

Mastering LOB Development
for Silverlight 5: A Case Study
in Action
Develop a full LOB Silverlight 5 application from scratch
with the help of expert advice and an accompanying
case study

Braulio Díez Botella

José Fernando Almoguera

Pablo Núñez

Sebastian Stehle

Rocío Serrano Rudilla

Reyes García Rosado

P U B L I S H I N G

professional expert ise dist i l led

 BIRMINGHAM - MUMBAI

D
ow

n
lo

a
d
 f
ro

m
 W

o
w

!
e
B
o
o
k

<
w

w
w

.w
o
w

e
b
o
o
k.

co
m

>

Mastering LOB Development for Silverlight 5:
A Case Study in Action

Copyright © 2012 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval
system, or transmitted in any form or by any means, without the prior written
permission of the publisher, except in the case of brief quotations embedded in
critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy
of the information presented. However, the information contained in this book is
sold without warranty, either express or implied. Neither the authors, nor Packt
Publishing, and its dealers and distributors will be held liable for any damages
caused or alleged to be caused directly or indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the
companies and products mentioned in this book by the appropriate use of capitals.
However, Packt Publishing cannot guarantee the accuracy of this information.

First published: February 2012

Production Reference: 1170212

Published by Packt Publishing Ltd.
Livery Place
35 Livery Street
Birmingham B3 2PB, UK.

ISBN 978-1-84968-354-8

www.packtpub.com

Cover Image by Antonio J. Nebro (antonio@lcc.uma.es)

Credits

Authors
Braulio Díez Botella

José Fernando Almoguera

Pablo Núñez

Sebastian Stehle

Rocío Serrano Rudilla

Reyes García Rosado

Reviewers
Kevin DeRudder

Alex Golesh

Carlos Hernández

Tarkan Karadayi

Jose Luis Latorre

Porter Steven

Davide Trotta

Acquisition Editor
Stephanie Moss

Lead Technical Editor
Hyacintha D'Souza

Technical Editors
Joyslita D'Souza

Veronica Fernandes

Unnati Shah

Copy Editors
Leonard D'Silva

Laxmi Subramanian

Project Coordinator
Leena Purkait

Proof readers
Mario Cecere

Bernadette Watkins

Indexers
Hemangini Bari

Tejal Daruwale

Graphics
Valentina D'Silva

Manu Joseph

Production Coordinator
Prachali Bhiwandkar

Cover Work
Prachali Bhiwandkar

Foreword

Line of Business applications. Think about this term for a moment—Line of
Business. Yes, Business. Business means change. Changes are happening faster
than we usually think it is possible. How can we deal with it? With the right set
of knowledge and tools, of course!

Business, nowadays, is more demanding than ever, but so are the technologies we
have in hand. We have moved away from the times when a fully-featured desktop
application was enough. Now, we want to be able to work from anywhere—from
any place on Earth, by any means—let it be our office computer (PC or Mac), our
netbook at home, our mobile, or tablet on the plane. This is how RIA applications
emerged. This book is about how to get started, with developing RIA applications
using one particular set of technologies—those in the Microsoft domain, namely,
Silverlight, WCF RIA Services, and other frameworks and tools around them.

Back in 2007, when the first pre-release bits of Silverlight were introduced, there
weren't many ways to build fully-featured and always-connected applications.
JavaScript was one of the options. It had been out there for a long, time and, although
it could help you build magnificent applications, it didn't come far when talking
about robust, highly-maintainable, change-resistant, and easy to get started code.
Its support for different browsers was not a pretty story. The pre-release version of
Silverlight was rather limited, but even then people started to see big potential in it
to target media and business applications. The potential turned out to be real, when
a year and a half later, the Redmond campus released the First Official Release of the
plugin, which had .NET Framework support called Silverlight 2. Developers were
excited, and this is how things got to work. The whole community was pushing
hard; .NET developers were finally able to start writing applications that could work
everywhere. The Silverlight release cycle period is an unbelievable nine months. That
means every nine months, the community was getting a new version! Silverlight
3 came packed with lots of features enabling the development of Line of Business
applications. Everyone was wowed, as to how quickly Microsoft got their product
ready for the enterprise and some big players, such as banks, started paying attention.

Thanks to the great support, both from the community and Microsoft, Silverlight
emerged a real business-oriented platform. A lot of open source projects popped
up—MVVM Light Toolkit (by Laurent Bugnion, see Chapter 4, Architecture), Prism
(by Microsoft Patterns & Practices), MEF (later included in the .NET Framework
version 4, see Chapter 4, Architecture), WCF RIA Services (see Chapter 5, RIA Services
Data Access), and enabled rapid development of strong and well-architected
applications. At least two web communities (one Microsoft, Silverlight.net and
another independent, SilverlightShow.net), focused entirely on Silverlight, starting
right from the birth of the plugin and covering every little piece of the framework
with news, articles, and video tutorials, both contributing solely to the evolution and
adoption
of Silverlight as the platform for the development of Line of Business applications.

Microsoft continued their work on the platform and released Silverlight 4, a version
I like to refer to as business-feature complete. With that release, Microsoft enabled
us to do whatever we needed, to satisfy business requirements. From then on, only
a few things could be done better, and that is exactly what happened with the latest
fifth release.

Now both, the JavaScript and Silverlight world has evolved to a point where you
can accomplish astonishing things in very little time. But even with the latest
powerful JavaScript frameworks such as jQuery, Knockout, Kendo UI, and many
more, we still struggle to create well-performing and easily-maintainable Line of
Business applications. While it is easy to use JavaScript for lots of different types of
applications, Silverlight remains the platform to go with, when you are looking for
a business-class environment.

Starting from the fundamental Create Project, to architecting your application, this
book guides you through all the major steps and dives into details of creating Line of
Business applications that are resistant to change. Give yourself a jump start and ride
the wave of exciting and continuously changing world business applications.

Emil Stoychev
Co-founder, SilverlightShow.net

About the Authors

Braulio Díez Botella is a Software Developer specializing in Microsoft technologies.
He has more than 15 years of experience working on international projects. He is a
Silverlight MVP, freelance Developer, Technical Writer, Trainer, and Speaker.

José Fernando Almoguera has over seven years of experience in software
development and the IT industry. He works as a consultant specializing in LOB
development using Microsoft technologies (Silverlight and ASP.NET). Besides
that, José works as a Trainer and a Technical Writer for sites such as SilverlightShow
and DNM+.

I would like to thank my family who have been positive and
unconditional supporters, especially my parents, because they
always believed in me. I would also like to thank my colleagues
who have provided invaluable opportunities for me to expand my
knowledge and boost my career.

Pablo Núñez is a Developer with more than 10 years of experience in Microsoft
technologies. He has worked on Line of Business applications for important sectors
such as automotive, telephony, textile, and logistics. Pablo has experience with web
and desktop technologies, which ultimately converge on Silverlight. In addition,
Pablo works as a Trainer and is an active member on the MS communities.

Sebastian Stehle is a Software Engineer from Germany. He is an enthusiastic
Silverlight Developer and the author of the ImageTools library and Co-founder
of the SilverDiagram group. He is also interested in game development and
service-oriented architecture.

Rocío Serrano Rudilla is a freelance English/Spanish Scientific-Technical
Translator, Software Localizer, Linguist, and Proofreader. She has worked as
a Translator and Editor for Custom PC Spain, as well as for other relevant
magazines and websites. Her main areas of expertise are in IT (hardware,
software, networking, video conferencing, Internet, and so on), marketing
and communication, and biomedics/pharmaceutical fields.

She also collaborates with several translation agencies and direct clients (mainly
IT companies).

To Miguel, for his enormous patience and, above all, his essential
support.

Reyes García Rosado is very experienced as a Multidisciplinary Consultant.
Lately, she is devoted to teaching and writing technical articles.

About the Reviewers

Kevin DeRudder is a Web Developer working for several big companies. He
is also a Lecturer in the Technical University of West Flanders, where he teaches
frontend web development techniques such as Silverlight, Mobile development,
HTML 5, and so on, to future web developers.

Kevin is also heavily involved in several communities such as the Belgian
Silverlight User Group and some web communities.

Alex Golesh, Microsoft Most Valuable Professional (MVP) , is a Senior Architect and
a Silverlight Leader at Sela Group. He is an international expert in Silverlight, WPF,
Windows Phone 7, and XNA. Alex is currently consulting for various enterprises in
Israel and worldwide, architecting and developing RIA and mobile solutions. He has
been developing training samples and courses for various product groups in Microsoft
(Redmond). He conducts lectures and workshops and leads projects all around the
world in the fields of RIA, Smart Client, and Windows Phone 7.

Interesting facts:

•	 MVP in Silverlight
•	 One of the top Silverlight experts
•	 Conducted WPF and Silverlight training in India, Sweden, and Poland as

a part of the Metro Program (Microsoft Early Adopter program)
•	 "Top Trainer" of Silverlight in Metro program, FY09
•	 Author of Sela courses that are available on the MS Learning Courseware

Library such as Silverlight 2.0 for Developers (50145), Upgrade to Silverlight
3, Silverlight 3 Introduction, and Silverlight 3 Advanced

•	 Speaker at Tech-Ed Israel 2008, 2010, Tech-Ed South Africa 2008, Microsoft
Dev Academy III, IV, PDC 2010 workshop and numerous Microsoft
Developer Days/Open Houses

•	 Participated in a Microsoft/SAP joint project as a Senior Software Developer
from Microsoft Consulting Services

•	 Presented a session at PDC 2010 Workshop about XNA Game development
for Windows Phone 7

•	 Examples of projects that he developed/was a part of the development team:
	° Silverlight TreeView (http://silverlighttreeview.codeplex.

com/)
	° Silverlight String-To-PathGeometry Converter

(http://stringtopathgeometry.codeplex.com/)
	° Silverlight Hebrew & Arabic Language Support

(http://silverlightrtl.codeplex.com/)
	° Silverlight and WPF game development for Microsoft DPE—

a game that demonstrates the concepts and best practices in
Silverlight and WPF game development

	° Windows Phone 7 Training kit labs (http://msdn.microsoft.com/
en-us/wp7trainingcourse.aspx)

	° APP HUB (http://create.msdn.com/en-US/education/)

Mr. Golesh has his own blog (http://blogs.microsoft.co.il/blogs/
alex_golesh/), where he constantly writes about interesting topics in Silverlight
and Windows Phone 7 development.

I would like to thank my wife and daughter for having so much
patience and supporting me while working on this book and my
other projects.

Carlos Hernández is an experienced Silverlight developer, a technology that
fascinates him and which he has followed since Silverlight 3. Carlos is a Microsoft
Certified Technology Specialist (MCTS) in Silverlight 4 and has four years of
experience in .NET development.

Currently he works at SolidQ in several projects related to Silverlight, WPF,
Windows Phone 7, and Windows Azure platform.

I am very thankful to the author for sharing this experience with me
and for teaching me a lot of useful things about this technology and
this profession.

Tarkan Karadayi has been a professional Software Developer for over 12 years.
He has a Masters in Computer Science and is currently working as a Lead Developer.

I would like to thank my wife Anna, my three sons Taran, Kyle, and
Ryan, and my parents for their love and support.

Jose Luis Latorre is a Microsoft Silverlight MVP (Most Valuable Professional),
Toastmasters Competent Communicator, STEP member, Writer, and Trainer, who is
deeply involved with technical communities through his collaboration with INETA
Europe, Barcelona Developers, and DEVITUG UK user groups.

He is strongly focused on XAML technologies and user interfaces design and
development, focused mostly in presentation layer technologies such as Silverlight,
WP7, WPF, and Windows 8. He has written several articles on these topics.

He is the founder of Brainsiders, a Microsoft Partner which is dedicated to provide
services of consulting, design, and development of user interfaces and RIA solutions
for mobile, desktop, and web platforms. It also provides training solutions.

Davide Trotta was born in Turin (Italy) in 1980. Since childhood, he had the
opportunity to work closely with computers, as his father worked for a major
company that made computers. By the age of 15 years, he entered the programming
world. At 19, his first job was a contract for a company in the financial sector, whose
job included the development of web pages (ASP 3.0). In .NET Framework, Davide
realized its potential and has followed all its changes, working as a freelancer and
finding complex projects based on that technology.

In the last two years, he worked in the production of desktop/RIA/mobile,
exploiting the world of WPF/Silverlight. He has worked for large local and
international systems integrators companies such as Altran, Atos Origin, and Delta3.

Thank you for your support, Simone Agostini and Silvia Albanesi.

www.PacktPub.com

Support files, eBooks, discount offers and more
You might want to visit www.PacktPub.com for support files and downloads related to
your book.

Did you know that Packt offers eBook versions of every book published, with PDF and ePub
files available? You can upgrade to the eBook version at www.PacktPub.com and as a print
book customer, you are entitled to a discount on the eBook copy. Get in touch with us at
service@packtpub.com for more details.

At www.PacktPub.com, you can also read a collection of free technical articles, sign up for a
range of free newsletters and receive exclusive discounts and offers on Packt books and eBooks.

http://PacktLib.PacktPub.com

Do you need instant solutions to your IT questions? PacktLib is Packt's online digital book
library. Here, you can access, read and search across Packt's entire library of books.

Why Subscribe?
•	 Fully searchable across every book published by Packt
•	 Copy and paste, print and bookmark content
•	 On demand and accessible via web browser

Free Access for Packt account holders
If you have an account with Packt at www.PacktPub.com, you can use this to access
PacktLib today and view nine entirely free books. Simply use your login credentials for
immediate access.

Instant Updates on New Packt Books
Get notified! Find out when new books are published by following @PacktEnterprise on
Twitter, or the Packt Enterprise Facebook page.

D
ow

n
lo

a
d
 f
ro

m
 W

o
w

!
e
B
o
o
k

<
w

w
w

.w
o
w

e
b
o
o
k.

co
m

>

To Antonio Nebro, great lecturer, passionate for technology and even better Sushiman.

Braulio Díez Botella

To my parents, because they always believe in me. I love you

José Fernando Almoguera

To my wife Patricia and my kids Julia, Marcos and Claudia, thanks for your support and
the patience you had when I was writing this book

Pablo Núñez

To my two lovely sons Nacho and Sergio

Reyes García Rosado

Table of Contents
Preface 1
Chapter 1: Express Introduction to Silverlight 11

Introduction to Silverlight 12
Installation 12
Silverlight architecture 13

Creating the Hello World project 15
Creating a new project 16
Coding directly into the markup language 18

Dragging-and-dropping controls 19
Interacting with Code-Behind 20
XAML basic concepts 22

What is XAML? 22
Basic elements for layout definition 23

Canvas 23
StackPanel 24
Grid 25
Controls 27

LOB application case study: applying what we have learned 28
Summary 38

Additional resources 38
Chapter 2: Forms and Browsing 39

Controls definitions 39
Creating windows and controls 40

UserControl 41
Example of UserControl 41
Instantiating the control from code (Code-Behind) 44

Page control 46

Table of Contents

[ii]

Creating modal dialogs 47
Example of modal dialogs 47

Navigation 51
Navigating the Web 51
Silverlight Navigation Framework 52

Integrating Navigation Framework in the browser 53
UriMapper 53

Frame 54
Creating a sample Navigation Application 55

Adding a new page 56
Navigation control services 58

URI parameters 60
Deep Linking 61

LOB application case study: applying what we have learnt 62
MapView.XAML page 64
AdminView.XAML Page 66
Modal AdminEditionView.xaml dialog 69

Summary 70
Additional resources 71

Chapter 3: Data Binding 73
Understanding DataSource 74

Path 76
Binding sources 76
DataContext 77
Change notifications 79
Data binding modes 81

Introducing the ViewModel 83
ViewModel example 83

Dependency properties 87
Data binding from Code-Behind 91

Adding validations 92
BindingValidationError 96
DataAnnotations 97

Converters 99
IValueConverter 99

LOB application case study: applying what we have learned 102
Entity classes 104
ObservableCollection 104

AdminViewModel object 105

Table of Contents

[iii]

Data binding 111
Summary 112

Additional resources 112
Chapter 4: Architecture 115

Patterns 115
MVVM pattern 116

Creating an MVVM-based sample application 119
Creating the project structure 122
Coding the project 126

MVVM Light Toolkit 137
ViewModelBase 138
RelayCommand 139
Messenger 143

Managed Extensibilty Framework (MEF) 145
MEF definitions 146

Parts and contracts 147
Composition 148

Creating a mock model using MEF 148
Solution and folder structure 156
LOB application case study: applying what we have learned 163

Project structure 163
Folder structure 163
Main solution structure 164

Libraries 166
Packt.Libs.Navigation 166
Packt.Libs.Threading 171
Packt.Libs.Utils 172
Packt.Libs.Windows 172

Summary 172
Additional resources 173

Chapter 5: RIA Services Data Access 175
Accessing data 175
RIA Services pieces 176
Creating a Domain Service and consuming it from
a Silverlight application 178
CRUD 190

Read 190
Create 192
Update 192
Delete 193

Table of Contents

[iv]

Error control 193
Simple data binding 194

Validation 198
DataAnnotations 198

Simple validations 199
Custom and shared validations 200
Entity-level validations 203

Domain Services validations 205
Server validations 205
Asynchronous validations 207

Advanced topics 208
Cancelling changes 208
Transactions 209
Domain Service and partial classes 209
Include 210
Composition 211
Solving the many-to-many relationship issue 215

RIA Services and MVVM 216
Encapsulating RIA Services in a model 216
Context lifetime discussion and model factory 217

LOB application case study: applying what we have learned 219
Server 219
Test 221
Model 221
Modules 221

Summary 222
Additional resources 223

Chapter 6: Out of Browser (OOB) Applications 225
Out of Browser (OOB) 226
Executing an application in OOB mode 227
Enhancing the experience—tooling up and updating 230

In-browser/OOB detection 230
Detecting the application installed 231
Installing the custom interface 232
Uninstalling an OOB application 234
Offline installation 235
Updates 235

Offline work 236
How it works 238

Table of Contents

[v]

Breaking the sandbox—trusted applications 238
Enabling trusted mode 239

Advantages of trusted applications 241
Accessing files 242
Making calls to COM+ 242
P/Invoke 245
Cross-domain calls 247
WebBrowser control 248
Real windows 250

In-browser trusted applications 251
LOB application case study: applying what we have learned 252
Summary 254

Additional resources 254
Chapter 7: Testing your LOB Application 255

Types of testing 255
Methodologies 256
Unit testing with Silverlight 257

Testing server code 257
Testing client code with MSTest 260

Libraries to test Silverlight code 262
Testing synchronous client code with Silverlight Unit Testing 263
Testing asynchronous client code with Silverlight Unit Testing 269
Isolating unit tests via substitutes 272

LOB application case study: applying what we have learned 273
Summary 280

Additional resources 280
Chapter 8: Error Control 283

Following best practices 283
Exception handling 283

Getting started 284
Try and catch 284
The "finally" expression 285
Strategies 286

Asynchronous patterns 287
AsyncCompletedEventArgs 287
ExceptionRoutedEventArgs/UnhandledExceptionEventHandler 288

Global exception handling 289
Understanding the exception types 289

Fatal exception 290
Boneheaded exceptions 290

Table of Contents

[vi]

Vexing exceptions 290
Exogenous exceptions 290

Logging 291
Enterprise application framework 292

Architecture 292
Practice 294
Exception handling 297

PostSharp 299
Reporting bugs 304

Architecture 304
Service implementation 305
Client implementation 307

LOB application case study: applying what we have learned 308
Server side 309
Client side 311

Summary 314
Additional resources 315

Chapter 9: Integration with other Web Applications 317
Page architecture 318
Communication between an ASPX page and Silverlight 318
Accessing Silverlight from JavaScript 322

Exposing methods and functions 323
Returning complex data 323
Registering a Silverlight object 324

Accessing JavaScript from Silverlight 325
HtmlPage object 325

DOM handling from Silverlight 326
HtmlDocument 326
HtmlElement 326

Interaction between Silverlight and JavaScript 327
Address book 328

Visual Studio solution 330
Login page 332
Contact list 332
Contact edition 334

Calling JavaScript code 335
LOB application case study: applying what we have learned 336
Summary 339

Additional resources 339

Table of Contents

[vii]

Chapter 10: Consuming Web Services 341
Definitions 342
Implementing and consuming a WCF service 343

Proposal for sample projects 344
Building the server 345
Enabling WCF service for Silverlight 4 349
Designing the client UI 350
Referencing a WCF service from client 351
Consuming a WCF service from Silverlight 354
Using complex types via WCF 355

Consuming a public API web service 357
Twitter API 358
Starting the Twitter project 358
Calling the Twitter API 360
Processing JSON format 360

LOB application case study: applying what we have learned 362
Implementation of the service client 364

Summary 367
Chapter 11: Security 369

Client-side security 369
Critical information 370
Signing assemblies 370
XAP and certificates 372
XAP and obfuscation 374

Server-side and communication security 374
Validations 374
Cross-domain calls 375
Security in our communications 376
Authentication and authorization with RIA Services 377

Authentication 377
Authorization 379

Authentication and authorization in WCF Services 381
Protecting communications with SSL 382

LOB application case study: applying what we have learned 383
Server side 383
Client side 385

Summary 387
Additional resources 387

Index 389

Preface
Management applications, also known as Line of Business (LOB) applications,
constitute a great piece of the pie, that is the software development market. Until
a few years ago, a management application used to be implemented as a desktop
app. However, this approach has some drawbacks, as globalization pushes us
to implement information systems that support remote access via a standard
web browser.

Targeting an LOB application to run on a web platform adds greater complexity to
such a development, bearing in mind the fact that the Web was not conceived to host
applications which need heavy interaction with the user. Derived from this necessity,
the term Rich Internet Application (RIA) emerged. RIAs are web applications that
are used in a similar way to desktop applications.

Silverlight 5 is Microsoft's commitment to the implementation of RIA, which
will allows us, among other things:

•	 To implement an application from beginning to end with powerful
languages (C#, VB.NET, and so on), with no more of JavaScript

•	 To implement advanced UI (XAML markup language)
•	 To work with professional data access (WCF, RIA Services, Entity

Framework, and so on)
•	 To decouple designer and developer roles
•	 To have the user able to install the application as if it was a desktop one

Preface

[2]

LOB application case study: applying
what we have learned
With the purpose of applying theoretical concepts, the contents of this book are
accompanied by the implementation of an LOB application. In this case, it is an
application intended for office space reservations. We have chosen this kind of
application, as it includes the following features:

•	 It contains master-detail relationships.
•	 It's implemented as a real project, using best practices (MVVM pattern

based, unit testing, and so on). It allows us to implement a standard
management application interface, as well as a more advanced one
(Bing Maps integration).

•	 It incorporates user roles (administrator/average user).

At the end of every chapter, we will implement the most significant parts of this
app. You can see a map of the site we are going to create in the following figure:

Login
My Reservations +

CRUD Reservations
Choose Building CRUD Floors CRUD Rooms

CRUD Buildings

Preface

[3]

The details of every window can be seen in the following screenshots:

•	 My reservations and CRUD (Create, Read, Update, and Delete) reservations:

•	 Choose building:

Preface

[4]

•	 CRUD floors:

Preface

[5]

•	 CRUD rooms:

The application prototype is available for download at www.packtpub.com.

What this book covers
Chapter 1, Express Introduction to Silverlight, introduces the basic concepts for those
who have not previously worked with this technology. In case you have experience
with Silverlight, you can skip this chapter or read it as reinforcement.

Chapter 2, Forms and Browsing, explains how the standard line of a business user
interface is implemented in Silverlight (views, child windows, and navigation
framework).

Preface

[6]

Chapter 3, Data Binding, explains how data binding works (a connection between
the UI controls and data objects), allowing us to decouple the presentation layer
of the business layer (data, validations, and so on).

Chapter 4, Architecture, explains how to define an architecture for our application.
For this reason, we will cover a series of patterns, as well as their application in
Silverlight (MVVM, MVVM Light Toolkit, MEF, and so on).

Chapter 5, RIA Services Data Access, explains how to interact with databases, via
technologies such as WCF, RIA Services, and ADO.NET Entity Framework.

Chapter 6, Out of Browser (OOB) Applications, explains how to install our own
application on our client's desktop, and even ask the user for elevated permissions
in order to communicate via COM or P/Invoke with other components.

Chapter 7, Testing your LOB Application, explains how to implement automatic unit
testing and UI testing.

Chapter 8, Error Control, explains how to deal with server communication errors
and application execution errors.

Chapter 9, Integration with other Web Applications, explains how to integrate a
Silverlight component in an existing web application and how to establish
communication between JavaScript and Silverlight.

Chapter 10, Consuming Web Services, explains how to integrate WCF Web Services
in our application.

Chapter 11, Security, explains how to deal with security regarding:

•	 Application: Those aspects which make a Silverlight application secure
so as to run in a web client

•	 Communications: What should be done to secure our communications
•	 Authentication/Authorization: How can a login page and authentication

/authorization levels be added to a Silverlight application

What you need for this book
In order to compile and run the sample code included in this book, you will need
to install:

•	 Visual Studio 2010
•	 Visual Studio 2010 SP1
•	 Silverlight 5 Tool for Visual Studio 2010 SP1

D
ow

n
lo

a
d
 f
ro

m
 W

o
w

!
e
B
o
o
k

<
w

w
w

.w
o
w

e
b
o
o
k.

co
m

>

Preface

[7]

Who this book is for
This book is aimed at:

•	 Developers who have previously worked with Silverlight
•	 Web developers who have some knowledge of Line of Business applications
•	 Software architects who want to learn how to define an LOB architecture for

a Silverlight-based development and how to solve common LOB challenges

If you already have a firm grasp of Silverlight development and are keen to advance
your specialist knowledge of Line of Business (LOB) application development, then
Mastering LOB Development for Silverlight 5: A Case Study in Action is for you.

If you are a developer with experience with other technologies, you may also find
this book useful.

Conventions
In this book, you will find a number of styles of text that distinguish between
different kinds of information. Here are some examples of these styles, and an
explanation of their meaning.

Code words in text are shown as follows: "We can include other contexts through
the use of the include directive."

A block of code is set as follows:

<StackPanel
 Grid.Row="2"
 Orientation="Horizontal" HorizontalAlignment="Right">
 <Button Content="New"
 Width="60" Height="30"/>
 <Button Content="Save"
 Margin="5,0,0,0"
 Width="60" Height="30"/>
 <Button Content="Delete"
 Margin="5,0,0,0"
 Width="60" Height="30"/>
</StackPanel>

Preface

[8]

When we wish to draw your attention to a particular part of a code block, the
relevant lines or items are set in bold:

Grid x:Name="LayoutRoot" Background="White">
 <TextBlock Text="Hello World!" FontSize="20"/>
</Grid>

Any command-line input or output is written as follows:

install-package Moq

New terms and important words are shown in bold. Words that you see on the screen,
in menus or dialog boxes for example, appear in the text like this: "For Comments
textbox to occupy all of the grid width, we add a property called ColSpan".

Warnings or important notes appear in a box like this.

Tips and tricks appear like this.

Reader feedback
Feedback from our readers is always welcome. Let us know what you think about
this book—what you liked or may have disliked. Reader feedback is important for
us to develop titles that you really get the most out of.

To send us general feedback, simply send an e-mail to feedback@packtpub.com,
and mention the book title through the subject of your message.

If there is a topic that you have expertise in and you are interested in either writing
or contributing to a book, see our author guide on www.packtpub.com/authors.

Customer support
Now that you are the proud owner of a Packt book, we have a number of things
to help you to get the most from your purchase.

Preface

[9]

Downloading the example code
You can download the example code files for all Packt books you have purchased
from your account at http://www.packtpub.com. If you purchased this book
elsewhere, you can visit http://www.packtpub.com/support and register to have
the files e-mailed directly to you.

Errata
Although we have taken every care to ensure the accuracy of our content, mistakes
do happen. If you find a mistake in one of our books—maybe a mistake in the text or
the code—we would be grateful if you would report this to us. By doing so, you can
save other readers from frustration and help us improve subsequent versions of this
book. If you find any errata, please report them by visiting http://www.packtpub.
com/support, selecting your book, clicking on the errata submission form link, and
entering the details of your errata. Once your errata are verified, your submission
will be accepted and the errata will be uploaded to our website, or added to any list
of existing errata, under the Errata section of that title.

Piracy
Piracy of copyright material on the Internet is an ongoing problem across all media.
At Packt, we take the protection of our copyright and licenses very seriously. If you
come across any illegal copies of our works, in any form, on the Internet, please
provide us with the location address or website name immediately so that we can
pursue a remedy.

Please contact us at copyright@packtpub.com with a link to the suspected
pirated material.

We appreciate your help in protecting our authors, and our ability to bring you
valuable content.

Questions
You can contact us at questions@packtpub.com if you are having a problem with
any aspect of the book, and we will do our best to address it.

Express Introduction
to Silverlight

Nowadays, starting a web development poses a considerable challenge, since
clients have got used to having powerful desktop-based interfaces at their disposal,
which can also be delivered in record time. If we focus on Line of Business (LOB)
applications, we find the additional challenge which is the fact that our apps have to
be ready for massive changes, taking into account tight deadlines without sacrificing
stability. All of us have suffered that "little last-minute change". Everybody has
heard things like, "We got to change the way in which discounts for purchases are
managed. This could be ready in just five minutes, couldn't it?"

To overcome such situations, web developers can make use of a combination of ASP.
NET (webforms or MVC), HTML, JavaScript, AJAX, and the more advanced HTML 5
and jQuery.

Nevertheless, when we implement LOB applications we often find that:

•	 We have to struggle in order to make our pages consistent in different
browsers; even in different versions of the same browser.

•	 Our developers have to learn a language to develop client side, and
another one to develop the server side.

•	 JavaScript is a polemic language—love it or hate it. For some developers it
is not object-oriented (although it has OO capabilities) and is an interpreted
language. One only has to forget to add a semicolon, or introduce a syntax
error when typing a command, and our application may produce an
execution time error.

•	 HTML 5 only works in updated browsers. Could you imagine yourself
telling your client something like, "Well, what you have to do is install the
latest version of Chrome or IE on your 1,000 PCs. This is also applicable to
your associate companies."

Express Introduction to Silverlight

[12]

•	 We have to mix business and presentation logic. We try to avoid going to
the server, for instance, to make validations which do not require reading
a database. That is to say, we mix the reading of an input or an HTML
ComboBox with the realization of validations. For example, if the user
chooses more than four high-end products and is a premium client, we
can enable a special 10 percent discount. This causes serious trouble when
changes are required in the page layout, even if they are insignificant.

Introduction to Silverlight
Microsoft has published a plugin called Silverlight (the word plugin reminds us of
Flash, one of the most accepted plugin-based technologies) which allows us to encode
with sturdy, compiled languages (such as C# and VB.NET). This plugin incorporates
a lite version, that is the .NET Framework, which offers us the possibility to take
advantage of everything offered at the client side while implementing a new markup
language called XAML. The advantages of using Silverlight are as follows:

•	 Our applications are sturdier; for example, allowing us to implement
automatic unit testing at the client side.

•	 We can decouple business presentation and implement an architecture
at the client side.

•	 We can decouple roles. While a designer can deal with presentation, we as
developers are able to focus on the business of building the application.

•	 Our application is more scalable (we free up resources on the server) and
we do not depend on tricks to maintain application status.

•	 We can have a standard XAML implemented the same way in every single
browser. No more headaches such as, "it looks good in IE6 but not in IE7,
or Firefox, and so on".

In addition, Silverlight is multi-platform (for example, Windows or Mac) and
multi-device (computers, mobile devices with Symbian or WP7 support, for
instance, among others).

Installation
In this book, we are going to deal with Silverlight 5. The tool that Microsoft
recommends for development is Visual Studio 2010. Therefore, we will have to
install the following software:

•	 Visual Studio 2010 (if you do not have a commercial license, you can
download the express version available at http://www.microsoft.com/
express/downloads/#2010-Visual-CS)

Chapter 1

[13]

•	 Visual Studio 2010 SP1 at http://www.microsoft.com/download/en/
details.aspx?id=23691

•	 Microsoft Silverlight 5 Tools for Visual Studio 2010 at
http://www.microsoft.com/download/en/details.aspx?id=23887

All of these individual links are available at http://www.silverlight.NET/
getstarted/.

In case you cannot install Visual Studio 2010, the 2008 version
of the product will provide you with an interaction limited
to Silverlight 3, hence you will not be able to follow all of the
contents of this book.

Silverlight architecture
Silverlight is a plugin installed in web browsers in a quick and clean way similar
to Flash. That is, Flash is in a controlled environment, and applications run under a
sandbox environment.

As for the architecture, if we compare it to a standard web application, we can
substitute XAML for HTML, C# or VB.NET for JavaScript, and so on. We can also
make use of a reduced version of the.NET Framework as shown in the following figure:

Markup language created from scratch

Designed to build UI

Just one standard

Clear separation between UI definition (XAML)

from execution/business logic

Powerful client-side and compiled languages

(C# or VB.NET, among others)

We can use the same language in client and in

server side

Light version of .NET Framework (it weighs 4 MB)

It offers most of the potential of .NET Framework,

all available client side

Advanced user controls, WCF, LINQ, and so on

<XAML>

.NET Code

SL.NET

Framework

Multiplatform

Express Introduction to Silverlight

[14]

The plugin is about 4 MB in size and does not depend on the desktop version of
Microsoft .NET Framework.

All this is fine but there a few questions to be answered such as how is the Silverlight
application installed on a server? How is it executed on a client machine? Let's see
how it works:

•	 When we build a Silverlight project, an XAP file is generated (Silverlight can
also be configured to generate several files).

•	 This file is just a ZIP file with all the necessary assemblies and resources to
execute the application.

•	 This XAP file is stored on our web server.
•	 In an HTML page, we reference it using an OBJECT tag.
•	 When the user navigates to that page, the XAP file of the application is

downloaded and unzipped. Then, the application starting point is sought
and the application is executed.

Application execution takes place in a controlled sandbox environment, so
a malicious developer cannot format the client's HDD (in some cases, user
confirmation is required to interact with the hardware, otherwise interaction is
simply denied to the application).

Client Server

HTML

Container

Download

XAP File

Unzip XAP File

Page1.BAML Page....BAML DLLs

Execution of Application

Startup and choose

Home Page

Services queries

Databases

Third-party

Web services

In this example, we start from an

ASPX page. We could have

chosen an HTML page

or even an Apache server.

ASPX Container

XAP-Resources

Silverlight application

If necessary, the Silverlight app

can call the server to request or

send data (via Web

service, for instance).

Generation

HTML Page

Zip file which contains all the

resources of the Silverlight

Application compressed.

HTML Page

XAP File

Application execution

(client-side .NET code).
RSS sources

(...)

Chapter 1

[15]

To get a better idea of how it works, let's compare an HTML web application with a
Silverlight one:

Server

Internet

Client

Silverlight XAML
Code-

Behind

Services

HTML JavaScriptASP.NET
Code-

Behind

http Post

Call via Web service

Creating the Hello World project
Now that we have our development environment ready, we will create our first
Silverlight project. Of course, it will be the classic Hello World. On this occasion,
we will use the example to learn:

•	 How to create a new project
•	 How to encode directly into the markup language
•	 How to drag elements from the Toolbox palette and configure them

using Properties
•	 How to respond to an event and call a Code-Behind method

Express Introduction to Silverlight

[16]

Creating a new project
Let's open Visual Studio and start creating the app:

1. To create a new project, we must launch Visual Studio. Select File | New
Project and choose the Silverlight Application option:

2. Once the route and type of project has been chosen, a dialog will appear,
asking us if we want to create a web project to host our Silverlight application.

Chapter 1

[17]

3. Click on OK (a Silverlight application needs a web page which instantiates
it with an OBJECT tag).

We now have the solution created. It consists of two projects:

•	 Silverlight project: The wizard creates an entry point (.app file) and a default
page (MainPage). In the default MainPage, we can see the layout definition
(MainPage.xaml) and its associated Code-Behind (mainpage.cs). It is
advisable to remember that this Code-Behind is executed at the client side
and not at the server side.

Express Introduction to Silverlight

[18]

•	 Web project: This simply consists of an ASP.NET page and an HTML page
to try our Silverlight application.

We can clearly see every element of the solution in the following figure:

In ths file, global settings (such as common styles)

are stored. We could compare it to a Style Sheet.

This is the entrance point of a Silverlight application,

where we manage global events. Here we establish

the Main Page. It must load (similarly to Global.asax

in ASP.NET).

XAML definition of a page. We can have more than

one for a project (it reminds us of an .aspx file).

Code-Behind underlying the page (in this case, C#).

It is executed client-side.

The result of the compilation of the Silverlight project

is compressed via Zip in a file with .xap extension.

It is used as a resource in the Web project.

Test pages which instance a Silverlight plugin and

load the XAML Start page of our project.

Silverlight

Project

ASP.NET

Host web

Project

Coding directly into the markup language
In this section, we will add our first Silverlight controls, encoding them directly
into the markup language. We will see next how to carry out the same operation
via drag-and-drop:

1. Open the file MainPage.xaml.
2. Add a text block containing the expression Hello World. To do this, we

will enter the following code:
<Grid x:Name="LayoutRoot" Background="White">
 <TextBlock Text="Hello World!" FontSize="20"/>
</Grid>

Downloading the example code
You can download the example code files for all Packt books you
have purchased from your account at http://www.packtpub.
com. If you purchased this book elsewhere, you can visit
http://www.packtpub.com/support and register to have the
files e-mailed directly to you.

Chapter 1

[19]

3. We must build the project and execute the example by clicking on the
play icon.

4. We can now see our first Silverlight application in action!

Dragging-and-dropping controls
It is highly recommended that you have a good knowledge of the XAML markup
language and some experience practicing it. Nevertheless, if you intend to make
a rapid prototype or just need to begin developing immediately, you can use the
drag-and-drop controls from the toolbar directly in to the form (as in a WinForms
application).

Express Introduction to Silverlight

[20]

You can also edit the features of a control by accessing the Properties window as
shown in the following screenshot:

In order to achieve a higher control over the windows layout (with the aim to, for
example, achieve an optimal disposition of the controls in different resolutions),
we suggest learning the XAML markup language or using Expression Blend, which
is a tool for designers (and developers).

Interacting with Code-Behind
In the following example, we will allow the user to change the message Hello
World! to one of their choice. Starting from the previous example, we will follow
the given steps:

1. Open the mainpage.xaml file.
2. Replace the XAML code inserted in the previous example by the one

highlighted as follows (we have added an additional textbox, a button,
and identifiers for the controls).
<Grid x:Name="LayoutRoot" Background="White">
 <StackPanel Orientation="Vertical">
 <TextBlock x:Name="tbLabel"
 Text="Hello World!"
 FontSize="20"/>
 <StackPanel Orientation="Horizontal">
 <TextBlock
 Text="New Text:"
 FontSize="16"/>
 <TextBox
 x:Name="txInput"
 Width="120"/>

Chapter 1

[21]

 <Button Content="Change"/>
 </StackPanel>
 </StackPanel>
 </Grid>

3. When we build and execute the project, we realize that our window now
has the aspect as shown in the following screenshot:

4. Next, we must implement the response to the Click event of the
Change button.

5. Hook to the Click event directly in the XAML file. As soon as we start
typing, IntelliSense (Microsoft's implementation of autocompletion) will
ask us if we want to create the method (hitting Enter or Tab would create
the method with the default name or with the name of the control after
selecting a Click event).

6. Execute the same operation from the Properties panel (or by directly
double-clicking on the button control):

Express Introduction to Silverlight

[22]

7. As a result, XAML will look as follows:
<Button Content="Change" Click="Button_Click"/>

8. In Code-Behind, in the method invoked by the Click event, we must add
a line of code, which transfers the text content entered by the user to the
tag where we showed 'Hello World'.
private void Button_Click(object sender, RoutedEventArgs e)
{
 tbLabel.Text = txInput.Text;
}

9. When we execute, we will be able to enter a new text that substitutes
'Hello World'.

XAML basic concepts
Now that we have taken our first steps with Silverlight, let's have a quick
introduction to some basic concepts in XAML.

What is XAML?
Extensible Application Markup Language (XAML) is a declarative language.
Specifically, XAML can initialize objects and set properties of objects, using a
language structure that shows hierarchical relationships between multiple objects,
and uses a backing type convention that supports extension of types. You can create
visible user interface (UI) elements in the declarative XAML markup. You can then
use a separate Code-Behind file to respond to events and manipulate the objects
you declare in XAML (For more information on XAML, you can take a look at
http://msdn.microsoft.com/en-us/library/cc189036(v=vs.95).aspx).

Chapter 1

[23]

The advantages of XAML when compared to HTML are as follows:

•	 XAML is a modern language, adapted to the current needs of users and
implemented from scratch (whereas HTML suffers from organic growth)

•	 We have only one way to implement it, which avoids us headaches derived
from the problems of adaptation with different browsers and their versions

•	 There is a clear differentiation between declarative (XAML) and business
logic/code parts (.cs Code-Behind)

The best you can do is try it and see for yourself.

Basic elements for layout definition
When you work with HTML, you build the basic visual structure of a page by using
tables or divs (in more modern browsers, you can use a canvas as well). In Silverlight
5 we have three basic elements: Canvas, StackPanel, and Grid.

Canvas
This layout control permits us to place Child controls in coordinates relative to the
canvas parent (taking into account that the upper-left corner of the canvas is the (0,0)
coordinate) X, Y, Z (Z for the ZIndex). It is perfect for the implementation of drawing
applications or those devoted to diagram management.

In the following code you can see an example where a rectangle and an ellipse
are drawn:

<Canvas>
 <Rectangle
 Canvas.Top="25" Canvas.Left="50"
 Fill="Blue" Width="70"
 Height="80" StrokeThickness="3" Stroke="Black" />
 <Ellipse
 Canvas.Top="50" Canvas.Left="80"
 Fill="Yellow" Width="120"
 Height="80" StrokeThickness="3" Stroke="Black"
 />
</Canvas>

Canvas.Top and Canvas.Left are attached properties. Such properties allow a child
element to store a value associated with a property defined on an ancestor element.

Express Introduction to Silverlight

[24]

The result is as shown in the following screenshot:

StackPanel
The StackPanel control allows us to pile up child controls in horizontal or vertical
rows. We can nest several StackPanel controls. This combination makes it possible
to implement complex layouts, as shown in the following code and the resulting
screenshot:

<StackPanel Orientation="Vertical" HorizontalAlignment="Center">
 <Image Source="./images/Hydrangeas.jpg" Height="200" Margin="5"/>
 <StackPanel Orientation="Horizontal">
 <Image Source="./images/Chrysanthemum.jpg" Height="100"
 Margin="5"/>
 <Image Source="./images/Hydrangeas.jpg" Height="100" Margin="5"/>
 <Image Source="./images/Jellyfish.jpg" Height="100" Margin="5"/>
 </StackPanel>
</StackPanel>

D
ow

n
lo

a
d
 f
ro

m
 W

o
w

!
e
B
o
o
k

<
w

w
w

.w
o
w

e
b
o
o
k.

co
m

>

Chapter 1

[25]

Grid
A grid permits us to place content in rows and columns. The concept is similar to an
HTML table, but much more evolved. Before you start adding controls to the grid,
you need to specify its layout. This is done with the Grid.RowDefinitions and
Grid.ColumnDefinitions collection.

To set the position of the element inside the grid, we use the attached properties
Grid.Row and Grid.Column. The first position starts at 0. To establish the width
or height of a given row or column, we can use a fixed pixel width/height. Let the
layout manager autoadjust the size to the space available (auto), or provide a given
width/height based on percentages instead of pixels.

<Grid x:Name="LayoutRoot" Background="White">
 <Grid.RowDefinitions>
 <RowDefinition Height="100"/>
 <RowDefinition Height="100"/>
 </Grid.RowDefinitions>
 <Grid.ColumnDefinitions>
 <ColumnDefinition Width="150"/>

Express Introduction to Silverlight

[26]

 <ColumnDefinition Width="90"/>
 <ColumnDefinition Width="*"/>
 </Grid.ColumnDefinitions>

 <Image Source="./images/Desert.jpg"
 Height="100" Margin="5"
 Grid.Row="0" Grid.Column="0"/>
 <TextBlock Text="Desert"
 Grid.Row="0" Grid.Column="1"/>
 <TextBlock Text="Geographical area whose average annual
 precipitation is less than 250 millimeters (10 in) per year."
 Grid.Row="0"
 Grid.Column="2"
 TextWrapping="Wrap"
 />

 <Image Source="./images/Tulips.jpg"
 Height="100" Margin="5"
 Grid.Row="1" Grid.Column="0"/>
 <TextBlock Text="Tulip"
 Grid.Row="1"
 Grid.Column="1"/>
 <TextBlock Text="Perennial, bulbous plant which belongs to the
family Liliaceae."
 Grid.Row="1"
 Grid.Column="2"
 TextWrapping="Wrap"
 />
</Grid>

Chapter 1

[27]

Controls
Silverlight offers us a series of user controls, which are available in the Toolbox
palette. The most common ones are shown in the following screenshot:

You can find additional controls (for free) in the Silverlight Toolkit
(http://silverlight.codeplex.com/). There are plenty of commercial
libraries available.

Express Introduction to Silverlight

[28]

LOB application case study: applying
what we have learned
Now we will lay out the main window of our application:

Place Logo Here

Home Admin

Building

Plantation Palace

Eurocon

Picasso

Sky

Room

Green

Manuelle

Room 221

Planck

Date

01/10/20

05/10/20

15/10/20

29/09/20

Start

10:00

10:00

10:00

13:00

End

11:00

11:00

14:00

11:00

Comments

Weekly progress meeting

Product presentation

Weekly progress meeting

Weekly progress meeting

Country City Building

Date Reservation 29/09/2010 Start Time 10:00 Duration 1 Room

Comments

New Save Delete

City

London

Paris

Malaga

Munich

This window lets the user see the meeting room reservations which are already
made, as well as edit them, or create new ones.

First, we must create a new project, and then edit the XAML code of the MainPage file.

We must now define three rows to the grid layout container:

1. One of them will contain a DataGrid control, which shows the list of
reservations assigned to our account.

2. Another one will allow us to edit/create a particular reservation.
3. The last one will contain the buttons that will permit us to execute

commands such as New, Save, and Delete.

Chapter 1

[29]

The resulting user control includes the grid and rows created:

<UserControl x:Class="ReservationLayout.MainPage"
 xmlns="http://schemas.microsoft.com/winfx/2006/xaml/presentation"
 xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml"
 xmlns:d="http://schemas.microsoft.com/expression/blend/2008"
 xmlns:mc="http://schemas.openxmlformats.org/markup-
 compatibility/2006"
 mc:Ignorable="d"
 d:DesignHeight="300" d:DesignWidth="400">

 <Grid x:Name="LayoutRoot" Background="White">
 <Grid.RowDefinitions>
 <RowDefinition Height="300"/>
 <RowDefinition Height="300"/>
 <RowDefinition Height="90"/>
 </Grid.RowDefinitions>
 </Grid>

</UserControl>

Next, we must add a DataGrid control to the layout and indicate the row in which
its parent container will be assigned:

<UserControl
 x:Class="ReservationLayout.MainPage"
 xmlns="http://schemas.microsoft.com/winfx/2006/xaml/presentation"
 xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml"
 xmlns:d="http://schemas.microsoft.com/expression/blend/2008"
 xmlns:mc="http://schemas.openxmlformats.org/
 markup-compatibility/2006"
 xmlns:sdk="http://schemas.microsoft.com/winfx/2006/xaml/
 presentation/sdk"
 mc:Ignorable="d"
 d:DesignHeight="300" d:DesignWidth="400">

 <Grid x:Name="LayoutRoot" Background="White">
 <Grid.RowDefinitions>
 <RowDefinition Height="200"/>
 <RowDefinition Height="150"/>
 <RowDefinition Height="90"/>
 </Grid.RowDefinitions>

 <sdk:DataGrid Grid.Row="0"/>
 </Grid>
</UserControl>

Express Introduction to Silverlight

[30]

The easiest way to insert DataGrid control is by dragging it directly
from the Toolbox window in Visual Studio and then dropping it in
our layout (it adds all the necessary references for us). After that, we
only have to jump to the XAML of the application and define the row
and/or column where we want it to appear.

If we execute the application, the result is not very appealing. We will only see a
white rectangle that represents the DataGrid control. We will learn how to manage
this control in subsequent chapters. For now, we will add some column definitions
to make it look more similar to the following example screen.

To make it easier, we have to select the DataGrid object and use the Properties tab.

1. On the one hand, we disable auto-generation of columns.

2. On the other hand, we will define the columns manually, clicking on the
property Columns.

Chapter 1

[31]

The following is the XAML that we get:

<sdk:DataGrid Grid.Row="0" AutoGenerateColumns="False">
 <sdk:DataGrid.Columns>
 <sdk:DataGridTextColumn
 CanUserReorder="True"
 CanUserResize="True"
 CanUserSort="True"
 Header="City"
 Width="Auto"
 />
 <sdk:DataGridTextColumn
 CanUserReorder="True"
 CanUserResize="True"
 CanUserSort="True"
 Header="Building"
 Width="Auto"
 />

Express Introduction to Silverlight

[32]

 <sdk:DataGridTextColumn
 CanUserReorder="True"
 CanUserResize="True"
 CanUserSort="True"
 Header="Room"
 Width="Auto"
 />
 <sdk:DataGridTextColumn
 CanUserReorder="True"
 CanUserResize="True"
 CanUserSort="True"
 Header="Date"
 Width="Auto"
 />
 <sdk:DataGridTextColumn
 CanUserReorder="True"
 CanUserResize="True"
 CanUserSort="True"
 Header="Start"
 Width="Auto"
 />
 <sdk:DataGridTextColumn
 CanUserReorder="True"
 CanUserResize="True"
 CanUserSort="True"
 Header="End"
 Width="Auto"
 />
 <sdk:DataGridTextColumn
 CanUserReorder="True"
 CanUserResize="True"
 CanUserSort="True"
 Header="Comments"
 Width="*"
 />
 </sdk:DataGrid.Columns>
</sdk:DataGrid>

Chapter 1

[33]

Let's take a look at the final result:

We now move to the detailed area. The easiest thing to do here will be to design the
page using Expression Blend or Visual Studio. We will use the knowledge acquired
in this chapter to design the window manually using grid control. To do this, we
must define the following area of rows and columns:

Row 0

Row 1

Row 2

Country City Building

Date Reservation Start Time Duration Room

Comments

Rowspan

Column 0 Column 1 Column 2

The generated XAML can be seen in the code that follows. A few things should be
taken care of. They are:

•	 The grid container which we insert is inside the parent layout grid
•	 We use Margin properties to assign space between grid rows, as well as

between labels and controls

Express Introduction to Silverlight

[34]

•	 To lay out labels and controls, we will use a StackPanel control and adjust
the orientation property, setting it to vertical or horizontal, as applicable
(another valid approach to position them is to play with each Margin
property of each control, this margin being related to its container cell)

•	 For the Comments textbox to occupy all of the grid width, we add a property
called ColSpan

<Grid Grid.Row="1" HorizontalAlignment="Center" MinWidth="670"
 Margin="5">
 <Grid.RowDefinitions>
 <RowDefinition Height="25"/>
 <RowDefinition Height="30"/>
 <RowDefinition Height="80"/>
 </Grid.RowDefinitions>
 <Grid.ColumnDefinitions>
 <ColumnDefinition Width="200"/>
 <ColumnDefinition Width="250"/>
 <ColumnDefinition Width="220"/>
 </Grid.ColumnDefinitions>

 <StackPanel
 Orientation="Horizontal"
 Grid.Row="0"
 Grid.Column="0">
 <TextBlock
 Text="Country"
 Margin="0,5,5,0"/>
 <ComboBox Width="143"/>
 </StackPanel>

 <StackPanel
 Orientation="Horizontal"
 Grid.Row="0"
 Grid.Column="1">
 <TextBlock
 Text="City"
 Margin="0,5,5,0"
 />
 <ComboBox Width="221"/>
 </StackPanel>

 <StackPanel
 Orientation="Horizontal"

Chapter 1

[35]

 Grid.Row="0"
 Grid.Column="2">
 <TextBlock
 Text="Building"
 Margin="0,5,5,0"/>
 <ComboBox Width="100"/>
 </StackPanel>

 <StackPanel
 Orientation="Horizontal"
 Grid.Row="1"
 Grid.Column="0"
 Margin="0,5,0,0"
 >
 <TextBlock
 Text="Date Reservation" Margin="0,5,5,0"
 />
 <TextBox Width="90"/>
 </StackPanel>

 <StackPanel
 Orientation="Horizontal"
 Grid.Row="1"
 Grid.Column="1"
 Margin="0,5,0,0"
 >
 <TextBlock
 Text="Start Time"
 Margin="0,5,5,0"
 />
 <TextBox Width="70"/>
 <TextBlock
 Text="Duration"
 Margin="0,5,5,0"
 />
 <TextBox Width="61"/>
 </StackPanel>

 <StackPanel
 Orientation="Horizontal"
 Grid.Row="1"
 Grid.Column="2"
 Margin="0,5,0,0"
 >

Express Introduction to Silverlight

[36]

 <TextBlock
 Text="Room"
 Margin="0,5,5,0"/>
 <ComboBox Width="113"/>
 </StackPanel>

 <StackPanel
 Orientation="Vertical"
 HorizontalAlignment="Left"
 Grid.Row="3"
 Grid.Column="0" Grid.ColumnSpan="3"
 Margin="0,5,0,0"
 >
 <TextBlock
 Text="Comments"
 Margin="0,5,5,0"/>
 <TextBox
 Width="599"
 Height="50"/>
 </StackPanel>

</Grid>

The result of the page layout is as follows:

Chapter 1

[37]

We will add the control panel in the lower part of the window to complete the
layout. We will use a StackPanel container with horizontal orientation to do so.

<StackPanel
 Grid.Row="2"
 Orientation="Horizontal" HorizontalAlignment="Right">
 <Button Content="New"
 Width="60" Height="30"/>
 <Button Content="Save"
 Margin="5,0,0,0"
 Width="60" Height="30"/>
 <Button Content="Delete"
 Margin="5,0,0,0"
 Width="60" Height="30"/>
</StackPanel>

We have now laid out our window as shown in the following screenshot:

Express Introduction to Silverlight

[38]

Summary
In this chapter, we have assimilated the fundamentals of Silverlight architecture,
installed the necessary tools, implemented the classic 'Hello World' project, and
learned some basic concepts related to XAML.

The main points to be remembered are as follows:

•	 Silverlight provides us with a very powerful development framework
•	 Silverlight allows us to develop with .NET client-side coding
•	 Even though we can lay out windows via drag-and-drop, it is crucial to

know the basics of XAML

In the next chapter, we will begin with some concepts concerning management
applications. Similarly, we will learn how to add windows and dialogs, as well as
how to implement navigation between those windows.

Additional resources
If you haven't worked with Silverlight before, you probably couldn't get enough
of this chapter. If you want to further increase your knowledge, we recommend
Microsoft Silverlight 4 Business Application Development: Beginner's Guide, Albert
Cameron and Frank LaVigne, Packt Publishing. Likewise, you can find more
information at the following sites:

•	 XAML Silverlight Quick Start:
http://www.silverlight.NET/learn/quickstarts/xaml

•	 Build your First Silverlight app:
http://www.silverlight.net/learn/overview/getting-started/
getting-started-with-silverlight

•	 Getting Started with Silverlight Development (8 part tutorial):

http://timheuer.com/blog/articles/getting-started-with-
silverlight-development.aspx

Forms and Browsing
The aim of this book is that you, the reader, become capable of implementing your
own Silverlight application. You may be getting an idea of the controls you need
and how many screens your application will contain.

In this chapter, you will learn the features that Silverlight offers for large-scale
application layout (UserControls, Page, ChildWindow, Navigation Framework),
as well as the mechanism which Silverlight provides for browsing between the
different pages the application may have.

Controls definitions
Most management applications base their User Interface (UI) on forms. However,
each technology names them in its own way (forms, views, windows). Let us begin
by defining the elements Silverlight offers and their description:

Control Description
Container It allows us to host other controls within itself. All

controls mentioned in the table are Containers.
UserControl We can define content on it.
Page It inherits from UserControl and adds functionalities

which permit a better integration with the Windows
Navigation Framework in Silverlight.

Popup It also depends on UserControl. It is shown above all
Silverlight controls.

ContentControl It represents a control with a single piece of content.
ChildWindow It is a specialization of Popup control. It is used to

show modal dialogs.

Forms and Browsing

[40]

ContentControl is beyond this book's contents. Nevertheless, you can
find a good introductory article at: http://www.mostlydevelopers.
com/mostlydevelopers/blog/post/2009/03/30/Silverlight-
Custom-Content-Control.aspx

To understand better, we can take a look at the hierarchy tree in the following figure:

FrameworkElement

Class

Class

FrameworkElement

Popup

Class

FrameworkElement

ContentControl

Class

Control

ChildWindow

Class

ContentControl

Control

UserControl

Class

Control

Page

Class

Control

Creating windows and controls
At most times, when we develop an application, it is not possible to fit all the content
in just one page. Even if we were able to do so, sometimes it is preferable to divide
the content in several parts and group areas by functionality or reusability. On
other occasions, we may need other windows, such as modal dialogs, to show other
information to the user. Finally, we should not forget that the application may get
bigger and we could need more pages for all of its functionality.

