methods. Nothing can force a correct
implementation, but you know that a proper method exists.

However, forcing client code to derive from a base class you define is the most restrictive way to
demand certain behaviors from client code. For example, all .NET languages mandate single
inheritance for classes. Creating a component that demands a base class can be very limiting to all
your users. You're mandating a certain class hierarchy. There's no other way to use it.



Creating interfaces and coding against them results in looser coupling than does relying on base
classes. You've likely created an interface and forced client coders to implement that interface. This
practice creates a relationship that's similar to the relationship you establish by using a base class.
There are only two important differences: First, using an interface does not enforce any class
hierarchy on your users. But, second, you can't easily provide a default implementation for any of the
behavior necessary for client code.

Often, either of those mechanisms will be too much work for your purpose. Do you really need to
define an interface? Or will a more loosely coupled approach, such as defining a delegate signature, be
better?

You have already seen an example of this in Item 17 earlier in this chapter. The List.RemoveAll()
method signature takes a delegate of type Predicate<T>:

void List<T>.RemoveAll (Predicate<T> match);

The .NET Framework designers could have implemented this method by defining an interface:

// Improper extra coupling.
public interface IPredicate<T>
{
    bool Match(T soughtObject);
}
public class List<T>
{
    public void RemoveAll(IPredicate<T> match)
    {
        // elided
    }
    // Other APIs elided
}
//The usage for this second version is quite a bit more work:
public class MyPredicate : IPredicate<int>
{
    public bool Match(int target)
    {
        return target < 100;
    }
}

Look back at Item 17 to see how much easier it is to use the version that is defined for List<T>.
Often, it is much easier on all the developers who use your class when you define your interfaces using
delegates or other loose-coupling mechanisms.

The reason for using delegates instead of an interface is that the delegate is not a fundamental
attribute of the type. It's not the number of methods. Several interfaces in the .NET Framework
contain only one method. IComparable<T> and IEquatable<T> are perfectly good interface
definitions. Implementing those interfaces says something about your type: that it supports
comparisons or equality. Implementing this hypothetical IPredicate<T> doesn't say anything
interesting about a particular type. You really need only one method definition for one single API.



You often can use function parameters in conjunction with generic methods when you may have
considered defining interfaces or creating base classes. Item 17 contains this version of a Join
method that merges two sequences:

public static IEnumerable<string> Join(
    IEnumerable<string> first,
    IEnumerable<string> second)
{
    using (IEnumerator<string> firstSequence =
        first.GetEnumerator())
    {
        using (IEnumerator<string> secondSequence =
            second.GetEnumerator())
        {
            while (firstSequence.MoveNext() &&
                secondSequence.MoveNext())
            {
                yield return string.Format("{0} {1}",
                    firstSequence.Current,
                    secondSequence.Current);
            }
        }
    }
}

You can make a generic method and use function parameters to build the output sequence:

public static IEnumerable<TResult> Join<T1, T2,
TResult>(IEnumerable<T1> first,
    IEnumerable<T2> second, Func<T1, T2, TResult> joinFunc)
{
    using (IEnumerator<T1> firstSequence =
         first.GetEnumerator())
    {
        using (IEnumerator<T2> secondSequence =
            second.GetEnumerator())
        {
            while (firstSequence.MoveNext() &&
                secondSequence.MoveNext())
            {
                yield return joinFunc(firstSequence.Current,
                    secondSequence.Current);
            }
        }
    }
}

The caller must now define the body of the joinFunc:

IEnumerable<string> result = Join(first, second, (one, two) =>



    string.Format("{0} {1}", one, two));

Or, if the callers are not using C# 3.0, the lambda expression could be replaced with an anonymous
delegate:

IEnumerable<string> result = Join(first, second,
    delegate(string one, string two)
    {
        return string.Format("{0} {1}", one, two);
    });

That creates much looser coupling between the Join method and its callers.

The CreateSequence method from Item 19 (earlier in this chapter) would benefit from the same kinds
of changes. The version in Item 19 creates a sequence of integers. You can make that a generic
method and use a function parameter to specify how that sequence should be generated:

public static IEnumerable<T> CreateSequence<T>
    (int numberOfElements, Func<T> generator)
{
    for (int i = 0; i < numberOfElements; i++)
        yield return generator();
}

A caller defines the original behavior this way:

int startAt = 0;
int nextValue = 5;
IEnumerable<int> sequence = CreateSequence(1000,
    () => startAt += nextValue);

Or, using anonymous delegate syntax, one defines it this way:

IEnumerable<int> sequence = CreateSequence(1000,
    delegate()
    {
        return startAt += nextValue;
    });

At other times, you'll want to perform an algorithm on all the items in a sequence, returning a single
scalar value. For example, this method creates the sum of a sequence of integers:

public static int Sum(IEnumerable<int> nums)
{
    int total = 0;
    foreach (int num in nums)
    {
        total += num;



    }
    return total;
}

You can make this method a general-purpose accumulator by factoring out the Sum algorithm and
replacing it with a delegate definition:

public static T Sum<T>(IEnumerable<T> sequence, T total,
    Func<T,T, T> accumulator)
{
    foreach (T item in sequence)
    {
        total = accumulator(total, item);
    }
    return total;
}

You would call it this way:

int total = 0;
total = Sum(sequence, total, (sum, num) => sum + num);

Using an anonymous delegate, you call it as follows:

total = Sum(sequence, total, delegate(int sum, int num)
{
    return sum + num;
});

The Sum method is still too limiting. As written, it must use the same type for the sequence, the return
value, and the initial value. You'd like to use it with different types:

List<Employee> peeps = new List<Employee>();
// All employees added elsewhere.
// Calculate the total salary:
decimal totalSalary = Sum(peeps, 0M, (person, sum) =>
    sum + person.Salary);

All you need is a bit of modification to the Sum method definition, allowing different parameter types
for the sequence element and the accumulated sum:

public static TResult Sum<T, TResult>(IEnumerable<T>
sequence,
    TResult total,
    Func<T,TResult, TResult> accumulator)
{

    foreach (T item in sequence)



    {
        total = accumulator(item, total);
    }
    return total;
}

Using functions as parameters does a great deal to separate algorithms from the specific data types
on which they operate. However, as you loosen the coupling, you increase the amount of work you
might need to do to ensure proper error handling when these decoupled components communicate.
For example, suppose you've created code that defines events. You know that you must check that
event member against null whenever you intend to raise that event. Client code may not have
created the event handlers. You'll have the same work when you create interfaces using delegates.
What is the correct behavior when your client passes a null delegate? Is it an exception, or is there a
correct default behavior? What happens if client code delegates tHRow exceptions? Can you recover? If
so, how?

Finally, when you switch from using inheritance to using delegates to define your expectations, you
must understand that you have the same runtime coupling you would have by holding a reference to
an object or an interface. If your object stores a copy of the delegate that it can call later, your object
now controls the lifetime of the object to which that delegate refers. You may be extending the
lifetime of those objects. This is no different from having your object hold a reference to an object (by
storing a reference to an interface or a base class) that your object will invoke later. It's a little harder
to see by reading the code, though.

The default choice is still to create interface contracts that mandate how your component will
communicate with client code. Abstract base classes give you the extra ability to provide a default
implementation of some of the work that otherwise would be done by client code. Defining delegates
for the methods you expect gives you the most flexibility, but it also means you have less support
from tools. You buy more work but gain greater flexibility.
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Item 21. Create Method Groups That Are Clear, Minimal, and
Complete

The more possible overloads you create for a method, the more often you'll run into ambiguity. It's
also more likely that the compiler won't find the one best function method. Worse, when you make
what seem to be innocent changes to your code, you can cause different methods to be called and
therefore unexpected results to be generated.

In many cases, it's easier to work with fewer overloaded methods than with more overloads. Your goal
should be to create precisely the right number of overloads: enough of them that your type is easy for
client developers to use but not so many that you complicate the API and make it harder for the
compiler to create exactly the one best method.

The greater the ambiguity you create, the more difficult it is for other developers to create code that
uses new C# features such as type inference. The more ambiguous methods you have in place, the
more likely it is that the compiler cannot conclude that exactly one method is best.

The C# language specification describes all the rules that determine which method will be interpreted
as the best match. As a C# developer, you should have some understanding of the rules. More
importantly, as an API writer, you should have a solid understanding of the rules. It is your
responsibility to create an API that minimizes the chances for compilation errors caused by the
compiler's attempt to resolve ambiguity. It's even more important that you don't lead your users down
the path of misunderstanding which of your methods the compiler chooses in reasonable situations.

The C# compiler can follow quite a lengthy path as it determines whether there is one best method to
call and, if there is, what that one best method is. When a class has only nongeneric methods, it's
reasonably easy to follow and to know which methods will be called. The more possible variations you
add, the worse the situation gets, and the more likely it is that you can create ambiguity.

Several conditions change the way the compiler resolves these methods. The process is affected by
the number and the type of parameters, whether generic methods are potential candidates, whether
any interface methods are possible, and whether any extension methods are candidates and are
imported into the current context.

The compiler can look in numerous locations for candidate methods. Then, after it finds all candidate
methods, it must try to pick the one best method. If there are no candidate methods or if there are
multiple candidate methods, you get a compiler error. But those are the easy cases. You can't ship
code that has compiler errors. The hard problems occur when you and the compiler disagree about
which method is best. In those cases, the compiler always wins, and you may get undesired behavior.

I begin by noting that any methods having the same name should perform essentially the same
function. For example, two methods in the same class named Add() should do the same thing. If the
methods do semantically different things, then they should have different names. For example, you
should never write code like this:



public class Vector
{
    private List<double> values = new List<double>();

    // Add a value to the internal list.
    public void Add(double number)
    {
        values.Add(number);
    }

    // Add values to each item in the sequence.
    public void Add(IEnumerable<double> sequence)
    {
        int index = 0;
        foreach (double number in sequence)
        {
            if (index == values.Count)
                return;
            values[index++] += number;
        }
    }
}

Either of the two Add() methods is reasonable, but there is no way both should be part of the same
class. Different overloaded methods should provide different parameter lists, never different actions.

That rule alone limits the possible errors caused when the compiler calls a different method from the
one you expect. If both methods perform the same action, it really shouldn't matter which one gets
called, right?

Of course, different methods with different parameter lists often have different performance metrics.
Even when multiple methods perform the same task, you should get the method you expect. You as
the class author can make that happen by minimizing the chances for ambiguity.

Ambiguity problems arise when methods have similar arguments and the compiler must make a
choice. In the simplest case, there is only one parameter for any of the possible overloads:

public void Scale(short scaleFactor)
{
    for (int index = 0; index < values.Count; index++)
        values[index] *= scaleFactor;
}

public void Scale(int scaleFactor)
{
    for (int index = 0; index < values.Count; index++)
        values[index] *= scaleFactor;
}

public void Scale(float scaleFactor)
{
    for (int index = 0; index < values.Count; index++)



        values[index] *= scaleFactor;
}

public void Scale(double scaleFactor)
{
    for (int index = 0; index < values.Count; index++)
        values[index] *= scaleFactor;
}

By creating all these overloads, you have avoided introducing any ambiguity. Every numeric type
except decimal is listed, and therefore the compiler always calls the version that is a correct match.
(Decimal has been omitted because a conversion from decimal to double requires an explicit
conversion.) If you have a C++ background, you probably wonder why I haven't recommended
replacing all those overloads with a single generic method. That's because C# generics don't support
that practice in the way C++ templates do. With C# generics, you can't assume that arbitrary
methods or operators are present in the type parameters. You must specify your expectations using
constraints (see Item 2, Chapter 1). Of course, you might think about using delegates to define a
method constraint (see Item 6, Chapter 1). But in this case, that technique only moves the problem to
another location in the code where both the type parameter and the delegate are specified. You're
stuck with some version of this code.

However, suppose you left out some of the overloads:

public void Scale(float scaleFactor)
{
    for (int index = 0; index < values.Count; index++)
        values[index] *= scaleFactor;
}

public void Scale(double scaleFactor)
{
    for (int index = 0; index < values.Count; index++)
        values[index] *= scaleFactor;
}

Now it's a bit trickier for users of the class to determine which method will be called for the short and
the double cases. There are implicit conversions from short to float, and from short to double.
Which one will the compiler pick? And if it can't pick one method, you've forced coders to specify an
explicit cast to get their code to compile. Here, the compiler decides that float is a better match than
double. However, most of your users may not come to the same conclusion. Here's how to avoid this
problem: When you create multiple overloads for a method, make sure that most developers would
immediately recognize which method the compiler will pick as a best match. That's best achieved by
providing a complete set of method overloads.

Single-parameter methods are rather simple, but it can be difficult to understand methods that have
multiple parameters. Here are two methods with two sets of parameters:

public class Point
{
    public double X
    {



        get;
        set;
    }
    public double Y
    {
        get;
        set;
    }

    public void Scale(int xScale, int yScale)
    {
        X *= xScale;
        Y *= yScale;
    }

    public void Scale(double xScale, double yScale)
    {
        X *= xScale;
        Y *= yScale;
    }
}

Now, what happens if you call with int, float? Or with int, long?

Point p = new Point { X = 5, Y = 7 };
// Note that second parameter is a long:
p.Scale(5, 7L); // calls Scale(double,double)

In both cases, only one of the parameters is an exact match to one of the overloaded method
parameters. That method does not contain an implicit conversion for the other parameter, so it's not
even a candidate method. Some developers would probably guess wrong in trying to determine which
method gets called.

But wait—method lookup can get a lot more complicated. Let's throw a new wrench into the works and
see what happens. What if there is a better method available in a base class than exists in a derived
class?

public class Point
{
    // earlier code elided
    public void Scale(int scale)
    {
        X *= scale;
        Y *= scale;
    }
}
public class Point3D : Point
{
    public double Z
    {
        get;



        set;
    }

    // Not override, not new. Different parameter type.
    public void Scale(double scale)
    {
        X *= scale;
        Y *= scale;
        Z *= scale;
    }
}
Point3D p2 = new Point3D { X = 1, Y = 2, Z = 3 };
p2.Scale(3);

There are quite a few mistakes here. Point should declare Scale() as a virtual method if the class
author intends for Scale to be overridden. But the author of the overriding method—let's call her
Kaitlyn—made a different mistake: By creating a new method (rather than hiding the original), Kaitlyn
has ensured that the user of her type will generate code that calls the wrong method. The compiler
finds both methods in scope and determines (based on the type of the parameters) that
Point.Scale(int) is a better match. By creating a set of method signatures that conflict, Kaitlyn has
created this ambiguity.

Adding a generic method to catch all the missing cases, using a default implementation, creates an
even more sinister situation:

public static class Utilities
{
    // Prefer Math.Max for double:
    public static double Max(double left, double right)
    {
        return Math.Max(left, right);
    }

    // Note that float, int, etc. are handled here:
    public static T Max<T>(T left, T right)
        where T : IComparable<T>
    {
        return (left.CompareTo(right) > 0 ? left : right);
    }
}
double a1 = Utilities.Max(1,3 );
double a2 = Utilities.Max(5.3, 12.7f);
double a3 = Utilities.Max(5, 12.7f);

The first call instantiates a generic method for Max<int>. The second call goes to Max(double,
double). The third call goes to a generic method for Max<float>. That's because for generic methods,
one of the types can always be a perfect match, and no conversion is required. A generic method
becomes the best method if the compiler can perform the correct type substitution for all type
parameters. Yes, even if there are obvious candidate methods that require implicit conversions, the
generic method is considered a better method match whenever it is accessible.



But I'm not finished throwing complications at you. Extension methods can also be considered in the
mix. What happens if an extension method appears to be a better match than does an accessible
member function? Well, a better match means a method that has a better-matching parameter list. If
the extension method is a better match—meaning that none of the parameters needs any
conversions—then the compiler prefers the extension method to an accessible member function that
requires conversions. Given that generic methods always create a better match, you can see why
extension methods can wreak havoc with method lookup.

As you can see, the compiler examines quite a few places to find candidate methods. As you put more
methods in more places, you expand that list. The larger the list, the more likely it is that the potential
methods will present an ambiguity. Even if the compiler is certain which method is the one best
method, you've introduced potential ambiguity for your users. If only one in twenty developers can
correctly identify which method overload gets called when he invokes one of a series of overloaded
methods, you've clearly made your API too complex. Users should be able to know immediately which
of the possible set of accessible overloads the compiler has chosen as the best. Anything less is
obfuscating your library.

To provide a complete set of functionality for your users, create the minimum set of overloads. Then
stop. Adding methods will only increase your library's complexity without enhancing its usefulness.
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Item 22. Prefer Defining Methods to Overloading Operators

Every object-oriented language has taken its own stance on the practice of overloading operators.
Some languages support overloading almost any operator for your type. Other languages disallow
overloading operators altogether. C# takes a middle approach: Some, but not all, operators can be
overloaded. The C# language designers took a liberal approach; you may never have a good reason to
overload some of the operators that you can overload.

Because languages treat operator overloading differently, the Common Language Specification (CLS)
takes an interesting approach. Overloaded operators are not CLS compliant, but each operator maps
to a special method name. This practice allows languages that do not support overloaded operators to
invoke overloaded operators defined in languages that allow them.

The names of those overloaded operators are not necessarily friendly API names. Developers using
other languages would need to call a method named op_Equality to invoke the == operator you
created in C#. Some languages may not even allow code to invoke the methods that underlie
overloaded operators. For example, C# does not call a user-defined op_Assign method, even if you
have defined one using another language that supports such a method. Instead, the C# compiler
always performs a simple bitwise copy for assignment.

This kind of mismatch between languages means that you should never create a public interface that
relies on operators alone. .NET developers using your type may not be able to access those methods
at all. If they do, they may need to explicitly use the op_ version of the method. You should always
define your public interface in terms of CLS-compliant members, and then add overloaded operators
only as a convenience for those languages that support them. For the remainder of this item, I discuss
the common operators you can overload and explain the conditions that apply to the operation.

The simplest decision is whether to overload operator ==. If your type overrides
System.Object.Equals or implements IEquatable<T> for your type, you should overload operator
==. The C# language specification mandates that if you overload operator ==, then you must also
overload operator != and override System.Object.GetHashCode(). All three of those methods must
follow the same semantics for equality, although the language cannot enforce that. To enforce it, you
must implement those methods correctly. It follows that if you overload operator ==, then you must
implement IEquatable<T> and override System.Object.Equals().

The next most common set of overloaded operators is the comparison operators. If you implement
IComparable<T> for your type, you should also overload operator < and operator >. If your type
also implements IEquatable<T>, you should also overload operator <= and operator >=. As with
operator ==, the C# specification mandates that you must override those operators in pairs.
Overloading operator < means that you must override operator >, and overloading operator <=
means that you must overload operator >=.

Notice that in both of those descriptions, the directive is to overload operators when your type defines
methods that implement the same functionality using standard .NET BCL interfaces. That's the most
important point in this item: Whenever you define overloaded operators, you must provide an



alternative public API that implements the same behavior. If you fail to do this, it means that your
type will be much less friendly to developers who are using languages that don't support operator
overloading.

Once you move beyond the equality and ordering relations, it's much less likely that you'll overload
operators. It's also much less clear-cut when you should overload operators.

You should consider overloading the mathematical operators if your type models numeric data. More
importantly, remember that you must provide an alternative for languages that don't support operator
overloading. Defining operator + means that you should create an Add() method. (System.String
has a Concat() method, which is consistent with the semantics of + for strings.)

You'll find that it's much easier to define the set of operators you want to overload by first defining the
set of methods you want to support and then deriving the operators you want to support based on the
methods your type supports. For example, if you create Add() and Subtract(), you should define
operator + and operator - but probably not any other mathematical operators. If you define
multiple Add() methods with dissimilar parameters, you should define multiple operator + overloads.
Furthermore, because addition is commutative, you should define operator + methods with both
parameter orderings. If A+B is valid, then B+A is also valid, and it must produce the same result even if
A and B are different types (except for System.String).

Define the methods first, and then you can more easily decide whether certain operator expressions
are valid based on your type. Should your type support the unary as well as the binary operators? For
example, is A+(-B) supported? For that construct to work, you must support the unary operator -. If
it is supported, every developer using your class will expect it to produce the same result as A-B. This
means that you should define a Negate() method, or something similar, to provide a method call that
provides the same functionality as the overloaded unary operator -. Would you have defined a
Negate() method if you'd started by defining the methods for your interface? If not, that's an
indication that you don't need to add those overloaded operators.

Overloading mathematical operators in C# is a little easier because of restrictions defined by the
language. You cannot overload the mathematical assignment operators (+=, -=, etc.), but they are
evaluated using the corresponding mathematical operator, so your user-defined behavior still provides
the result.

You will rarely, if ever, overload the remaining operators. Those include the logical operators, operator
true, and operator false.

Overloaded operators can provide intuitive syntax in those languages that support them. However, not
every .NET language supports operator overloading. You should start your design by defining your
type's public interface using CLS-compliant members. Once you have done that, consider
implementing overloaded operators for those languages that support types. The most common
operators you will overload are operator == and operator !=. You must overload those when your
type implements IEquatable<T>. Many C# developers use the operators and expect them to behave
consistently with the IEquatable<T>.Equals() method. You'll also override the comparison
operators: <, >, <=, and >=. You should implement those when your type implements IComparable<T>.

If your type models a numeric type, consider overloading mathematical operators. Start with the
methods you intend to support, and then add overloaded operators to match for developers using
languages that support overloaded operators (such as C#). In all cases, though, ensure that your type
is useful even if you do not implement any overloaded operators. Developers using languages that
don't support overloaded operators cannot access that portion of your type's public interface. Prefer
methods to overloaded operators.
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Item 23. Understand How Events Increase Runtime Coupling
Among Objects

Events seem to provide a way to completely decouple your class from those types it needs to notify.
Thus, you'll often provide outgoing event definitions. Let subscribers, whatever type they might be,
subscribe to those events. Inside your class, you raise the events. Your class knows nothing about the
subscribers, and it places no restrictions on the classes that can implement those interfaces. Any code
can be extended to subscribe to those events and create whatever behavior they need when those
events are raised.

And yet, it's not that simple. There are coupling issues related to event-based APIs. To begin with,
some event argument types contain status flags that direct your class to perform certain operations.

public class WorkerEngine
{
    public event EventHandler<WorkerEventArgs> OnProgress;
    public void DoLotsOfStuff()
    {
        for (int i = 0; i < 100; i++)
        {
            SomeWork();
            WorkerEventArgs args = new WorkerEventArgs();
            args.Percent = i;
            EventHandler<WorkerEventArgs> progHandler =
                OnProgress;
            if (progHandler  != null)
            {
                progHandler(this, args);
            }
            if (args.Cancel)
                return;
        }
    }
    private void SomeWork()
    {
        // elided
    }
}

Now, every subscriber to that event is coupled. Suppose you have multiple subscribers on a single
event. One subscriber might request a cancel, and the second might reverse that request. The
foregoing definition does not guarantee that this behavior can't happen. Having multiple subscribers
and a mutable event argument means that the last subscriber in the chain can override every other
subscriber. There's no way to enforce having only one subscriber, and there is no way to guarantee



that you're the last subscriber. You could modify the event arguments to ensure that once the cancel
flag is set, no subscriber can turn it off:

public class WorkerEventArgs : EventArgs
{
    public int Percent
    {
        get;
        set;
    }
    public bool Cancel
    {
        get;
        private set;
    }
    public void RequestCancel()
    {
        Cancel = true;
    }
}

Changing the public interface works here, but it might not work in some cases. If you need to ensure
that there is exactly one subscriber, you must choose another way of communicating with any
interested code. For example, you can define an interface and call that one method. Or you can ask for
a delegate that defines the outgoing method. Then your single subscriber can decide whether it wants
to support multiple subscribers and how to orchestrate the semantics of cancel requests.

At runtime, there's another form of coupling between event sources and event subscribers. Your event
source holds a reference to the delegate that represents the event subscriber. The event subscriber's
object lifetime now will match the event source's object lifetime. The event source is now a root for
the event subscriber. As long as the event source holds the reference and is reachable, the event
subscriber is also reachable and therefore is not eligible for garbage collection. Even if the event
subscriber would otherwise be eligible for destruction, the delegate handle in the event source keeps a
live root, and keeps it alive.

As a result, event subscribers need to modify their implementation of the dispose pattern to unhook
event handlers as part of the Dispose() method. Otherwise, subscriber objects continue to live on
because reachable delegates exist in the event source object. It's another case where runtime
coupling can cost you. Even though it appears that there is looser coupling because the compile-time
dependencies are minimized, runtime coupling does have costs.

Event-based communication loosens the static coupling between types, but it comes at the cost of
tighter runtime coupling between the event generator and the event subscribers. The multicast nature
of events means that all subscribers must agree on a protocol for responding to the event source. The
event model, in which the event source holds a reference to all subscribers, means that all subscribers
must either (1) remove event handlers when the subscriber wants to be disposed of or (2) simply
cease to exist. Also, the event source must unhook all event handlers when the source should cease to
exist. You must factor those issues into your design decision to use events.
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Item 24. Declare Only Nonvirtual Events

Like many other class members in C#, events can be declared as virtual. It would be nice to think that
it's as easy as declaring any other C# language element as virtual. Unfortunately, because you can
declare events using field-like syntax as well as add and remove syntax, it's not that simple. It's
remarkably simple to create event handlers across base and derived classes that don't work the way
you expect. Even worse, you can create hard-to-diagnose crash bugs.

Let's modify the worker engine from the preceding item to provide a base class that defines the basic
event mechanism:

public abstract class WorkerEngineBase
{
    public virtual event EventHandler<WorkerEventArgs>
        OnProgress;

    public void DoLotsOfStuff()
    {
        for (int i = 0; i < 100; i++)
        {
            SomeWork();
            WorkerEventArgs args = new WorkerEventArgs();
            args.Percent = i;
            EventHandler<WorkerEventArgs> progHandler =
                OnProgress;
            if (progHandler  != null)
            {
                progHandler(this, args);
            }
            if (args.Cancel)
                return;
        }
    }

    protected abstract void SomeWork();
}

The compiler creates a private backing field, along with public add and remove methods. The
generated code is similar to the following code. Notice the Synchronized attribute on the event
handler (see Item 13, Chapter 2).

private EventHandler<WorkerEventArgs> progressEvent;

public virtual event EventHandler<WorkerEventArgs> OnProgress



{
    [MethodImpl(MethodImplOptions.Synchronized)]
     add
     {
         progressEvent += value;
     }
     [MethodImpl(MethodImplOptions.Synchronized)]
     remove
     {
         progressEvent -= value;
     }
}

Because that private backing field is compiler generated, you can't write code to access it directly. You
can invoke it only through the publicly accessible event declaration. That restriction, obviously, also
applies to derived events. You can't manually write code that accesses the private backing field of the
base class. However, the compiler can access its own generated fields, so the compiler can create the
proper code to override the events in the correct manner. In effect, creating a derived event hides the
event declaration in the base class. This derived class does exactly the same work as in the original
example:

public class WorkerEngineDerived : WorkerEngineBase
{
    protected override void SomeWork()
    {
        // elided
    }
}

The addition of an override event breaks the code:

public class WorkerEngineDerived : WorkerEngineBase
{
    protected override void SomeWork()
    {
        Thread.Sleep(50);
    }
    // Broken. This hides the private event field in
    // the base class
    public override event
        EventHandler<WorkerEventArgs> OnProgress;
}

The declaration of the overridden event means that the hidden backing field in the base class is not
assigned when user code subscribes to the event. The user code subscribes to the derived event, and
there is no code in the derived class to raise the event.