Chapter 2

[41]

UserControl
Let us begin by talking about the most versatile and easiest control to use, UserControl.

It consists of two parts, Interface definition (XAML) and Code (Code-Behind).

In a new Project, the main page inherits from this control.

We can use both to create a form and a user control. When we create user controls,
we encapsulate some of the functionality of our application so as to instantiate this
control in other places without replicating code.

Example of UserControl
Let us pose a simple example where we will see how to create a UserControl and
instantiate it declaratively (XAML) and from code (Code-Behind). The application
will show a form where the user will be able to enter their name and address. The
form will be encapsulated in a UserControl, and this will be instantiated by the Page.

Hands on! We will start from a Silverlight blank project (created in the same way
we showed in the previous chapter). The name of this new project will be Chapter2.
Sample.Forms, as shown in the following screenshot:

Forms and Browsing

[42]

1. Add a new Views folder, which will help us make the code a little bit tidier.
We will add UserControl views (or other pages, if necessary) to this folder.

2. In this folder, right-click and choose Add | New Item on the Context menu,
as shown in the following screenshot:

3. Select the option Silverlight User Control and give it a name (for example,
MyControlUCView), as shown in the next screenshot:

D
ow

n
lo

a
d
 f
ro

m
 W

o
w

!
e
B
o
o
k

<
w

w
w

.w
o
w

e
b
o
o
k.

co
m

>

Chapter 2

[43]

4. When the UserControl is created, lay out the form that we have defined
within the control. To do so, define a Grid layout container and insert the
corresponding controls. The final aspect of the layout we want to build is
similar to the following screenshot:

5. Open the MyControlUCView.XAML file and insert the following code:
<Grid Margin="10">
 <Grid.RowDefinitions>
 <RowDefinition Height="30"/>
 <RowDefinition Height="30"/>
 <RowDefinition Height="30"/>
 </Grid.RowDefinitions>
 <Grid.ColumnDefinitions>
 <ColumnDefinition Width="80"/>
 <ColumnDefinition Width="*" />
 </Grid.ColumnDefinitions>
 <TextBlock Text="Name: "
 VerticalAlignment="Center"/>
 <TextBox x:Name="txtName" Grid.Row="0" Grid.Column="1"
 Width="200" Height="25" HorizontalAlignment="Left"/>
 <TextBlock Text="Mail Address: " VerticalAlignment="Center"
 Grid.Row="1" Grid.Column="0"/>
 <TextBox x:Name="txtAddress" Grid.Row="1" Grid.Column="1"
 Width="200" Height="25" HorizontalAlignment="Left"/>
 <TextBlock Text="Country: " VerticalAlignment="Center"
 Grid.Row="2" Grid.Column="0"/>
 <ComboBox x:Name="ddlCountry" Grid.Row="2" Grid.Column="1"
 Width="200" Height="25" HorizontalAlignment="Left">
 <ComboBoxItem Content="Spain"/>
 <ComboBoxItem Content="Germany"/>
 <ComboBoxItem Content="Italy"/>
 <ComboBoxItem Content="France"/>
 <ComboBoxItem Content="EEUU"/>
 </ComboBox>
</Grid>

This is the way the code is instantiated declaratively.

Forms and Browsing

[44]

6. Open the file MainPage.XAML and add the following statements:

<UserControl x:Class="Chapter2.Sample.Forms.MainPage"
xmlns="http://schemas.microsoft.com/winfx/2006/xaml/
 presentation"
xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml"
xmlns:d="http://schemas.microsoft.com/expression/blend/2008"
xmlns:mc="http://schemas.openxmlformats.org/markup-
 compatibility/2006"
xmlns:MyControls="clr-namespace:
 Chapter2.Sample.Forms.Views;assembly=Chapter2.Sample.Forms"
mc:Ignorable="d"
d:DesignHeight="300" d:DesignWidth="400">

Thereby, a namespace is added, which references the assembly in which
the control was created (in our example, the main project one).

If we break down the chain which defines namespace, we can see four parts:

•	 Xmlns: It indicates that we are adding a namespace: XML NameSpace.
•	 Mycontrols: It is the name which comes after the character ":". It assigns a

descriptive name to the namespace, in a way in which we can reference the
controls easily.

•	 clr-namespace:Chapter2.Sample.Forms.Views: It indicates the
namespace which contains the elements we want available.

•	 assembly=Chapter2.Sample.Forms: This indicates the assembly in which
the namespace we are adding is defined. In our example, it is optional that
the namespace which we are referring is in the same assembly as the page.

We are ready to instantiate the control. In order to do this, we add the control
within the main layout element. The right way is namespace:control.

<StackPanel x:Name="LayoutRoot" Background="White"
Orientation="Vertical"
 Margin="10" >
 <MyControls:MyControlUCViewx:Name="myControl">
 </MyControls:MyControlUCView>
</StackPanel>

When we execute this, we see the control is instantiated.

Instantiating the control from code (Code-Behind)
Before going to the code file, we need to add a button to the page. At the click of this
button, we can add a new instance of our UserControl.

Chapter 2

[45]

To do this, open the MainPage.XAML file and add the following code, which defines a
button in our main layout.

<StackPanel x:Name="LayoutRoot" Background="White"
Orientation="Vertical"
 Margin="10">
 <Button x:Name="btnAddUserControl" Content="Add Control" Width="100"
 Height="30" Click="btnAddUserControl_Click"/>
</StackPanel>

When we observe the XAML code which defines the button, we see it specifies a
function to manage the action when the user clicks. Instead of copying the code, if
we write it manually and we write Click, Visual Studio brings us the possibility of
creating an event handler automatically (we only need to press Tab or Enter once,
and the pop-up helper window is displayed) as shown in the following figure:

Another way of adding an event handler is to use the Visual
Studio Design Properties (you have to click on the Events tab and
then double-click on the Click Event property).

Now, we can navigate to the implementation of the event handler by right-clicking
on the event and choosing Navigate to Event Handler. Let's add few lines of code
to create a new instance of the control MyControlUCView and add it to the object
collection in the main layout container:

private void btnAddUserControl_Click(object sender, RoutedEventArgs e)
{
 //Create a new Instance of our User Control
 MyControlUCView myUC = new MyControlUCView();
 //Add the control to the Container of our MainPage
 LayoutRoot.Children.Add(myUC);
}

If we copy the code, the compiler will show an error, as it will not find the definition
for MyControlUCView, because it is located in a different namespace. We must add a
reference to it via the using clause in the following manner:

using Chapter2.Sample.Forms.Views;

When we execute the previous code, we will be able to see how it instantiates and
also shows the control when we press the button.

Forms and Browsing

[46]

If we instantiate a definite object in a different namespace, we will
have to import it, either by defining a new xmlns:name in the XAML
file or via the using clause, if it comes from the Code-Behind code file.

Page control
Page control is a specialization of UserControl. It includes functionality to integrate
with the Silverlight Navigation Framework. Since it is a control which inherits from
UserControl, it is a container element. We will use this control to create an application
with several pages, if we are going to make use of the Navigation Framework.

Page control offers functionality to make use of navigation history,
NavigationService (going backwards or forwards in the history), and events where
we can control every single state of the navigation process. We will go deeper into
these points in this chapter devoted to Navigation Framework.

It is a fundamental control for developing management applications.

To create a new page, click Add New Item and choose the option Silverlight Page,
as shown in the following screenshot:

Chapter 2

[47]

Creating modal dialogs
Modal dialogs are also common components in LOB (Line Of Business) applications
and management applications. That is to say, a pop-up window that blocks the rest
of the application appears. Once the user has completed the pertinent application,
he or she can close it and the application unblocks.

ChildWindow is the implementation of a modal dialog in Silverlight.

Example of modal dialogs
We will continue with the previous example, now adding a ChildWindow control.
Also, we will make the modal window host the same content as the main window,
adding the UserControl we previously created. Finally, we will communicate with
the main page using the modal control. To do so, we will copy the values we entered
in the form of the modal window to the form of the main page, as shown in the
following screenshot:

To create a ChildWindow, carry out the following steps:

1. On the Views folder, right-click and select Add | New Item.

Forms and Browsing

[48]

2. Choose the option Silverlight Child Window and name it MyDialogView,
as shown in the next screenshot:

3. Once the project is created, open MyDialogView.XAML and add the following
content to customize it. We will also use the UserControl, created in the
previous section, to display within the modal dialog. We will proceed as
we did in the previous example. The final result will look similar to the
following screenshot:

Chapter 2

[49]

4. First, add the namespace where the UserControl is located and then reference
both using the following lines of code:
<controls:ChildWindow
 x:Class="Chapter2.Sample.Forms.Views.MyDialogView"
 xmlns=http://schemas.microsoft.com/winfx/2006/xaml/presentation
 xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml"
 xmlns:controls="clr-namespace:System.Windows.Controls;
 assembly=System.Windows.Controls"
 xmlns:MyControls="clr-namespace:Chapter2.Sample.Forms.Views"
 Width="400" Height="200" Title="MyDialogView">
 <Grid x:Name="LayoutRoot" Margin="2">
 <Grid.RowDefinitions>
 <RowDefinition />
 <RowDefinition Height="Auto" />
 </Grid.RowDefinitions>
 <MyControls:MyControlUCView x:Name="myControl"/>
 <Button x:Name="CancelButton" Content="Cancel"
 Click="CancelButton_Click" Width="75" Height="23"
 HorizontalAlignment="Right" Margin="0,12,0,0"
 Grid.Row="1"/>
 <Button x:Name="OKButton" Content="OK"
 Click="OKButton_Click" Width="75" Height="23"
 HorizontalAlignment="Right" Margin="0,12,79,0"
 Grid.Row="1" />
 </Grid>
</controls:ChildWindow>

5. In the Code-Behind file, let's add public properties to store the name,
address, and country ID that the user is going to type in the dialog:
public partial class MyDialogView : ChildWindow
{
 public string MyName { get; set; }
 public string MyAddress { get; set; }
 public int MyCountry { get; set; }
}

Forms and Browsing

[50]

6. In the handler function of the OK button, collect the values of the form
shown in the modal dialog, copy them to the properties defined in the
previous step, and set the dialog result to true to indicate that the user
clicks the OK button using the following lines of code:
private void OKButton_Click(object sender, RoutedEventArgs e)
{
 MyName = myControl.txtName.Text;
 MyAddress = myControl.txtAddress.Text;
 MyCountry = myControl.ddlCountry.SelectedIndex;
 this.DialogResult = true;
}

Once we have defined our ChildWindow, we still need a few actions to display it:

1. In the MainPage page, add a btnShowDialog button. When we click the
button, the Modal window is displayed.

2. To do so, associate a handler with the Click event. For this example, we will
not need the code we previously added to insert objects in the form from the
Code-Behind. We can comment on that code, as shown in the following code:
<UserControl x:Class="Chapter2.Sample.Forms.MainPage"
 xmlns="http://schemas.microsoft.com/winfx/2006/xaml/
 presentation"
 xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml"
 xmlns:d="http://schemas.microsoft.com/expression/blend/2008"
 xmlns:mc="http://schemas.openxmlformats.org/markup-
 compatibility/2006"
 xmlns:MyControls="clr-namespace:Chapter2.Sample.Forms.Views"
 mc:Ignorable="d"
 d:DesignHeight="300"
 d:DesignWidth="400">
 <StackPanel x:Name="LayoutRoot" Background="White"
 Orientation="Vertical" Margin="10" >
 <MyControls:MyControlUCView x:Name="myControl"/>
 <!--<Button x:Name="btnAddUserControl" Content="Add Control"
 Width="100" Height="30" Click="btnAddUserControl_Click"/>-->
 <Button x:Name="btnShowDialog" Content="Show Dialog"
 Width="100" Height="30" Click="btnShowDialog_Click"/>
 </StackPanel>
</UserControl>

3. In the Code-Behind, in response to the Click event, we instantiate the control
MyDialogView, show it via the method Show(), and link to the ChildWindow
Closed event, using the following code:

Chapter 2

[51]

private void btnShowDialog_Click(object sender, RoutedEventArgs e)
{
 MyDialogView childwindow = new MyDialogView(myControl);
 childwindow.Closed += new
 System.EventHandler(childwindow_Closed);
 childwindow.Show();
}

4. In the Closed event handler, we check if the DialogResult is true (not
cancelled) and collect the values to display them on the main page by
including the following code:
void childwindow_Closed(object sender, System.EventArgs e)
{
 MyDialogView dlg = sender as MyDialogView;
 if(dlg.DialogResult == true)
 {
 myControl.txtName.Text = dlg.MyName;
 myControl.txtAddress.Text = dlg.MyAddress;
 myControl.ddlCountry.SelectedIndex = dlg.MyCountry;
 }
}

Let us execute our example and see that when we press the button, the modal dialog
appears. If we fill in the controls and click OK, we will see how the values are copied
and the Modal window is closed.

Navigation
Navigation between windows and pages is a crucial point, both in web and desktop
applications. If you are an experienced developer, you may remember those times
when the event of a button was directly associated with instantiation and the call
of a window show method. Nowadays, the tendency is to decouple navigation and
windows along with using a Navigation Framework.

Navigating the Web
For those coming from web development using iFrames, the idea will sound
familiar (better still, the Silverlight Navigation Framework integrates flawlessly
in our Silverlight developments). Imagine a web application in which the header,
which contains a navigation menu, is fixed. Finally, let us imagine that every menu
option makes the content of our application (the page) change. However, what really
happens is that it loads another page in the central iFrame in the backend. Roughly
speaking, this is the Navigation Framework.

Forms and Browsing

[52]

Another viewpoint (that of an ASP.NET developer) is thinking that we have a
MasterPage and several pages associated with it. Silverlight, nevertheless, goes
a step beyond, as one of our pages could contain another navigation control.

Let us have a look at the draft of a hypothetical application. The following screenshot
displays a sample application that includes a menu and an area for content to be
added. The content may differ according to the options selected from the menu:

We can identify two areas:

•	 One in the previous part, which contains a menu and whose content is fixed.
•	 Another one which occupies the greatest part of our application. It changes

according to the option chosen in the menu. This was an iFrame, which
contains another HTML page.

Silverlight Navigation Framework
Navigation Framework is defined as navigation architecture between the pages of a
Silverlight application.

Until version 2 (The Silverlight Navigation Framework was introduced in version 3),
the main options to lay out an application with several windows were the following:

•	 Defining UserControls for every page of the application and show/hide
them manually, depending on the status of the application.

•	 Having several HTML container pages, with each one of them having a
Silverlight object instantiated.

We wouldn't recommend the second option, since it implies an extra communication
system, different XAP modules, and we don't find any advantage versus the first.

Chapter 2

[53]

With the appearance of Navigation Framework, we are able to centralize navigation
automatically from a single point. Navigation between pages is quite clean, thanks
to the use of friendly URLs such as http://www.albloguera.com/Silverlight.
html#home.

In this way, we are able to tell the application what we want to display.

Integrating Navigation Framework in the browser
Navigation Framework allows us to make use of the navigation history. This means
that if we click Forward and Back, the application uses the navigation history
and loads the page which it has indicated. This is not the only good feature. The
navigation route can also show, apart from the page, parameters which initialize the
application one way or another. In order to allow a Silverlight application to make
use of the history, the page where the Silverlight object is instantiated must contain
an iFrame object with the following name:

<iframe id="_sl_historyFrame"
 style="visibility:hidden;height:0px;width:0px;border:0px"></iframe>

An application created with the Navigation Template adds this iFrame by default.
Finally, we would like to point out that we can disable the navigation history for
everything that has taken place outside the application. That is, the Silverlight
application will not register anything about the navigation that the user does
outside. For example, if the user goes to another page, the navigation history of the
application will not take that into account. In this respect, we must add the following
property to iFrame:

<iframe id="_sl_historyFrame"
 style="visibility:hidden;height:0px;width:0px;border:0px"
 JournalOwnership="OwnsJournal">

Once we have gotten an idea of what navigation between different parts of an
application is, let us go deeper into the UriMapper concepts.

UriMapper
We could think of UriMapper as the navigation control centre of our application.
Here, we define the links or pages of the application (real URI) and assign it a
friendly name (URI shown), so that the user does not see the physical address of
the page shown, but a name describing it (for those coming from the ASP.NET
MVC background, this concept will be quite familiar).

Forms and Browsing

[54]

URI URI shown Real URI
Uri = "/Home"

MappedUri = "/Views/Home.xaml"

/Home /Views/Home.xaml

Uri = "/{page}"

MappedUri = "/Views/{page}Page.
xaml"

/About /Views/AboutPage.xaml

Uri = "/Product/{category}"

MappedUri = "/ContosoShop/
Product.xaml? category ={category}"

/Product/
bikes

/ContosoShop/Product.
xamlñ?category=bikes

We can see several examples of URI mappings in the following table:

We can observe in the table that URIs do not have to define a fixed physical address,
but they can define a flexible behavior, depending on the URI. To define a segment of
the URI as a variable, we must add the value in braces; it will be later replaced in the
real URI. This is quite useful for parameter passing in the URI.

Frame
This is the container of the application. For those who are familiar with ASP.NET, it
is similar to the ContentPlaceHolder. For older users, it is the central iFrame. It is in
charge of navigation and shows the different pages of the application.

<navigation:Frame x:Name="ContentFrame" Style="{StaticResource
 ContentFrameStyle}" Source="/Home" Navigated="ContentFrame_
Navigated"
 NavigationFailed="ContentFrame_NavigationFailed">
 <navigation:Frame.UriMapper>
 <uriMapper:UriMapper>
 <uriMapper:UriMapping Uri="" MappedUri="/Views/Home.xaml"/>
 <uriMapper:UriMapping Uri="/{pageName}"
 MappedUri="/Views/{pageName}.xaml"/>
 </uriMapper:UriMapper>
 </navigation:Frame.UriMapper>
</navigation:Frame>

Chapter 2

[55]

Creating a sample Navigation Application
Now that we have identified the main points of the Navigation Framework, we will
begin by creating a sample from the beginning.

We will create an application which makes use of the Silverlight Navigation
functionality, showing how we can control the navigation status when it begins or
ends. Also, we will learn how to pass parameters via URI.

1. To create a new project, go to New Project and choose a Silverlight
Navigation Application project.

2. Give the project a name and click Ok.
3. Later, we will be asked if we want to create a project for hosting the

Silverlight application. For convenience, choose to create an ASP.NET Web
Application project.

4. After clicking OK, Visual Studio applies the Template associated with this
kind of project. It generates a structure depending on the solution to locate
an area for page definition at first sight, as shown in the following screenshot.

	° Main Page: If we observe it, we can see that it has created a main
page (MainPage.XAML). This page also contains the Navigation
controls (and UriMappers). Here, we can also find the menu links.

Forms and Browsing

[56]

	° App.xaml: In this file, we define the application styles (we could add
URIMappers here as well).

	° App.cs: This is the application entry point.
	° Page container area: It creates a Views folder and here we add the

new pages our application needs. By default, we will find two sample
pages, Home.xaml and About.xaml. A ChildWindow control has also
been added to the Views folder in order to show the possible errors
that the application may generate. ErrorWindow.xaml.

Finally, we can see the web project upon which the Silverlight application will
be executed.

Adding a new page
We will add a new page to our project and also create the resulting option in the
Navigation menu, which will allow us to display it.

1. On the Views folder, add a new Silverlight Page item.
2. Name it AdminView.XAML.

If we execute the application at this point, we will see that there is no link
to the new page. To get one, we need to modify the MainPage.XAML page,
by adding a new UriMapper that identifies the AdminView.XAML page in
the following manner:

Chapter 2

[57]

<uriMapper:UriMapper>
 <uriMapper:UriMapping Uri="" MappedUri="/Views/Home.xaml"/>
 <uriMapper:UriMapping Uri="/{pageName}"
 MappedUri="/Views/{pageName}.xaml"/>
 <uriMapper:UriMapping Uri="/{pageName}"
 MappedUri="/Views/{pageName}View.xaml"/>
</uriMapper:UriMapper>

	° Conventionally, when identifying interface objects, we will rename
the pages Home.XAML and About.XAML to HomeView.XAML and
AboutView.XAML respectively (we should not forget to rename
classes). Thus it is clear that the second UriMapper is superfluous;
if we execute the application right now, the error "Home Page is not
found" would occur (it is configured by default), as displayed in the
following screenshot. The application matches the Home URI with the
second UriMapper and does not find the /Views/Home.XAML URI.

Interface Object Name: It is a good practice to name the
interface objects with the suffix "View" in order to identify
them clearly.

3. We must delete the second URI of the collection because the UriMapper
cannot map the /home URI to the Home.xaml now, because the Navigation
Framework takes the first entry in the URI collection that matches with the
specified URI, as shown in the UriMapper code.

4. Then execute the application again.
So where should you click to go to the new page?

Forms and Browsing

[58]

We are still to enter another menu entry.

1. To do so, add a new HyperLinkButton control to the MainPage.XAML page
and establish the NavigateUri property to the Admin value as shown in the
following code:

2. Let us execute the application again.
<StackPanel x:Name="LinksStackPanel" Style="{StaticResource
 LinksStackPanelStyle}">
 <HyperlinkButton x:Name="Link1" Style="{StaticResource
 LinkStyle}" NavigateUri="/Home" TargetName="ContentFrame"
 Content="home"/>
 <Rectangle x:Name="Divider2" Style="{StaticResource
 DividerStyle}"/>
 <HyperlinkButton x:Name="Link3" Style="{StaticResource
 LinkStyle}" NavigateUri="/Admin" TargetName="ContentFrame"
 Content="Admin"/>
 <Rectangle x:Name="Divider1" Style="{StaticResource
 DividerStyle}"/>
 <HyperlinkButton x:Name="Link2" Style="{StaticResource
 LinkStyle}" NavigateUri="/About" TargetName="ContentFrame"
 Content="about"/>
</StackPanel>

This is how our UriMapper will look:

<uriMapper:UriMapper>
 <uriMapper:UriMapping Uri="" MappedUri="/Views/HomeView.xaml"/>
 <uriMapper:UriMapping Uri="/{pageName}"
 MappedUri="/Views/{pageName}View.xaml"/>
</uriMapper:UriMapper>

Navigation control services
Navigation control offers methods to navigate and navigation control events.

The following are the methods:

•	 GoBack: It goes back to the page previously visited.
•	 GoForward: It goes a page forward in the navigation history.
•	 Navigate: It goes to the indicated page.
•	 Refresh: Reloads the current page.
•	 StopLoading: Cancels any asynchronous navigation actions that haven't

been processed yet.

Chapter 2

[59]

Following are the Events:

•	 Navigated: This occurs when the navigation to a particular page has ended.
•	 Navigating: This occurs when the navigation to a particular page is about to

begin.
To put this functionality into practice, we will add a button to the AdminView page.
At the click of this button, we will be able to navigate to the last visited page.

1. Begin by adding a button definition in the XAML file.
2. We will establish, as we saw previously, a manager for the Click event.

<Grid x:Name="LayoutRoot">
 <Button x:Name="btnGoBack"
 Width="100"
 Height="25"
 Content="Go Back"
 Click="btnGoBack_Click">
 </Button>
</Grid>

3. We must add the Click event manager with the following code:
private void btnGoBack_Click(object sender, RoutedEventArgs e)
{
 if (this.NavigationService.CanGoBack)
 //go to the previous page in the history
 this.NavigationService.GoBack();
}

4. We can also intercept the exact moment in which navigation occurs. To see
how it works, we must subscribe to the Navigating event and a message
that indicates the page being navigated is shown. We do this on the Frame
control of the MainPage.XAML page, similar to the following code:
<navigation:Frame x:Name="ContentFrame" Style="{StaticResource
 ContentFrameStyle}" Source="/Home"
 Navigated="ContentFrame_Navigated"
 NavigationFailed="ContentFrame_NavigationFailed"
Navigating="ContentFrame_Navigating">

5. Lastly, add the following code to the Code-Behind, so that it displays a
message with the information of the page that is being navigated.

private void ContentFrame_Navigating(object sender,
 NavigatingCancelEventArgs e)
{
 MessageBox.Show("You are navigating to " + e.Uri, "Information",
 MessageBoxButton.OK);
}

Forms and Browsing

[60]

URI parameters
Similar to a web application, we can pass parameters between the different websites
via URI.

We will add a new UriMapper for the Admin page to receive a parameter in
this manner.

UriMappers will look similar to the following block of code:

<uriMapper:UriMapping Uri="" MappedUri="/Views/HomeView.xaml"/>
<uriMapper:UriMapping Uri="/Admin/{userName}"
 MappedUri="/Views/adminView.xaml?userName={userName}"/>
<uriMapper:UriMapping Uri="/{pageName}"
 MappedUri="/Views/{pageName}View.xaml"/>
</uriMapper:UriMapper>

Now we will add a button to the Home page with a handler for the Click event,
which is used to navigate to the Admin page, and also adds a parameter to the URI.
The code in Code-Behind will look similar to the following:

private void btnGoAdminAsAdmin_Click(object sender, RoutedEventArgs e)
{
 this.NavigationService.Navigate(new Uri("/Admin/{jose.f.almoguera}",
 UriKind.RelativeOrAbsolute));
}

Finally, we must control the existence of any parameter in the URI of the Admin page.

Go to the Code-Behind of the Admin page and complete the function
OnNavigatedTo with the following code. This shows a message if the URI contains a
parameter named userName, when navigating to this page.

// Executes when the user navigates to this page.
protected override void OnNavigatedTo(NavigationEventArgs e)
{
 //Check if URI contains a parameter named "userName"
 if (this.NavigationContext.QueryString.ContainsKey("userName"))
 MessageBox.Show("You are " +
 this.NavigationContext.QueryString["userName"]);
}

If we execute the application right now and click on the Go to Admin page as Admin,
we will obtain the following message sequence:

1. You are navigating to /Home

Chapter 2

[61]

2. {click on Go To Admin Page As Admin} You are navigating to /
admin{jose.f.almoguera}

3. You are {jose.f.almoguera}, as shown in the following screenshot:

Deep Linking
In a Rich Internet Application (RIA) – Silverlight, Flex – it is quite common that
the URL reflects an application's web direction (that is, a global direction), which
remains unchanged through its whole life. Now, with the Navigation Framework,
the term Deep Linking can be understood. We can define Deep Linking as a URL,
which clearly defines a place within a website – URI. The URL contains the entire
information defining the target.

You can find a more in-depth definition about deep linking here:
http://en.wikipedia.org/wiki/Deep_linking

Thanks to the Navigation Framework, we can access a particular section of a specific
page or content within the application. It allows us to use Deep Linking in our
application. However, thanks to the use of parameters in the URI, we can access a
particular status too. As an illustration, we can mention a link to a book within a
particular library:

http://www.mylibrary.com/#seebook?bookId=5

•	 First, the place we want to go to or the action we want to do must be
specified. In this case, we want to view a book, so we must go to the see
book page.

•	 Once in the selected place, we have to indicate that we want to see the book
with ID=5.

We have already seen an example of this while dealing with URI parameters when
we implemented the Navigation Framework sample.

D
ow

n
lo

a
d
 f
ro

m
 W

o
w

!
e
B
o
o
k

<
w

w
w

.w
o
w

e
b
o
o
k.

co
m

>

Forms and Browsing

[62]

LOB application case study: applying
what we have learnt
To apply what we have learnt so far, we will create the navigation for our application.
In this example, we will create three pages for navigation and a modal dialog to edit
rooms. The flowchart will look like the following diagram:

Home
Admin

Select Build

Edit
Rooms

Admin
Select Floor

1. Let us begin by creating a new navigation project, as we have learnt in this
chapter. The project will be named ReservationNavigation. We will later
add the following elements in the Views folder:

	° MapView: Object of the type Page. We will be able to navigate to this
page via the general menu of the application. It will show a map on
which to choose a building to edit.

	° AdminView: Object of the type Page. We will be able to navigate to
this page from the MapView page after choosing a building.

	° AdminEditionView: Object of the type ChildWindow. This modal
window will show a form with the necessary fields to edit/add/
delete a room in a building.

2. Once we have added these two pages and the modal window; modify
the UriMapper in order to add the new navigation possibilities of our
application. For this example, we will generate the UriMapper as a resource
and move it to the app.xaml file, using the following code. We will assign
the uriMapper key.
<Application x:Class="ReservationNavigation.App"
 xmlns="http://schemas.microsoft.com/winfx/2006/xaml/
 presentation"
 xmlns:uriMapper="clr-namespace:System.Windows.Navigation;
 assembly=System.Windows.Controls.Navigation"

Chapter 2

[63]

 xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml">
 <Application.Resources>
 <ResourceDictionary>
 <uriMapper:UriMapper x:Key="uriMapper">
 <uriMapper:UriMapping Uri="" MappedUri="/Views/Home.xaml"/>
 <uriMapper:UriMapping Uri="/Admin/{buildId}"
 MappedUri="/Views/AdminView.xaml?buildId={buildId}"/>
 <uriMapper:UriMapping Uri="/Admin"
 MappedUri="/Views/MapView.xaml"/>
 <uriMapper:UriMapping Uri="/{pageName}"
 MappedUri="/Views/{pageName}.xaml"/>
 </uriMapper:UriMapper>
 <ResourceDictionary.MergedDictionaries>
 <ResourceDictionary Source="Assets/Styles.xaml"/>
 </ResourceDictionary.MergedDictionaries>
 </ResourceDictionary>
 </Application.Resources>
</Application>

Resources are a powerful, easy, and elegant way to define
objects and styles, which can be used in different parts of the
application, apart from allowing for a cleaner code. We can
have different resource files and later unite name-value pairs
in a dictionary within the app.xaml file.

3. Now we can clean the XAML code within the MainPage.XAML, which defines
navigation control.

4. We have eliminated the UriMapper, which the MainPage.XAML contained,
and have established it as a property, as shown in the following code:
<navigation:Frame x:Name="ContentFrame" Style="{StaticResource
 ContentFrameStyle}" Source="/Home"
 Navigated="ContentFrame_Navigated"
 NavigationFailed="ContentFrame_NavigationFailed"
 UriMapper="{StaticResource uriMapper}"/>

5. Finally, we will add the new entries to the navigation menu. In our example,
there will be only one, namely, the Admin option.
<Border x:Name="LinksBorder" Style="{StaticResource
 LinksBorderStyle}">
 <StackPanel x:Name="LinksStackPanel" Style="{StaticResource
 LinksStackPanelStyle}">
 <HyperlinkButton x:Name="Link1" Style="{StaticResource
 LinkStyle}" NavigateUri="/Home" TargetName="ContentFrame"
 Content="home"/>

Forms and Browsing

[64]

 <Rectangle x:Name="Divider1" Style="{StaticResource
 DividerStyle}"/>
 <HyperlinkButton x:Name="Link3" Style="{StaticResource
 LinkStyle}" NavigateUri="/Admin" TargetName="ContentFrame"
 Content="admin"/>
 <Rectangle x:Name="Divider2" Style="{StaticResource
 DividerStyle}"/>
 <HyperlinkButton x:Name="Link2" Style="{StaticResource
 LinkStyle}" NavigateUri="/About" TargetName="ContentFrame"
 Content="about"/>
 </StackPanel>
</Border>

If we executed it right now, the page would look similar to the following screenshot:

MapView.XAML page
This page is transparent for the user, that is, the user can only see an administration
page. Before getting to it, the user will stop at the MapView page to choose a
building to administrate, similar to the following screenshot. The page shows
an image with a map and several links to click. Later, after selecting a venue, the
application will navigate to the administration page.

Chapter 2

[65]

All the XAML code in this page can be found within the example in this chapter.
Roughly speaking, it is a Canvas object containing several Image objects: one for
the map and the other three for the flags.

Forms and Browsing

[66]

The flags (and labels) have a manager associated for the MouseLeftButtonDown
event to initiate navigation to the Administration page. Before calling the Navigate
method, we will obtain the name of the selected element to add it as a parameter to
the URI.

/// <summary>
/// Take the name of the link selected
/// and navigate to the admin page
/// </summary>
private void imgMadrid_MouseLeftButtonDown(object sender,
 MouseButtonEventArgs e)
{
 // var to store the name of the link clicked
 string target = "";
 //Depending on the object's type we do the cast
 if (sender.GetType() == typeof(Label))
 {
 Label lbl = (Label)sender;
 target = lbl.Name.Substring(3);
 }
 else
 {
 Image img = (Image)sender;
 target = lbl.Name.Substring(3);
 }
 //Navigate to the Admin page adding a parameter
 //to the URL to identify the building selected
 this.NavigationService.Navigate(new Uri("/Admin/" + target,
 UriKind.RelativeOrAbsolute));
}

AdminView.XAML Page
In this page, we can administrate the available rooms in the different buildings.
For the layout, we will use Grid and StackPanel (see the following diagram). We
will also add the following objects:

•	 DataGrid: One to show the floors and the general view of the building, and
a second one connected (master/detail), which shows the different rooms
defined in the selected floor.

•	 Button: Several buttons to add, delete, or edit the floors of the building. We
also find an Edit button, which will open the modal window to edit a floor.

Chapter 2

[67]

Grid: 3 Rows StackPanel: Vertical Orientation

StackPanel: Horizontal Orientation Buttons

DataGrid

DataGrid & Button

Let us lay out the page and give it an aspect similar to the following screenshot, that
is, the AdminView page (we learned how to achieve this in the previous chapter):

Forms and Browsing

[68]

The XAML code of the page AdminView.xaml can be seen by downloading the
examples in Chapter 2 (see Source Code section at the end of the book).

If we take a look at the navigation menu, we will see there is no selected option, and
it is caused by the code in charge of maintaining the status of the different menu
options. We have two options in the menu, namely, home and admin (let us omit
the option about). However, the same status in the control panel is defined by two
different pages, namely, MapView and AdminView. The buttons and the respective
URI's are shown in the following diagram:

Buttons

URl’s

HOME ADMIN ABOUT

/Home /Admin /Admin/{Building} /About

The problem is that the URI defined in the HyperLinkButton and the URI to which
we are navigating to are being compared. When we select a building and navigate to
the Administration page, the URI which defines our target includes a parameter and
makes it different from the URI defined in the HyperLinkbutton as target. To solve
this, we can include the following code:

// After the Frame navigates, ensure the HyperlinkButton
// representing the current page is selected
private void ContentFrame_Navigated(object sender, NavigationEventArgs
e)
{
 foreach (UIElement child in LinksStackPanel.Children)
 {
 HyperlinkButton hb = child as HyperlinkButton;
 if (hb != null && hb.NavigateUri != null)
 {
 // We have to check if the URI we are navigating
 // is equal that the HyperLinkButton defines, or
 // it is contained in it.Remember that we have 2
 // pages for only one name. The difference is the
 // parameter of the build selected.
 if(hb.NavigateUri.ToString().Equals(e.Uri.ToString()) ||
 e.Uri.ToString().Contains(hb.NavigateUri.ToString()))

Chapter 2

[69]

 {
 VisualStateManager.GoToState(hb, "ActiveLink", true);
 }
 else
 {
 VisualStateManager.GoToState(hb, "InactiveLink", true);
 }
 }
 }
}

The code controlling the status of the Navigation buttons can be found in the
Code-Behind of MainPage.xaml.

Modal AdminEditionView.xaml dialog
If the user clicks Edit, which is located just below the DataGrid showing the rooms,
a modal dialog, similar to the following screenshot, will open:

Forms and Browsing

[70]

The layout of this window is very similar to the one created in the AdminView.xaml
page. You can see all the code in the final example.

To open this window, we must add the manager of the Click event to the Edit
button. There are two quick ways to add the code required for this action, both
in the XAML file and the Code-Behind file.

•	 Double-click on the button in the Layout view in Visual Studio.
•	 Through the Properties window of the editor, we must select the button

in the Layout view, open the Properties view, and select the Events tab.
Here we can see all the events that the object can manage. Now we must
double-click on the event we want to implement and the code required
to manage the event will automatically be created.

The only thing left to do now is to fill in the code for the event for it to open the
modal dialog when we click it.

private void btnEdit_Click(object sender, RoutedEventArgs e)
{
 AdminEditionView theChild = new AdminEditionView();
 theChild.Show();
}

Summary
In this chapter, we have covered the basic element that Silverlight offers us in order
to create user controls, windows, and modal dialogs.

We have also seen how to implement navigation between windows via the
Navigation Framework, which Silverlight incorporates.

We now know how to mount the UI layer in our web application. In the next chapter,
we will learn how to bind the UI controls with the data of our application.

Chapter 2

[71]

Additional resources
•	 MSDN

http://msdn.microsoft.com/en-us/library/cc838245(v=vs.95).aspx

•	 Tim Heuer: Here we can find many entries with Navigation Framework
examples and other information. If you like Silverlight, Tim's site must be
one of our bedside readings on this topic.
http://timheuer.com/blog/archive/2009/04/06/Silverlight-3-
navigation-behavior-customization.aspx

•	 SilverlightShow: We cannot help mentioning this reference site, where we
can find tutorials and examples on this topic as well as others.

http://www.Silverlightshow.net/items/The-Silverlight-3-
Navigation-Framework.aspx

Data Binding
The concept of Data Binding is not something new in the development of LOB
applications, and can be defined as the action of tying data to the interface.

Another way to understand data binding is the way in which data is presented to
the user, as well as how they interact with that data. The key concept to understand
here is how data is presented to the user once it has been obtained. Similarly, we can
apply it the other way around. That is, once the user has established the data, we can
decide how to store that data in our entities. In this process, we can differentiate two
objects, first, the object that defines the link and second, the object Data.

FrameworkElement

Binding Target

Dependency

Property

Binding

Object

Value Converter

Property

CLR Object

Binding Source

As an illustration, we can mention the typical Recordset, which probably sounds
familiar to many users and may throw some light on the subject. We can say that
data binding in Silverlight is a recordset, but with a firewall between the application
and the database, since the connection between both is not a direct one.

Data Binding

[74]

An added value of data binding in Silverlight—in comparison to an ASP.NET
application —is that binding remains alive and the term Postback does not make
sense in this type of application. In Silverlight, when we have actions that have
to be executed on the server side, we only need to send data, and we only receive
data as response, so the page is not repainted, we just have to set new values. The
development of a Silverlight application has a great similarity to the development
of a desktop application, than a web application, purely due the fact that we do not
have to maintain the application status after any postback (it does not exist) and we
program the same way as we do in a WPF/Winforms application.

Understanding DataSource
Let us begin with a simple instance where we will make use of the main concepts
related to data binding, and how data is bound to controls in a declarative way.
Similar to the previous chapters, we will create a brand new Silverlight project
called, in this case, MyFirstDataBinding. We will create a translator of the message
"Hello World" into different languages. A ComboBox control will show the available
languages, and a textbox will show the result. We will establish binding in a
declarative way.

We start by adding content to the MainPage.xaml file so that it has the aspect in the
previous screenshot with the following code snippet:

<Grid x:Name="LayoutRoot" VerticalAlignment="top"
 HorizontalAlignment="Left" Margin="20"
 Background="#FFCFCFD0" Width="440" Height="100">
 <Grid.RowDefinitions>
 <RowDefinition Height="30" />
 <RowDefinition Height="30" />
 <RowDefinition Height="30" />
 </Grid.RowDefinitions>
 <Grid.ColumnDefinitions>

Chapter 3

[75]

 <ColumnDefinition Width="200"/>
 <ColumnDefinition Width="210"/>
 </Grid.ColumnDefinitions>
 <TextBlock Text="Message to Translate: " Grid.Row="0" Grid.
 Column="0" FontWeight="Bold" VerticalAlignment="Center"
 Margin="4,0"/>
 <TextBlock Name="lblMessage" Width="180"
 Text="{Binding Path=MessageLabel}"
 HorizontalAlignment="Left" Margin="4,0"
 Height="20" Grid.Row="0" Grid.Column="1"
 Grid.ColumnSpan="2"/>
 <TextBlock Name="lblLanguages"
 Text="{Binding Path=Items.Count, ElementName=cbMessages}"
 Width="180" HorizontalAlignment="Left" Margin="4,0" Height="20"
 Grid.Row="1" Grid.Column="0" Grid.ColumnSpan="2"/>
 <ComboBox Name="cbMessages" Grid.Row="1" Grid.Column="1"
 Grid.ColumnSpan="2" Height="25" Width="180"
 HorizontalAlignment="left" Margin="4,0"
 ItemsSource="{Binding MessagesList}"
 SelectedValuePath="MessageCode"
 DisplayMemberPath="Language"
 SelectedValue="{Binding MessageSelected, Mode=TwoWay}"/>
 <TextBlock Text="Translation result: " FontWeight="Bold" Grid.Row="2"
 Grid.Column="0" VerticalAlignment="Center" Margin="4,0"/>
 <TextBox Name="txtMesage"
 Text="{Binding MessageSelected}"
 Grid.Row="2" Grid.Column="1" HorizontalAlignment="Left"
 VerticalAlignment="Center" Width="180" Height="20" Margin="4,0"/>
</Grid>

Let's first go through this sequence step by step. If we pay attention to the code,
we can identify some keywords, which are part of the XAML extensions for data
binding, such as the following::

•	 Path: When we establish a data binding, we indicate a path to a datasource,
and this results in an object property.

•	 Mode: Data flow can be unidirectional or bidirectional.
•	 ItemsSource: It specifies the origin of data in a control of the type

ItemsControl (ComboBox, ListBox, and similar).

Data Binding

[76]

Path
By means of the Path property, we specify the property of the source object on which
we want to establish binding.

<TextBlock Name="lblMessage"
 Text="{Binding Path=MessageLabel}"/>

Using the word Path is optional, we can just name the property of the object
datasource, provided that this is the first property we specify in the binding.

<TextBlock Name="lblMessage"
 Text="{Binding Messagelabel}"
 Width="180" HorizontalAlignment="Left" Margin="4,0" Height="20"
 Grid.Row="0" Grid.Column="1" Grid.ColumnSpan="2"/>

Binding sources
When we create a new binding between a control property and the property of a
datasource, we have to specify that source. In Silverlight, this source can be established
in four different ways, or rather, data can come from four different sources:

•	 Implicit DataContext: This is the easiest path, and consists of specifying
nothing. We simply leave the datasource as the DataContext, which the
control includes by default.

•	 ElementName: It is used when we want to establish the properties of another
control as the datasource. In this case, we enter the name of the control
bound as value of the property, ElementName. The following code will show
the control ComboBox as the datasource. We will take the number of options
it shows, as a value:
<TextBlock Name="lblLanguages"
 Text="{Binding Path=Items.Count,ElementName=cbMessages}"
 Width="180" HorizontalAlignment="Left" Margin="4,0"
 Height="20" Grid.Row="1" Grid.Column="0"
 Grid.ColumnSpan="2"/>

Chapter 3

[77]

•	 Source: It is used to establish a resource defined in the ResourceDictionary
as a datasource. We will come back to this later, nevertheless, we will now
mention some related concepts, such as a ViewModel object, to familiarize
you with.
<Grid.Resources>
 <src:Customers x:Key="Languages"/>
</Grid.Resources>
<TextBlock Name="lblLanguages"
 Text="{Binding Path=Items.Count,Source= Languages}"
/>

•	 RelativeSource: With this kind of source, we can establish the object
RelativeSource Self as DataSource, being able to bind it with another object
property. This kind of DataSource also allows us to establish as source of
binding an object, which is part of the Template where the object is defined,
such as RelativeSource Parent Template.

<TextBlock Name="lblLang"
 Text="{Binding Path=Name,
 RelativeSource={RelativeSource Self}"/>

DataContext
Going back to our example, we have decided to take the easiest path and not
establish any DataSource over the controls and let the DataContext of the page
provide a source for the data. This sounds great, but surely you are wondering
whether you will have to establish a value for the DataContext. The answer is
yes; in our example, we will do it from the Code-Behind in the following manner:

public MainPage()
{
 InitializeComponent();
 this.DataContext = this;
}

In this way, we are offering a global DataSource for the page, since we are
establishing a DataContext in the Page control. This is done in a way that those
controls, under the tree of the Page control, will share the same source.

Data Binding

[78]

What this means is that the DataContext is inherited downstream over all the
controls, which hang under the tree defining the page. This can be extrapolated to
all container controls. That is, we could have a page with a Grid and a StackPanel,
and establish a DataContext for the Grid and another one for the StackPanel, in a
way that the DataSource for the controls in each container will be different.

Controls in Main LayoutDataSource 1

Page

StackPanel

DataSource 2

Grid 1

DataSource 3

Grid 2

Now, we will add some properties to the MainPage class to consume them from
the interface. Use the following code:

public partial class MainPage : UserControl
{
 private string _messageSelected = "Select an option";
 public ObservableCollection<MessageEntity> MessagesList{get;set;}
 public String MessageLabel{get;set;}
 public String MessageSelected
 {
 get {
 int number;
 if (Int32.TryParse(_messageSelected, out number))
 return MessagesList[number].MessageValue;
 return _messageSelected;
 }
 set
 {
 _messageSelected = value;
 }
 }

D
ow

n
lo

a
d
 f
ro

m
 W

o
w

!
e
B
o
o
k

<
w

w
w

.w
o
w

e
b
o
o
k.

co
m

>

Chapter 3

[79]

 public MainPage()
 {
 InitializeComponent();
 MessagesList = new ObservableCollection<MessageEntity>();
 MessageLabel = "Hello World";
 MessagesList.Add(new MessageEntity() { MessageCode = 0,
 Language="English", MessageValue = "Hello World" });
 MessagesList.Add(new MessageEntity() { MessageCode = 1,
 Language = "Italian", MessageValue = "Ciao Mondo" });
 MessagesList.Add(new MessageEntity() { MessageCode = 2,
 Language = "French", MessageValue = "Bonjour le monde" });
 MessagesList.Add(new MessageEntity() { MessageCode = 3,
 Language = "German", MessageValue = "Hallo Welt" });
 MessagesList.Add(new MessageEntity() { MessageCode = 4,
 Language = "Spanish", MessageValue = "Hola Mundo" });
 this.DataContext = this;
 }
}

public class MessageEntity
{
 public int MessageCode { get; set; }
 public string MessageValue { get; set; }
 public string Language { get; set; }
}

The code is simple; what we have done is simply define public properties and
establish initial values in the constructor. We have also created an entity class
MessageEntity with three properties. This class will establish the options of the
ComboBox and return the translated message.

Change notifications
If we execute the application right now, we will see that the ComboBox shows data,
the initial message Hello World is displayed, and the number of available languages
in the ComboBox appears. All control values have been bound in a declarative way
and show data. Nevertheless, when you choose an option, you may expect that the
message Hello World would to be translated into the chosen language. But this has
not happened.

We still have to add the magic touch to the application, particularly to the class
which provides data. To do so, the class MainPage.xaml.cs has to implement the
interface INotifyPropertyChanged (this interface implementation makes more
sense in a ViewModel class, as it will be seen later).

Data Binding

[80]

By implementing it, we obtain an event in charge of notifying when a property
suffers a change, both in the view (data target) and their source. To make our class
implement this interface, you will need to enter the following code:

using System.ComponentModel;
public partial class MainPage : UserControl, INotifyPropertyChanged
{
 public event PropertyChangedEventHandler PropertyChanged;
 private void OnPropertyChanged(string p)
 {
 if (PropertyChanged != null)
 {
 PropertyChanged(this, new PropertyChangedEventArgs(p));
 }
 }
 . . .
 . . .
}

We have added the OnPropertyChanged function to centralize the place
from which the notification event is launched. The event receives an object
PropertyChangeEventArgs as the parameter, with the name of the property that
causes notification.

Now, you just have to modify the properties previously defined for them to make
use of the new functionality using the following code:

private ObservableCollection<MessageEntity> _messageList =
 new ObservableCollection<MessageEntity>();
private string _messageLabel = "Hello World";
private string _messageSelected = "Select an option";
public ObservableCollection<MessageEntity> MessagesList
{
 get
 {
 return _messageList;
 }
 set
 {
 _messageList = value;
 OnPropertyChanged("MessagesList");
 }
}

public String MessageLabel

Chapter 3

[81]

{
 get
 {
 return _messageLabel;
 }
 set
 {
 _messageLabel = value;
 OnPropertyChanged("MessageLabel");
 }
}

public String MessageSelected
{
 get
 {
 int number;
 if (Int32.TryParse(_messageSelected, out number))
 return MessagesList[number].MessageValue;
 return _messageSelected;
 }
 set
 {
 _messageSelected = value;
 OnPropertyChanged("MessageSelected");
 }
}

As you can see, we invoke the function, which generates the notification event in
every Properties Set.

Data binding modes
So far, we have defined the datasource and target. Now, we will define how data
can flow between the source and the target, that is, datasource and controls. To do
so, there are three options in Silverlight:

•	 OneWay: Data flows from the datasource to the target property of the
control. This is the default mode if we do not specify any other.

•	 TwoWay: In this case, data flows in both directions. Changes in source are
shown in the interface, and changes in the interface are notified to the origin
object, so that this takes into account the new value.

•	 OneTime: Data flows from the source to the target only once, when the
interface is generated.

Data Binding

[82]

In our example, we have established a binding using TwoWay mode on the
SelectedValue property of the ComboBox, which stores the option selected
by the user. The following figure shows how it works:

Spanish

English

German

Spanish

MainPage.cs

+MessageSelected : string

Hola Mundo

Get
ne

w
M

es
sa

ge
Sele

cte
d

va
lue

Set new MessageSelected value

Raise PropertyChanged

Event

Sele
ct

Optio
n

User

The user selects an option in the languages ComboBox, changes the value in the
SelectedValue property, as it has a binding in TwoWay Mode, and causes the
launch of the PropertyChanged event on the datasource property MessageSelected.
The textbox, bound to the MessageSelected property, is subscribed to the
notification of value changes on it, so it makes the control request for the new value.
The following code is used for TwoWay mode:

<ComboBox Name="cbMessages" Grid.Row="1" Grid.Column="1"
 id.ColumnSpan="2" Height="25" Width="180" HorizontalAlignment="left"
 Margin="4,0"ItemsSource="{Binding MessagesList}"
 SelectedValuePath="MessageCode" DisplayMemberPath="Language"
 SelectedValue="{Binding MessageSelected,Mode=TwoWay}"
/>
<TextBox Name="txtMesage"
 Text="{Binding MessageSelected}"
 Grid.Row="2" Grid.Column="1" HorizontalAlignment="Left"
 VerticalAlignment="Center" Width="180" Height="20" Margin="4,0"
/>

Chapter 3

[83]

Introducing the ViewModel
Although we will go deeper into patterns in the following chapters, we can complete
the theoretical concepts related to data binding by introducing the ViewModel.

In this chapter's introduction, we dealt with two objects that were part of data binding
in Silverlight. We will particularly focus on the object which binds View and Model.

ViewModel can be defined as the binding object or communication
channel between the interface and the data model.

A ViewModel object shows properties which act as datasource for an interface. When
we associate a ViewModel object to an interface, we are indicating the interface
where it can pick up the data that its controls are binding. In other words, we are
establishing DataContext (as we saw previously).

When we define a ViewModel class, we are specifying a combination of public
properties with the necessary information to feed the view. We will also find that
the handlers of the events are generated when the user interacts with the interface
controls, such as clicking on a button. Finally, it is the element which accesses the
data model. The goal is that the Code-Behind associated to each view is left empty.

You will see this in a new example.

ViewModel example
We will create a form which calculates all purchases made by a company during the
first quarter of a year. The example will show three textboxes for each month, and
TextBlock will show the final result.

Data Binding

[84]

We will create a new Silverlight project named INotifyMonths.

1. Let us begin by giving content to the MainPage page, so that it looks similar
to the following screenshot:

2. Once the interface is implemented, add a new class to your project. Right-click
on the Silverlight project and choose the option Add New Class.

3. Name it NotifyMonthsViewMode.cs.
4. Then, implement the INotifyPropertyChanged interface as in the previous

example.
5. Also, add the OnPropertyChanged function, as shown in the following code:

namespace INotifiyMonths
{
 public class NotifyMonthsViewModel:INotifyPropertyChanged
 {
 public event PropertyChangedEventHandler PropertyChanged;
 private void OnPropertyChanged(string p)
 {
 if (PropertyChanged != null)
 PropertyChanged(this, new PropertyChangedEventArgs(p));
 }
 }
}

6. It will be complete by adding Properties, one for each month and another one
for the final result. Following code shows the property definition for January:
int _january = 0;
public int January
{
 get
 {

Chapter 3

[85]

 return _january;
 }
 set
 {
 if (_january != value)
 {
 _january = value;
 OnPropertyChanged("January");
 OnPropertyChanged("Total");
 }
 }
}

7. Add two more properties, one for February and another for March.
8. Finally, add a read-only property which returns the addition of the other

three. As you could see in the previous code, when the value of a month is
modified, it provokes a notification about the Total property to update the
result shown to the user.

public int Total
{
 get
 {
 return January + February + March;
 }
}

Once this is done, our ViewModel class will be ready. Now, let us bind it to the
interface. To do so, we have to define a new resource in our page with an instance
of the ViewModel.

1. First, add a namespace to the assembly containing ViewModel and give it a
name.
<UserControl
 x:Class="INotifiyMonths.MainPage"
 xmlns="http://schemas.microsoft.com/winfx/2006/xaml/
 presentation"
 xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml"
 xmlns:d="http://schemas.microsoft.com/expression/blend/2008"
 xmlns:mc="http://schemas.openxmlformats.org/markup-
 compatibility/2006"
 xmlns:localViewModel="clr-namespace:INotifiyMonths"
 mc:Ignorable="d"
 Height="117" Width="400">

Data Binding

[86]

2. Then, add a resource to the UserControl resources dictionary with an
instance of the NotifyMonthViewModel.
<UserControl.Resources>
 <localViewModel:NotifyMonthsViewModel x:Key="theViewModel">
 </localViewModel:NotifyMonthsViewModel>
</UserControl.Resources>

3. Finally, establish a DataContext in the page and the necessary bindings on
the text controls. If you pay attention to the following source code, you will
realize the datasource on the DataContext property of the Border control,
which is the control located up in the page control tree.

<Border BorderBrush="Gray" BorderThickness="1" CornerRadius="5"
 Padding="5" DataContext="{Binding Source={StaticResource
 theViewModel}}">
 <StackPanel Orientation="Vertical" Background="#FFCEB6B6">
 <TextBlock Text="Sales Quarter 1" FontSize="18"/>
 <Grid>
 <Grid.RowDefinitions>
 <RowDefinition Height="30"/>
 <RowDefinition Height="30"/>
 </Grid.RowDefinitions>
 <Grid.ColumnDefinitions>
 </Grid.ColumnDefinitions>
 <TextBlock Text="January" Grid.Column="0" Grid.Row="0"
 HorizontalAlignment="Center"/>
 <TextBlock Text="February" Grid.Column="2" Grid.Row="0"
 HorizontalAlignment="Center"/>
 <TextBlock Text="March" Grid.Column="4" Grid.Row="0"
 HorizontalAlignment="Center"/>
 <TextBlock Text="Total" Grid.Column="6" Grid.Row="0"
 HorizontalAlignment="Center"/>
 <TextBox
 Text="{Binding January, Mode=TwoWay}"
 Grid.Column="0" Grid.Row="1" Height="20"
 HorizontalAlignment="Center" Width="50"/>
 <TextBlock Text="+" Grid.Column="1" Grid.Row="1"
 HorizontalAlignment="Center" />
 <TextBox Text="{Binding February, Mode=TwoWay}"
 Grid.Column="2" Grid.Row="1" Height="20"
 HorizontalAlignment="Center" Width="50"/>

Chapter 3

[87]

 <TextBlock Text="+" Grid.Column="3" Grid.Row="1"
 HorizontalAlignment="Center"/>
 <TextBox Text="{Binding March, Mode=TwoWay}" Grid.Column="4"
 Grid.Row="1" Height="20" HorizontalAlignment="Center"
 Width="50"/>
 <TextBlock Text="=" Grid.Column="5" Grid.Row="1"
 HorizontalAlignment="Center"/>
 <TextBlock Text="{Binding Total, Mode=OneWay}"
 Grid.Column="6" Grid.Row="1" Height="20"
 HorizontalAlignment="Center" Width="50"/>
 </Grid>
 </StackPanel>

</Border>

You can see that the binding is established in TwoWay mode for those controls
that have to notify the ViewModel object (the DataSource) that the user has made
a change (textboxes), and OneWay for those that are read-only in the ViewModel
properties (text block for the final result).

Dependency properties
We have already used dependency properties, but without knowing that those
properties on which we were establishing a data binding were somewhat special.
From the LOB point of view, dependency properties allow us to establish their
value in a declarative way and are capable of notifying a change in them. Also, they
can establish data binding, so that they are able to propagate a change notification
between properties.