Therefore, when the base class uses a field-like event, overriding that event definition hides the event
field defined in the base class. Code in the base class that raises the event doesn't do anything. All
subscribers have attached to the derived class. It doesn't matter whether the derived class uses a



field-like event definition or a property-like event definition. The derived class version hides the base
class event. No events raised in the base class code actually call a subscriber's code.

Derived classes work only if they use the add and remove accessors:

public class WorkerEngineDerived : WorkerEngineBase
{
    protected override void SomeWork()
    {
        Thread.Sleep(50);
    }
    public override event
        EventHandler<WorkerEventArgs> OnProgress
    {
        add
        {
            base.OnProgress += value;
        }
        remove
        {
            base.OnProgress -= value;
        }
    }
    // Important: Only the base class can raise the event.
    // Derived cannot raise the events directly.
    // If derived classes should raise events, the base
    // class must provide a protected method to
    // raise the events.
}

You can also make this idiom work if the base class declares a property-like event.

The base class needs to be modified to contain a protected event field, and the derived class property
can then modify the base class variable:

public abstract class WorkerEngineBase
{
    protected EventHandler<WorkerEventArgs> progressEvent;

    public virtual event
        EventHandler<WorkerEventArgs> OnProgress
    {
       [MethodImpl(MethodImplOptions.Synchronized)]
        add
        {
            progressEvent += value;
        }
        [MethodImpl(MethodImplOptions.Synchronized)]
        remove
        {
            progressEvent -= value;
        }



    }

    public void DoLotsOfStuff()
    {
        for (int i = 0; i < 100; i++)
        {
            SomeWork();
            WorkerEventArgs args = new WorkerEventArgs();
            args.Percent = i;
            EventHandler<WorkerEventArgs> progHandler =
                progressEvent;
            if (progHandler  != null)
            {
                progHandler(this, args);
            }
            if (args.Cancel)
                return;
        }
    }

    protected abstract void SomeWork();
}
public class WorkerEngineDerived : WorkerEngineBase
{
    protected override void SomeWork()
    {
        //elided
    }
    // Works. Access base class event field.
    public override event
        EventHandler<WorkerEventArgs> OnProgress
    {
       [MethodImpl(MethodImplOptions.Synchronized)]
        add
        {
            progressEvent += value;
        }
        [MethodImpl(MethodImplOptions.Synchronized)]
        remove
        {
            progressEvent -= value;
        }
    }
}

However, this code still constrains your derived class's implementations. The derived class cannot use
the field-like event syntax:

public class WorkerEngineDerived : WorkerEngineBase
{
    protected override void SomeWork()



    {
        //elided
    }
    // Broken. Private field hides the base class
    public override event
        EventHandler<WorkerEventArgs> OnProgress;
}

You are left with two options here to fix the problem. First, whenever you create a virtual event, never
use field-like syntax. You can't use field-like syntax in the base class nor in any derived classes. The
other solution is to create a virtual method that raises the event whenever you create a virtual event
definition. Any derived class must override the raise event method as well as override the virtual
event definition.

public abstract class WorkerEngineBase
{
    public virtual event
        EventHandler<WorkerEventArgs> OnProgress;

    protected virtual WorkerEventArgs
        RaiseEvent(WorkerEventArgs args)
    {
        EventHandler<WorkerEventArgs> progHandler =
            OnProgress;
        if (progHandler  != null)
        {
            progHandler(this, args);
        }
        return args;
    }

    public void DoLotsOfStuff()
    {
        for (int i = 0; i < 100; i++)
        {
            SomeWork();
            WorkerEventArgs args = new WorkerEventArgs();
            args.Percent = i;
            RaiseEvent(args);
            if (args.Cancel)
                return;
        }
    }

    protected abstract void SomeWork();
}

public class WorkerEngineDerived : WorkerEngineBase
{
    protected override void SomeWork()
    {



        Thread.Sleep(50);
    }
    public override event
        EventHandler<WorkerEventArgs> OnProgress;

    protected override WorkerEventArgs
        RaiseEvent(WorkerEventArgs args)
    {
        EventHandler<WorkerEventArgs> progHandler =
            OnProgress;
        if (progHandler != null)
        {
            progHandler(this, args);
        }
        return args;
    }
}

Of course, when you look at this code, you'll see that you really don't gain anything by declaring the
event as virtual. The existence of the virtual method to raise the event is all you need to customize
the event-raising behavior in the derived class. There really isn't anything you can do by overriding
the event itself that you can't do by overriding the method that raises the event: You can iterate all
the delegates by hand, and you can provide different semantics for handling how event args are
changed by each subscriber. You can even suppress events by not raising anything.

At first glance, events seem to provide a loose-coupling interface between your class and those other
pieces of code that are interested in communicating with your class. If you've created virtual events,
there is both compile-time and runtime coupling between your event sources and those classes that
subscribe to your events. The fixes you need to add to your code to make virtual events work usually
mean you don't need a virtual event anyway.
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Item 25. Use Exceptions to Report Method Contract Failures

Any method that cannot perform its stated actions should report that failure by throwing an exception.
Error codes can be ignored and can pollute the normal flow of execution with constant error checks.
But exceptions should not be used as a general flow-control mechanism. This means that you must
provide other public methods that enable your library's users to minimize the chances that exceptions
will be thrown under an application's normal operating conditions. Exceptions are costly at runtime,
and writing exception-proof code is difficult. If you don't provide APIs for developers to test conditions
without writing many try/catch blocks, you aren't providing a robust library.

Exceptions are the preferred failure-reporting mechanism because they have many advantages over
return codes as an error-reporting mechanism. Return codes are part of a method's signature, and
they often convey information other than error reporting. Whereas return codes are often the result of
a computation, exceptions have one purpose only: to report failures. Because exceptions are class
types and you can derive your own exception types, you can use exceptions to convey rich information
about the failure.

Error return codes must be processed by the method caller. In contrast, thrown exceptions propagate
up the call stack until a suitable catch clause is found. That gives developers the freedom to isolate
error handling from error generation by many levels in the call stack. No error information is lost in
this separation because of the richness of your exception classes.

Finally, exceptions cannot be ignored. If a program does not contain a suitable catch clause, then a
thrown exception terminates the application. You can't continue running after an unnoticed failure,
something that would cause data corruption.

Using exceptions to report contract failures does not mean that any method that cannot do what you
want must exit by throwing an exception. This doesn't mean that every failure is an exception.
File.Exists() returns true if a file exists, and false if it doesn't. File.Open() throws an exception
if the file does not exist. The difference is simple: File.Exists() satisfies its contract by telling
whether or not a file exists. The method succeeds even when the file does not exist. In contrast,
File.Open() succeeds only when the file exists, the current user can read the file, and the current
process can open the file for read access. In the first case, the method succeeds even when it tells you
an answer you don't desire. In the second case, the method fails, and your program can't continue. An
undesired answer from a method is different from a failure. The method succeeds; it gives you the
information you requested.

This is a distinction that has an important influence on how you name your methods. Methods that
perform actions should be named to clearly state the action that must be performed. In contrast,
methods that test particular actions should be named to indicate the test action. What's more, you
should provide test methods to minimize the need to use the exceptions as a flow-control mechanism.
Writing exception-safe code is difficult. Also, exceptions take more time than do normal method calls.
You should strive to create methods in your classes that enable users to test possible failure
conditions before performing work. This practice lets them program more defensively, and you can still
throw exceptions if developers choose not to test conditions before calling methods.



Whenever you write methods that may throw exceptions, you should also provide methods that test
for the conditions that would cause those exceptions. Internally, you can use those test methods to
check for any prerequisites before you continue, throwing the exception in those cases when it fails.

Suppose you have a worker class that fails when certain widgets aren't in place. If your API includes
only the worker methods but does not provide an alternative path through the code, you'll encourage
developers to write code like this:

// Don't promote this:
DoesWorkThatMightFail worker = new DoesWorkThatMightFail();
try
{
    worker.DoWork();
}
catch (WorkerException e)
{
    ReportErrorToUser(
        "Test Conditions Failed. Please check widgets");
}

Instead, you should add public methods that enable developers to explicitly check conditions before
doing the work:

public class DoesWorkThatMightFail
{
    public bool TryDoWork()
    {
        if (!TestConditions())
            return false;
        Work(); // may throw on failures, but unlikely
        return true;
    }

    public void DoWork()
    {
        Work(); // will throw on failures.
    }

    private bool TestConditions()
    {
        // body elided
        // Test conditions here
        return true;
    }

    private void Work()
    {
        // elided
        // Do the work here
    }
}



This pattern requires you to write four methods: two public methods, and two private methods. The
tryDoWork() method validates all input parameters and any internal object state necessary to
perform the work. Then it calls the Work() method to perform the task. DoWork() simply calls the
Work() method and lets any failures generate exceptions. This idiom is used in .NET because there are
performance implications involved in throwing exceptions, and developers may wish to avoid those
costs by testing conditions before allowing methods to fail.

Now, after adding the foregoing extra code, developers who wish to test conditions before performing
the work can do so in a much cleaner way:

if (!worker.TryDoWork())
{
    ReportErrorToUser
        ("Test Conditions Failed. Please check widgets");
}

In practice, testing the preconditions enables more checking, such as parameter checking and internal
state. You use this idiom most often when your worker class processes some form of untrusted input,
such as user input, file input, or parameters from unknown code. Those failures have application-
defined recovery scenarios and are rather common occurrences. You need to support them by using a
control mechanism that does not involve exceptions. Notice that I have not made any claims that
Work() won't throw any exceptions. Other, more unexpected failures may occur even after normal
parameter checking. Those failures would be reported using exceptions, even if the user calls
tryDoWork().

It is your responsibility to throw an exception whenever your method cannot complete its contract.
Contract failures are always reported by throwing exceptions. Because exceptions should not be used
as a general flow-control mechanism, you should also provide an alternative set of methods that
enables developers to test for possible invalid conditions before calling methods that might throw
exceptions.
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Item 26. Ensure That Properties Behave Like Data

Properties lead dual lives. From the outside, they appear to be passive data elements. However, on
the inside they are implemented as methods. This dual life can lead you to create properties that don't
live up to your users' expectations. Developers using your types will assume that accessing a property
behaves the same as accessing a data member. If you create properties that don't live up to those
assumptions, your users will misuse your types. Property access gives the impression that calling
those particular methods will have the same characteristics as accessing a data member directly.

When properties correctly model data members, they live up to client developers' expectations. First,
client developers will believe that subsequent calls to a get accessor without any intervening
statements will produce the same answer:

int someValue = someObject.ImportantProperty;
Debug.Assert(someValue == someObject.ImportantProperty);

Of course, multiple threads could violate this assumption, whether you're using properties or fields.
But otherwise, repeated calls to the same property should return the same value.

Finally, developers using your type will not expect property accessors to do much work. A property
getter should never be an expensive operation. Similarly, property set accessors will likely do some
validation, but it should not be expensive to call them.

Why do developers using your types have these expectations? It's because they view properties as
data. They access properties in tight loops. You've done the same thing with .NET collection classes.
Whenever you enumerate an array with a for loop, you retrieve the value of the array's Length
property repeatedly:

for (int index = 0; index < myArray.Length; index++)

The longer the array, the more times you access the Length property. If you had to count all elements
every time you accessed the array's Length property, every loop would have quadratic performance.
No one would use loops.

Living up to your client developers' expectations is not hard. First, use implicit properties. Implicit
properties are a thin wrapper around a compiler-generated backing store. Their characteristics
closely match those of data access. In fact, because the property accessors are simple
implementations, they are often inlined. Whenever you can implement properties in your design using
implicit properties, you will live up to client expectations.

However, if your properties contain behavior that isn't implemented in implicit properties, that's not
always a concern. You'll likely add validation in your property setters, and that will satisfy users'
expectations. Earlier I showed you this implementation of a property setter for a LastName:



public string LastName
{
    // getter elided
    set
    {
        if (string.IsNullOrEmpty(value))
            throw new ArgumentException(
            "last name can't be null or blank");
        lastName = value;
    }
}

That validation code doesn't break any of the fundamental assumptions about properties. It executes
quickly, and it protects the validity of the object.

Also, property get accessors often perform some computation before returning the value. Suppose
you have a Point class that includes a property for its distance from the origin:

public class Point
{
    public int X
    {
        get;
        set;
    }
    public int Y
    {
        get;
        set;
    }
    public double Distance
    {
        get { return Math.Sqrt(X * X + Y * Y); }
    }
}

Computing the distance is quick, and your users won't see performance problems if you have
implemented Distance in this way. However, if Distance did turn out to be a bottleneck, you could
cache the distance the first time you compute it. Of course, this also means that you need to
invalidate the cached value whenever one of the component values changes. (Or you could make
Point an immutable type.)

public class Point
{
    private int xValue;
    public int X
    {
        get { return xValue; }
        set
        {



            xValue = value;
            distance = default(double?);
        }
    }
    private int yValue;
    public int Y
    {
        get { return yValue; }
        set
        {
            yValue = value;
            distance = default(double?);
        }
    }
    private double? distance;
    public double Distance
    {
        get
        {
            if (!distance.HasValue)
                distance = Math.Sqrt(X * X + Y * Y);
            return distance.Value;
        }
    }
}

If computing the value returned by a property getter is much more expensive, you should rethink your
public interface.

// Bad Property Design. Lengthy operation required for getter
public class MyType
{
    // lots elided
    public string ObjectName
    {
        get { return RetrieveNameFromRemoteDatabase(); }
    }
}

Users don't expect that accessing a property will require round trips to remote storage. You need to
change the public API to meet users' expectations. Every type is different, so your implementation
must depend on the usage pattern for the type. You may find that caching the value is the right
answer:

// One possible path: evaluate once and cache the answer
public class MyType
{
    // lots elided
    private string objectName;
    public string ObjectName



    {
        get
        {
            if (objectName == null)
                objectName = RetrieveNameFromRemoteDatabase();
            return objectName;
        }
    }
}

This technique works well when the ObjectName property is needed only occasionally. You save the
work of retrieving the value when it's not needed. In return, the first caller to ask for the property
pays an extra penalty. If this type almost always uses the ObjectName property and it's valid to cache
the name, you could load the value in the constructor and use the cached value as the property return
value. The preceding code also assumes that ObjectName can be safely cached. If other portions of the
program or other processes in the system change the remote storage for the object name, then this
design fails.

The operations of pulling data from a remote database and later saving changes back to the remote
database are common enough, and certainly valid. You can live up to your users' expectations by
performing those operations in methods, giving those methods names that match the operations.
Here's a different version of MyType that lives up to expectations:

//Better solution: Use methods to manage cached values
public class MyType
{
    public void LoadFromDatabase()
    {
        objectName = RetrieveNameFromRemoteDatabase();
        // other fields elided.
    }
    public void SaveToDatabase()
    {
        SaveNameToRemoteDatabase(objectName);
        // other fields elided.
    }
    // lots elided
    private string objectName;
    public string ObjectName
    {
        get { return objectName; }
        set { objectName = value; }
    }
}

Of course, once you've made that change, you can see that ObjectName could be replaced with an
implicit property:

//Replace properties with implicit properties
public class MyType



{
    public void LoadFromDatabase()
    {
        ObjectName = RetrieveNameFromRemoteDatabase();
        // other fields elided.
    }

    public void SaveToDatabase()
    {
        SaveNameToRemoteDatabase(ObjectName);
        // other fields elided.
    }

    // lots elided

    public string ObjectName
    {
        get;
        set;
    }
}

It's not only get accessors that can break client developer assumptions. You can create code that
breaks your users' assumptions in the property setter as well. Suppose that ObjectName is a read-
write property. If the setter wrote the value to the remote database it would break your users'
assumptions:

// Poor property design: setter is too expensive
public class MyType
{
    // lots elided
    private string objectName;
    public string ObjectName
    {
        get
        {
            if (objectName  == null)
                objectName = RetrieveNameFromRemoteDatabase();
            return objectName;
        }
        set
        {
            objectName = value;
            SaveNameToRemoteDatabase(objectName);
        }
    }
}

This extra work in the setter breaks several assumptions made by your users. Client code developers
won't expect that a setter is making a remote call to a database. It will take longer than they expect.



It also has the chance of failing in many ways they don't expect.

Properties set different expectations for client developers than do methods. Client developers expect
properties to execute quickly and to provide a view into object state. They expect properties to be like
data fields, both in behavior and in their performance characteristics. When you create properties that
violate those assumptions, you should modify the public interface to create methods that represent
the operations that don't live up to users' expectations for properties. That practice lets you return the
properties to their purpose of providing a window into object state.
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Item 27. Distinguish Between Inheritance and Composition

One of the most powerful constructs available in any object-oriented language is inheritance. Maybe
that's why developers seem to reach for inheritance to the exclusion of any other programming idiom.
That's unfortunate, because inheritance is not always the best representation of your design.
Inheritance creates the tightest coupling between two classes. The derived class contains all the
members of the base class. And because the derived class is an instance of the base class, an object
of the derived class type can be substituted for an object of the base class at any time.

That's a strong statement about a strong relationship between two types. If that's not true for your
design, you should use another idiom, such as composition. Composition allows the outer object to
expose selected methods from the inner object, without such tight coupling of the public and
protected interfaces.

Both class inheritance and composition provide ways to reuse implementation from another class.
Inheritance is often the first choice of developers. When you derive your class from another type, your
class automatically includes all the public members of the base class.

public class MyDerived : MyBase
{
    // Every public method of MyBase is part of the public API
    // for MyDerived.
}

If you use composition, you must reimplement every method in the base class's public interface. You
can delegate the implementation to the base class explicitly:

public class MyOuterClass
{
    private MyInnerClass implementation =
        new MyInnerClass();

    public void SampleImplMethod()
    {
        implementation.SampleImplMethod();
    }
    // repeat for every public method in MyInnerClass
}

Explicitly delegating method implementation to the inner class gives you control over exposing
methods defined in the inner class. Inheritance always exposes every public member in the base class.
In contrast, composition allows you to selectively choose which, if any, of the public methods available
in the inner class are exposed as part of the outer class's interface. They aren't part of your type's



public interface unless you explicitly add them.

Your class's interface is also insulated against future updates of the inner class. Using inheritance,
upgrades to base types are automatically part of your class's interface. Using composition, you must
explicitly modify your outer class in order to expose any new methods in the inner class. This
constraint may be important if the inner class was created by a third party. Your user community can
get newer versions of those components without getting an upgrade of your system.

Of course, you've probably noticed that the version using composition has lost polymorphism. You
can't substitute MyOuterClass when MyInnerClass is expected. But if you apply one more bit of
indirection, you can get closer to that behavior. You need to create an interface that supports the
interface contract you need. Then you can make your outer class implement that interface:

internal interface IContract
{
    void SampleImplMethod();
    // other methods elided
}

internal class MyInnerClass : IContract
{
    public void SampleImplMethod()
    {
        // elided
    }
}

public class MyOuterClass : IContract
{
    private MyInnerClass impl = new MyInnerClass();
    // remainder elided

    public void SampleImplMethod()
    {
        impl.SampleImplMethod();
    }
}

Callers now work with MyOuterClass through its IContract interface. This separation between
interfaces and classes provides granularity and loose coupling in your public interfaces. You can define
the interface to contain the minimum members needed by callers. The implementation class, and the
outer classes, can have more methods available as public members, but callers depend only on the
interface contract. It's not the same as inheritance: MyOuterClass cannot be used by a method that
declares parameters of type MyInnerClass.

Composition makes it easier to create outer classes that aggregate more than one inner type. You can
contain multiple implementation classes that represent different pieces of functionality that make up
this class:

internal class InnerClassOne
{
    internal void SampleImplMethodOne();



}

internal class InnerClassTwo
{
    internal void SampleImplMethodTwo();
}

public class MyOuterClass
{
    private InnerClassOne implOne = new InnerClassOne();
    private InnerClassTwo implTwo = new InnerClassTwo();

    public void SampleImplMethodOne()
    {
        implOne.SampleImplMethodOne();
    }
    public void SampleImplMethodTwo()
    {
        implTwo.SampleImplMethodTwo();
    }
}

Of course, it would make sense to extract interfaces from those implementations so that the outer
class can be used wherever code expects a type that implements the particular contract:

public interface IContractOne
{
    void SampleImplMethodOne();
    // other methods elided
}

public interface IContractTwo
{
    void SampleImplMethodTwo();
    // other methods elided.
}

public class MyOuterClass : IContractOne, IContractTwo
{
    // remainder elided
}

Finally, containment lets you change the inner class at runtime. You can examine various runtime
conditions and create various inner classes. That requires you to have defined interfaces that your
inner classes implement. It allows you to treat different inner classes polymorphically:

public interface IContract
{
    void SomeMethod();
}



internal class InnerTypeOne : IContract
{
    public void SomeMethod()
    {
        // elided
    }
}

internal class InnerTypeTwo : IContract
{
    public void SomeMethod()
    {
        // elided
    }
}
public class MyOuterClass : IContract
{
    private readonly IContract impl;
    public MyOuterClass(bool flag)
    {
        if (flag)
            impl = new InnerTypeOne();
        else
            impl = new InnerTypeTwo();
    }

    public void SomeMethod()
    {
        impl.SomeMethod();
    }
}

This concept can be as complex as needed to satisfy your requirements. You can switch between more
than two inner classes. You can also modify the behavior by creating new inner objects if the situation
changes over time. It's not much extra work, because you reuse the same interface contract that
you've created for your external clients. Now you're overloading that same concept internally to
perform your own method call dispatch between multiple inner classes.

The examples I've described so far look at the differences between these two design strategies at one
point in time. Over time, composition gains advantages because of its reduced interface coupling in
your derived class. That's because your derived class automatically includes every public member of
the base class. If the base class developer adds any new methods, your type automatically includes
those types. Whether or not those methods belong in your type, you've got them. Using composition,
you must decide for yourself whether or not to include those methods. Although you must write code
to export these new methods, they don't automatically leak into your public interface.

Before I conclude, don't misinterpret this advice as a complete recommendation against inheritance.
When the object model correctly models an Is A relationship, inheritance provides more reuse with
less work. Furthermore, when it models everything correctly, it's clearer to developers who later
examine your code. The .NET BCL uses inheritance throughout the Windows Forms library and the
Web Forms library. Inheritance models work very well for UI controls. Throughout other parts of the



.Net BCL, the inheritance libraries are not nearly as deep. In other areas, the developers choose
composition more often.

You should expand your set of design choices and use both composition and inheritance. When you
create types that reuse implementation from other types, you should use composition. If your types
model an Is A relationship in every way, inheritance is the better choice. Composition requires more
work to expose the implementation from the inner objects, but the payoff is more control over the
coupling between your type and the type whose implementation you wish to reuse. Using inheritance
means that your derived type is a special case of the base class in every way.
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4. C# 3.0 Language Enhancements
The C# 3.0 release has added several new and interesting features to the C# language. Many of these
features were added to support Language-Integrated Query (LINQ). However, the C# language
features can be used for many things other than LINQ queries. In this chapter, I discuss the new
language features, explain how they provide new techniques you can use to solve your current
development problems, and describe some practices to avoid when you use these new features.
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Item 28. Augment Minimal Interface Contracts with Extension
Methods

Extension methods provide a mechanism for C# developers to define behavior in interfaces. You can
define an interface with minimal capabilities and then create a set of extension methods defined on
that interface to extend its capabilities. In particular, you can add behavior instead of just defining an
API.

The System.Linq.Enumerable class provides a great example of this technique. System.Enumerable
contains more than 50 extension methods defined on IEnumerable<T>. Those methods range from
Where to OrderBy to ThenBy to GroupInto. Defining these as extension methods to IEnumerable<T>
provides great advantages. First, none of these capabilities requires modifications to any class that
already implements IEnumerable<T>. No new responsibilities have been added for classes that
implement IEnumerable<T>. Implementers still need define only GetEnumerator(), and
IEnumerator<T> still need define only Current, MoveNext(), and Reset(). Yet by creating extension
methods, the C# compiler ensures that all collections now support query operations.

You can follow the same pattern yourself. IComparable<T> follows a pattern from the days of C. If
left < right, then left.CompareTo(right) returns a value less than 0. If left > right, then
left.CompareTo(right) returns a value greater than 0. When left and right are equivalent,
left.CompareTo(right) returns 0. This pattern has been used so often that many of us have it
memorized, but that doesn't make it very approachable. It would be much more readable to write
something like left.LessThan(right) or left.GreaterThanEqual(right). That's easy to do with
extension methods. Here's an implementation:

public static class Comparable
{
   public static bool LessThan<T>(this T left, T right)
        where T : IComparable<T>
    {
        return left.CompareTo(right) < 0;
    }

    public static bool GreaterThan<T>(this T left, T right)
        where T : IComparable<T>
    {
        return left.CompareTo(right) < 0;
    }

    public static bool LessThanEqual<T>(this T left, T right)
        where T : IComparable<T>
    {
        return left.CompareTo(right) <= 0;
    }



    public static bool GreaterThanEqual<T>(this T left, T right)
        where T : IComparable<T>
    {
        return left.CompareTo(right) <= 0;
    }
}

Every class that implements IComparable<T> now appears to include these additional methods if the
proper using declaration is in scope. Implementers still need only create one method (CompareTo),
and the client code can use other, easier-to-read signatures.

You should also follow the same pattern with interfaces you've created in your applications. Rather
than define rich interfaces, use the interface to define the minimal functionality necessary to satisfy
the requirements. Any convenience methods that can be built on that minimal interface should be
created using extension methods. Compared with richer interface contracts, using extension methods
enables implementers to write fewer methods and still provide a richer interface to client code.

By using interfaces and extension methods in this way, you can provide a default implementation for
methods that are part of an interface. This practice provides a way for classes to reuse
implementations based on an interface definition. Whenever you define an interface, consider methods
that could be implemented using existing interface members. Those methods are candidates to be
defined as extension methods that can be reused by all interface implementers.

Be aware that you could cause strange behavior by defining extension methods on an interface when
some classes may want to define their own implementation of that extension method. Although the
rules of method resolution mean that the class method will be called in favor of an extension method,
that is a compile-time resolution. Any code that is typed to use the interface will call the extension
method rather than the method defined on its type.

Let's look at a small, rather contrived example. Here's a simple interface that keeps a marker on an
object:

public interface IFoo
{
    int Marker
    {
        get;
        set;
    }
}

You could write an extension method to increment the marker:

public static class FooExtensions
{
    public static void NextMarker(this IFoo thing)
    {
        thing.Marker += 1;
    }
}



Throughout your code, you use this extension method:

private static void UpdateMarker(IFoo item)
{
    item.NextMarker();
}

public class MyType : IFoo
{
    #region IFoo Members
    public int Marker
    {
        get;
        set;
    }
    #endregion

    // Elided
}

// elsewhere
MyType t = new MyType();
UpdateMarker(t); // t.Marker == 1

Time passes, and one of your developers creates a new version of a type and introduces that type's
own (semantically different) version of NextMarker. It's important to note that MyType has a different
implementation of NextMarker:

// MyType version 2
public class MyType : IFoo
{
    public int Marker
    {
        get;
        set;
    }

    public void NextMarker()
    {
        Marker += 5;
    }
}

That introduces a breaking change in the application. This code snippet sets the value of Marker to 5:

MyType t = new MyType();
t.NextMarker(); // t.Marker == 5

You can't avoid this problem entirely, but you can minimize its effects. This sample was contrived to



exhibit bad behavior. In production code, the behavior of the extension method should be semantically
the same as that of the class method having the same signature. If you can create a better, more
efficient algorithm in a class, you should do that. However, you must ensure that the behavior is the
same. If you do that, then this behavior won't affect program correctness.