Dependency properties is the way to show properties in the
UserControls which are generated and establish values on
them, creating a communication channel between properties.

Data Binding

[88]

Let us see an instance. We will modify the first example we posed in this chapter, for
it to show the result of the translation in a UserControl:

1. Create a new project named HelloWorldDP and copy the content we had in
the original sample (XAML and Code-Behind). The finished result can be
seen in the following screenshot:

2. Once you've added the content of the previous sample, add a UserControl
named TranslationResultUC to the Silverlight project, with a text
block to show the translation result. This will be the content of the
TranslationResultUC.xaml file:
<UserControl x:Class="HelloWorldDP.TranslationResultUC"
 xmlns="http://schemas.microsoft.com/winfx/2006/xaml/
 presentation"
 xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml"
 xmlns:d="http://schemas.microsoft.com/expression/blend/2008"
 xmlns:mc="http://schemas.openxmlformats.org/markup-
 compatibility/2006"
 mc:Ignorable="d" d:DesignHeight="78">
 <Border BorderBrush="Black" BorderThickness="1" CornerRadius="3"
 Margin="10">
 <StackPanel x:Name="LayoutRoot" Background="Beige" Height="80"
 VerticalAlignment="Top" Margin="5">
 <TextBlock FontWeight="ExtraBold" Text="UserControl with New
 Dependency Property" FontSize="14" Height="26"/>
 <TextBlock Text="Translation result: "/>
 <Border Background="Yellow" Width="150"
 HorizontalAlignment="Left" Height="25">
 <TextBlock Name="txtResult" Text="{Binding Result}"

Chapter 3

[89]

 Height="25"/>
 </Border>
 </StackPanel>
 </Border>
</UserControl>

3. Now, it is time to generate the dependency property in the Code-Behind file.
Let's look at the file content:

public partial class TranslationResultUC : UserControl
{
 public TranslationResultUC()
 {
 InitializeComponent();
 }
 public string TranslationResult
 {
 get { return (string)GetValue(TranslationResultProperty); }
 set { SetValue(TranslationResultProperty, value); }
 }
 public static readonly DependencyProperty
 TranslationResultProperty =
 DependencyProperty.Register("TranslationResult",
 typeof(string), typeof(TranslationResultUC), new
 PropertyMetadata(string.Empty, new
 PropertyChangedCallback(OnTranslationChanged)));
 private static void OnTranslationChanged(DependencyObject d,
 DependencyPropertyChangedEventArgs e)
 {
 TranslationResultUC control = d as TranslationResultUC;
 control.txtResult.Text = e.NewValue as string;
 }

}

This may go some way beyond the scope of the chapter, but it is beneficial to go a
little deeper into the three parts that define the property.

1. The property itself accesses the value with its get and set. In this case, it must
be noticed that the value is not accessed directly, but via the mechanism of
the system in charge of handling dependency properties to establish and
obtain values, through the methods GetValue and SetValue, as shown in
the following code:
public string TranslationResult
{
 get {return (string)GetValue(TranslationResultProperty);}
 set {SetValue(TranslationResultProperty, value);}
}

Data Binding

[90]

2. The property registers in the system which handles Dependency properties.
To do this, we use the static method DependencyProperty.Register. This
method uses four parameters such as property name, property type, the type
of object which contains the property, and a mechanism to establish a default
value and the operations, which become necessary when the property value
changes, as shown in the following code snippet:
public static readonly DependencyProperty
TranslationResultProperty =
 DependencyProperty.Register(
 // The Name of the property
 "TranslationResult",
 //the type of the property
 typeof(string),
 // the type of object where the property is
 typeof(TranslationResultUC),
 // the metadata which define a default value
 // and callback for changes
 new PropertyMetadata(string.Empty,
 new PropertyChangedCallback(OnTranslationChanged))
);

3. Finally, the function implements the actions to be performed when the
property content changes. This is optional, because it will not always be
necessary. A default value is also specified.

/// <summary>
/// What have to do when the value changes
/// </summary>
private static void OnTranslationChanged(DependencyObject d,
 DependencyPropertyChangedEventArgs e)
{
 TranslationResultUC control = d as TranslationResultUC;
 control.txtResult.Text = e.NewValue as string;
}

At this point, you will have all the necessary tools to create your DependencyProperty.
Now we can make use of it by performing the following steps:

1. Open the MainPage.xaml file, where the UserControl TranslationResultUC
will be added, and create a binding between the TranslationResult
dependency property and the MessageSelected property of the
DataContext.

Chapter 3

[91]

2. The first thing to do is add a new namespace to the MainPage.xaml file using
the following line of code:
 xmlns:localUC="clr-namespace:HelloWorldDP"

3. Then you can add the control to your page. A new row has been added to the
grid where the control will be added. Once the UserControl is in the page,
establish a binding in the TranslationResult DependencyProperty.

<localUC:TranslationResultUC Grid.Column="0" Grid.Row="3"
 Grid.ColumnSpan="2" TranslationResult="{Binding
 MessageSelected}">
</localUC:TranslationResultUC>

The result is similar to the following screenshot:

TranslationResult

Dependency Property

MessageSelected Property

SelectedValue Change

Data binding from Code-Behind
Although the most common thing is to establish declarative data binding, we can
also do this via code from the Code-Behind file using the following lines of code:

Binding binding = new Binding("MyValue");
binding.Mode = BindingMode.TwoWay;
txMyValueOneTime.SetBinding(TextBox.TextProperty, binding);

Data Binding

[92]

With this code, a new object of the Binding class is created, indicating the name of
the DataSource property to which it will be bound. Then, we establish the sort of
binding, for instance, TwoWay. To finish, we indicate the link between the desired
property (TextProperty, in this case) and the defined Binding object. This will be
the declarative equivalent to the previous source code, as shown in the following line
of code:

<TextBox Width="100" x:Name="txMyValueOneTime" Text="{Binding MyValue,
 Mode=TwoWay}" />

Adding validations
An important aspect of developing LOB applications is the validation of the data
entered by the user. There is no need to say that those validations we are about to
see, are client-side. So it will be necessary to validate them again, once the data gets
server-side. Remember that, although Silverlight is .NET and a sandbox within our
browser, it is exposed to hacking by advanced users. That said, we will see two ways
to add validations in Silverlight forms.

Implementing the IDataErrorInfo interface is probably the easiest way to add
validation in applications. This interface is not new for Winform developers, as
we have had it at our disposal since Framework 1. Nevertheless, from Silverlight
4 onwards, we have been able to make use of it. It is really easy to add validations
to our applications thanks to this technique. We will use a new example to see how
validations work.

Let us create a new Silverlight application called FormValidation, where we will
ask the user for their name, e-mail, and age, validating data with certain restrictions.

•	 The field Name is required and has to begin in capital letters.
•	 Email field is not compulsory, but if it is entered, it needs a valid format.
•	 Finally, Age field is not compulsory either. Yet if it is completed, it has to

contain only numerical characters.

Chapter 3

[93]

The aim is to have a form similar to the following screenshot:

The Email field is surrounded by a red border and a tooltip appears on the right side,
indicating that the value entered is not valid. The visualization or error notification
to the user is automatic in Silverlight. To take advantage, it is necessary to establish
the ValidateOnDataError property as true, and the system will show an error
message if, after changing the value on the dependency property where we are
applying the binding, it has some validation rules defined, and any of them notifies
that the validation failed.

<TextBox Name="txtname" Grid.Row="0" Grid.Column="1" Text="{Binding
 Name, Mode=TwoWay, NotifyOnValidationError=True,
 ValidatesOnDataErrors=True}"/>

Add three text fields as we did in the previous source code, establishing binding f
or each one of them.

As we said before, so as to use this validation mode we have to implement the
IDataErrorInfo interface. While doing this, we have to define two members
in the class:

•	 Property Error: This is not used unless we want to return an error that is
common for all of the properties of the object.

•	 Index (or rules collection): Index is that on which we will define rules for
the properties that we want to validate.

Data Binding

[94]

Now, it is time to implement INotifyPropertyChanged and IDataErrorInfo
interfaces on the Code-Behind of our page (optionally, we can create a ViewModel
object, define its properties, and implement the interfaces on it).

Create three properties (Name, Email, and Age) so that they notify the changes on
them as you learned in previous chapters, using the following code:

public partial class MainPage : UserControl, IDataErrorInfo,
INotifyPropertyChanged
{
 public string Name
 {
 get
 {
 return _name;
 }
 set
 {
 if (_name == value)
 return;
 _name = value;
 OnPropertyChanged("Name");
 }
 }
}

Then, add validation rules in the index that has to be implemented in the
IDataErrorInfo interface as the following code:

#region IDataErrorInfo Members
public string Error
{
 get { return null; }
}
public string this[string columnName]
{
 get
 {
 // Boolean flag property
 DataIsOk = ValidateAll();
 if (columnName == "Name")
 {
 return ValidateName();
 }

Chapter 3

[95]

 if (columnName == "Email")
 {
 return ValidateEmail();
 }
 if (columnName == "Age")
 {
 return ValidateAge();
 }
 return null;
 }
}
#endregion

Depending on the property that has been modified, validation will be executed in
one field or another. The last field modified will be the only one validated, so there
could be errors in other fields of the form.

In the following code, notice that we can have a set of rules for each property and
they will be executed sequentially. That is, the user will be notified at only one
validation rule that is, the first one containing errors. For instance, the Name field has
two rules associated, but the user will only be notified that the second validation rule
is failing provided that the first one is accomplished.

private bool ValidateAll()
{
 return (ValidateAge()==null && ValidateEmail()==null &&
 ValidateName()==null);
}

private string ValidateName()
{
 if (string.IsNullOrEmpty(txtname.Text))
 return "The Field Name can't be in blank";
 if (txtname.Text[0] != txtname.Text.ToUpper()[0])
 return "The first char must be in capital";
 return null;
}

private string ValidateEmail()
{
 if (string.IsNullOrEmpty(txtEmail.Text))
 return null;
 string expression = @"^[a-zA-Z][\w\.-]*[a-zA-Z0-9]@[a-zA-Z0-9][\w\.-
]*[a-zA-Z0-9]\.[a-zA-Z][a-zA-Z\.]*[a-zA-Z]$";

Data Binding

[96]

 if (!Regex.IsMatch(txtEmail.Text, expression))
 {
 return "The email entered is not valid";
 }
 return null;
}

private string ValidateAge()
{
 if (string.IsNullOrEmpty(txtAge.Text))
 return null;
 string expression = @"^[0-9]*$";
 if (!Regex.IsMatch(txtAge.Text, expression))
 {
 return "Only numbers allowed";
 }
 return null;
}

BindingValidationError
Looking at our previous XAML code, you will realize that the
NotifyOnValidationError property has been established as true. By enabling this
property, we are indicating that if an error is produced in the field, a notification
event is launched. We can deal with it in any other element in the hierarchy level that
is superior to the control enabling it. In our example, we will capture this event in the
Grid where the form is constructed, so that we can centralize all form data. To do so,
we will define a handler for the BindingValidationError event, as shown in the
following code:

<Grid x:Name="LayoutRoot" Background="White"
 BindingValidationError="LayoutRoot_BindingValidationError">
 <Button Name="btnSendData" Grid.Row="3" Grid.Column="1"
 Content="Send Data" Width="100" HorizontalAlignment="Right"
 IsEnabled="{Binding DataIsOk}"/>
</Grid>

Here, the handler defined is in charge of enabling/disabling the Send Data button
depending on whether there are errors in the form or not. To achieve this, and as
you can see in the previous source code, the value of the IsEnabled dependency
property of the Button control, has been established through a binding, which will
change from True to False on the basis of form errors.

Chapter 3

[97]

private void LayoutRoot_BindingValidationError(object sender,
 ValidationErrorEventArgs e)
{
 //when the event is raised we disabled the button
 if (e.Action != ValidationErrorEventAction.Removed)
 DataIsOk = false;
}

DataAnnotations
Another way to add validations in form data is via DataAnnotation. In this
case, validation rules are defined by adding attributes to object properties. Their
operation, unlike those seen above, is based on the launch of exceptions when a
validation rule is not accomplished. We will perform these validations using our
previous example. It is a good idea to create a copy of that solution and modify
just the necessary sections.

To begin with, let us add the reference in the System.ComponentModel.
DataAnnotations library in our Silverlight project, as shown in the following
screenshot:

Data Binding

[98]

Delete references to the IDataErrorInfo interface and those elements required
by it. Validations have to be defined again, but now we will define them in the
properties header.

[Required(ErrorMessage = "The Field Name can't be in blank")]
[RegularExpression("^[A-Z][a-zA-Z]*$",ErrorMessage="The first char
must be in capital")]
public string TheName
{
 get
 {
 return _name;
 }
 set
 {
 if (_name == value)
 return;
 Validator.ValidateProperty(value, new ValidationContext(this,
 null, null) { MemberName = "TheName" });
 _name = value;
 //Activate button if all the validations are corrects
 ValidateAll();
 OnPropertyChanged("TheName");
 }
}

Two new attributes have been added to the header of TheName property:

•	 [Required()]: Here, we mark the value as required [Required()].
•	 [RegularExpression ()]: It defines a regular expression to validate the

entry.

In both attributes, we specify the message that will be displayed in case of error.

In set, we have called the ValidateProperty method of the Validator object, with
the name of the property to be validated. This will launch an exception if an error
occurs. The rest of the set code is the same as in the previous example.

Chapter 3

[99]

The difference is that we have to check the rest of form fields in order to activate the
Send Data button. This action will be performed in the ValidateAll() method.

/// <summary>
/// Activate Send button if all validation return true
private void ValidateAll()
{
 if (Validator.TryValidateProperty(TheName, new
ValidationContext(this,
 null, null) { MemberName = "TheName" },null) &&
 Validator.TryValidateProperty(Email, new ValidationContext(this,
 null, null) { MemberName = "Email" },null) &&
 Validator.TryValidateProperty(Age, new ValidationContext(this,
null,
 null) { MemberName = "Age" },null))
 DataIsOk = true;
}

The final aspect in the second example is similar to the previous one.

Finally, we will learn what Converters are and how they are defined.

Converters
Most of the time, when data is shown to the user, there are aspects or values,
which are not clear or intuitive enough for them. A way to solve this problem is by
changing the format or making a conversion before binding. To do so, Silverlight
offers an interface which allows us to perform this action.

If you need to make simple formatting (for example,
displaying a Date or Time), StringFormat can be directly
used on the XAML (this was introduced in Silverlight 4). For
more information, please visit http://bit.ly/jMBtDp.

IValueConverter
When this interface is implemented, we obtain the following functions:

•	 Convert: This function prepares the data, obtained from the DataSource,
to display it in the view.

•	 ConvertBack: This one is in charge of making the opposite change, it gets
the data ready from the view to store in the source.

D
ow

n
lo

a
d
 f
ro

m
 W

o
w

!
e
B
o
o
k

<
w

w
w

.w
o
w

e
b
o
o
k.

co
m

>

Data Binding

[100]

We will generate an instance to convert the numerical value provided by a property,
to an image. The final result will appear similar to the following screenshot. In order
to do so, we will create a new Silverlight project called GenderConverter.

Add a new class to our solution, name it GenderImgConvert, and implement the
IValueConverter interface. Then copy the following source code:

public class GenderImgConverter : IValueConverter
{
 /// <summary>
 /// We convert the source value (integer)
 /// in the source path of an Image
 /// </summary>
 public object Convert(object value, Type targetType, object
parameter,
 CultureInfo culture)
 {
 int? genderId = (int?)value;
 string imagePath = "Images/";
 if (genderId.HasValue)
 {
 switch (genderId)
 {
 case 1:imagePath += "woman.png";
 break;
 case 2:imagePath += "man.png";
 break;
 }
 }
 else{
 imagePath += "";
 }
 return imagePath;
 }

Chapter 3

[101]

 /// <summary>
 /// No convert back, in one-way mode
 /// </summary>
 public object ConvertBack(object value, Type targetType, object
 parameter, CultureInfo culture)
 {
 return null;
 }
}

The code is simple and plainly returns an image path on the basis of the entry value.
The following is the XAML code:

<UserControl x:Class="GenderConverter.MainPage"
 xmlns="http://schemas.microsoft.com/winfx/2006/xaml/presentation"
 xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml"
 xmlns:d="http://schemas.microsoft.com/expression/blend/2008"
 xmlns:mc="http://schemas.openxmlformats.org/markup-
compatibility/2006"
 xmlns:LocalConverters="clr-namespace:GenderConverter"
 mc:Ignorable="d"
 d:DesignHeight="60" d:DesignWidth="400">
 <UserControl.Resources>
 <LocalConverters:GenderImgConverter x:Key="TypeGenderConverter"/>
 </UserControl.Resources>
 <Grid x:Name="LayoutRoot" Height="50" Width="144" Background="Beige">
 <Grid.RowDefinitions>
 <RowDefinition></RowDefinition>
 <RowDefinition></RowDefinition>
 </Grid.RowDefinitions>
 <Grid.ColumnDefinitions>
 <ColumnDefinition Width="100"/>
 <ColumnDefinition Width="40"/>
 </Grid.ColumnDefinitions>
 <TextBlock Text="Gender (Female):" Grid.Column="0" Grid.Row="0"/>
 <Image x:Name="imgGenderMale" HorizontalAlignment="Left" Grid.
Row="0"
 Grid.Column="1" VerticalAlignment="Center" Source="{Binding
 GenderFemale,
 Converter={StaticResource TypeGenderConverter},
 Mode=OneWay}" Width="20" Height="20"/>
 <TextBlock Text="Gender (Male):" Grid.Column="0" Grid.Row="1"/>
 <Image x:Name="imgGenderFemale" HorizontalAlignment="Left"
 Grid.Row="1" Grid.Column="1" VerticalAlignment="Center"
 Source="{Binding GenderMale, Converter={StaticResource
 TypeGenderConverter}, Mode=OneWay}" Width="20" Height="20"/>
 </Grid>
</UserControl>

Data Binding

[102]

Now, let's check the steps to consume the converter and add some sample data in the
MainPage Code-Behind:

1. First, add a namespace in the assembly of this Silverlight project.
2. Then, add an instance of the GenderImgConverter class as page resource.
3. After that, specify the source of the image, taking two properties that are

already defined in the page's Code-Behind as source.
4. Finally, establish the Converter you want to apply in the binding. In this case,

it will be the resource defined previously. The following code is the Code-
Behind:

public partial class MainPage : UserControl
{
 public int GenderFemale
 {
 get { return 1; }
 }
 public int GenderMale
 {
 get { return 2; }
 }
 public MainPage()
 {
 InitializeComponent();
 this.DataContext = this;
 }
}

LOB application case study: applying
what we have learned
We will pick up the project from where we left in the previous chapter, in order to
give it controls. We can generate a copy if we want to keep it as we left it for further
revisions.

We will continue working upon the Management page. Our goal will be to load the
grid with the floors of the selected building and also load the grill that shows each
floor's rooms. These two grids will be bound in a master/detail relationship. On the
other hand, we can add, modify, and delete rooms through the modal dialog we
have, in order to do so.

Chapter 3

[103]

First of all, we will see the new elements added to the Visual Studio solution.

In the Entities folder, add two entities which will

constitute our application model.

In the ViewModels folder, add a ViewModel class in order

to provide information to the management page.

Data Binding

[104]

As you can see from the previous screenshot, two Entity classes have been added to
model the Management page, as well as a ViewModel class in charge of providing data,
managing actions on the interface, and storing the data for the management page.

Entity classes
We need to create two classes to define our data model, one to define Rooms and
another one to define Floors. You can see their properties in the following screenshot:

We will begin by adding these elements and defining properties as we previously
did in the chapter. We will also implement the INotifyPropertyChanged interface
at the same time that we launch the PropertyChanged event in every Properties
setters of the entities.

ObservableCollection
The Floor entity has a Rooms property. It is a collection of the ObservableCollection
type of Rooms entities. This type of collection is special because it implements the
INotifyCollectionChanged interface, so that whenever the content of the collection
changes (by adding, deleting a new element, or updating the collection), the
CollectionChanged event will be launched. In this way, if any property of this type
is bound to any data container control, the content will be refreshed automatically
after adding or removing items from it. See the following code to know how the
Rooms Property is defined:

Chapter 3

[105]

public ObservableCollection<Room> Rooms
{
 get { return _rooms; }
 set
 {
 _rooms = value;
 OnPropertyChanged("Rooms");
 }
}

We have implemented the IDataErrorInfo interface in the Room class, and added
a validation rule on the RoomName field to make it a required field. This class also
has a CanSave property, which enables or disables the Save button if all the entity
validation rules are accomplished.

AdminViewModel object
In this class, we define those properties, which will act as datasources for
the bindings established on page controls. An instance of this class could be
DataContext. Let us go deeper into its content.

Data Binding

[106]

To define the instance of the ViewModel object declaratively from the XAML file, in
the AdminView.xaml page, the following are the steps that are to be carried out:

1. First, add a namespace in the assembly that contains the class.
2. Second, create a new resource with it.
3. Third, establish the DataContext of the container object, which is located

higher in the page hierarchy, as shown in the following code:

<navigation:Page x:Class="ReservationNavigation.Views.AdminView"
 xmlns="http://schemas.microsoft.com/winfx/2006/xaml/
 presentation"
 xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml"
 xmlns:d="http://schemas.microsoft.com/expression/blend/2008"
 xmlns:mc="http://schemas.openxmlformats.org/markup-
 compatibility/2006"
 mc:Ignorable="d"
 xmlns:navigation="clr-
 namespace:System.Windows.Controls;assembly=
 System.Windows.Controls.Navigation"
 xmlns:localViewModels="clr-
 namespace:ReservationNavigation.ViewModels"
 Title="AdminView Page"
 xmlns:sdk="http://schemas.microsoft.com/winfx/2006/xaml/
 presentation/sdk">
 <UserControl.Resources>
 <localViewModels:AdminViewModel x:Key="TheAdminViewModel"/>
 </UserControl.Resources>
 <Grid x:Name="LayoutRoot" DataContext="{Binding
 Source={StaticResource TheAdminViewModel}}">
 (...)

The ViewModel properties are:

•	 TheFloors: This property is the datasource of the grid showing the
building floors.

•	 TheFloorIndexSelected: When a floor is selected, the selected object index is
stored so as to sync the Floors grid with the Rooms grid. They show a master/
detail behavior. When this value is established, the event PropertyChanged is
launched not on the TheFloorIndex property, but on the TheRooms property.
The goal is that the grid showing rooms, understands that the selected room
has been changed and, consequently, the rooms it needs to display are
different. These properties are defined similar to the following code:

Chapter 3

[107]

///<summary>
///Get & Set the index of the selected floor
///</summary>
public int TheFloorIndexSelected
{
 get { return _theFloorIndexSelected; }
 set
 {
 if (value >= 0)
 {
 _theFloorIndexSelected = value;
 ///We notify to the view that the user changed the
 // selected Floor, so it needs to reload the
 ///Rooms Grid
 OnPropertyChanged("TheRooms");
 }
 }
}

///<summary>
///Return the rooms of the selected floor
///</summary>
public ObservableCollection<Room> TheRooms
{
 get
 {
 return TheFloors[_theFloorIndexSelected].Rooms;
 }
}

•	 TheRooms: This property is the DataSource of the second grid and shows
the rooms that are located in a particular floor.

•	 TheRoomIndexSelected: This property works similar to
TheFloorIndexSelected, but its task is to identify the selected room.
It provokes the PropertyChanged event on TheRoom property instead
of invoking itself. It must be taken into account that, when we select a
room, we create a new Room object to unbind the edition of a room from
the entity showing data on the grid until the Save button is pressed.
Otherwise, data will be updated in the grid at the same time we are
updating fields in the form.

Data Binding

[108]

•	 TheRoom: This property is in charge of storing the room, which is being
edited or added. These properties are defined in the following code:

private int _theRoomIndexSelected = -1;
/// <summary>
/// Get & Set the index of the selected room
/// When it changes, the "TheRoom" PropertyChanges
/// is notified to show the new data
/// </summary>
public int TheRoomIndexSelected
{
 get { return _theFloorIndexSelected; }
 set
 {
 if (value >= 0 && value <= TheRooms.Count-1)
 {
 _theRoomIndexSelected = value;
 _theRoom = new Room();
 _theRoom.Id = TheRooms[_theRoomIndexSelected].Id;
 _theRoom.RoomName =
 TheRooms[_theRoomIndexSelected].RoomName;
 _theRoom.Capacity =
 TheRooms[_theRoomIndexSelected].Capacity;
 _theRoom.Facilities =
 TheRooms[_theRoomIndexSelected].Facilities;
 OnPropertyChanged("TheRoom");
 }
 }
}

The ViewModel public methods are:

•	 AddNewRoom: This method will be executed when clicking the New button.
It will create a new Room object and establish it in the TheRoom property.

•	 SaveRoom: This is associated to the Click event on the Save button, and
will insert a new room or modify an existing one depending on the ID
property of the Room object. If the ID value is 0, the Room object is new, so
the action to perform will be insertion.

•	 DeleteRoom: It will delete the selected object from the Rooms list on the
TheRooms property.

Chapter 3

[109]

•	 LoadData: This method will be called from the view, with the parameter
of the chosen city. Here, data load will be simulated, generating Floor and
Room entities. These properties are defined in the following code:

/// <summary>
/// Insert the Room if its Id is 0,
/// otherwise update it
/// </summary>
public void SaveRoom()
{
 if (TheRoom.Id == 0)
 {
 TheRoom.Id = _lastRoomId+1;
 _lastRoomId++;
 TheRooms.Add(TheRoom);
 }
 else
 {
 // we are updating an existing item.
 // we overwrite the previous value.
 TheRooms[_theRoomIndexSelected] = TheRoom;
 }
 //Clean the form
 TheRoom = new Room();
 ObservableCollection<Floor> _theFloorsBK = TheFloors;
 TheFloors = null;
 TheFloors = _theFloorsBK;;
}

public void DeleteRoom()
{
 //check if any room selected
 if (_theRoomIndexSelected >= 0)
 {
 //and if there is any content
 if (TheRooms.Count > 0)
 TheRooms.RemoveAt(_theRoomIndexSelected);
 //Clean the form
 TheRoom = new Room();
 ObservableCollection<Floor> _theFloorsBK = TheFloors;
 TheFloors = null;
 TheFloors = _theFloorsBK;;
 }
}

Data Binding

[110]

The other objects are:

•	 AdminView.xaml.cs: From the Code-Behind of the Page view, we will pick
the parameter identifying the chosen city from the URI, to pass it to the
ViewModel, which will change the data related to it. In this class, we will
also add DataContext to the modal dialog, just before displaying it using the
following code:
protected override void OnNavigatedTo(NavigationEventArgs e)
{
 ((AdminViewModel)LayoutRoot.DataContext).LoadData(
 NavigationContext.QueryString["buildId"]);
}

private void btnEdit_Click(object sender, RoutedEventArgs e)
{
 AdminEditionView theChild = new AdminEditionView();
 theChild.DataContext = LayoutRoot.DataContext;
 theChild.Show();
}

•	 AdminEditionView.xaml.cs: From the Code-Behind of this view, we will
merely call the ViewModel public methods, to perform the desired actions, as
shown in the following code:

private void btnNew_Click(object sender, RoutedEventArgs e)
{
 ((AdminViewModel)this.DataContext).AddNewRoom();
}

private void btnSave_Click(object sender, RoutedEventArgs e)
{
 ((AdminViewModel)this.DataContext).SaveRoom();
}

private void btnDelete_Click(object sender, RoutedEventArgs e)
{
 ((AdminViewModel)this.DataContext).DeleteRoom();
}

Chapter 3

[111]

Data binding
Data will be bound, establishing the datasource for the DataGrid in the ItemSource
property and in all its columns. To do so, the property containing the value to
display has to be chosen. We can also see how we have activated a validation
notification on the Name field of a room. Finally, we can also check how the Save
button is enabled on the basis of a property in the following code:

<sdk:DataGrid Grid.Row="0" AutoGenerateColumns="False" Name="gwRooms"
 ItemsSource="{Binding TheRooms}"
 SelectedIndex="{Binding TheRoomIndexSelected,Mode=TwoWay}" >
 <sdk:DataGrid.Columns>
 <sdk:DataGridTextColumn CanUserReorder="True" IsReadOnly="True"
 CanUserResize="True" CanUserSort="True" Header="Room" Width="100"
 Binding="{Binding RoomName}"/>
 <sdk:DataGridTextColumn CanUserReorder="True" IsReadOnly="True"
 CanUserResize="True" CanUserSort="True" Header="Capacity"
 Width="100" Binding="{Binding Capacity}"/>
 <sdk:DataGridTextColumn CanUserReorder="True" IsReadOnly="True"
 CanUserResize="True" CanUserSort="True" Header="Facilities"
 Width="*" Binding="{Binding Facilities}"/>
 </sdk:DataGrid.Columns>
</sdk:DataGrid>
<Border Grid.Row="1" BorderThickness="1" Padding="10"
 BorderBrush="Gray"
 Margin="0,10" CornerRadius="3">
 <StackPanel Orientation="Vertical">
 <StackPanel Orientation="Horizontal">
 <TextBlock Text="Name: " VerticalAlignment="Center"/>
 <TextBox x:Name="txtRoomName" Width="150" Height="25"
 Text="{Binding TheRoom.RoomName,Mode=TwoWay,
 ValidatesOnDataErrors=True}"/>
 <TextBlock Name="lblCapacity" Text="Capacity: "
 VerticalAlignment="Center" Margin="20,0,0,0"/>
 <TextBox x:Name="txtCapacity" Width="80" Height="25"
 Text="{Binding TheRoom.Capacity,Mode=TwoWay}"/>
 </StackPanel>
 <TextBlock Text="Facilities: " VerticalAlignment="Center"
 Margin="0,10,0,0"/>
 <TextBox x:Name="txtFacilities" Height="80" Width="455"
 Text="{Binding TheRoom.Facilities,Mode=TwoWay}"/>
 </StackPanel>
</Border>

Data Binding

[112]

<StackPanel Orientation="Horizontal" Grid.Row="2"
 HorizontalAlignment="Right">
 <Button x:Name="btnNew" Width="80" Content="New" Height="25"
 Margin="10,0" Click="btnNew_Click"/>
 <Button x:Name="btnSave" Width="80" Content="Save" Height="25"
 Margin="10,0" Click="btnSave_Click"
 IsEnabled="{Binding TheRoom.CanSave}"/>
 <Button x:Name="btnDelete" Width="80" Content="Delete"
 Height="25" Margin="10,0" Click="btnDelete_Click"/>
</StackPanel>

Summary
In this chapter, we have dealt with what is probably the most important aspect
related to LOB applications development, data binding in form controls. We have
also discovered the flexibility that Silverlight offers in order to perform these tasks
declaratively, without forgetting that they can also be carried out from Code-Behind.
We have learned how to generate validations in controls and how to fulfill data
conversions. Last but not least, we introduced the ViewModel concept, which will be
explained in detail in the following chapter, when defining Model View ViewModel
pattern (MVVM).

Now that we have covered the basics, in the next chapter, we will learn how to
structure and design our application in a robust manner. Also, the MVVM pattern
and the MVVM Light toolkit library will be covered in detail, as well as how to
decouple modules using MEF.

Additional resources
•	 IDataErrorInfo in MSDN:

http://msdn.microsoft.com/en-us/library/system.componentmodel.
idataerrorinfo(v=vs.95).aspx

http://msdn.microsoft.com/en-us/library/system.componentmodel.
idataerrorinfo(v=vs.95).aspx

•	 Silverlight Data Binding in Silverlight.NET:
http://www.silverlight.net/learn/tutorials/silverlight-4/
silverlight-data-binding/

http://www.silverlight.net/learn/tutorials/silverlight-4/
silverlight-data-binding/

Chapter 3

[113]

•	 Validation and Bindings tutorial by John Papa:
http://channel9.msdn.com/learn/courses/Silverlight4/NewFea-
tures/DataValidation

http://channel9.msdn.com/learn/courses/Silverlight4/
NewFeatures/DataValidation

•	 Debugging Data Binding:

http://blogs.msdn.com/b/wpfsldesigner/archive/2010/06/30/debug-
ging-data-bindings-in-a-wpf-or-silverlight-application.aspx

http://blogs.msdn.com/b/wpfsldesigner/archive/2010/06/30/
debugging-data-bindings-in-a-wpf-or-silverlight-application.aspx

Architecture
The development of business applications is similar to a building construction.
If we put bricks and cement mortar together without following a well-defined
pattern, we will move forward quickly but, sooner or later, we will face serious
problems, and eventually the building may have to be evacuated.

In this chapter, we will show you how to build solid applications using
the recommended pattern for Silverlight and WPF that is, MVVM. For its
implementation, we will use the well-known library MVVM Light Toolkit
(available at http://mvvmlight.codeplex.com/). Finally, we will see how to
decouple the different modules of our application via Managed Extensibility
Framework (MEF).

Patterns
When developing business applications, it is normal to face considerable pressure
to meet tight deadlines, as well as ever-changing functionalities. Our typical
first reaction is to begin coding without having a pre-established design or plan.
Although this approach normally bears fruit, it leads to the following situations:

•	 Something that should have been a "disposable" prototype is gradually
provided with more and more functionality and ends up being the final
application

•	 As the system grows, it gets more difficult to test the application, because
the modules are coupled and they cannot be tested separately

•	 We find everything mixed and a simple change in the UI forces us to
modify code in the business logic or data

All these reasons justify a greater investment of time in the design of the application
architecture.

Architecture

[116]

When is it worth using the "Code-Behind" approach?
When we are just developing some proof of concept or
a quick prototype and we know that its code won't be
reused for the rest of the scenarios, it is always better
to debug and test first than to debug later.

First, we have to structure the application based upon a design pattern. If you already
have experience in this area, you may be asked how to implement well-known
patterns, such as Model View Controller (MVC) or Model View Presenter (MVP) for
Silverlight or WPF applications. We will choose Model View ViewModel (MVVM).

Design pattern is just a solution (best practices) for a
known problem. To begin with, a good reference can
be found at: http://en.wikipedia.org/wiki/
Design_patterns_book.

MVVM pattern
Model View ViewModel (MVVM) is an architectural pattern inspired by the
Presentation Model design pattern designed by Martin Fowler (one of the greatest
experts in the agile software development and object-oriented programming). It
is the de facto standard for Silverlight and WPF. So why choose this pattern and
not a different one? The answer is because it naturally adapts to the data binding
mechanism of Silverlight, allowing us to explore all its capacities.

Let us begin by dissecting the pattern, where we can find the following layers:

Application

ViewModel
App State,
Operations,
Notifications

Data Model
Services,

Business Rules

Presentation
XAML, UI

Logic

Chapter 4

[117]

•	 Presentation: It defines the UI layout. The Code-Behind of every page only
needs to contain code in charge of managing certain aspects of the UI.

•	 ViewModel: It stores the state of the application and defines operations
and notifications to the Presentation layer.

•	 Data Model: It interacts with services and defines business rules.

How do these layers interact with each other? Let's take a look at the following figure:

View

Databindings and
commands

Send
notification

ViewModel updates
the model

Send
notifications

Model

XAML

Code-Behind

Windows
Presentation
Foundation

ViewModel

State + Operations

Let's take a look at how these layers interact with each other:

•	 View layer with the ViewModel layer:
	° The view controls are bound to ViewModel properties, usually

in a declarative way. For example, we can bind a TextBox to the
Name property in a field of the client file, which we have in the
ViewModel.

Architecture

[118]

	° ViewModel shows a series of commands, such as save changes to
the database. The Presentation layer associates them with certain
controls in order to allow the user to carry these operations. For
instance, the user can press a button to save changes and this button
links to the Save command in the ViewModel. We must also
highlight the separation of concerns. In a normal scenario, we bind
a button to the Click event; in this case, we will link it to the action
SaveClientFile.

View

XAML

Code-Behind

ViewModel

The View is linked to the
ViewModel

The View components
execute commands

•	 ViewModel layer with View layer and Model layer:
	° ViewModel asks for data or upgrades
	° Model processes petitions, and when they are ready, notifies

ViewModel about the results (the Model lives on the client side and
makes calls to the server side to retrieve or update information)

	° ViewModel notifies View layer through data binding

Chapter 4

[119]

View

Entity change notifications fired
provided by the data binding
machinery

The ViewModel
update the Model

Model notifies
operation completed

Model

ViewModel

Execute the
commands

Expose observable
objects

Creating an MVVM-based sample application
Most of the time when we develop an application, it is not possible to fit all the
content in just one page. We in fact prefer to divide its content in several parts and
group areas by functionality or reusability. So no more theory! We will now apply
the concepts we have learned. To do so, we will implement a development, which
allows us to search on Twitter. Its aspect can be seen in the following figure:

Enter Text: Silverlight Search

estoychev
finished Poke the Box by Seth Godin http://amzn.to/fyTwM6 #Kindle

aboschin
ready for my #whiteweek in plande corones... few working hours and then
leaving for the best mountains of the world!

sissastoycheva
Almost lost my voice in a nasty flu..won’t be able to intro Emil in tonight’s
webinar (but will silently suport him) http://bit.ly/fBOOJZ

Braulio_sl
RT @silverlightshow: Recording, demos & slides of webinar ’Building LOB Apps
with #Silverlight and #WCF Data Services’ http://bit.ly/ibQ3rl

elbruno
#ALM with #TFS2010 for #Sharepoint2010 projects... starting 3, 2, 1, ... !!!

D
ow

n
lo

a
d
 f
ro

m
 W

o
w

!
e
B
o
o
k

<
w

w
w

.w
o
w

e
b
o
o
k.

co
m

>

Architecture

[120]

To search on Twitter, we have adapted a library based on the
example Twitter Search Monitor that can be found in Silverlight
.NET (http://www.silverlight.net/learn/).

Its operation is quite easy. The user enters a search string, and as a result obtains the
first 50 tweets, which satisfy these search terms.

How do we fit this into MVVM? Let's take a look:

•	 Model: It is in charge of making petitions to Twitter about entries which
match the search string, and notify ViewModel when they are available

•	 ViewModel:
	° Properties:
	° Search string: The text string that has to be searched
	° Tweet results: The list with the results of the search for tweets

	° Commands:
	° Search: It executes the search for tweets containing the value

indicated in the Search string

•	 View:
	° It links a Textbox control to the Search string field of the ViewModel
	° It links a ContentTemplate to the tweet list
	° It links the Search command of the ViewModel to a button

The following figure summarizes the properties/command and ViewModel
interaction.

Chapter 4

[121]

estoychev
finished Poke the Box by Seth Godin http://amzn.to/fyTwM6 #Kindle

elbruno
#ALM with #TFS2010 for #Sharepoint2010 projects... starting 3, 2, 1, ... !!!

Data

Commands

Search

Public Properties

Tweets results
Search string

Enter Text: Silverlight Search

aboschin
ready for my #whiteweek in plande corones... few working hours and then
leaving for the best mountains of the world!

sissastoycheva
Almost lost my voice in a nasty flu.. won’t be able to intro Emil in tonight’s
webinar (but will silently suport him) http://bit.ly/fBOOJZ

Braulio_sl
RT @silverlightshow: Recording, demos & slides of webinar ’Building LOB Apps
with #Silverlight and #WCF Data Services’ http://bit.ly/ibQ3rl

Vi
ew

Vi
ew

M
od

el
M

od
el

The detailed example can be found at www.packtpub.com. Now, let's summarize all
the necessary steps to create it.

Architecture

[122]

Creating the project structure
First, when creating the project framework, it is possible to separate each part of the
project and make the application easier to maintain. Later on, we will deal with more
advanced forms of structuring a solution.

Choose Blank Solution to create a new solution called MyTweet.

In this solution, create the following projects:

•	 MyTweet.Views:
	° Add a new project. To do so, place the mouse on the solution,

right-click and, in the Context menu, choose Add | New Project…

Chapter 4

[123]

	° Choose Silverlight Application and name it MyTweet.Views:

	° In the next dialogue, indicate it has a web project associated

Architecture

[124]

	° Add a folder called Views and place the view created in the project
in this folder:

	° The main window and its view will be stored in this application

•	 MyTweet.ViewModel:
	° Create a new project in Silverlight Class Library called MyTweet.

ViewModel:

Chapter 4

[125]

	° In this project, we will create the ViewModel associated with the
view previously created

	° We will add a reference to third-party libraries (binary files and
source code are available at www.packtpub.com):

•	 RIATec.Libs.TweetAPI

•	 RIATec.Libs.TweetAPI.Entities

•	 MyTweet.Model:
	° It is a Silverlight library.
	° We will define the application model. This will be the layer

interacting with the library, also in charge of the search petitions on
Twitter.

	° Create a project of the class library (as shown previously, in relation
to ViewModel) and name it MyTweetModel.

	° Then, add the references to the DLLs:
•	 RIATec.Libs.TweetAPI.dll

•	 RIATec.Libs.TweetAPI.Entities.dll

	° These libraries allow us to make search petitions asynchronously,
and give us back, in the form of an event, the list of tweets related
to that search.

Architecture

[126]

Coding the project
Now that we have built the structure, we will begin coding. To do so, we will begin
from the Model, so as to continue with the ViewModel and end with the View.

MyTweet.Model
We will wrap up our library of tweet petition and expose it in our Model project
(later, we will see how to decouple from this library).

We will assume that libraries have been already added.

The operations we will perform against the Model are usually asynchronous—that is
to say, we make a petition and, when it is completed, an event is launched and picked
up by the upper layers (ViewModel). In our case, we will have to launch an event
containing the list of tweets. To achieve this goal, let us define an argument class:

1. Right-click on the project and choose Add | Class on the contextual menu.
2. Name this new class ResponseTweetSearchArgs. We will be able to couple

in it the event we define:
using System;
using System.Collections.ObjectModel;
using RIAtec.Libs.TweetAPI.Entities;
namespace MyTweet.Model
{
 public class ResponseTweetSearchArgs : EventArgs
 {
 public ObservableCollection<SearchResult> searchResults;
 }
}

Why use an ObservableCollection instead of a List?
ObservableCollection works in a similar way to
INotifyProperty; in this case the UI gets notified when
an element is added or removed from the collection.

3. Create a new class (Add | Class) that we will name Model.
4. Define a tweet petition and subscribe the library event indicating the petition

has been completed:
using System;
using RIAtec.Libs.TweetAPI;
namespace MyTweet.Model

Chapter 4

[127]

{
 public class TweetModel
 {
 Search _searchAPI;
 // Instatiate the search API and hook to the completed event
 //of the SearchForTweet async call
 public TweetModel()
 {
 _searchAPI = new Search();
 _searchAPI.SearchForTweetCompleted += new
 EventHandler<RIAtec.Libs.TweetAPI.Entities.Events.
 ServiceResponseSearchTweetsArgs>
 (_searchAPI_SearchForTweetCompleted);
 }
 // This event will be fired once we get the callback from the
 //tweet library
 public event EventHandler<ResponseTweetSearchArgs>
 TweetSearchCompleted;

 // Helper method to fire the event
 private void OnTweetSearchCompleted(ResponseTweetSearchArgs e)
 {
 EventHandler<ResponseTweetSearchArgs> eventHandler =
 TweetSearchCompleted;
 if (eventHandler != null)
 {
 eventHandler(this, e);
 }
 }
 }
}

5. Within the TweetModel class, we will define the public method that will
allow us to make an asynchronous call for the tweet petition:
public void TweetSearchAsync(string substringToFind)
{
 // Retrieve the first 50 results of the search.
 // This method is asynchronous, once we get the
 // response and notification will be fired.
 _searchAPI.SearchForTweetsAsync(substringToFind, 0);
}

Architecture

[128]

6. When the petition has completed, we fire our own event. This will be picked
by an upper layer (the associated ViewModel):

void _searchAPI_SearchForTweetCompleted(object sender,
 RIAtec.Libs.TweetAPI.Entities.Events.
 ServiceResponseSearchTweetsArgs e)
{
 ResponseTweetSearchArgs responseArgs = new
 ResponseTweetSearchArgs();
 // Call succeeded?
 if (e.Result ==
 RIAtec.Libs.TweetAPI.Entities.Events.
 ServiceResponseType.Succeeded)
 {
 // Add to the response event the list of tweets
 responseArgs.searchResults = e.searchResults;
 }
 // Fire this event (the ViewModel will be listening)
 OnTweetSearchCompleted(responseArgs);
}

MyTweet.ViewModel
In this layer, we are going to expose the functionality that will fire the tweets search
and the collection that will be exposed to the view (tweets collection).

1. We will begin by adding the references (Add | References) to our model,
MyTweet.Model, and to the Twitter entities we will use:

2. Create a class called SearchViewModel (Add | New Class) and implement
the support to the interface:
using System.ComponentModel;
namespace MyTweet.ViewModel
{
 public class SearchViewModel : INotifyPropertyChanged
 {
 // Usually implement this on a base class

Chapter 4

[129]

 #region INotifyPropertyChanged Members
 public event PropertyChangedEventHandler PropertyChanged;
 private void OnPropertyChanged(string propertyName)
 {
 if (PropertyChanged != null)
 PropertyChanged(this, new
 PropertyChangedEventArgs(propertyName));
 }
 #endregion
 }
}

3. Create a member variable which will instantiate the model previously
defined (we will see how to do this without coupling in subsequent
chapters):
using MyTweet.Model;
namespace MyTweet.ViewModel
{
 public class SearchViewModel : INotifyPropertyChanged
 {
 #region fields
 private TweetModel _model = new TweetModel();
 #endregion
 }
}

INotifyPropertyChanged is covered in detail
in Chapter 3, Data Binding.

4. Add a property of the string type, which contains the text string we have
to search for:
public string SearchText
{
 get { return _searchText; }
 set
 {
 if (_searchText != value)
 {
 _searchText = value;
 // To notify any UI element bound to this property
 RaisePropertyChanged("SearchText");
 }
 }
}

Architecture

[130]

5. Add a collection containing the tweet search results:
private ObservableCollection<SearchResult> _members = new
 ObservableCollection<SearchResult>();
public ObservableCollection<SearchResult> Members
{
 get { return _members; }
 set
 {
 _members = value;
 RaisePropertyChanged("Members");
 }
}

6. Add a public method, which will fire the search (Important: This should be
exposed as a command. We will see how to do this in the following section):
public void ExecuteSearch()
{
 _model.TweetSearchAsync(SearchText);
}

7. Subscribe to the event of the Model, which will indicate to us when the result
of the search has been retrieved, and assign the result to the property of the
results already defined:

public SearchViewModel()
{
 _model.TweetSearchCompleted += new
 EventHandler<ResponseTweetSearchArgs>
 (_model_TweetSearchCompleted);
}
void _model_TweetSearchCompleted(object sender,
 ResponseTweetSearchArgs e)
{
 Members = e.searchResults;
}

MyTweet.View
In the View layer, create an interface so that the user can interact with the logic
defined in the ViewModel:

1. We will begin by adding references to our ViewModel, MyTweet.
ViewModel.

Chapter 4

[131]

2. Now, create a folder called Views (Add | New Folder) and add a Silverlight
Page Control type called SearchView (Add | New Item):

3. The next step will consist in the creation of the XAML page layout. In order
to do this, we can choose among the tools Expression Blend, Visual Studio
(layout), or just XAML. It is intended to get the following result:

Architecture

[132]

4. In our case, we will structure the page in the following way:
	° Define the main layout on the basis of a grid control.
	° Define two rows:

	° One row will have fixed height and we will establish the
search box on it

	° The other one makes use of the remaining space and uses
it to show the search results box

	° To show the results:
	° Use a control of ScrollViewer type
	° Define a data template to represent all the elements in

the results list

	° When binding data, assign the ViewModel in the XAML as design
DataContext. This permits data binding from Visual Studio
properties (see Chapter 3, Data Binding to learn more).

	° Bind the Search textbox to the Search property defined in the
ViewModel, together with the list of results to the ScrollView
control (we will define the details for every field in the data
template).

The following is the XAML that is generated (simplified for the sake
of readability):
<!-- Header, referencing tweet view model, plus defining -->
<!-- design DataContext -->
<navigation:Page
 x:Class="MyTweet.Views.Views.SearchView"
 (...)
 xmlns:d="http://schemas.microsoft.com/expression/blend/2008"
 xmlns:mc="http://schemas.openxmlformats.org/markup-
 compatibility/2006"
 mc:Ignorable="d"
 xmlns:vm="clr-
 namespace:MyTweet.ViewModel;assembly=MyTweet.ViewModel"
 d:DataContext="{d:DesignInstance IsDesignTimeCreatable=False,
 Type=vm:SearchViewModel}"
 Title="SearchView Page">

 <navigation:Page.Resources>
 <!-- Here we define the layout of a single search result -->
 <!-- Picture + Author + Message + Pub Date-->

Chapter 4

[133]

 <DataTemplate x:Key="SearchResultsTemplate">
 <Grid Margin="4,0,4,8"
 d:DesignWidth="446"
 d:DesignHeight="68">
 <Grid.ColumnDefinitions>
 <ColumnDefinition Width="Auto" />
 <ColumnDefinition Width="*" />
 </Grid.ColumnDefinitions>
 <Border VerticalAlignment="Top"
 Margin="8" Padding="2"
 Background="White">
 <Image Width="40" Height="40"
 Source="{Binding Path=Avatar, Mode=OneWay}"/>
 </Border>

 <StackPanel Grid.Column="1"
 VerticalAlignment="Top"
 Margin="0,4,0,0">
 <TextBlock x:Name="AuthorName"
 FontWeight="Bold"
 Text="{Binding Path=Author, Mode=OneWay}" />
 <Grid Margin="0,6,0,0">
 <Grid.RowDefinitions>
 <RowDefinition Height="Auto" />
 <RowDefinition Height="2" />
 <RowDefinition Height="Auto" />
 </Grid.RowDefinitions>
 <TextBlock x:Name="TweetMessage"
 Text="{Binding Path=Tweet, Mode=OneWay}"
 TextWrapping="Wrap" />
 <TextBlock x:Name="PublishDateLabel"
 Text="{Binding Path=PublishDate, StringFormat='dd-MMM-
 yyyy hh:mm tt'}"
 Grid.Row="2" />
 </Grid>
 </StackPanel>
 </Grid>
 </DataTemplate>
 </navigation:Page.Resources>

 <!-- We define two rows, first (fix height) one search area,-->
 <!-- second one results pane-->

Architecture

[134]

 <Grid x:Name="LayoutRoot" Background="White">
 <Grid.RowDefinitions>
 <RowDefinition Height="75"/>
 <RowDefinition Height="*"/>
 </Grid.RowDefinitions>
 <TextBlock HorizontalAlignment="Left"
 Margin="26,36,0,22"
 TextWrapping="Wrap"
 Text="Search Text:"
 d:LayoutOverrides="Height"
 VerticalAlignment="Top"/>
 <!-- Bind the textBox to the SearchText ViewModel property -->
 <TextBox Margin="112,32,99,0" TextWrapping="Wrap"
 Text="{Binding Path=SearchText, Mode=TwoWay}"
 d:LayoutOverrides="Width, HorizontalMargin"
 VerticalAlignment="Top" />
 <Button Content="Search"
 HorizontalAlignment="Right"
 Margin="0,32,20,20"
 Width="75"
 d:LayoutOverrides="Height"
 VerticalAlignment="Top" />

 <ScrollViewer HorizontalScrollBarVisibility="Disabled"
 VerticalScrollBarVisibility="Auto"
 Margin="8" Grid.Row="1">
 <!-- Bind the item's control to the -->
 <!-- SearchResults ViewModel -->
 <!-- ObservableCollection.The item -->
 <!-- layout is defined in the -->
 <!-- SearchResults Template-->
 <ItemsControl x:Name="SearchResults"
 Margin="0,8,0,0"
 Grid.Row="1"
 ItemTemplate="{StaticResource SearchResultsTemplate}"
 ItemsSource="{Binding Path=Members}" />
 </ScrollViewer>
 </Grid>
</navigation:Page>

Chapter 4

[135]

The page layout is now ready. We add the page to the main page of the application
(MainPage.XAML):

<UserControl x:Class="MyTweet.Views.MainPage"
 (…)
 xmlns:vi="clr-namespace:MyTweet.Views.Views"
 d:DesignHeight="300" d:DesignWidth="400">

 <Grid x:Name="LayoutRoot" Background="White">
 <vi:SearchView/>
 </Grid>
</UserControl>

Let us now focus on the Code-Behind of the page:

1. Bind DataContext on the constructor (we will see a cleaner form to do this
in the following section):
public SearchView()
{
 InitializeComponent();

 this.DataContext = new SearchViewModel();
}

2. Going back to XAML, subscribe to the Click event in the Search button:
<Button Content="Search"
 Click="Button_Click"
 (…)
/>

3. We launch the code in the Code-Behind to search:
private void Button_Click(object sender, RoutedEventArgs e)
{
 SearchViewModel svm = this.DataContext as SearchViewModel;
 svm.ExecuteSearch();
}

D
ow

n
lo

a
d
 f
ro

m
 W

o
w

!
e
B
o
o
k

<
w

w
w

.w
o
w

e
b
o
o
k.

co
m

>

Architecture

[136]

We are done! Once the search is completed, the property containing the results
collection gets updated and, automatically, it is notified to the associated UI control,
which is also updated. The following is the final result:

This is an interesting example where we will apply the MVVM pattern. Nevertheless,
there are certain topics which are still pending:

•	 When implementing a ViewModel, we have to add "boilerplate code". That
is to say, we have to inherit from INotifyPropertyChange and implement
the interface. Wouldn't it be better to have a base class at our disposal from
which to inherit?

•	 The code we implement when the click event is fired is partially
implemented in the Code-Behind of the view (code in the Code-Behind
cannot be unit tested). Isn't there a better way to do this? Yes, there is. We can
make use of commands, binding the command event of the button directly
to a method implemented in the ViewModel. In this case, we face a situation,
which is very similar to the one in the previous section. Isn't there
a class already constituted, which helps us to implement commands?

•	 One of the advantages of MVVM is the "separation of concerns" between
Vista and ViewModel, allowing us to make automatic unit tests on the
ViewModel and avoid couplings between different views. Nevertheless,
what happens if we have to communicate to other views? And if we need
to show a Messagebox from the ViewModel?

Chapter 4

[137]

•	 What happens if we want to try our logic implemented in the ViewModel,
abstracting from what has already been implemented in the Model?

•	 How can we substitute a sample model for our own model and implement
unit tests on the ViewModel?

We could create our own libraries to cover this functionality, but there are excellent
libraries, which help us to avoid implementing them. In the following sections, we
will show how to work with MVVM Light Toolkit and MEF.

MVVM Light Toolkit
MVVM is a set of libraries which make our task easier when dealing with the MVVM
pattern. They are available at http://mvvmlight.codeplex.com/.

When dealing with MVVM libraries and frameworks, some fears arise. Among
others, we can mention the following: "Shall I redo my application?" "Do I need to
comply with the templates and structures given by the Framework?" The answer is
no. Even if Light Toolkit includes a series of project templates, nothing prevents us
from "picking cherries" in relation to functionalities and incorporating them to our
own project, minimizing the impact upon our application.

How can Light Toolkit be incorporated to our project? Just by downloading these
libraries and adding the following references to the project:

•	 Galasoft.MvvmLight.SL4:

	° It implements a ViewModel base (ViewModelBase)
	° It implements support to commands (RelayCommand)
	° It implements support for message publishing and subscribing

(Messenger)

•	 GalaSoft.MvvmLightExtras:

	° It implements EventToCommand, a class which allows us to bind
events such as Page Load to commands in our ViewModel

	° DispatcherHelper, help the class to update and make safe calls to
the UI thread from a worker thread

In this book, we will cover the basic elements of the library. For further information,
visit http://www.galasoft.ch/mvvm/.

Architecture

[138]

ViewModelBase
The base class we missed for our ViewModel implements the
INotifyPropertyChanged interface for us. To use it, we only have to:

1. Add the MVVM Light Toolkit library (Galasoft.MvvmLight) to the
using namespace and make our ViewModel (MyViewModel) inherit from
ViewModelBase:
using GalaSoft.MvvmLight;

namespace INotifiy_Months
{
 public class ViewModel : ViewModelBase
 {
 (…)
 }
 (…)
}

2. Add RaisePropertyChanged to the properties we implement, together with
the name of the property (this method is implemented in the base class,
ViewModelBase):
string _clientName;
public string ClientName
{
 get
 {
 return _clientName;
 }

 set
 {
 if (_clientName != value)
 {
 _clientName = value;

 RaisePropertyChanged("ClientName");
 }
 }
}

Chapter 4

[139]

RelayCommand
This class implements the ICommand interface for us. It allows us to bind a
RelayCommand defined in our ViewModel with a button click. Thanks to this, we can:

•	 Execute code belonging to our ViewModel (without having to delegate on
view's Code-Behind events).

•	 Define whether or not the command is enabled directly from the ViewModel.
For example, if all the required data is not filled, the command Save will not
be executed.