When you find that your design calls for making an interface definition that many classes will be forced
to implement, consider creating the smallest possible set of members defined in the interface. Then
provide an implementation of convenience methods in the form of extension methods. In that way,
class designers who implement your interface will have the least amount of work to do, and
developers using your interface can get the greatest possible benefit.
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Item 29. Enhance Constructed Types with Extension Methods

You'll probably use a number of constructed generic types in your application. You'll create specific
collection types: List<int>, Dictionary<EmployeeID, Employee>, and many other collections. The
purpose of creating these collections is that your application has a specific need for a collection of a
certain type and you want to have specific behavior defined for those specific constructed types. To
implement that functionality in a low-impact way, you can create a set of extension methods on
specific constructed types.

You can see this pattern in the System.Linq.Enumerable class. Item 28 (in this chapter) discusses the
extension pattern used by Enumerable<T> to implement many common methods on sequences as
extension methods on IEnumerable<T>. In addition, Enumerable contains a number of methods that
are implemented specifically for particular constructed types that implement IEnumerable<T>. For
example, several numeric methods are implemented on numeric sequences (IEnumerable<int>,
IEnumerable<double>, IEnumerable<long>, and IEnumerable<float>). Here are a few of the
extension methods implemented specifically for IEnumerable<int>:

public class Enumerable
{
    public static int Average(this IEnumerable<int>
        sequence);
    public static int Max(this IEnumerable<int> sequence);
    public static int Min(this IEnumerable<int> sequence);
    public static int Sum(this IEnumerable<int> sequence);

    // other methods elided
}

Once you recognize the pattern, you can see many ways you could implement the same kind of
extensions for the constructed types in your own domain. If you were writing an e-commerce
application and you wanted to send e-mail coupons to a set of customers, the method signature might
look something like this:

public static void SendEmailCoupons(this
    IEnumerable<Customer>
    customers, Coupon specialOffer);

Similarly, you could find all customers with no orders in the past month:

public static IEnumerable<Customer> LostProspects(
    this IEnumerable<Customer> targetList);



If you didn't have extension methods, you could achieve a similar effect by deriving a new type from
the constructed generic type you used. For example, the Customer methods just shown could be
implemented like this:

public class CustomerList : List<Customer>
{
    public void SendEmailCoupons(Coupon specialOffer);
    public static IEnumerable<Customer> LostProspects();

}

It works, but it is actually much more limiting than extension methods on IEnumerable<Customer> to
the users of this list of customers. The difference in the method signatures provides part of the
reason. The extension methods use IEnumerable<Customer> as the parameter, but the methods
added to the derived class are based on List<Customer>. They mandate a particular storage model.
For that reason, they can't be composed as a set of iterator methods (see Item 17, Chapter 3). You've
placed unnecessary design constraints on the users of these methods. That's a misuse of inheritance.

Another reason to prefer the extension methods as a way to implement this functionality has to do
with the way queries are composed. The LostProspects() method probably would be implemented
something like this:

public static IEnumerable<Customer> LostProspects(
    IEnumerable<Customer> targetList)
{
    IEnumerable<Customer> answer =
        from c in targetList
        where DateTime.Now - c.LastOrderDate >
            TimeSpan.FromDays(30)
        select c;
    return answer;
}

Item 34 (later in this chapter) discusses why lambda expressions are preferred over methods in
queries. Implementing these features as extension methods means that they provide a reusable query
expressed as a lambda expression. You can reuse the entire query rather than try to reuse the
predicate of the where clause.

If you examine the object model for any application or library you are writing, you'll likely find many
constructed types used for the storage model. You should look at these constructed types and decide
what methods logically would be added to each of them. It's best to create the implementation for
those methods as extension methods by using either the constructed type or a constructed interface
implemented by the type. You'll turn a simple generic instantiation into a class having all the behavior
you need. Furthermore, you'll create that implementation in a manner that decouples the storage
model from the implementation to the greatest extent possible.
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Item 30. Prefer Implicitly Typed Local Variables

Implicitly typed local variables were added to the C# language to support anonymous types. A second
reason for using implicitly typed locals is that some queries create results that are an IQueryable<T>,
whereas others return IEnumerable<T>. If you coerce an IQueryable<T> collection into an
IEnumerable<T> collection, you miss out on any enhancements provided by the IQueryProvider (see
Item 42, Chapter 5). Using var also improves a developer's comprehension of the code.
Dictionary<int, Queue<string>> doesn't add much comprehension, but the variable name
JobsQueuedByRegion does.

I prefer var and use it to declare many local variables, because I find that it focuses the developer's
attention on the important part (the semantic meaning) and not on the particulars of a variable's type.
The compiler still warns me if I have created any construct that doesn't type-check. Variable type
safety is not the same as developers typing more keystrokes. In many cases, the differences between
IQueryable and IEnumerable do not add any information to you as a developer. However, if you try
to tell the compiler which type it is, you'll find that you can change the behavior by getting it wrong
(see Item 42, Chapter 5). There are times when it's better to use implicitly typed variables, because
the compiler will pick a better type than you will. At other times, however, overusing var only
decreases the readability of your code. Even worse, using implicitly typed variables can lead to subtle
conversion bugs.

Let's begin with the problems of readability. Many times, the type of a local variable is clear from its
initialization statement:

var foo = new MyType();

Any competent developer can tell the type of foo from the declaration. Similarly, most factory
methods are clear:

var foo = AnotherType.CreateObject();

However, in some cases, the return type might not always be clear from the method name:

var foo = someObject.DoSomeWork(anotherParameter);

Of course, that's a contrived example, and I hope that most of the methods in your codebase have
names that give a better indication of what's returned. Even in this contrived example, a better
variable name would give most developers a better indication of the meaning:

var HighestSellingProduct =
    someObject.DoSomeWork(anotherParameter);



Even without any type information, most developers would correctly assume the type of Product.

Depending on the actual signature of DoSomeWork, of course, HighestSellingProduct might not
actually be a Product. It might be any class derived from Product or even any interface implemented
by Product. The compiler believes that HighestSellingProduct is whatever type it has been told by
the method signature for DoSomeWork. It doesn't matter that the runtime type is actually Product.
When the compile-time type is different from the runtime type, the compiler always wins. You don't
get a say unless you use some kind of cast.

So we've started to enter the realm where var introduces questions of readability. Introducing var for
a variable returned from some method is one of the ways that the use of var can confuse developers
reading your code. A human reading the code will assume one type. At runtime, the human may be
correct. But the compiler does not have the luxury of examining the runtime type of the object. The
compiler examines the compile-time type and infers the type of the local variable based on those
declarations. What's changed is that now the compiler determines the declared type of the variable.
When you declare the type yourself, other developers can see the declared type. In contrast, when
you use var, the compiler determines the type, but developers may not see the type written. Because
of the way you've written your code, the human reader and the compiler come to different conclusions
about the types involved. That will lead to maintenance errors and avoidable bugs.

Let's continue looking at problems caused by implicitly typed locals when you declare variables of
built-in numeric types. There are numerous conversions between the built-in numeric types: Widening
conversions, such as from float to double, are always safe. There are also narrowing conversions,
such as from long to int, that involve a loss of precision. By explicitly declaring the types of all
numeric variables, you retain some control over the types used, and you help the compiler warn you
about possible dangerous conversions.

Examine this small bit of code:

static void Main(string[] args)
{
    var f = GetMagicNumber();
    var total = 100 * f / 6;
    Console.WriteLine("Type: {0}, Value: {1}",
        total.GetType().Name, total);
}

What is total? It depends on the type returned from GetMagicNumber. Here are five outputs, all from
different declarations of GetMagicNumber:

Declared Type: Double, Value: 166.666666666667
Declared Type: Single, Value: 166.6667
Declared Type: Decimal, Value: 166.66666666666666666666666667
Declared Type: Int32, Value: 166
Declared Type: Int64, Value: 166

The differences in the type are caused by the way the compiler infers the type of f, which modifies the
inferred type of total. The compiler gives f the same type that it gives the declared return type of
GetMagicNumber(). Because the constants used in the calculation of total are literals, the compiler
converts those literals to the type of f, and the calculation is done using the rules appropriate for that
type. The different rules of the different types create the different answers.



This isn't a problem with the language. The C# compiler is doing exactly what you requested. By using
local type inference, you told the compiler that it knew more about your types than you did. It made
the best decision it could based on the right side of the assignment. When you work with built-in
numeric types, you need to be very careful. That's because many implicit conversions are available on
numeric types. Furthermore, because the various numeric types have different degrees of precision,
it's not only readability that suffers but also accuracy.

Of course, it's not the use of var that causes the problem. The cause is that it's not clear from reading
the code which type is returned by GetMagicNumber() and which built-in conversions may be in play.
The same problems occur when the variable declaration f is removed from the method:

static void Main(string[] args)
{
    var total = 100 * GetMagicNumber() / 6;
    Console.WriteLine("Type: {0}, Value: {1}",
        total.GetType().Name, total);
}

The problem is that developers can't see the actual type of the return value from GetMagicNumber()
and can't easily determine which numeric conversions have been performed.

Contrast that with the results of the same routine if you explicitly declare the expected return type of
GetMagicNumber(). Now the compiler tells you whether your assumptions are wrong. If there is an
implicit conversion from the return type of GetMagicNumber to the declared type of f, it just works.
That would be the case if f were declared as a decimal and GetMagicNumber() returned an int.
However, if there is not an implicit conversion, you'll receive a compiler error. You must change your
assumptions. That will give you the chance to look at the code and understand the conversions that
should be in place.

That one example shows the scenarios when local variable type inference can make it harder for
developers who are maintaining code. The compiler works in the same way, and it is the tool that
performs the type checking. However, developers can't easily see which rules and conversions apply.
In these situations, local type inference can hamper the view of the types involved.

Local type inference doesn't have any real effect on the static typing used in C#. Why is that? First,
you need to understand that local type inference is not the same thing as dynamic typing. Variables
declared with var are not dynamic but instead are implicitly declared with the type of the right side of
the assignment. You are not telling the compiler which type you're creating; the compiler declares the
type for you. When the type you want is not the same as the type the compiler would pick, you
introduce problems in your code.

Sometimes, though, the compiler may be smarter than you are. Examine this simple routine, which
retrieves customer names starting with A from a database.

public IEnumerable<string> FindCustomersStartingWith
    (string start)
{
    IEnumerable<string> q =
        from c in db.Customers
        select c.ContactName;



    var q2 = q.Where(s => s.StartsWith(start));
    return q2;
}

This code has a serious performance problem. The original query, which defines the entire list of
customer contact names, has been declared by the developer as IEnumerable<string>. Because the
query is running against a database, it's actually in IQueryable<string>. However, by strongly
declaring the return value, you've lost that information. IQueryable<T> derives from IEnumerable<T>,
so the compiler does not even warn you about this assignment. Yet when the second portion of the
query is compiled, Enumerable.Where will be used, rather than Queryable.Where. In this case, the
compiler would have correctly determined a better type (IQueryable<string>) than the one you
forced on it (IEnumerable<string>). If you were wrong in such a way that there was no implicit
conversion from IQueryable<string>, then the compiler would give you an error. However, because
IQueryable<T> derives from IEnumerable<T>, the compiler allows the conversion, letting you hurt
yourself.

The second query does not call Queryable.Where; instead, it calls Enumerable.Where. That has a
large negative implication for performance. In Item 38 (Chapter 5), you will learn that IQueryable
composes multiple query expression trees into a single operation that can be executed at once, often
at the remote server where the data is located. In this instance, the second portion of the query (the
where clause) sees the source as an IEnumerable<string>. That change is significant, because only
the first part of the query is built on the remote machine. The entire list of customer names will be
returned from the source. The second statement (the where clause) locally examines the entire list of
customer contact names and returns only those matching the search string.

Contrast that with this version:

public IEnumerable<string> FindCustomersStartingWith
    (string start)
{
    var q =
        from c in db.Customers
        select c.ContactName;

    var q2 = q.Where(s => s.StartsWith(start));
    return q2;
}

Now q is an IQueryable<string>. The compiler infers the return type because of the source of the
query. The second statement composes the query, adding the Where clause to the query, and holds a
new, more complete expression tree. The actual data is retrieved only when the caller examines the
query. The expression to filter the query gets passed to the data source, and the result sequence
contains only those contact names that match the filter. Any network traffic is reduced, and the query
is more efficient.

This miraculous change is that q is now declared (by the compiler) as IQueryable<string> instead of
IEnumerable<string>. Extension methods cannot be virtual, and the dispatch does not depend on the
runtime type of the object. Instead, extension methods are static methods, and the compiler decides
which method is the best match based on the compile-time type and not the runtime type. There's no
late binding mechanism going on here. Even if the runtime type contains instance members that would
match the call, they're not visible to the compiler and therefore are not candidates.



It's important to note that any extension method can be written to examine the runtime type of its
parameters. Extension methods could create a different implementation based on the runtime type. In
fact, Enumerable.Reverse() does just that to get increased performance when the parameter
implements either IList<T> or ICollection<T> (see Item 3, Chapter 1).

You, the developer, must decide whether letting the compiler silently declare the compile-time type of
the variable harms readability. If not being able to immediately see the exact type of a local variable
creates ambiguity when someone reads the code, it's best to declare that type explicitly. However, in
many cases, the code clearly conveys the semantic information about the variable. In the examples
you've seen, you know that q is a sequence of contact names (which happen to be strings). The
semantic information is clear from the initialization statement. That is often the case when a variable
is initialized from a query expression. Whenever the semantic information of the variable is clear, you
can use var. Going back to my first point, you should avoid var when the initialization expression
does not clearly show developers the semantic information about the variable but an explicit type
declaration does convey that information.

In short, it's best to declare local variables using var unless developers (including you, in the future)
need to see the declared type to understand the code. The title of this item says "prefer," not
"always." I recommend explicitly declaring all numeric types (int, float, double, and others) rather
than use a var declaration. In addition, use the type parameter in generics (for example T, tresult)
rather than var. For everything else, just use var. Merely typing more keystrokes—to explicitly
declare the type—doesn't promote type safety or improve readability. You may also introduce
inefficiencies that the compiler will avoid if you pick the wrong declared type.
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Item 31. Limit Type Scope by Using Anonymous Types

You should use anonymous types whenever you need simple data containers that store interim
results. Anonymous types save you quite a bit of work and help you gain features because the
compiler can generate some code you can't. Furthermore, these types don't cause the code bloat
many people think they do. When you combine all these features, anonymous types should be in your
arsenal more often than they likely are. You should create concrete types only when you need to add
behavior or need to assign a name to a type so that you can use it as a parameter to a method or as a
member of a class.

Let's start with saving work. Suppose you write this assignment:

var aPoint = new { X = 5, Y = 67 };

You've told the compiler several things. You've indicated that you need a new internal sealed class.
You've told the compiler that this new type is an immutable type and that it has two public read-only
properties surrounding two backing fields (X, Y).

You've told the compiler to write something like this for you:

internal sealed class AnonymousMumbleMumble
{
    private readonly int x;

    public int X
    {
        get { return X; }
    }

    private readonly int y;
    public int Y
    {
        get { return y; }
    }

    public AnonymousMumbleMumble(int xParm, int yParm)
    {
        x = xParm;
        y = yParm;
    }
}

The complier defines the actual type by deriving from a generic Tuple (see Item 9, Chapter 1), giving



the properties the names you specify.

Instead of writing this by hand, I'd rather let the compiler write it for me. There are a great many
advantages. Most simply, the compiler is faster. I can't type the full class definition nearly as fast as I
can type the new expression. Second, the compiler generates the same definition for these repetitive
tasks. As developers, we occasionally miss something. This is pretty simple code, so the chances of
error aren't very great, but they're not zero. The compiler does not make those human mistakes.
Third, letting the compiler generate the code minimizes the amount of code to maintain. No other
developer needs to read this code, figure out why you wrote it, figure out what it does, and find where
it is used. Because the compiler generates the code, there is less to figure out and less to look at.

The obvious drawback of using anonymous types is that you don't know the name of the type.
Because you don't name the type, you can't use an anonymous type as a parameter to a method or as
its return value. Still, there are ways to work with single objects or sequences of anonymous types.
You can write methods or expressions that work with anonymous types inside a method. You must
define them as lambda expressions or anonymous delegates so that you can define them inside the
body of the method where the anonymous type was created. If you mix in generic methods that
contain function parameters, you can create methods that work with anonymous methods. For
example, you can double both the X and Y values for a Point by creating a transform method:

static T Transform<T>(T element, Func<T, T> transformFunc)
{
    return transformFunc(element);
}

You can pass an anonymous type to the TRansform method:

var aPoint = new { X = 5, Y = 67 };
var anotherPoint = Transform(aPoint, (p) =>
    new { X = p.X * 2, Y = p.Y * 2});

Of course, complicated algorithms will require complicated lambda expressions, and probably multiple
calls to various generic methods. But it's only more of the simple example I've shown. That is what
makes anonymous types great vehicles for storing interim results. The scope of an anonymous type is
limited to the method where it is defined. The anonymous type can store results from the first phase
of an algorithm and pass those interim results into the second phase. Using generic methods and
lambdas means that you can define any necessary transformations on those anonymous types within
the scope of the method where the anonymous type is defined.

What's more, because the interim results are stored in anonymous types, those types do not pollute
the application's namespace. You can have the compiler create these simple types and shield
developers from needing to understand them to understand the application. Anonymous types are
scoped inside the method where they are declared. Using an anonymous type clearly shows other
developers that a particular type is scoped inside that single method.

You may have noticed that I use some weasel words earlier when I describe how the compiler defines
an anonymous type. The compiler generates "something like" what I wrote when you tell it you need
an anonymous type. The compiler adds some features that you can't write yourself. Anonymous types
are immutable types that support object initializer syntax. If you create your own immutable type, you
must hand-code your constructors so that client code can initialize every field or property in that type.
Hand-coded immutable types would not support object initializer syntax, because there are no



accessible property setters. Still, you can and must use object initializer syntax when you construct an
instance of an anonymous type. The compiler creates a public constructor that sets each of the
properties, and it substitutes a constructor call for the property setters at the call point.

For example, suppose you have this call:

var aPoint = new { X = 5, Y = 67 };

It is translated by the compiler into this:

AnonymousMumbleMumble aPoint = new AnonymousMumbleMumble
    (5, 67);

The only way you can create an immutable type that supports object initializer syntax is to use an
anonymous type. Hand-coded types do not get the same compiler magic.

Finally, I've said that there is less runtime cost for anonymous types than you might have thought.
You might naively think that each time you new up any anonymous type, the compiler blindly defines
a new anonymous type. Well, the compiler is a little smarter than that. Whenever you create the same
anonymous type, the compiler reuses the same anonymous type as before.

I need to be a little more precise about what the compiler views as the same anonymous types if
they're used in different locations. First, obviously that happens only if the multiple copies of the
anonymous type are declared in the same assembly.

Second, for two anonymous types to be considered the same, the property names and types must
match, and the properties must be in the same order. The following two declarations produce two
different anonymous types:

var aPoint = new { X = 5, Y = 67 };
var anotherPoint = new { Y = 12, X = 16 };

By putting the properties in different orders, you have created two different anonymous types. You
would get the same anonymous type only by ensuring that all properties are declared in the same
order every time you declare an object that is meant to represent the same concept.

Before we leave anonymous types, a special case deserves mention. Because anonymous types follow
value semantics for equality, they can be used as composite keys. For example, suppose you need to
group customers by salesperson and ZIP code. You could run this query:

var query = from c in customers
            group c by new { c.SalesRepresentative,
                c.ZipCode };

This query produces a dictionary in which the keys are a pair of SalesRepresentative and ZipCode.
The values are lists of Customers.

Anonymous types aren't as exotic as they seem, and they don't harm readability when they are used
correctly. If you have interim results that you need to keep track of and if they're modeled well with
an immutable type, then you should use anonymous types. When you need to define behaviors on



those types, that's when you need to create concrete types to represent those concepts. In the
meantime, the compiler can generate all the boilerplate code you need. You clearly communicate to
other developers that the type is used only within the context of that method and those generic
methods it calls.

               



[ Team Unknown ]

              

C# Programming Bill Wagner Addison Wesley Professional More Effective C#: 50 Specific Ways to Improve Your
C#

Item 32. Create Composable APIs for External Components

You can use extension methods to increase the composability of method signatures that originate in
other libraries. Composable methods are member methods of one of the input parameters, and they
return a result that is composed from the transformation involved in the method. Composable
methods are recombinant methods that can be reassembled in different orders to satisfy different
requirements.

Unfortunately, many of the .NET Framework APIs are not constructed in this way. One of the best
examples of this problem is the tryParse method, which returns a Boolean and returns the parsed
value as its result. tryParse returns two different pieces of information: the success value and the
parsed number. Because it must examine the success value before continuing, TRyParse can't be
composed with other methods.

Here's a routine that reads a comma-separated value (CSV) file of numeric data and returns a list of
arrays, where each array contains the values in one line:

private static IEnumerable<int[]>
    ParseNumbersInCsv(TextReader src)
{
    List<int[]> values = new List<int[]>();
    string line = src.ReadLine();
    while (line != null)
    {
        List<int> lineOfValues = new List<int>();
        string[] fields = line.Split(',');
        foreach (var s in fields)
        {
            int dataValue = 0;
            bool success = int.TryParse(s, out dataValue);
            // Because success isn't checked, add 0 on failure
            lineOfValues.Add(dataValue);
        }
        values.Add(lineOfValues.ToArray());
        line = src.ReadLine();
    }
    return values;
}

It works, but this implementation is imperative, and it doesn't support composition very well.
Furthermore, because it's an imperative implementation you lose some other benefits. Suppose the
files were very large and contained marker values that would indicate when you could stop reading the
file. To modify this method for new requirements, you'd need to add parameters, add logic to support
changes, and increase the overall complexity of the method. Because you've chosen an imperative



model, whenever any changes are needed you must change the description of how the method works.

What's needed is to modify the API signatures to provide composability of the actions, something that
will allow callers to modify the behavior by using different expressions. Let's start this conversion in
the inside with the conversion of a string to a nullable integer:

public static int? DefaultParse(this string input)
{
    int answer;
    return (int.TryParse(input, out answer))
        ? answer : default(int?);
}

You may also want to build a variation that returns a default value for any invalid inputs:

public static int DefaultParse(this string input,
    int defaultValue)
{
    int answer;
    return (int.TryParse(input, out answer))
        ? answer : defaultValue;
}

Next, you put DefaultParse to work on a single input line:

public static IEnumerable<int> ParseLine(this string line,
    int defaultValue)
{
    string[] fields = line.Split(',');
    foreach (string s in fields)
        yield return (s.DefaultParse(defaultValue));
}

You can also build a second ParseLine that returns an IEnumerable<int?>:

public static IEnumerable<int?> ParseLine(this string line)
{
    string[] fields = line.Split(',');
    foreach (string s in fields)
        yield return (s.DefaultParse());
}

You can also build an extension method that returns each line in succession:

public static IEnumerable<string> EatLines
    (this TextReader reader)
{
    string line = reader.ReadLine();
    while (null != line)



    {
        yield return line;
        line = reader.ReadLine();
    }
}

After those API signatures are converted, a single query generates the sequence of lines, each
containing a sequence of values:

var values = from l in src.EatLines()
             select l.ParseLine(0);

Or, if you use nullable ints, as in the following, the first query returns an
IEnumerable<IEnumerable<int>>, and the second returns an IEnumerable<IEnumerable<int?>>.

var values = from l in src.EatLines()
             select l.ParseLine();

These methods can be extended quickly for other purposes. Let's suppose that a string value indicates
the end of the input. You can modify the query as follows to read only until the query detects the first
invalid input:

var values = (from l in src.EatLines()
             select l.ParseLine()).TakeWhile(
             (lineOfValues) =>
             !lineOfValues.Contains(default(int?)));

All this is possible because we've used extension methods to modify the API signature into a
composable form. You can use the same kind of composability throughout your code. Note that even
though the method signatures have changed, the underlying semantics have not. That's an important
consideration when you create extension methods. Be sure not to change the caller's assumption
about the behavior of the objects involved in the extension method.

There are a number of problems with creating extension methods that change the semantics of an
API. First, it changes the semantics of a method signature. Instance methods cannot be called using a
null reference, because the .NET runtime will throw a null reference exception instead of calling your
routine. You can't intercept that condition or take any corrective action. That matters even when
you're adding an extension method for the first time. Extension methods are the lowest-priority match
when the compiler performs its method resolution. Therefore, if someone later adds a specific method
that replaces your extension method, existing code will throw exceptions in locations that previously
worked.

The most common way to abuse this technique is to write extension methods designed to work with
null objects:

// Bad idea. Don't change the semantics of a null this pointer
public static int StorageLength(this string target)
{
    if (target == null)



        return 0;
    else
        return target.Length;
}

Anyone using this method will be confused by its behavior. The .NET runtime checks for null object
pointers and generates a null reference exception before any instance methods can be called.
Extension methods specifically designed to work with null violate that principle and lead to code that
will be hard to maintain or extend over time.

You should also avoid creating extension methods that have a high likelihood of failure. Unfortunately,
this often occurs when you extend the .NET collection interfaces. Examine this method, which extends
ICollection<T> by providing support for AddRange():

public static void AddRange<T>(this ICollection<T> coll,
    IEnumerable<T> range)
{
    foreach (T item in range)
        coll.Add(item);
}

It works fine—if the type that implements ICollection happens to be a type that supports Add.
However, if you use an array to call that routine, the compiler throws an exception:

string[] sample = { "one", "two", "three", "four", "five", };
// Throws a NotSupportedException:
sample.AddRange(range);

Most types that implement ICollection<T> and support Add already have their own version of
AddRange included. You've added no capabilities but have increased the likelihood that someone
calling your new extension method will get frustrated by exceptions. It doesn't make sense to create
extension methods that are likely to fail.

You can prompt similar user dissatisfaction when you create extension methods that have significantly
worse performance than users expect. The following extension method, which reverses a collection
based on the IList<T> interface, is a useful little extension.

// Good use: no impact on performance
public static IEnumerable<T> Reverse<T>(this IList<T> sequence)
{
    for (int index = sequence.Count-1; index >= 0; index--)
        yield return sequence[index];
}

The same extension method on IEnumerable<T> takes on totally different performance metrics:

// Bad idea. Creates copy, slower performance
public static IEnumerable<T> Reverse<T>
    (this IEnumerable<T> sequence)



{
    IList<T> temp = new List<T>(sequence);
    return temp.Reverse();
}

The IEnumerable<T> method consumes memory equal to the size of the original collection, and it
takes longer to execute. Most users will assume (incorrectly) that the performance of Reverse is
linear. That's true if you write the method against IList<T>. However, if you write it against a general
interface that forces you to create a slower, more complicated algorithm, you mislead users, who will
think that you've created a better alternative.

Worse, because a type that implements IList<T> or ICollection<T> also implements
IEnumerable<T>, you may find yourself using an inferior algorithm because of the way the compiler
resolves method calls. The compiler calls the IList<T> version of Reverse() only if the compile-time
type implements IList<T>. Even if the runtime type implements IList<T>, if the compile-time type
declares only IEnumerable<T> support, you're stuck with the inferior method.

The System.Linq.Enumerable class does contain a Reverse method, using IEnumerable<T> as a
parameter. The .NET Framework team gets around these issues by examining the runtime type of the
sequence. If the sequence implements IList<T> or ICollection<T>, the compiler uses the algorithm
that is faster and less memory intensive.

Extension methods are a great way to massage the signature of an API so that it can be composed
into complicated expressions. However, when you create extension methods to change the
composability of an API, you need to ensure that the API doesn't hide errors nor change the
performance metrics of an implied API.
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Item 33. Avoid Modifying Bound Variables

The following small code snippet illustrates what can happen when you capture variables in a closure
and then modify those variables.

int index = 0;
Func<IEnumerable<int>> sequence =
    () => Utilities.Generate(30, () => index++);

index = 20;
foreach (int n in sequence())
    Console.WriteLine(n);
Console.WriteLine("Done");
index = 100;
foreach (int n in sequence())
    Console.WriteLine(n);

This snippet prints the numbers from 20 through 50, followed by the numbers 100 through 130. That
result may surprise you. During the rest of this item, I discuss the code the compiler produces that
creates this result. The behavior makes sense, and you'll learn to use it to your advantage.

The C# compiler does quite a bit of work in translating your query expressions into executable code.
Even though there are a great many new features in the C# language, all those new constructs
compile down to IL that is compatible with the 2.0 version of the .NET CLR. Query syntax depends on
new assemblies but not on any new CLR features. The C# compiler converts your queries and lambda
expressions into static delegates, instance delegates, or closures. It chooses which one to create
based on the code inside the lambda. Which path the compiler takes depends on the body of the
lambda. That may sound like so much language trivia, but it has important implications for your code.
Which construct the compiler uses does change some subtle behaviors of your code.

Not all lambda expressions create the same code. The simplest work for the compiler is to generate
the delegate for this style of code:

int[] someNumbers = { 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10 };
IEnumerable<int> answers = from n in someNumbers
                           select n * n;

The compiler implements the lambda expression select n * n using a static delegate definition. The
compiler writes code as though you had written it:

private static int HiddenFunc(int n)
{
    return (n * n);



}
private static Func<int, int> HiddenDelegateDefinition;

// usage:
int[] someNumbers = new int[] { 0, 1, 2, 3, 4, 5,
    6, 7, 8, 9, 10 };
if (HiddenDelegateDefinition == null)
{
    HiddenDelegateDefinition  = new
        Func<int, int>(HiddenFunc);
}
IEnumerable<int> answers =
    someNumbers.Select<int, int>( HiddenDelegateDefinition);

The body of the lambda expression does not access any instance variables nor local variables. The
lambda expression accesses only its parameters. Therefore, the C# compiler creates a static method
for the target of the delegate. That's the simplest path the compiler can take. The compiler generates
a private static method and corresponding delegate definition whenever the expression to be enclosed
can be implemented in a private static method. That includes simple expressions such as the example
here or a method that accesses any static class variables.

The sample lambda expression is only concise syntax for a method call wrapped in a delegate. Simple
as can be. The next simplest version is a lambda expression that requires access to instance variables
but not to any local variables:

public class ModFilter
{
    private readonly int modulus;

    public ModFilter(int mod)
    {
        modulus = mod;
    }

    public IEnumerable<int> FindValues(
        IEnumerable<int> sequence)
    {
        return from n in sequence
               where n % modulus == 0 // New expression
               select n * n; // previous example
    }
}

Here the compiler creates an instance method to wrap the delegate for the new expression. It's the
same basic concept as before but now uses an instance method so that the delegate can read and
modify the object's state. As with the static delegate sample, here the compiler converts the lambda
expression to code that you are already familiar with. It's a combination of delegate definitions and
method calls:

// Equivalent pre-LINQ version
public class ModFilter



{
    private readonly int modulus;

    // New method
    private bool WhereClause(int n)
    {
        return ((n % this.modulus) == 0);
    }

    // original method
    private static int SelectClause(int n)
    {
        return (n * n);
    }

    // original delegate
    private static Func<int, int> SelectDelegate;

    public IEnumerable<int> FindValues(
        IEnumerable<int> sequence)
    {
        if (SelectDelegate == null)
        {
            SelectDelegate = new Func<int, int>(SelectClause);
        }
        return sequence.Where<int>(
            new Func<int, bool>(this.WhereClause)).
            Select<int, int>(SelectClause);
    }
    // Other methods elided.
}

Whenever the code inside your lambda expression accesses member variables for your object
instances, the compiler generates an instance method representing the code in your lambda
expression. There's nothing magical going on here. The compiler saves you some typing, but that's all
you gain. It's just plain old method calls.

However, the compiler does quite a bit more work if any of the code in your lambda expressions
accesses local variables or accesses parameters to methods. Here, you need a closure. The compiler
generates a private nested class to implement the closure for your local variables. The local variable
must be passed to the delegate that implements the body of the lambda expression. In addition, any
changes to that local variable performed by the lambda expression must be visible in the outer scope.
The C# Programming Language, Third Edition, by Anders Hejlsberg, Mads Torgersen, Scott Wiltamuth,
and Peter Golde (Microsoft Corporation, 2009), §7.14.4.1, describes this behavior. Of course, you may
have more than one variable in both the inner and outer scopes. You also may have more than one
query expression.

Let's make a small change to the sample method so that it accesses a local variable:

public class ModFilter
{
    private readonly int modulus;



    public ModFilter(int mod)
    {
        modulus = mod;
    }

    public IEnumerable<int> FindValues(
        IEnumerable<int> sequence)
    {
        int numValues = 0;
        return from n in sequence
               where n % modulus == 0 // New expression
               // Select clause accesses local variable:
               select n * n / ++numValues;
    }
    // other methods elided
}

Notice that the select statement needs to access the local variable, numValues. To create the closure,
the compiler creates a nested class to implement the behavior you need. Here's a version of the code
that matches what the compiler generates:

// Pre-LINQ version of a simple closure
public class ModFilter
{
    private sealed class Closure
    {
        public ModFilter outer;
        public int numValues;

        public int SelectClause(int n)
        {
            return ((n * n) / ++this.numValues);
        }
    }

    private readonly int modulus;

    public ModFilter(int mod)
    {
        this.modulus = mod;
    }

    private bool WhereClause(int n)
    {
        return ((n % this.modulus) == 0);
    }

    public IEnumerable<int> FindValues
        (IEnumerable<int> sequence)
    {
        Closure c = new Closure();



        c.outer = this;
        c.numValues = 0;
        return sequence.Where<int>
            (new Func<int, bool>(this.WhereClause))
            .Select<int, int>(
                new Func<int, int>(c.SelectClause));
    }
}

In this version, the compiler creates a nested class to contain all the variables that are accessed or
modified inside the lambda expression. In fact, those local variables are completely replaced by fields
of that nested class. Both the code inside the lambda expression and the code outside the lambda (but
in the local method) access that same field. The logic inside the lambda expression has been compiled
into a method in the inner class.

The compiler treats method parameters used in lambda expressions exactly the same way that it
treats local variables: It copies those parameters into the nested class representing the closure.

Let's reexamine that initial example. Now it's clear why the behavior is strange. The variable
incrementBy is modified after it has been placed in the closure but before the query has been
executed. You modified the internal structure and then expected it to move back in time and use its
previous version.

Modifying the bound variables between queries can introduce errors caused by the interaction of
deferred execution and the way the compiler implements closures. Therefore, you should avoid
modifying bound variables that have been captured by a closure.
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Item 34. Define Local Functions on Anonymous Types

Many developers have a limited view of anonymous types. Sure, these types are simple to use, and
they help you with short-lived variables that don't have a major role in the logic of your application.
That's because anonymous types don't live beyond the scope of one method. Many developers believe
that you can't develop with anonymous types because they can't be used in more than one method.

That's not true. You can write generic methods that use anonymous methods. To do so, you need to
inject any specific elements or logic into your generic method.

As a simple example, this method returns a sequence of all objects in a collection that match a sought
value:

static IEnumerable<T> FindValue<T>(IEnumerable<T> enumerable,
    T value)
{
    foreach (T element in enumerable)
    {
        if (element.Equals(value))
        {
            yield return element;
        }
    }
}

You can use it with anonymous types like this:

static void Main(string[] args)
{
    IDictionary<int, string> numberDescriptionDictionary =
        new Dictionary<int, string>()
    {
        {1,"one"},
        {2, "two"},
        {3, "three"},
        {4, "four"},
        {5, "five"},
        {6, "six"},
        {7, "seven"},
        {8, "eight"},
        {9, "nine"},
        {10, "ten"},
    };
    List<int> numbers = new List<int>()



        { 1, 2, 3, 4, 5, 6, 7, 8, 9, 10 };
    var r = from n in numbers
            where n % 2 == 0
            select new { Number = n,
                Description =
                    numberDescriptionDictionary[n] };
    r = from n in FindValue(r, new
        { Number = 2, Description = "two" })
        select n;
}

The FindValue() method knows nothing about the type; it's simply a generic type.

Of course, such simple functions can do only so much. If you want to write methods that use particular
properties in your anonymous types, you need to create and use higher-order functions. A higher-
order function is one that either takes a function as a parameter or returns a function. Higher-order
functions that take functions as parameters are useful when you're working with anonymous types.
You can use higher-order functions and generics to work with anonymous methods across multiple
methods. Take a look at this query:

Random randomNumbers = new Random();
var sequence = (from x in Utilities.Generator(100,
                    () => randomNumbers.NextDouble() * 100)
               let y = randomNumbers.NextDouble() * 100
               select new { x, y }).TakeWhile(
               point => point.x < 75);

The query ends in the TakeWhile() method, which has this signature:

public static IEnumerable<TSource> TakeWhile<TSource>
    (this IEnumerable<TSource> source,
    Func<TSource, bool> predicate);

Notice that the signature of TakeWhile returns an IEnumerable<TSource> and has an
IEnumerable<TSource> parameter. In our simple example, TSource stands in for an anonymous type
representing an X,Y pair. Func<TSource, bool> represents a function that takes a TSource as its
parameter.

This technique gives you the pathway to creating large libraries and code that works with anonymous
types. The query expressions rely on generic methods that can work with anonymous types. The
lambda expression, because it's declared in the same scope as the anonymous type, knows all about
the anonymous type. The compiler creates the private nested class that passes around instances of
the anonymous type to the other methods.

The following code creates an anonymous type and then processes that type in many generic
methods:

var sequence = (from x in Funcs.Generator(100,
                    () => randomNumbers.NextDouble() * 100)
               let y = randomNumbers.NextDouble() * 100



               select new { x, y }).TakeWhile(
               point => point.x < 75);

var scaled = from p in sequence
             select new {x = p.x * 5, y = p.y * 5};
var translated = from p in scaled
                 select new { x = p.x - 20, y = p.y - 20};
var distances = from p in translated
                let distance = Math.Sqrt(
                    p.x * p.x + p.y * p.y)
                where distance < 500.0
                select new { p.x, p.y, distance };

There isn't anything amazing going on here. It's simply the compiler generating delegates and calling
them. Every one of those query methods results in a compiler-generated method that takes your
anonymous type as a parameter. The compiler creates a delegate that is bound to each of those
methods and uses that delegate as the parameter to the query method.

As this first sample continues to grow, it's easy to let algorithms get out of hand, create multiple
copies of algorithms, and end up with a large investment in repeated code. So let's look at how to
modify this code so that as more capabilities are needed, you can continue to keep the code simple,
modular, and extensible.

One approach is to move some of the code around to create a simpler method and yet preserve the
reusable blocks. You refactor some of the algorithms into generic methods that will take lambda
expressions to perform the specific work needed by the algorithm.

Almost all of the following methods perform a simple mapping from one type to another. Some of
them are an even simpler mapping to a different object of the same type.

// In another class define the Map function:
public static IEnumerable<TResult> Map<TSource, TResult>(this
IEnumerable<TSource> source,
    Func<TSource, TResult> mapFunc)
{
    foreach (TSource s in source)
        yield return mapFunc(s);
}

// Usage:
var sequence = (from x in Funcs.Generator(100,
                    () => randomNumbers.NextDouble() * 100)
               let y = randomNumbers.NextDouble() * 100
               select new { x, y }).TakeWhile(
               point => point.x < 75);
var scaled = sequence.Map(p => new {x = p.x * 5,
    y = p.y * 5});
var translated = scaled.Map(p => new { x = p.x - 20,
    y = p.y - 20});
var distances = translated.Map(p => new { p.x, p.y,
    distance = Math.Sqrt(p.x * p.x + p.y * p.y) });
var filtered = from location in distances



                where location.distance < 500.0
                select location;

The important technique here is to extract those algorithms that can be performed with minimal
knowledge of the anonymous type. All anonymous types support IEquatable<T> and nothing else. So
you can assume the existence only of the System.Object public members and the IEquatable<T>
members. Nothing has changed here, but you should realize that anonymous types can be passed
around to methods only if you also pass around the methods.

In the same vein, you may find that part of the original method will be used in other locations. In
those cases, you should factor out those reusable nuggets of code and create a generic method that
can be called from both locations.

That points to the need to be careful of taking these techniques too far. Anonymous types should not
be used for types that are essential to many of your algorithms. The more often you find yourself
using the same type and the more processing you're doing with that type, the more likely it is that
you should convert that anonymous type into a concrete type. Any recommendation is arbitrary, but I
suggest that if you're using the same anonymous type in more than three major algorithms, it would
be better to convert it into a concrete type. If you find yourself creating longer and more complicated
lambda expressions in order to continue to use an anonymous type, that should be a flag to create a
concrete type.

Anonymous types are lightweight types that simply contain read and write properties that usually hold
simple values. You will build many of your algorithms around these simple types. You can manipulate
anonymous types using lambda expressions and generic methods. Just as you can create private
nested classes to limit the scope of types, you can exploit the fact that the scope of an anonymous
type is limited to a given method. Through generics and higher-order functions, you can create
modular code using anonymous types.
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Item 35. Never Overload Extension Methods

Earlier in this chapter (Items 28 and 29) I discuss three reasons to create extension methods for
interfaces or types: adding default implementation to interfaces, creating behaviors on closed generic
types, and creating composable interfaces. However, extension methods are not always a good way to
express your designs. In all those cases, you made some enhancements to an existing type definition,
but those enhancements did not fundamentally change the behavior of the type.

Item 22 explains that you can create extension methods to provide a default implementation for
common actions that can be built using a minimal interface definition. You may be tempted to use the
same technique to enhance class types. You may even be tempted to create multiple versions of class
extensions that you can substitute by changing the namespaces you are using. Don't do that.
Extension methods give you a great way to provide a default implementation for types that implement
interfaces. However, there are much better alternatives to extending class types. Overusing and
misapplying extension methods quickly create a morass of conflicting methods that will increase
maintenance costs.

Let's begin with an example that misuses extension methods. Suppose you have a simple Person class
that was generated by some other library:

public sealed class Person
{
    public string FirstName
    {
        get;
        set;
    }
    public string LastName
    {
        get;
        set;
    }
}

You might consider writing an extension method to create a report of people's names to the console:

// Bad start.
// extending classes using extension methods
namespace ConsoleExtensions
{
    public static class ConsoleReport
    {
        public static string Format(this Person target)
        {



            return string.Format("{0,20}, {1,15}",
                target.LastName, target.FirstName);
        }
    }
}

Generating the console report is simple:

static void Main(string[] args)
{
    List<Person> somePresidents =
        new List<Person>{
            new Person{
                FirstName = "George",
                LastName = "Washington" },
            new Person{
                FirstName = "Thomas",
                LastName = "Jefferson" },
            new Person{
                FirstName = "Abe",
                LastName = "Lincoln" }
        };

    foreach (Person p in somePresidents)
        Console.WriteLine(p.Format());
}

That might seem harmless enough. But requirements change. Later you find that you need to create a
report in XML format. Someone might think of writing this method:

// Even worse.
// Ambiguous extension methods
// in different namespaces.
namespace XmlExtensions
{
    public static class XmlReport
    {
        public static string Format(this Person target)
        {
            return new XElement("Person",
                new XElement("LastName", target.LastName),
                new XElement("FirstName", target.FirstName)
                ).ToString();
        }
    }
}

Switching a using statement in the source file changes the format of the report. This is a misuse of
extension methods. It's a fragile way to extend a type. If a developer uses the wrong namespace, the
program behavior changes. If she forgets to use any of the extension namespaces, the program won't



compile. If she needs both of the namespaces in different methods, she must split the class definition
into different files, based on which extension method she needs. Using both namespaces causes a
compiler error on an ambiguous reference.

You clearly need a different way to implement this functionality. Extension methods force call dispatch
based on the compile-time type of the object. Switching based on the namespace to determine which
method is desired makes that strategy even more fragile.

This functionality isn't based on the type you're extending: Formatting a Person object for either XML
or a console report is not part of the Person type, but instead more closely belongs to the outside
environment that uses the Person object.

Extension methods should be used to enhance a type with functionality that naturally extends a type.
You should create extension methods only to add functionality that would logically be part of that
type. Items 28 and 29 explain two techniques for augmenting interfaces and closed types. If you look
at the examples in those items, you can see that all those extension methods create methods that feel
like part of the type from the standpoint of consumers of that type.

Contrast that with the examples here. Instead of being part of the Person type, the Format methods
are methods that use the Person type. They don't belong in the Person type from the standpoint of
code that uses that type.

The methods themselves are valid, but they should be regular static methods in a class that can be
used with Person objects. In fact, if possible, they should be placed in the same class, with different
method names:

public static class PersonReports
{
    public static string FormatAsText(Person target)
    {
        return string.Format("{0,20}, {1,15}",
            target.LastName, target.FirstName);
    }
    public static string FormatAsXML(Person target)
    {
        return new XElement("Person",
            new XElement("LastName", target.LastName),
            new XElement("FirstName", target.FirstName)
            ).ToString();
    }
}

This class contains both methods, as static methods, and the different names clearly reflect each
method's purpose. You have provided both methods to your class's users without introducing
ambiguity in the public interface, or the perceived public interface, for the class. Any developer can
use either method, should he need those methods. You have not created any ambiguity by introducing
the same method signature in different namespaces. That's critical, because very few developers
would assume that changing the list of using statements would change the runtime behavior of a
program. They may assume that it would cause compile-time errors but not runtime errors.

Of course, once you've changed the method names so that they do not collide, you could make these
methods into extension methods again. There isn't much to gain from these methods, which don't



seem to be extending the type but rather are using the type. However, because the names don't
collide, you can put both methods in the same namespace and the same class. That avoids the pitfalls
of the earlier example.

You should view the set of extension methods for a type as a single global set. Extension methods
should never be overloaded on namespaces. If at any time you find yourself needing to create multiple
extension methods having the same signature, stop. Instead, change the method signature, and
consider creating plain old static methods. That practice avoids the ambiguity caused when the
compiler selects the overload based on using statements.
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5. Working with LINQ
The driving force behind the language enhancements to C# 3.0 was LINQ. The new features and the
implementation of those features were driven by the need to support deferred queries, translate
queries into SQL to support LINQ to SQL, and add a unifying syntax to the various data stores.
Chapter 4 shows you how the new language features can be used for many development idioms in
addition to data query. This chapter concentrates on using those new features for querying data,
regardless of source.

A goal of LINQ is that language elements perform the same work no matter what the data source is.
However, even though the syntax works with all kinds of data sources, the query provider that
connects your query to the actual data source is free to implement that behavior in a variety of ways.
If you understand the various behaviors, it will make it easier to work with various data sources
transparently. If you need to, you can even create your own data provider.
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Item 36. Understand How Query Expressions Map to Method
Calls

LINQ is built on two concepts: a query language, and a translation from that query language into a set
of methods. The C# compiler converts query expressions written in that query language into method
calls.

Every query expression has a mapping to a method call or calls. You should understand this mapping
from two perspectives. From the perspective of a class user, you need to understand that your query
expressions are nothing more than method calls. A where clause translates to a call to a method
named Where(), with the proper set of parameters. As a class designer, you should evaluate the
implementations of those methods provided by the base framework and determine whether you can
create better implementations for your types. If not, you should simply defer to the base library
versions. However, when you can create a better version, you must make sure that you fully
understand the translation from query expressions into method calls. It's your responsibility to ensure
that your method signatures correctly handle every translation case. For some of the query
expressions, the correct path is rather obvious. However, it's a little more difficult to comprehend a
couple of the more complicated expressions.

The full query expression pattern contains eleven methods. The following is the definition from The
C# Programming Language, Third Edition, by Anders Hejlsberg, Mads Torgersen, Scott Wiltamuth, and
Peter Golde (Microsoft Corporation, 2009), §7.15.3 (reprinted with permission from Microsoft
Corporation):

delegate R Func<T1,R>(T1 arg1);
delegate R Func<T1,T2,R>(T1 arg1, T2 arg2);
class C
{
    public C<T> Cast<T>();
}

class C<T> : C
{
    public C<T> Where(Func<T,bool> predicate);
    public C<U> Select<U>(Func<T,U> selector);
    public C<V> SelectMany<U,V>(Func<T,C<U>> selector,
        Func<T,U,V> resultSelector);
    public C<V> Join<U,K,V>(C<U> inner,
        Func<T,K> outerKeySelector,
        Func<U,K> innerKeySelector,
        Func<T,U,V> resultSelector);
    public C<V> GroupJoin<U,K,V>(C<U> inner,
        Func<T,K> outerKeySelector,
        Func<U,K> innerKeySelector,
        Func<T,C<U>,V> resultSelector);



    public O<T> OrderBy<K>(Func<T,K> keySelector);
    public O<T> OrderByDescending<K>(Func<T,K> keySelector);
    public C<G<K,T>> GroupBy<K>(Func<T,K> keySelector);
    public C<G<K,E>> GroupBy<K,E>(Func<T,K> keySelector,
        Func<T,E> elementSelector);
}

class O<T> : C<T>
{
    public O<T> ThenBy<K>(Func<T,K> keySelector);
    public O<T> ThenByDescending<K>(Func<T,K> keySelector);
}

class G<K,T> : C<T>
{
    public K Key { get; }
}

The .NET base library provides two general-purpose reference implementations of this pattern.
System.Linq.Enumerable provides extension methods on IEnumerable<T> that implement the query
expression pattern. System.Linq.Queryable provides a similar set of extension methods on
IQueryable<T> that supports a query provider's ability to translate queries into another format for
execution. (For example, the LINQ to SQL implementation converts query expressions into SQL
queries that are executed by the SQL database engine.) As a class user, you are probably using one of
those two reference implementations for most of your queries.

Second, as a class author, you can create a data source that implements IEnumerable<T> or
IQueryable<T> (or a closed generic type from IEnumerable<T> or IQueryable<T>), and in that case
your type already implements the query expression pattern. Your type has that implementation
because you're using the extension methods defined in the base library.

Before we go further, you should understand that the C# language does not enforce any execution
semantics on the query expression pattern. You can create a method that matches the signature of
one of the query methods and does anything internally. The compiler cannot verify that your Where
method satisfies the expectations of the query expression pattern. All it can do is ensure that the
syntactic contract is satisfied. This behavior isn't any different from that of any interface method. For
example, you can create an interface method that does anything, whether or not it meets users'
expectations.

Of course, this doesn't mean that you should ever consider such a plan. If you implement any of the
query expression pattern methods, you should ensure that its behavior is consistent with the reference
implementations, both syntactically and semantically. Except for performance differences, callers
should not be able to determine whether your method is being used or the reference implementations
are being used.

Translating from query expressions to method invocations is a complicated iterative process. The
compiler repeatedly translates expressions to methods until all expressions have been translated.
Furthermore, the compiler has a specified order in which it performs these translations, although I'm
not explaining them in that order. The compiler order is easy for the compiler and is documented in
the C# specification. I chose an order that makes it easier to explain to humans. For our purposes, I
discuss some of the translations in smaller, simpler examples.



In the following query, let's examine the where, select, and range variables:

int[] numbers = { 0, 1, 2, 3, 4, 5, 6, 7, 8, 9 };
var smallNumbers = from n in numbers
                   where n < 5
                   select n;

The expression from n in numbers binds the range variable n to each value in numbers. The where
clause defines a filter that will be translated into a where method. The expression where n < 5
translates to the following:

numbers.Where((n) => n < 5);

Where is nothing more than a filter. The output of Where is a proper subset of the input sequence
containing only those elements that satisfy the predicate. The input and output sequences must
contain the same type, and a correct Where method must not modify the items in the input sequence.
(User-defined predicates may modify items, but that's not the responsibility of the query expression
pattern.)

That where method can be implemented either as an instance method accessible to numbers or as an
extension method matching the type of numbers. In the example, numbers is an array of int.
Therefore, n in the method call must be an integer.

Where is the simplest of the translations from query expression to method call. Before we go on, let's
dig a little deeper into how this works and what that means for the translations. The compiler
completes its translation from query expression to method call before any overload resolution or type
binding. The compiler does not know whether there are any candidate methods when the compiler
translates the query expression to a method call. It doesn't examine the type, and it doesn't look for
any candidate extension methods. It simply translates the query expression into the method call. After
all queries have been translated into method call syntax, the compiler performs the work of searching
for candidate methods and then determining the best match.

Next, you can extend that simple example to include the select expression in the query. Select
clauses are translated into Select methods. However, in certain special cases the Select method can
be optimized away. The sample query is a degenerate select, selecting the range variable.
Degenerate select queries can be optimized away, because the output sequence is not equal to the
input sequence. The sample query has a where clause, which breaks that identity relationship between
the input sequence and the output sequence. Therefore, the final method call version of the query is
this:

var smallNumbers = numbers.Where(n => n < 5);

The select clause is removed because it is redundant. That's safe because the select operates on an
immediate result from another query expression (in this example, where).

When the select does not operate on the immediate result of another expression, it cannot be
optimized away. Consider this query:

var allNumbers = from n in numbers select n;



It will be translated into this method call:

var allNumbers = numbers.Select(n => n);

While we're on this subject, note that select is often used to transform or project one input element
into a different element or into a different type. The following query modifies the value of the result:

int[] numbers = { 0, 1, 2, 3, 4, 5, 6, 7, 8, 9 };
var smallNumbers = from n in numbers
                   where n < 5
                   select n * n;

Or you could transform the input sequence into a different type as follows:

int [] numbers = {0,1,2,3,4,5,6,7,8,9};
var squares = from n in numbers
              select new { Number = n, Square = n * n};

The select clause maps to a Select method that matches the signature in the query expression
pattern:

var squares = numbers.Select(n =>
    new { Number = n, Square = n * n});

Select transforms the input type into the output type. A proper select method must produce exactly
one output element for each input element. Also, a proper implementation of Select must not modify
the items in the input sequence.