In order to understand how this is applied, let us see how it works by implementing
a basic sample based on MVVM. We will create an application that links together
two strings of text when clicking on a button. The button which launches the
Concatenate command will only be enabled if the two strings of text that have to be
linked are not empty. We will follow the given steps:

1. Create a ViewModel. It will expose the two strings that have to be
concatenated (FirstName, LastName) as properties, as well as the resulting
string (FullName). We will also inherit our ViewModel from ViewModelBase:
private string _firstName;
public string FirstName
{
 get
 {
 return _firstName;
 }

 set
 {
 _firstName = value;
 RaisePropertyChanged("FirstName");
 }
}

private string _lastName;
public string LastName
{
 get
 {
 return _lastName;
 }

 set
 {
 _lastName = value;

Architecture

[140]

 RaisePropertyChanged("LastName");
 }
}

string _fullName;

public string FullName
{
 get
 {
 return _fullName;
 }

 set
 {
 _fullName = value;
 RaisePropertyChanged("FullName");

 }
}

2. Now, define the command of the RelayCommand type that is in charge of the
concatenate operation:
private RelayCommand _concatCommand;

public RelayCommand ConcatCommand
{
 get
 {
 if (_concatCommand == null)
 {
 _concatCommand = new RelayCommand(() =>
 // Lambda expression, when the user clicks on
 // the button this code will be executed
 {
 FullName = _firstName + " " + _lastName;
 },
 // Lambda expression: Disable this command if
 // the search text is empty
 (() => (!string.IsNullOrEmpty(FirstName) &&
 !string.IsNullOrEmpty(LastName)))
);
 }

 return _concatCommand;
 }
}

Chapter 4

[141]

3. At this point, we are almost done. We only need to indicate where it is
necessary to reassess the condition, which enables or disables the command.
To do this, we add the call RaiseCanExecuteChanged to the set accessors of
the FirstName and LastName properties:
private string _firstName;
public string FirstName
{
 get
 {
 return _firstName;
 }

 set
 {
 _firstName = value;
 RaisePropertyChanged("FirstName");
 // Need to recalc the can execute of the search button
 // command
 ConcatCommand.RaiseCanExecuteChanged();
 }
}

4. Now, let us create the view layout, which will look similar to the following
screenshot:

5. Define the necessary bindings for the textboxes in the XAML and associate
ConcatCommand to the Concat button:
<UserControl x:Class="CommandSample.MainPage"
xmlns="http://schemas.microsoft.com/winfx/2006/xaml/presentation"
xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml"

Architecture

[142]

xmlns:d="http://schemas.microsoft.com/expression/blend/2008"
xmlns:mc="http://schemas.openxmlformats.org/markup-
compatibility/2006"
mc:Ignorable="d"
d:DesignHeight="192" d:DesignWidth="400">

 <Grid x:Name="LayoutRoot" Background="White">
 <TextBlock Height="23" HorizontalAlignment="Left"
 Margin="30,40,0,0" x:Name="textBlock1"
 VerticalAlignment="Top"
 Text="FirstLastName" />
 <TextBlock Height="23" HorizontalAlignment="Left"
 Margin="30,66,0,0"
 x:Name="textBlock2"
 VerticalAlignment="Top"
 Text="LastName" />
 <TextBox Margin="104,36,36,0" TextWrapping="Wrap"
 VerticalAlignment="Top"
 Text="{Binding Path=FirstName,
 Mode=TwoWay}"/>
 <TextBox Margin="104,66,36,0"
 TextWrapping="Wrap"
 VerticalAlignment="Top"
 Text="{Binding Path=LastName, Mode=TwoWay}"/>
 <Button Content="Concat" Margin="30,99,36,0"
 VerticalAlignment="Top"
 Command="{Binding Path=ConcatCommand}"/>
 <TextBlock Margin="30,137,36,27" TextWrapping="Wrap"
 Text="{Binding Path=FullName}"
 FontSize="24" Foreground="# FF282A2F"/>
 </Grid>
</UserControl>

6. In the Code-Behind of the page, associate the ViewModel already created as
DataContext:
public partial class MainPage : UserControl
{
 public MainPage()
 {
 InitializeComponent();

 DataContext = new ViewModel();
 }
}

Chapter 4

[143]

Messenger
A Messenger class allows us to establish communication in an application. That
is, we can send messages from any point of the application and have recipients on
the alert subscribed to them. These messages can contain additional information,
including complex types.

Messenger is the Light Toolkit solution to the following:

•	 Allowing the ViewModel to perform an operation related to UI without
mixing presentation code. For example, showing a MessageBox or a modal
dialogue.

•	 Communicating two ViewModels without referencing each other.

Let us see how this works with an easy-to-follow example of an application showing
two views. In the first one, the user enters a text that has to be sent to other views.
The process of sending occurs via a message containing that text. In the second view,
the application is awaiting the receipt of that message in order to display it:

Architecture

[144]

We will now focus on the message definition and the Code-Behind of the two views
(please enter www.packtpub.com to download the sample):

1. First, we have to define a class for the message, MyTextMessage, which
inherits from GenericMessage:
using GalaSoft.MvvmLight.Messaging;

namespace MessengerSample
{
 public class MyTextMessage : GenericMessage<string>
 {

 public MyTextMessage(string textToDisplay)
 : base(textToDisplay)
 {
 if (textToDisplay == null)
 {
 throw new ArgumentNullException("textToDisplay");
 }
 }

 }
}

2. In View A, when the user presses the Send button, the message is sent,
including the text entered in the textbox:
private void Button_Click(object sender, RoutedEventArgs e)
{
 Messenger.Default.Send(new MyTextMessage(txText.Text));
}

3. In View B, we subscribe to that message and, as soon as it is received, the
text is shown in a TextBlock control:

public ViewB()
{
 InitializeComponent();

 Messenger.Default.Register<MyTextMessage>(this,
 OnNewTextArrived);

}

public void OnNewTextArrived(MyTextMessage message)
{
 tbMyText.Text = message.Content;
}

Chapter 4

[145]

You can find more details on the use of Messenger in the LOB application case study:
applying what we have learned section in this chapter.

Managed Extensibilty Framework (MEF)
When implementing a Silverlight application, some doubts, such as the following
can arise:

•	 How can the different modules be decoupled? Is there an easy way to
replace modules, keeping interdependence? Moreover, it would be
interesting to replace modules with others containing hardcoded data,
so as to perform unitary tests easily.

•	 It would be great for my application to be extensible, and even better if
third-party developers could couple their developments to my project easily.

•	 I would like to control the size of the application XAP and load modules
on demand.

It is possible to implement our own functionality in order to give support to these
points, but it is not always practical (similar to what happened when analysing
MVVM Light Toolkit). There are libraries and frameworks such as MEF, which
already cover these features.

Managed Extensibility Framework (MEF) offers discovery and
composition capabilities, which we can make use of in order to load
application extensions (load application modules on demand).

Architecture

[146]

MEF definitions
Let us now see a series of definitions, which will lead us to manage MEF more easily.
In the following figure, you can see the structure of MEF:

Catlog

Custom Export Provider Catalog Export Provider Multable Export Provider

Composition Container

Part

PartPart

Part

Export Import
Export ImportExport Import

Composable part: A Part gives services to other parts at the same time that it
consumes them. They can have different origins. For example, the application or a
call to a service.

Export: This is a service exposed by a Part. For example, an editor for Visual Studio
IDE (in this case, the Visual Studio IDE would import this particular editor).

Import: This is a service consumed by a Part.

Contracts: It identifies an Import or an Export. That is, it acts as the glue between
them.

Chapter 4

[147]

Composition Container: MEF is in charge of composing parts (in other words,
mapping between Import and Export and creating the appropriate instances).

Export Providers: It returns all Export that accomplishes an Import definition. In this
chapter, we will make use of CatalogExportProvider, which extracts the parts from a
given catalog.

Catalogs: They allow us to discover parts dynamically. Catalogs allow applications
to consume exports that have self-registered themselves via the Export attribute in
an easy way. MEF provides us with a series of catalogs already implemented (for
example, Assembly Catalog, Directory Catalog, or AgreggateCatalog among others).

Parts and contracts
Let us see how the different parts relate to each other through a practical example.
Imagine we have an application based on MVVM:

[ImportingConstruction]
public GameListViewModel(IGamesModel
theModel)

[Export(typeof(IGamesModel))]
public class GamesModel : IGamesModel

Contract
(For example, IModel)

(For example, ViewModel)

PART

(For example, Model)

PART

Import
(For example, Imodel)

Export
(For example, Imodel)

•	 Define the operations which the Model has to accomplish on an interface
called IMyModel. This interface is the contract.

•	 Create a class calling MyModel, which implements the IMyModel interface,
and export it with MEF. To do so, add the Export annotation to the class
header.

•	 Create the ViewModel class (MyViewModel) and, in the constructor header,
indicate that it is a necessary part, which implements IMyModel (that is, we
need to import IMymodel).

Architecture

[148]

Composition
Now that the parts, contracts, and relations (imports and exports) have been
established, we have to link everything together when the application is executed.
To do so, we will only have to indicate MEF to perform the operation calling
SatisfyImports. This method will search exports and imports on all the assemblies
and will match them.

Import
(For example, Imodel)

Export
(For example, Imodel)

(For example, ViewModel)

PART

(For example, Model)

PART

System.ComponentModel.Composition.CompositionInitializer.SatisfyImports(this);

Creating a mock model using MEF
To put into practice what we have learned, we have done refactoring of the tweets
browser previously created (it is available at www.packtpub.com). Our aim here is to
be able to decouple the implementation of its contract model. This makes it possible
to replace it without the changes impacting the rest of the application, as well as to
create a model with mock data so as to implement unit tests against the ViewModel
layer. This is all done without the need to have a physical connection to the service
(for further information on this topic, see Chapter 7, Testing your LOB Application).

Now, we will see a summary of the steps we have to follow for refactoring:

1. Create a new project (Add | New Project | Silverlight Class Library) called
MyTweet.Model.Contracts.

Chapter 4

[149]

2. To make it simpler, we will add a reference to the DLL of the Twitter browser
called RIAtec.Libs.TweetAPI.Entities. It would have been perfect to define
our entities and events so that they do not depend on any third-party library:

3. Move the ResponseTweetSearchArgs class defined in the Model to our new
contracts project:
using System;
using System.Collections.ObjectModel;
using RIAtec.Libs.TweetAPI.Entities;

namespace MyTweet.Model.Contracts
{
 public class ResponseTweetSearchArgs : EventArgs
 {
 public ObservableCollection<SearchResult> searchResults;
 }
}

4. Add an interface (Add | New Class) to this project that will be called
IModel. Define the operations and events that will be exposed to the
ViewModel in this project:
using System;

namespace MyTweet.Model.Contracts
{
 public interface IModel
 {
 void TweetSearchAsync(string substringToFind);

 // This event will be fired once we get the callback
 //from the tweet library
 event EventHandler<ResponseTweetSearchArgs>
 TweetSearchCompleted;

 }
}

Architecture

[150]

5. Go to MyTweet.Model project now and add the reference to the MyTweet.
Model.Contracts project (Add Reference):

6. Make the TweetModel class inherit from the IModel interface (in this case, all
the IModel methods are already implemented):
(…)
using MyTweet.Model.Contracts;

namespace MyTweet.Model
{
 public class TweetModel : IModel
 {
 (…)
 }
(…)
}

7. Add support to MEF. We intend to export our Model, therefore, we should
not leave the MyTweet.Model project.

8. Add the reference to the System.ComponentModel.Composition assembly.
To do so, go to Add | New Reference and then select .NET Assemblies.

Chapter 4

[151]

9. Mark the Model as exportable with the IModel contract:
using System.ComponentModel.Composition;

namespace MyTweet.Model
{
 [Export(typeof(IModel))]
 public class TweetModel : IModel

 (…)
}

Now, let us move to the ViewModel.

10. Eliminate the reference to the model implementation and replace it with
the reference to the project containing the model contract. That is, we
change MyTweet.Model to MyTweet.Model.Contracts (Add | New
Reference | Project):

11. As in the previous example, add the libraries for MEF support: System.
ComponentModel.Composition and System.ComponentModel.
CompositionInitialization:

12. In our SearchViewModel class, remove the using in the model
implementation and add that of the contract (using MyTweet.Model.
Contracts).

Architecture

[152]

On the other hand, the _model member variable now becomes a variable of
the IModel type:
using MyTweet.Model.Contracts;

namespace MyTweet.ViewModel
{
 public class SearchViewModel : INotifyPropertyChanged
 {
 #region fields

 private IModel _model;

 #endregion
 (…)
 }
(…)
}

13. On the ViewModel constructor, indicate that MEF is in charge of searching
for the implementation for this interface:
[ImportingConstructor]
public SearchViewModel(IModel model)
{
 _model = model;
 _model.TweetSearchCompleted += new EventHandler
 <ResponseTweetSearchArgs>(_model_TweetSearchCompleted);
}

14. To expose the ViewModel with the View, an interface could also be defined.
However, as Shawn Wildermuth points out (see links at the end of the
chapter), it is not worthwhile to build interfaces, since the dependence
between View and ViewModel is not strict (declarative binding). Instead,
we define a class of constants that identify the ViewModel:

	° We will define this class in a library project that will be named
Common (Add New Project | Silverlight Class Library). It will be
referenced in the ViewModel project, MyTweet.ViewModel and
in the View project, MyTweets.View. Thanks to this, if we want to
create a sample ViewModel, we will not need to add a reference to
MyTweetViewModel.

Chapter 4

[153]

	° Also, add a class called ViewModelTypes (Add | New Class):

	° With the aim of identifying the different ViewModels, this new
class will contain a text string to identify each ViewModel belonging
to the application:

/// <summary>
/// Contains constants to identify view models, when they are
/// imported using MEF.
/// </summary>
public class ViewModelTypes
{
 /// <summary>
 /// Identifies the SearchViewModel.
 /// </summary>
 public const string SearchViewModel = "SearchViewModel";
}

15. Back to ViewModel, add the Export. As identifier, we will use our class
of constants:
[Export(ViewModelTypes.SearchViewModel)]
public class SearchViewModel : INotifyPropertyChanged

16. Now, let us focus on the view.
17. Add the reference to the common library that has just been created. Also,

include the libraries for MEF support (in this case, they are System.
ComponentModel.Composition and System.ComponentModel.
Composition.Initialization). The last one allows us to call the method so that
it launches the matching between contracts and parts:

Architecture

[154]

18. Continuing with references, up to this point we have always added
references to the contracts project. Now it is time to add the ViewModel
and Model implementations, MyTweet.ViewModel and MyTweet.Model,
respectively. This will allow MEF to find the implementations that match
the corresponding contracts. It also makes it possible to have the rest of
the modules decoupled from the implementation, since they only depend
on the defined contract:

19. Remove the line where we instantiated the ViewModel from the view
constructor:
public SearchView()
{
 InitializeComponent();

 this.DataContext = new SearchViewModel();
}

20. Then, define a property which assigns the ViewModel to the DataContext,
adding the Import annotation, which shows how to import the ViewModel.
Therefore, when the ViewModel is instantiated, the set accessor of the property
will be triggered and the ViewModel will be assigned as view context:
using MyTweet.Common;

namespace MyTweet.Views.Views
{
 public partial class SearchView : Page
 {
 public SearchView()
 {
 InitializeComponent();
 }

 /// <summary>
 /// Sets the view model for this view using MEF.
 /// </summary>

Chapter 4

[155]

 /// <value>The view model.</value>
 [Import(ViewModelTypes.SearchViewModel)]
 public object ViewModel
 {
 set
 {
 DataContext = value;
 }
 get
 {
 return DataContext;
 }
 }
 (…)
..}
}

21. In the view constructor, make a MEF call, CompositionInitializer.
SatisfyImports(this), to match between imports and exports:

public SearchView()
{
 InitializeComponent();
 CompositionInitializer.SatisfyImports(this);
}

We are done! What are the advantages of the additional work we have done? The
modules get decoupled, which means the following:

•	 To replace the implementation of a module with another one, we would
only have to implement a new library with classes that accomplished those
defined in the contracts. In other words, this change would not have any
impact on other modules.

•	 If we want to perform unit tests (we will deal with them in depth in Chapter
7, Testing your LOB Application), we could, for instance, replace the Model
layer with a Mock (a class with sample data). Thus, we will only have to
worry about the fact that the Mock may implement the IModel contract.

In relation to the way in which we have referenced the implementations of contracts
in the View project, we could have opted for a dynamic way of replacing modules—
that is by wrapping them in XAP files and downloading them on demand. For further
information, please visit http://codebetter.com/glennblock/2010/03/08/
building-hello-mef-part-iv-deploymentcatalog/. This approach can be useful
for breaking the XAP into several modules and reducing its size and load time. Also,
it allows our application to be extensible through plugins.

Architecture

[156]

Solution and folder structure
In this section, we will deal with how to structure our project with respect to physical
and solution folders to name our projects, so that they help us to identify them quickly.

At the beginning of a small project, this point may not have much importance, but
as it evolves, a bad folder structure or name convention can cause management
difficulties (not to mention if the project is medium-sized or even larger).

Customization:
The following recommendations are subjective. Our
advice is to adapt them to your needs and criteria.

It's now time to define every item:

•	 Folder: It is a directory we create in our hard disk drive.
•	 Solution: It is created with Visual Studio and embraces several projects.
•	 Solution folder: Inside a solution, we can create several solution folders,

which help us to structure them. They are logical, that is, they are not
physically created as a directory on our HDD.

•	 Project: A Visual Studio project contains the code and resources we need. It
can be Web or Silverlight, type library or application, and so on.

•	 Project folder: Within a project, we can also define subfolders that will make
the task of structuring it easier. These are physical. In other words, when we
create them, the corresponding subdirectories are also created in our HDD.

In order to define our structure, we are going to base it upon the following
sample criteria:

•	 Our company is called RIATec
•	 The project we are going to create is called TweetSearch
•	 We are going to create a library of our own, so as to manage TweetSearch,

as we intend to reuse this library in future projects
•	 We are going to use third-party libraries from Galasoft (MVVM Light

Toolkit)

D
ow

n
lo

a
d
 f
ro

m
 W

o
w

!
e
B
o
o
k

<
w

w
w

.w
o
w

e
b
o
o
k.

co
m

>

Chapter 4

[157]

To begin with, define the folder structure that will be used. The first level would be
as follows:

•	 bin: This is the place for the results of building all our projects (binary).
Therefore, if we need to add a reference to a project that is not present in our
solution, there is only a path to add it, that is the bin folder. To make this
step effective, we will have to change the Output Directory property and
make it point to the new bin folder in every Visual Studio project we create.

•	 libs: In this folder, we must copy all third-party DLLs, which we intend to
use (for instance, those of MVVM Light Toolkit by Galasoft). Thereby, all our
projects that need to add third-party references will take them from just one
place and this helps to avoid problems. Another advantage is that we can see
which third-party DLLs we are using.

•	 src: In this folder, we will group solutions, projects, and source code. That is
to say, everything in this folder is our own creation.
In this src folder, we must create a second level. Every folder in this level
will take a prefix composed of our company name, followed by a dot. In our
example, we will have the following:

	° CompanyName.Libs: In our example, this would be RIATec.Libs.
Here, we will add solutions and library projects, which we want to
create and probably reuse in other projects. In this case, we will create
the library project with our tweet browser. This allows us to have
all our own libraries grouped together in a clear way, and be able to
reuse them in subsequent projects.

	° CompanyName.ProjectName: In this example, it is called RIATec.
TSearch. All the functionalities that depend on our project
TweetSearch are stored here and are not easily reusable. As in
the previous point, the main advantage is that functionalities are
grouped together and we are able to find everything quickly.

Architecture

[158]

Short names: In our example, we have decided to shorten
names (TweetSearch to TSearch) to avoid problems
with routes whose length is over 255 characters.

Now, let's focus on how to create the main solution.

The easiest way to begin is from a blank solution (Blank Solution), which we can
shape without tying ourselves to pre-established names and projects. We will call
it RIATec.TSearch. The solution will be stored in this folder:

Then, create a series of solution folders that will help to structure our solution. To
do so, right-click and choose the option Add from the contextual menu. Then, select
New Solution Folder:

Chapter 4

[159]

Create the following solution folders:

•	 Common: Here, the projects containing common dependencies are added.
For example, the definitions of the messages we make.

•	 Model: In this solution, there will be those projects related to the model
(contracts, implementation of the model, and mock of the model if it is
necessary).

•	 Modules: It includes the different modules in which the application is
divided.

•	 Tests: Under this solution, we can add the TestRunners (simple apps, which
allow us to try a particular functionality manually). Here, unit tests projects
will also be included (see Chapter 7, Testing your LOB Application).

•	 Server: Here, projects which have to be executed at the server-side are
created. For instance, the project which will host our Silverlight application.

Separate the view in an independent solution:
Another interesting option is to separate the project(s) containing
the View layer in a different solution. Therefore, a graphic designer
will have clearly enough field where s/he must work. Moreover, the
View layer could also be changed for another one so as to use it in a
different platform and reuse all business and data-related modules.

Architecture

[160]

Let's now create the following projects:

1. Under the solution root (RIATec.TSearch), create the entry point. This is the
application project that will contain the app and the MainPage. This project
will be called (RIATec.TSearch.Shell). Indicate that we do not want to
create an associated web project. Our goal is to create it in the following step,
indicating localization and names more appropriate to the structure that is
being built.

2. Next, create the web project, which will host the Silverlight application. For
that, we need to create a web project under the solution folder called Server.
The best way to do this is right-clicking on this solution folder and selecting
Add and New Project in the contextual menu. Choose the Web template and
the ASP.NET Web application option in the dialogue that appears then. This
project will be called SW.TSearch.Server.Web. As it can be seen, the name of
the Server folder has been included in the solution folder:

Chapter 4

[161]

3. Right-click on the new project we have created, select Properties and, on the
Silverlight Applications tab, press the button Add… to indicate we want to
bind a new web project, RIATec.TSearch.Shell:

Architecture

[162]

4. Now, create the common project on the solution folder named Common.
Here, we should be able to define the messages we need to communicate to
the different modules. This will be a Silverlight library project.

5. The project with the Model implementation and contracts will go to the
solution folder called Model. This will also be a Silverlight library project.

6. The projects with the implementation of every model will go in the Modules
folder. In our case, we will have a module to search and display tweets.

7. The final solution is illustrated in the following screenshot:

8. Finally, we just need to see how to redirect a project output to the Bin root
folder we have already defined. We will see how to do this using the Shell
project. Click on the Shell project's properties; then choose the Build tab and
indicate a relative path for the Output path, such as ..\..\..\bin:

All the work we have done in relation to the structure can be found at
www.packtpub.com.

Chapter 4

[163]

LOB application case study: applying
what we have learned
Let us apply what we have learned thanks to our sample application. To do so, we
will first build the adequate structure for the project and then implement the MVVM
pattern on it. Instead of just sticking to the structure, the first page of the application
(MyBookings) has been implemented by using a mock data module. In the next
chapter, the real RIA Services layer will substitute for the layer mentioned previously.

We have made some changes (refactoring) to adapt to the defined pattern and the
structures. Some of the changes are as follows:

•	 Changes in the structure of the solution (which reflects full names, introduces
solution folders, and so on)

•	 A new library has been introduced to adapt Silverlight navigation framework
to the MVVM pattern (navigation now becomes ViewModel's responsibility)

•	 Floor and room administration windows have been unified in order to take
advantage of and show how to edit inline in a DataGrid

Project structure
Let's start by reviewing the physical project structure, then the solution, solution
folders, and the application project naming convention.

Folder structure
The first level of folders have been created:

Under the src folder, two levels have to be distinguished:

Architecture

[164]

1. The first one is for the mail application, Packt.Booking.
2. The second one is for those libraries that are likely to be reusable in other

projects, Packt.Libs.

Regarding names, we have chosen the following:

•	 Packt.Booking (follows the format CompanyName.ApplicationName)
•	 Packt.Libs (follows the format CompanyName.Libraries)

Main solution structure
Let us analyze the main solution. It can be found at src\PacktBooking\
PackBooking.sln.

As shown in the following screenshot, the first level contains four solution folders
(Common, Model, Modules, and Server) and an entry project (Packt.Booking.Shell):

When looking at the second level, we find the following:

Chapter 4

[165]

•	 Common: Classes and common components that are specific to the
application (for example, message definition):

	° Packt.Booking.Common: It contains converters, entities, messages,
navigation help, resources, and styles.

•	 Model: Under this folder, we find everything related to the application model:
	° Packt.Booking.Model.Contracts: Interface defining model

operations.
	° Pactk.Bookings.Model.Mock: Implementation of a mock model

(using sample data, it simulates the real model by implementing
the interface defined in the contracts project).

•	 Modules: Our decision has been to break every window in a module (every
project of this type includes the associated View and ViewModel):

	° Packt.Booking.Modules.ChooseOffice: Window where the
building we want to edit is chosen.

	° Packt.Bookings.Modules.FloorsCRUD: Windows which allow
floors edition as well as rooms edition in a building.

	° Packt.Bookings.Modules.Menu: This window implements the
navigation menu of the application.

	° Packt.Bookings.Modules.MyBookings: It allows a user to manage
his/her reservations.

•	 Server: Here, those non-Silverlight projects executed on the server are stored:

	° Packt.Bookings.Server.Data: In this project, the technology
accessing our data source (seen in Chapter 5, RIA Services Data
Access) is implemented.

	° Packt.Bookings.Server.Web: In this project, we will have the
website acting as host for our Silverlight application. In addition,
we will expose services to interact with the data source defined
in the previous project.

The way in which View, ViewModel, and Model are bound is the same as we used
when building the example of the Twitter reader, based on interfaces and MEF.

Architecture

[166]

Libraries
Let's review our own reusable libraries that we have built for the project.

Packt.Libs.Navigation
As in the previous chapter, Silverlight incorporates a very powerful navigation
framework that also integrates with the history of different web browsers, and also
allows to pass parameters via query string. How is this integrated with MVVM?
After a first analysis, we have the following answers:

•	 Framework is integrated on the View level
•	 Decisions such as checking if we can navigate away from the actual view

(for instance, if there are changes pending to save) or if we can navigate
to a given view (for example, if the user has permissions) belong to the
ViewModel layer

•	 If the URL contains parameters, the ideal solution will be that the ViewModel
could process it without the intervention of View

What are the possible solutions?

1. It could be possible to use Light Toolkit Messenger to send messages when
we want to initialize ViewModel or check if we can leave the current page.
Even though this solution is valid for MVVM, it can be a little cumbersome to
implement and maintain.

2. Another possible approach to the problem may be the transference of the
Navigation Framework instance in execution to the ViewModel from the
Code-Behind. This may cause two issues. The first one, although not so
serious, means that we are introducing code in the View; the second one
implies that we are making our ViewModel depend on a UI element and this
increases the difficulty of implementing automatic unit tests.

3. Finally, working upon it a little more, it could be possible to encapsulate
a framework functionality in an interface, which is non-dependent on
implementation details, and assign it to the ViewModel declaratively
through a Silverlight Behavior. In this way, we avoid the implementation
of code in the Code-Behind, and the ViewModel is consequently not bound
to any UI element (in order to make unit tests, a mock could be developed
to implement the navigation interface that substitutes for the Navigation
Framework interface).

Chapter 4

[167]

Due to its elegance and simplicity, we have opted for the third solution. As a
starting point, we have taken Robert Garfoot's (Microsoft application development
consultant) implementation (http://bit.ly/bg7Lg7) and we have added support
to establish the home page, as well as the access to the query string parameters, from
the ViewModel.

Because of space limitations, we will just mention how to use the library. In case you
are interested in knowing how it works internally, you can check the following URL:
http://bit.ly/cH3FfZ.

The navigation solution we have built contains three projects:

1. Packt.Libs.Navigation.Contracts: It contains the definition of the
navigation interface (agnostic implementation), as well as interfaces for the
ViewModels to implement and obtain support to navigation.

2. Packt.Libs.Navigation: The particular implementation to support
Silverlight Navigation Framework.

3. TestRunner.App: A simple example of how to consume this library is based
upon the Navigation Framework sample that can be found in Silverlight.NET
(http://bit.ly/pyy2ho). It contains two pages, one with a list of people,
and the other with the details about every person (their identifier passes
through query string). But, in this case, thanks to the MVVM pattern, we can
view it the way we prefer (via ViewModel).

	° Set up a main page
	° Launch a navigation event from the ViewModel
	° Process the parameters of the navigation URL

Architecture

[168]

Let's check the entire interaction on a high level:

Let's go step by step:

1. First, add the DLL of the projects, both contract (Packt.Libs.Navigation.
Contracts) and implementation (Packt.Libs.Navigation):

2. In our first ViewModel, in the people list, implement the Inavigable
interface, defined in Packt.Libs.Navigation.Contracts. It exposes a
NavigationService (so as to navigate to other pages), the URL parameters
(that we will see next), as well as two methods, which will allow us to cancel
the navigation to a different page and detect when the page has been loaded:

Chapter 4

[169]

public class CustomerListVM : ViewModelBase, INavigable, IHomePage
{
 (…)
 #region INavigable

 public IDictionary<string, string> QueryString { get; set; }

 [Import]
 public INavigationService NavigationService { get; set; }

 public bool CanNavigateAway(Uri DestinationPage)
 {
 return true;
 }

 public void NavigatedToThisPage()
 {

 }

 #endregion INavigable

 (…)
}

3. As this ViewModel is also our home page, the interface IHomePage must be
implemented and, in the function it exposes, we will return "true" indicating
it is the home page:
public class CustomerListVM : ViewModelBase, INavigable, IHomePage
{
 (…)
 #region IHomePage

 /// <summary>
 public bool IsHomePage
 {
 get { return true;}
 }

 #endregion

}

Architecture

[170]

4. NavigationService is initialized via MEF (import). Therefore, we must
add SatisfyImport in the ViewModel constructor (we could as well call the
SatisfyImports from the view):
public CustomerListVM()
{
 CompositionInitializer.SatisfyImports(this);
}

5. Now, in the CustomerListPage.xaml, the namespace of our library must
be added. Then, assign the ViewModel to the browser. (This behavior is
internally bound to the page event loaded to ensure the DataContext is
available. At this point, the ViewModel is assigned the navigation instance):
<navigation:Page
 x:Class="TestRunner.App.Views.CustomerListPage"
 xmlns:pnavigation="clr-namespace:Packt.Libs.Navigation;
 assembly=Packt.Libs.Navigation"
 pnavigation:Navigator.Source="{Binding}"
 (…)
>

6. Now, if we want to navigate from the ViewModel to a different page (that
is, if the user clicks on a customer link), we only have to use the property
we have implemented:
string url = NavigationHelper.CustomerURL(idparam);

NavigationService.Navigate(url);

7. The page and the CustomerDetailVM ViewModel work in a similar way,
except if we do not implement the IHomePage interface (it is not the home
page) and we expect a query string parameter (identifier of the people whose
details we want to see). It can be processed as follows:
public void NavigatedToThisPage()
{
 // 1. Check the parameters
 // 2. extract the id
 // 3. Perform the load and the binding
 if
 (QueryString.ContainsKey(NavigationHelper.
 CustomerDetailVMParams.idParam))
 {

Chapter 4

[171]

 string idvalue =
 QueryString
 [NavigationHelper.CustomerDetailVMParams.idParam];
 int id = Convert.ToInt32(idvalue);

 CurrentCustomer = _model.GetCustomer(id);
 }
}

8. To make URL management easier, a static class has been implemented. It
maps the addresses to constant value and implements functions to return
those URLs containing parameters:

public static class NavigationHelper
{

 public static string CustomerListURL()
 {
 return "Customers";
 }

 public static string CustomerURL(int customerID)
 {
 return string.Format("Customer/{0}", customerID);
 }

 public static class CustomerDetailVMParams
 {
 public static string idParam = "myid";
 }

}

Packt.Libs.Threading
As our reservations project is momentarily going to use a mock model (sample data),
real asynchronous calls are not going to be made. From a developer's point of view,
this can be really difficult, since it can abuse calls without noticing the impact it may
have on the application usability (for example, timeout).

To solve this, the AsyncCallSimulator has been implemented. It adds a random
timeout to every call.

Architecture

[172]

Packt.Libs.Utils
In this library, we include those help classes which either do not match any
particular .NET namespace or for whom it is not worth creating a project. In our
sample, we have included a class to compare date ranges. Two implementations
are offered. The first one is for Silverlight applications and the other one is for
applications and code at server-side.

This functionality is used to check if a room is available or if it is possible to make
a reservation.

Utils library will grow over time, incorporating more help classes.

Packt.Libs.Windows
In this class, we include those controls and classes related to the UI. We have the
following:

•	 ComboRebindable: Silverlight ComboBox poses a problem if the collection to
which it is assigned changes (that is, when choosing a city and changing the
edition list). This class inherits from ComboBox and solves this issue.

•	 ProgressBar: It is the substitute for the BusyIndicator in Silverlight Toolkit.
The reason why we use it is that, at the time of the writing of this book, the
Silverlight Toolkit version does not work properly with Silverlight 5.

•	 IDialogService: It allows us to show notification and confirmation
messages from the ViewModel in a simple way (without coupling). There
is a more advanced solution, which permits us to perform the same
operation with ChildWindows (http://bit.ly/54tFcn).

Summary
Establishing an architecture is a time-consuming task and adds complexity to our
project. In exchange, we get some benefits as follows:

•	 We can give access of the code repository to a graphic designer so that he
can create or modify a window without any knowledge about development

•	 It gives us a possibility for our business logic to be tested via automatic
unit tests

•	 It is easier to make modifications since, for instance, a change in the UI does
not have to affect the business logic

•	 It permits reuse of some functionalities in different parts of the app, or even
in other apps

Chapter 4

[173]

Talking in "ilities" terms, we get improvements in testability, productivity,
maintainability, and readability.

Focusing in Silverlight, we have seen how the MVVM pattern allows us to declare
the presentation logic in a declarative way, and how libraries and frameworks such
as MVVM Light Toolkit and MEF are perfect travelmates.

Additional resources
The area of applications architecture is very exciting, more so if it is backed by a
powerful technology, such as Silverlight. However, it requires a lot of study and
practice time, to assimilate concepts and check the approaches that best fit your
application type and development ring. There is no universal solution. To learn
more, refer to the following links:

•	 Introduction to the MVVM pattern (http://bit.ly/JYJEL): Even though
this article refers to Silverlight 2 and does not include commands, it is a
good starting point to understand certain concepts

•	 Mix10 MVVM (http://bit.ly/h2Qdz5): Session on introduction to
MVVM by Laurent Bugniong

•	 Introduction to MEF (http://bit.ly/9Izl6b): A good article to understand
the basics

•	 GalaSoft - MVVM Light Toolkit (http://bit.ly/TkVcM): Here you can find
these libraries, as well as links to videos and articles

•	 Mix 11 MVVM Deep Dive (http://bit.ly/fVTxcV)
•	 Firestarter – Silverlight RIA Services and MVVM (http://bit.ly/hWleiP):

Interesting introduction to MVVM and RIA Services including a
downloadable simple application

RIA Services Data Access
Most Line of Business (LOB) applications have to interact with a database. The
recommended technology in order to cover this interaction is RIA Services. In this
chapter, we will learn how it works both in basic and more advanced scenarios. Later,
in Chapter 11, Testing, you will learn how to implement security with this technology.

Accessing data
Data displayed or updated by a user is stored in a database. In our case, as we are
oriented towards Microsoft technologies, it is stored in the SQL Server database.

If you are a veteran, you will remember how connections opened in Windows
developments via databases from the application itself, and queries were executed.
This was possible as these applications were in the same local network as our server.

When web technologies and globalization came in, things got more complicated. Our
database server, due to security reasons, is located behind a firewall, so only certain
users/servers can access it. Moreover, our application is executed in environments and
languages which do not allow direct access to data, for instance, a web browser and
JavaScript language. In order to solve this issue, there were two common options:

•	 Legacy web applications used to make a post of the page on the server,
accessing the database (no AJAX calls), at that stage. This was an easy
approach, although it had a limited usability. In order to perform any
operations related to database interaction, the user had to wait for the
page to be fully sent to the server and come back to their browser.

•	 For modern websites, an added option was to build a web services layout
which implemented the most common operations to access data. Our web
application could make asynchronous calls via AJAX, against those web
services and access data. Thanks to all this, the broadband consumption is now
reduced and the user is allowed to work without having to wait for the answer.

D
ow

n
lo

a
d
 f
ro

m
 W

o
w

!
e
B
o
o
k

<
w

w
w

.w
o
w

e
b
o
o
k.

co
m

>

RIA Services Data Access

[176]

This sort of solution poses a few challenges that need to be highlighted:

•	 Validations: It doesn't make sense to perform all validations on the server
side. Hence a few are implemented (namely, figures related to a role, client
side, and so on). What happens if the information gets to the server? The
process has to be repeated, as we cannot trust the information which comes
from the client side (a malicious user could prepare a packet and send it,
pretending it is the application in execution).

•	 Context: Nowadays, UIs are rich. By using a single window, it is possible
to access different data entities, and working with this can get complex.

•	 Configuration: Configuring a service's layout is not trivial at all. In the case
of Microsoft technologies, we have to know about Windows Communication
Foundation (WCF).

•	 Security: How can we be sure about the identity of a user? How can we be
sure about the information channel? We will deal with this in Chapter 11,
Consuming Web Services.

Microsoft is best to solve these kinds of challenges in RIA Services. Let us see how
it works.

RIA Services pieces
Let us begin by defining RIA Services.

Formal definition (http://bit.ly/nmrOA9):

Microsoft WCF RIA Services simplifies the traditional n-tier application pattern by
bringing together the ASP.NET and Silverlight platforms. RIA Services provides
a pattern to write application logic that runs on the mid-tier and controls access to
data for queries, changes and custom operations. It also provides end-to-end support
for common tasks such as data validation, authentication and roles by integrating
with Silverlight components on the client and ASP.NET on the mid-tier.

Now, we will define it more informally, according to our experience. The most usual
case is that we have a database, probably running under SQL Server, and we create
an Entity Framework model. If we limit ourselves to the server, it could be possible
to throw queries from here and everything will be ready. What happens when using
Silverlight? These are executed in a client machine within a sandbox, and are not
able to make those queries. The most common solution is to create a services layer
implementing the most common operations, as mentioned in the previous section.
This requires a lot of effort from us.

Chapter 5

[177]

From the implementation point of view, it will be necessary to define all the CRUD
operations manually and configure our web services layer. Regarding the client-side
implementation, we must take into account that, when generating a proxy against
our services, the entities are obtained. But what happens to validations? Normally,
they have to be manually replicated in the client layer.

It would be great to have a services layer generator capable of doing the following:

•	 Generate a code base, taking the model that has been created as the
original source. This code base should make use of CRUD methods that
could be invoked from the Silverlight application; extract the entities
structure manually, and infer validations based upon the model (for
instance, no nullable fields, required field validations, varchar [XX],
maximum length, and so on).

•	 Let us customize and add new validations in a straightforward and
easy manner.

•	 Automatically copy entities and validations to the client side of the
Silverlight applications, which saves time and effort, as it will not be
necessary to copy these validations manually.

•	 Give the possibility to implement the concept of DataContext in the client
side. This allows us to extract a piece of the database, including its relations,
and manage it only as a Unit for work. This means we can navigate using
different elements, modify those we consider appropriate, and, later, submit
all the changes.

•	 Avoid the complexity of configuring our services layer, generating the most
common case on our behalf.

All this and much more can be obtained with RIA Services.

RIA Services is not only limited to the ADO.NET Entity Framework.
It can also be configured to work with other technologies (for
instance, NHibernate), although it requires additional effort. If
you are interested in knowing more about this topic, you can go to
http://bit.ly/jkdgtu.

RIA Services Data Access

[178]

Let us now define the basic pieces of our jigsaw and, in the next section, we will
implement our first sample. In an analogy with a classic development, note the
following:

•	 Domain Service: It can be placed at the same level as the web service
implemented to show our data layer. RIA Services generate an initial
Domain Service with basic operations that we will expand to fulfill all
our needs.

•	 Entities: Class structure the entities and validations of our model.
These entities are available on both server side and client side.

•	 DomainContext: It is the stateful client-side representation of a
Domain Service. It includes data and relationships and operations
to load/update entities.

Creating a Domain Service and
consuming it from a Silverlight
application
Let us get into practice so as to understand all that we have learnt in the previous
sections. We will create a new project from scratch, based upon the Silverlight
Application template. Why not use a template which is more oriented to RIA
Services, such as Business Application? The goal is to clarify all the necessary
steps to create an RIA Services project.

Let us begin from the Database First approach, using a simple database. The
following image shows a simple database:

Chapter 5

[179]

As a summary, these will be the steps to follow: First, the project will be created.
Second, the Entity Framework model will be added. Later, the Domain Service
will be added, and, to finish, this will be bound to our Silverlight project.

Let us begin by creating the project and adding the Entity Framework model:

1. First, click on Create new project. Then, choose Silverlight application.
Name the project SimpleDB and point out that an associated web project
must be created.

2. Create the Entity Framework model, which will work against the database,
defined previously. Right-click on the web project and select Add New Item.
Choose ADO.NET Entity Model and name it MyModel, as shown in the
following screenshot:

If you don't see the option of creating a ADO.NET Entity
Data Model, download the ADO.NET Entity Framework
in the Package Manager Console using the command
install-package EntityFramework

RIA Services Data Access

[180]

3. Now, a wizard appears and asks us if we can begin from an empty model,
or rather, generate it from an existing database. Choose Generate from
database, as shown in the following screenshot:

Chapter 5

[181]

4. The next page in the wizard allows us to configure the connection to the
databases we choose. Here, the last connections that we have used are
displayed. In our case, we want to create a new connection. Click on New
Connection, as shown in the next screenshot:

RIA Services Data Access

[182]

5. In the modal dialog that appears now, choose the connection to the server, as
well as to the database, as shown in the following screenshot. Once picked,
click Next.

Chapter 5

[183]

6. As for the last step, choose the tables that will be included in the model and
tick the checkbox Pluralize or singularize generated object names, as shown
in the following screenshot. This will make the entities singular and the
entity groups in plural.

RIA Services Data Access

[184]

7. When pressing the button Finish, the model is generated and looks similar
to the following screenshot:

What if we want it to point to a different server?
In the web.config file, the entry defining the connection
to the database can be modified.

The next step is to create the Domain Service. Now that we have the model, let us
expose it through a service for our Silverlight application to consume it.

1. First, build the application.

Chapter 5

[185]

2. Right-click on the web project and select Add New Item. Choose Domain
Service Class and name it MyDomainService, similar to the following
screenshot:

3. A dialog appears where we must indicate from which model the Domain
Service must be generated. If there is no entry in that ComboBox, please
cancel the operation, build the project, and try again. Specify the entries to be
exposed in the Domain Service (both in this case), as well as if we want them
to be editable (that is, in some instances, certain data must not be modified).

RIA Services Data Access

[186]

Add the MyDomainService class as shown in the following screenshot:

4. The two new files (MyDomainService.cs and MyDomainSerice.
metadata.cs) are displayed, as shown in the following screenshot:

	° The first of them, MyDomainService.cs, includes the basic operations
(Select, Insert, Update, and Delete) against the entities generated. It
includes the following lines of code:

Chapter 5

[187]

[EnableClientAccess()]
public class MyDomainService :
 LinqToEntitiesDomainService<SimpleClientEntities>
{
 public IQueryable<client> GetClients()
 {
 return this.ObjectContext.clients;
 }
 public void InsertClient(client client)
 {
 if ((client.EntityState != EntityState.Detached))
 {
(…)

The generated Domain Service has to be understood as a
starting point and expanded to fulfill our needs.

	° The second one, MyDomainService.metadata.cs, contains the
entities, including both the validations inferred from the data model,
and status tracking (tracking changes, insertion, modification, deleted
entity, and so on). It includes the following lines of code:

[MetadataTypeAttribute(typeof(client.clientMetadata))]
public partial class client
{
 internal sealed class clientMetadata
 {
 private clientMetadata()
 {
 }
 public int Age { get; set; }
 public country country { get; set; }
(…)

The service is ready. Now, how do we consume it from our Silverlight application?
Thus the next step will be to bind the service to our Silverlight project. This is also
the easiest part.

5. Right-click on the Silverlight project and choose Properties.

RIA Services Data Access

[188]

6. Go to the Silverlight tab and select the web project containing the Domain
Service in WCF RIA Services Link in the ComboBox. If the combo cannot
be found at first sight, scroll down. Then build it as shown in the following
screenshot:

7. Go to the Solution window and click on the icon that shows all files, as
shown in the following screenshot:

	° See how a file containing the entities and the Domain Context has
been generated in our Silverlight application.

Chapter 5

[189]

Below is an example of the generated entities:

[DataContract(Namespace=
"http://schemas.datacontract.org/2004/07/SimpleDB.Web")]
public sealed partial class client : Entity
{
 (…)
 /// </summary>
 [DataMember()]
 public int Age
 {
 get
 {
 return this._age;
 }
 set
 {
 if ((this._age != value))
 {
 this.OnAgeChanging(value);
 this.RaiseDataMemberChanging("Age");
 this.ValidateProperty("Age", value);
 this._age = value;
 this.RaiseDataMemberChanged("Age");
 this.OnAgeChanged();
 }
 }
 }
(…)

And also an example of the generated context:

public sealed partial class MyDomainContext : DomainContext
{
 (…)
 /// </summary>
 public EntitySet<client> clients
 {
 get
 {
 return base.EntityContainer.GetEntitySet<client>();
 }
 }
 (…)

RIA Services Data Access

[190]

 public EntityQuery<client> GetClientsQuery()
 {
 this.ValidateMethod("GetClientsQuery", null);
 return base.CreateQuery<client>("GetClients", null, false,
 true);
 }
 (…)

How can this code be refreshed? Every time the project is
compiled, these files are refreshed.

The next section will show how to perform basic operations such as Select, Insert,
Update, and Delete on the database.

CRUD
On the sample built in the previous section, let us implement the basic operations
(Read, Create, Update, and Delete). You will also learn how to link the results to
particular elements of the UI, as well as a succinct introduction to error control.

Read
Let us see how to read data. In this case, we will focus on the necessary code to
perform this operation and leave aside things such as linking information to controls.
This sample reads from the database and shows a series of message boxes, one for
every read message.

1. Let us begin by opening the Code-Behind Mainpage.cs file. Add the using
namespace containing our context. When searching in the file SilmpleDB.
Web.g.cs, under the hidden folder Generated_Code, it can be seen that
the space is SimpleDB.Web (In the following section, you will see how to
get this out of the web project). It is also necessary to add an RIA Services
reference, namely, System.ServiceModel.DomainServices.Client using
the following code:
using System.ServiceModel.DomainServices.Client;
using SimpleDB.Web;

Chapter 5

[191]

2. Define a member variable with our Data Context. It will allow us to
perform queries and will contain the data groups obtained as a result
of these operations.
public partial class MainPage : UserControl
{
 MyDomainContext _context;

3. Make a query to obtain a client's list. To do so, we have the GetClients
query defined in the Domain Service. As it is an asynchronous execution,
define a method to be executed when the query is finished.
public MainPage()
{
 InitializeComponent();
 // Let us instantiate the DomainContext
 _context = new MyDomainContext();
 // Let us execute the query to extract the clients
 EntityQuery<client> clientQuery = _context.GetClientsQuery();
 OperationBase operation = _context.Load(clientQuery);
 // Hook to the completed event of that query
 operation.Completed += new EventHandler(operation_Completed);
}

4. In the callback method, the data we needed is already loaded in our context
variable. Iterate according to the client list of the context and display a
message with every client's name.

void operation_Completed(object sender, EventArgs e)
{
 // Now that the operation has been completed
 // We have information of the list of clients available in the
Context
 // Let us iterate and display a MessageBox showing each item
 foreach (var client in _context.clients)
 {
 MessageBox.Show(client.Name);
 }
}

RIA Services Data Access

[192]

Create
To make an insertion, it is only necessary to create a new instance we want and
attach it to the corresponding collection in our context.

The most straightforward way is by using the following code:

public MainPage()
{
 InitializeComponent();
 // Let us instantiate the DomainContext
 _context = new MyDomainContext();
 // Let us create the new client entry
 // and fill it with data
 client myClient = new client();
 myClient.Name = "Mark Temp";
 myClient.IDCountry = 2;
 myClient.Age = 20;
 myClient.PayPalAccount = "test@temp.com";
 // Let us add it to the client's context list
 _context.clients.Add(myClient);
 // Let us submit the changes to the server
 _context.SubmitChanges();
}

Update
In order to update an entity, it must be loaded and then we will make the changes
we intend to and submit them.

To implement it from the first sample, load the clients' list using the following code:

public MainPage()
{
 InitializeComponent();
 // Let us instantiate the DomainContext
 _context = new MyDomainContext();
 // Let us execute the query to extract the clients
 EntityQuery<client> clientQuery = _context.GetClientsQuery();
 OperationBase operation = _context.Load(clientQuery);
 // Hook to the completed event of that query
 operation.Completed += new EventHandler(operation_Completed);
}

Chapter 5

[193]

Once loaded, select the client with ID=5, update its name, and submit the changes.

void operation_Completed(object sender, EventArgs e)
{
 // Let us search for the client in the loaded list
 client myClient = _context.clients.FirstOrDefault((c) => c.ID == 1);
 if (myClient != null)
 {
 // Let us make the desired updates
 myClient.Name = "John Doe Up";
 }
 // Let us submit the changes to the server
 _context.SubmitChanges();
}

Delete
For deleting entities, load the necessary data, delete them from the context, and
submit changes to the server.

First, load the data, as seen in previous sections. Once loaded, delete the entry with
the value ID=4, as done in the following code:

void operation_Completed(object sender, EventArgs e)
{
 // Let us search for the client in the loaded list
 client myClient = _context.clients.FirstOrDefault((c) => c.ID == 4);
 if (myClient != null)
 {
 // Let us remove it from the context list
 _context.clients.Remove(myClient);
 }
 // Let us submit the changes to the server
 _context.SubmitChanges();
}

Error control
In the real world, errors also occur. Two types can be distinguished:

•	 Those which are within our business logic: These can be expected and are
treated as validation errors (these will be dealt with in the next section).

•	 Unexpected errors: These include those cases that have not been controlled
in our business logic, or other kinds of errors, when database servers are
down. These will be dealt in Chapter 8, Security.

RIA Services Data Access

[194]

The first type will be covered in the following section. Let's see how to detect if there
have been errors when making an insertion. In this case, let us check if the field Name
which is to be submitted, has been skipped in our business logic.

public MainPage()
{
 InitializeComponent();
 // Let us instantiate the DomainContext
 _context = new MyDomainContext();
 // Let us create the new client entry
 // and fill it with data
 client myClient = new client();
 // This will cause an error, Name cannot be null
 myClient.Name = string.Empty;
 myClient.IDCountry = 2;
 myClient.Age = 20;
 myClient.PayPalAccount = "test@temp.com";
 // Let us add it to the client's context list
 _context.clients.Add(myClient);
 // Let us submit the changes to the server
 // and check for errors
 _context.SubmitChanges(s =>
 {
 if (s.HasError)
 {
 string strError = string.Format("Failed to Insert: {0}",
 s.Error);
 MessageBox.Show(strError);
 // Mark as handled
 s.MarkErrorAsHandled();
 }
 }, null
);
}

Refer to the following link to find a guide on handling errors:
http://bit.ly/nFZNdV.

Simple data binding
You already know how to perform basic operations against RIA Services. The next
question is how to link that data to our UI controls? The answer is easy—by applying
data binding techniques that have been shown in previous chapters.

Chapter 5

[195]

There is a way to work with RIA Services where the context
is directly exposed in the UI as a DataSource. This approach
won't be covered in this book, since it is not advised as it
generates severe maintainability issues, except for a few
applications or demos.

Now, you will learn to create a clients' list and show details about the current clients.
Let us see how:

•	 First, add a ViewModel file and define two properties, one of them will
contain the clients' list and the second one will contain the selected one.

•	 Choose the first one in the list and display details. This is also bound to the
selected element in the DataGrid, so if we change the selected one in the
DataGrid, it will also change in the detailed view.

To create the example, take the base sample previously defined in this chapter as
a starting point and create a class called MainPageVM, where the clients' list will be
loaded. Expose two properties, the list itself and the currently selected element, as
shown in the following code:

public class MainPageVM : INotifyPropertyChanged
{
 ObservableCollection<client> _clients;
 public ObservableCollection<client> Clients
 {
 get { return _clients; }
 set { _clients = value;
 RaisePropertyChanged("Clients");
 }
 }
 private client _currentSelectedClient;
 public client CurrentSelectedClient
 {
 get { return _currentSelectedClient; }
 set { _currentSelectedClient = value;
 RaisePropertyChanged("CurrentSelectedClient");
 }
 }
}

D
ow

n
lo

a
d
 f
ro

m
 W

o
w

!
e
B
o
o
k

<
w

w
w

.w
o
w

e
b
o
o
k.

co
m

>

RIA Services Data Access

[196]

This sample can be taken as an initial contact. In this
chapter, we will show you how to integrate RIA Services
with MVVM.

Define the context and load the asynchronous data. Once loaded, assign data to the
properties Clients and CurrentSelectedClient using the following code:

MyDomainContext _context;
public MainPageVM()
{
 // Let us instantiate the DomainContext
 _context = new MyDomainContext();
 // Let us execute the query to extract the clients
 EntityQuery<client> clientQuery = _context.GetClientsQuery();
 OperationBase operation = _context.Load(clientQuery);
 // Hook to the completed event of that query
 operation.Completed += new EventHandler(operation_Completed);
}
void operation_Completed(object sender, EventArgs e)
{
 // Let us assign the Clients and CurrentSelectedClient properties
 Clients = new ObservableCollection<client>(_context.clients);
 CurrentSelectedClient = (Clients.Count > 0) ? Clients[0] : null;
}

In the view Code-Behind, MainPage.cs, associate an instance of MainPageVM as
DataContext, as shown in the following code:

public MainPage()
{
 InitializeComponent();
 this.DataContext = new MainPageVM();
}

In the interface, define a DataGrid and a details form.

Chapter 5

[197]

In this form, the ItemSource property of the DataGrid is bound to the Clients
property in our ViewModel. Also, the SelectedItem property is assigned to
CurrentSelectedClient, as shown in the following code:

<sdk:DataGrid
 ItemsSource="{Binding Path=Clients}"
 SelectedItem="{Binding Path=CurrentSelectedClient, Mode=TwoWay}"
 (…)
/>

Make the same with the details fields and the CurrentSelectedClient property,
as shown in the following code:

<TextBox
 Text="{Binding CurrentSelectedClient.Name, Mode=TwoWay}"
 (…)
/>

When we run the application, our DataGrid will show the clients stored in the
database. If the selection is modified, the detailed view is updated with the
selected client.

RIA Services Data Access

[198]

Validation
One of the most important parts of the application is the correct implementation of
validations in our business logic. These can be simple details, such as the fact that the
client must provide their name and e-mail address to sign up, or that before selling a
book, it must be in stock.

In RIA Services, validations can be defined on two levels:

•	 In entities, via DataAnnotations.
•	 In our Domain Service, server or asynchronous validations via Invoke.

DataAnnotations
The space named System.ComponentModel.DataAnnotations implements a series
of attributes allowing us to add validation rules to the properties of our entities.
The following table shows the most outstanding ones:

Validation Attribute Description
DataTypeAttribute Specifies a particular type of data such as date or

an e-mail
EnumDataTypeAttribute Ensures that the value exists in an enumeration
RangeAttribute Designates minimum and maximum constraints
RegularExpressionAttribute Uses a regular expression to determine valid values
RequiredAttribute Specifies that a value must be provided
StringLengthAttribute Designates a maximum and minimum number

of characters
CustomValidationAttribute Uses a custom method for validation

The following code shows us how to add a field as "required":

[Required()]
public string Name
{
 get
 {
 return this._name;
 }
 set
 {
 (…)
 }
}

Chapter 5

[199]

In the UI layer, the control linked to this field (a TextBox, in this case), automatically
detects and displays the error. It can be customized as follows:

These validations are based on the launch of exceptions. They are captured by user controls
and bound to data elements. If there are errors, these are shown in a friendly way. When
executing the application in debug mode with Visual Studio, it is possible to find that IDE
captures exceptions. To avoid this, refer to the following link, where the IDE configuration
is explained: http://bit.ly/riNdmp.

Where can validations be added? The answer is in the metadata definition, entities,
in our Domain Service, within the server project. Going back to our example, the
server project is SimpleDB.Web and the Domain Service is MyDomainService.
medatada.cs. These validations are automatically copied to the entities definition
file and the context found on the client side.

In the Simple.DB.Web.g.cs file, when the hidden folder Generated Code is opened,
you will be surprised to find that some validations are already implemented. For
example, the required field, field length, and so on. These are inferred from the
Entity Framework model.

Simple validations
For validations that are already generated, let's see a simple example on how to
implement those of the "required" field and "maximum length":

[Required()]
[StringLength(60)]
public string Name
{
 get
 {
 return this._name;
 }
 set
 {
 (…)
 }
}

RIA Services Data Access

[200]

Now, we will implement the syntactic validation for credit cards (format dddd-
dddd-dddd-dddd). To do so, use the regular expression validator and add the server
file MyDomainService.metadata.cs, as shown in the following code:

[RegularExpression(@"\d{4}-\d{4}-\d{4}-\d{4}",
ErrorMessage="Credit card not valid format should be: 9999-9999-9999-
9999")]
public string CreditCard { get; set; }

To know how regular expressions work, refer to the following
link: http://bit.ly/115Td0 and refer to this free tool to try
them in a quick way: http://bit.ly/1ZcGFC.

Custom and shared validations
Basic validations are acceptable for 70 percent of validation scenarios, but there are
still 30 percent of validations which do not fit in these patterns. What do you do
then? RIA Services offers CustomValidatorAttribute. It permits the creation of a
method which makes a validation defined by the developer. The benefits are listed
below:

•	 Its code: The necessary logic can be implemented to make validations.
•	 It can be oriented for validations to be viable in other modules (for instance,

the validation of an IBAN [International Bank Account]).
•	 It can be chosen if a validation is executed on only the server side (for

example, a validation requiring data base readings) or if it is also copied
to the client.

To validate the checksum of the CreditCard field, follow these steps:

1. Add to the SimpleDB.Web project, the class named
ClientCustomValidation. Within this class, define a static model,
ValidationResult, which accepts the value of the field to evaluate as a
parameter and returns the validation result.
public class ClientCustomValidation
{
 public static ValidationResult ValidMasterCard(string
 strcardNumber)
}

Chapter 5

[201]

2. Implement the summarized validation method (the part related to the result
call back is returned).
public static ValidationResult ValidMasterCard(string
 strcardNumber)
{
 // Let us remove the "-" separator
 string cardNumber = strcardNumber.Replace("-", "");
 // We need to keep track of the entity fields that are
 // affected, so the UI controls that have this property
 // bound can display the error message when applies
 List<string> AffectedMembers = new List<string>();
 AffectedMembers.Add("CreditCard");
 (…)
 // Validation succeeded returns success
 // Validation failed provides error message and indicates
 // the entity fields that are affected
 return (sum % 10 == 0) ? ValidationResult.Success :
 new ValidationResult("Failed to validate", AffectedMembers);
}

To make validation simpler, only the MasterCard has been
covered. To know more and cover more card types, refer to the
page http://bit.ly/aYx39u. In order to find examples of
valid numbers, go to http://bit.ly/gZpBj.

3. Go to the file MyDomainService.metadata.cs and, in the Client entity,
add the following to the CreditCard field:
[CustomValidation(typeof(ClientCustomValidation),
"ValidMasterCard")]
public string CreditCard { get; set; }

RIA Services Data Access

[202]

If it is executed now and you try to enter an invalid field in the CreditCard field,
it won't be marked as an error. What happens? Validation is only executed on the
server side. If it is intended to be executed on the client side as well, rename the
file called ClientCustomValidation.cs to ClientCustomValidation.shared.
cs. In this way, the validation will be copied to the Generated_code folder and
the validation will be launched.

In the code generated on the client side, the entity validation is associated.

/// <summary>
/// Gets or sets the 'CreditCard' value.
/// </summary>
[CustomValidation(typeof(ClientCustomValidation), "ValidMasterCard")]
[DataMember()]
[RegularExpression("\\d{4}-\\d{4}-\\d{4}-\\d{4}", ErrorMessage="Credit
card not valid format should be: 9999-9999-9999-9999")]
[StringLength(30)]
public string CreditCard
{

Chapter 5

[203]

This is quite interesting. However, what happens if more than one field has to be
checked in the validation? In this case, one more parameter is added to the validation
method. It is ValidationContext, and through this parameter, the instance of the
entity we are dealing with can be accessed.

public static ValidationResult ValidMasterCard(string strcardNumber,
 ValidationContext validationContext)
{
 client currentClient = (client)validationContext.ObjectInstance;

Entity-level validations
Fields validation is quite interesting, but sometimes, rules have to be applied in
a higher level, that is, entity level. RIA Services implements some machinery to
perform this kind of validation. Only a custom validation has to be defined in the
appropriate entity class declaration.

Following the sample we're working upon, let us implement one validation which
checks that at least one of the two payment methods (PayPal or credit card) is
informed. To do so, go to the ClientCustomValidation.shared.cs (SimpleDB web
project) and add the following static function to the ClientCustomValidation class:

public static ValidationResult ValidatePaymentInformed(client
CurrentClient)
{
 bool atLeastOnePaymentInformed = ((CurrentClient.PayPalAccount !=
 null
 && CurrentClient.PayPalAccount != string.Empty) ||
 (CurrentClient.CreditCard != null && CurrentClient.CreditCard !=
 string.Empty));
 return (atLeastOnePaymentInformed) ?
 ValidationResult.Success : new ValidationResult("One payment method
 must be informed at least");
}

Next, open the MyDomainService.metadata file and add, in the class level, the
following annotation to enable that validation:

[CustomValidation(typeof(ClientCustomValidation),
 ValidatePaymentInformed")]
[MetadataTypeAttribute(typeof(client.clientMetadata))]
public partial class client

RIA Services Data Access

[204]

When executing and trying the application, it will be realized that the validation
is not performed. This is due to the fact that, unlike validations in the field level,
the entity validations are only launched client-side when calling EndEdit or
TryValidateObject. The logic is to first check if the fields are well informed and
then make the appropriate validations.

In this case, a button will be added, making the validation and forcing it to entity level.

To know more about validation on entities, go to
http://bit.ly/qTr9hz.

Define the command launching the validation on the current entity in the ViewModel
as the following code:

private RelayCommand _validateCommand;
public RelayCommand ValidateCommand
{
 get
 {
 if (_validateCommand == null)
 {
 _validateCommand = new RelayCommand(() =>
 {
 // Let us clear the current validation list
 CurrentSelectedClient.ValidationErrors.Clear();
 var validationResults = new List<ValidationResult>();
 ValidationContext vcontext = new
 ValidationContext(CurrentSelectedClient, null, null);
 // Let us run the validation
 Validator.TryValidateObject(CurrentSelectedClient, vcontext,
 validationResults);
 // Add the errors to the entities validation error
 // list
 foreach (var res in validationResults)
 {
 CurrentSelectedClient.ValidationErrors.Add(res);
 }
 },(() => (CurrentSelectedClient != null)));
 }
 return _validateCommand;
 }
}

Chapter 5

[205]

Define the button in the window and bind it to the command:

<Button
 Content="Validate"
 Command="{Binding Path=ValidateCommand}"
/>

While executing, it will be appreciated that the fields be blank, even if we click the
button. Nonetheless, when adding a breaking point, the validation is shown. What
happens is, there is a missing element showing the result of that validation. In this
case, the choice will be to add a header whose DataContext points to the current
entity. If entity validations fail, they will be shown in this element.

For more information on how to show errors, check the link
http://bit.ly/ad0JyD

The TextBox added will show the entity validation errors. The final result will look
as shown in the following screenshot:

Domain Services validations
All validations made so far could be replicated on the client side. However, there are
scenarios where validation must only be executed on the server side, either because
it needs to access local resources, such as a database lookup, or because intermediate
data used for validations cannot be exposed on the client side due to security reasons.

Let us see how to execute validations on the server side only and how to perform,
from our Silverlight application, calls to asynchronous validations.

Server validations
In order to implement a server-side validation, we have the option to define a custom
validation (as previously seen) without modifying the name of the file from .cs to
.shared.cs. In this way, the validation won't be copied to the client side and will
only be executed on the server side. This approach is not wrong, but sometimes it is
advisable to be more explicit, that is, before making an insertion or an update, it may
be adequate to execute some validations.

RIA Services Data Access

[206]

RIA Services allows us to launch validation exceptions from an operation in
our Domain Service. To see how this works, add the following validation to the
UpdateClients method to check whether the credit card number is not used by
another user.

The following are the steps:

1. Define a server-side function to check if the card number is doubled as the
following code:
public bool CreditCardNumberAlreadyExists(client currentclient)
{
 List<client> cliensWithSameCreditCard = null;
 if (currentclient.CreditCard != null && currentclient.CreditCard
 != string.Empty)
 {
 cliensWithSameCreditCard = (from c in
 this.ObjectContext.clients where c.CreditCard ==
 currentclient.CreditCard && c.ID != currentclient.ID select
 c).ToList<client>();
 }
 return (cliensWithSameCreditCard != null &&
 cliensWithSameCreditCard.Count > 0);
}

2. Update the update server-side method. To do so, it is necessary to read
the database, check it and, if there is a clash, launch an exception using the
following code:
public void UpdateClient(client currentclient)
{
 // Is there a collision? Throw the exception
 if (CreditCardNumberAlreadyExists(currentclient))
 {
 // Let us mark the field affected (it will show up the
 // error on the UI binded element)
 ValidationResult error = new ValidationResult("Credit card
 already exists for another account", new string[] {
 "CreditCard" });
 throw new ValidationException(error, null, currentclient);
 }
 // if no error just perform the update
 this.ObjectContext.clients.AttachAsModified(currentclient,
 this.ChangeSet.GetOriginal(currentclient));
}

Chapter 5

[207]

3. Control the client-side error, when the call is made to SubmitChanges.
Moreover, it will show an error message if the error occurs (in Chapter 8,
Security, we shall see how to deal with errors in detail).

_context.SubmitChanges(s =>
{
 if (s.HasError)
 {
 foreach (var validationError in
 CurrentSelectedClient.ValidationErrors)
 {
 MessageBox.Show(validationError.ErrorMessage);
 }
 s.MarkErrorAsHandled();
 }
}
, null);

To keep the sample as easy as possible, the message is being
shown from the ViewModel. If automatic Unit Testing is going
to be added later, or if the ViewModel is reused in a WP7
application, you should use one of the mechanisms described
in the previous chapter (IDialogService or Messenger) and
decouple the UI from the ViewModel.

Asynchronous validations
Server validation, defined in the previous section, is very interesting. Nevertheless,
wouldn't it be interesting to make the validation without submitting changes? Yes, it
would. The method previously defined, CreditCardNumberAlreadyExists, can be
reused and invoked in an asynchronous way.

In this case, add to the validation command, the invoke to the validation itself. When
you get the result, check it and, if an error occurs, it is included in the notification to
be displayed in the UI.

// Let us perform as well the server invoke (credit card
// validation)
InvokeOperation<bool> inv;
// we will use this to get the result of the operation
inv = _context.CreditCardNumberAlreadyExists(CurrentSelectedClient);
_context.CreditCardNumberAlreadyExists(CurrentSelectedClient).
Completed
 += ((s, e) =>

RIA Services Data Access

[208]

{
 if (inv.Value == true)
 {
 ValidationResult creditcardExists =
 new ValidationResult(
 "Credit Card already registered",
 new string[] { "CreditCard" });
 CurrentSelectedClient.ValidationErrors.Add(creditcardExists);
 }
}
);

Advanced topics
Now that we have covered the basics, let's check some advanced topics that we
will come across in live project developments.

Cancelling changes
When working with RIA Services, something of a data island is brought client side.
We can work with it and, once we are ready, send it to the server. What happens
if we want to cancel changes and start again? For instance, a user is modifying a
client file and realizes that they are working on the wrong client, so they want to
cancel the changes made. The entities with which we are working implement the
IRrevertibleChangeTracking. This interface defines a method named Reject,
which restores the affected entity and the associated ones (if applicable) to the
original value.

In this case, if changes are to be cancelled, it will only be necessary to implement
the following code lines (to see it working, press the button Cancel Changes in
the sample application):

// Let us clear the current validation list
CurrentSelectedClient.ValidationErrors.Clear();
// Let us cast the entity IRevertibleChange
IRevertibleChangeTracking revertible = CurrentSelectedClient as
 IRevertibleChangeTracking;
// Reject Changes
revertible.RejectChanges();

Chapter 5

[209]

The entity also implements a method called GetOriginal.
Why shouldn't it be used? Because it returns a disconnected
entity. If the entity had data associated from other entities,
they will not be reflected (see association later).

Transactions
Also, it may happen that one of the entities returned an error when trying to save
it. In this case, WCF RIA Services calls the function SaveChanges, which internally
wraps all those changes (Unit of work) in a transaction. That is, if any of them fail,
none of them will be saved.

What if we want to configure the transaction in detail? What if we are not using the
ADO.NET Entity Framework? We can override the Submit method and configure
the transaction at our convenience (see http://bit.ly/nTv5yb). For more
information in this area, refer to the link http://bit.ly/6G0xp4.

Another interesting topic is to add audit and save a changes
log. For more information, check the link.

Domain Service and partial classes
At the beginning of this chapter, we pointed out that Visual Studio wizards generate
a Domain Service class, which was to be taken as a starting point and customized
according to our needs.

What happens if changes are entered in the ADO.NET Entity Framework model?
For instance, when adding a new table or changing a field type, is it necessary to
regenerate the Domain Service and manually enter customizations again? No, it is
not. Partial classes can be used to implement our customized methods. Therefore,
we can refresh our Domain Service without the fear of losing all our changes made.
Let us now see, step by step, how to add a partial class to the sample.

1. Go to the server project, Packt.Booking.Server.Web, open the
MyDomainService.cs file and add Partial to the class definition.
public partial class MyDomainService : LinqToEntitiesDomainService
<SimpleClientEntities>

2. Add a new class called MyDomainServicep (Add | New Class).

RIA Services Data Access

[210]

3. Change the header defining that class by the same one placed previously to
create an extension of it:
public partial class MyDomainService : LinqToEntitiesDomainService
<SimpleClientEntities>

4. Add the using namespace as the following code:
using System.ServiceModel.DomainServices.EntityFramework;
using System.ComponentModel.DataAnnotations;

5. Now, open the MyDomainService.cs file and cut the customized methods to
paste them in the new file, MyDomainServiceP.cs:

public partial class MyDomainService : LinqToEntitiesDomainService
<SimpleClientEntities>
{
 public bool CreditCardNumberAlreadyExists(client currentclient)
 {
 (…)

What about the entities file? If changes are not many, it is
worthwhile to enter changes manually so as to avoid losing the
information we have manually entered (that is, validations).

Include
When having a look at the entities that have been created so far, it is seen that they
have links to other related entities. For instance, in the client entity, apart from
the country number identifier, we can find a property of the country type. If a
breaking point is added when loading these data, the property will be null. What
is happening then? By default, the queries generated by RIA Services do not include
those bound entities. The bad use of this technique could make our application
consume too much bandwidth, as well as resources. What to do then? In the cases
where it is justified (for instance, when loading the entity of the associated country
or a master-detail association), these entities can be added to our queries.

What if queries return a lot of registers? Associating more entities means
more load. The ideal thing to do here is to use pagination (bear in mind
that a few users are capable of processing more than 100 registers at one
time). To see pagination solutions, check these two links, http://bit.
ly/90ZNtA and http://bit.ly/87REa4 (server paging).

Chapter 5

[211]

Let us see how to include the country entity when loading every client record:

1. First, edit the Domain Service in the server project and include the entity in
the query, bringing the clients as the following code:
public IQueryable<client> GetClients()
{
 return this.ObjectContext.clients.Include("country");
}

2. Still in the server project, open the file containing the entities,
MyDomainService.metadata.cs and search for the client entity. In the
nested class, the country property will be found. Add the annotation
include to it using the following code:
public partial class client
{
 internal sealed class clientMetadata
 {
 (…)
[Include]
public country country { get; set; }

3. Doing so, the country entity of each client will be brought when loading. In
the sample, the DataGrid can be modified to add the column indicating the
Name field.
<sdk:DataGrid.Columns>
<sdk:DataGridTextColumn
 Binding="{Binding Path=country.Name, Mode=OneWay}"/>

Composition
RIA Services also knows a special type of association. In a hierarchy of entities, one
entity is referred to as the parent entity and the other related entities are referred to
as descendant entities. The child entities cannot exist without the master entity and
usually these entities are always displayed or modified together. A typical example
is a shop system where we have one entity for each order. This entity also has a list of
items; each one has a reference to a product and a quantity. In our sample application,
we decided to make a composition between a floor and the rooms of this floor.

RIA Services Data Access

[212]

Most of the readers probably know compositions from UML class diagrams as the
following figure:

Floor Room

1 *

These data classes typically have the following characteristics:

•	 The relationship between the entities can be represented as a tree with the
descendant entities connected to a single parent entity. The descendant
entities can extend for any number of levels. This means that we can also
decide to configure a composition between a building and the relating floors.
This can be a suitable approach in case that, for instance, if we develop a
graphic designer, where all the information is needed to render a map of a
given building.

•	 The lifetime of a descendant entity is contained within the lifetime of the
parent entity. This means if you delete the floor, all rooms will be deleted
as well.

•	 The descendant entity does not have a meaningful identity outside of the
context of the parent entity.

•	 Data operations on the entities require the entities to be treated as a single
unit. For example, adding, deleting, or updating a record in the descendant
entity requires a corresponding change in the parent entity.

Let us move from theory to practical work. Defining a composition with RIA Services
is very simple, Just apply the CompositionAttribute attribute to the property that
defines the association in the metadata of the entity, as in the following code:

[MetadataTypeAttribute(typeof(Floor.FloorMetadata))]
public partial class Floor
{
internal sealed class FloorMetadata
 {
 [Include]
 [Composition]
 public EntityCollection<Room> Rooms { get; set; }
 }
}

Chapter 5

[213]

When applying the CompositionAttribute attribute to a property, the data
from the descendant entity is not automatically retrieved with the parent entity.
To include the descendent entity in the query results, you must apply the
IncludeAttribute attribute, as previously described.

Compositions in RIA Services gain the following behaviors:

•	 Hierarchical change tracking: When a child entity is modified, the parent also
transitions to the Modified state. When a parent is in the Modified state, all of
its children are included in the change-set that is sent to the server, including
any unmodified children. Therefore, our update method must be modified,
which will be seen later.

•	 Public entity sets for child Types are not generated on the code-generated
DomainContext. Children are only accessible via their parent relationship.

Effectively, this means that you do not have to manage your child entities manually.
Just create a new room, add this room to the floor where it belongs and call the
SaveChanges method of the DomainContext. The client will send all entities, including
the child entities, to the server, which updates them in the correct order, for example,
first updating the master entity and next an insertion for the child entities.

In addition to this code, our update method must also be changed for the Floor. The
problem is that the Entity Framework makes a so called deep-attach, which means
that it also adds all child entities of this composition to the DataContext object. If
more than one room is added at one Unit of Work to your client context, the system
will send all the entities to the server, but two of them have the same primary key.

Therefore, if you do not change the update method, an exception will be thrown with
the following message: InValidOperationException was unhandled by user code:
An entity with the same identity already exists in this EntitySet.

public void UpdateFloor(Floor currentFloor)
{
 currentFloor.Rooms.Clear();
 if (currentFloor.EntityState == EntityState.Detached)
 {
 Floor original = ChangeSet.GetOriginal(currentFloor);
 if (original != null)
 {
 ObjectContext.Floors.AttachAsModified(currentFloor,
 original);
 }
 else

RIA Services Data Access

[214]

 {
 ObjectContext.Floors.Attach(currentFloor);
 }
 }
 foreach (Room change in ChangeSet.
 GetAssociatedChanges(currentFloor, p => p.Rooms))
 {
 ChangeOperation changeOperation =
 ChangeSet.GetChangeOperation(change);
 switch (changeOperation)
 {
 case ChangeOperation.Insert:
 if (change.EntityState == EntityState.Added) break;
 if (change.EntityState != EntityState.Detached)
 {
 ObjectContext.ObjectStateManager.
 ChangeObjectState(change, EntityState.Added);
 }
 else
 {
 ObjectContext.Rooms.AddObject(change);
 }
 break;
 case ChangeOperation.Update:
 ObjectContext.Rooms.AttachAsModified(change,
 ChangeSet.GetOriginal(change));
 break;
 case ChangeOperation.Delete:
 if (change.EntityState == EntityState.Detached)
 {
 ObjectContext.Rooms.AttachAsModified(change);
 }
 ObjectContext.DeleteObject(change);
 break;
 }
 }
}

The code is not as complicated as it probably seems. The following steps must
be followed:

1. Remove all child entities from the collection. Do not worry, the changes
do not get lost, because the Entity Framework tracks all changes and they
will be taken care of later.

Chapter 5

[215]

2. If the parent entity is detached, attach it. It is important to check if the
original entity is not null. If any property has not been changed directly,
but only added, removed, or changed some of its child entities, the original
entity will be null and the method AttachAsModified fails.

3. Get all changed child entities from the change tracker and handle them,
depending on their change operation.

You probably recognized that this code snippet will look the same for all
compositions you may have in your application and that it is not a good idea to
just copy and paste it.

It is good practice to follow the DRY principle (Don't Repeat
Yourself), and then provide a generic solution in the demo
application, which can be found in the UpdateFloor method
of the BookingDomainService.

More information about composition in general can be found
at the MSDN website: http://msdn.microsoft.com/
en-us/library/ee707346%28v=VS.91%29.aspx. Some
information about why a custom update method is required
can be found at http://blogs.msdn.com/b/digital_
ruminations/archive/2009/11/18/composition-
support-in-ria-services.aspx.

Solving the many-to-many relationship issue
A limitation of RIA Services is that it does not support many-to-many relationships
(for more information, refer to http://bit.ly/p8O8IE). What workarounds are
available?

•	 The easiest one consists of adding a dummy field to our table and regenerating
the model. The linked table will be shown correctly. Once the update has
been made, the additional column can be deleted.

•	 Another option, although a little more complicated, consists of adding the
entity to the model yourself, mapping it to the linking table, and then adding
the foreign key relationships to the other two tables.

•	 As a third option, there is a Codeplex project, solving the problem of
many-to-many in RIA Services (http://bit.ly/g2WrUJ).

RIA Services Data Access

[216]

RIA Services and MVVM
RIA Services is a great technology, but how does it fit into the MVVM pattern? Can
we easily encapsulate it in a Model? How can we isolate RIA Services in the model
definition in order to allow developers to implement automated unit testing?

Encapsulating RIA Services in a model
When RIA Services came into the market, its pros were highlighted as a RAD (Rapid
Application Development) technology. It was praised so much that most members of
the community have the wrong perception that it cannot be used with applications
building an architecture (that is, based on the MVVM pattern).

On the contrary, RIA Services can be encapsulated in a model by using one of the
following approaches:

•	 Database first: get advantage of the entities extracted from the database and
use them as the transport layer.

•	 Use objects POCO and T4 templates to generate the code. This means hard
work (http://bit.ly/eFwcJ2).

•	 Use CodeFirst and POCO objects (at the time of printing, the RTM version of
the RIA Services SP2 was not available yet).

Another wrong perception is that RIA Services only works with
ADO.NET Entity Framework. In fact, it can be combined with
NHibernate and other technologies, although it means more
work on our behalf (http://bit.ly/c7zvxN).

Which approach should be taken to implement our model layer?

Define the operations in a contract (interface). The contract will only expose the
entities we are dealing with (nothing about context or RIA Services particularities).

Implement a model which inherits from this contract, so that:

•	 We will work internally with RIA Services and instantiate a context to
work with.

•	 For it to be consumed by one or several ViewModels, we will only deal with
the contract previously defined (make sure the RIA Services part is present).

Chapter 5

[217]

•	 The model which will be created, unlike other models, will have a status. That
is to say, it will bear the record of the elements that have been modified or
inserted, for instance. It will track the 'island' of objects or, as in Unit of Work
say, anything we have brought from the server. As it has a status, it must be
decided how to instantiate it. A singleton for the whole application? A model
instance for every ViewModel? In the following section, this issue will be dealt
in depth and we will provide a solution based on the Factory pattern.

As in the previous chapter, a contract and a model were defined. In this one, we will
see how, except for refactoring and using RIA Services entities, we will be able to
use it almost entirely and replace the Model Mock implementation with the real one
based on RIA Services.

Two interesting entries about it can be found on the Internet, by Shawn
Wildermuth—RIA Services and MVVM (http://bit.ly/bhoap2), and by John
Papa—MVVM why and how (http://bit.ly/hWleiP).

Context lifetime discussion and model factory
The RIA Services context is inspired by the Entity Framework and other O/R
Mapping Tools. Most of them implement the Unit of Work pattern, which
is described by Martin Fowler under his site, http://martinfowler.com/
eaaCatalog/unitOfWork.html.

Martin Fowler, a well-known author and software architect,
published a list of patterns for Enterprise Applications on his side
as a short summary of his book Patterns of Enterprise Application
Architecture http://bit.ly/2gSwXH

This is how it works:

1. A Unit of Work is started, typically the first time when data is retrieved or
queried from the database. The entities itself will be stored in the session
object and the changes are tracked by framework. In RIA Services, you start it
by instantiating a new context object.

2. The user manipulates the data and the entities will be added or removed
from this context and single properties or even complex relationships are
updated and changed. Often, there is also an in-memory caching system to
ensure that only one entity exists for one record of the database.

3. The job is done and when it's time to commit, the framework decides what to
do. It can open a new transaction, handle concurrency, and write all changes
to the database. In RIA, a commit is done by the SaveChanges method.

RIA Services Data Access

[218]

This pattern is great and provides a lot of advantages. For example, by writing
changes to the database at one point of the time, the system is able to make
optimizations, for example, when a lot of entities are added to the session object, it is
more efficient to make a bulk insert than a lot of single insert operations. The change
tracking system also allows to only update the changed fields, instead of sending the
whole entity to the database.

Furthermore, we are free to define what a Unit of Work, in our context, is. For a
normal web application, it is very easy. Typically, you define that one request is a
Unit of Work. In a desktop or RIA application, it is more complicated and we have
multiple options. For the sake of simplicity, we decided to use one domain context in
our sample application only and to avoid losing the changes that have to be asked to
the user. Whenever we start editing another context, the changes are lost when they
do not save it.

But this is not the best approach, especially when we have some background
progresses (the Domain Context is not thread-safe) and also for scenarios where the
user should be able to modify multiple entities in parallel, for example, when they
edit their notes or other documents.

Because Managed Extensibility Framework (MEF) is being used, there is the option
to configure our model implementation without using shared instances, which
means that each view model gets its own model object. Because this means that the
smallest Unit of Work is equal to the lifetime of a view model, a better approach is
necessary. Therefore, a model factory that has a method to create a new model must
be defined as the following code:

public interface IModelFactory
{
 IModel CreateModel();
}

This factory is injected as a shared instance to each view model, and whenever they
want to start a Unit of Work, they can use the factory to create a new model object.

In our test scenario, person entities must be edited. The main requirement is that
each person can be edited and saved without affecting the other items in our list.

Therefore, implement the following approach:

1. Use a main model to load all person objects from the RIA service.

Chapter 5

[219]

2. Whenever a person is changed, create a new object for this person only to
start a new Unit of Work. Now we must detach this person from its old
model and attach it to the new model, but because of the fact that the changes
are lost if we do so, we have to get a copy of the person from the new model
and copy the changes from the old person to the new person.

3. Replace the old person in the list with the new person object. When it is
changed we do not have to do anything because there is already a separate
model for this person.

4. If the user wants to save the person, the SaveChanges method of our model
can be used to finish the Unit of Work. This domain context can still be
reused in case the person is edited again.

We provide a full example for a very simple scenario, which can be extended
following the same approach for more advanced applications.

LOB application case study: applying
what we have learned
In this chapter, the Model Mock implementation has been replaced by the real one
(based on RIA Services). As the entities have not been generated from RIA Services,
some tweaks have to be performed on the contracts so that they return the entities
defined by RIA Services. The application is also to be implemented and, when
completed, refactored a little bit.

•	 First, all the operations to be performed in the model were defined.
•	 Second, the logic of all the windows in the application was implemented.
•	 To use the Unit of Work concept, the model factory was created. This will

allow a new model instance, without having to share context.

Let us explore the changes that have been introduced by navigating the project
structure.

Server
In the simple sample that has been implemented in this chapter, the Entity
Framework model and Domain Services were generated directly in the web project.
When talking about modularity or encapsulation, this does not make much sense.
For our real application, we have created a project of the type library called Packt.
Booking.Server.Data. The model and the Domain Services have been defined in it.

RIA Services Data Access

[220]

How to bind the project to our web project?

•	 Add the Packt.Booking.Server.Data reference to our web project
(Add Reference).

•	 The server.Data project contains an app.config file with a series of
configuration entries. These must be copied to the web.config file. In the
source code of the application, they are marked with the literal, server.
data.configuration.

The process requires a little patience. An error in an entry will cause the project not
to be bound correctly. How can we check if everything is OK? The server.data
project must be already built and bound to the Silverlight application. We would
have to check if the code is generated including the entities (a sample project can
also be created; this will be seen in the following section).

Apart from the project structure, some interesting points can be found, regarding
implementation of the Domain Services.

•	 Use of a partial class to implement the methods we have customized such
as DomainServiceP.cs.
public partial class BookingDomainService :

LinqToEntitiesDomainService<BookingsEntities>

•	 Methods not returning entities such as Invoke.
•	 Use of Include in the Booking entity, for instance:

	° DomainServiceP.cs

public IQueryable<Building> GetBuildingsPlusLocation()
{
return this.ObjectContext.Buildings.Include("Location");
}

	° BookingDomainService.metadata.cs

internal sealed class BuildingMetadata
{
 (…)
[Include]
public Location Location { get; set; }

•	 Use of composition to define the relation between Floors and Rooms
(master/detail), in the BookingDomainService.metadata.cs file.

[Composition]
public EntityCollection<Room> Rooms { get; set; }

Chapter 5

[221]

Test
Two kinds of project will be distinguished in this folder:

•	 TestRunner: It will be used to manually test different modules. In this case, it
contains a test application to check whether the link to RIA Services is correct
or not (it loads a list of database rooms in a grid).

•	 UnitTest: In this folder, our Unit Test projects are added. This will be dealt
with in Chapter 7, Out of Browser Applications. If we had followed TDD, first,
the interfaces would have been defined, followed by the tests, and finally
the implementation.

Model
Two kinds of projects can be found in the model folder:

•	 Contracts: Apart from updates in the model contract, to cover all the
functionality of the application, we have implemented a new IModelFactory
contract, which will allow us to instantiate a new model every time we need
it. Why is this useful? Because it allows us to create a new Unit of Work when
necessary, avoiding conflicts when submitting and sharing a context (more
information can be found in the Context lifetime discussion and model factory
section in this chapter).

•	 Real: This is the implementation of the model based on RIA Services. As seen
in the Encapsulating RIA Services in a model section, it is an implementation of
the model with a status.

Modules
Regarding modules, apart from the implementation of the logic of all windows,
we must remark that now, when initializing the ViewModel, instead of importing
an IModel from the constructor, an IModelFactory is imported. Therefore, the
initialization looks as follows:

[ImportingConstructor]
public MyBookingsVM(IModelFactory ModelFactory)
{
_model = ModelFactory.CreateModel();

In this way, the ModelFactory instance can be stored in a member variable and a
new one can be created when needed. Let us see the advantages it brings. Imagine
that the user is allowed to insert a new room from the page MyBookings and the
following happens:

•	 The user is updating a new booking.
•	 The user realizes there is a missing room in the system. Next to the combo,

there is a + button, which allows us to add a new room without switching
windows.

•	 The user clicks on Save and all the data will be sent, as well as the booking in
progress. This one, at this point, can contain wrong data. Consequently, two
Units of Work are needed to perform this operation.

If IModelFactory is used, the scenario will be the following:

•	 The user is updating a new booking.
•	 The user realizes there is a missing room in the system. Next to the combo,

there is a + button, which allows us to add a new room without switching
windows.

•	 A new Unit of Work is created. With the Factory model, we create a new
instance of the model and a new data context will be obtained internally.

•	 The user clicks on Save and now, as they are working with a different
context, only the new room data is submitted.

•	 Once it has been satisfactorily saved, there are two options:

	° First, in the new context, detach the new entity Room and attach it to
the older one. In this way, we will have it in our entity Room (beware
of the fact that Attach does not bring the entity status).

	° Refresh the list of rooms in the old context.

Summary
At last, we got to the chapter devoted to data access. Here we have covered the
technology that is recommended to build this access in Silverlight. Besides, we have
seen how to integrate it in the MVVM architecture pattern. Are we now ready to
develop a full application? There are still some important topics, such as security and
automatic Unit Testing. Anyhow, we encourage you to begin codifying and playing
with the technology. Go for it!

Chapter 5

[223]

Additional resources
For more information on RIA Services, check the following readings:

•	 Silverlight Show introduction to RIA Services at http://bit.ly/9oPae3.
•	 Nikhil Kothari—RIA Services and Validation at http://bit.ly/9IngnA.
•	 Jeff Handley—RIA Services Validations at http://bit.ly/aqpJNx

Out of Browser
(OOB) Applications

LOB (Line of Business) applications executing within a web browser are fine, but
if we think from the perspective of a final user, it is not the option that they would
choose first. This is due to the fact that:

•	 Having a desktop application is easy. It can be directly accessed by
double-clicking so that it is launched quickly.

•	 Most of the time, it is necessary to leave Silverlight sandbox application.
This happens, for example, when we need to access the filesystem, or with
a special hardware via COM (such as an ATM).

•	 It is also crucial that, when executing an application, it allows us to
work offline.

Similarly, from the point of view of the user, there are certain restrictions which
are normally not well accepted, even though they are 100 percent desktop (namely
WPF). It would be great to have the possibility of eliminating them:

•	 Installing a desktop application can carry problems, depending on the
OS and installation details. It would be fantastic if they could run under a
standard, which is independent from those details.

•	 In order to update a version already installed, it must be uninstalled and
installed again. Wouldn't it be preferable that the application itself detected
if there is a new version and updated automatically (even though this
process is not dramatic)?

•	 Usually, desktop applications only work on a particular OS (that is, Windows).
We would love to execute it in different platforms (for example, Mac).

Out of Browser (OOB) Applications

[226]

•	 A desktop application normally has quite relaxed permissions. Hence,
we dream of an application having restricted access to the hardware and
software of our machine. It would only have permissions if allowed.

•	 A desktop application needs a given version of the .NET Framework
installed on the machine.

In this chapter, you will learn how to install and execute our applications as Out of
Browser (OOB), work with elevated permissions in and out of the browser, support
cross domain calls, and work with the WebBrowser control.

Out of Browser (OOB)
Out of Browser (OOB) applications are executed out of the web browser, or that is
the impression they give.

Regarding the final user, an OOB application is similar to a desktop application;
the user installs it, gets a direct access icon to it, and when executed, it runs under a
standard window, as shown in the following screenshot. It can even be uninstalled
through the Control Panel.

Chapter 6

[227]

From the point of view of the Software Developer, an OOB application still runs
under a hidden browser, that is, it is a Silverlight application with the same features
as an application running under a browser.

Until the arrival of Silverlight 5, the main difference with an application executing
in the browser was the fact that it could work with trusted permissions and perform
operations, which the sandbox normally does not allow (accessing the filesystem,
executing commands via COM+, and so on).

Executing an application in OOB mode
Allowing a Silverlight application to be executed as an OOB is very easy. We just
need to tick a checkbox in the project settings. Let's see how to do it.

First, create a new Silverlight application called 01_Simple_OOB_App. In the MainPage,
a text block must be added displaying the message Simple OOB App. When you
execute it, it will look as a standard in-browser application, as shown in the following
screenshot:

In order to enable OOB mode, follow these steps:

1. Right-click on the Silverlight project root. When the context menu is
displayed, click on Properties:

Out of Browser (OOB) Applications

[228]

2. Select the Silverlight tab and tick the checkbox with the message Enable
running application out of the browser:

3. When executing the application, it still runs in the browser but, if we right-click
on it, there will be a new option Install 01_Simple_OOB Application onto this
computer… in the context menu, as shown in the following screenshot:

4. If we click on that option, we get a message prompt asking to install the app,
as shown in the following screenshot:

Chapter 6

[229]

5. Once we click OK, the application is installed and ready to be used as OOB.

It is great to use apps as a final user, but what happens with developers? In case we
want to debug our OOB application, will we have to install it every time we run the
environment? Of course not. In the project properties (Context menu | Properties),
the Debug tab allows us to choose that the application starts up straight in OOB
mode (the Silverlight project will have to be chosen as a start-up project):

Out of Browser (OOB) Applications

[230]

Enhancing the experience—tooling up
and updating
As we have already seen, enabling the OOB mode in our application is something
quite straightforward. Nevertheless, the following doubts may have arisen:

•	 In some cases, I want to know if my application is running in normal or
OOB mode to, for instance, show one UI or another. How can I do that?

•	 How can I know if the application is already installed?
•	 When installing from a not very intuitive contextual menu, is there any way

to display our own UI in order to allow the user to install the application?
•	 How do I uninstall an OOB application?
•	 I would like to let the users install my application from a CD, eliminating the

need to be connected to the Web. Is that possible?
•	 When a new version of my application is uploaded to the production server,

is there any way to detect updates and install new versions automatically?

In-browser/OOB detection
Sometimes, the UI we want to show differs depending on whether the application is
executing in the browser or as an OOB application. It may also happen that, when it
is in-browser, we only want to display a button to install it.

In order to know the mode we are working with, Silverlight offers a function on
the level of the application called IsRunningOutOfBrowser, which returns true or
false depending on whether the application is executing in OOB mode or not.

To see how it works, let's go back to the previous example, TestOOB, and indicate
whether the application is executing in OOB mode or not in the TextBlock we use
in the main page. It can be done using the following steps:

1. Open the project previously created (Simple_OOB_Application).
2. Add an ID to the TextBlock of the main page (it will be named tbStatus):

<Grid x:Name="LayoutRoot" Background="White">
 <TextBlock x:Name="tbStatus" Text="Simple OOB App"
 FontSize="16"/>
</Grid>

Chapter 6

[231]

3. In the constructor of the page, check the value of the application variable
IsRunningOutOfBrowser, which will display one of two messages
depending on the state.
public MainPage()
{
 InitializeComponent();

 if (App.Current.IsRunningOutOfBrowser == true)
 {
 tbStatus.Text = "I'm running out of browser";
 }
 else
 {
 tbStatus.Text = "I'm running in browser";
 }
}

4. Therefore, in case we are executing in OOB mode, the following message
will be displayed:

Detecting the application installed
Another common scenario arises when the application is being executed in the
browser and we need to know if it has already been installed as OOB. For instance,
a common example of this is when we want to display a message asking the user
whether to install the application or not. We can make use of the application variable
InstallState, which returns a type enumerated with one of the following values:
NotInstalled, Installed, Installing, or InstallFailed.

Out of Browser (OOB) Applications

[232]

Thus, in the sample application that has been created, it could be checked whether
the application is installed or not in the following way:

public MainPage()
{
 InitializeComponent();

 if (App.Current.InstallState == InstallState.Installed)
 {
 tbStatus.Text = "Application Installed";
 }
 else
 {
 tbStatus.Text = "Application not installed";
 }
}

Installing the custom interface
As mentioned previously, installing the application from the contextual menu of
our Silverlight application was not intuitive at all. Perhaps it could be possible to
place a button so that the user could begin the installation. Up to what point can
we customize the installation process of our Silverlight application? Silverlight
allows us to launch the installation process by code, as long as it comes from a
user petition (such as a click on a button). The dialog which asks if we want to
install the application cannot be customized.

To install the application, the method Install of Application must be called.
Let's add this functionality to our basic sample:

1. Add a button to the main window:
<Grid x:Name="LayoutRoot" Background="White">
 <TextBlock x:Name="tbStatus" Text="Simple OOB App"
 FontSize="16"/>
 <Button Content="Install" Height="23"
 HorizontalAlignment="Left" Margin="142,55,0,0"
 Name="button1" VerticalAlignment="Top" Width="75" />
</Grid>

2. Subscribe to the Click event:
<Button Content="Install" Height="23" HorizontalAlignment="Left"
 Margin="142,55,0,0" Name="button1" VerticalAlignment="Top"
 Width="75" Click="button1_Click" />

Chapter 6

[233]

3. Check if the application has already been installed in the handler of the
button and add the call to Install:
private void button1_Click(object sender, RoutedEventArgs e)
{
 if (Application.Current.InstallState ==
 InstallState.NotInstalled)
 {
 Application.Current.Install();
 }
 else
 {
 MessageBox.Show("Application already installed");
 }

}

4. Execute the application. When you click on the new button, the dialog box
asking you if you want to install the application will be displayed, as shown
in the following screenshot:

Out of Browser (OOB) Applications

[234]

Uninstalling an OOB application
To uninstall a Silverlight application, the user can choose among several options:

•	 They can right-click on the application and, in the contextual menu, choose
the Remove this application… option, as shown in the following screenshot:

•	 It can be uninstalled right from the Windows Control Panel:

The customization of the installation is an improvement that is pending to be added
to Silverlight.

Chapter 6

[235]

Offline installation
Sometimes, we face scenarios where it is necessary for the user to be able to install
the application from a CD, or that an administrator can make an implementation.
This scenario is not ideal for Silverlight applications (normally, the user downloads
them from a URL, either intranet or extranet and, moreover, benefits from automatic
updates).

If you face this situation, you may wonder whether it is more convenient to
orient development to WPF-Click once, or use the method explained by Tim
Heuer in his blog: Installing Silverlight Offline (http://timheuer.com/blog/
archive/2008/09/29/install-silverlight-2-rc0-offline.aspx).

Even though this method allows us to install our OOB application in a silent mode,
it has certain limitations:

•	 If the user does not have the Silverlight plug-in installed, they will need to
be connected to the Internet to download it from the Microsoft website

•	 The installation in silent mode is not valid for trusted OOB applications

Updates
OOB applications are installed on our own machine, which means there are a lot
of advantages, such as fast boot, offline work mode, and so on. Nonetheless, what
happens if we upload an update to the server? Is there a way to update our local
application? Of course there is. What's more? It is possible in an easy and powerful
way. Let's see it in action:

In the app.cs file, subscribe to the event named CheckAndDownloadUpdateCompleted
and, later, make the asynchronous petition to check if there is a new update and, if so,
download it automatically. The following is the source code:

private void Application_Startup(object sender, StartupEventArgs e)
{

 CheckAndDownloadUpdateCompleted +=
 new CheckAndDownloadUpdateCompletedEventHandle
 r(Application_CheckAndDownloadUpdateCompleted);
 CheckAndDownloadUpdateAsync();
 (…)
}

Out of Browser (OOB) Applications

[236]

private void Application_CheckAndDownloadUpdateCompleted(object
 sender, CheckAndDownloadUpdateCompletedEventArgs e)
{
 MessageBox.Show("Application updated, please restart.");
}

Updates will work as long as our XAP is not in a file
that needs security.

Offline work
An advantage of working with OOB applications is that, once they have been
installed, it is not necessary to have an Internet connection to execute them (they
are downloaded locally). What does this mean? It is possible to implement an
offline work method for our applications, which permits, for example, that a user
on a flight can work with the application and, later, when they have an Internet
connection, they can synchronize the data with the server.

To work offline, it is necessary to have a repository to store reference data, as well
as changes or new creations. If our Silverlight applications normally work within
a sandbox and we do not have access to the HDD of the local machine, what can
we make use of? In such cases, we have two options: either requiring elevated
permissions for our application to execute (this will be dealt with later) or making
use of the Silverlight Isolated Storage.

Isolated Storage is a virtual filesystem that allows a Silverlight application to store
data in an invisible folder in the machine. By default, a Silverlight application can
use 2 MB of storage. Isolated Storage is a 10 MB OOB application, but the user can
be asked to increase the quota.

Let's see a simple sample of how to read and write data in the Isolated Storage.
This example is available in the online material on http://bit.ly/5gEwuM.

You can create a file in the Isolated Storage using the following code:

using System.IO.IsolatedStorage;
using System.IO;

(…)

private void WriteContentToIsoStorage(string content,
 string filename)

D
ow

n
lo

a
d
 f
ro

m
 W

o
w

!
e
B
o
o
k

<
w

w
w

.w
o
w

e
b
o
o
k.

co
m

>

Chapter 6

[237]

{
 using (IsolatedStorageFile isf =
 IsolatedStorageFile.GetUserStoreForApplication())
 {
 using (IsolatedStorageFileStream isfs = new
 IsolatedStorageFileStream(filename, FileMode.Create, isf))
 {
 using (StreamWriter sw = new StreamWriter(isfs))
 {
 sw.Write(content);
 sw.Close();
 }
 }
 }
}

You can read the information using the following code:

using System.IO.IsolatedStorage;
using System.IO;

(…)
private string LoadContentFromIsoStorage(string filename)
{
 string data = String.Empty;
 using (IsolatedStorageFile isf =
 IsolatedStorageFile.GetUserStoreForApplication())
 {
 using (IsolatedStorageFileStream isfs = new
 IsolatedStorageFileStream(filename, FileMode.Open, isf))
 {
 using (StreamReader sr = new StreamReader(isfs))
 {
 string lineOfData = String.Empty;
 while ((lineOfData = sr.ReadLine()) != null)
 data += lineOfData;
 }
 }
 }
 return data;
}

To continue learning how this works, you can follow
this link: http://bit.ly/qkY9UM.

Out of Browser (OOB) Applications

[238]

How it works
Normally, when data have to be obtained or updated, we communicate with the
server via a web service to get or modify this information.

To avoid this connection, we can do the following: first, get the most commonly read
data and store them in a cache; second, the user creates his/her own entries, which
are stored in the local repository (Isolated Storage). Once the user has an Internet
connection again, offline data is sent to be synchronised in the repository.

Offline work is not as easy as it may sound. Another book could be written only
on this! If you want further information about this, we can recommend the
following session by Steve Lasker, Offline Microsoft Silverlight Applications
(http://bit.ly/ltIxNt).

Breaking the sandbox—trusted
applications
Up to now, we have seen how an OOB Silverlight application runs within a sandbox.
That is to say, its access to certain resources is limited or restricted. What happens if
we need to perform operations that the sandbox has restricted due to safety reasons?
To solve this issue, there are applications with elevated permissions:

•	 A trusted OOB application is a program the user trusts (similar to when a
desktop application is installed on our machine).

•	 Its XAP file is signed with a certificate, which ensures its trustworthy origin.
•	 It has elevated permissions, which makes it possible, for example, to make

calls to COM components, P/Invoke calls, or access the local filesystem.
•	 For the application to be installed/executed, it needs the express

authorization of the user.

Chapter 6

[239]

Enabling trusted mode
How can an OOB application be enabled to require elevated permissions? To
configure a Silverlight program that already exists, follow these steps:

1. Go to the Properties tab of the Silverlight Project (contextual menu of the
project, Silverlight | Properties) and click on the button Out-of-Browser
Settings…:

Out of Browser (OOB) Applications

[240]

2. A dialog is displayed, where the option Require elevated trust when
running outside the browser must be checked, as shown in the following
screenshot:

Chapter 6

[241]

After these steps, our application will be enabled as OOB trusted. However, if a user
tries to install it, they will receive a warning indicating the source that published the
application cannot be trusted. To eliminate this message, we will have to use our
enterprise's certificate or acquire a new one (we can buy one or, if it is an intranet,
our IT administrator can generate a new one). This operation can be performed
from the Signing tab in the project's properties (right-click on Silverlight project |
Properties | Signing).

Advantages of trusted applications
Now we have our trusted application, which has the following additional
advantages:

•	 We can access the filesystem of the machine (from the Silverlight 5 version).
•	 We can make calls to COM components. We can read or write to the registry

(only current user entry), call other executable files, and so on.
•	 It is possible to make P/Invoke calls.
•	 We can make petitions to a URL, even if they are cross domain. It is not

necessary that the server has a cross-domain policy enabled.
•	 It is possible to integrate a WebBrowser control in our application. That is,

we can display HTML in our Silverlight application and interact with it.
•	 Real windows can be created. Normally, when new windows are created in a

Silverlight application, they are a fantasy; that is to say, they are not physical
windows, but they are displayed within the main one. If our application is
trusted (only SL version 5), we can create floating windows and, for instance,
they can be displayed on several monitors.

Out of Browser (OOB) Applications

[242]

Accessing files
Our trusted application has access to the local filesystem (if it is Silverlight 5; in case
it is Silverlight 4, it can only access folders, such as My Documents and via COM
calls it's possible to gain additional access). The operations on System.IO, which
previously returned safety errors, will now be executed flawlessly.

As a sample, let's see how the content of the Program Files file can be listed in our
trusted Silverlight application:

public class ViewModel
{
 public ObservableCollection<string> DirNames { get; set; }

 public ViewModel()
 {
 DirNames = new ObservableCollection<string>();

 // Let's try to enumerate the directories that are
 // under Program Files, this operation would throw an
 // exception if the application is not a trusted one.
 DirectoryInfo di = new DirectoryInfo("C:\\Program Files");

 foreach (var info in di.EnumerateDirectories())
 {
 DirNames.Add(info.FullName);
 }
 }
}

Making calls to COM+
We can make calls to COM components, which open plenty of doors, such as reading
and (partially) writing on the registry, communicating with devices, launching apps,
and even using Excel Automation.

However, the main disadvantage of this approach is that it only works in Windows.
So if our application needs to run in Mac, this code must be isolated and will not
offer this functionality for that platform.

If you need to detect under which OS a Silverlight application
is running, you can use Environment.OSVersion.

Let's see a couple of examples of how to make these calls.

Chapter 6

[243]

Writing an entry on the registry
In order to do so, create a new Silverlight Application project and tick the checkboxes
(Enable Running application out of the browser, Out-of-Browser Settings |
Require elevated trust when running outside the browser).

Add the reference to the Microsoft.CSharp DLL (Add Reference | .NET |
Microsoft.CSharp):

Make sure this DLL and System.Core are referenced:

Out of Browser (OOB) Applications

[244]

You can write the entry on the registry using the following code:

using System.Runtime.InteropServices.Automation;

(…)
private void button1_Click(object sender, RoutedEventArgs e)
{
 using (dynamic shell =
 AutomationFactory.CreateObject("WScript.Shell"))
 {
 shell.RegWrite(@"HKCU\Software\MyTest", "");
 }
}

The result is as shown in the following screenshot:

Executing notepad from our application
Another interesting feature is the ability of launching other applications from our
trusted application. In the following code we will launch a Notepad.

using System.Runtime.InteropServices.Automation;
(…)
private void button1_Click(object sender, RoutedEventArgs e)
{
 dynamic cmd = AutomationFactory.CreateObject("WScript.Shell");

 cmd.Run(@"c:\Windows\notepad.exe", 1, true);
}

Chapter 6

[245]

P/Invoke
As an innovation, Silverlight 5 includes call support via P/Invoke. Platform
Invocation Services allows managed code to call unmanaged functions that are
implemented in a DLL. This is only allowed for full-trust applications.

Let's see how this works by creating a sample, which calls a kernel32.dll method
reproducing system beeps. Follow the steps mentioned next:

1. Create a new Silverlight project (application) and configure it to be an OOB
application with trusted permissions.

Out of Browser (OOB) Applications

[246]

2. Add a new class (by means of Add New Class) called MyBeep. Implement
the Beep method of the Kernel 32 DLL.
using System.Runtime.InteropServices;

public class MyBeep
{
 [DllImport("User32.dll")]
 private static extern Boolean MessageBeep(UInt32
 beepType);

 public void PlaySound(BeepTypes type)
 {
 if (!MessageBeep((UInt32)type))
 {
 throw new Exception("Beep failed!");
 }
 }
}

public enum BeepTypes : uint
{
 Ok = 0x00000000,
 Error = 0x00000010,
 Warning = 0x00000030,
 Information = 0x00000040
}

public static class BeepTypeExtensions
{
 public static BeepTypes AsBeepTypeEnum(this string
 beepType)
 {
 BeepTypes beepTypeEnum;
 return Enum.TryParse(beepType,true,out beepTypeEnum)
 ? beepTypeEnum
 : BeepTypes.Error;
 }
}

3. In the main page (mainpage.xaml), add a button to be bound to the Click
event as follows:
<Button Content="Beep !!"

 Click="button1_Click" />

Chapter 6

[247]

4. In the Code-Behind (MainPage.cs), make the call to the method defined in
the MyBeep class.

private void button1_Click(object sender,
 RoutedEventArgs e)
{
 MyBeep myBeep = new MyBeep();
 myBeep.PlaySound(BeepTypes.Information);
}

If an exception appears when executing the action, check
the application settings and make sure that it is running
in OOB trusted mode.

Cross-domain calls
When executing our Silverlight application within the sandbox, we can make calls
to services, or ask for resources, which are in our domain. However, if we try to
access resources in a different domain (namely a feed of Apple's film trailers) this
call can return an error since, due to safety reasons, these calls are restricted unless
the web service authorizes them explicitly. The following are the solutions we have
within sandbox:

•	 The server may have an XML file with the cross-domain policy indicating we
have access to these resources. It can be checked by launching a query to the
Apple feed and using the Fiddler packages sniffer. We will then realize if this
server exposes a cross-domain policy.

•	 It is possible to implement a service in our server acting as a proxy. The bad
thing about this approach is that we overload the server and the response to
the client is slower.

If our application is executed as trusted, this restriction does not exist. We can make
the petition to a cross domain without having the cross-domain policy enabled. For
instance, we can make a query to the Apple feed to check new cinema openings.

private void button1_Click(object sender, RoutedEventArgs e)
{
 WebClient wc = new WebClient();

 wc.DownloadStringCompleted += new
 DownloadStringCompletedEventHandler(wc_DownloadStringCompleted);
 wc.DownloadStringAsync(new
 Uri("http://www.apple.com/trailers/home/xml/current.xml",
 UriKind.Absolute));
}

Out of Browser (OOB) Applications

[248]

void wc_DownloadStringCompleted(object sender,
 DownloadStringCompletedEventArgs e)
{
 MessageBox.Show(e.Result);
}

WebBrowser control
Another interesting control we can only use in trusted OOB applications is the
WebBrowser control. This allows us to view HTML pages within our Silverlight
application. Besides, if the page is in the same domain, we can even interact with
it via Silverlight | JavaScript.

How it works
Let's check how this control works by creating a simple example:

1. Create a new Silverlight project (application) and configure it so that it is
executed as an OOB application with trusted permissions.

2. In the XAML, add the namespace System.Windows.Controls and
instantiate the control:
<UserControl x:Class="WebBrowser.MainPage"
 xmlns="http://schemas.microsoft.com/winfx/2006/xaml/presentation"
 xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml"
 xmlns:d="http://schemas.microsoft.com/expression/blend/2008"
 xmlns:mc="http://schemas.openxmlformats.org/
 markup-compatibility/2006"
 xmlns:controls="clr-namespace:System.Windows.Controls;
 assembly=System.Windows"
 mc:Ignorable="d"
 d:DesignHeight="300" d:DesignWidth="400">

 <Grid x:Name="LayoutRoot" Background="White">
 <controls:WebBrowser Source="http://www.bing.com"/>
 </Grid>
</UserControl>

3. The result we obtain is shown in the following screenshot:

Chapter 6

[249]

Limitations to take into account:

•	 Control is placed on top of the ZOrder. In case we want to show a
ChildWindow, for example, this will not be visible at first. To give it
visibility, we need to create a rectangle using a WebBrowser Brush,
make a static picture to the WebBrowser Control content and, when
the dialog box is shown, hide the WebBrowser showing our rectangle.

•	 For safety reasons, we cannot capture the moment when the user navigates
from one page to another; neither can we make JavaScript calls from
Silverlight if the page belongs to a different domain.

•	 It is a heavy control, so it is not a good idea to create and destroy it
dynamically quite often.

Out of Browser (OOB) Applications

[250]

Real windows
Another advantage of trusted OOB applications is the fact that they can show
physical windows.

At the moment, these windows are not modal in Silverlight 5. The following is
how it works:

1. Create a Windows object and assign the content property of this control to
a given UserControl.

2. Then, we see how this sort of window can be displayed:
private void button1_Click(object sender, RoutedEventArgs e)
{
 Window wnd = new Window();

 wnd.Width = 500;
 wnd.Height = 350;
 wnd.Title = "This is a test window";
 //We indicate here a custom user control to display in the
 //new window
 wnd.Content = new MyControl();
 wnd.Visibility = Visibility.Visible;
}

3. The result is shown in the following screenshot:

Chapter 6

[251]

In-browser trusted applications
Having trusted applications, which are executed as if they were desktop applications,
is a powerful and interesting idea, but what happens if we need to have elevated
permissions for applications running in the browser? For instance, a bank's intranet.

Silverlight 5 incorporates in-browser trusted applications, whose main features are
as follows:

•	 It is a specific functionality for enterprise applications.
•	 The administrator controls which applications can be executed via

group policy.
•	 The user is not asked and neither is the application installed. It is marked

as valid, so it will be executed by the administrator.
•	 It can be integrated as part of an HTML website, without the need to give

elevated permissions to the entire site.