That's the end of the simpler query expressions. Now we discuss some of the less obvious
transformations.

Ordering relations map to the OrderBy and ThenBy methods, or OrderByDescending and
ThenByDescending. Consider this query:

var people = from e in employees
             where e.Age > 30
             orderby e.LastName, e.FirstName, e.Age
             select e;

It translates into this:

var people = employees.Where(e => e.Age > 30).
    OrderBy(e => e.LastName).
    ThenBy(e => e.FirstName).
    ThenBy(e => e.Age);

Notice in the definition of the query expression pattern that ThenBy operates on a sequence returned



by OrderBy or ThenBy. Those sequences can contain markers that enable ThenBy to operate on the
sorted subranges when the sort keys are equal.

This transformation is not the same if the orderby clauses are expressed as different clauses. The
following query sorts the sequence entirely by LastName, then sorts the entire sequence again by
FirstName, and then sorts again by Age:

// Not correct. Sorts the entire sequence three times.
var people = from e in employees
             where e.Age > 30
             orderby e.LastName
             orderby e.FirstName
             orderby e.Age
             select e;

As separate queries, you could specify that any of the orderby clauses use descending order:

var people = from e in employees
             where e.Age > 30
             orderby e.LastName descending
             thenby e.FirstName
             thenby e.Age
             select e;

The OrderBy method creates a different sequence type as its output so that thenby clauses can be
more efficient and so that the types are correct for the overall query. OrderBy cannot operate on an
unordered sequence, only on a sorted sequence (typed as O<T> in the sample). Subranges are already
sorted and marked. If you create your own orderby and thenby methods for a type, you must adhere
to this rule. You'll need to add an identifier to each sorted subrange so that any subsequent thenby
clause can work properly. ThenBy methods need to be typed to take the output of an OrderBy or
ThenBy method and then sort each subrange correctly.

Everything I've said about OrderBy and ThenBy also applies to OrderByDescending and
ThenByDescending. In fact, if your type has a custom version of any of those methods, you should
almost always implement all four of them.

The remaining expression translations involve multiple steps. Those queries involve either groupings
or multiple from clauses that introduce continuations. Query expressions that contain continuations
are translated into nested queries. Then those nested queries are translated into methods. Following is
a simple query with a continuation:

var results = from e in employees
              group e by e.Department into d
              select new { Department = d.Key,
              Size = d.Count() };

Before any other translations are performed, the continuation is translated into a nested query:

var results = from d in
    from e in employees group e by e.Department



    select new { Department = d.Key, Size = d.Count()};

Once the nested query is created, the methods translate into the following:

var results = employees.GroupBy(e => e.Department).
    Select(d => new { Department = d.Key, Size = d.Count()});

The foregoing query shows a GroupBy that returns a single sequence. The other GroupBy method in
the query expression pattern returns a sequence of groups in which each group contains a key and a
list of values:

var results = from e in employees
              group e by e.Department into d
              select new { Department = d.Key,
              Employees = d.AsEnumerable()};

That query maps to the following method calls:

var results2 = employees.GroupBy(e => e.Department).
    Select(d => new { Department = d.Key,
        Employees = d.AsEnumerable()});

GroupBy methods produce a sequence of key/value list pairs; the keys are the group selectors, and
the values are the sequence of items in the group. The query select clause may create new objects
for the values in each group. However, the output should always be a sequence of key/value pairs in
which the value contains some element created by each item in the input sequence that belongs to
that particular group.

The final methods to understand are SelectMany, Join, and GroupJoin. These three methods are
complicated, because they work with multiple input sequences. The methods that implement these
translations perform the enumerations across multiple sequences and then flatten the resulting
sequences into a single output sequence. SelectMany performs a cross join on the two source
sequences. For example, consider this query:

int[] odds = {1,3,5,7};
int[] evens = {2,4,6,8};
var pairs = from oddNumber in odds
            from evenNumber  in evens
            select new {oddNumber, evenNumber,
            Sum=oddNumber+evenNumber};

It produces a sequence having 16 elements:

1,2, 3
1,4, 5
1,6, 7
1,8, 9
3,2, 5



3,4, 7
3,6, 9
3,8, 11
5,2, 7
5,4, 9
5,6, 11
5,8, 13
7,2, 9
7,4, 11
7,6, 13
7,8, 15

Query expressions that contain multiple select clauses are translated into a SelectMany method call.
The sample query would be translated into the following SelectMany call:

int[] odds = { 1, 3, 5, 7 };
int[] evens = { 2, 4, 6, 8 };
var values = odds.SelectMany(oddNumber => evens,
    (oddNumber, evenNumber) =>
    new { oddNumber, evenNumber,
    Sum = oddNumber + evenNumber });

The first parameter to SelectMany is a function that maps each element in the first source sequence
to the sequence of elements in the second source sequence. The second parameter (the output
selector) creates the projections from the pairs of items in both sequences.

SelectMany() iterates the first sequence. For each value in the first sequence, it iterates the second
sequence, producing the result value from the pair of input values. The output selected is called for
each element in a flattened sequence of every combination of values from both sequences. One
possible implementation of SelectMany is as follows:

static IEnumerable<TOutput> SelectMany<T1, T2, TOutput>(
    this IEnumerable<T1> src,
    Func<T1, IEnumerable<T2>> inputSelector,
    Func<T1, T2, TOutput> resultSelector)
{
    foreach (T1 first in src)
    {
        foreach (T2 second in inputSelector(first))
            yield return resultSelector(first, second);
    }
}

The first input sequence is iterated. Then the second input sequence is iterated using the current value
on the input sequence. That's important, because the input selector on the second sequence may
depend on the current value in the first sequence. Then, as each pair of elements is generated, the
result selector is called on each pair.

If your query has more expressions and if SelectMany does not create the final result, then
SelectMany creates a tuple that contains one item from each input sequence. Sequences of that tuple



are the input sequence for later expressions. For example, consider this modified version of the
original query:

int[] odds = { 1, 3, 5, 7 };
int[] evens = { 2, 4, 6, 8 };
var values = from oddNumber in odds
             from evenNumber in evens
             where oddNumber > evenNumber
             select new { oddNumber, evenNumber,
             Sum = oddNumber + evenNumber };

It produces this SelectMany method call:

odds.SelectMany(oddNumber => evens,
    (oddNumber, evenNumber) =>
    new {oddNumber, evenNumber});

The full query is then translated into this statement:

var values = odds.SelectMany(oddNumber => evens,
    (oddNumber, evenNumber) =>
    new { oddNumber, evenNumber }).
    Where(pair => pair.oddNumber > pair.evenNumber).
    Select(pair => new {
        pair.oddNumber,
        pair.evenNumber,
        Sum = pair.oddNumber + pair.evenNumber });

You can see another interesting property in the way SelectMany gets treated when the compiler
translates multiple from clauses into SelectMany method calls. SelectMany composes well. More than
two from clauses will produce more than one SelectMany() method call. The resulting pair from the
first SelectMany() call will be fed into the second SelectMany(), which will produce a triple. The
triple will contain all combinations of all three sequences. Consider this query:

var triples = from n in new int[] { 1, 2, 3 }
              from s in new string[] { "one", "two",
                  "three" }
              from r in new string[] { "I", "II", "III" }
              select new { Arabic = n, Word = s, Roman = r };

It will be translated into the following method calls:

var numbers = new int[] {1,2,3};
var words = new string[] {"one", "two", "three"};
var romanNumerals = new string[] { "I", "II", "III" };
var triples = numbers.SelectMany(n => words,
    (n, s) => new { n, s}).
    SelectMany(pair => romanNumerals,
    (pair,n) =>



        new { Arabic = pair.n, Word = pair.s, Roman = n });

As you can see, you can extend from three to any arbitrary number of input sequences by applying
more SelectMany() calls. These later examples also demonstrate how SelectMany can introduce
anonymous types into your queries. The sequence returned from SelectMany() is a sequence of some
anonymous type.

Now let's look at the two other translations you need to understand: Join and GroupJoin. Both are
applied on join expressions. GroupJoin is always used when the join expression contains an into
clause. Join is used when the join expression does not contain an into clause.

A join without an into looks like this:

var numbers = new int[] { 0, 1, 2, 3, 4, 5, 6, 7, 8, 9 };
var labels = new string[] { "0", "1", "2", "3", "4", "5" };
var query = from num in numbers
            join label in labels on num.ToString() equals
                label
            select new { num, label };

It translates into the following:

var query = numbers.Join(labels, num => num.ToString(),
    label => label, (num, label) => new { num, label });

The into clause creates a list of subdivided results:

var groups = from p in projects
             join t in tasks on p equals t.Parent
                 into projTasks
             select new { Project = p, projTasks };

That translates into a GroupJoin:

var groups = projects.GroupJoin(tasks,
    p => p, t => t.Parent, (p, projTasks) =>
        new { Project = p, TaskList = projTasks });

The entire process of converting all expressions into method calls is complicated and often takes
several steps.

The good news is that for the most part, you can happily go about your work secure in the knowledge
that the compiler does the correct translation. And because your type implements IEnumerable<T>,
users of your type are getting the correct behavior.

But you may have that nagging urge to create your own version of one or more of the methods that
implement the query expression pattern. Maybe your collection type is always sorted on a certain key,
and you can short-circuit the OrderBy method. Maybe your type exposes lists of lists, and this means



that you may find that GroupBy and GroupJoin can be implemented more efficiently.

More ambitiously, maybe you intend to create your own provider and you'll implement the entire
pattern. That being the case, you need to understand the behavior of each query method and know
what should go into your implementation. Refer to the examples, and make sure you understand the
expected behavior of each query method before you embark on creating your own implementations.

Many of the custom types you define model some kind of collection. The developers who use your
types will expect to use your collections in the same way that they use every other collection type,
with the built-in query syntax. As long as you support the IEnumerable<T> interface for any type that
models a collection, you'll meet that expectation. However, your types may be able to improve on the
default implementation by using the internal specifics in your type. When you choose to do that,
ensure that your type matches the contract from the query pattern in all forms.
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Item 37. Prefer Lazy Evaluation Queries

When you define a query, you don't actually get the data and populate a sequence. You are actually
defining only the set of steps that you will execute when you choose to iterate that query. This means
that each time you execute a query, you perform the entire recipe from first principles. That's usually
the right behavior. Each new enumeration produces new results, in what is called lazy evaluation.
However, often that's not what you want. When you grab a set of variables, you want to retrieve them
once and retrieve them now, in what is called eager evaluation.

Every time you write a query that you plan to enumerate more than once, you need to consider which
behavior you want. Do you want a snapshot of your data, or do you want to create a description of the
code you will execute in order to create the sequence of values?

This concept is a major change in the way you are likely accustomed to working. You probably view
code as something that is executed immediately. However, with LINQ queries, you're injecting code
into a method. That code will be invoked at a later time. More than that, if the provider uses
expression trees instead of delegates, those expression trees can be combined later by combining new
expressions into the same expression tree.

Let's start with an example to explain the difference between lazy and eager evaluation. The following
bit of code generates a sequence and then iterates that sequence three times, with a pause between
iterations.

private static IEnumerable<TResult>
    Generate<TResult>(int number, Func<TResult> generator)
{
    for (int i = 0; i < number; i++)
        yield return generator();
}

private static void LazyEvaluation()
{
    Console.WriteLine("Start time for Test One: {0}",
        DateTime.Now);
    var sequence = Generate(10, () => DateTime.Now);
    Console.WriteLine("Waiting....\tPress Return");
    Console.ReadLine();

    Console.WriteLine("Iterating...");
    foreach (var value in sequence)
        Console.WriteLine(value);

    Console.WriteLine("Waiting....\tPress Return");
    Console.ReadLine();
    Console.WriteLine("Iterating...");



    foreach (var value in sequence)
        Console.WriteLine(value);
}

Here's one sample output:

Start time for Test One: 11/18/2007 6:43:23 PM
Waiting....    Press Return

Iterating...
11/18/2007 6:43:31 PM
11/18/2007 6:43:31 PM
11/18/2007 6:43:31 PM
11/18/2007 6:43:31 PM
11/18/2007 6:43:31 PM
11/18/2007 6:43:31 PM
11/18/2007 6:43:31 PM
11/18/2007 6:43:31 PM
11/18/2007 6:43:31 PM
11/18/2007 6:43:31 PM
Waiting....    Press Return

Iterating...
11/18/2007 6:43:42 PM
11/18/2007 6:43:42 PM
11/18/2007 6:43:42 PM
11/18/2007 6:43:42 PM
11/18/2007 6:43:42 PM
11/18/2007 6:43:42 PM
11/18/2007 6:43:42 PM
11/18/2007 6:43:42 PM
11/18/2007 6:43:42 PM
11/18/2007 6:43:42 PM

In this example of lazy evaluation, notice that the sequence is generated each time it is iterated, as
evidenced by the different time stamps. The sequence variable does not hold the elements created.
Rather, it holds the expression tree that can create the sequence. You should run this code yourself,
stepping into each query to see exactly when the expressions are evaluated. It's the most instructive
way to learn how LINQ queries are evaluated.

You can use this capability to compose queries from existing queries. Instead of retrieving the results
from the first query and processing them as a separate step, you can compose queries in different
steps and then execute the composed query only once. For example, suppose I modify the query to
return times in universal format:

var sequence1 = Generate(10, () => DateTime.Now);
var sequence2 = from value in sequence1
                select value.ToUniversalTime();

Sequence 1 and sequence 2 share functional composition, not data. Sequence 2 is not built by



enumerating the values in sequence 1 and modifying each value. Rather, it is created by executing the
code that produces sequence 1, followed by the code that produces sequence 2. If you iterate the two
sequences at different times, you'll see unrelated sequences. Sequence 2 will not contain the
converted values from sequence 1. Instead, it will contain totally new values. It doesn't generate a
sequence of dates and then convert the entire sequence into universal time. Instead, each line of code
generates one set of values using universal time.

Query expressions may operate on infinite sequences. They can do so because they are lazy. If written
correctly, they examine the first portion of the sequence and then terminate when an answer is found.
On the other hand, some query expressions must retrieve the entire sequence before they can
proceed to create their answer. Understanding when these bottlenecks might occur will help you
create queries that are natural without incurring performance penalties. In addition, this
understanding will help you avoid those times when the full sequence is required and will create a
bottleneck.

Consider this small program:

static void Main(string[] args)
{
    var answers = from number in AllNumbers()
                  select number;
    var smallNumbers = answers.Take(10);
    foreach (var num in smallNumbers)
           Console.WriteLine(num);
}

static IEnumerable<int> AllNumbers()
{
    int number = 0;
    while (number < int.MaxValue)
    {
        yield return number++;
    }
}

This sample illustrates what I mean about a method that does not need the full sequence. The output
from this method is the sequence of numbers 0,1,2,3,4,5,6,7,8,9. That's the case even though the
AllNumbers() method could generate an infinite sequence. (Yes, it eventually has an overflow, but
you'll lose patience long before then.)

The reason this works as quickly as it does is that the entire sequence is not needed. The Take()
method returns the first N objects from the sequence, so nothing else matters.

However, if you rewrite this query as follows, your program will run forever:

class Program
{
    static void Main(string[] args)
    {
        var answers = from number in AllNumbers()
                      where number < 10
                      select number;



        foreach(var num in answers)
            Console.WriteLine(num);
    }
}

It runs forever because the query must examine every single number to determine which methods
match. This version of the same logic requires the entire sequence.

There are a number of query operators that must have the entire sequence in order to operate
correctly. Where uses the entire sequence. Orderby needs the entire sequence to be present. Max and
Min need the entire sequence. There's no way to perform these operations without examining every
element in the sequence. When you need these capabilities, you'll use these methods.

You need to think about the consequences of using methods that require access to the entire
sequence. As you've seen, you need to avoid any methods that require the entire sequence if the
sequence might be infinite. Second, even if the sequence is not infinite, any query methods that filter
the sequence should be front-loaded in the query. If the first steps in your query remove some of the
elements from the collection, that will have a positive effect on the performance of the rest of the
query.

For example, the following two queries produce the same result. However, the second query may
execute faster. Sophisticated providers will optimize the query, and both queries will have the same
performance metrics. However, in the LINQ to Objects implementation (provided by
System.Linq.Enumerable), all products are read and sorted. Then the products sequence is filtered.

// Order before filter.
var sortedProductsSlow =
    from p in products
    orderby p.UnitsInStock descending
    where p.UnitsInStock > 100
    select p;

// Filter before order.
var sortedProductsFast =
    from p in products
    where p.UnitsInStock > 100
    orderby p.UnitsInStock descending
    select p;

Notice that the first query sorts the entire series and then throws away any products whose total in
stock is less than 100. The second query filters the sequence first, resulting in a sort on what may be
a much smaller sequence. At times, knowing whether the full sequence is needed for a method is the
difference between an algorithm that never finishes and one that finishes quickly. You need to
understand which methods require the full sequence, and try to execute those last in your query
expression.

So far, I've given you quite a few reasons to use lazy evaluation in your queries. In most cases, that's
the best approach. At other times, though, you do want a snapshot of the values taken at a point in
time. There are two methods you can use to generate the sequence immediately and store the results
in a container: ToList() and ToArray(). Both methods perform the query and store the results in a



List<T> or an Array, respectively.

These methods are useful for a couple of purposes. By forcing the query to execute immediately,
these methods capture a snapshot of the data right now. You force the execution to happen
immediately, rather than later when you decide to enumerate the sequence. Also, you can use
ToList() or ToArray() to generate a snapshot of query results that is not likely to change before you
need it again. You can cache the results and use the saved version later.

In almost all cases, lazy evaluation saves work and is more versatile than eager evaluation. In the rare
cases when you do need eager evaluation, you can force it by running the query and storing the
sequence results using ToList() or ToArray(). But unless there is a clear need to use eager
evaluation, it's better to use lazy evaluation.
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Item 38. Prefer Lambda Expressions to Methods

This recommendation may appear counterintuitive. Coding with lambda expressions can lead to
repeated code in the body of lambdas. You often find yourself repeating small bits of logic. The
following code snippet has the same logic repeated several times:

var allEmployees = FindAllEmployees();

// Find the first employees:
var earlyFolks = from e in allEmployees
                 where e.Classification ==
                     EmployeeType.Salary
                 where e.YearsOfService > 20
                 where e.MonthlySalary < 4000
                 select e;

// find the newest people:
var newest = from e in allEmployees
             where e.Classification == EmployeeType.Salary
             where e.YearsOfService < 2
             where e.MonthlySalary < 4000
             select e;

You could replace the multiple calls to Where with a single Where clause that has both conditions.
There isn't any noticeable difference between the two representations. Because queries compose (see
Item 17, Chapter 3) and because simple where predicates will likely be inlined, the performance will
be the same.

You may be tempted to factor repeated lambda expressions into methods that can be reused. You'd
end up with code that looks like this:

// factor out method:
private static bool LowPaidSalaried(Employee e)
{
    return e.MonthlySalary < 4000 &&
        e.Classification == EmployeeType.Salary;
}

// elsewhere
var allEmployees = FindAllEmployees();
var earlyFolks = from e in allEmployees
                 where LowPaidSalaried(e) &&
                 e.YearsOfService > 20
                 select e;



// find the newest people:
var newest = from e in allEmployees
             where LowPaidSalaried(e) && e.YearsOfService < 2
             select e;

It's a small example, so there's not much change here. But already it feels better. Now if the
employee classifications change or if the low threshold changes, you're changing the logic in only one
location.

Unfortunately, this method of refactoring your code makes it less reusable. The first version, as
written, is actually more reusable than the second version. That's because of the way lambda
expressions are evaluated, parsed, and eventually executed. If you're like most developers, you see
code that has been copied as pure evil and something to be eradicated at all costs. The version with a
single method is simpler. It has only one copy of the code to be modified later if needs change. It's
just plain good software engineering.

Unfortunately, it's also wrong. Some code will convert the lambda expressions into a delegate to
execute the code in your query expression. Other classes will create an expression tree from the
lambda expression, parse that expression, and execute it in another environment. LINQ to Objects
does the former, and LINQ to SQL does the latter.

LINQ to Objects performs queries on local data stores, usually stored in a generic collection. The
implementation creates an anonymous delegate that contains the logic in the lambda expression and
executes that code. The LINQ to Objects extension methods use IEnumerable<T> as the input
sequence.

LINQ to SQL, on the other hand, uses the expression tree contained in the query. That expression tree
contains the logical representation of your query. LINQ to SQL parses the tree and uses the expression
tree to create the proper T-SQL query, which can be executed directly against the database. Then, the
query string (as T-SQL) is sent to the database engine and is executed there.

This processing requires that the LINQ to SQL engine parse the expression tree and replace every
logical operation with equivalent SQL. All method calls are replaced with an Expression.MethodCall
node. The LINQ to SQL engine cannot translate any arbitrary method call into a SQL expression.
Instead, it throws an exception. The LINQ to SQL engine fails rather than try to execute multiple
queries, bring multiple data to the client side of the application boundary, and then process it there.

If you are building any kind of reusable library for which the data source could be anything, you must
anticipate this situation. You must structure the code so that it will work correctly with any data
source. This means that you need to keep lambda expressions separate, and as inline code, for your
library to function correctly.

Of course, this doesn't mean that you should be copying code all over the library. It means only that
you need to create different building blocks for your applications when query expressions and lambdas
are involved. From our simple example, you can create larger reusable blocks this way:

private static IQueryable<Employee> LowPaidSalariedFilter
    (this IQueryable<Employee> sequence)
{
    return from s in sequence
           where s.Classification == EmployeeType.Salary &&
           s.MonthlySalary < 4000



           select s;
}

// elsewhere:
var allEmployees = FindAllEmployees();

// Find the first employees:
var salaried = allEmployees.LowPaidSalariedFilter();

var earlyFolks = salaried.Where(e => e.YearsOfService > 20);

// find the newest people:
var newest = salaried.Where(e => e.YearsOfService < 2);

Of course, not every query is that simple to update. You need to move up the call chain a bit to find
the reusable list-processing logic so that you need to express the same lambda expression only once.
Recall from Item 17 (Chapter 3) that enumerator methods do not execute until you begin to traverse
the items in the collection. Remembering that fact, you can create small methods that construct each
portion of your query and contain commonly used lambda expressions. Each of those methods must
take as input the sequence, and must return the sequence using the yield return keyword.

Following that same pattern, you can compose IQueryable enumerators by building new expression
trees that can be executed remotely. Here, the expression tree for finding sets of employees can be
composed as a query before it is executed. The IQueryProvider object (such as the LINQ to SQL data
source) processes the full query rather than pull out parts that must be executed locally.

You then put together those small methods to build the larger queries you will use in your application.
The advantage of this technique is that you avoid the code-copying issues that we all dislike in the
first sample in this item. You also have structured the code so that it creates an expression tree for
execution when you have composed your completed query and begin to execute it.

One of the most efficient ways to reuse lambda expressions in complicated queries is to create
extension methods for those queries on closed generic types. You can see that the method for finding
the lower-paid salaried employees is such a method. It takes a sequence of employees and returns a
filtered sequence of employees. In production code, you should create a second overload that uses
IEnumerable<Employee> as the parameter type. In that way, you support both the LINQ to SQL style
implementations and the LINQ to Objects implementation.

You can build exactly the queries you need by composing the smaller building blocks from those
methods that take lambda expressions and are sequence methods. You gain the advantage of creating
code that works with IEnumerable<T> and IQueryable<T>. Furthermore, you haven't broken the
possible evaluation of the queryable expression trees.
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Item 39. Avoid Throwing Exceptions in Functions and Actions

When you create code that executes over a sequence of values and the code throws an exception
somewhere in that sequence processing, you'll have problems recovering state. You don't know how
many elements were processed, if any. You don't know what needs to be rolled back. You can't restore
the program state at all.

Consider this snippet of code, which gives everyone a 5 percent raise:

var allEmployees = FindAllEmployees();
allEmployees.ForEach(e => e.MonthlySalary *= 1.05M);

One day, this routine runs and throws an exception. Chances are that the exception was not thrown on
the first or last employee. Some employees got raises, but others didn't. It will be very difficult for
your program to recover the previous state. Can you return the data to a consistent state? Once you
lose knowledge of program state, you can't regain it without human examination of all the data.

This problem occurs because the code snippet modifies elements of a sequence in place. It doesn't
follow the strong exception guarantee. In the face of errors, you can't know what happened and what
didn't.

You fix this situation by guaranteeing that whenever the method does not complete, the observable
program state does not change. You can implement this in various ways, each with its own benefits
and risks.

Before talking about the risks, let's examine the reason for concern in a bit more detail. Not every
method exhibits this problem. Many methods examine a sequence but do not modify it. The following
method examines everyone's salary and returns the result:

decimal total = allEmployees.Aggregate(0M,
    (sum, emp) => sum + emp.MonthlySalary);

You don't need to carefully modify methods like this that do not modify any data in the sequence. In
many applications, you'll find that most of your methods do not modify the sequence. Let's return
again to our first method, giving every employee a 5 percent raise. What actions can you take to
rework this method to ensure that the strong exception guarantee is satisfied?

The first and easiest approach is to rework the action so that you can ensure that the action method,
expressed earlier in the lambda expression, never throws an exception. In many cases, it is possible
to test any failure conditions before modifying each element in the sequence (see Item 25, Chapter
3). You need to define the functions and predicates so that the method's contract can be satisfied in
all cases, even error conditions. This strategy works if doing nothing is the right behavior for elements
that caused the exception. In the example of granting raises, imagine that all exceptions are caused



by employee records that are stale and include people who no longer work for the company but are
still in persistent storage. That would make it correct behavior to skip them. This modification would
work:

allEmployees.FindAll(
    e => e.Classification == EmployeeType.Active).
    ForEach(e => e.MonthlySalary *= 1.05M);

Fixing the problem in this way is the simplest path to avoiding inconsistencies in your algorithms.
Whenever you can write your action methods to ensure that no exceptions leave a lambda expression
or action method, that's the most efficient technique to use.

However, sometimes you may not be able to guarantee that those expressions never throw an
exception. Now you must take more-expensive defensive measures. You need to rework the algorithm
to take into account the possibility of an exception. That means doing all the work on a copy and then
replacing the original sequence with the copy only if the operation completes successfully. If you felt
you could not avoid the possibility of an exception, you could rewrite our earlier algorithm:

var updates = (from e in allEmployees
               select new Employee
               {
                   EmployeeID = e.EmployeeID,
                   Classification = e.Classification,
                   YearsOfService = e.YearsOfService,
                   MonthlySalary = e.MonthlySalary *= 1.05M
               }).ToList();
allEmployees = updates;

You can see the cost of those changes here. First, there's quite a bit more code than in the earlier
versions. That's more work—more code to maintain and more to understand. But you've also changed
the performance metrics for the application. This newer version creates a second copy of all the
employee records and then swaps the reference to the new list of employees with the reference to the
old list. If the employee list is large, that could cause a big performance bottleneck. You have created
duplicates of all employees in the list before swapping references. The contract for the action now
might throw an exception when the employee object is invalid. The code outside the query now
handles those conditions.

And there's still another issue with this particular fix: Whether or not it makes sense depends on how
it's used. This new version limits your ability to compose operations using multiple functions. This code
snippet caches the full list. This means that its modifications aren't composed along with other
transformations in a single enumeration of the list. Each transformation becomes an imperative
operation. In practice, you can work around this issue by creating one query statement that performs
all the transformations. You cache the list and swap the entire sequence as one final step for all the
transformations. Using that technique, you preserve the composability and still provide the strong
exception guarantee.

In practice that means writing query expressions to return a new sequence rather than modifying each
element of a sequence in place. Each composed query should be able to swap the list unless any
exceptions are generated during the processing of any of the steps in the sequence.

Composing queries changes the way you write exception-safe code. If your actions or functions throw



an exception, you may have no way to ensure that the data is not in an inconsistent state. You don't
know how many elements were processed. You don't know what actions must be taken to restore the
original state. However, returning new elements (rather than modifying the elements in place) gives
you a better chance of ensuring that operations either complete or don't modify any program state.

This is the same advice for all mutable methods when exceptions may be thrown. It also applies in
multithreaded environments. The problem can be harder to spot when you use lambda expressions
and the code inside them may throw the exception. With the final operation, you should swap the
entire sequence after you are sure that none of the operations has generated an exception.
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Item 40. Distinguish Early from Deferred Execution

Declarative code is expository: It defines what gets done. Imperative code details step-by-step
instructions that explain how something gets done. Both are valid and can be used to create working
programs. However, mixing the two causes unpredictable behavior in your application.

All the imperative code you make today will calculate any needed parameters and then call the
method. This line of code describes an imperative set of steps to create the answer:

object answer = DoStuff(Method1(),
    Method2(),
    Method3());

At runtime, this line of code does the following.

It calls Method1 to generate the first parameter to DoStuff().1.

It calls Method2 to generate the second parameter to DoStuff().2.

It calls Method3 to generate the third parameter to DoStuff().3.

It calls DoStuff with the three calculated parameters.4.

That should be a familiar style of code for you. All parameters are calculated, and the data is sent to
any method. The algorithms you write are a descriptive set of steps that must be followed to produce
the results.

Deferred execution, in which you use lambdas and query expressions, completely changes this
process and may pull the rug out from under you. The following line of code seems to do the same
thing as the foregoing example, but you'll soon see that there are important differences:

object answer = DoStuff(() => Method1(),
    () => Method2(),
    () => Method3());

At runtime, this line of code does the following.

It calls DoStuff(), passing the lambda expressions that could call Method1, Method2, and
Method3.

1.

2.

3.



1.

Inside DoStuff, if and only if the result of Method1 is needed, Method1 is called.2.

Inside DoStuff, if and only if the result of Method2 is needed, Method2 is called.3.

Inside DoStuff, if and only if the result of Method3 is needed, Method3 is called.4.

Method1, Method2, and Method3 may be called in any order, as many times (including zero) as
needed.

5.

None of those methods will be called unless the results are needed. This difference is significant, and
you will cause yourself major problems if you mix the two idioms.

From the outside, any method can be replaced by its return value, and vice versa, as long as that
method does not produce any side effects. In our example, the DoStuff() method does not see any
difference between the two strategies. The same value is returned, and either strategy is correct. If
the method always returns the same value for the same inputs, then the method return value can
always be replaced by a call to the method, and vice versa.

However, looking at the program as a whole, there may be significant differences between the two
lines of code. The imperative model always calls all three methods. Any side effects from any of those
methods always occur exactly once. In contrast, the declarative model may or may not execute all or
any of the methods. The declarative version may execute any of the methods more than once. This is
the difference between (1) calling a method and passing the results to a method and (2) passing a
delegate to the method and letting the method call the delegate. You may get different results from
different runs of the application, depending on what actions take place in these methods.

The addition of lambda expressions, type inference, and enumerators makes it much easier to use
functional programming concepts in your classes. You can build higher-order functions that take
functions as parameters or that return functions to their callers. In one way, this is not a big change:
A true function and its return value are always interchangeable. In practice, a function may have side
effects, and this means that different rules apply.

If data and methods are interchangeable, which should you choose? And, more importantly, when
should you choose which? The most important difference is that data must be preevaluated, whereas a
method can be lazy-evaluated. When you must evaluate data early, you must preevaluate the method
and use the result as the data, rather than take a functional approach and substitute the method.

The most important criterion for deciding which to use is the possibility of side effects, both in the
body of the function and in the mutability of its return value. Item 37 (earlier in this chapter) shows a
query whose results are based on the current time. Its return value changes depending on whether
you execute it and cache the results or you use the query as a function parameter. If the function
itself produces side effects, the behavior of the program depends on when you execute the function.

There are techniques you can use to minimize the contrast between early and late evaluation. Pure
immutable types cannot be changed, and they don't change other program states; therefore, they are
not subject to side effects. In the brief example earlier, if Method1, Method2, and Method3 are
members of an immutable type, then the observable behavior of the early and the late evaluation
statements should be exactly the same.

My example does not take any parameters, but if any of those late evaluation methods took
parameters, those parameters would need to be immutable to ensure that the early and late binding
results were the same.



Therefore, the most important point in deciding between early and late evaluation is the semantics
that you want to achieve. If (and only if) the objects and methods are immutable, then the
correctness of the program is the same when you replace a value with the function that calculates it,
and vice versa. ("Immutable methods" in this case means that the methods cannot modify any global
state, such as performing I/O operations, updating global variables, or communicating with other
processes.) If the objects and methods are not immutable, you risk changing the program's behavior
by changing from early to late evaluation and vice versa. The rest of this item assumes that the
observable behavior won't change between early and late evaluation. We look at other reasons to
favor one or the other strategy.

One decision point is the size of the input and output space versus the cost of computing the output.
For example, programs would still work if Math.PI calculated pi when called. The value and the
computation are interchangeable from the outside. However, programs would be slower because
calculating pi takes time. On the other hand, a method CalculatePrimeFactors(int) could be
replaced with a lookup table containing all factors of all integers. In that case, the cost of the data
table in memory would likely be much greater than the cost in time of calculating the values when
needed.

Your real-world problems probably fall somewhere between those two extremes. The right solution
won't be as obvious, nor will it be as clear-cut. In addition to analyzing the computational cost versus
the storage cost, you need to consider how you will use the results of any given method. You will find
that in some situations, early evaluation of certain queries will make sense. In other cases, you'll use
interim results only infrequently. If you ensure that the code does not produce side effects and that
either early or deferred evaluation produces the correct answer, then you can make the decision based
on the measured performance metrics of both solutions. You can try both ways, measure the
difference, and use the best result.

Finally, in some cases, you may find that a mixture of the two strategies will work the best. You may
find that caching sometimes provides the most efficiency. In those cases, you can create a delegate
that returns the cached value:

MyType cache = Method1();
object answer = DoStuff(() => cache,
    () => Method2(),
    () => Method3());

The final decision point is whether the method can execute on a remote data store. This factor has
quite a bearing on how LINQ to SQL processes queries. Every LINQ to SQL query starts as a deferred
query: The methods, and not the data, are used as parameters. Some of the methods may involve
work that can be done inside the database engine, and some of the work represents local methods
that must be processed before the partially processed query is submitted to the database engine.
LINQ to SQL parses the expression tree. Before submitting the query to the database engine, it
replaces any local method calls with the result from those method calls. It can do this processing only
if a method call does not rely on any individual items in the input sequence being processed (see
Items 37 and 38, both in this chapter).

Once LINQ to SQL has replaced any local method calls with the equivalent return values, it translates
the query from expressions into SQL statements, which are sent to the database engine and executed
there. The result is that by creating a query as a set of expressions, or code, the LINQ to SQL libraries
can replace those methods with equivalent SQL. That provides improved performance and lower
bandwidth usage. It also means that you as a C# developer can spend less time learning T-SQL. Other
providers can do the same.



However, all this work is possible only because you can treat data as code, and vice versa, under the
right circumstances. With LINQ to SQL, local methods can be replaced with the return values when the
parameters to the method are constants that do not rely on the input sequence. Also, there is quite a
bit of functionality in the LINQ to SQL libraries that translates expression trees to a logical structure
that can then be translated into T-SQL.

As you create algorithms in C# now, you can determine whether using the data as a parameter or the
function as a parameter causes any difference in behavior. Once you've determined that either would
be correct, you must determine which would be the better strategy. When the input space is smaller,
passing data might be better. However, in other cases, when the input or output space may be very
large and you don't necessarily use the entire input data space, you may find that it's much wiser to
use the algorithm itself as a parameter. If you're not sure, lean toward using the algorithm as a
parameter, because the developer who implements the function can create that function to eagerly
evaluate the output space and work with those data values instead.
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Item 41. Avoid Capturing Expensive Resources

Closures create objects that contain bound variables. The length of the lives of those bound variables
may surprise you, and not always in a good way. As developers we've grown accustomed to looking at
the lifetimes of local variables in a very simple way: Variables come into scope when we declare them,
and they are out of scope when the corresponding block closes. Local variables are eligible for garbage
collection when they go out of scope. We use these assumptions to manage resource usage and object
lifetimes.

Closures and captured variables change those rules. When you capture a variable in a closure, the
object referenced by that variable does not go out of scope until the last delegate referencing that
captured variable goes out of scope. Under some circumstances it may last even longer. After closures
and captured variables escape one method, they can be accessed by closures and delegates in client
code. Those delegates and closures can be accessed by other code, and so on. Eventually the code
accessing your delegate becomes an open-ended set of methods with no idea when your closure and
delegates are no longer reachable. The implication is that you really don't know when local variables
go out of scope if you return something that is represented by a delegate using a captured variable.

The good news is that often you don't need to be concerned about this behavior. Local variables that
are managed types and don't hold on to expensive resources are garbage-collected at a later point,
just as regular variables are. If the only thing used by local variables is memory, there's no concern at
all.

But some variables hold on to expensive resources. They represent types that implement IDisposable
and need to be explicitly cleaned up. You may prematurely clean up those resources before you've
actually enumerated the collection. You may find that files or connections aren't being closed quickly
enough, and you're not able to access files because they are still open.

Item 33 (Chapter 4) shows you how the C# compiler produces delegates and how variables are
captured inside a closure. In this item, we look at how to recognize when you have captured variables
that contain other resources. We examine how to manage those resources and how to avoid pitfalls
that can occur when captured variables live longer than you'd like.

Consider this construct:

int counter = 0;
IEnumerable<int> numbers =
    Extensions.Generate(30, () => counter++);

It generates code that looks something like this:

private class Closure
{
    public int generatedCounter;



    public int generatorFunc()
    {
        return generatedCounter ++;
    }
}

// usage
Closure c = new Closure();
c.generatedCounter = 0;
IEnumerable<int> sequence = Extensions.Generate(30, new
Func<int>(c.generatorFunc));

This can get very interesting. The hidden nested class members have been bound to delegates used
by Extensions.Generate. That can affect the lifetime of the hidden object and therefore can affect
when any of the members are eligible for garbage collection. Look at this example:

public IEnumerable<int> MakeSequence()
{
    int counter = 0;
    IEnumerable<int> numbers = Extensions.Generate(30,
        () => counter++);
    return numbers;
}

In this code, the returned object uses the delegate that is bound by the closure. Because the return
value needs the delegate, the delegate's lifetime extends beyond the life of the method. The lifetime
of the object representing the bound variables is extended. The object is reachable because the
delegate instance is reachable, and the delegate is still reachable because it's part of the returned
object. And all members of the object are reachable because the object is reachable.

The C# compiler generates code that looks like this:

public static IEnumerable<int> MakeSequence()
{
    Closure c = new Closure();
    c.generatedCounter = 0;
    IEnumerable<int> sequence = Extensions.Generate(30,
        new Func<int>(c.generatorFunc));
    return sequence;
}

Notice that this sequence contains a delegate reference to a method bound to c, the local object
instantiating the closure. The local variable c lives beyond the end of the method.

Often, this situation does not cause much concern. But there are two cases in which it can cause
confusion. The first involves IDisposable. Consider the following code. It reads numbers from a CSV
input stream and returns the values as a sequence of sequences of numbers. Each inner sequence
contains the numbers on that line. It uses some of the extension methods shown in Item 28 (Chapter
4).



public static IEnumerable<string> ReadLines(
    this TextReader reader)
{
    string txt = reader.ReadLine();
    while (txt != null)
    {
        yield return txt;
        txt = reader.ReadLine();
    }
}

public static int DefaultParse(this string input,
    int defaultValue)
{
    int answer;
    return (int.TryParse(input, out answer))
        ? answer : defaultValue;
}

public static IEnumerable<IEnumerable<int>>
    ReadNumbersFromStream(TextReader t)
{
    var allLines = from line in t.ReadLines()
                 select line.Split(',');
    var matrixOfValues = from line in allLines
                    select from item in line
                           select item.DefaultParse(0);
    return matrixOfValues;
}

You would use it like this:

TextReader t = new StreamReader("TestFile.txt");
var rowsOfNumbers = ReadNumbersFromStream(t);

Remember that queries generate the next value only when that value is accessed. The
ReadNumbersFromStream() method does not put all the data in memory, but rather it loads values
from the stream as needed. The two statements that follow don't actually read the file. It's only later
when you start enumerating the values in rowsOfNumbers that you open the file and begin reading the
values.

Later, in a code review, someone—say, that pedantic Alexander—points out that you never explicitly
close the test file. Maybe he found it because there was a resource leak, or he found some error
because the file was open when he tried to read it again. You make a change to fix that problem.
Unfortunately, it doesn't address the root concerns.

IEnumerable<IEnumerable<int>> rowOfNumbers;
using (TextReader t = new StreamReader("TestFile.txt"))
    rowOfNumbers = ReadNumbersFromStream(t);



You happily start your tests, expecting success, but your program throws an exception a couple of
lines later:

IEnumerable<IEnumerable<int>> rowOfNumbers;
using (TextReader t = new StreamReader("TestFile.txt"))
    rowOfNumbers = ReadNumbersFromStream(t);

foreach (var line in rowOfNumbers)
{
    foreach (int num in line)
        Console.Write("{0}, ", num);
    Console.WriteLine();
}

What happened? You tried to read from the file after you closed it. The iteration throws an
ObjectDisposedException. The C# compiler bound Textreader to the delegate that reads and
parses items from the file. That set of code is represented by the variable arrayOfNums. Nothing has
really happened yet. The stream has not been read, and nothing has been parsed. That's one of the
issues that arise when you move the resource management back up to the callers. If those callers
misunderstand the lifetimes of resources, they will introduce problems that range from resource leaks
to broken code.

The specific fix is straightforward. You move the code around so that you use the array of numbers
before you close the file:

using (TextReader t = new StreamReader("TestFile.txt"))
{
    var arrayOfNums = ReadNumbersFromStream(t);

    foreach (var line in arrayOfNums)
    {
        foreach (var num in line)
            Console.Write("{0}, ", num);
        Console.WriteLine();
    }
}

That's great, but not all your problems are that simple. This strategy will lead to lots of duplicated
code, and we're always trying to avoid that. So let's look at this solution for some hints about what
can lead to a more general answer. The foregoing piece of code works because it uses the array of
numbers before the file is closed.

You've structured the code in such a way that it's almost impossible to find the right location to close
the file. You've created an API wherein the file must be opened in one location but cannot be closed
until a later point. Suppose the original usage pattern were more like this:

using (TextReader t = new StreamReader("TestFile.txt"))
    return ReadNumbersFromFile(t);

Now you're stuck with no possible way to close the file. It's opened in one routine, but somewhere up



the call stack, the file needs to be closed. Where? You can't be sure, but it's not in your code. It's
somewhere up the call stack, outside your control, and you're left with no idea even what the file
name is and no stream handle to examine what to close.

One obvious solution is to create one method that opens the file, reads the sequence, and returns the
sequence. Here's a possible implementation:

public static IEnumerable<string> ParseFile(string path)
{
    using (StreamReader r = new StreamReader(path))
    {
        string line = r.ReadLine();
        while (line != null)
        {
            yield return line;
            line = r.ReadLine();
        }
    }
}

This method uses the same deferred execution model I show you in Item 17 (Chapter 3). What's
important here is that the StreamReader object is disposed of only after all elements have been read,
whether that happens early or later. The file object will be closed, but only after the sequence has
been enumerated. Here's a smaller contrived example to show what I mean.

class Generator : IDisposable
{
    private int count;
    public int GetNextNumber()
    {
        return count++;
    }

    #region IDisposable Members
    public void Dispose()
    {
        Console.WriteLine("Disposing now ");
    }
    #endregion
}

The Generator class implements IDisposable, but only to show you what happens when you capture
a variable of a type that implements IDisposable. Here's one sample usage:

var query = (from n in SomeFunction()
            select n).Take(5);

foreach (var s in query)
    Console.WriteLine(s);



Console.WriteLine("Again");
foreach (var s in query)
    Console.WriteLine(s);

Here's the output from this code fragment:

0
1
2
3
4
Disposing now
Again
0
1
2
3
4
Disposing now

The Generator object is disposed of when you would hope: after you have completed the iteration for
the first time. Generator is disposed of whether you complete the iteration sequence or you stop the
iteration early, as this query does.

However, there is a problem here. Notice that "Disposing now" is printed twice. Because the code
fragment iterated the sequence twice, the code fragment caused Generator to be disposed of twice.
That's not a problem in the Generator class, because that's only a marker. But the file example
throws an exception when you enumerate the sequence for the second time. The first enumeration
finishes, and StreamReader gets disposed of. Then the second enumeration tries to access a stream
reader that's been disposed of. It won't work.

If your application will likely perform multiple enumerations on a disposable resource, you need to find
a different solution. You may find that your application reads multiple values, processing them in
different ways during the course of an algorithm. It may be wiser to use delegates to pass the
algorithm, or multiple algorithms, into the routine that reads and processes the records from the file.

You need a generic version of this method that will let you capture the use of those values and then
use those values inside an expression before you finally dispose of the file. The same action would
look like this:

// Usage pattern: parameters are the file
// and the action you want taken for each line in the file.
ProcessFile("testFile.txt",
    (arrayOfNums) =>
    {
        foreach (IEnumerable<int> line in arrayOfNums)
        {
            foreach (int num in line)
                Console.Write("{0}, ", num);
            Console.WriteLine();
        }



        // Make the compiler happy by returning something:
        return 0;
    }
);

// declare a delegate type
public delegate TResult ProcessElementsFromFile<TResult>(
    IEnumerable<IEnumerable<int>> values);

// Method that reads files, processing each line
// using the delegate
public static TResult ProcessFile<TResult>(string filePath,
    ProcessElementsFromFile<TResult> action)
{
    using (TextReader t = new StreamReader(filePath))
    {
        var allLines = from line in t.ReadLines()
                       select line.Split(',');

        var matrixOfValues = from line in allLines
                             select from item in line
                                    select
                                        item.DefaultParse(0);
        return action(matrixOfValues);
    }
}

This looks a bit complicated, but it is helpful if you find yourself using this data source in many ways.
Suppose you need to find the global maximum in the file:

var maximum = ProcessFile("testFile.txt",
    (arrayOfNums) =>
        (from line in arrayOfNums
            select line.Max()).Max());

Here, the use of the file stream is completely encapsulated inside ProcessFile. The answer you seek
is a value, and it gets returned from the lambda expression. By changing the code so that the
expensive resource (here, the file stream) gets allocated and released inside the function, you don't
have expensive members being added to your closures.

The other problem with expensive resources captured in closures is less severe, but it can affect your
application's performance metrics. Consider this method:

IEnumerable<int> ExpensiveSequence()
{
    int counter = 0;
    IEnumerable<int> numbers = Extensions.Generate(30,
        () => counter++);

    Console.WriteLine("counter: {0}", counter);



    ResourceHog hog = new ResourceHog();
    numbers = numbers.Union(
        hog.SequenceGeneratedFromResourceHog(
        (val) => val < counter));
    return numbers;
}

Like the other closures I've shown, this algorithm produces code that will be executed later, using the
deferred execution model. This means that ResourceHog lives beyond the end of this method to
whenever client code enumerates the sequence. Furthermore, if ResourceHog is not disposable, it will
live on until all roots to it are unreachable and the garbage collector frees it.

If this is a bottleneck, you can restructure the query so that the numbers generated from ResourceHog
get evaluated eagerly and thus ResourceHog can be cleaned up immediately:

IEnumerable<int> ExpensiveSequence()
{
    int counter = 0;
    IEnumerable<int> numbers = Extensions.Generate(30,
        () => counter++);

    Console.WriteLine("counter: {0}", counter);

    ResourceHog hog = new ResourceHog();
    IEnumerable<int> mergeSequence =
        hog.SequenceGeneratedFromResourceHog(
            (val) => val < counter).ToList();
    numbers = numbers.Union(mergeSequence);
    return numbers;
}

This sample is pretty clear, because the code isn't very complicated. If you have more-complicated
algorithms, it can be quite a bit more difficult to separate the inexpensive resources from the
expensive resources. Depending on how complicated your algorithms are in methods that create
closures, it may be quite a bit more difficult to unwind different resources that are captured inside
bound variables of the closure. The following method uses three different local variables captured in a
closure.

private static IEnumerable<int> LeakingClosure(int mod)
{
    ResourceHogFilter filter = new ResourceHogFilter();
    CheapNumberGenerator source = new CheapNumberGenerator();
    CheapNumberGenerator results = new CheapNumberGenerator();

    double importantStatistic = (from num in
                                 source.GetNumbers(50)
                                 where
                                     filter.PassesFilter(num)
                                 select num).Average();

    return from num in results.GetNumbers(100)



           where num > importantStatistic
           select num;
}

At first examination, it appears fine. ResourceHog generates the important statistic. It's scoped to the
method, and it becomes garbage as soon as the method exits.

Unfortunately, this method is not as fine as it appears to be.

Here's why. The C# compiler creates one nested class per scope to implement a closure. The final
query statement—which returns the numbers that are greater than the important statistic—needs a
closure to contain the bound variable, the important statistic. Earlier in the method, the filter needs to
be used in a closure to create the important statistic. This means that the filter gets copied into the
nested class that implements the closure. The return statement returns a type that uses an instance of
the nested class to implement the where clause. The instance of the nested class implementing the
closure has leaked out of this method. Normally you wouldn't care. But if ResourceHogFilter really
uses expensive resources, this would be a drain on your application.

To fix this problem, you need to split the method into two parts and get the compiler to create two
closure classes:

private static IEnumerable<int> NotLeakingClosure(int mod)
{
    var importantStatistic = GenerateImportantStatistic();

    CheapNumberGenerator results = new CheapNumberGenerator();
    return from num in results.GetNumbers(100)
           where num > importantStatistic
           select num;
}

private static double GenerateImportantStatistic()
{
    ResourceHogFilter filter = new ResourceHogFilter();
    CheapNumberGenerator source = new CheapNumberGenerator();

    return (from num in source.GetNumbers(50)
                where filter.PassesFilter(num)
                select num).Average();
}

"But wait," you say. "That return statement in GenerateImportantStatistic contains the query that
generates the statistic. The closure still leaks." No, it doesn't. The Average method requires the entire
sequence (see Item 40, earlier in this chapter). The enumeration happens inside the scope of
GenerateImportantStatistic, and the average value is returned. The closure containing the
ResourceHogFilter object can be garbage-collected as soon as this method returns.

I chose to rework the method in this way because even more issues arise when you write methods
that have multiple logical closures. Even though you think that the compiler should create multiple
closures, the compiler creates only one closure, which handles all the underlying lambdas in each
scope. You care in cases when one of the expressions can be returned from your method, and you



think that the other expression doesn't really matter. But it does matter. Because the compiler creates
one class to handle all the closures created by a single scope, all members used in any closures are
injected into that class. Examine this short method:

public IEnumerable<int> MakeAnotherSequence()
{
    int counter = 0;

    IEnumerable<int> interim = Extensions.Generate(30,
        () => counter++);
    Random gen = new Random();

    IEnumerable<int> numbers = from n in interim
                               select gen.Next() - n;
    return numbers;
}

MakeAnotherSequence() contains two queries. The first one generates a sequence of integers from 0
through 29. The second modifies that sequence using a random number generator. The C# compiler
generates one private class to implement the closure that contains both counter and gen. The code
that calls MakeAnotherSequence() will access an instance of the generated class containing both local
variables. The compiler does not create two nested classes, only one. The instances of that one nested
class will be passed to callers.

There's one final issue relating to when operations happen inside a closure. Here's a sample.

private static void SomeMethod(ref int i)
{
    //...
}
private static void DoSomethingInBackground()
{
    int i = 0;
    Thread thread = new Thread(delegate()
        { SomeMethod(ref i); });
    thread.Start();
}

In this sample, you've captured a variable and examined it in two threads. Furthermore, you've
structured it such that both threads are accessing it by reference. I'd explain more in a sample as to
what happens to the value of i when you run this sample, but the truth is that it's not possible to
know what's going to happen. Both threads can examine or modify the value of i, but, depending on
which thread works faster, either thread could change the value at any time.

When you use query expressions in your algorithms, the compiler creates a single closure for all
expressions in the entire method. An object of that type may be returned from your method, possibly
as a member of the type implementing the enumeration. That object will live in the system until all
users of it have been removed. That may create many issues. If any of the fields copied into the
closure implements IDisposable, it can cause problems with correctness. If any of the fields is
expensive to carry, it can cause performance problems. Either way, you need to understand that when
objects created by a closure are returned from methods, the closure contains all the variables used to



perform the calculations. You must ensure that you need those variables, or, if you can't do that,
ensure that the closure can clean them up for you.
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Item 42. Distinguish Between IEnumerable and IQueryable Data
Sources

IQueryable<T> and IEnumerable<T> have very similar API signatures. IQueryable<T> derives from
IEnumerable<T>. You might think that these two interfaces are interchangeable. In many cases, they
are, and that's by design. In contrast, a sequence is a sequence, but sequences are not always
interchangeable. Their behaviors are different, and their performance metrics can be very, very
different. The following two query statements are quite different:

    var q =
        from c in dbContext.Customers
        where c.City == "London"
        select c;
    var finalAnswer = from c in q
                      orderby c.Name
                      select c;
// Code to iterate the final Answer sequence elided
    var q =
        (from c in dbContext.Customers
        where c.City == "London"
        select c).AsEnumerable();
    var finalAnswer = from c in q
                      orderby c.Name
                      select c;

// code to iterate final answer elided.

These queries return the same result, but they do their work in very different ways. The first query
uses the normal LINQ to SQL version that is built on IQueryable functionality. The second version
forces the database objects into IEnumerable sequences and does more of its work locally. It's a
combination of lazy evaluation and IQueryable<T> support in LINQ to SQL.

When the results of a query are executed, the LINQ to SQL libraries compose the results from all the
query statements. In the example, this means that one call is made to the database. It also means
that one SQL query performs both the where clause and the orderby clause.

In the second case, returning the first query as an IEnumerable<T> sequence means that subsequent
operations use the LINQ to Objects implementation and are executed using delegates. The first
statement causes a call to the database to retrieve all customers in London. The second orders the set
returned by the first call by name. That sort operation occurs locally.

You should care about the differences because many queries work quite a bit more efficiently if you
use IQueryable functionality than if you use IEnumerable functionality. Furthermore, because of the
differences in how IQueryable and IEnumerable process query expressions, you'll find that



sometimes queries that work in one environment do not work in the other.