On the other hand, the doubt arises, when developing, shall we create our own test
certificate? The answer is no. If we execute from localhost, the restriction is not applied.

Thus, in the example that was previously implemented (getting the content of
C:\Program Files), we only need to select the properties of our Silverlight project
(right-click on Silverlight | Properties) and select the option Require elevated trust
when running in-browser, as shown in the following screenshot:

Out of Browser (OOB) Applications

[252]

When executing the application, it can be seen running flawlessly within the browser.

As we pointed out earlier, if the application in production is displayed, it will fail as
it is not executed from localhost. The following are the necessary steps to avoid it:

•	 The XAP file has to be signed with a certificate (this can be seen in depth in
Chapter 11, Security).

•	 The network administrator has to specify a setting for the trusted in-browser
applications to be executed in all machines. Particularly, the flag of the
registry entry HKEY_LOCAL_MACHINE\SOFTWARE\Microsoft\Silverlight\
AllowElevatedTrustAppsInBrowser must have the value of 1.

•	 The network administrator has to add the certificate in which the XAP
has been signed with as a trusted certificate (CurrentUser\Trusted
Publishers).

For more information about the display process, please visit the link
http://bit.ly/kKbdpl.

In order to know if the application is running with
elevated permissions, check the flag Application.
Current.HasElevatedPermissions.

LOB application case study: applying
what we have learned
As final users, one of the disadvantages of using web applications is the fact that
we have to remember URLs, open the browser, and so on. Isn't it easier to double-
click on a desktop icon and run an application? That is what has been added to our
booking application:

•	 We detect whether it is running or not within the browser
•	 If so, an option is shown to install the application as OOB
•	 Then, we install the application as OOB

Thus, when executing the application within the browser, a new option is added in
the navigation menu, as shown in the following screenshot:

Chapter 6

[253]

When clicking the Install button, the confirmation dialog appears and the
application gets installed (then, go to the desktop icon and execute it).

It is necessary to bear in mind that the application item has been customized.
This can be set up in the project properties, Out-of-Browser Settings.

Out of Browser (OOB) Applications

[254]

Summary
The capabilities offered by Out of Browser (OOB) applications are amazing. If we
also add the possibility of elevating permission (in-browser and OOB trusted), the
result is a light web application that can be almost as powerful and functional as a
desktop application. Remember this chapter when a client indicates non-standard
requirements of a web application (such as the integration of the application in an
ATM, accessing the local filesystem, and so on). Anyway, before accepting, make
the possible concept tests and ensure the functionality is covered.

Additional resources
If you need to dive deeper into any of the features presented in this chapter, you
can check the following links:

•	 How far can I get using COM+? This post by Justin Angels summarizes it
nicely at http://bit.ly/4Ama4H

•	 In-browser http://bit.ly/kKbdpl and settings http://bit.ly/oKFbzG
•	 P/Invoke, how does it work? http://bit.ly/r2DTQF
•	 P/Invoke and Silverlight, an excellent introduction by Vikram Pendse

http://bit.ly/qI3XhN

•	 How to create physical windows, by Pete Brown http://bit.ly/gZ4w7S

Testing your LOB Application
It is always crucial with software to ensure that applications do exactly what they
are intended to. Despite its importance, this question has not been paid the necessary
attention due to the difficulty of the task, except for certain sectors where reliability
is critical (mission critical),such as sanitary environments, flight control, factory
software, the military industry, and so on. However, nowadays we bear witness to a
dramatic change in this sense, and every project must have a test strategy.

In this chapter, we will start by covering current testing techniques, and then we will
move from standard .NET testing to specific Silverlight testing procedures. In brief
we will cover:

•	 Introducing a bit of theory
•	 Testing server code
•	 Testing client code using general-purpose tooling
•	 Testing client code using Silverlight-specific tooling
•	 Adding testing to our trunk project sample, using the Moq framework

Types of testing
The different ways to test software can be divided into two groups:

•	 Static analysis: This inspects the application code.
•	 Dynamic analysis: This considers the results of the application execution.

In static analysis, we first have the result of the compiler, either in the form of errors
or warnings. Second, we find the semantic analysis based on best practices, such
as those provided by ReSharper, StyleCop, or FxCop. Finally, we have the formal
verification of programs, a branch with a deep theoretical base that is used above all,
in protocol verification. Its effectiveness is very high as it checks all possibilities, but at
the same time, it needs plenty of resources and specific languages for its execution.

Testing your LOB Application

[256]

On the other hand, dynamic analysis needs code execution and is able to focus either
on isolated parts, or on the whole application. In the first case, we mainly refer to
unit testing, where results are executed and verified individually, in an isolated
way. Another program is in charge of execution and verification, so these tests
can be automated and repeated as many times as necessary, such as in a process
of continuous integration. We have to point out that the concept of unit testing is
also related to those of integration tests (testing the behavior of different modules
working together), regression tests (set of tests used to ensure that the behavior of
the application is not altered by any maintenance change), and system tests (testing
the behavior of the entire system). But going deep into these and other types of tests
is out of the scope of this book.

Tests can be performed if we execute the application. In this case, we can count on
test engineers who manually follow a script, or use tools allowing us to automate or
record user actions, so as to repeat them in the future. In this case, tests are known as
Automated UI Testing.

Before going on with this topic, we need to have an understanding of two concepts,
white-box testing and black-box testing. White-box tests assume that the testers
know the source code of the program being tested. Therefore, they are at the level of
the developer, so they know the cases where tests are more appropriate. In black-box
tests, the tester only has access to the results of the code execution. They are at user-
level, and their goal is that their expectations about the application are fulfilled. Both
types of tests are complementary to achieve a correct test plan.

Methodologies
Consider the classic cycle of software development, the Waterfall model. It includes
analysis, design, implementation, and testing, roughly speaking. The testing
stage was usually pushed into the end, and in projects with tight deadlines, it was
probable that the tests weren't done properly. The adoption of new architectures in
applications, which make testing easier, as well as their own current prominence in
those architectures may be helped by the boom of quality assurance processes (such
as ISO standards, see www.iso.org). All these factors applied to software, have given
more importance to testing in this process.

To these factors, we can add methodologies such as Test-Driven Development
(TDD), derived from Extreme Programming (or XP) and related to the Agile
Movement. TDD proposes that tests guide development, so tests are the first thing to
be developed. This test definition will act later as a cast of the code to be developed.
We also obtain a particular shape following that cast; if we base development
on tests, the application will be developed to fit into that cast, accomplishing the
requisites previously established by them.

D
ow

n
lo

a
d
 f
ro

m
 W

o
w

!
e
B
o
o
k

<
w

w
w

.w
o
w

e
b
o
o
k.

co
m

>

Chapter 7

[257]

Now, we will show how to apply these concepts to a Silverlight LOB application.
We will distinguish the types of tests we can do (synchronous, asynchronous, or user
interface), and the technologies we have for doing this. Later, we will discover how
the correct class design will make test implementation easier.

Tests will be done using MSTest, the tool included in Visual Studio. There are many
others, such as NUnit and XUnit, whose basic operation is similar.

Unit testing with Silverlight
As we already know, in a Silverlight business application, we will have code on both
client-side and server-side. The first one will be based on the .NET Framework, and
the second one, on Silverlight. To make concept assimilation easier, we will first
talk about testing on .NET 4.0, then, we will deal with particular cases in Silverlight
where we will apply the concepts previously seen.

Testing server code
Tests will have to be grouped into a test project, which is a special kind of project
Visual Studio executes to check test results (or MSBuild, if we are in a context of
continuous integration). In order to generate this project, we have to select Test as
the template from the Installed Templates list, and then Test Project, as shown in
the following screenshot:

Testing your LOB Application

[258]

Give a name to the project (in this example, ReservationsTest) and it will generate
a simple structure similar to the following screenshot:

This includes the reference to the MSTest test library, as well as a first UnitTest1.cs
file with an empty test class. Change its name to CalculusTest.cs and modify its
content with our own test class:

using Microsoft.VisualStudio.TestTools.UnitTesting;
using Reservations.Web;
namespace ReservationsTest
{
 [TestClass]
 public class CalculusTest
{
 [TestMethod]
 public void Add3And2Test()
{
var target = new Calculus();
 int expected = 5;
 int actual = target.Add(3, 2);
 Assert.AreEqual(expected, actual);
 }
 }
}

The expected behavior of the Calculus.Add method is trivial to sum the two given
parameters. To try it, launch an execution with parameters 3 and 2, to check later that
the result is 5. The following are some other comments on this class:

Chapter 7

[259]

•	 The TestClass attributes indicate that this class contains test methods. It is
compulsory for it to be taken into account when tests are executed.

•	 It is recommended to finish the names of the test classes with the suffix Test,
as many test runners will search them using this convention.

•	 The TestMethod attribute indicates that the method is a test in itself.
It is compulsory.

•	 It is also recommended that the suffix Test is added to the names of
methods, which need to be as descriptive of the test as possible.

•	 In a test class, there can be other support methods. They will not have the
TestMethod attribute or the Test suffix.

•	 The names of variables target, expected, and actual are a general
convention. They indicate the tested object (target), the expected value
(expected), and the actual value obtained (actual).

•	 MSTest offers the Assert class with a lot of methods for checking, such as
AreEqual that is used in this case.

•	 In AreEqual, as well as in other methods, we first have to indicate the
expected value and then the actual one. Therefore, in case the conditions are
not fulfilled, the error message will be correct.

Tests are usually structured in three stages, Arrange, Act, and Assert(AAA).This can
be appreciated in the previous sample. First, the target is created, the method is then
called, and finally, the results are verified. You can learn a bit more about this pattern
in a brief article using the link, http://bit.ly/v0aoGU.

Now, we will only have to add the reference to the project we are going to test,
as well as the Calculus class. This can be done via Visual Studio Intellisense,
which will suggest (thanks to a red line under the unidentified nouns) creating the
Calculus class and the Add method with its two parameters and its type of return.
This new functionality of Visual Studio 2010 helps apply the TDD methodology, first
testing and then code generation. After that, we will only have to move the class to
the web project (updating the references in the test project) and implement it. As a
result, we will have something similar to the following:

namespace Reservations.Web
{
 public class Calculus
 {
 public int Add(int a, int b)
 {
 return a + b;
 }
 }
}

Testing your LOB Application

[260]

The easiest way to execute the previous test on this method is to place the cursor
in the AddTest method and press the button Run Tests in Current Context in the
Test tools toolbar, which appears automatically when we are on a test project class.
We can also make use of that command in the Test | Run submenu. Visual Studio
will build the involved projects and will show the execution process of the tests in
a window, as follows:

If the test fails, it is possible to check the error message from this window, navigate
to the unaccomplished assert sentence, or see the particular exception. The same
command allows us to try all the methods in a test class if we place the cursor on
the class name. Visual Studio permits other ways to select the tests which have to
be executed, even by creating batches of tests that can be saved. There are also
third-party tools, which provide different functionalities for running tests.

Now, we will see how this approach to try server code can be used to try Silverlight
client code.

Testing client code with MSTest
There is a certain difficulty in the fact that the MSTest test project we have created
runs on the whole .NET Framework, not just on Silverlight. Therefore, there are other
specific libraries to test Silverlight code that will be dealt with later, but these libraries
make it difficult to automatically execute tests, which becomes a decisive factor in
continuous integration environments. So, before we look at those libraries, we will
describe a simple way to test classes included in our Silverlight project via MSTest.

Warning! This technique is not applicable in all classes,
as will be shown soon, but its advantages make it the
recommended method to use as long as the class to be tested
permits it.

Chapter 7

[261]

You will see that Visual Studio will mark the reference as wrong (yellow warning
triangle), if it is necessary to add a reference to the Silverlight project in the previous
test project. From now on, the situation differs depending on the .NET version we're
working with (4.0 or previous).

If the test project uses .NET 4.0, you will be able to add a reference to the Silverlight
project of an MSTest project. Despite the error displayed in the reference (yellow
warning triangle), the project will run without issues. For instance, the Calculus
class previously mentioned could be copied to the Silverlight project (it could be
renamed as CalculusSL) and, modifying the references properly, the test will work.
This is possible thanks to the new Assembly Portability feature added in .NET 4.0,
which only works if the Silverlight class we're testing uses the following libraries:

•	 Mscorlib

•	 System

•	 System.Core

•	 System.ComponentModel.Composition

•	 Microsoft.VisualBasic

This is the first restriction to the classes that can be tested in this way. For example,
any class working with a visual interface, with access to web services or data
via WCF RIA Services cannot be tested with this method. On the contrary, those
business classes or utilities, which contain plenty of logic, but few references, are
ideal. This invites us to decompose classes as much as possible, following principles
such as the Single Responsibility Principle (SRP), one of the five SOLID principles.
Moreover, it would also be good decomposing these classes to different .NET or
Silverlight assemblies.

It is not necessary for the web project to be a .NET 4.0 one,
a previous version can also be used. Nevertheless, it is
required that the test project be a .NET 4.0 one in order to
accept the direct reference to a Silverlight project.

This method can be seen in action in the second sample of this chapter, where both
classes CalculusTest and CalculusSLTest have been implemented. Although, the
reader should be aware that the best practices recommend the client and server code
should be tested in separate test projects.

Testing your LOB Application

[262]

On the other hand, in case we cannot use .NET 4.0, there is an alternate strategy,
which we can briefly describe. Instead of adding a reference to the Silverlight project
in the test project, a link will be added to those files we want to test (as it was pointed
out previously, not every class is valid). To add the link:

1. Right-click on the test project.
2. Select Add Existing Item.
3. Find and select the class, or several of them.
4. Now, in the dialog box, select Add Existing Item, expand the options of

the Add button and select Add as Link.

Doing this, the file is not copied (it remains in its original folder), but its code is
compiled again in the test project. Thus, we can develop tests on this class, and
there are no sync issues since it consists of only one file.

This technique can be also used in .NET 4.0 with those classes
not supporting portability. Even so, there are other classes
which cannot be tested either, as we will see in the next section.

Libraries to test Silverlight code
As we have already commented, there are specific features in Silverlight, which
make certain classes unable to be tested with the technique mentioned previously,
due to particular dependencies of their framework, or because of the use of
asynchronous features or visual elements. To solve this issue, there are specific
libraries for testing in Silverlight, as follows:

•	 Silverlight Unit Testing (SilverlightUT): This was originally developed
by Microsoft to try the Silverlight Toolkit, which also includes it. When the
Toolkit is installed, the templates are integrated with Visual Studio 2010.
Tests are executed on the browser, within Silverlight.

•	 SilverUnit: With a higher level of isolation, this library does not require a
browser. So it is more automatable, yet allows the testing of visual elements.

•	 Selenium-Silverlight: This is an automation web library extended to
support Silverlight.

Chapter 7

[263]

•	 AgUnit: This is a plugin for ReSharper that allows you to run and debug
Silverlight unit tests from within Visual Studio.

•	 StatLight: This is a command-line tool developed for automating the setup,
execution, and gathering results of Silverlight unit tests.

These are representative samples of the types of existing libraries of isolated
execution, unit tests, or visual interface. As was shown previously, we have an
integrated solution at our disposal in Visual Studio 2010, which we will see now.
It is important to remark that this library, developed by Jeff Wilcox, supports tests
for asynchronous operations, so we will study it with the help of two examples,
one synchronous and the other asynchronous.

Testing synchronous client code with
Silverlight Unit Testing
First of all, you need to get Silverlight Toolkit installed on your computer.
This is a very complete piece of software distributed by Microsoft through
Codeplex under Microsoft Public License (MS-PL), so you can download it
from http://silverlight.codeplex.com/releases. Please be careful not
to choose the Windows Phone version instead of the Silverlight one.

If you try to open a test project of this type on a computer,
which does not have Silverlight Toolkit previously
installed, you will get an error similar to:
Unable to read the project file 'x.csproj'. The imported
project "…\Microsoft.Silverlight.Toolkit.Build.targets"
was not found. Confirm that the path in the <Import>
declaration is correct, and that the file exists on disk.
After installing Silverlight Toolkit, you will be able to
open that project.

Testing your LOB Application

[264]

After installing Silverlight Toolkit, Visual Studio 2010 incorporates a new type
of project called Silverlight Unit Test Application in the Silverlight templates,
as shown in the following screenshot. This generates a SilverlightUT application,
which is actually in charge of testing our Silverlight application or library.

When we add a project of this kind, Visual Studio shows us the Options window
of any Silverlight application:

Chapter 7

[265]

The same web project of the application can be used, as it suggests. In this case, it is
advisable to uncheck the checkbox Make it the start page as shown in the previous
screenshot, so that our web project keeps on launching the application and not the
tests (although this can be changed later in the project web properties). A new page
will be generated in the web project, with which tests will be launched (navigating
to their URL when in execution). Of course, we will have to be careful with this page
when putting the application into production.

Testing your LOB Application

[266]

In this case, Visual Studio is in charge of everything.
Adding a second link to Silverlight in the web project,
after rebuilding the solution, will add the corresponding
.xap file to the ClientBin file of the web project.

Nevertheless, the most advisable thing to do is to avoid the use of a web project,
unchecking the Host the Silverlight application in a new or existing Web site
in the solution checkbox, so that references are not included in tests from the
code. Therefore, to launch tests, it will be enough to open the TestPage.html file
generated when compiling in the bin\Debug folder of the Silverlight test project.

This new project contains a Silverlight application configured as a test application,
together with a Tests.cs file with an empty test class. If it is opened, you can see
that it has the same structure of the test classes seen until now, with the TestClass
and TestMethod attributes.

Lets modify this test to try the CalculusSL.Add method. From now on, you need
to have in your solution a Silverlight project with a CalculusSL class. If not, it will
suffice to add it with the same code of the Calculus class we previously used. The
changes to do in Tests.cs are:

1. Rename the class as CalculusSLTest.
2. Rename the TestMethod1 method as AddTest.
3. Include the same content of the AddTest method as previous.
4. Add to the test project a reference to the Silverlight project we are to try.
5. Add at the beginning the necessary usage instructions.

There are great similarities with MSTest tests seen that we have examined in the
previous section. The only difference lies in the type of test project used. However,
this difference is crucial:

•	 While in MSTest, tests run on .NET 4.0 (via compatibility mode); in
SilverlightUT, they run on the real Silverlight engine. So we can access
all the features, as well as get more reliable and accurate data.

•	 Consequently, references to other Silverlight projects will not be marked
as warnings.

•	 Tests are executed on the browser and not within Visual Studio. This feature
in SilverlightUT allows us to use the actual Silverlight engine.

The execution on the browser makes test automation difficult, and it also makes it
hard to integrate results collection into a Continuous Integration (CI) environment.

Chapter 7

[267]

As we have already anticipated, in order to execute SilverlightUT tests, commands
in the Test menu are not used because this project is not exactly a test project, but
just another Silverlight application. Thus, to assess tests, the test project must be
executed. The following are two ways to do it, depending on how the test project
has been integrated into the solution:

•	 If we include a test page for this project in the web application, the solution
will have to be executed and then we will have to navigate to the page URL

•	 On the contrary, if we did not do so, we will have to build the test project and
open the TestPage.html static page, which should be in \bin\Debug\

The test project execution, whatever the chosen method, will open a Silverlight
application in the browser, which will list the existing tests and assess them. Before
that, the Tag Expressions window allows us to select the tests we want to execute,
as shown in the following screenshot:

The window shown in the previous screenshot is shown for five seconds and, if no
action is performed, the assessment of all tests will begin. In order to execute a subset
of tests, we can enter an expression that filters the desired tests.

Testing your LOB Application

[268]

Now the tests are executed. The progress will be shown until it displays the global
result. In our case, we will see a page similar to the following:

We can have complete information on the execution of the tests, and their result with
an initial summary of the number of tests that have passed or failed. When clicking
on one of the test methods in the tree placed on the left, we can see particular details
of their execution. If it has failed, information on the error and the stack trace will be
shown, as we can see in the following screenshot:

Chapter 7

[269]

As shown in the previous screenshot, we can achieve the same results as in the
previous method, but on a more complex and artificial infrastructure. Nevertheless,
this infrastructure will allow us to test code that makes use of the advanced
Silverlight features, even debugging it by executing the tests in a step-by-step mode.

Testing asynchronous client code with
Silverlight Unit Testing
Now we will see an example of where to test two of these features in action, visual
elements and asynchronism. To do so, let us create a page with a public property
called Message. This property will be initialized in the Loaded event of the Page,
simulating a typical data load in a simple way.

This load can be carried out on a visual element, but to test them,
we would have to make them public (using x:FieldModifier
in the XAML notation), which is not recommended. Besides, even
this practice is unable to simulate certain behaviors, such as a
button press. For this, a framework such as Selenium can be used.
However, the suggested method is to test the View Model, as we
will see in the next section.

1. Locate the Silverlight project (you can use a new one if you want to).
2. In the Solution Explorer window, right-click on it to open the context menu.
3. Select Add | New item…
4. In the Add New Item dialog, select SilverlightPage and write MessagePage.

xaml as its name.
5. Create a handler for the Loaded event of the page, with the following code:

Message = "Hi";

6. Also in the Code-Behind file, create the property:
public string Message { get; set; }

Now, we will create a test of this load behavior.

7. Locate the test project of SilverlightUT (you can also create a new one).
8. In the Solution Explorer, right-click on that project.
9. Select Add | Class….
10. Name it MessagePageTest.cs.

Testing your LOB Application

[270]

11. Replace the class code with the following:

[TestClass]
public class MessagePageTest{
 [TestMethod]
 public void MessageLoadedTest() {
var target = new MessagePage();
Assert.AreEqual("Hi", target.Message);
 }
}

Try to compile the project. It is possible to find errors due to lack of references (such
as System.Windows.Controls.Navigation). In this case, it is enough to add these
references to the test project, or also the using lines on the file. This will be normal
when adding elements, which make use of new libraries, especially of the UI.

When executing the test (through bin\Debug\TestPage.html), you will realize it
has not passed.

We can see the reason in the previous screenshot. The assert statement which
established that the result message had to be Hi has not been passed. The message is
still null. Why? Because, although the page has been created, it has not been loaded.
For this, we have to display it. To avoid having to actually display it, let us make the
most of SilverlightUT, which offers a special test class called SilverlightTest from
which we have to inherit (it will be necessary using the namespace Microsoft.
Silverlight.Testing). This class provides a TestPanel property, a visual element
to which we can add the elements we want to visualize (or whose visualization we
want to simulate). We will do it with the following sentence before the assertion:

TestPanel.Children.Add(target);

Chapter 7

[271]

But this is not enough. There is another crucial feature for the test to be passed, the
management of the asynchronous flow. In fact, the page is not loaded immediately
when it is added to TestPanel, nor is the Loaded event associated with it called. If
we want to pass it, we need to give it time. Add the assertion to an asynchronous
execution queue that provides the SilverlightTest class via the Enqueue methods.
Eventually, the test class will look as follows:

[TestClass]
public class MessagePageTest : SilverlightTest {
 [TestMethod]
 [Asynchronous]
 public void MessageLoadedTest() {
 var target = new MessagePage();
 TestPanel.Children.Add(target);
 EnqueueCallback(() =>Assert.AreEqual("Hi", target.Message));
 EnqueueTestComplete();
 }
}

Let's dive into the details:

•	 The class inherits from SilverlightTest base class.
•	 The method incorporates the [Asynchronous] attribute to indicate this is an

asynchronous test, that is, it will make use of the Enqueue methods.
•	 The EnqueueCallback method adds the message checking to the queue.

So it will be executed when the previous target visualization instruction has
ended completely, including the call to the Loaded event.

•	 This sort of test normally ends with a call to EnqueueTestComplete, in order
to finalize the test, when all the calls in the queue are processed.

If we execute the test now, it will be passed. This mechanism is really powerful, and
allows us to make tests of asynchronous behaviors in an easy way.

In a SilverlightUT project, normal tests mixed with other
tests which inherit from SilverlightTest can be found.
Also, in a single test class, there can be asynchronous
methods mixed with others which are not asynchronous.

Testing your LOB Application

[272]

Isolating unit tests via substitutes
As we have seen, checking individual elements through unit tests is relatively easy.
However, in many instances, the complexity lies in being able to deal with methods
and classes separately, as they usually contain dependencies of other elements, which
are not subjected to test and, what is more, this can make it difficult or impossible.

Let's pose an example, a ViewModel loading a collection of clients via access to a
web service. If we want to test that ViewModel, it is necessary to dispense with the
actual access to the web service. Nevertheless, as the call is in the code, we must
replace the web service client with another object having the same interface, which
does not perform its task, but appears to do so. It is possible to make use of several
substitute strategies:

•	 Fake: Using classes specifically created for a task that returns the values we
need (usually sample data).

•	 Stubs: Configurable classes that can be useful for several tests.
•	 Mocks: Objects which are normally dynamically created. Apart from

configuring their behavior, we can later consult how it has been used. This
is usually known as Mocking, but sometimes this word is used to mean any
type of substitute.

One of the pre-requisites to apply any of these strategies is to use a Dependency
Injection (DI) pattern, so that we can substitute the actual object for a fictitious one.
In brief, this pattern uses an abstract factory that allows redefining what concrete
type of instance is going to be created for any required type (usually an interface).
Some popular frameworks for DI are Unity, Castle Windsor, .NET, StructureMap,
and MEF among others.

To produce these substitutes, there are also many libraries at our disposal, such as
Moq, Rhino Mocks, and Moles. In the following section, we will see an example of
using Moq.

Chapter 7

[273]

LOB application case study: applying
what we have learned
As we have mentioned earlier, testing could be applied in different ways. We could
have written the tests before the code, following a TDD methodology for development,
or Behavior-Driven Development (BDD). But we can also write the tests afterwards,
as part of a quality assurance process, or to be included in a battery of regression tests.
Also tests are a great tool in order to discover the behavior of a system, even more
if it is a legacy system, or a subsystem that is not properly documented. As the code
has already been written before introducing the tests, we could use these as a tool for
discovering or checking that the application runs properly.

Now we are going to write, configure, and run a couple of unit tests, and in the full
sample of this chapter you can find many more of them.

We choose MyBookingsVM as an interesting piece of code for testing:

•	 It has some business logic related to UI.
•	 It is decoupled from external sources (server and database).
•	 It is Silverlight code (no server code, which would be easier to test).
•	 If you have complex code that does not satisfy these conditions, you

should refactor it in order to be properly tested. As a bonus, subsequent
maintenance will be easier.

As we have seen before, even though we are going to test Silverlight code, we might
have written tests on standard .NET. However, in this case, we need to reference
some Silverlight libraries, as System.Windows 2.0.5.0, which are not included
in the compatibility list we provided previously. Therefore, we ought to use
SilverlightUT.

Testing your LOB Application

[274]

In our sample, we find the next problem. We are using SL5
libraries and also SL4 ones. This is not a problem for Silverlight,
but when referencing from .NET, compatibility is not properly
applied, that is, after referencing System.Windows 5.0.5.0,
the compiler still produces an error, as it does not find System.
Windows 2.0.5.0.
Besides, we cannot upgrade every library to SL5, because we are
using third-party libraries such as MVVM Light, which have no
SL5 version at the time of writing.
Some test environments, such as ReSharper, are sometimes
able to run these tests successfully without using SilverlightUT,
as they compile them with different references. Standard Visual
Studio test execution engine cannot do so (it cannot even build it).
The recommendation is to try, firstly if you can run the test in an
automatic way (using a standard .NET 4.0 test project), and use
SilverlightUT or an other Silverlight-specific test framework only
when the first approach does not work.

We start by opening the current trunk solution from the previous chapter, and then
creating a new Silverlight Unit Test Application project (remember, Silverlight
Toolkit should be installed already). Test the project and name it Packt.Booking.
Modules.MyBookings.SLTest. Select SL5 as the version, and host it in our web
project, but uncheck Make it the start page. Remember that you should remove this
testing page before moving to production.

You should get the following screenshot:

Chapter 7

[275]

Now, rename Tests as MyBookingsVMCommandsTest, and replace the empty test
method with the following code:

[TestMethod]
public void CancelChangesCommand_MustBeDisabledIfThereIsNoSelection_
Test()
{
 //Arrange
 var target = new MyBookingsVM();
 target.CurrentBooking = null;
 //Act
 var value = target.CancelChangesCommand.CanExecute(null);
 //Assert
 Assert.IsFalse(value);
}

Testing your LOB Application

[276]

Please note that you are going to write the names of these methods only once,
because they will be automatically executed. Thus, we recommend using a fully
descriptive name that will help you when supervising the test's execution.
Moreover, in this case, the intention of the test is pretty clear, and the Cancel
Changes command must be disabled when there is no booking selected.

Note that we use the test convention called AAA, which
divides the tests into three areas, Arrange, Act, and
Assert, as we introduced earlier. In the next test, the
comment titles must be omitted.

To get the test project compiling, the required library references have to be added.
You can discover missing libraries by building the test project and checking the box,
You can discover missing libraries by building the test project and checking the
errors in the output window. In our case, the following are the list of references:

•	 Packt.Booking.Modules.MyBookings (the library under testing)
•	 Packt.Booking.Common

•	 Packt.Libs.Navigation.Contracts

•	 System.ServiceModel.DomainServices.Client

•	 GalaSoft.MvvmLight.SL4

You should also add the required using statements. Visual Studio 2010 can help
you in this task with their smart tips.

The test can be run by executing our solution (remember that the start project
must be the Web one), and navigating to the new page that has been created for
testing this project, which must be called Packt.Booking.Modules.MyBookings.
SLTestTestPage.html (there is also an aspx version). You can shorten it to ease
the URL navigation. I prefer to use MyBookingsTestPage.html.

Chapter 7

[277]

Perfect! The test was passed, but it is incomplete if we do not test
other cases, so let's write a new test called CancelChangesCommand_
MustBeEnabledIfSelectionHasChanges_Test.It is a pretty clear name,
you should agree. Consequently, we can copy the previous test, remove the
 null assignment (thus keeping the default fake Reservation created on the
no-arguments constructor), and change Assert to true. Nevertheless, we
have to force some changes, and that is a big problem, because the empty
constructor creates a fake Reservation not linked with any context, and
context keeps tracking changes. Therefore, we might also have to deal with
a DomainContext for this unit test, and then it would not be a unit test but
an integration test, and it will also have a lot more complexity.

This can be avoided by mocking the Reservation object, that is, by using a
fake instance that returns the changes when we want it, and is not dependent
on a DomainContext. Any object can be mocked in two ways:

•	 Creating a new fake class with the same interface as the real class
•	 Using a mocking framework, such as Moq

Testing your LOB Application

[278]

The first way is easier to understand, but it is more tedious and requires more code.
So we will use Moq. There are other similar frameworks for mocking, but Moq gets
along especially well with Silverlight, thereby all that we are going to learn can be
easily translated to other frameworks.

First, we need a fake Reservation instance, which always returns true when
HasChanged is called:

varreservationMock = new Mock<Reservation>();
reservationMock.Setup(r =>r.HasChanges).Returns(true);
//Now we can use reservationMock.Object

The previous code generates a mock object for the Reservation class. This object
can be configured to return any value as a response to any call, as it is done with a
Setup call for the HasChanges property, which defines that true should be returned
always. Finally, the mock object is not a Reservation, but it publishes a reservation
instance through its Object property, so that is the object we will use.

Anyhow, before going further with Moq, one important aspect must be underlined.
Both the ways described earlier for mocking objects, are based on supplanting the
object, so we need to create a class, which passes for a Reservation. In order to
accomplish this, we must extend from the Reservation class and override the
HasChanges property, which requires:

•	 Reservation class not sealed
•	 HasChanges member is marked as virtual

None of them are satisfied by our Reservation class, and we cannot change it as it is
a self-generated code. Even more, we cannot make HasChanges virtual because it is
defined in the Entity class, which belongs to a compiled library.

Don't worry. This is a great chance to learn more about testing and refactoring. In order
to mock a Reservation object, we should extract an interface for its class, let's call it
IReservationEntity interface. It should declare every public method, property, and
event of Reservation, and it must be used in place of the entity class everywhere. We
must also declare that the Reservation class implements the IReservationEntity
interface, which can be done in an extension file (as Reservation is partial). You can
see the full IReservationEntity code in the sample.

Chapter 7

[279]

After this refactoring task is performed, now we can write our test dealing with an
IReservationEntity instance rather than with the Reservation class:

[TestMethod]
public void
 CancelChangesCommand_MustBeEnabledIfSelectionHasChanges_Test()
{
 varreservationMock = new Mock<IReservationEntity>();
 reservationMock.Setup(r =>r.HasChanges).Returns(true);
 var target = new MyBookingsVM();
 target.CurrentBooking = reservationMock.Object;
 Assert.IsNotNull(target.CurrentBooking);
 Assert.IsTrue(target.CurrentBooking.HasChanges);
 var value =target.CancelChangesCommand.CanExecute(null);
 Assert.IsTrue(value);
}

As we can see, the interface is implemented by the fake object, by creating a new
Mock generic instance. We then setup the HasChanges property to return true.
Besides, we use the object published by the Mock instance. The rest of the methods
and properties are not mocked up, but we do not care about that while they are not
being called.

We can add the Moq library to the test project in two ways:

•	 Downloading it from its site (see references at the end of the chapter)
•	 Using NuGet, looking for Moq or installing a package called Moq

NuGet (nuget.org) is a package manager developed by Microsoft that integrates
with Visual Studio. It offers a public repository of third-party libraries that can be
added easily to your projects. It gives you two ways of doing that:

1. Using a visual interface, selecting Add Package Reference… in the project
Context menu of the Solution Explorer.

2. Using the Package Manager Console window, that can be opened in the
View menu, change the target project selected in this window, and then
type the command:
install-package Moq

3. After installing Moq, now the code will compile and the two tests will
be passed.

4. If you are interested, you have more tests to read in the sample code of
this chapter.

D
ow

n
lo

a
d
 f
ro

m
 W

o
w

!
e
B
o
o
k

<
w

w
w

.w
o
w

e
b
o
o
k.

co
m

>

Testing your LOB Application

[280]

Summary
We have seen that testing a complete Silverlight application is different depending
on the part of the application we are testing, but it follows some general best
practices and recommendations for other technologies. Fortunately, we can choose
between different utilities, from integrated Visual Studio support to Silverlight-based
framework. Always keep in mind that the easier the test to be executed, the more
useful and more used it will be by us or by our team mates.

We have discovered that asynchronous behaviors require a special approach, and
we have also learned how to test single units of code by isolating them through
refactoring, interfaces, dependency injection, and mocking of external objects.
Testing is a matter of a big extension and of main importance nowadays, but we have
tried to give an introduction so that you can start using it in your LOB applications
with Silverlight. Now you can learn more by reading the additional resources.

In the next chapter, you will learn how to manage errors and other exceptional
situations in your application. There's no perfect program, so even though we
develop a complete set of tests, it will probably be the case where the application
crashes or, moreover, cases where we must manage exceptions. We must even
consider in our tests the exceptions which are thrown or which are caught.
Thereafter, we will learn how to add logging to our application in order to store
errors and status execution of our application.

Additional resources
•	 Test-driven development (TDD): http://en.wikipedia.org/wiki/

Test-driven_development

•	 Behavior-driven development (BDD): http://en.wikipedia.org/wiki/
Behavior_Driven_Development

•	 ExtremeProgramming or XP: http://en.wikipedia.org/wiki/
Extreme_programming

•	 Agile Movement: http://en.wikipedia.org/wiki/Agile_software_
development

•	 SilverlightUnitTesting (SilverlightUT): http://archive.msdn.microsoft.
com/silverlightut

•	 SilverUnit: http://www.codeplex.com/CThru/Wiki/View.
aspx?title=SilverUnit

Chapter 7

[281]

•	 Selenium-Silverlight: http://code.google.com/p/silverlight-selenium/
•	 AgUnit for ReSharper: http://agunit.codeplex.com/
•	 StatLight: http://statlight.codeplex.com/
•	 Arrange-Act-Assert test pattern: http://c2.com/cgi/

wiki?ArrangeActAssert

•	 Mocks Aren't Stubs, by Martin Fowler: http://martinfowler.com/
articles/mocksArentStubs.html

•	 Moq Framework: http://code.google.com/p/moq/

Error Control
As an advanced developer, you probably spend a lot of time handling errors and
catch the exceptions in your application. You try to keep all scenarios in mind where
something can go wrong, but nevertheless, suddenly your application stops working
when one of your most important customers is testing your product. The hardware
may be faulty or the service may not be available due to maintenance. Your job is to
locate this error and to ensure that it will never occur in a future version.

In this chapter, you will learn how to be prepared for such situations and to collect
all necessary information for your software testers. You will learn something about
logging in Silverlight, exception handling, and how you can send this information to
your bug report system. Furthermore, we will discuss how to separate these aspects
from your domain logic.

Following best practices
Exception handling and error control is a complicated topic. You can do it in the
wrong way very easily. Therefore, there are a lot of best practices and coding
guidelines to help you to avoid mistakes. If you have Visual Studio 2010 Premium or
Ultimate, you can directly use the static code analysis tool integrated in Visual Studio
that can also be enabled in the project settings. If you have another version of Visual
Studio, you can use FxCop, which is free and checks your assemblies with the same
rules. These rules are documented and explained in MSDN (Static code analysis at
http://bit.ly/knvNkf).

Exception handling
Many software development communities have a very large thread in the forum
about coding styles horror. Most of the posted code snippets are about exception
handling, which shows how difficult this topic is. Therefore, we must talk about
exception handling first, along with what to do and what not to do.

Error Control

[284]

Getting started
This part gives you an initial introduction to exception handling in Silverlight and
a warm up for all developers who are familiar with this topic.

Try and catch
Let's have a look at the syntax of the easiest expression in exception handling:

try
{
 // Statement
}
catch (FileNotFoundException e)
{
 // Statement
}
catch (IOException)
{
 // Statement
}
catch
{
 // Statement
}

The try block contains the statements that might throw an exception. If no runtime
exception occurs, all statements in the try block will be executed; otherwise the flow
of control immediately jumps to an associated exception handler, if one is present.

You can specify any type that derives from the Exception class in the catch
expression to handle the exception of the appropriate type. Do not catch general
exception types because this can hide runtime problems and complicate debugging.

If no exception handler for a given exception is present, the program stops
executing with an error message. This exception can be handled using a global
exception handler.

If a catch block defines an exception variable, you can use it to get more information
on the type of exception that occurred.

Chapter 8

[285]

The "finally" expression
If you use classes that allocate unmanaged resources and implement the
IDisposable interface, you should call the Dispose method if an exception occurs.

FileStream fileStream = null;
try
{
 fileStream = new FileStream("MyFile.txt", FileMode.Open);
 // Statement
}
catch (IOException)
{
 // Statement
}
finally
{
 if (fileStream != null)
 {
 fileStream.Dispose();
 }
}

The statements in the finally block are always executed even if an exception occurs
that has not been handled before. This is the perfect place to clean up all unmanaged
resources.

You can also use the using statement, which guarantees that resources are released
when a runtime exception occurs.

using (FileStream fileStream =
new FileStream("MyFile.txt", FileMode.Open))
{
 // Statement
}

Nesting using statements can induce exceptions when an object
that has already been disposed is disposed of again. Therefore,
it is recommended not to use a using statement inside another
using statement. Only use a using block for the inner part and
use finally to release the other resources. More information is
provided at Rule CA2202 (http://bit.ly/iCmLw0).

Error Control

[286]

Strategies
Sometimes you cannot do more than just catch the exceptions, but there are no
suitable solutions to solve the problem that caused the error. There are three
strategies you can make use of in this situation:

•	 Caller beware: The first option is not to handle the exception at all. This
might lead to problems when the class is in an undefined state and the
method is invoked at a later point. Furthermore, the user will not be
provided sufficient information about the exception.
You can use the finally block without a catch block to release the resources
and stay in a defined state.

•	 Caller confuse: The second option is the worst. The caller catches the
exception, executes some clean-up operations, and throws the same
exception again. But this does not provide additional information about the
exception.

•	 Caller inform: The caller catches the exception, wraps into another exception
with additional information recorded, and throws it. The stack trace of the
new exception starts at this point, but the original source of the exception is
still available by the wrapped exception object.

public string LoadConfiguration(string file)
{
 Stream stream = null;
 try
 {
 stream = new FileStream(file, FileMode.Open);
 // Read from configuration file.
 }
 catch (FileNotFoundException)
 {
 // Don't handle the exception.
 throw;
 }
 catch (IOException e)
 {
 throw new IOException("Cannot read config file.", e);
 }
 finally
 {
 if (stream != null)

Chapter 8

[287]

 {
 stream.Dispose();
 }
 }
}

We do not catch the FileNotFoundException, because we do not have any
additional information, but handle the IOException to inform the caller that we
could not read the configuration file.

Whenever a new exception is thrown, part of the
information it carries is the stack trace. If you rethrow an
exception, a new stack trace will be created and you will
not have the information where the exception comes from.
You can take a look at Rule CA2200 (http://bit.ly/
j9ouo5) for more details.

Asynchronous patterns
Normal exception handling does not work if you start operations that work
asynchronously in the background. Typical examples are the WebClient and the
Image class from Silverlight. When an exception is raised in the background thread,
you can often get information about this from an event.

AsyncCompletedEventArgs
The AsyncCompletedEventArgs class is used in Silverlight for the WebClient class
and when you add a service reference using Visual Studio and svcutil.exe, using it
is very easy:

static void WebClientExample()
{
 WebClient webClient = new WebClient();
 webClient.DownloadStringCompleted += new
 DownloadStringCompletedEventHandler
 (webClient_DownloadStringCompleted);
 webClient.DownloadStringAsync(address);
}

static void webClient_DownloadStringCompleted
 (object sender, DownloadStringCompletedEventArgs e)
{
 if (e.Cancelled)

Error Control

[288]

 {
 // Notify the user.
 }
 else if (e.Error != null)
 {
 // Notify the user.
 }
 else
 {
 // Do something with the string
 }
}

Only one event is used to get the notification that the operation has been completed.
The event argument has two properties named Cancelled and Error that should be
checked before reading the result of the operation.

Keep in mind that this event is raised in the background thread. You must use the
Dispatcher to change the status of your View, for example, if you want to show an
error text or a message box.

Read the class reference in MSDN to get more information about the Dispatcher at
http://bit.ly/tEtJM3.

ExceptionRoutedEventArgs/
UnhandledExceptionEventHandler
The Image class uses a different approach. Two events exist, where one is used to get
the notification that the image has been opened and the other is used to notify that
the image could not be loaded.

static void ImageExample()
{
 Image image = new Image();
 image.ImageOpened +=
 newEventHandler<RoutedEventArgs>(image_ImageOpened);
 image.ImageFailed += new
 EventHandler<ExceptionRoutedEventArgs>(image_ImageFailed);
 image.Source = source;
}

static void image_ImageOpened(object sender, RoutedEventArgs e)
{
 // Image has been loaded.
}

Chapter 8

[289]

static void image_ImageFailed
 (object sender, ExceptionRoutedEventArgs e)
{
 // Image could not be loaded.
}

In this case, the code for both scenarios is strictly separated and you do not have to
check the state of the event arguments.

The UnhandledExceptionEventHandler is used in the same way but provides some
more information.

Global exception handling
You have learned how to handle all the exceptions so far, but you always have to
keep in mind all edge cases and situations where an exception can occur, which is
more or less impossible. Therefore, the Application object has an event that you can
use to treat the unhandled exceptions.

When you create a new Silverlight application, Visual Studio automatically registers
a method to this event and reports the exception to the browser:

public App()
{
 // More Code
 UnhandledException += this.Application_UnhandledException;
}

private void Application_UnhandledException
 (object sender, ApplicationUnhandledExceptionEventArgs e)
{
 // Dont stop working
 e.Handled = true;
}

The Handled property can be set to true, if you want to continue, but recognizes that
you will probably leave the application in an undefined state.

Understanding the exception types
Eric Lippert made a very good summary about the different kinds of exceptions that
can occur, at his blog http://bit.ly/d2cOZ4. We think this a good starting point
for this part of the chapter.

Error Control

[290]

Fatal exception
Fatal exceptions cannot be handled by the developer. You cannot catch them or
release your resources. They are raised from the system because your machine or
process is out of memory or your hardware is defective. Do not think too much about
these exceptions. Show an error message to the user and try to close your application
in a safe way if possible. Use the global error event handler for this scenario.

Boneheaded exceptions
These exceptions are your own fault and you should be able to prevent or at least
handle them. They are thrown because of a bug in your program code. Try to
reproduce the exception and fix the bug, but do not just catch the exceptions and
show an error message. Typically, such an exception is thrown when you pass a
null reference to a method that requires a valid reference or if you divide a real
number by zero.

It really helps to follow the coding guidelines that are documented by Microsoft
and other developers. Another very useful tool that can help you to avoid
these failures is Code Contracts. It is a static analyzer that follows the different
paths in your application and detects the code lines where an error can occur.
You can describe the contracts in the form of preconditions, postconditions, and
object invariants. This also helps to think about the input and output of methods
to prevent vexing exceptions. (Code Contracts at http://bit.ly/MePem).

Vexing exceptions
Wrong design decisions can cause vexing exceptions. For example, let's suppose you
only expect a number from the user, but the user can enter any string. Therefore,
your parsing routine fails and throws an exception.

Think about the input and output carefully and do not expect that the user will see
how to use your application at the beginning. They may also follow paths through
the dialogs which are unusual.

Exogenous exceptions
These exceptions appear to be somewhat similar to vexing exceptions, but they are
not the result of unfortunate design choices or something that happens inside your
application. Rather, they are the result of external dependencies that cause an error.

Chapter 8

[291]

Think about the previous sample where we try to read from a file. Always catching
the FileNotFoundException seems to be a bad solution. We can try to eliminate the
catch block:

if (File.Exists(file))
{
 using (Stream stream = new FileStream(file, FileMode.Open))
 {
 // Load the config
 }
}

If you compare the code with the previous example where we need a finally block
to close the final stream, you will recognize that the code is shorter and easier to
understand. Unfortunately, it does not work. This code can cause a race condition
in some situations. Another process could have deleted, locked, or moved the file
between the first line of code where the file is checked and the second line where it is
finally opened.

Does it help to lock the file? No because probably the storage has been removed or
the network drive is not available anymore. You have to catch exogenous exceptions
because it could always happen no matter what you do, but use additional methods
and checks to control the flow of your application.

Logging
We are able to catch all exceptions and handle them, if possible. Sometimes it is
not possible to deal with all scenarios and therefore, we must introduce a logging
mechanism to our application in order to collect information that can help to fix a bug.

Logging is more complicated in Silverlight than in a normal client or web application:

•	 We cannot write to files directly
•	 The isolated storage has only limited space, but we can ask the user for more
•	 The application is running client side, the connection to a logging server can

fail, or the server might not be available
•	 The logging information must be persistent
•	 Only a few frameworks for logging exist that also work together

with Silverlight

At the moment, there is only one open source library for logging, which is the
Silverlight port of the Enterprise Application Framework.

Error Control

[292]

Enterprise application framework
The Microsoft Enterprise Library is a collection of reusable software components
(application blocks) designed to assist software developers with common enterprise
development challenges. Application blocks are provided as source code plus
documentation that can be used "as is," extended, or modified by developers to use
on complex, enterprise-level line-of-business development projects (description
from the codeplex site). Enterprise Library is made up of a series of blocks. Each
one is designed to manage a specific cross-cutting concern. In case this concept is
unfamiliar, a cross-cutting concern is a task that you have to perform at different
places in your application and which can be found in more or less any application.
Accomplishing those tasks usually does not fulfill any functional requirement.

The blocks can be used independently from each other and you can decide to use
the logging block only and use other frameworks for caching and validation. This
is very helpful, especially in Silverlight because you can mix different libraries and
reduce the size of your binaries.

Furthermore, the documentation is very good and it is open source—these are the
two advantages of using this library.

Architecture
The logging block decouples two different aspects. First, the domain-specific
code where you decide what to log and which information you want to save in the
logging targets and, second, the more general process where you store the logged
information.

There are many objects involved in this multistep logging process and it is important
to understand how this flow works:

Chapter 8

[293]

Log Formatter

Log Filter
Log Enabled

Filter
Category

Filter Priority Filter

Trace Source
All Events Log

Source

Not
Processed
Log Source

Errors Log
Source

Category
Sources

Trace Listener
Isolated

Storage Trace
listener

Notification
Trace Listener

Remote
Service trace

Listener

Log Writer Is passed to createsLog Entry Client

{

{

{

The following steps are executed for each log item:

1. Creating the LogEntry: The user creates a new log entry by using an instance
of the LogWriter class or by creating a new LogEntry explicitly and passing
it to the logging block.

2. Filtering the LogEntry: The logging block filters the log entry depending
on the configured filters in the settings file. These filters prevent any further
processing and are useful, for instance, when you want to temporarily
disable logging because of performance issues.

D
ow

n
lo

a
d
 f
ro

m
 W

o
w

!
e
B
o
o
k

<
w

w
w

.w
o
w

e
b
o
o
k.

co
m

>

Error Control

[294]

The following filters are provided and you can define your customer filter:
	° LogEnabledFilter: All log entries can be filtered based on a

property. Use this filter to temporarily disable or enable logging.
	° PriorityFilter: Only log entries whose priority is between

minimum and maximum are passed through the next step.
	° CategoryFilter: You can specify a list of categories and set a

property to define if these categories are interpreted as blacklist
or whitelist.

3. Selecting trace sources: The right trace source is selected. It acts as a link
between the log entries and the log targets. Each category has its own trace
source and there also exist some built-in trace sources for all log entries—the
entries that have not been processed and do not belong to any category and
the entries that could not be processed due to an error while logging.

4. Selecting trace listeners: In the fourth step, the trace listeners that are
associated with the current trace source are selected.
Only three listeners exist, but you can also define your own custom listener:

	° IsolatedStorageTraceListener: The entries are stored in the
isolated storage. There are also some classes that can be used to read
the log entries.

	° RemoteServiceTraceListener: The entries will be passed to a
storage that also writes the log entries to the isolated storage. After
a given period of time, the messages from the storage will be sent to
the service. If this service is not available, the listener tries to send the
log entries later. Therefore, log entries cannot be lost.

	° NotificationTraceListener: It is the most simple trace listener
that just invokes an event. This can be useful when you want to
trigger custom code.

5. Formatting the log entry: In the final step, the log entry is formatted and
finally written to the log destination. By default, a text formatter is used,
which uses a text template with placeholders.

Practice
We have already learned enough about the theory and the concept of the Enterprise
Library and also about exception handling a few pages back. Now it is time to start
with some practice and build a sample application where we can test the concepts.

Chapter 8

[295]

First, download and install the installer for the Microsoft Enterprise Library 5.0
Silverlight Integration Pack, which can be found at http://bit.ly/lltopI.

Now, create a new Silverlight application project and add the references to the
following assemblies, which have been installed in the global assembly cache:

•	 Microsoft.Practices.EnterpriseLibrary.Common.Silverlight, which can be
found by the name Enterprise Library Shared Library

•	 Microsoft.Practices.EnterpriseLibrary.Logging.Silverlight, which can be
found by the name Enterprise Library Logging Application Block

•	 Microsoft.Practices.ServiceLocation
•	 Microsoft.Practices.Unity.Silverlight

The next step is to initialize the logging system. Enterprise Library is using Unity
Application Block to resolve all dependencies for a component.

Unity is a lightweight extensible dependency injection container that is also available
at Codeplex. At some points, it can be compared with Microsoft Extensibility
Framework. It injects other components by the constructor or properties, but has no
mechanisms to load and manage your components with catalogs. Instead you have
to register the types explicitly by code.

The core system of the Enterprise Library registers the components and you can use
unity to create a new instance of the main UserControl and inject the dependencies
by the constructor.

Error Control

[296]

At the moment, we will only need the LogWriter, which is our main entry point to
create log messages.

public partial class MainPage : UserControl
{
 public LogWriter LogWriter { get; private set; }
 public MainPage(LogWriter logWriter)
 {
 LogWriter = logWriter;
 InitializeComponent();
 }
}

We will also replace the new statement in App.xaml.cs where we create our main
view to resolve the dependencies with Unity.

private void Application_Startup(object sender, StartupEventArgs e)
{
 this.RootVisual =
 EnterpriseLibraryContainer.Current.GetInstance<MainPage>();
}

When the application is debugged, an exception will be thrown, which is a little bit
obtrusive, but implies that the logging block has to be configured before using it.

Configuring the Enterprise Library in old versions was very hard, which is
probably one of the main reasons why most developers do not use it in real-world
applications. In Silverlight, it is much easier. The configuration is an XAML file and
you have all the same helpers that you also have when views are created manually,
such as auto completion.

<ResourceDictionary>
 <el:LoggingSettings DefaultCategory="default"
 x:Key="loggingConfiguration"
 LogWarningWhenNoCategoriesMatch="True">
 <el:LoggingSettings.TraceListeners>
 <el:NotificationTraceListenerData Name="event"/>
 </el:LoggingSettings.TraceListeners>
 <el:LoggingSettings.TraceSources>
 <el:TraceSourceData Name="default" DefaultLevel="Error">
 <el:TraceSourceData.TraceListeners>
 <el:TraceListenerReferenceData Name="event"/>
 </el:TraceSourceData.TraceListeners>
 </el:TraceSourceData>
 </el:LoggingSettings.TraceSources>
 </el:LoggingSettings>
</ResourceDictionary>

Chapter 8

[297]

To reduce the size, the previous code snippet does not contain the declarations of the
XML namespaces. You can find this in the code bundle of this chapter.

What we do here is to define a trace source named "default" and link this trace source
with the trace listener named "event". Whenever we log a new message with level
Error or lower, this log entry is passed to the trace listener that we defined (Values
for the enumerations range from the lowest for Critical to the highest value for
Verbose). All other log entries will be discarded.

We said before that the NotificationTraceListener sends the log entries to another
class that provides access to an event. This class implements the ITraceDispatcher
interface, which can also be injected by the constructor.

public MainPage(LogWriter logWriter, ITraceDispatcher dispatcher)
{
 LogWriter = logWriter;
 dispatcher.TraceReceived +=
 (sender, e) =>
 {
 MessageBox.Show(((LogEntry)e.Data).ToString());
 };

 InitializeComponent();
}

It can be tested by adding two buttons to our view. One of them writes to the
LogWriter with level set to Verbose, the other uses the Error level. A message box
will only be seen when the first button is clicked.

Changing requirements do not affect our code. You only have to modify the
configuration to use another listener, for example, if you want to write the log entries
to the isolated storage.

Exception handling
Let's now combine error logging with exception handling. The same scenario as
previously will be used. We want to open a file:

public void OpenFile(string fileName)
{
 LogWriter.Write("Start: OpenFile");
 try
 {
 using (FileStream fileStream =
 new FileStream(fileName, FileMode.Open))

Error Control

[298]

 {
 // Do something
 }
 }
 catch (FileNotFoundException)
 {
 LogWriter.Write("File not found");
 throw;
 }
 finally
 {
 LogWriter.Write("Completed: OpenFile");
 }
}

We do not handle the exception but need a lot of additional code that does not
belong to our business logic and the functional requirements. This code is repeated
very often and therefore does not follow the DRY (Don't Repeat Yourself) principle.

The first idea leads to integrate a helper method, which accepts the name of the
method and an action that is invoked inside the try block.

public static class LogHelper
{
 public static void LogOperation
 (this LogWriter writer, string name, Action action)
 {
 try
 {
 writer.Write("Started: " + name);
 action();
 }
 catch
 {
 writer.Write("Failed: " + name);
 throw;
 }
 finally
 {
 writer.Write("Completed " + name);
 }
 }
}

Chapter 8

[299]

Our code is much simpler now:

public void OpenFile(string fileName)
{
 LogWriter.LogOperation("OpenFile",
 () =>
 {
 using (FileStream fileStream =
 new FileStream(fileName, FileMode.Open))
 {
 // Do something
 }
 });
}

It looks better, but logging has not been separated from the business logic and this is
exactly the situation which PostSharp is perfect for.

PostSharp
PostSharp is a framework that allows developers to use Aspect-oriented
programming (AOP). AOP is a paradigm to separate cross-cutting concerns from
the core-level concerns. Typical scenarios are logging, tracing, exception handling,
and transaction management. But PostSharp can also be used to implement the
INotifyPropertyChanged interface for every property of your ViewModel with one
line of code.

PostSharp is not only a class library but also provides some post-build steps, which
will be triggered automatically when the references are added to the assemblies. It
provides a wide range of base attributes, which can be used to define custom code
that is injected into the members and classes where you assigned them. It is easier to
understand by looking at a simple example.

First, we download the free community edition of PostSharp from the website
(http://bit.ly/dDppYP).

The next step is to add a reference to the PostSharp assembly and create a new class
named LoggingAttribute. This is a custom attribute that can only be applied to
methods and extends the OnMethodBoundaryAspect that comes with PostSharp.

[AttributeUsage(AttributeTargets.Method)]
public class LoggingAttribute : OnMethodBoundaryAspect
{

}

Error Control

[300]

The OnMethodBoundaryAspect is an attribute, which when applied to a method
defined in the current assembly, inserts a piece of code before and after it. This is
perfect for our needs, because we want to add some log messages before and after
the method.

Before doing some logging, we need a reference to the LogWriter. This can be done in
the same way as the main view was created. We just ask Unity for the right instance.

protected LogWriter LogWriter { get; set; }
public LoggingAttribute()
{
 LogWriter =
 EnterpriseLibraryContainer.Current.GetInstance<LogWriter>();
}

Finally, some methods can be overwritten and our log entries posted. PostSharp
provides all the information we need, like the name of the method or parameters that
have been passed to it.

The final code will look similar to the following:

[AttributeUsage(AttributeTargets.Method)]
public class LoggingAttribute : OnMethodBoundaryAspect
{
 private LogWriter LogWriter { get; set; }
 public LoggingAttribute()
 {
 LogWriter =
EnterpriseLibraryContainer.Current.GetInstance<LogWriter>();
 }

public override void OnEntry(MethodExecutionArgs args)
 {
 LogWriter.Write("Entry: " + args.Method.Name);
 base.OnEntry(args);
 }

 public override void OnExit(MethodExecutionArgs args)

Chapter 8

[301]

 {
 LogWriter.Write("Completed: " + args.Method.Name);
 base.OnExit(args);
 }

 public override void OnException(MethodExecutionArgs args)
 {
 LogWriter.Write("Failed: " + args.Method.Name);
 base.OnException(args);
 }
}

The code in the OnEntry method is called before the body of the method is invoked,
the OnExit method is called at the end of the method in a finally block and the
OnException method is called when an exception occurs by injecting a catch block
to our method.

We only have to assign the attribute to our method and when this method is called,
the log entries will be created before and after the method.

[Logging]
public void OpenFile(string fileName)
{
 using (FileStream fileStream =
 new FileStream(fileName, FileMode.Open))
 {
 // Do something
 }
}

If this version is compared to the method with the other solutions, we will see that it
is definitely easier to read and understand.

Our assembly can be opened now with Reflector to see what PostSharp did to inject
our code. Reflector is a tool to browse, analyze, and debug the .NET code. It is
available for a very low fee, but there are also some similar tools that are free to use.
You can download the trial version from the website http://bit.ly/gNzOuK.

Error Control

[302]

As a free alternative, I recommend ILSpy (http://wiki.sharpdevelop.net/
ILSpy.ashx).

Just open the assembly, select your assembly, and then select any member. You can
see the decompiled source code at the right side now. This is also very helpful for
taking a look at the implementation of the Silverlight Framework to understand how
some classes work.

Now, you can see that the generated code is not much different from our first version
of this method, but our code looks very nice and only contains the business logic,
without cross-cutting concerns.

Chapter 8

[303]

The combination of Enterprise Library and PostSharp is very powerful. There is a very
strict separation between your code and the logging aspect, but you can still use the
advanced features of the logging block like listeners and XAML configuration files.

Using PostSharp usually brings a lot of ideas to our minds. The product page also
shows a lot of examples and there are quite a lot of additional open source libraries
that contain more aspects.

We would like to finish this part of the chapter with a last example. Our goal is
to trace the performance of some methods. Imagine you get a request from your
customer, who states that sometimes the application is very slow. A profiler was
used, but at your powerful machine everything is fine and you do not see any issues.
You become suspicious that one of the ten methods is very slow at the machine
of your customer and, therefore, it would be good to log how long they need for
execution. The methods can be changed, but it is easier to make an aspect that
measures the time.

[AttributeUsage(AttributeTargets.Method)]
public class TracePerformanceAttribute : OnMethodBoundaryAspect
{
 private Stopwatch Stopwatch { get; set; }
 private LogWriter LogWriter { get; set; }
 public TracePerformanceAttribute()
 {
 LogWriter =
 EnterpriseLibraryContainer.Current.GetInstance<LogWriter>();
 }

public override void OnEntry(MethodExecutionArgs args)
 {
 _watch = Stopwatch.StartNew();
 }

 public override void OnExit(MethodExecutionArgs args)
 {
 _watch.Stop();
 string message =
 string.Format("Time for execution {0}: {1}",
 args.Method.Name,
 _watch.Elapsed);

 LogWriter.Write(message);
 }
}

Error Control

[304]

Before the body of our method is executed, the OnEntry() method of our aspect is
called. Create and start a new stopwatch and stop this after the body in the finally
block. The elapsed time is reported to our logging system.

This aspect can be assigned in the same way as the logging attribute:

[Logging]
[TracePerformance]
public void OpenFile(string fileName)
{
 using (FileStream fileStream =
 new FileStream(fileName, FileMode.Open))
 {
 // Do something
 }
}

Reporting bugs
We are now able to log exception and debug information, but finally the developers
and testers must get this information.

One option is to use the service logger from the Entity Library. However, this is too
much information and our customers will probably not be happy when they notice
that we are collecting information about the usage of the application.

Therefore, it is a better idea to show a dialog when the application is crashing and
display a button with which the user can send a report to our service.

This report must be sent to different targets. We want to send an e-mail to the head of
the testing team and also want to create a new work item in our bug report system.

Architecture
The system is implemented using WCF. The server provides multiple services, which
implements the same interface. The Silverlight application creates a new bug report
and sends it to one of these services, so that the service forwards this item as an
e-mail to a mail box of one our developers, or creates a new work item in our Team
Foundation Server.

The Composite Bug Report Service forwards the item to a list of registered services
and can be used if we want to inform several people through different channels, but
the Mail Bug Report Service or TFS Bug Report Service can also be used directly in
the application, if you think this feature is not necessary.

Chapter 8

[305]

Server

Mail Bug Report
Service

Silverlight
Application

TFS Bug Report
Service

TFS Bug Report
Service

Composite Bug
Report Service

This service implements the IBugReportService interface:

[ServiceContract]
public interface IBugReportService
{
 [OperationContract]
 void Notify(BugReport bugReport);
}

The BugReport class is a data contract with several properties that stores the
information that is interesting for us.

Service implementation
The Composite Bug Report Service is very simple:

public class CompositeBugReportService : IBugReportService
{
 public List<IBugReportService> Services = new
 List<IBugReportService>();
 public CompositeBugReportService()
 {
 Services = new List<IBugReportService>();
 Services.Add(new TfsBugReportService());

 Services.Add(new MailBugReportService("testers@company.de"));
 Services.Add(new MailBugReportService("architect@company.de"));
 }

Error Control

[306]

 public void Notify(BugReport bugReport)
 {
 foreach (IBugReportService service in Services)
 {
 service.Notify(bugReport);
 }
 }
}

As mentioned previously, Composite Bug Report Service just contains a list of other
services and forwards the bug report. This is very powerful, because it can be used
as an adapter to our internal process for new bugs. The system can be extended by
reading the configuration for this service from a configuration file.

As another illustration, we can implement the TFS Bug Report Service. This decision
was made because the Team Foundation Server is used for our daily work and also
because it has a very good API and an SDK that is shipped with Visual Studio to get
access to almost any information.

If you use another Bug Tracker, you can move to the next part of the chapter, but
probably the next site can convince you to change your infrastructure.

Usually, a Client Access License is necessary to work with the Team Foundation
Server, but if somebody only posts new work items and views the work items he has
created, they do not need such a license.

First, add some reference to the following assemblies:

•	 Microsoft.TeamFoundation.dll

•	 Microsoft.TeamFoundation.Client.dll

•	 Microsoft.TeamFoundation.WorkItemTracking.Client.dll

It is also a good idea to set up a new user for our service that has access to our project
in the Team Foundation Server, but you can also use an existing user.

The next step is to establish a connection to our project:

NetworkCredential credential = new
NetworkCredential("ServiceUser", "Password");
TfsTeamProjectCollection collection
= new TfsTeamProjectCollection(new
 Uri("http://localhost:8080/Tfs/Collection"), credential);

Let's create a NetworkCredential object with the name and password of our
user. Now, establish a connection to the team project collection to get access to the
different services of the Team Foundation Services.

Chapter 8

[307]

The service that is responsible for our items like Tasks and Bugs is the
WorkItemStore, which also has a reference to an object that can be used to post new
WorkItems to our project.

WorkItemStore workItemStore = collection.GetService<WorkItemStore>();
Project project = workItemStore.Projects["My Project"];

This object can now be used to create new work items.

We only instantiate a new object of the WorkItem class and copy all the information
from our bug report to this object. Finally, we can send this work item to the Team
Foundation Server.

public void Notify(BugReport bugReport)
{
 WorkItem workItem = new WorkItem(project.WorkItemTypes["Bug"]);
 workItem.Title = bugReport.Title;
 workItem.Description = bugReport.Text;
 // Other properties
 project.Store.BatchSave(new WorkItem[] { workItem },
 SaveFlags.None);
}

It is very easy to get it running, but if you plan to use a similar system, it is advisable
to secure your service and also use the configuration file to store the credentials, the
name of the project, and some other settings. If required, this service can be reused
for different applications.

Client implementation
The last step is to use this service in our application. Therefore, two concepts are
used from the previous parts of the chapter. For instance, we use the global exception
handler to send a new bug report when an unhandled exception occurs and we use
the Enterprise Library in combination with the isolated storage to save our log items.

First, change the configuration a little bit to send all log entries to an
IsolatedStorageTraceListener:

<el:LoggingSettings DefaultCategory="default"
 x:Key="loggingConfiguration"
 LogWarningWhenNoCategoriesMatch="True">
 <el:LoggingSettings.TraceListeners>
 <el:IsolatedStorageTraceListenerData Name="defaultListener"
 RepositoryName="defaultRepos" />
 </el:LoggingSettings.TraceListeners>
 <el:LoggingSettings.TraceSources>

Error Control

[308]

 <el:TraceSourceData Name="default" DefaultLevel="All">
 <el:TraceSourceData.TraceListeners>
 <el:TraceListenerReferenceData Name="defaultListener"/>
 </el:TraceSourceData.TraceListeners>
 </el:TraceSourceData>
 </el:LoggingSettings.TraceSources>
</el:LoggingSettings>

Then, add a service reference to our TFS Bug Report service and subscribe to the
global exception handler, as shown in the first part of this chapter, to handle all
unhandled exceptions.

The Enterprise Library exposed an interface of the
IsolatedStorageLogEntryRepository class with the same name that was specified
in the configuration as the repository name using Unity. Resolve a reference to this
object to get the stored work items.

private void Application_UnhandledException
 (object sender, ApplicationUnhandledExceptionEventArgs e)
{
 IsolatedStorageLogEntryRepository repository =
 EnterpriseLibraryContainer.Current.GetInstance
 <IsolatedStorageLogEntryRepository>("defaultRepos");
 IEnumerable<LogEntry> logEntries =
 repository.RetrieveEntries();
 // Send report to service.
 }

Finally, create a new ErrorReport that also contains information about the
LogEntry and send this report to our service using the classes that have been
generated by Visual Studio when we added the service reference.

Do not forget to ask the user before hand and have a look at the code for this chapter
in order to get an impression of how this will look in your application.

LOB application case study: applying
what we have learned
The last step for this chapter is to extend our sample application with some error
handling mechanisms. We will use the following approach:

Chapter 8

[309]

Server side
At the server side, a new table is introduced where we store all the messages.
Whenever a new exception is raised, we query if such a record already exists in the
database. If not, we generate and fill a new entity. We also use a category value,
which identifies if it is a server-side or client-side error.

private static int StoreError(ErrorItem errorItem, int category)
{
 int errorCode = -1;

 using (BookingsEntities entities = new BookingsEntities())
 {
 // Query if a record exists.
 Error error = QueryErrorItem(errorItem, category, entities);

 if (error == null)
 {
 // If no record exists,
 // create new one.
 AddErrorItem(errorItem, category, entities);
 }

 // Combine the category with error id to
 // create the error code.
 errorCode = category * 1000 + error.ID;
 }

 return errorCode;
}

The error code is a combination of the category value and the identity of the
entity. I also added a new value object, the ErrorItem class, which contains all the
information not managed by this code.

By overloading the OnError method of the DomainContext class, we can catch all
exceptions on the server side. The method described previously is used to generate
the error code and send this error code only to the client using the DomainException
class. In this way, we ensure that no sensitive data is exposed. Furthermore, the error
code is used for bug fixing and support.

protected override void OnError(
DomainServiceErrorInfo errorInfo)
{
 Exception exceptionObject = errorInfo.Error;

Error Control

[310]

 ErrorItem errorItem =
 new ErrorItem
 {
 ExceptionType = exceptionObject.GetType().FullName, Message =
exceptionObject.Message, Details = exceptionObject.StackTrace
 };

 int errorCode = StoreError(errorItem, CategoryServer);

 errorInfo.Error =
 new DomainException
 {
 ErrorCode = errorCode
 };

 base.OnError(errorInfo);
}

Now, the ErrorItem class comes into the picture again. We use this class as a data
contract for a custom method in the DomainService to send details about unhandled
client exceptions to the server. This follows the approach in the part where we
discussed bug reporting.

public int StoreMessage(ErrorItem errorItem)
{
 try
 {
 int errorCode =
 StoreError(errorItem, CategoryClient);

 return errorCode;
 }
 catch
 {
 return LoggingErrorCode;
 }
}

What is special about this method is that we use a custom error code that indicates
that an exception occurred during error handling and that we just use a catch
operation without doing something with the exception. Generally speaking, it is not
a good idea, but in this case it is fine, because if we try to handle or log the exception,
we might end up in an infinite loop.

Chapter 8

[311]

Client side
Although we are talking about the Silverlight part of our application now, we must
also handle the server-side exceptions at the Client.

The flow of server-side exceptions is described by the following figure:

ViewModel

Make Request

Show Message Box

CRUD Operation

Exception

Get ErrorCode

ErrorCode

Error

RIA ServiceModel Database MainPage

ErrorMessage with ErrorCode

Exception with ErrorCode

A ViewModel makes calls to a method of the model, which makes a request to the
RIA Service, which in turn forwards this request as CRUD (Create, Read, Update,
and Delete) operation to the database using Entity Framework. An error occurs and
an exception is thrown. We handle this exception using the OnError method in the
RIA Service and make another request to the database to get the error code.

We transport this error code to the client using the DomainException class, which is
handled in a model. We can identify whether it is such an exception or not, because
exceptions that are raised from the server-side validations usually do not have an
error code. If the error code is not zero, we format a string and send the text to the
MainPage using an MVVM Light message. The MainPage is responsible for showing
a dialog; in this case, we just use a message box. You should design a custom dialog
that explains in the friendliest way that something is broken.

For unhandled client-side exceptions, a logging system is also introduced. The
main goal is not to log at too many places but to be able to maintain and extend the
application. Therefore, only the model itself, which provides all available business
operations, produces error items.

Error Control

[312]

The methods are changed in the following way:

public void AddFloor(Floor floor)
{
 Trace("Floor Adding");

 Context.Floors.Add(floor);

 SubmitChangesAsync();

 Trace("Floor Added");
}

As discussed earlier, this adds a lot of noise to the code. Only half of the lines are
domain-specific code. So it is a better idea to use some functional programming or,
better still, to use PostSharp to separate these cross-domain concerns. However, we
wanted to keep it simple and not to force you to install PostSharp, so we decided to
use the simplest approach.

We use the EnterpriseLibrary and store all LogItem objects in the isolated storage.
The settings are similar to what we saw in this chapter earlier.

Whenever an unhandled exception occurs, we collect all log items from the isolated
storage and create an error item.

private static ErrorItem BuildErrorItem(Exception exception)
{
 IsolatedStorageLogEntryRepository repository =
 GetRepository();

 StringBuilder stringBuilder = new StringBuilder();

 foreach (LogEntry entries in repository.RetrieveEntries())
 {
 stringBuilder.AppendLine(entries.Message);
 }

 string details = stringBuilder.ToString();

 ErrorItem errorItem = new ErrorItem();
 errorItem.ExceptionType = exception.GetType().ToString();
 errorItem.Message = "Unhandled exception occured";
 errorItem.Details = details;

 return errorItem;
}

Chapter 8

[313]

We instantiate a new object of our RIA Services Domain Context and send this error
item to the service. As a result, the error code is received and our message is used to
show a dialog with this code.

private void Application_UnhandledException(object sender,
 ApplicationUnhandledExceptionEventArgs e)
{
 ErrorItem errorItem = BuildErrorItem(e.ExceptionObject);

 SendMessage(errorItem,
 errorCode =>
 {
 string errorMessage = CreateMessage(errorCode);

 Messenger.Default.
 Send(new ErrorMessage(errorMessage));
 });
}

private static void SendMessage(ErrorItem errorItem,
Action<int> callback)
{
 BookingDomainContext domainContext =
 new BookingDomainContext();

 InvokeOperation<int> result =
 domainContext.StoreMessage(errorItem);

 result.Completed += (sender, e) =>
 callback(result.Value);
}

Error Control

[314]

This process is summarized by the following figure:

Exception

Get Logitems

LoggerApp RIA Service Database

ErrorMessage with ErrorCode

ErrorCode

Logitems

Show Message Box

MainPage

StoreError

Get ErrorCode

ErrorCode

We handled both types of exceptions, server-side as well as client-side, but there are
still a number of tasks to perform to improve the system:

•	 Use a separate database for the errors, so that when the normal database gets
broken there is still a second system for logging. Use a bug reporting system,
such as a work item system of the Team Foundation Server, to manage your
bugs and exceptions and automatically send the errors to this system.

•	 Identify critical errors and design more categories to provide more
information to the user. Design a notification system for these kind of bugs to
notify your support team that something very critical has happened.

•	 Use a normal logging system, such as NLog or Log4net, for the server to trace
and write the information to a file. This way, you still have some information
in the log when your database crashes.

Summary
In this chapter, we have learned a lot about error control. Do the best you can to
write an application that is very stable. The previous chapter about Architecture and
Unit Testing can help you to design your system for changing requirements and to
test it using automated tests.

D
ow

n
lo

a
d
 f
ro

m
 W

o
w

!
e
B
o
o
k

<
w

w
w

.w
o
w

e
b
o
o
k.

co
m

>

Chapter 8

[315]

For all situations out of your control, you now have the tools to get the best out of
it. Try to avoid these situations and design a nice dialog with some details about the
exception to give your customers and users the feeling that this will be fixed soon.

Additional resources
There are a lot of free materials about error handling on the Web, especially
discussions about clean code, in blogs of members of the .NET community. It is well
worth reading them, but it is most important to go through your code and to think
about what can go wrong and how you can improve it. The materials that are most
important in this process are as follows:

•	 Static code analysis: http://bit.ly/knvNkf
•	 Code Contracts: http://bit.ly/MePem
•	 Introduction to Exceptions and Exception Handling at MSDN:

http://bit.ly/jKJmpb

•	 Vexing exceptions, Eric Lippert: http://bit.ly/d2cOZ4
•	 Enterprise Library at Codeplex: http://bit.ly/diZrXW
•	 Installer for Enterprise Library 5.0 Silverlight Integration Pack:

http://bit.ly/lltopI

Integration with other
Web Applications

Although the main aim of this book is to give instructions for the development
of an LOB application in Silverlight from scratch, there are two important details
that cannot be forgotten. First of all, Silverlight is intended for web development;
secondly (but not less relevant), Silverlight is just a newborn in the web world. Thus,
web development with Silverlight should not be regarded as something exclusive,
but as complementary to traditional web development.

On the other hand, given the fact that we create RIA applications with Silverlight
and the term application could be changed with widget, Silverlight can be understood
as an extension for applications that already exist. Thanks to Silverlight, great
interactive and visual value is added to applications, reducing complexity and time
for development.

That's the reason why Microsoft wanted to offer a communication channel between
Silverlight and the outer world, understanding outer world as a combination of
HTML and JavaScript (the traditional Web).

HTML

Silverlight JavaScript

Integration with other Web Applications

[318]

Page architecture
If an HTML page containing a Silverlight application is dissected, it can be seen that
the application is contained in an object, which is part of the page Document Object
Model (DOM). Consequently, an HTML page (or web application) can hold HTML
forms, JavaScript code and, in our case, one or more Silverlight components.

A Document Object Model (DOM) is essentially an Application
Programming Interface (API), which provides a standard object
collection to represent HTML documents, a standard model of
how these objects can be combined, and a standard interface to
access and handle them. Through DOM, applications can access
and modify the content, structure, and style of HTML documents.

An HTML page can suffer alterations both in content and in style. JavaScript is in
charge of them. If we had a typical RIA application developed in JavaScript and
Ajax, JavaScript could be considered as an HTML page engine, since it is in charge
of handling and loading the page elements. Someone could think this is not entirely
true, as an ASP.NET web form application does not need JavaScript in order to
interact with the elements of the page. But this is a completely different scenario and,
as we have already seen in previous chapters, we would lose the application status
in every postback this way, being necessary to establish it again in every post to the
server. The case we are contemplating, where Silverlight is placed, consists of HTML,
JavaScript, and Ajax.

Silverlight could be seen as a liberation from the JavaScript world but, even without
noticing, there still remains a little trace of it. When adding a Silverlight object to an
HTML page, everything begins with the initialization of an element type Object,
which, of course, is done via JavaScript.

Communication between an ASPX page
and Silverlight
When adding a Silverlight application to an ASPX page, we can establish different
paths for the information flow between them:

•	 Parameters in the URL: It is possible to add parameters to the URL both
from the ASPX page and the Silverlight application. This is a way to initialize
a Silverlight application, since the application goes back to a starting point in
every postback.

Chapter 9

[319]

•	 Cookies: As with any website, we can access the browser cookies. This access
can be used as a way to authenticate a user in the Silverlight application and
for the initial configuration.

•	 Session: Instead of transferring the information in the URL, it can be stored
in the session of the .NET application. Data is accessed from Silverlight via a
call to a web service.

•	 Initparams: Use the initparams of the Silverlight Object tag initialization.
This can allow us to inject some startup values and collect them when our
Silverlight app is instantiated.

As an example, let's see how the URL can be used to transfer information from
an ASPX page to a Silverlight application. In the example, we will create a web
form with a couple of textboxes and a button, which will send the information to
the server. The Silverlight application will have the same content, that is, a pair of
textbox controls and a button. However, although the result does not make much
sense, it will show that it is a postback for a Silverlight application. This is a great
example for understanding the postback behavior in a .NET application and its effect
on an embedded Silverlight application hands on!

Create a new Silverlight project with the name SilverlightURL in the same way as
you did in previous chapters of the book. As usual, be sure that you have created the
associated web project. Unlike the rest of the examples we've dealt with, in this case,
the content will be added to the ASPX page and the associated Code-Behind file. The
aim of this example is to achieve something similar to the following screenshot:

Integration with other Web Applications

[320]

As can be seen, there are two forms. The ASPX Form is a web form with the
following .NET controls:

•	 TextBox: This will contain the text that will be sent to the Silverlight
application

•	 Label: This will show the message received from the Silverlight application
•	 Button: This will postback on the form

The Silverlight Form is actually the Silverlight application and consists of similar
controls to those seen in the ASPX Form. Once both applications have been laid out,
we can begin to give content to the initialization events (Page_Load and MainPage)
and the buttons of both applications.

For the web form application, the Code-Behind of the Default.aspx page will be
as follows:

public partial class _default : System.Web.UI.Page
{
 protected void Page_Load(object sender, EventArgs e)
 {
 // Check if the URL has parameters
 if (Request.QueryString.Count > 0)
 //and check if one of them is what we are waiting for
 lblReceivedValue.Text =
 Request.QueryString["silverlightparam"];
 }

 protected void btnSendData_Click(object sender, EventArgs e)
 {
 // Reload the page adding to the URL a parameter
 // with the text entered by the user
 Response.Redirect("default.aspx?aspxparam=" +
 txtData.Text);
 }
}

Check if we have the parameter sent from Silverlight in the Page_Load of the page.
If so, show it in a label object.

The handler of the Click event of the button reloads the page, but altering the URL,
since it adds the text the user has been able to add in the form.

Chapter 9

[321]

The Silverlight application code is practically identical. The only detail to
highlight now is the use of the HtmlPage object, which gives us an interface
to handle the elements of the page DOM. This class will be dealt with in more
depth later in this chapter.

public partial class MainPage : UserControl
{
 public MainPage()
 {
 InitializeComponent();

 IDictionary<string, string> qString =
 HtmlPage.Document.QueryString;
 string queryParam ="";
 // Check if the URL has parameters
 if (qString.Count > 0)
 //and check if one of them is what we are waiting for
 if (qString.Keys.Contains("aspxparam"))
 queryParam = qString["aspxparam"];

 lblDataFromASPX.Text = queryParam;
 }

 private void btnSendData_Click(object sender, RoutedEventArgs e)
 {
 // Reload the page adding to the URL a parameter
 // with the text entered by the user
 HtmlPage.Window.Navigate(new
 Uri("http://localhost:8509/default.aspx?silverlightparam="
 + txtDataToSend.Text));
 }
}

When initializing the Silverlight application, the parameters of the URL are checked,
showing a message if the parameter aspxparam was provided. The event of the Send
Data button forces a new load of the page.

What we have seen so far could be considered as an introduction to remind us of the
fact that Silverlight is still on the Web and is part of a website (including the pros and
cons of using querystring). Next, we will show how it is actually possible to interact
with the page elements.

Integration with other Web Applications

[322]

Accessing Silverlight from JavaScript
Here's where many web developers really feel at home. They love JavaScript! The
reader may wonder what JavaScript lovers are doing with Silverlight. There are a
few reasons for this. Both JavaScript and Silverlight complement each other. On the
other hand, the architecture we can build with JavaScript, even if we are extremely
organized, cannot match the tidiness we can achieve with Silverlight.

The access to a Silverlight object from JavaScript code is quite easy. It is only
necessary to have the Silverlight object instantiated and specify which methods
will be accessed from JavaScript in Silverlight.

To register a Silverlight object, we will use the event onLoad of the element of the
type Object, which contains the Silverlight application in the HTML page, to obtain
an instance of the Silverlight application as soon as it is loaded.

<object data="data:application/x-silverlight-2,"
 type="application/x-silverlight-2" width="100%"
 height="100%" id="silverlightApp">
. . .
 <param name="onLoad" value="pluginLoaded" />
. . .
. . .
</object>

What is shown in the previous HTML code is the way to show the host Silverlight
object the name of the JavaScript function, which it has to execute when the
Silverlight object has been loaded. Now, as it can be grasped from the following
source code, the pluginLoaded function obtains it and stores a reference to the
Silverlight object.

// Silverlight Object Reference
var slCtl = null;

// Silverlight Loaded Event Handler
function pluginLoaded(sender, args) {

 slCtl = sender.getHost();
}

Inside the object tag, we can specify initparams that can
be processed by the Silverlight application once it is launched.

Chapter 9

[323]

Exposing methods and functions
From now on, we have a door (still closed) towards objects and methods defined in
the Silverlight application. The next step will be to open that door and declare which
methods will be available from Silverlight. To do so, we will simply define methods
or functions. The only special feature of these methods is the attribute that is added
to the header [ScriptableMember]. Let's walk through an example:

[ScriptableMember]
public void LoadContact(string s)
{
 int param = Int32.Parse(s);
 _theViewModel.GetContactById(param);
 DisableAddContactButton(true);
}

Returning complex data
From the functions defined in Silverlight, we can return data to JavaScript (both
simple and complex data, even JSON serialized objects). To let JavaScript call a
Silverlight function that returns a custom type, the ScriptableType attribute has
to be added to the class defining it and all its public properties should be defined
as a ScriptableMember.

[ScriptableMember]
public Contact GetContact()
{
 Contact o = new Contact();
 o.Name = "Jose";
 return o;
}

[ScriptableType]
public class Contact
{
 [ScriptableMember]
 public string Name { get; set; }

 [ScriptableMember]
 public string GetName()
 {
 return this.Name;
 }
}

Integration with other Web Applications

[324]

Registering a Silverlight object
As a final step, before trying to access the methods defined in the JavaScript code, the
object containing these methods has to be registered as accessible. In our example,
we will make the object showing the view of the Silverlight application accessible.
The HtmlPage and its method RegisterScriptableObject will be used here. This
method receives two parameters:

•	 The first one is the name with which the object will be later identified from
JavaScript

•	 The second one contains a reference to the exposed object

public ContactFormView()
{
 InitializeComponent();
 this.DataContext = _theViewModel;

 // Create and register a scriptable object.
 HtmlPage.RegisterScriptableObject("SessionSL_JS", this);
}

Now the Silverlight object and the methods are defined as accessible, so we only
have to invoke them from Silverlight.

/// Call to Silverlight Method to edit the selected contact
function EditContact(row) {

 // Get Silverlight Object
 var SLPlugin = slCtl;

 // Call Silverlight method
 SLPlugin.Content.SessionSL_JS.LoadContact(
 row.attr('id').split('_')[1]);

 ShowContactForm();
}

In order to access the functions defined in Silverlight:

1. Access the object containing the reference to the Silverlight object.
2. Get the object defined as ScriptableMember through the name we gave it

before, SessionSL_JS.
3. Specify the function to be executed, LoadContact.

Chapter 9

[325]

Accessing JavaScript from Silverlight
It is now time to perform the reverse process. We will access the functions defined
in JavaScript from our Silverlight application. In this sense, the working is a little
bit simpler, since we do not have to do anything special to define functions in
JavaScript. They only have to be accessible for the page in general.

HtmlPage object
Before continuing, let's look in detail at the HtmlPage object. This class offers
functionality to access and handle the DOM of the page. Through the HtmlPage
object, it is possible to:

•	 Access/Invoke JavaScript functions
•	 Register a Silverlight object in the HTML page, making it accessible from

JavaScript
•	 Obtain an HtmlDocument object to manipulate the page DOM

From the HtmlPage object, an object of the type HtmlWindow is obtained via the
Window property on which JavaScript functions will be invoked.

HtmlPage

HtmlDocument

Document::HtmlDocument

Window::HtmlWindow

Body

Cookies

QueryString

GetElementById

GetElementsByTagName

Children

CssClass

SetAttribute

GetAttribute

HtmlElement

HtmlWindow

Invoke

Integration with other Web Applications

[326]

DOM handling from Silverlight
Now, let's check how to go deeper and handle the DOM object and access the
properties of a given HTML element.

HtmlDocument
From the HtmlPage object, an instance of the HtmlDocument object can also be
obtained. With the HtmlDocument object, it is possible to:

•	 Search for page elements (by name, class, or type), via the GetElementById
and GetElementByTagName methods

•	 Access the list of the URL parameters
•	 Obtain the cookies

HtmlElement
When we search for a page element via the HtmlDocument object, we obtain an
HtmlElement object. This class provides a series of methods which make it possible
to handle the DOM objects. Nevertheless, unless it is strictly necessary, it would
be more advisable to modify the HTML objects of the page making use of its own
language, JavaScript:

•	 Access/modify the properties of the HTML elements via the GetProperty
and SetProperty methods

•	 Access/modify the attributes of the HTML elements via the GetAttribute
and SetAttribute methods

•	 Access/modify the classes of the HTML elements via the CssClass method

As an illustration, this object can be used to search for elements of the HTML page
and access their properties, attributes, and CSS classes.

/// <summary>
/// Disable Client's Buttons (Add New Contact, Edit and Delete
/// Contact)
/// </summary>
/// <param name="value"></param>
private void DisableAddContactButton(bool value)
{
 // Get HtmlDocument object of the Page
 HtmlDocument htmlDoc = HtmlPage.Document;

Chapter 9

[327]

 // Search an element
 HtmlElement htmlEl = htmlDoc.GetElementById("btnAddNewContact");

 // Search an element's collection
 ScriptObjectCollection htmlEls =
 htmlDoc.GetElementsByTagName("IMG");

 foreach (HtmlElement item in htmlEls)
 {
 // Check DOM object class
 if (item.CssClass == "editRow"
 || item.CssClass == "deleteRow")
 // Add property
 item.SetProperty("disabled", value);
 }

 htmlEl.SetProperty("disabled", value);
 if (value)
 // Modify attribute
 htmlEl.SetAttribute("value",
 "The Button was disabled From Silverlight.");
 Else
 htmlEl.SetAttribute("value", "Add New Contact");
}

Interaction between Silverlight and
JavaScript
Now that we know the possibilities that Silverlight offers us in order to handle the
DOM, invoke JavaScript functions, as well as defining objects and methods accessible
from JavaScript, we will work upon a sample—a little more complex—which shows
all these features working together.

Integration with other Web Applications

[328]

Address book
Our goal is to create an application to store our friends' contact data. To do so,
we will create two applications, one in HTML and JavaScript and the other one
in Silverlight. Each of them will make reciprocal calls between them. The HTML
application is functional on its own and the Silverlight application is an extension of
the first one. The HTML application will show a contact list, whereas the Silverlight
application will offer a form to edit them, as shown in the following screenshot:

The sample can begin in a web application, which will only show the contact list.
Later on, the functionality of this application is extended, allowing the contacts to be
edited, for which a couple of buttons are added to the contact grid (Edit and Delete),
as well as a third button, in order to add new contacts. For this new functionality, a
new Silverlight application is built, containing a contact edition form.

Therefore, the new actions will begin with the traditional web application, but the
application flow will continue in the Silverlight application and then end again in the
HTML application, refreshing the contact grid. The events associated with the Edit or
Add buttons will be controlled by the Silverlight application.

On the other hand, the HTML application will be in charge of showing/hiding the
edition form via operations on the DOM object containing the Silverlight application.

Chapter 9

[329]

User can...

Default.aspx

User Name:

Login

Store in Session

User Role

Web service

Add ContactLoad Contacts Delete Contact Add Contact Edit Contact

Edit Contact (js:LoadContacts)

SL_JS.ViewTestPage.aspx

HTML app Silverlight app

As you can see from the previous figure, two pages can be found, the first being the
Default.aspx main page, which will ask for the User Name, and a second page
with the web application. The default page will store the name of the logged user
in the Session object of the web application, to check it later both in the HTML
form and in the Silverlight application. Depending on its value, it will be allowed
to perform different actions. For the development of this sample, we will base it on
a single table database. (The creation script for this database can be found, together
with the complete code for this sample, in the sample source code for this chapter.)

Integration with other Web Applications

[330]

Visual Studio solution
Let's have a look at the structure generated in Visual Studio for this sample, with the
different projects that form the solution. As the generation of a Silverlight project
applying the MVVM pattern has already been explained, we will focus on the
interaction between JavaScript and Silverlight.

Once the Visual Studio solution is created, let's describe the content shown in the
previous screenshot. (The implementation of the MVVM pattern is up to you. It
should be possible to simplify the Silverlight application in one single project, which
includes the interface for the edition of the contact form and access to the web service
for the operations).

Chapter 9

[331]

Silverlight:

•	 SL_JS.Entities: Silverlight project which contains the reference to the web
service of the Silverlight application. It contains the web application entities.

•	 SL_JS.Model: Silverlight project which contains the access methods to the
web services for loading and handling of contacts.

•	 SL.JS.ViewModel: Silverlight project in charge of preparing data to be
consumed by the View.

•	 SL_JS.View: Silverlight project containing UIs. In our sample, it will have
the form to edit contacts.

In these projects, it must be taken into account that the following three operations
will be implemented:

•	 Load a contact from a (numeric) identifier
•	 Enter a new contact
•	 Modify the data of an existing contact

Server:

•	 SL_JS.Server.DataLayer: A .NET project with methods for the database
access of the CRUD operation on the contacts.

•	 SL_JS.Server.Entities: A .NET project with the entities definition. For this
application, we only need ContactEntity with the properties that can be
identified, as shown in the following screenshot:

Integration with other Web Applications

[332]

Web services: At first sight, two web services can be distinguished, the first one
is for the Silverlight application and the second one is for the HTML application.
This is due to the fact that a WCF service for Silverlight is somewhat special (more
information about this is given in the next chapter).

ASPX pages: One for the login and the second one for the address book application.

Login page
Let's begin by analyzing the Login page. The Default.aspx page has been added to
the solution. This page contains a web form with a textbox (to enter the username)
and a button to complete the login process. As shown in the following source code,
when pressing the Login button, the application stores the username in the Session
object of the application and redirects it to the page containing the contact list:

public void btnLogin_click(Object sender, EventArgs e)
{

 if (txtUserName.Text == "jose.f.almoguera")
 Session["ROLE"] = "FULLACCESS";
 else if (txtUserName.Text == "braulio.diez")
 Session["ROLE"] = "ONLYUPDATE";
 else if (txtUserName.Text == "miguel.fernandez")
 Session["ROLE"] = "ONLYINSERT";
 else
 Session["ROLE"] = "";

 Response.Redirect("SL_JS.ViewTestPage.aspx");
}

Contact list
The SL_JS.ViewTestPage.aspx added by Visual Studio has also been used when
creating our web project for Silverlight in order to add the grid with the contact
list. The grid load is made via JavaScript operations and Ajax calls. (You can see the
complete code in the sample source code for this chapter.) Bearing in mind that just
when loading the page, the grid with the contact list is initialized, let's see how the
JavaScript functions are executed when pressing the grid (Delete and Edit contacts)
and page (Add contacts) buttons.

/// Call to Silverlight Method to edit the selected contact
function EditContact(row) {

 // Get Silverlight Object
 var SLPlugin = slCtl;

D
ow

n
lo

a
d
 f
ro

m
 W

o
w

!
e
B
o
o
k

<
w

w
w

.w
o
w

e
b
o
o
k.

co
m

>

Chapter 9

[333]

 // Call Silverlight method
 SLPlugin.Content.SessionSL_JS.LoadContact
 (row.attr('id').split('_')[1]);

 ShowContactForm();
}

///Call to Silverlight Method to insert a new contact
function AddNewContact() {
 slCtl.Content.SessionSL_JS.InsertNewContact();
 ShowContactForm();
}

As shown in the previous code snippet, in both the functions—apart from calling
another JavaScript function in order to show the Silverlight object—the action
(editing or adding) is derived from the Silverlight object. If the deletion of a contact is
requested, the action is performed directly from JavaScript via a call to a web service.

///Call to web service to remove the selected contact
function DeleteContact(row) {
 var value = row.attr('id').split('_')[1];
 $.ajax({
 type: "post",
 mode: "abort",
 contentType: "application/json; charset=utf-8",
 url: "./services/JS_Service.svc/DeleteContact",
 data: '{"id":"' + value + '"}',
 success: function (data) {
 if (data.d == false)
 alert("Action not allowed");
 else
 //Refresh the Contact Grid
 LoadContactList();
 }
 });
}

The rest of the JavaScript code is beyond the scope of this book, but it can be reviewed
in the sample source code for this chapter.

Integration with other Web Applications

[334]

Contact edition
We have seen where the flow of the operations on the grid goes; so let's see what
Silverlight does in response to those events.

[ScriptableMember]
public void LoadContact(string s)
{
 int param = Int32.Parse(s);
 // Call the viewModel to search the contact
 _theViewModel.GetContactById(param);
 // Disable the AddContactButton
 DisableAddContactButton(true);
}

[ScriptableMember]
public void InsertNewContact()
{
 // Disable the AddContactButton
 DisableAddContactButton(true);
 // Tell the ViewModel to clear the form
 _theViewModel.NewContact();
}

Both functions call the DisableAddContactButton function. This function accesses
the page DOM and searches for the Add New Contact button by its name. Apart
from enabling or disabling it, it changes its value attribute, displaying The Button
was disabled From Silverlight on the button. Check the following source code:

/// <summary>
/// Disable Client's Buttons (Add New Contact, Edit and Delete
/// Contact)
/// </summary>
/// <param name="value"></param>
private void DisableAddContactButton(bool value)
{
 // Get HtmlDocument object of the Page
 HtmlDocument htmlDoc = HtmlPage.Document;

 // Search an element
 HtmlElement htmlEl =
 htmlDoc.GetElementById("btnAddNewContact");

 // Search an element's collection
 ScriptObjectCollection htmlEls =

Chapter 9

[335]

 htmlDoc.GetElementsByTagName("IMG");

foreach (HtmlElement item in htmlEls)
{
 // Check DOM object class
 if (item.CssClass == "editRow" ||
 item.CssClass == "deleteRow")
 // Add property
 item.SetProperty("disabled", value);
}

htmlEl.SetProperty("disabled", value);

if (value)
 // Modify attribute
 htmlEl.SetAttribute(
 "value",
 "The Button was Disabled from Silverlight.");
else
 htmlEl.SetAttribute("value", "Add New Contact");
}

Apart from acting on the Add New Contact button, it also disables the grid buttons
(Edit and Delete), preventing the user from clicking on them while the form for
contact edition is displayed. To do so, it scouts the list with all the IMG elements
of the form and acts on those containing the CSS class editRow or deleteRow,
establishing the disabled property of the HTML object to true (or false).

Calling JavaScript code
When the user clicks on the Save button, the handler of the Click event is executed.
It makes the appropriate call to the ViewModel to enter or modify data for a contact,
and also invokes a call to the CloseContactForm JavaScript function to hide the
Silverlight application or form.

//Save or Insert Contact and Close the PopUp
private void btnSave_Click(object sender, RoutedEventArgs e)
{
 _theViewModel.UpdateContact();
 DisableAddContactButton(false);

 //Call to JavaScript function to close (hide) the Silverlight App
 HtmlPage.Window.Invoke("CloseContactForm");
}

Integration with other Web Applications

[336]

Thus, all the operations to enter or edit a contact receive a response from the server,
which indicates whether the user is authorized to perform that action or not. If the
operation has been performed, the call is made on the LoadContactList JavaScript
function for it to make all the necessary changes in order to update the grid content.
If it hasn't, the user is informed through an alert message in JavaScript, invoking the
Alert function with the message Action not allowed.

void _theViewModel_evActionCompleted(object sender,
ActionCompletedEventArgs e)
{
 if (e == null)
 HtmlPage.Window.Invoke("alert", "Action not allowed");
 //If Insert or Update succeeds, invoke
 //client Ajax in action to retrieve the Contact List
 else if (e.IsCompleted)
 HtmlPage.Window.Invoke("LoadContactList");
}

Finally, to make it work, the Silverlight object has to be accessible from Silverlight,
so the object must be registered as accessible.

public ContactFormView()
{
 InitializeComponent();
 this.DataContext = _theViewModel;
 _theViewModel.evActionCompleted += new
 EventHandler<ActionCompletedEventArgs>(
 _theViewModel_evActionCompleted);

 // Create and register a scriptable object.
 HtmlPage.RegisterScriptableObject("SessionSL_JS", this);
}

LOB application case study: applying
what we have learned
Let's investigate the following scenario. Our Bookings app is going to be integrated
into the company intranet. Depending on the branch of the company, the employee
belonging to the intranet will be displayed using different corporate colors. Is there
any way for the current page hosting the bookings app to notify the application to
change the colors/theme to the current valid corporate colors?

Chapter 9

[337]

To simulate this, we have added two HTML buttons to the main hosting page.
By clicking on these buttons, a JavaScript function will fire a call to a Silverlight
method indicating the new set of colors to use (in our case, we will simulate this
by changing the background of the menu bar, however, a real app would update
the theme being used).

On the Silverlight side, we will go through the following steps:

1. Define a message to notify a theme change has been requested.
2. In the MainPage.cs, we will register a method to be called by JavaScript

(entry point theme change request). This method will send the message
indicating the theme change.
public MainPage()
{
 InitializeComponent();
 (…)
 // Create and register a scriptable object.
 HtmlPage.RegisterScriptableObject("SLThemeManager", this);

}

[ScriptableMember]
public void ChangeTheme(string strTheme)
{
 Messenger.Default.Send(new
 ChangeThemeMessage(strTheme)
);
}

Integration with other Web Applications

[338]

3. The menu bar will be registered to that event and will change the background
of the menu bar to the newly selected one (we could just change the theme, or
register other controls to the ChangeThemeMessage).

public Menu()
{
 InitializeComponent();

 (...)

 Messenger.Default.Register<ChangeThemeMessage>(this,
 (strTheme) => {
 switch (strTheme.Content)
 {
 case "blue":
 bdMenuContainer.Background =
 new SolidColorBrush(Colors.Blue);
 break;

 case "red":
 bdMenuContainer.Background =
 new SolidColorBrush(Colors.Red);
 break;
 }
 }
);
}

On the JavaScript side, we will go through the following steps:

1. We add a parameter to register to the loaded event.
<object data="data:application/x-silverlight-2,"
 (...)
 >

 <param name="source"
 value="ClientBin/Packt.Booking.Shell.xap"/>
 <param name="onLoad"
 value="pluginLoaded" />

Chapter 9

[339]

2. Get the Silverlight control instance.
// Silverlight Object
var slCtl = null;

// Silverlight Loaded Event Handler
function pluginLoaded(sender, args) {
 slCtl = sender.getHost();
}

3. Implement a method that will perform the call to the SL app to change
the theme.
function changeToTheme(strtheme) {
 slCtl.Content.SLThemeManager.ChangeTheme(strtheme);
}

4. We define the two buttons and subscribe to the OnClick event.

<button type="button"
 onclick="changeToTheme('blue');"
 >Blue Theme</button>

Summary
In this chapter, we have learned how a Silverlight application can be seamlessly
integrated inside an HTML web-based app (HTML 4 or 5) and how we can establish
communication in both ways (HTML to Silverlight app and Silverlight app to
HTML). This lets us easily integrate Silverlight-based islands into existing classic
web ecosystems.

In the next chapter, we will continue integrating Silverlight with other technologies
and systems. We will learn how to consume standard web services.

Additional resources
For more information about JavaScript/Silverlight integration you can check the
following links:

•	 MSDN: Reference guide for the objects implied in the communications
between Silverlight and HTML: http://msdn.microsoft.com/en-us/
library/cc645076(v=vs.95).aspx

•	 jLight: Interesting library about DOM access from Silverlight through a
syntax similar to that used with jQuery: http://jlight.codeplex.com/

Consuming Web Services
Web services have become a basic part of the architecture of any modern software
application, not only regarding Line of Business (LOB) applications but all types.
With the generalization of the Internet and devices connected 24/7, applications
need a continuous way to communicate with client and server sides. Even though
in the entire book we have been working with web services in the form of WCF RIA
Services, this is a very specialized way of remotely accessing databases through an
automatic layer of services. Even though these services can be customized in several
ways, they can't reach the level of flexibility that web services can offer us, as we will
see in this chapter.

Therefore, web services get into the picture for solving two different kinds
of problems:

•	 We need to establish communication between client and server but WCF RIA
Services doesn't fit into our implementation scenarios. Maybe we could make
use of a custom service for a bundle of data to be transferred just by one call,
or some other special operation or optimization.

•	 It is also essential to connect with an existing web service, whether it is our
own (it could be another department system or a legacy service) or a public
API (such as Google, Facebook, Twitter, and so on).

In this chapter, we will begin with an overview of what web services are, and then
investigate what kind of web services we can find or use. Then, we will learn how
to implement and consume a simple WCF service, and also how to consume a
public API via a REST protocol. Finally, we will apply all this new knowledge on
our trunk application.

Consuming Web Services

[342]

Definitions
The W3C defines a web service as:

A software system designed to support interoperable machine-to-machine
interaction over a network. It has an interface described in a machine-processable
format (specifically Web Services Description Language, known by the acronym
WSDL). Other systems interact with the Web service in a manner prescribed
by its description using SOAP messages, typically conveyed using HTTP
with an XML serialization in conjunction with other Web-related standards
(http://en.wikipedia.org/wiki/Web_service#cite_note-0).

This is a good starting point, which allows us to extract some ideas, to elaborate
on them further:

•	 Machine-to-machine communication
•	 Described in WSDL
•	 HTTP (or HTTPS) with an XML serialization (or at least formatted in XML,

as data could be binary serialized)

What we call web services have in common that they are HTTP-based, so we can see
them as an evolution of RPC, sockets, CORBA, and the like, being migrated to the
Internet era with a brand new architecture called Service-Oriented Architecture (SOA).

Service-Oriented Architecture (SOA), http://en.wikipedia.org/
wiki/Service-oriented_architecture) is not exclusive for
web services even though its design principles can be built especially
well on these protocols.

It is important to note the point described by machine-to-machine communication.
These services use HTTP and all the Internet stack of protocols (IP, TCP, DNS, and
so on), which are primarily designed for a machine-to-human purpose, and apply
them for communication between systems.

Before going ahead with subsequent ideas, it is necessary to distinguish between
two main classes of web services:

•	 SOAP based, which fit the definition of the W3C:
	° WSDL for services definition (readable by machines)
	° UDDI for services discovery
	° XML format
	° Wrapped with standard SOAP headers

Chapter 10

[343]

•	 REST based, a back-to-sources approach taking the best of the HTTP protocol
and reducing the amount of message data:

	° JSON (JavaScript Object Notation) format
	° Commands through HTTP verbs plus URI info

Although the verbosity of SOAP-based services makes them cumbersome, modern
libraries allow ease of dealing with them. In the following section, we will use WCF
for building a standard SOAP-based web service, and after that, we will see how to
do the same with a simpler REST service, which paradoxically will require more code.

Implementing and consuming a WCF
service
Windows Communication Foundation (WCF) (http://msdn.microsoft.com/en-
us/library/ms735119(v=vs.90).aspx) is Microsoft's unified programming model
for building service-oriented applications.

As we have seen, WCF is not specific to web services, but it offers a more general
purpose model. It uses high-level abstractions as its constructing elements:

•	 Messages: Data units are sent from one point to another.
•	 Endpoints: These are sources or targets for the communication. They can be

clients or services (modelling typical client-server architecture), and can have
a unique address associated with them (URI format).

•	 Protocols: The way in which data will travel from one endpoint to another.
•	 Binding: This defines the protocols and parameters used by an endpoint.
•	 Service: This refers to a set of functionality composed by operations.
•	 Operations: Access methods to the functionality provided by services.

WCF offers several concrete implementations of these concepts, for example, for
binding we have:

•	 basicHttpBinding: A basic binding for using HTTP protocol
•	 wsHttpBinding: A more elaborate HTTP binding, which allows you to

control all aspects of WS-*, addressing security, authentication, and so on

Consuming Web Services

[344]

There are more predefined binding types, such as ws2007HttpBinding or
mexHttpBinding. Moreover, WCF can be extended to implement your own
bindings, by implementing them from scratch or composing existing elements.
For example, you can use binary format by declaring a custom binding which
uses a binaryMessageEncoding over an httpTransport:

<bindings>
 <customBinding>
 <binding name="binaryHttpBinding">
 <binaryMessageEncoding />
 <httpTransport />
 </binding>
 </customBinding>
</bindings>

An important point about WCF and Silverlight 4 is that the default
WCF binding is currently wsHttpBinding, so it is going to be
defined when we create a new WCF service. However, Silverlight 4
does not support this binding; it only supports basicHttpBinding.
Therefore, it has to be changed in our WCF service in order to be
consumed from Silverlight 4 (we will see how to achieve this in the
next section). Please note that this is a temporary issue, because
Silverlight 5 does currently support wsHttpBinding.

Proposal for sample projects
We are going to build from scratch a simple solution with two projects, a web server
and a Silverlight client. The responsibility of the web server will be to provide a WCF
service (plus host our Silverlight client). That service could do whatever we want,
such as retrieve data, access a database, and so on. But for the sake of simplicity, we
are only going to get and set a public message. Think of it as a management system
for a traffic display similar to those on highways where a message can be sent, and
the display will check for it in order to show it to the drivers. It is a simple example,
but at least you cannot say it is useless.

Thus, our service will have two methods, namely, SetMessage and GetMessage.
The message will be kept in memory on a server-level variable, just for simplicity.

Chapter 10

[345]

Building the server
Let's start by creating a Silverlight solution, as it will also create an ASP.NET
web project:

1. Create a new Silverlight Application project, as shown in the following
screenshot:

2. Select your preferred folder, use TrafficDisplay as Name and click on OK.
3. We can host a WCF service in our application either in a classic ASP.

NET Web Application Project or in an ASP.NET MVC Web Project. It's
your choice, but for this sample, we will run it with an ASP.NET Web
Application Project.

Consuming Web Services

[346]

There is no need to check the option Enable WCF RIA Services in this
sample, but you can do it if you want it. One project can host both WCF
Services and WCF RIA Services simultaneously.

4. Accept the name proposed and click on OK.
Then, we get the two projects already known in the solution. Let's ignore
the Silverlight project for now and focus on the web project. We are just
creating our WCF service.

Chapter 10

[347]

5. Right-click on the TrafficDisplay.Web project node and select Add |
New item....

6. On the top right Search Installed Templates box, write wcf, as shown in
the following screenshot:

7. Select WCF Service, and write DisplayService as the Name. As you can
see, there are several more specific WCF service types. Some of them are
different types, and others are just standard WCF Services with a concrete
configuration.
That's the case of Silverlight-enabled WCF Service. The WCF service
generated is a standard one with a configuration adapted to Silverlight.
But for a matter of completeness, we are going to use a plain WCF service
and change its configuration manually.

8. Two new files are obtained in our web project, namely, an interface
(IDisplayService.cs) and an implementation (DisplayService.svc).

Consuming Web Services

[348]

Let's learn a bit more about how WCF works. Every WCF service is defined by two
parts, interface and implementation. Interface is the contract you agree to comply
with, and it is labeled with the [ServiceContract] attribute (the whole interface)
and with the [OperationContract] method, as you will see in following code
listing. This is the public part, which every client will be able to discover, to reference
and consume, and this will also be the entry point for our server. On the other hand,
you must have a class that implements that interface. This is the execution we really
get when the service is called.

Both new files we created previously included some sample code to help start with
our service. They include a DoWork method that we will replace. First consider the
following code for IDisplayService:

[ServiceContract]
public interface IDisplayService {
 [OperationContract]
 string GetMessage();

 [OperationContract]
 void SetMessage(string newMessage);
}

We have defined the two methods we mentioned previously. In order to implement
them, apply the following code to the DisplayService class:

public class DisplayService : IDisplayService {
 public static string CurrentMessage;

 public string GetMessage() {
 return CurrentMessage;
 }

 public void SetMessage(string newMessage) {
 CurrentMessage = newMessage;
 }
}

Of course, this is probably the worst way of implementing this functionality, but it is
also the simplest. Static variables have concurrency issues, a very severe matter for a
web project. Besides, you could be interested in using an application variable rather
than a static one, but then it should be enabled as aspNetCompatibilityEnabled
and defined as AspNetCompatibilityRequirementsMode.Allowed in the service.
This WCF content is out of the scope of this book, so we will keep it simple.

We will now try out our WCF service at Solution Explorer, by right-clicking on the
DisplayService.svc file and selecting View in browser. A help page appears in the
web browser, allowing us to see even the WSDL definition of our service.

Chapter 10

[349]

Enabling WCF service for Silverlight 4
As we have previously said, this WCF service has been configured by default with
wsHttpBinding, which is not supported by Silverlight 4. If you are using Silverlight
5, you can use this binding, so you can pass this section.

To consume this WCF service from Silverlight 4, its configuration has to be changed
to basicHttpBinding in the web project web.config file. Currently, you should
have something similar to the following inside the <configuration> tag of your
web.config:

<system.serviceModel>
 <behaviors>
 <serviceBehaviors>
 <behavior name="DisplayServiceBehavior">
 <serviceMetadata httpGetEnabled="true" />
 <serviceDebug includeExceptionDetailInFaults="false" />
 </behavior>
 </serviceBehaviors>
 </behaviors>
 <services>
 <service behaviorConfiguration="DisplayServiceBehavior"
 name="DisplayService">
 <endpoint address="" binding="wsHttpBinding"
 contract="IDisplayService">
 <identity>
 <dns value="localhost"/>
 </identity>
 </endpoint>
 <endpoint address="mex" binding="mexHttpBinding"
 contract="IMetadataExchange"/>
 </service>
 </services>
</system.serviceModel>

As shown in the previous code, binding is defined as wsHttpBinding. This should
be changed to basicHttpBinding in order to be consumed from Silverlight 4.

If such services configuration cannot be found in your web.config—it depends on
your Visual Studio version and tooling installed—maybe you do not need to make
any change, that is, in case the configuration generated by default looks similar to
the following when the WCF service was added:

<system.serviceModel>
 <serviceHostingEnvironment multipleSiteBindingsEnabled="true" />
 <behaviors>
 <serviceBehaviors>

Consuming Web Services

[350]

 <behavior name="">
 <serviceMetadata httpGetEnabled="true" />
 <serviceDebug includeExceptionDetailInFaults="false" />
 </behavior>
 </serviceBehaviors>
 </behaviors>
</system.serviceModel>

If so, the service should be working properly from Silverlight 4 without having to
change any configuration, as the generic configuration was applied.

Now that we are done with server side, let's deal with the Silverlight client.