The processing is different at every step of the way. That's because the types used are different.
Enumerable<T> extension methods use delegates for the lambda expressions as well as the function
parameters whenever they appear in query expressions. Queryable<T>, on the other hand, uses
expression trees to process those same function elements. An expression tree is a data structure
that holds all the logic that makes up the actions in the query. The Enumerable<T> version must
execute locally. The lambda expressions have been compiled into methods, and they must execute
now on the local machine. This means that you need to pull all the data into the local application
space from wherever it resides. You'll transfer much more data, and you'll throw away whatever isn't
necessary.

In contrast, the Queryable version parses the expression tree. After examining the expression tree,
this version translates that logic into a format appropriate for the provider and then executes that
logic where it is closest to the data location. The result is much less data transfer and better overall
system performance. However, there are some restrictions on the code that goes into query
expressions when you use the IQueryable interface and rely on the Queryable<T> implementation of
your sequence.

As I show earlier in this chapter in Item 37, IQueryable providers don't parse any arbitrary method.
That would be an unbounded set of logic. Instead, they understand a set of operators, and possibly a
defined set of methods, that are implemented in the .NET Framework. If your queries contain other
method calls, you may need to force the query to use the Enumerable implementation.

private bool isValidProduct(Product p) {
    return p.ProductName.LastIndexOf('C') == 0;
}
// This works:
var q1 =
    from p in dbContext.Products.AsEnumerable()
    where isValidProduct(p)
    select p;
// This throws an exception when you enumerate the collection.
var q2 =
    from p in dbContext.Products
    where isValidProduct(p)
    select p;

The first query works, because LINQ to Objects uses delegates to implement queries as method calls.
The AsEnumerable() call forces the query into the local client space, and the where clause executes
using LINQ to Objects. The second query throws an exception. The reason is that LINQ to SQL uses an
IQueryable<T> implementation. LINQ to SQL contains an IQueryProvider that translates your
queries into T-SQL. That T-SQL then gets remoted to the database engine, and the database engine
executes the SQL statements in that context (see Item 38 earlier in this chapter). That approach can
give you an advantage, because far less data gets transferred across tiers and possibly across layers.

In a typical tradeoff of performance versus robustness, you can avoid the exception by translating the
query result explicitly to an IEnumerable<T>. The downside of that solution is that the LINQ to SQL
engine now returns the entire set of dbContext.Products from the database. Furthermore, the
remainder of the query is executed locally. Because IQueryable<T> inherits from IEnumerable<T>,
this method can be called using either source.



That sounds good, and it can be a simple approach. But it forces any code that uses your method to
fall back to the IEnumerable<T> sequence. If your client developer is using a source that supports
IQueryable<T>, you have forced her to pull all the source elements into this process's address space,
then process all those elements here, and finally return the results.

Even though normally you would be correct to write that method once, and write it to the lowest
common class or interface, that's not the case with IEnumerable<T> and IQueryable<T>. Even though
they have almost the same external capabilities, the differences in their respective implementations
mean that you should use the implementation that matches your data source. In practice, you'll know
whether the data source implements IQueryable<T> or only IEnumerable<T>. When your source
implements IQueryable, you should make sure that your code uses that type.

However, you may occasionally find that a class must support queries on IEnumerable<T> and
IQueryable<T> for the same T:

public static IEnumerable<Product>
    ValidProducts(this IEnumerable<Product> products)
{
    return from p in products
           where p.ProductName.LastIndexOf('C') == 0
           select p;
}

// OK, because string.LastIndexOf() is supported
// by LINQ to SQL provider
public static IQueryable<Product>
ValidProducts(this IQueryable<Product> products)
{
    return from p in products
           where p.ProductName.LastIndexOf('C') == 0
           select p;
}

Of course, this code reeks of duplicated effort. You can avoid the duplication by using AsQueryable()
to convert any IEnumerable<T> to an IQueryable<T>:

public static IEnumerable<Product>
    ValidProducts(this IEnumerable<Product> products)
{

    return from p in products.AsQueryable()
           where p.ProductName.LastIndexOf('C') == 0
           select p;
}

AsQueryable() looks at the runtime type of the sequence. If the sequence is an IQueryable, it
returns the sequence as an IQueryable. In contrast, if the runtime type of the sequence is an
IEnumerable, then AsQueryable() creates a wrapper that implements IQueryable using the LINQ to
Objects implementation, and it returns that wrapper. You get the Enumerable implementation, but it's
wrapped in an IQueryable reference.



Using AsQueryable() gives you the maximum benefit. Sequences that already implement IQueryable
will use that implementation, and sequences that support only IEnumerable will still work. When client
code hands you an IQueryable sequence, your code will properly use the Queryable<T> methods and
will support expression trees and foreign execution. And if you are working with a sequence that
supports only IEnumerable<T>, then the runtime implementation will use the IEnumerable
implementation.

Notice that this version still uses a method call: string.LastIndexOf(). That is one of the methods
that are parsed correctly by the LINQ to SQL libraries, and therefore you can use it in your LINQ to
SQL queries. However, every provider has unique capabilities, so you should not consider that method
available in every IQueryProvider implementation.

IQueryable<T> and IEnumerable<T> might seem to provide the same functionality. All the difference
lies in how each implements the query pattern. Make sure to declare query results using the type that
matches your data source. Query methods are statically bound, and declaring the proper type of query
variables means that you get the correct behavior.
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Item 43. Use Single() and First() to Enforce Semantic
Expectations on Queries

A quick perusal of the LINQ libraries might lead you to believe that they have been designed to work
exclusively with sequences. But there are methods that escape out of a query and return a single
element. Each of these methods behaves differently from the others, and those differences help you
express your intention and expectations for the results of a query that returns a scalar result.

Single() returns exactly one element. If no elements exist, or if multiple elements exist, then
Single() tHRows an exception. That's a rather strong statement about your expectations. However, if
your assumptions are proven false, you probably want to find out immediately. When you write a
query that is supposed to return exactly one element, you should use Single(). This method
expresses your assumptions most clearly: You expect exactly one element back from the query. Yes, it
fails if your assumptions are wrong, but it fails quickly and in a way that doesn't cause any data
corruption. That immediate failure helps you make a quick diagnosis and correct the problem.
Furthermore, your application data doesn't get corrupted by executing later program logic using faulty
data. The query fails immediately, because the assumptions are wrong.

var somePeople = new List<Person>{
    new Person {FirstName = "Bill", LastName = "Gates"},
    new Person { FirstName = "Bill", LastName = "Wagner"},
    new Person { FirstName = "Bill", LastName = "Johnson"}};

// Will throw an exception because more than one
// element is in the sequence
var answer = (from p in somePeople
              where p.FirstName == "Bill"
              select p).Single();

Furthermore, unlike many of the other queries I've shown you, this one throws an exception even
before you examine the result. Single() immediately evaluates the query and returns the single
element. The following query fails with the same exception (although a different message):

var answer = (from p in somePeople
              where p.FirstName == "Larry"
              select p).Single();

Again, your code assumes that exactly one result exists. When that assumption is wrong, Single()
always throws an InvalidOperationException.

If your query can return zero or one element, you can use SingleOrDefault(). However, remember
that SingleOrDefault() still throws an exception when more than one value is returned. You are still
expecting no more than one value returned from your query expression.



var answer = (from p in somePeople
              where p.FirstName == "Larry"
              select p).SingleOrDefault();

This query returns null (the default value for a reference type) to indicate that there were no values
that matched the query.

Of course, there are times when you expect to get more than one value but you want a specific one.
The best choice is First() or FirstOrDefault(). Both methods return the first element in the
returned sequence. If the sequence is empty, the default is returned. The following query finds the
forward who scored the most goals, but it returns null if none of the forwards has scored any goals.

// Works. Returns null
var answer = (from p in Forwards
              where p.GoalsScored > 0
              orderby p.GoalsScored
              select p).FirstOrDefault();
// throws an exception if there are no values in the sequence:
var answer2 = (from p in Forwards
              where p.GoalsScored > 0
              orderby p.GoalsScored
              select p).First();

Of course, sometimes you don't want the first element. There are quite a few ways to solve this
problem. You could reorder the elements so that you do get the correct first element. (You could put
them in the other order and grab the last element, but that would take somewhat longer.)

If you know exactly where in the sequence to look, you can use Skip and First to retrieve the one
sought element. Here, we find the third-best goal-scoring forward:

var answer = (from p in Forwards
              where p.GoalsScored > 0
              orderby p.GoalsScored
              select p).Skip(2).First();

I chose First() rather than Take() to emphasize that I wanted exactly one element, and not a
sequence containing one element. Note that because I use First() instead of FirstOrDefault(), the
compiler assumes that at least three forwards have scored goals.

However, once you start looking for an element in a specific position, it's likely that there is a better
way to construct the query. Are there different properties you should be looking for? Should you look
to see whether your sequence supports IList<T> and supports index operations? Should you rework
the algorithm to find exactly the one item? You may find that other methods of finding results will give
you much clearer code.

Many of your queries are designed to return one scalar value. Whenever you query for a single value,
it's best to write your query to return a scalar value rather than a sequence of one element. Using
Single() means that you expect to always find exactly one item. SingleOrDefault() means zero or
one item. First and Last mean that you are pulling one item out of a sequence. Using any other
method of finding one item likely means that you haven't written your query as well as you should



have. It won't be as clear for developers using your code or maintaining it later.
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Item 44. Prefer Storing Expression<> to Func<>

In Item 42 (earlier in this chapter) I briefly discuss how query providers such as LINQ to SQL examine
queries before execution and translate them into their native format. LINQ to Objects, in contrast,
implements queries by compiling lambda expressions into methods and creating delegates that access
those methods. It's plain old code, but the access is implemented through delegates.

LINQ to SQL (and any other query provider) performs this magic by asking for query expressions in
the form of a System.Linq.Expressions.Expression object. Expression is an abstract base class
that represents an expression. One of the classes derived from Expression is
System.Linq.Expressions.Expression<TDelegate>, where TDelegate is a delegate type.
Expression<TDelegate> represents a lambda expression as a data structure. You can analyze it by
using the Body, NodeType, and Parameters properties. Furthermore, you can compile it into a
delegate by using the Expression<TDelegate>.Compile() method.

That makes Expression<TDelegate> more general than Func<T>. Simply put, Func<T> is a delegate
that can be invoked. Expression<TDelegate> can be examined, or it can be compiled and then
invoked in the normal way.

When your design includes the storage of lambda expressions, you'll have more options if you store
them using Expression<T>. You don't lose any features; you simply have to compile the expression
before invoking it:

Expression<Func<int, bool>> compound = val =>
    (val % 2 == 1) && (val > 300);
Func<int, bool> compiled = compound.Compile();
Console.WriteLine(compiled(501));

The Expression class provides methods that allow you to examine the logic of an expression. You can
examine an expression tree and see the exact logic that makes up the expression. The C# team
provides a reference implementation for examining an expression with the C# samples delivered with
Visual Studio 2008. The Expression Tree Visualizer sample, which includes source code, provides code
that examines each node type in an expression tree and displays the contents of that node. It
recursively visits each subnode in the tree; this is how you would examine each node in a tree in an
algorithm to visit and modify each node.

Working with expressions and expression trees instead of functions and delegates can be a better
choice, because expressions have quite a bit more functionality: You can convert an Expression to a
Func, and you can traverse expression trees, meaning that you can create modified versions of the
expressions. You can use Expression to build new algorithms at runtime, something that is much
harder to do with Func.

This habit helps you by letting you later combine expressions using code. In this way, you build an
expression tree that contains multiple clauses. After building the code, you can call Compile() and



create the delegate when you need it.

Here is one way to combine two expressions to form a larger expression:

Expression<Func<int, bool>> IsOdd = val => val % 2 == 1;
Expression<Func<int, bool>> IsLargeNumber = val => val > 300;

InvocationExpression callLeft = Expression.Invoke(IsOdd,
Expression.Constant(5));
InvocationExpression callRight = Expression.Invoke(
    IsLargeNumber,
    Expression.Constant(5));

BinaryExpression Combined =
    Expression.MakeBinary(ExpressionType.And,
    callLeft, callRight);

// Convert to a typed expression:
Expression<Func<bool>> typeCombined =
    Expression.Lambda<Func<bool>>(Combined);

Func<bool> compiled = typeCombined.Compile();
bool answer = compiled();

This code creates two small expressions and combines them into a single expression. Then it compiles
the larger expression and executes it. If you're familiar with either CodeDom or Reflection.Emit, the
Expression APIs can provide similar metaprogramming capabilities. You can visit expressions, create
new expressions, compile them to delegates, and finally execute them.

Working with expression trees is far from simple. Because expressions are immutable, it's a rather
extensive undertaking to create a modified version of an expression. You need to traverse every node
in the tree and either (1) copy it to the new tree or (2) replace the existing node with a different
expression that produces the same kind of result. Several implementations of expression tree visitors
have been written, as samples and as open source projects. I don't add yet another version here. A
Web search for "expression tree visitor" will find several implementations.

The System.Linq.Expressions namespace contains a rich grammar that you can use to build
algorithms at runtime. You can construct your own expressions by building the complete expression
from its components. The following code executes the same logic as the previous example, but here I
build the lambda expression in code:

// The lambda expression has one parameter:
ParameterExpression parm = Expression.Parameter(
    typeof(int), "val");
// We'll use a few integer constants:
ConstantExpression threeHundred = Expression.Constant(300,
    typeof(int));
ConstantExpression one = Expression.Constant(1, typeof(int));
ConstantExpression two = Expression.Constant(2, typeof(int));

// Creates (val > 300)
BinaryExpression largeNumbers =



    Expression.MakeBinary(ExpressionType.GreaterThan,
    parm, threeHundred);

// creates (val % 2)
BinaryExpression modulo = Expression.MakeBinary(
    ExpressionType.Modulo,
    parm, two);
// builds ((val % 2) == 1), using modulo
BinaryExpression isOdd = Expression.MakeBinary(
    ExpressionType.Equal,
    modulo, one);
// creates ((val % 2) == 1) && (val > 300),
// using isOdd and largeNumbers
BinaryExpression lambdaBody =
    Expression.MakeBinary(ExpressionType.AndAlso,
    isOdd, largeNumbers);

// creates val => (val % 2 == 1) && (val > 300)
// from lambda body and parameter.
LambdaExpression lambda = Expression.Lambda(lambdaBody, parm);

// Compile it:
Func<int, bool> compiled = lambda.Compile() as
    Func<int, bool>;
// Run it:
Console.WriteLine(compiled(501));

Yes, using Expression to build your own logic is certainly more complicated than creating the
expression from the Func<> definitions shown earlier. This kind of metaprogramming is an advanced
topic. It's not the first tool you should reach for in your toolbox.

Even if you don't build and modify expressions, libraries you use might do so. You should consider
using Expression<> instead of Func<> when your lambda expressions are passed to unknown libraries
whose implementations might use the expression tree logic to translate your algorithms into a
different format. Any IQueryProvider, such as LINQ to SQL, would perform that translation.

Also, you might create your own additions to your type that would be better served by expressions
than by delegates. The justification is the same: You can always convert expressions into delegates,
but you can't go the other way.

You may find that delegates are an easier way to represent lambda expressions, and conceptually they
are. Delegates can be executed. Most C# developers understand them, and often they provide all the
functionality you need. However, if your type will store expressions and passing those expressions to
other objects is not under your control, or if you will compose expressions into more-complex
constructs, then you should consider using expressions instead of funcs. You'll have a richer set of
APIs that will enable you to modify those expressions at runtime and invoke them after you have
examined them for your own internal purposes.



              



[ Team Unknown ]

               

C# Programming Bill Wagner Addison Wesley Professional More Effective C#: 50 Specific Ways to Improve Your
C#

6. Miscellaneous
No matter how much you try, some advice doesn't fit neatly into a category. Even so, this
miscellaneous advice is important. It involves practices you'll use every day, and following it will make
your code easier to use, easier to understand, and easier to extend in the future.
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Item 45. Minimize the Visibility of Nullable Values

Nullable types require more checks than non-nullable types. It makes more sense to use non-nullable
structs whenever you can and to limit nullable types to those algorithms that require the nullable
abstraction. Nullable types add a missing, or unavailable, value to a non-nullable struct. In many
ways, this makes using nullable types similar to older designs that used a marker value for a missing
value.

Programming against nullable types is more complicated than programming against the corresponding
non-nullable value. Nullables mean extra checking: What should happen when the value is missing?
The answer will vary, but for every algorithm, the missing value should be interpreted in some known
way. Your goal should be to isolate the extra work required for nullable values to the smallest set of
code. Then client code can assume that your libraries have already accounted for any missing values.

Nullables are an important way to standardize algorithms built on sentinel values for missing data.
Earlier, in Item 34 (Chapter 4), I show an extension method that attempts to parse a string and
returns a nullable value for the output:

public static int? DefaultParse(this string input)
{
    int answer;
    return (int.TryParse(input, out answer))
        ? answer : default(int?);
}

An input string that cannot be parsed as an integer value returns a nullable int that does not contain
a value. From the context of this method, there is no better answer. The input string—whether typed
by a user, read from a file, or coming from an unknown source—isn't what was expected. However,
somewhere up the call chain, some logic exists that knows the correct behavior when the input string
cannot be parsed. It is at that location in the code that you should replace the nullable integer with
the correct default value. Or if there is no default value and if a missing value means a hard failure,
that's the point where your code should throw an exception. In that way, you limit the scope of the
nullable type to those portions of your code where the correct behavior for the nullable value isn't
known. External code should not see the extra complications introduced by the nullable type.

Nullable types add semantics to everyday operations on value types. As an example, nullable numeric
types provide semantics similar to those defined for floating-point numbers and NaN values. Any order
comparison involving a NaN returns false:

double d = 0;
Console.WriteLine(d > double.NaN);            // false
Console.WriteLine(d < double.NaN);            // false
Console.WriteLine(double.NaN < double.NaN);   // false
Console.WriteLine(double.NaN == double.NaN);  // false



Nullables behave in almost the same way. Unlike NaN, nullables support equality even in the case of a
missing value.

Furthermore, any nullable having no value trumps any other value on calculations, just as NaN does
for floating-point values:

// Working with nullable values:
int? nullableOne = default(int?);
int? nullableTwo = 0;
int? nullableThree = default(int?);

Console.WriteLine(nullableOne < nullableTwo);      // false
Console.WriteLine(nullableOne > nullableTwo);      // false
Console.WriteLine(nullableOne == nullableThree);   // true

// Working with NaNs:
double d = 0;
Console.WriteLine(d + double.NaN);  // NaN
Console.WriteLine(d - double.NaN);  // NaN
Console.WriteLine(d * double.NaN);  // NaN
Console.WriteLine(d / double.NaN);  // NaN

Operations on nullable numeric types work in exactly the same way as do numeric operations with
NaN. Any numeric operation involving a nullable numeric type with no value results in a nullable type
with no value:

int? nullableOne = default(int?);
int? nullableTwo = default(int);
int? nullableThree = default(int?);

Console.WriteLine((
    nullableOne + nullableTwo).HasValue);   // false
Console.WriteLine(
    (nullableOne - nullableTwo).HasValue);   // false
Console.WriteLine(
    (nullableOne * nullableThree).HasValue); // false

This property—that any null in an expression causes the result of that expression to be null—means
that you often must define default values for those operations. You could use the
Nullable<T>.GetValueOrDefault() method, but the C# language provides a simpler way to use this
idiom: the null coalescing operator (??). The null coalescing operator returns the value stored in
the nullable object on the left of the coalescing operator if that object has a value. Otherwise, it
returns the value on the right side of the operator. The first line here performs the same action as the
second line:

var result1 = NullableObject ?? 0;
var result2 = NullableObject.GetValueOrDefault(0);



You can use this operator in any expression using nullable objects:

int? nullableOne = default(int?);
int? nullableTwo = default(int);
int? nullableThree = default(int?);

int answer1 = (nullableOne ?? 0) + (nullableTwo ?? 0);
Console.WriteLine(answer1); // output is 0

int answer2 = (nullableOne ?? 0) - (nullableTwo ?? 0);
Console.WriteLine(answer2); // output is 0
int answer3 = (nullableOne ?? 1) * (nullableThree ?? 1);
Console.WriteLine(answer3); // output is 1

Nullable types have a few other issues when they permeate further through your code. Serializing
nullables can be very dangerous. Consider this snippet of code:

int? f = default(int?);

XmlSerializer x = new XmlSerializer(typeof(int?));
StringWriter t = new StringWriter();
x.Serialize(t, f);
Console.WriteLine(t.ToString());

It produces this XML document:

<int xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
    xmlns:xsd="http://www.w3.org/2001/XMLSchema"
    xsi:nil="true" />

Notice that the type of the XML element is int. The XML element does not contain any indication that
the integer may be missing. Yet, as you can see from the node, it is missing.

That missing value causes this seemingly correct code to throw a NullReferenceException:

string storage = t.ToString();
StringReader s = new StringReader(storage);
int f2 = (int)x.Deserialize(s); // f2 can't be null
Console.WriteLine(f2);

This makes sense when you think about it. You saved a nullable int, which could contain every
integer value as well as the null value. When you read that value back in, you implicitly converted the
int? to an int. The null value was no longer valid, so your code generated an exception.

This same problem occurs in production environments that include serializing XML documents. Types
that contain nullable values may have the same problem. Those member elements appear to be typed
as value types, and yet the value itself is null. Tools that build classes from XML documents create
ints, rather than nullable ints. Deserialization using those tools would produce the same errors when
your program encounters null values.



Nullable types also introduce complicated behavior when you work with virtual methods defined in
System.Object or with interfaces implemented by the underlying value type. Those operations will
cause a boxing conversion of the enclosed value type to System.Object or to the interface pointer.
Consider these two conversions of a nullable int into a string:

int? defaultNullable = default(int?);
string s = defaultNullable.ToString();
Console.WriteLine(s);
string s2 = ((object)defaultNullable).ToString();
Console.WriteLine(s2);

defaultNullable.ToString() produces the empty string, "", as its string representation. That makes
sense: If the string has no value, it produces no string representation. However, the second
conversion throws a NullReferenceException. That's because the conversion to object tries to box
the value type contained in the nullable object. There is no value, so the conversion returns null,
typed as System.Object. It's expected. It's the right behavior, but it takes some time to get
accustomed to it. It's different behavior from that of the first call, because the first version calls
nullable<int>.ToString(). The second version boxes the contained value, which is a null, and then
calls object.ToString() on a null object.

Similar problems occur because every nullable type can be implicitly converted to any interface that is
implemented on the contained non-nullable type. For example, you can use the IComparable<T>
interface with any numeric nullable type:

int? one = 1;
int? two = 2;

IComparable<int> oneIC = one;
if (oneIC.CompareTo(two.Value) > 0)
    Console.WriteLine("Greater");
else
    Console.WriteLine("Not Greater");

But a boxing conversion is being performed, so if you convert a nullable object containing a null value
into an interface and then use that interface reference, you'll throw a NullReferenceException:

int? empty = default(int?);

IComparable<int> emptyIC = empty;
// throws NullReferenceException
if (emptyIC.CompareTo(two.Value) > 0)
    Console.WriteLine("Greater");
else
    Console.WriteLine("Not Greater");

It makes sense. The empty nullable object has no value, so any operation that relies on that value
must fail. There's nothing there.

All the examples I've shown use nullable counterparts to numeric types. That's not because numbers
are special but because the semantics are simple, and less code is necessary around the core numeric



values compared with some other structure you have created. However, every example I've shown will
occur on any struct you've created when you use the nullable counterpart of the struct. Of course, the
numeric operators aren't automatically defined on your structures, but other methods are. Accessing
the value in a nullable struct without ensuring that the value exists causes a
NullReferenceException. That conversion is implicit, so the compiler doesn't warn you of the
potential danger.

As an API designer, you need to create an API that's easy to use and hard to misuse. Nullable types
complicate your task somewhat. If you can avoid exposing the nullable types in your public interface
or your storage model, your type is easier to use. That's not to say that nullable types should never be
a part of your API. The very first example in this item shows a parsing method that returns a
nullable<int> when it tries to convert an input string to an integer. If the nullable type really is the
proper representation of the types you're working with, then you should use it. Internally, a nullable
struct is often the proper storage model for your algorithms. However, minimizing the scope of those
nullable objects makes your types easier to use and harder to misuse.

Thus, when you work with nullable types, you need to carefully examine any conversions between the
nullable object and its non-nullable counterpart. When you expose those nullable types as part of your
public interface, you force your users to understand all those rules as much as you do. That may be
the correct behavior. But you should make it an explicit choice, and not an implicit choice.
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Item 46. Give Partial Classes Partial Methods for Constructors,
Mutators, and Event Handlers

The C# language team added partial classes so that code generators can create their part of the
classes, and human developers can augment the generated code in another file. Unfortunately, that
separation is not sufficient for sophisticated usage patterns. Often, the human developers need to add
code in members created by the code generator. Those members might include constructors, event
handlers defined in the generated code, and any mutator methods defined in the generated code.

Your purpose is to free developers who use your code generator from feeling that they should modify
your generated code. If you are on the other side, using code created by a tool, you should never
modify the generated code. Doing so breaks the relationship with the code generator tool and makes
it much more difficult for you to continue to use it.

In some ways, writing partial classes is like API design. You, as the human developer or as the author
of a code generation tool, are creating code that must be used by some other developer (either the
person or the code generation tool). In other ways, it's like having two developers work on the same
class, but with serious restrictions. The two developers can't talk to each other, and neither developer
can modify the code written by the other. This means that you need to provide plenty of hooks for
those other developers. You should implement those hooks in the form of partial methods. Partial
methods let you provide hooks that another developer may, or may not, need to implement.

Your code generator defines partial methods for those extension points. Partial methods provide a way
for you to declare methods that may be defined in another source file in a partial class. The compiler
looks at the full class definition, and, if partial methods have been defined, the compiler generates
calls to those methods. If no class author has written the partial method, then the compiler removes
any calls to it.

Because partial methods may or may not be part of the class, the language imposes several
restrictions on the method signatures of partial methods: The return type must be void, partial
methods cannot be abstract or virtual, and they cannot implement interface methods. The parameters
cannot include any out parameters, because the compiler cannot initialize out parameters. Nor can it
create the return value if the method body has not been defined. Implicitly, all partial methods are
private.

For three class member types, you should add partial methods that enable users to monitor or modify
the class behavior: mutator methods, event handlers, and constructors.

Mutator methods are any methods that change the observable state of the class. From the
standpoint of partial methods and partial classes, you should interpret that as any change in state.
The other source files that make up a partial class implementation are part of the class and therefore
have complete access to your class internals.

Mutator methods should provide the other class authors with two partial methods. The first method
should be called before the change that provides validation hooks and before the other class author



has a chance to reject the change. The second method would be called after changing state and allows
the other class author to respond to the state change.

Your tool's core code would be something like this:

// Consider this the portion generated by your tool
public partial class GeneratedStuff
{
    private int storage = 0;

    public void UpdateValue(int newValue)
    {
        storage = newValue;
    }
}

You should add hooks both before and after the change. In this way, you let other class authors
modify or respond to the change:

// Consider this the portion generated by your tool
public partial class GeneratedStuff
{
    private struct ReportChange
    {
        public readonly int OldValue;
        public readonly int NewValue;

         public ReportChange(int oldValue, int newValue)
        {
            OldValue = oldValue;
            NewValue = newValue;
        }
    }

    private class RequestChange
    {
        public ReportChange Values
        {
            get;
            set;
        }
        public bool Cancel
        {
            get;
            set;
        }
    }

    partial void ReportValueChanging(RequestChange args);
    partial void ReportValueChanged(ReportChange values);

    private int storage = 0;



    public void UpdateValue(int newValue)
    {
        // Precheck the change
        RequestChange updateArgs = new RequestChange
        {
            Values = new ReportChange(storage, newValue)
        };
        ReportValueChanging(updateArgs);
        if (!updateArgs.Cancel) // if OK,
        {
            storage = newValue; // change
            // and report:
            ReportValueChanged(new ReportChange(
                storage, newValue));
        }
    }
}

If no one has written bodies for either partial method, then UpdateValue() compiles down to this:

public void UpdateValue(int newValue)
{
    RequestChange updateArgs = new RequestChange {
        Values = new ReportChange(this.storage, newValue)
    };
    if (!updateArgs.Cancel)
    {
        this.storage = newValue;
    }
}

The hooks allow the developer to validate or respond to any change:

// This represents the hand-edited portion.
public partial class GeneratedStuff
{
    partial void ReportValueChanging(
        GeneratedStuff.RequestChange args)
    {
        if (args.Values.NewValue < 0)
        {
            Console.WriteLine("Invalid value: {0}, canceling",
                args.Values.NewValue);
            args.Cancel = true;
        }
        else
            Console.WriteLine("Changing {0} to {1}",
                args.Values.OldValue,
                args.Values.NewValue);



    }
    partial void ReportValueChanged(
        GeneratedStuff.ReportChange values)
    {
        Console.WriteLine("Changed {0} to {1}",
            values.OldValue, values.NewValue);
    }
}

Here, I show a protocol with a cancel flag that lets developers cancel any mutator operation. Your
class may prefer a protocol in which the user-defined code can throw an exception to cancel an
operation. Throwing the exception is better if the cancel operation should be propagated up to the
calling code. Otherwise, the Boolean cancel flag should be used because it's lightweight.

Furthermore, notice that the RequestChange object gets created even when ReportValueChanged()
will not be called. You can have any code execute in that constructor, and the compiler cannot assume
that the constructor call can be removed without changing the semantics of the UpdateValue()
method. You should strive to require minimal work for client developers to create those extra objects
needed for validating and requesting changes.

It's fairly easy to spot all the public mutator methods in a class, but remember to include all the public
set accessors for properties. If you don't remember those, other class authors can't validate or
respond to property changes.

You next need to make sure to provide hooks for user-generated code in constructors. Neither the
generated code nor the user-written code can control which constructor gets called. Therefore, your
code generator must provide a hook to call user-defined code when one of the generated constructors
gets called. Here is an extension to the GeneratedStuff class shown earlier:

// Hook for user-defined code:
partial void Initialize();

public GeneratedStuff() :
    this(0)
{
}

public GeneratedStuff(int someValue)
{
    this.storage = someValue;
    Initialize();
}

Notice that I make Initialize() the last method called during construction. That enables the hand-
written code to examine the current object state and possibly make any modifications or throw
exceptions if the developer finds something invalid for his problem domain. You want to make sure
that you don't call Initialize() twice, and you must make sure it is called from every constructor
defined in the generated code. The human developer must not call his own Initialize() routine from
any constructor he adds. Instead, he should explicitly call one of the constructors defined in the
generated class to ensure that any initialization necessary in the generated code takes place.



Finally, if the generated code subscribes to any events, you should consider providing partial method
hooks during the processing of that event. This is especially important if the event is one of the events
that request status or cancel notifications from the generated class. The user-defined code may want
to modify the status or change the cancel flag.

Partial classes and partial methods provide the mechanisms you need to completely separate
generated code from user-written code in the same class. With the extensions I show here, you should
never need to modify code generated by a tool. You are probably using code generated by Visual
Studio or other tools. Before you consider modifying any of the code written by the tool, you must
examine the interface provided by the generated code in hopes that it has provided partial method
declarations that you can use to accomplish your goal. More importantly, if you are the author of the
code generator, you must provide a complete set of hooks in the form of partial methods to support
any desired extensions to your generated code. Doing anything less will lead developers down a
dangerous path and will encourage them to abandon your code generator.
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Item 47. Limit Array Parameters to Params Arrays

Using array parameters can expose your code to several unexpected problems. It's much better to
create method signatures that use alternative representations to pass collections or variable-size
arguments to methods.

Arrays have special properties that allow you to write methods that appear to have strict type
checking but fail at runtime. The following small program compiles just fine. It passes all the compile-
time type checking. However, it throws an ArrayTypeMismatchException when you assign a value to
the first object in the parms array in ReplaceIndices:

static void Main(string[] args)
{
    string[] labels = new string[] { "one", "two",
        "three", "four", "five" };
    ReplaceIndices(labels);
}

static private void ReplaceIndices(object[] parms)
{
    for (int index = 0; index < parms.Length; index++)
        parms[index] = index;
}

The problem arises because arrays are covariant as input parameters. You don't have to pass the
exact type of the array into the method. Furthermore, even though the array is passed by value, the
contents of the array can be references to reference types. Your method can change members of the
array in ways that will not work with some valid types. Of course, the foregoing example is a bit
obvious, and you probably think you'll never write code like that. But examine this small class
hierarchy:

class B
{
    public static B Factory()
    {
        return new B();
    }

    public virtual void WriteType()
    {
        Console.WriteLine("B");
    }
}



class D1 : B
{
    public static new B Factory()
    {
        return new D1();
    }

    public override void WriteType()
    {
        Console.WriteLine("D1");
    }

}
class D2 : B
{
    public static new B Factory()
    {
        return new D2();
    }

    public override void WriteType()
    {
        Console.WriteLine("D2");
    }
}

If you use this correctly, everything is fine:

static private void FillArray(B[] array, Func<B> generator)
{
    for (int i = 0; i < array.Length; i++)
        array[i] = generator();
}

// elsewhere:
B[] storage = new B[10];
FillArray(storage, () => B.Factory());
FillArray(storage, () => D1.Factory());
FillArray(storage, () => D2.Factory());

But any mismatch between the derived types will throw the same ArrayTypeMismatchException:

B[] storage = new D1[10];
// All three calls will throw exceptions:
FillArray(storage, () => B.Factory());
FillArray(storage, () => D1.Factory());
FillArray(storage, () => D2.Factory());

Furthermore, because arrays don't support contravariance, when you write array members, your code
will fail to compile even though it should work:



static void FillArray(D1[] array)
{
    for (int i = 0; i < array.Length; i++)
        array[i] = new D1();
}
B[] storage = new B[10];
// generates compiler error CS1503 (argument mismatch)
// even though D objects can be placed in a B array
FillArray(storage);

Things become even more complicated if you want to pass arrays as ref parameters. You'll end up
being able to create a derived class, but not a base class, inside the method. However, the objects in
the array can still be the wrong type.

You can avoid those problems by typing parameters as interface types that create a type-safe
sequence to use. Input parameters should be typed as IEnumerable<T> for some T. This strategy
ensures that you can't modify the input sequence, because IEnumerable<T> does not provide any
methods to modify the collection. Another alternative is to pass types as base classes, a practice that
may also avoid APIs that support modifying the collection.

When you need to modify the sequence, it's best to use an input parameter of one sequence and
return the modified sequence (see Item 17, Chapter 3). When you want to generate the sequence,
return the sequence as an IEnumerable<T> for some T.

And yet there are times when you want to pass arbitrary options in methods. That's when you can
reach for an array of arguments. But make sure to use a params array. The params array allows the
user of your method to simply place those elements as other parameters. Contrast these two
methods:

// regular array
private static void WriteOutput1(object[] stuffToWrite)
{
    foreach (object o in stuffToWrite)
        Console.WriteLine(o);
}
// Params array
private static void WriteOutput2(params object[]
    stuffToWrite)
{
    foreach (object o in stuffToWrite)
        Console.WriteLine(o);
}

You can see that there is very little difference in how you create the method or how you test for the
members of the array. However, note the difference in the calling sequence:

WriteOutput1(new string[]
    { "one", "two", "three", "four", "five" });
WriteOutput2("one", "two", "three", "four", "five");



The trouble for your users gets worse if they don't want to specify any of the optional parameters. The
params array version can be called with no parameters:

WriteOutput2();

The version with a regular array presents your users with some painful options. This won't compile:

WriteOutput1(); // won't compile

Trying null will throw a null exception:

WriteOutput1(null); // throws a null argument exception

Your users are stuck with all this extra typing:

WriteOutput1(new object[] { });

This alternative is still not perfect. Even params arrays can have the same problems with covariant
argument types. However, you're less likely to run into the problem. First, the compiler generates the
storage for the array passed to your method. It doesn't make sense to try to change the elements of a
compiler-generated array. The calling method won't see any of the changes anyway. Furthermore, the
compiler automatically generates the correct type of array. To create the exception, the developer
using your code needs to write truly pathological constructs. She would need to create an actual array
of a different type. Then she would have to use that array as the argument in place of the params
array. Although it is possible, the system has already done quite a bit to protect against this kind of
error.

Arrays are not universally wrong method parameters, but they can cause two types of errors. The
array's covariance behavior causes runtime errors, and array aliasing can mean the callee can replace
the callers' objects. Even when your method doesn't exhibit those problems, the method signature
implies that it might. That will raise concerns among developers using your code. Is it safe? Should
they create temporary storage? Whenever you use an array as a parameter to a method, there is
almost always a better alternative. If the parameter represents a sequence, use IEnumerable<T> or a
constructed IEnumerable<T> for the proper type. If the parameter represents a mutable collection,
then rework the signature to mutate an input sequence and create the output sequence. If the
parameter represents a set of options, use a params array. In all those cases, you'll end up with a
better, safer interface.
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Item 48. Avoid Calling Virtual Functions in Constructors

Virtual functions exhibit strange behaviors during the construction of an object. An object is not
completely created until all constructors have executed. In the meantime, virtual functions may not
behave the way you'd like or expect. Examine the following simple program:

class B
{
    protected B()
    {
        VFunc();
    }

    protected virtual void VFunc()
    {
        Console.WriteLine("VFunc in B");
    }
}

class Derived : B
{
    private readonly string msg = "Set by initializer";

    public Derived(string msg)
    {
        this.msg = msg;
    }

    protected override void VFunc()
    {
        Console.WriteLine(msg);
    }
}
class Program
{
    static void Main(string[] args)
    {
        Derived d = new Derived("Constructed in main");
    }
}

What do you suppose gets printed—"Constructed in main," "VFunc in B," or "Set by initializer"?
Experienced C++ programmers would say, "VFunc in B." Some C# programmers would say,
"Constructed in main." But the correct answer is, "Set by initializer."



The base class constructor calls a virtual function that is defined in its class but overridden in the
derived class. At runtime, the derived class version gets called. After all, the object's runtime type is
Derived. The C# language definition considers the derived object completely available, because all the
member variables have been initialized by the time any constructor body is entered. After all, all the
variable initializers have executed. You had your chance to initialize all variables. But this doesn't
mean that you have necessarily initialized all your member variables to the value you want. Only the
variable initializers have executed; none of the code in any derived class constructor body has had the
chance to do its work.

No matter what, some inconsistency occurs when you call virtual functions while constructing an
object. The C++ language designers decided that virtual functions should resolve to the runtime type
of the object being constructed. They decided that an object's runtime type should be determined as
soon as the object is created.

There is logic behind this. For one thing, the object being created is a Derived object; every function
should call the correct override for a Derived object. C++ is inconsistent here: The runtime type of an
object changes as each class's constructor begins execution. Second, this language feature avoids the
problem of a having null method pointer in the underlying implementation of virtual methods while the
current type is an abstract base class. Consider this variant base class:

abstract class B
{
  protected B()
  {
    VFunc();
  }
  protected abstract void VFunc();
}

class Derived : B
{
  private readonly string msg = "Set by initializer";

  public Derived( string msg )
  {
    this.msg = msg;
  }

  protected override void VFunc()
  {
    Console.WriteLine( msg );
  }

  static void Main()
  {
    Derived d = new Derived( "Constructed in main" );
  }

}

The sample compiles, because B objects aren't created, and any concrete derived object must supply



an implementation for VFunc(). The C# strategy of calling the version of VFunc() matching the actual
runtime type is the only possibility of getting anything except a runtime exception when an abstract
function is called in a constructor. Experienced C++ programmers will recognize the potential runtime
error if you use the same construct in that language. In C++, the call to VFunc() in the B constructor
would crash.

Still, this simple example shows the pitfalls of the C# strategy. The msg variable is immutable. It
should have the same value for the entire life of the object. Because of the small window of
opportunity when the constructor has not yet finished its work, you can have different values for this
variable: one set in the initializer, and one set in the body of the constructor. In the general case, any
number of derived class variables may remain in the default state, as set by the initializer or by the
system. They certainly don't have the values you thought, because your derived class's constructor
has not executed.

Calling virtual functions in constructors works only under the strictest of conditions. The derived class
must initialize all instance variables properly in variable initializers. That rules out quite a few objects:
Most constructors take some parameters that are used to set the internal state properly. So you could
say that calling a virtual function in a constructor mandates that all derived classes define a default
constructor, and no other constructor. But that's a heavy burden to place on all derived classes. Do
you really expect everyone who ever uses your code to play by those rules? I didn't think so. There is
very little gain, and lots of possible future pain, from playing this game. In fact, this situation will work
so rarely that it's included in the FxCop and Static Code Analyzer tools bundled with Visual Studio.
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Item 49. Consider Weak References for Large Objects

No matter how much you try to avoid it, sometimes you need large blocks of memory for certain
algorithms. And sometimes those blocks of memory are needed only occasionally. Maybe you need to
read large files to find certain values, or maybe one of your algorithms requires large lookup tables. It
seems that you are stuck between two bad alternatives: You could create a local variable, thereby
generating a huge heap of garbage every time you run that algorithm. Or you could create a member
variable and lock up a large amount of memory for long periods. There are times when neither of
those options feels correct.

There is a third option: Create a weak reference. Weak references are almost garbage. You tell the
garbage collector that an object is ready to be collected, but you keep a handle to it just in case you
want it back before it's collected. When you do it correctly, using a weak reference lets you work with
the garbage collector, instead of fighting it, to optimize memory usage.

Suppose you have an algorithm that sometimes needs a 1,000x1,000 array. You've created a class
that holds the large array:

class MyLargeClass
{
    private int[,] matrix = new int[1000, 1000];
    private int matrixXDimension;
    private int matrixYDimension;

    // elided
}

Well, having 1,000,000 element arrays is expensive in any environment. After benchmarking, you see
that even though you need one of these arrays only occasionally, allocating and releasing the
occasional MyLargeClass object is costing you time. That's when you should create a weak reference
to a single MyLargeClass object in the hopes that you can reuse it whenever you need it.

Using a weak reference is simple. You create a new weak reference, telling it to hold on to an object
that you are finished using, and then you set the strong reference to null:

WeakReference w = new WeakReference (myLargeObject);
myLargeObject = null;

Now the object referred to by myLargeObject is considered garbage by the system. If the garbage
collector runs, it will collect it. However, suppose you need a myLargeObject again before the garbage
collector runs. You simply ask WeakReference for the object:

myLargeObject = w.Target as MyLargeClass;



if (myLargeObject == null)
    myLargeObject = new MyLargeClass();

The target property returns null if the object has already been garbage-collected. Then you have no
choice except to create a new object. You've off-loaded a very hard optimization problem to the
runtime. You get to reuse objects when they are still around, but you let the system reclaim the
memory resources when necessary. If the weak reference is reclaimed as a strong reference, it has
the same contents and state that it had before. But that's not the reason to use a weak reference. If
creating the state is what's expensive, then you should keep a strong reference. A WeakReference is
for the case when allocating the memory is expensive.

That's the simplest scenario. But in many cases this simple scenario isn't what happens. Objects rarely
live in complete isolation. Any large object undoubtedly contains references to other objects. The
garbage collector needs to be careful about items that are owned by objects that still have weak
references outstanding. Suppose MyLargeClass contained more member variables:

class MyLargeClass
{
    private int[,] matrix;
    private string reallyLongMessage;
    private int matrixXDimension;
    private int matrixYDimension;

    // elided
}

This definition contains an array of value types, a reference type, and two value types. If a
MyLargeClassObject becomes garbage, then both the string and the array are candidates for garbage
collection. That makes sense. But this code needs to be modified a bit if there are weak references to
the MyLargeClass object. Chances are very good that if the garbage collector freed the matrix and the
message from the object, something would break. It's just not the kind of eventuality we usually take
into consideration. The GC ensures that you never get into this situation, but that takes some work.
This discussion is a gross simplification of what really goes on inside the GC, but it is sufficient. You're
not writing the GC, only using it.

When you make a weak reference to an object, you really make a weak reference tree: Every
reference that is reachable from the target object is marked as being a weak reference. The GC adds
an extra step when it marks the in-use objects: After marking all strongly referenced objects, it marks
all weakly referenced objects. Then it cleans up. If that does not free enough memory, then the GC
reclaims everything that is reachable only through weak references.

From your perspective, two things happen when you add weak references. First, the garbage collector
takes an extra step to find all memory that might be in use. Second, those objects that can be
referenced from objects that are findable using weak references are a better class of garbage. These
objects are less likely to be collected than garbage that is completely unreachable. The result is that a
weak reference is either completely recoverable or completely lost.

There are other considerations regarding weak references and objects that implement IDisposable.
These objects are not good candidates for weak references. You have no way of knowing when to call
Dispose() on those objects. You can't very well reuse an object that has been disposed of; its
essential elements have been reclaimed. On the other hand, you can't call Dispose() on a weak



reference. In short, you cannot know when you should call Dispose() on an object that you turn into
a weak reference.

But wait—there is still the finalizer. This causes even more problems. It even introduces the concept of
"long" and "short" weak references. A short weak reference returns null as its target value as soon
as it is no longer alive. This means that it has either been collected or finalized. A long weak
reference continues to return its target value as long as that object is in memory. Even after the
object has been finalized, it is still in memory. A long weak reference returns a pointer to an object
that has already been finalized. There is very little that you can do with an object after it has been
finalized, so I have never run into a situation in practice where I would use a long weak reference.

In practice, weak references help you when you have objects that are very large and are needed only
intermittently by an algorithm in your application. Weak references work best for objects that do not
need to support IDisposable. Almost by definition, these classes do not have finalizers. Within those
constraints, weak references work well to let the garbage collector efficiently manage your memory
needs. But if you stray outside those bounds, you need to work very carefully.

This advice must come with a considerable caution and warning: Weak references may make your
algorithm work faster, but they also have a large impact on the performance of the garbage collector.
Because of that impact, adding weak references to your program may make it much slower. Before
you consider weak references, optimize your algorithms. Try to rework them to create less memory
pressure overall (see Item 37, Chapter 5). Only after those approaches have been exhausted should
you consider using weak references. Then benchmark your application with and without weak
references, and carefully measure the difference.
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Item 50. Prefer Implicit Properties for Mutable, Nonserializable
Data

Additions to the property syntax mean that you can express your design intent clearly using
properties. Starting with C# 2.0, you can provide different access rights for property getters and
setters. In C# 3.0, you can add implicit properties, which complement property access modifiers
rather well.

When you add accessible data to a class, often the property accessors are simple wrappers around
your data fields. When that's the case, you can increase the readability of your code by using implicit
properties:

public string Name
{
    get;
    set;
}

The compiler creates the backing field using a compiler-generated name. You can even use the
property setter to modify the value of the backing field. Because the name of the backing field is
compiler generated, even inside your own class you need to call the property accessor rather than
modify the backing field directly. That's not a problem. Calling the property accessor does the same
work, and because the generated property accessor is a single assignment statement, it will likely be
inlined. The runtime behavior of the implicit property is the same as the runtime behavior of accessing
the backing field, even in terms of performance.

Implicit properties support the same property access specifiers as do their explicit counterparts. You
can define any more-restrictive set accessor you need:

public string Name
{
    get;
    protected set;
}
// Or
public string Name
{
    get;
    internal set;
}
// Or
public string Name
{
    get;



    protected internal set;
}
// Or
public string Name
{
    get;
    private set;
}

Implicit properties create the same pattern of a property with a backing field that you would have
typed yourself in previous versions of the language. The advantage is that you are more productive,
and your classes are more readable. An implicit property declaration shows anyone reading your code
exactly what you intended to produce, and it doesn't clutter the file with extra information that only
obscures the real meaning.

Of course, because implicit properties generate the same code as explicit properties, you can use
implicit properties to define virtual properties, override virtual properties, or implement a property
defined in an interface.

When you create a virtual implicit property, derived classes do not have access to the compiler-
generated backing store. However, overrides can access the base property get and set methods just
as they can with any other virtual method:

public class BaseType
{
    public virtual string Name
    {
        get;
        protected set;
    }
}

public class DerivedType : BaseType
{
    public override string Name
    {
        get { return base.Name; }
        protected set
        {
            if (!string.IsNullOrEmpty(value))
                base.Name = value;
        }
    }
}

You gain two additional advantages by using implicit properties. When the time comes to replace the
implicit property with a concrete implementation because of data validation or other actions, you are
making binary-compatible changes to your class, and your validation will be in only one location.

In earlier versions of the C# language, most developers directly accessed the backing field to modify it
in their own class. That practice produces code that distributes the validation and error checking



throughout the file. Every change to an implicit property's backing field calls the (possibly private)
property accessor. You transform the implicit property accessor to an explicit property accessor, and
then you write all the validation logic in the new accessor:

// original version
public class Person
{
    public string FirstName
    {
        get;
        set;
    }
    public string LastName
    {
        get;
        set;
    }
    public override string ToString()
    {
        return string.Format("{0} {1}", FirstName, LastName);
    }
}

// Later updated for validation
public class Person
{
    private string firstName;
    public string FirstName
    {
        get
        {
            return firstName;
        }
        set
        {
            if (string.IsNullOrEmpty(value))
                throw new ArgumentException(
                    "First name cannot be null or empty");
             firstName = value;
        }
    }
    private string lastName;
    public string LastName
    {
        get
        {
            return lastName;
        }
        private set
        {
            if (string.IsNullOrEmpty(value))
                throw new ArgumentException(



                    "Last name cannot be null or empty");
            lastName = value;
        }
    }
    public override string ToString()
    {
        return string.Format("{0} {1}", FirstName, LastName);
    }
}

You've created all the validation in one place. If you can continue to use your accessor rather than
directly access the backing field, then you can continue to keep all the field validation in one location.

All this might make you think that implicit properties are always the best choice, but implicit
properties have some limitations when it comes to creating immutable types. Even inside your
constructor, you must use the property accessor to set the values of your properties. The backing field
must support changes, no matter when you call the set accessor. It can't tell the difference between
setting the value during construction and setting the value from some other method. This means that
your type does not have the initonly flag on the backing field. Furthermore, you could write any
mutator methods (subject to access modifiers) and have mutator methods sneak into your type. Thus,
when you create immutable types, you should use explicit member variables.

The only way to create a true immutable type is to write the properties and backing fields yourself
using a concrete implementation. Implicit properties do not support true immutable types at the JIT
level. A type may appear immutable from the perspective of client code, but the runtime cannot verify
that the backing field does not change after construction.

There is one other important limitation of implicit properties. You cannot use implicit properties on
types that are decorated with the Serializable attribute. The persistent file storage format depends
on the name of the compiler-generated field used for the backing store. That field name is not
guaranteed to remain constant. It may change at any time when you modify the class.

In spite of those two limitations, implicit properties save developer time, produce readable code, and
promote a style of development in which all your field modification validation code happens in one
location. If you create clearer code, it helps you maintain that code in a better way.

               


	More Effective C#: 50 Specific Ways to Improve Your C#
	Table of Contents
	Copyright
	Praise for More Effective C#
	Effective Software Development Series
	Introduction
	1. Working with Generics
	Item 1. Use Generic Replacements of 1.x Framework API Classes
	Item 2. Define Constraints That Are Minimal and Sufficient
	Item 3. Specialize Generic Algorithms Using Runtime Type Checking
	Item 4. Use Generics to Force Compile-Time Type Inference
	Item 5. Ensure That Your Generic Classes Support Disposable Type Parameters
	Item 6. Use Delegates to Define Method Constraints on Type Parameters
	Item 7. Do Not Create Generic Specialization on Base Classes or Interfaces
	Item 8. Prefer Generic Methods Unless Type Parameters Are Instance Fields
	Item 9. Prefer Generic Tuples to Output and Ref Parameters
	Item 10. Implement Classic Interfaces in Addition to Generic Interfaces

	2. Multithreading in C#
	Item 11. Use the Thread Pool Instead of Creating Threads
	Item 12. Use BackgroundWorker for Cross-Thread Communication
	Item 13. Use lock() as Your First Choice for Synchronization
	Item 14. Use the Smallest Possible Scope for Lock Handles
	Item 15. Avoid Calling Unknown Code in Locked Sections
	Item 16. Understand Cross-Thread Calls in Windows Forms and WPF

	3. C# Design Practices
	Item 17. Create Composable APIs for Sequences
	Item 18. Decouple Iterations from Actions, Predicates, and Functions
	Item 19. Generate Sequence Items as Requested
	Item 20. Loosen Coupling by Using Function Parameters
	Item 21. Create Method Groups That Are Clear, Minimal, and Complete
	Item 22. Prefer Defining Methods to Overloading Operators
	Item 23. Understand How Events Increase Runtime Coupling Among Objects
	Item 24. Declare Only Nonvirtual Events
	Item 25. Use Exceptions to Report Method Contract Failures
	Item 26. Ensure That Properties Behave Like Data
	Item 27. Distinguish Between Inheritance and Composition

	4. C# 3.0 Language Enhancements
	Item 28. Augment Minimal Interface Contracts with Extension Methods
	Item 29. Enhance Constructed Types with Extension Methods
	Item 30. Prefer Implicitly Typed Local Variables
	Item 31. Limit Type Scope by Using Anonymous Types
	Item 32. Create Composable APIs for External Components
	Item 33. Avoid Modifying Bound Variables
	Item 34. Define Local Functions on Anonymous Types
	Item 35. Never Overload Extension Methods

	5. Working with LINQ
	Item 36. Understand How Query Expressions Map to Method Calls
	Item 37. Prefer Lazy Evaluation Queries
	Item 38. Prefer Lambda Expressions to Methods
	Item 39. Avoid Throwing Exceptions in Functions and Actions
	Item 40. Distinguish Early from Deferred Execution
	Item 41. Avoid Capturing Expensive Resources
	Item 42. Distinguish Between IEnumerable and IQueryable Data Sources
	Item 43. Use Single() and First() to Enforce Semantic Expectations on Queries
	Item 44. Prefer Storing Expression<&gt; to Func<&gt;

	6. Miscellaneous
	Item 45. Minimize the Visibility of Nullable Values
	Item 46. Give Partial Classes Partial Methods for Constructors, Mutators, and Event Handlers
	Item 47. Limit Array Parameters to Params Arrays
	Item 48. Avoid Calling Virtual Functions in Constructors
	Item 49. Consider Weak References for Large Objects
	Item 50. Prefer Implicit Properties for Mutable, Nonserializable Data

	Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X
	Y