Designing the client UI
Let's draw a simple visual interface for our simple service. Just two columns, a
TextBox and a Button in the first one, and a TextBlock and another Button in
the second one. It is similar to the following screenshot:

You can get this with the following simple XAML markup on MainPage.xaml:

<Grid x:Name="LayoutRoot" Background="White">
 <Grid.ColumnDefinitions>
 <ColumnDefinition Width="*"/>
 <ColumnDefinition Width="24" />
 <ColumnDefinition Width="2*"/>
 </Grid.ColumnDefinitions>

Chapter 10

[351]

 <StackPanel Grid.Column="0" Orientation="Vertical">
 <TextBlock FontSize="16" Margin="10"
 Text="Control center"/>
 <TextBox x:Name="sendTextBox" Margin="4"
 Text="A message" Height="45"/>

 <Button Margin="4" Content="Send message"
 Click="sendButtonClick"/>
 </StackPanel>

 <Border Grid.Column="1" Background="LightBlue"/>

 <StackPanel Grid.Column="2" Orientation="Vertical">
 <TextBlock FontSize="16" Margin="10"
 Text="Traffic Display"/>
 <Border Background="Black" Margin="4">
 <TextBlock x:Name="receiveTextBlock"
 FontFamily="Courier New" FontSize="20"
 Foreground="YellowGreen" Margin="4"
 TextAlignment="Center" Text="(Empty)"/>
 </Border>
 <Button Margin="4" Content="Receive message"
 Click="receiveButtonClick"/>
 </StackPanel>
</Grid>

Before we can implement the handlers for the events, the service needs to
be referenced.

Referencing a WCF service from client
In order to proceed, our web project has to be compiled. Let's see how to add
a reference in Silverlight to the new DisplayService:

1. Compile the solution.
2. Right-click on the References folder of the TrafficDisplay Silverlight

project and select Add Service Reference....
3. Visual Studio shows you the Add Service Reference dialog.
4. Click on the Discover button to look for Services in solution.

D
ow

n
lo

a
d
 f
ro

m
 W

o
w

!
e
B
o
o
k

<
w

w
w

.w
o
w

e
b
o
o
k.

co
m

>

Consuming Web Services

[352]

You can also write a well-known URL and reference it
for a public or intranet service.

5. We should get just one service DisplayService.svc.
6. Expand this node, which takes some time, as Visual Studio has to start this

web service in order to ask about their operations. At this point, we are using
WSDL to get method names and signatures in a fully transparent way.

7. Expand the next node one more time, till you can select the IDisplayService
node.

8. Then you can see our two operations, GetMessage and SetMessage.
Click OK.

Chapter 10

[353]

This action has created a ServiceReference1 (you could have named it in another
way in the previous dialog) inside the Service References folder, and a
configuration file named ServiceReferences.ClientConfig with arguments to
bind the service. Here, we can change the connection parameters when you publish
the application to a production environment, for example, the URL associated with
the service, but it can also be done through Configure Service Reference... from the
context menu of ServiceReference1.

If we open ServiceReference1 by double-clicking it on Solution Explorer, Object
Browser shows the classes that have been generated for consuming the service. We
are going to use DisplayServiceClient, which is the proxy class that allows us to call
the service transparently from Silverlight, just as you would call any local class.

All these self-generated classes can be updated when the original service is modified
by adding or editing operations. There is no need to update when its implementation
is changed. It could, however, be necessary if we change the public interface of
operations. You only have to right-click on ServiceReference1 and select Update
Service Reference.

This service reference procedure can also be applied to an ASMX service, with the
only difference being the SoapClient suffix. ASMX services are previous versions of
the .NET web service protocol SOAP 1.1, which in WCF is called basicHttpBinding.

Consuming Web Services

[354]

Consuming a WCF service from Silverlight
Now, Send and Receive buttons can be implemented. DisplayServiceClient class
publishes an asynchronous method to call every operation published in the contract
of the WCF service plus an event to be notified when this asynchronous call has
finished. There is no alternative; you cannot apply a synchronous approach because
of the Silverlight philosophy that pretends the user interface was never blocked.
Some frameworks such as PRISM or MVVM Light try to give a synchronous facade
wrapping the use of web services, but this is only a mask.

Consequently, if you want to retrieve data, or just know if a service call was
successful, you have to listen to the appropriate event and then call the method.

Now, let's see how to implement both handlers (in MainPage.xaml.cs):

using TrafficDisplay.ServiceReference1;
[…]
private void SendButtonClick(object sender, RoutedEventArgs e)
{
 var service = new DisplayServiceClient();
 service.SetMessageAsync(sendTextBox.Text);
}

private void ReceiveButtonClick(object sender,
 RoutedEventArgs e) {
 var service = new DisplayServiceClient();
 service.GetMessageCompleted += ReceiveCompleted;
 service.GetMessageAsync(sendTextBox.Text);
 //Nothing else. Just wait for Completed Event
}

private void ReceiveCompleted(object sender,
 GetMessageCompletedEventArgs e) {
 if(e.Error != null)
 receiveTextBlock.Text = "Error: " + e.Error.Message;
 else
 receiveTextBlock.Text = e.Result;
}

If no parameter is defined when creating the DisplayServiceClient instance, it
reads them from the configuration file. This is the preferred way.

Chapter 10

[355]

You should always wait for the Completed event, to check if any errors occurred,
due to the fact that the only way to know whether the operation call was successful
is to check the e.Error property, as it could be seen previously. For the operations
returning void, this is not necessary if you do not need confirmation of success, as it
is assumed via the SetMessage operation (please note that, even in this operation,
you should notify the user about the possible error).

Now, you can execute the solution and test it by sending messages from the Control
Center and receiving them from the Display.

Using complex types via WCF
So far, we have implemented two WCF operations only using the string type. Most
built-in types can also be used in the operation signature, but you can use your own
types too, if you define them properly:

1. Create a brand new class in the server for this purpose.
2. Label it with [DataContract] for the class and [DataMember] for the fields

being sent (no labeled fields will be omitted).
3. Use this new class as an argument or as a return value in operations.
4. In the client, creating the service reference will generate a local version of

this DataContract labeled class. Also, the client service can be updated to
get the new changes, which include the new DataContract classes.

Then, we can consume a service with a complex type as an argument or as a return
type, just as we did with the previous operations, and just as any other local method,
in a transparent fashion. Please note that if some list type is included, such as
IEnumerable or IList, it would be transformed to an Array type on the client side.
You can change this behavior on the web service configuration in order to use any
more powerful structures such as ObservableCollection.

For example, a new operation can be added to our service, called GetAllMessages,
which must retrieve a list of messages plus their publication time. So let's start by
creating a new class Message to keep the text of a message and its publishing time.
This class will be tagged with DataContract and DataMember to be considered on
the WCF service. Use a code similar to the following for the Message class:

using System;
using System.Runtime.Serialization;

namespace TrafficDisplay.Web {
 [DataContract]
 public class Message {

Consuming Web Services

[356]

 [DataMember]
 public string Text { get; set; }

 [DataMember]
 public DateTime PublishingTime { get; set; }
 }
}

Next, add the new method to the service, first to the interface and then to the
implementation; something similar to the following code to IDisplayService
interface:

[OperationContract]
IEnumerable<Message> GetAllMessages();

And then complete DisplayService.svc class with a list of messages:

public class DisplayService : IDisplayService {
 public static IList<Message> Messages =
 new List<Message>();

 public string GetMessage() {
 if(Messages.Count == 0)
 return null;
 return Messages.Last().Text;
 }

 public void SetMessage(string newMessage) {
 Messages.Add(new Message {
 Text = newMessage,
 PublishingTime = DateTime.Now
 });
 }

 public IEnumerable<Message> GetAllMessages() {
 return Messages;
 }
}

Our server project can now be compiled. Before moving to the client Silverlight
project, the first thing to do is to update our ServiceReference1 in the client,
selecting Update Service Reference in its context menu. After that, the reference
can be inspected in Object Browser (by double-clicking). You will then see a new
Message class and the new method and Completed event for GetAllMessage in
DisplayServiceClient.

Chapter 10

[357]

Next, the UI has to be improved in order to show the result of this method, and
consume it as we did with GetMessage.

You can find the bits about how to do so in sample 02 of the code sample of this
chapter. When you open it, the web project must be selected as the StartUp Project
(in the context menu of the project). If the Silverlight client is not served by the web
project, you can get into a cross-domain problem, which is covered in more detail in
Chapter 11, Security. Visual Studio warns about that case with this dialog:

Now, let's move on to consume an external service.

Consuming a public API web service
The second part of this chapter is devoted to the other main type of web services,
that is, the REST services. As mentioned previously, we can briefly define them
as the creation of web services over HTTP protocol with minimum overload.
REST (Representational State Transfer) is a complete architecture for building
software defined in 2000 by Roy Fielding http://en.wikipedia.org/wiki/
Representational_State_Transfer (http://bit.ly/nnTsYp). We are not
covering it, but we will learn how to consume a public REST service.

Typically, most of modern public API web services rely on:

•	 Defining requests via URL parameters (both path and query string)
•	 Simplifying response complexity and weight using formats as JSON

(JavaScript Object Notation) instead of XML
•	 Making use of HTTP verbs with full semantic, such as GET for reading, PUT

for adding or updating, and DELETE for erasing

These are also common principles in the REST architecture, but they should not be
confused. Here, we are only taking care of the first two of those ideas, accessing the
Twitter public API via URL for querying, and JSON as a format for retrieving data.
This is part of a general trend of moving presentation logic and data consuming on
client, either JavaScript and HTML5 or Silverlight.

Consuming Web Services

[358]

We use the Twitter API as a standard web service.

Twitter API
Whereas the Twitter API publishes a lot of functionality such as querying,
publishing, advanced and specific querying, and so on. We are only using one
feature, querying for tweets containing certain words. This can be done using the
following URL: http://search.twitter.com/search.json?q=SL5.

You can see how all the information about the method call is present on that URL:

•	 Global service: search.twitter.com
•	 Method: search
•	 Format of retrieved data: JSON
•	 Query words: SL5

If you navigate to this URL, you should get a JSON-formatted response with the
latest tweets containing that word. Now we are going to process that response.

Please note that the Twitter API also allows getting data in XML format, but as
an exercise, we will request it in JSON format. So to work with XML, atom can be
used as a keyword instead of json in the URL request, and it could be processed
later with XML to LINQ (for more information on this, refer to Pete Brown's article
available at http://bit.ly/pDOKC3).

Starting the Twitter project
Let's start by implementing a call to the Twitter API using the WebClient class.
WebClient is a generic proxy class, which allows us to connect with any web service
regardless of its interface. But this simplicity comes at a cost, and you will have to
deal with the service manually, without a specific proxy and the specific data classes
generated via registration as we get before registering the service as a service reference.

Chapter 10

[359]

First, a user interface (UI) will be designed, then raw data will be retrieved with a
call to the service, and finally the response will be parsed with a data class, which we
have to implement. Let's start with the UI:

1. Start Visual Studio and select File | New | Project....
2. Select Silverlight | Silverlight Application and name it TwitterSearchApi.
3. In the next dialog, it is not necessary to create a new website, so uncheck it

and click OK. In this sample, we are making no use of web project, as we are
consuming an external service.

4. Design the UI on the MainPage with a TextBox, a Search button and a
ListBox, using the following code:

<Grid x:Name="LayoutRoot" Background="White">
 <Grid.RowDefinitions>
 <RowDefinition Height="Auto"/>
 <RowDefinition Height="*"/>
 </Grid.RowDefinitions>
 <StackPanel Orientation="Horizontal">
 <TextBox x:Name="searchTextBox" Text="SL5"
 Width="120" Margin="4"/>
 <Button Grid.Row="0" HorizontalAlignment="Right"
 Margin="4" Content="Search"
 Click="SearchButtonClick"/>
 </StackPanel>
 <ListBox Grid.Row="1" x:Name="listBox" Margin="4">
 <ListBox.ItemTemplate>
 <DataTemplate>
 <StackPanel Margin="4">
 <TextBlock Text="{Binding from_user}"
 FontSize="16"/>
 <TextBlock Text="{Binding text}"/>
 <TextBlock Text="{Binding created_at}"
 HorizontalAlignment="Right"/>
 </StackPanel>
 </DataTemplate>
 </ListBox.ItemTemplate>
 </ListBox>
</Grid>

Consuming Web Services

[360]

Calling the Twitter API
Now it is crucial to implement a handler called RefreshButtonClick in order to
start a service call in an asynchronous manner. Again, there are two steps involved.
Firstly, an asynchronous method must be called, and secondly, an event must be
listened to for the finished signal. But as WebClient is a generic proxy, we do not
have a SearchAsync method; instead of that, we have to use one of the generic
methods it supplies, in this case, OpenReadAsync to call an HTTP GET and a Stream
returned through its OpenReadCompleted event.

The code for our Click event handler should be similar to the following (in
MainPage.xaml.cs):

private void SearchButtonClick(object sender,
 RoutedEventArgs e) {
 var client = new WebClient();
 client.OpenReadCompleted += RefreshCompleted;
 client.OpenReadAsync(CreateUri(searchTextBox.Text));
}

private static Uri CreateUri(string searchText) {

 return new Uri("http://search.twitter.com/search.json?q="
 + searchText);
}

Therefore, by using WebClient, any URL and its contents can be called, so firstly
we need to compose the custom URL for our arguments. After that, we only need
to parse the response content. We will cover this in the next section.

Remember you have to validate searchText before calling CreateUri. Moreover,
it is a best practice to use an application setting to save the Twitter search URI.

Processing JSON format
We can parse the JSON object manually, but Silverlight includes a power class to
help us. With DataContractJsonSerializer it is possible to parse a JSON string
and generate an object of a given type, even considering nested objects. This requires
that we previously define the defined target class, which should have the same fields
as the JSON object, exactly the same names and the appropriate types, even child
classes. You can achieve this by analyzing the JSON object or by reading its API
documentation. In our case, the search service returns a JSON object with a property
called results, which contains an array of instances, one per tweet. Let's see how to
parse it step by step:

Chapter 10

[361]

1. Firstly, create target classes in Silverlight. In this case, the classes have been
called SearchResult and Tweet, but you can use any names you want.
Anyway, the properties must have these exactly identical names (even
lowercase). Note that it was not necessary to declare every JSON-existing
property, just those that we want to read.
public class SearchResult {
 public Tweet[] results { get; set; }
}

public class Tweet {
 public string text { get; set; }
 public string from_user { get; set; }
 public string created_at { get; set; }
}

2. In order to use DataContractJsonSerializer, it is important to add a
reference to System.ServiceModel.Web in our Silverlight project. Just select
References | Add Reference... and you can find the assembly in the .NET
tab.

3. Now, this generic serializer can be used to parse the JSON object and generate
.NET instances, and then these instances will be assigned to the listbox items
source. The code for the remaining RefreshCompleted handler is as simple
as the following code:
private void RefreshCompleted(object sender,
 OpenReadCompletedEventArgs e) {
 var serializer =
 new DataContractJsonSerializer(typeof(SearchResult));
 var r = (SearchResult)serializer.ReadObject(e.Result);
 listBox.ItemsSource = r.results;
}

Bear in mind that our SearchResult object should be viewed as
a local version of a Data Transfer Object (DTO), so it is not a
best practice to pass it through a different layer. It is only targeted
to keep data from Twitter API, so you should populate your
independent business entities instead, if you need to use it further.

Consuming Web Services

[362]

4. Finally, the application can be tested. Run the project, write some text, and
select the Search button, as shown in the following screenshot:

LOB application case study: applying
what we have learned
Now we are going to add a new feature to our trunk application. A simple and
useful one could be to display weather information while editing a booking. To
get the weather information, we are using a public web service from WebServiceX
hosted on http://www.webservicex.net/globalweather.asmx.

When you click on this URL, you will find two methods in this service:

•	 GetCitiesByCountry: This method gets a list of cities and countries to help
pass the arguments to the other method

•	 GetWeather: This method returns complete weather information for a given
city in a country

Chapter 10

[363]

The service seems to be implemented using an ASP.NET service (ASMX), and has
published its WSDL (which you can display by opening the Service Description link).
This will allow us to automatically reference the service in our project and generate
the client proxy objects ready to make calls to the service, which will also deserialize
the answer for us. Nonetheless, after studying the service signature, we found that
WSDL doesn't provide the result in a structured way, but as an XML string. Thus,
we should study some sample results and then deserialize it manually. Thereby our
steps will be as follows:

1. Adding a Service Reference to this web service in our MyBookings project.
When done, we will get a GlobalWeatherSoapClient proxy class.

2. Adding a deserializer class, named GlobalWeatherGetWeatherDeserializer,
which will generate a structured result in a WeatherInfo instance from the
XML string returned by the service.

3. Adding a new ViewModel class, named WeatherQueryVM, to obtain and
provide this information to the user.

4. Adding some controls to the MyBookings.xaml page to show the information
from the ViewModel.

5. Including an instance of WeatherQueryVM in MyBookingsVM and getting it
synchronized with the current booking selected.

6. Setting up the service configuration at the main level, the Shell project.

The following is a simple figure to help understand the affected classes:

Consuming Web Services

[364]

The following are some important points to take into consideration about the auto-
generated code:

•	 We are consuming this service directly from the client and not from the
server. Silverlight is powerful in doing that, and this decision reduces the
load of our server, improving the scalability of the application.

•	 We are not extracting a new project for this feature, but are creating a new
isolated set of classes that implement it, with reduced coupling with the rest
of the system.

•	 Adding a service reference to a project generates a new configuration file
called ServiceReferences.ClientConfig, but this file is not used if it is
not in the main project of the solution. Consequently, we should copy this
file to the main project—Shell in our application—even merging it with the
previous file if it already exists.

Implementation of the service client
Let's go through the following steps:

1. Adding the Service Reference: Right-click on the MyBooking project and
select Add Service Reference:

Chapter 10

[365]

After pasting the service URL and clicking Go, we get three versions
of the service. Choose GlobalWeatherSoap, and rename the service as
GlobalWeatherService. Any of the three versions should work. As we
mentioned previously, ASMX is the old .NET web services infrastructure,
before WCF was born. It matches with WCF basicHttpBinding SOAP 1.1, so
it will be consumed through a WCF client.

2. Deserialize support: As we have seen earlier, the ASMX definition does not
detail the content of the response of the service. The information provided
by WSDL just declares a plain XML text, so we need to deserialize the data
contained in the XML body. This is due to a deficient service declaration,
as XML deserialization could be done by WCF if it was properly specified
in the web service. If that were the case, deserialize support would not be
necessary.
In order to facilitate the use of the service, we should implement a
WeatherInfo class (with no logic, just a DTO object with the properties
shown in the figure under the section LOB application case study: applying
what we have learned earlier in this chapter), and a deserializer class
with a unique Deserialize method making use of LINQ to XML to create
a new WeatherInfo instance from the string returned by the service:
public WeatherInfo Deserialize(string xml)
{
 if (xml == "Data Not Found")
 return null;
 var xRoot = XDocument.Parse(xml);
 var xWeather = xRoot.Element("CurrentWeather");

 return new WeatherInfo {
 Location = (string) xWeather.Element("Location"),
 Time = (string) xWeather.Element("Time"),

These classes have been included in a new Services folder and some sample
responses for future reference are stored in a subfolder.
Also, we are trapping the city not found error, which only returned a
string in place of the expected XML.

3. Building the ViewModel class: This is an important step. It is responsible
for getting the service information, by using the proxy client. It is
also responsible for deserializing our class, and for publishing it. The
implementation of the WeatherQueryVM class is organized into a few areas:

	° Weather service: The code responsible for getting the response from
the service

Consuming Web Services

[366]

	° Input properties: The values needed to call the service (CityName
and CountryName)

	° Output properties: The values returned from the service (the whole
WeatherInfo object, and also some error information)

	° Methods: ChangeCity method propagates the city from the booking
to this instance to be used in the request to the service

	° Commands: RefreshCommand command is used for executing the
query to the service.

There is no complex logic in this class. You can read it in detail in the
code sample.

4. Drawing the UI: In order to show these properties' values to the user,
we should add some controls to the view along with the booking info.
We will use data binding for both showing the values and managing the
visibility of the visual elements. The root container, a Grid, is bound to
the new property called WeatherQuery, so all nested elements can be
bound using relative paths.

5. Changing existing MyBookingsVM: In the MyBookingsVM class, we should
add a new property WeatherQuery (so we include it in the MyBookingsVM.
properties.cs file):

Chapter 10

[367]

public WeatherQueryVM WeatherQuery { get; set; }

We initialize it on the constructors' code with a new instance (with sample
input properties' values). Also, the code is written to get it synchronized
with the city in the booking, when changing both CurrentBooking and
SelectedIDCity, with the help of a new property SelectedCityName,
which looks up in the Cities collection.

6. Service configuration: The last step is the easiest one, as it is just necessary
to copy the ServiceReferences.ClientConfig file from the MyBookings
project to the Shell project because there is no such file present there. We
keep the original file for documentation purposes, since it is useless within
the library project.

When running the application, a weather information area appears, where
the city name is filled as the current booking is changed. However, in order
to make it work, you must introduce the right country name. We have not
used the GetCitiesByCountry method, which might help us in correctly
writing the name of the city. It's an open exercise to improve the current
feature, such as including the country name in our database schema.

Summary
In this chapter, we have learned how to create a simple WCF web service and how
to consume it from a Silverlight client. You can explore all the power of WCF, but
keep in mind that the Silverlight WCF client can set some limitations to this power,
as sometimes only some bindings and channels are supported. Anyway, it is being
improved in every new version.

We have seen how easily Visual Studio generates all proxy classes (Client classes)
in Silverlight from the WDSL definition of a web service. We have also learned how
to consume an existing web service without WSDL facilities, passing parameters on
URL and receiving and parsing the JSON response, close to REST principles. You
can also apply this model with your own web services when it doesn't fit the WCF
standard, that is, not publishing a WSDL guide to the service. For instance, those
services created as actions in ASP.NET MVC, or those implemented using other
platforms such as PHP, Java, and so on.

Finally, we have implemented a new feature in the trunk application that lets the
user get weather information for the booking city from a public web service, and
even though the service publishes its WSDL definition, the content response was
not structured, so we ended up deserializing it manually.

D
ow

n
lo

a
d
 f
ro

m
 W

o
w

!
e
B
o
o
k

<
w

w
w

.w
o
w

e
b
o
o
k.

co
m

>

Security
Security is a crucial and complex aspect which can fill several books in itself. It must
be considered from the very beginning of a project, as well as taken into account for
all decisions to be made. Nevertheless, in our case, for the sake of didacticism, it has
been postponed to the final chapter so that we have all the pieces in the jigsaw of
which our application consists. Two application areas can be distinguished:

•	 Client-side security: Applications run in a client machine, with all the
derived risks of this practice. Basically, it exposes our code to its analysis
and possible exploits.

•	 Server-side and communication security: Our applications communicate
with a backend located in the server to retrieve and store data. In this case,
security must be added for the data not to be exposed to unauthorized users
or operations.

Even though this is a comprehensive topic, in this chapter, we will try to cover the
basics about what can affect a business application, both on the client side and the
server side.

Client-side security
In this case, let's suppose that our web application will be downloaded and executed
in a remote machine, something that can be considered as a hostile environment. We
have just provided an alleged malicious user with a perfect laboratory with which
he/she can try to manipulate our application since:

•	 He/she will be able to see the binary code and resources (for example, binary
XAML) by simply renaming the XAP file to ZIP

•	 It will be possible for him/her to access its source code by using a tool, such
as a reflector (http://bit.ly/apbHRB)

Security

[370]

•	 The original libraries could be replaced in the XAP content by others with
he same interface, but containing malware

•	 It is also feasible to extract any critical data in the client code or
configuration files

It cannot be forgotten that these issues are also found in different development
technologies, such as HTML and JavaScript (where the code is directly exposed)
or in a desktop application.

Consequently, our server must never trust the client, as it is more exposed and can
be altered without our consent. That is, everything which is validated or verified at
the client side must be validated again by the server. Despite this second filter, we
will see how to mitigate these threats from the client as follows.

Critical information
In LOB applications, we can be tempted to store information about configuration
in an XML file, or in the application code itself, including such data as users and
passwords to access third-party systems. This should be avoided because any
malicious user could consult the XAP as we mentioned earlier, or with more
sophisticated approaches (such as a memory dump) getting it from the code or the
application in execution.

What should we do then? Should we base security only on the credentials entered by
the user? That ought to be enough to communicate and authenticate with the server,
both in the application and third-party services. For instance, to send an e-mail, a user
would enter his credentials to connect with the server and then send a petition through
web service to our server using the previous authentication. Later, the server checks
that the user sending the petition has the appropriate permissions and then uses the
proper keys (now stored in the server) to send the e-mail via SMTP. The same principle
must be applied both to websites based on JavaScript and desktop applications.

Signing assemblies
As we pointed out earlier, a Silverlight application is downloaded and executed
in client computers, so a malicious user could be able to substitute a library with
malicious code for the clean one.

The solution lies in signing our libraries using a combination of public/private keys.
Therefore, if anyone replaces a library with another one containing different code,
the application will throw an exception when trying to validate the signature and it
will not be executed.

Chapter 11

[371]

Every single project must be individually signed from the project properties in
Visual Studio. The following are the steps to do this:

1. Create a Silverlight Class Library project and name it MyLib.
2. In the project properties, choose the Signing tab and check the Sign

the assembly checkbox, as shown in the following screenshot:

3. Under that checkbox, there is a ComboBox called Choose a strong name key
file, which allows us either to create a new key file or to choose an existing one
(Personal Information eXchange (PFX) or Strong Name Key File (SNK)):

Security

[372]

4. Create a new key file, give it a name and, in this case, do not protect it with a
password (Protect my key file with a password should be unchecked). You
could, however, choose to protect it just in case you do not trust the people
who can access your source code.

5. Now we have our DLL signed. The key file is available in the project solution
(myKey.snk). It could be used in some other library projects, which could be
added to the solution.

This has to be done in every project that is part of the solution since, when a project
is created in Visual Studio, it will be generated without a signature.

XAP and certificates
Silverlight applications are executed within a sandbox, which means that they are
isolated and only have limited access to the hardware and critical data of the machine
where they are being executed. In Chapter 6,Out Of Browser (OOB) Applications, we
dealt with a new type of application, trusted OOB applications, which are able to
perform operations that could damage or compromise the user information.

Chapter 11

[373]

Here, it is important to have reliable knowledge about where the application
comes from. For this purpose, it could be signed with a Code Signature Certification
(PFX), which has to be acquired from a trustworthy authority (VeriSign, Thawte,
GoDaddy, Comodo, and so on). In case the application is not signed, the following
issues may arise:

•	 When installing the OOB trusted application, a security warning pops up,
as shown in the following screenshot:

•	 The auto-update that we saw in Chapter 6,Out Of Browser (OOB) Applications,
is not operative. This is due to the fact that the application is not signed and
there is no guarantee that whatever gets updated is not malware.

In our Silverlight application, we could go to the Signing tab and select the PFX
file intended to be used to sign the whole XAP (Select from File...), but if we do
not already have one (Select from Store…) you need to create a test certificate (not
trustworthy, Create Test Certificate…).

Security

[374]

In this case, it is crucial to use a strong keyword with a password and put our PFX
file in a safe place. If a third party could access and discover the code, they could
create malware and sign it, indicating that the source is our company.

XAP and obfuscation
Preventing someone from disassembling our code is actually impossible, although
we can make things more difficult for them by obfuscating it, that is, generating an
assembly that is more difficult to understand for a human being, whereas a computer
is able to execute it flawlessly. In this way, an obstacle is posed when practising
inverse engineering so as to get information from the assembly. The following are
the derived limitations and issues:

•	 Obfuscated code does not offer absolute security, so we cannot be
overconfident and include critical data in our source code. In this case, an
advanced attacker, or an attacker with a little more time, would be able to
eventually extract all the critical information.

•	 The available tools are not easy to use; in fact, the obfuscation process itself
can break the code and prevent our application from continuing to work.

The tools we can make use of are third party. For example, Deep Sea Obfuscator
(http://bit.ly/jTTfH6), Dot Fuscator (http://bit.ly/982bJp), Codefort
(http://bit.ly/yOWjYh), and .NET Reactor (http://bit.ly/gUz8e).

Server-side and communication security
In the previous section, we learned how to try and secure our application on the client
side, and that it is nearly impossible to avoid any malicious attack or manipulation.

Now, we are going to learn how to add security on the server side, the last frontier a
hacker has to face and the one where we have more control.

Validations
As we saw earlier, the server must not trust the validity of the information that
comes from the client, as it can never be guaranteed that the data came from our
application. These could come from a pretender, or even another application of
ours, which shares the service. Therefore, it may have ignored all the validations
implemented in our Silverlight application.

Chapter 11

[375]

Due to this, the validations of the server must be repeated. To avoid heavy weather,
the developer could feel tempted to omit client-side validations, which would not be
incorrect nor may suppose a security risk. However, it is essential to recognize the
value of these client-side validations and their contribution to the user experience,
since the user gets immediate warnings when a piece of data is not correct, or
when it is not possible to click on a certain button because it is disabled, avoiding
the frustration of performing an action and eventually receiving a server error
that rejects data, denies permissions, and so on. Besides, in order to prevent the
work from being duplicated, more error-prone architecture should be generated.
RIA Services gives the chance to implement validations on the server side that get
automatically propagated to the client side (Silverlight application), via restrictions
defined in the model with the use of Data Annotations. For more complex questions,
we will have to figure out the best way to face validation in every single case, and
whether it is beneficial for the user to receive client validation or not.

Cross-domain calls
For security reasons, a non-trusted Silverlight application only permits the making of
calls to web services in the same domain. In this way, an application will not be able
to send information or execute unauthorized commands to third parties.

Even if this security measure is assumed, sometimes it can be necessary for our
application to directly access a third-party service. This can be done with the help
of cross-domain policies.

What are these policies? They are defined in XML files, which must be at the root
of the web server that has to be called. They indicate the third-party domains
authorized to make calls to our domain and to what subfolders. For instance, in an
image library portal, we could give them access to the public images folder, but not
to the user administration folder.

To apply these policies, when a Silverlight application is going to make a petition
to a third-party service, the following sequence is automatically executed:

1. The Silverlight application checks if there is a cross-domain policy in the
target server that we want to have access to.

2. This checks the policy's file and decides whether to give it permission to
access the service we want to call.

3. If we get permission, the call to the web service is made.

This sequence can be seen in action if we execute Fiddler (a famous HTTP packet
tracker, more information is available at http://bit.ly/GLSq7) and we try to call
a web service in a domain, which is not the source of the application.

Security

[376]

Silverlight supports two kinds of policy files:

•	 ClientAccessPolicy.xml: The format of this file is defined by the Silverlight
team and offers a more detailed control of the authorized domains.

•	 Crossdomain.xml: The format of this file is set by Adobe. It is useful if you
are interested in your services being accessed both from Silverlight and Flash.

Let's see, as an illustration, the aspect of a ClientAccesPolicy.xml file, but
remember not to use it just as it is, since it gives access to every domain and folder:

<?xml version="1.0" encoding="utf-8"?>
<access-policy>
 <cross-domain-access>
 <policy>
 <allow-from http-request-headers="SOAPAction">
 <domain uri="*"/>
 </allow-from>
 <grant-to>
 <resource path="/" include-subpaths="true"/>
 </grant-to>
 </policy>
 </cross-domain-access>
</access-policy>

If you want to customize it, for instance, to restrict access only to certain domains
or folders, you can follow the guide available at http://bit.ly/hhaBMr.

Security in our communications
We have already seen how applications that are executed on the client side can be
secured. However, as explained earlier, information transmitted from client to server
can get exposed. So somebody could capture a trace to study it or intercept it and
send malicious information instead of the original.

In order to avoid this, we have two entry-level points:

•	 Implementing authentication and authorization: These are two key
concepts in computer security. Authentication allows us to identify and
verify that a user identity is authentic. Authorization allows us to check
that a user (logged in or anonymous) has permission to perform a certain
action, normally via roles.

Chapter 11

[377]

•	 Ensuring communications: To do so, an SSL certification can be acquired to
access our services via HTTPS, so that the information is encoded and a spy
cannot read our packets.

Now, we will see how to apply the concepts of authentication and authorization in
the two main communication channels with the server that has been proposed in this
book, namely, data access via RIA or WCF Services.

Authentication and authorization with RIA
Services
RIA Services adds a layer on top of WCF to hide the complexity and allows us to
focus on performing CRUD operations. It also contains a functionality to allow us to
authenticate and authorize, (this functionality is fully integrated with the ASP.NET
Membership Provider).

Authentication
So as to identify a user, first the authentication mechanism has to be established
on the server since, although the process is initiated on the client side, the server
guarantees the identity. We can make use of the authentication mechanisms that
ASP.NET offers to use (this is the platform on which our server runs). To do this:

1. Define a Membership Provider, CustomMembershipProvider. In this class,
implement (at least) the check which will validate if a user defined by their
username and password is valid.

2. Register that Membership Provider in the web.config of the ASP.NET
application.

3. Create an Authentication Domain Services (RIA Services)
MyAuthenticationDomainService. In this case, it is not necessary to
implement additional code.

Security

[378]

4. In our Domain Service, we can indicate that it is compulsory for a user to
be authenticated to access data. This can also be used for a method.

Register the membership
provider in the

web.config(ASP.NET)

2

Define a custom
membership provider

(check user / password
is valid)

Define a custom
membership provider
(check user/password

is valid)

1

Create the RIA Services
Authentication Domain

Services

3

Indicate in the Domain
Services(or methods)

Requires Authentication

4

public class CostomMembershipProvider : MembershipProvider

<membership defaultProvider=“myCustomProvider”>
<providers>
<add name= myCustomProvider”>

type=
“

“testAuth.Web.Provider.CustomMembershipProvider” />
</providers>

</membership>

public class MyAuthenticationDomainService : AuthenticationBase<User>

[RequiresAuthentication]
[EnableClientAccess()]
public class MyDomainService : LinqToEntitiesDominService<SecuritySampleEntities>

Now, our authentication platform is configured in the server. Using it on the client
side involves the following steps:

1. Initialize the security in the context (WebContext).
2. Ask the user for their credentials with an interface developed for this

purpose, where the user must enter their name and password. Then, make
an asynchronous call to the server in order to authenticate the user.

3. The response of the asynchronous operation will show whether it has been
successful or not.

4. Later, it could be possible to check if there is an authenticated user and their
name, through WebContext.Current.User.

Chapter 11

[379]

Ask for user credentials
and validate

them(async call)

2

Define a custom
membership provider

(check user / password
is valid)

Initialize security context
(app initialize)

1

Once async call
completed check if login

operation has been
successfully completed

3

We can extract as well
the user information

4

public App()
{

(_)
WebContext context = new WebContext();
context.Authentication = new FormsAuthentication(),}
Application LifetimeObjects.Add(context);

}

_login0p = WebContext.Current.Authentication.Login(
new LoginParameters(txName.Text, txPassword.Text)

);
_login0p.Completed += new EventHandler(login0p_Completed);

void login0p_Completed(object sender, EventArgs e)
{

(...)
if (!_login0p.LoginSuccess)
{

MessageBox.Show(”User Name/Password not valid”);
}
else

(...)

MessageBox.Show(”Welcome Mr. “ +WebContext.Current.User.Name);

In the Silverlight client, we only have the username, as it has been exposed
previously. We recommend performing the essentials of security on the server side.
If it is necessary to perform conditional actions on the client side, such as enabling
commands or viewing certain data, it should be done by requesting this information
from the server, avoiding the risks we have already pointed out.

Authorization
If we want to know the permissions that a user is assigned once authenticated, we
establish our own authorization mechanism via roles. Again, it is possible to make
the most of the possibilities that ASP.NET gives us by following the steps given next:

1. Define a Role Provider, CustomRoleProvider. This will implement at least
one consultation, which will return the roles assigned to a particular user
according to their name.

2. Register that Role Provider in the web.config of the ASP.NET application.

Security

[380]

3. Annotate the Domain Service calls that require the user to belong to certain
roles with the RequiresRole attribute for them to be executed.

Register the role provider
in the web.config(ASP.NET)

Define a custom
membership provider

(check user / password
is valid)

Define custom role
provider

If a Domain Service
method needs a specific

role, add the
corresponding annotation

public class CustomRoleProvider : RoleProvider

<roleManager enabled=”true” defaultProvider=”myCustomProvider”>
<providers>
<add name=”myCustomProvider” type=”testAuth.Web.Provider.CustomRoleProvider”/>

<providers>
</roleManager>

[RequiresRole(”Admin”)]
public IQueryable<AdminData> GetAdminDatas()

2

1

3

It must be noted that, for role assignment to users (that is, for Role Provider
implementation), it is possible to use the standard implementation based
upon SQL Server and offered for ASP.NET, or a customized one. For further
information, please visit http://bit.ly/L9prf.

Actually, to have better control of permissions in our model and integrate the users
with the rest of the entities, it is advisable to use entities of our own. Probably, a user
entity (with access name, encoded password, and the associated role) will suffice, in
case our application does not need a user to have more than one role. Doing this, the
implementations of the two providers will be simple queries to the data of this entity
via Entity Framework Data Context.

Now, our server is configured and the information on the current user and their
roles can be accessed. Use the mechanisms which ASP.NET provides for any web
application, either with the described attributes or by accessing HttpContext.
Current.User.Identity.Name. This piece of data is also available with the user
property in pages, controls, controllers, and so on. Also, it is possible to access user
roles in the same way, consulting individually if a user belongs to a role or not, such
as HttpContext.Current.User.IsInRole("Admin").

On the other hand, there are two client-side aspects which have to be considered:

•	 It is possible to know the roles of a particular user accessing WebContext.
Current.User.IsInRole. Although this may act as a filter, more oriented to
make the application use easier, it must be ratified by the server in every call.

Chapter 11

[381]

•	 Manage the possible permission errors that may be received when trying to
call a method to which we are not authorized. Even though this could make
the UI uglier, it is preferable not to allow the user to perform an action they
are not allowed to.

Attempt to make a server
call to a method where

user has no permissions,
will throw an error

2

Define a custom
membership provider

(check user / password
is valid)

Check roles of current
user

1

WebContext.Current.User.IsInRole(”admin”)

void operation_Completed(object sender, EventArgs e)
{
LoadOperation<testAuth.Web.Model.MyData> =

sender as LoadOperation<testAuth.Web.Model.MyData>;
if (loadop.HasError == true)
(_)

loadop

Authentication and authorization in WCF
Services
If we aim to use the authentication and authorization mechanisms configured in
ASP.NET from a WCF service, it must be asked that the service is executed in the
same ASP.NET context, sharing status and session with it. Thereby, we will have
access to the ASP.NET and, consequently, to the user authenticated in the web
application from our web service. So as to enable the compatibility in all services,
the following section must be added to the web.config service:

<system.serviceModel>
 <serviceHostingEnvironment
 aspNetCompatibilityEnabled="true"/>
...
...
</system.serviceModel>

Another option implies the establishment of the compatibility individually
in the header of the class defining the web service, by means of the attribute
AspNetCompatibilityRequirements:

[AspNetCompatibilityRequirements(RequirementsMode =
 AspNetCompatibilityRequirementsMode.Allowed)]
 publicclassMyService

Security

[382]

One way or another, we can now enjoy the possibility of checking the user and the
roles they belong to in our WCF service, in the same way as we saw earlier in the
chapter:

if (HttpContext.Current.User.IsInRole("Admin"))
...

Protecting communications with SSL
To enable the use of Secure Sockets Layer (SSL) in a RIA Services-based application,
it is just necessary to add the RequiresSecureEndpoint=true parameter in the
attribute EnableClientAccess of the Domain Service, MyDomainService:

[EnableClientAccess(RequiresSecureEndpoint = true)]
public class MyDomainService :
 LinqToEntitiesDomainService<SecuritySampleEntities>

If the aim is to have this secure communication operating, it will be necessary to
enable SSL in IIS by registering the corresponding certification, as in http://bit.
ly/nqcnMW.

Regarding WCF Services, it is essential to perform three modifications in order to
enable access via SSL.

The first thing to do is to modify the binding configuration in the server. When
entering a context where the user has already passed a security filter, the
configuration (in web.config) will be as follows:

<binding name="MyService.customBinding0">
 <security mode="Transport">
 <transport clientCredentialType="None"/>
 </security>
</binding>

Then, it is time to configure the behavior in the same file, MyService.
MyServiceBehavior, where the HTTPS is activated by means of the
httpsGetEnabled property.

<behavior name="MyService.MyServiceBehavior">
 <serviceMetadatahttpsGetEnabled="true" />
</behavior>

Chapter 11

[383]

Finally, change the Silverlight client configuration to establish the appropriate values
in the endpoint, as can be seen in the following source code:

<service
 behaviorConfiguration="MyService.MyServiceBehavior "
 name="MyService">
 <endpoint binding="basicHttpBinding"
 bindingConfiguration=
 "MyService.customBinding0"contract="MyService" />
 <endpoint address="mex" binding="mexHttpsBinding"
 contract="IMetadataExchange" />
</service>

LOB application case study: applying
what we have learned
For our booking application, the following is necessary:

•	 The user must identify themselves before starting the application
•	 The bookings information assigned to the user must be shown
•	 To detect the user role:

	° Normal: Their bookings can be viewed, as well as created and
updated

	° Administrator: They can also manage the available floors and rooms

In order to do so, we enter a few changes, both on the server side and the client side.

Server side
Regarding the server, we define ASP.NET providers for authentication and
authorization in the project named Packt.Booking.Server.Data. There, we also
define the Authentication Service of RIA Services.

Security

[384]

Once defined, we need to modify the web.config of the web project (Packt.
Booking.Server.Web), indicating the providers that will be used.

<!-- Security-->
<authentication mode="Forms" />
<membership defaultProvider="myCustomProvider">
 <providers>
 <add name="myCustomProvider"
 type="Packt.Booking.Server.
 Data.Providers.CustomMembershipProvider" />
 </providers>
</membership>
<roleManager enabled="true"
 defaultProvider="myCustomProvider">
 <providers>
 <add name="myCustomProvider"
 type="Packt.Booking.Server.
 Data.Providers.CustomRoleProvider" />
 </providers>
</roleManager>

Once into the services, the annotation is added so as to ask the user to be
authenticated to access the Domain Service. Also, we add the annotation to
ask for the administration role in those operations wherever it is necessary.

[RequiresAuthentication]
public partial class BookingDomainService :
 LinqToEntitiesDomainService<BookingsEntities>
{
(…)
[RequiresRole("Admin")]
public void UpdateFloor(Floor currentFloor)
{
(…)

Regarding the source code, the ID of the user who has logged in must also be
checked. For this purpose, we use:

reservation.IDUser =
 GetUserIDFromLoginName
 (this.ServiceContext.User.Identity.Name);

We have already used this control in the operations named InsertBooking
and GetMyReservations. Now, we would only need to check in Update and
DeleteBooking (to ensure that malicious users do not modify entries that are
not theirs).

D
ow

n
lo

a
d
 f
ro

m
 W

o
w

!
e
B
o
o
k

<
w

w
w

.w
o
w

e
b
o
o
k.

co
m

>

Chapter 11

[385]

Client side
The first surprise we get on the client side is that the code generated by RIA Services
does not incorporate a WebContext. It is due to the division previously made, that is,
isolating the Domain Service and Authentication Service to a data project. Then, we
must create our own class. It can be found in Packt.Booking.Common\Web, and it
can be initialized as we saw at the beginning of the chapter.

public sealed partial class WebContext :WebContextBase
{

 #region Extensibility Method Definitions

 /// This method is invoked from the constructor once
 /// initialization is complete and can be used for
 /// further object setup.
 partial void OnCreated();

 #endregion

 /// Initializes a new instance of the WebContext class.
 publicWebContext()
 {
 this.OnCreated();
 }

 /// Gets the context that is registered as a lifetime
 /// object with the current application.
 public new static WebContext Current
 {
 get
 {
 return ((WebContext)(WebContextBase.Current));
 }
 }

 /// Gets a user representing the authenticated
 ///identity.
 public new User User
 {
 get
 {
 return ((User)(base.User));
 }
 }
}

Security

[386]

As soon as the application is started, it shows a login dialog, as shown in the
following screenshot:

From the ViewModel, we will perform the corresponding calls of the Authorization
Service and will send a message, once successfully authenticated.

LoginOperationloginOp =
 WebContext.Current.Authentication.Login(Login,
 Password);

loginOp.Completed += (s, e) =>
{
 if (loginOp.HasError)
 {
 (…)
 }
 Else
 {
 if (loginOp.LoginSuccess)
 {
 Messenger.Default.Send(new
 LoginSuccessfulMessage());());
 }
 (…)

Chapter 11

[387]

The following message is used to redirect the user to the main page:

Messenger.Default.Register<LoginSuccessfulMessage>(this,
 (p) =>
{
 stringurl = NavigationHelper.MyBookingsURL;
 NavigationService.Navigate(url);
});

It is also used to disable the Administration option in the menu, if the user does not
have the Admin role:

Messenger..Default.Register<LoginSuccessfulMessage>(this,
 (p) =>
{
 if (WebContext.Current.User.IsAuthenticated == true
 &&WebContext.Current.User.IsInRole("Admin"))
 {
 UserHasAdminPermissions = true;
 }
});

If a malicious user finds a way to access the administration options without having
permissions, or they try to send an HTTP petition, they will see that the server rejects
the petition, as it has not been authenticated

Summary
In this chapter, we saw how easy it is to add security to our application. It is
also possible to create OOB trusted applications and add authentication and
authorization levels in an easy way.

Additional resources
For more information on security, check the following links:

•	 Assemblies signature: http://bit.ly/abJMfG
•	 Signing an XAP with a code certification: http://bit.ly/liasVl
•	 RIA Services and security: http://bit.ly/991Tjz

Index
Symbols
<configuration> tag 349
.NET controls, ASPX Form

button 320
label 320
textbox 320

.NET Reactor
URL 374

[OperationContract] method 348
[ServiceContract] method 348

A
About.xaml 56
Add method 259
AddNewRoom method 108
address book, Silverlight application

about 328
contact edition 334, 335
contact list 332, 333
login page 332
Visual Studio solution 330

AddTest method 260
AdminEditionView.xaml.cs object 110
AdminViewModel object 105
AdminView.xaml.cs object 110
AdminView.XAML Page

about 56, 66-68
Button object 66
DataGrid object 66

ADO.NET Entity Framework 177
Agile Movement 256
AgUnit 263
AOP 299

App.cs 56
application blocks 292
Application object 289
App.xaml 56
AreEqual method 259
Arrange, Act, and Assert(AAA) 259, 276
ASMX service 353
aspect-oriented programming. See AOP
aspNetCompatibilityEnabled 348
AspNetCompatibilityRequirements

class 381
AspNetCompatibilityRequirements

Mode.Allowed 348
ASP.NET web project

creating 345
ASPX Form

.NET controls 320
about 320

Assemblies signature
URL 387

Assembly Portability feature 261
AsyncCallSimulator 171
AsyncCompletedEventArgs class 287
asynchronous client code

testing, with SilverlightUT 269-271
asynchronous patterns

about 287
AsyncCompletedEventArgs class 287, 288
ExceptionRoutedEventArgs 288, 289
UnhandledExceptionEvent

Handler 288, 289
asynchronous validations 207
ATM 225
authentication

in WCF Services 381
with RIA Services 377

[390]

authorization
in WCF Services 381
with RIA Services 379

Automated UI Testing 256

B
basicHttpBinding 343
Behavior-Driven Development (BDD) 273
binaryMessageEncoding 344
BindingValidationError 96
BindingValidationError event 96
bin folder 157
black-box testing 256
boneheaded exceptions 290
BugReport class 305
bugs, reporting

about 304
architecture 304, 305
client implementation 307, 308
Composite Bug Report Service 305-307

C
Calculus class 259
caller beware option 286
caller confuse option 286
caller inform option 286
calls

making, to COM+ 242
call support

enabling, via P/Invoke 246
CanSave property 105
Canvas control

about 23
example 23

Canvas object 65
CategoryFilter 294
ChangeCity method 366
changes, RIA Services

cancelling 208
ChildWindow

about 47
creating 47-49

ChildWindow control 39
ChildWindows 172
city not found error

trapping 365

Click event 50
client

WCF service, referencing from 351-353
Client Access License 306
ClientAccessPolicy.xml 376
client code

testing, with MSTest 260-262
client-side security

about 369, 370
assemblies, signing 370-372
critical information 370
XAP and certificates 372, 374
XAP and obfuscation 374

client UI, WCF service
designing 350, 351

Closed event handler 51
clr-namespace 44
Code-Behind

interacting with 20-22
Code Contracts 290
Codefort

URL 374
Codeplex 295
Code Signature Certification (PFX) 373
CollectionChanged event 104
COM 225
COM+

about 227
calls, making to 242

ComboRebindable 172
common principles, REST architecture 357
communication, between ASPX page

and Silverlight
cookies 319
initparams 319
parameters in URL 318
session 319

communications
protecting, with SSL 382

CompanyName.Libs 157
CompanyName.ProjectName 157
compiler 255
complex types

using, via WCF 355-357
Composite Bug Report Service 304-307

[391]

compositions, RIA Services
about 211
behaviors 213
defining 212
hierarchical change tracking 213
UML class diagrams 212

ConcatCommand 141
Concatenate command 139
Container control 39
ContentControl

about 40
URL 40

continuous integration 256
Continuous Integration (CI)

environment 266
controls

ChildWindow 39
Container 39
ContentControl 39
Page 39
Popup 39
UserControl 39

Controls 27
ConvertBack function 99
converters

about 99
IValueConverter 99-102

Convert function 99
country entity

including 211
Create, Read, Update, and Delete. See

CRUD
CreateUri 360
cross-domain calls 247
cross-domain calls, server-side and

communication security 375
cross-domain policies 375
Crossdomain.xml 376
CRUD

about 190, 311
Create 192
data, reading 190, 191
Delete 193
entities, deleting 193
entity, updating 192
error control 193

instance, creating 192
Read 190
simple data binding 194
Update 192

CustomerListPage.xaml 170
custom interface

installing 232
CustomValidationAttribute 198
CustomValidatorAttribute

benefits 200

D
data

accessing, in RIA Services 175
DataAnnotations

about 198, 199
custom validations 200-203
entity-level validations 203, 205
shared validations 200-203
simple validations 199
used, for adding validations 97, 98

data binding
about 73, 111
debugging, URL 113

data binding modes
about 81
OneTime 81
OneWay 81
TwoWay 81

data binding sources
DataContext 76
ElementName 76
RelativeSource 77
Source 77

DataContext 76, 77, 154
DataContract classes 355
DataContractJsonSerializer 360
DataGrid control 28
DataSource

about 74
binding sources 76
data binding modes 81, 82
DataContext 77-79
notifications, changing 79, 80
Path property 76

[392]

Data Transfer Object (DTO) 361
DataTypeAttribute 198
Deep Linking

about 61
URL 61

Deep Sea Obfuscator
URL 374

DeleteRoom method 108
Dependency Injection (DI) pattern 272
dependency properties

about 87
data binding, from Code-Behind file 91
generating, in Code-Behind file 89
dependency propertiesusing 88-90

DependencyProperty.Register method 90
Deserialize method 365
deserializer class 365
design pattern

reference link 116
desktop application 225
Dispatcher 288
DispatcherHelper 137
DisplayService class 348
DisplayServiceClient class 354
Dispose method 285
Document Object Model (DOM) 318
DomainContext class 178, 309
DomainException class 311
Domain service

about 178
consuming, for Silverlight

application 184-188
creating 184, 186

Domain services validations
about 205
asynchronous validations 207
server validations 205, 206

DOM handling, from Silverlight
about 326
HtmlDocument 326
HtmlElement 326

Don't Repeat Yourself. See DRY principle
Dot Fuscator

URL 374
DoWork method 348

dragging-and-dropping controls 19, 20
DRY principle 298
dynamic analysis 255, 256

E
e.Error property 355
ElementName 76
EnableClientAccess attribute 382
EnqueueCallback method 271
Enterprise application framework

about 292
architecture 292-294
practice 294-297

entities 178
entity-level validations 203, 204
Entity Library 304
entry

writing, on registry 243, 244
EnumDataTypeAttribute 198
error control 283
error control, CRUD

about 193, 194
error, detecting 193

error handling mechanisms,
LOB application 308

ErrorItem class 310
error logging

combining, with exception
handling 297-299

ErrorWindow.xaml 56
EventToCommand 137
Exception class 284
exception handling

about 283, 284
asynchronous patterns 287
catch block 284
error logging, combining with 297-299
finally expression 285
strategies 286, 287
try block 284

exception handling, strategies
caller beware 286
caller confuse 286
caller inform 286

[393]

ExceptionRoutedEventArgs 288, 289
exception types

about 289
boneheaded 290
exogenous 290
fatal 290
vexing 290

exogenous exceptions 290
Extensible Application Markup Language.

See XAML
Extreme Programming (XP) 256

F
fake 272
fatal exceptions 290
features, In-browser Trusted

applications 251
FileNotFoundException 287, 291
filters

CategoryFilter 294
LogEnabledFilter 294
PriorityFilter 294

finally block 285
Firestarter

URL 173
folder structure, project

about 156
bin 157
libs 157
src 157

FormValidation application
Email field 93

FormValidation application, creating 92
FxCop 255, 283

G
GalaSoft

URL 173
GenderConverter 100
GenderImgConverter class 102
GenericMessage 144
GetAllMessages 355
GetCitiesByCountry method 362, 367
GetMessage method 344

GetWeather method 362
global exception handling 289
GlobalWeatherService 365
Grid.Column 25
Grid.ColumnDefinitions 25
Grid control 25
Grid.Row 25
Grid.RowDefinitions 25

H
Handled property 289
HasChanges property 278
Hello World project

creating 15
Home.xaml 56
HTML 5 11
HtmlDocument 326
HtmlElement 326
HTML page

about 318
architecture 318

HtmlPage object 321 325
HTTP protocol 357
httpsGetEnabled property 382
httpTransport 344

I
IBugReportService interface 305
ICommand interface 139
IDataErrorInfo

URL 112
IDataErrorInfo interface 93, 94

implementing 92
IDialogService 172
IDisplayService 348
IDisplayService interface 356
IDisplayService node 352
IDisposable interface 285
iFrames 51
IHomePage interface 170
ILSpy

URL 302
Image class 287, 288
IModel 149

[394]

IModelFactory 222
Inavigable interface

implementing 168
in-browser/OOB detection 230
In-browser Trusted applications

about 251, 252
features 251

Index class 93
INotifyColleactionChanged interface 104
INotifyMonths project 84
INotifyPropertyChanged

interface 79, 84, 94, 104, 299
integration tests 256
IOException 287
IsEnabled dependency property 96
Isolated Storage 236
IsolatedStorageLogEntryRepository

class 308
IsolatedStorageTraceListener 294, 307
ISO standards 256
IValueConverter

about 99
ConvertBack function 99
Convert function 99

J
JavaScript

about 11
accessing, from Silverlight 325

JavaScript, accessing from Silverlight
about 325
HtmlPage object 325

jLight
reference link 339

JSON format
processing 360

L
layers, MVVM pattern

Data Model 117
interacting 117
presentation 117
ViewModel 117

layout definition
basic elements 23

layout definition, elements
Canvas 23
Controls 27
Grid 25
Stack Panel 24

libraries, for testing Silverlight
about 262
AgUnit 263
Selenium-Silverlight 262
SilverlighUT 262
SilverUnit 262
StatLight 263

libraries, LOB application case study
Packt.Libs.Navigation 166
Packt.Libs.Threading 171
Packt.Libs.Utils 172
Packt.Libs.Windows 172

libraries, MVVM Light Toolkit
GalaSoft.MvvmLightExtras 137
Galasoft.MvvmLight.SL4 137

libs folder
 157

Line Of Business application. See
LOB application

LoadData method 109
Loaded event 269
LOB application

about 28-37, 62, 63, 225
AdminViewModel object 105, 106
AdminView.XAML Page 66-68
Bookings app, integrating into company

intranet 336-339
client side 385-387
client side exceptions 311-314
data binding 111, 112
entity classes, adding 104
error handling mechanisms 308
libraries 166
MapView.XAML page 64, 66
Modal AdminEditionView.xaml

dialog 69, 70
ObservableCollection 104, 105
OOB, applying 252, 253
project structure 163
public web service, using from

WebServiceX 362-364

[395]

server side 383
server side exceptions 309, 310
service client, implementing 364, 365
testing 273-279
WCF web service 362, 364

LOB application case study, RIA Services
model 221
modules 221, 222
server 219, 220
test 221

LogEnabledFilter 294
LogEntry

creating 293
filtering 293
formatting 294

logging 291
LoggingAttribute class 299
logging block 292
login page, Silverlight-JavaScript

interaction
analyzing 332

LogWriter class 293, 300

M
Mail Bug Report Service 304
MainPage class 78
MainPage Code-Behind 102
MainPage.XAML 55
Managed Extensibility Framework.

See MEF
MapView.XAML page 64, 66
Margin properties 33
markup language

coding, directly 18
Martin Fowler 217
MEF

about 115, 145, 218
composition 148
contracts 147
mock model, creating 148-155
parts, relating to each other 147
structure 146
URL 173

MEF structure
Catalogs 147
composable part 146

Composition Container 147
contracts 146
export 146
Export Providers 147
import 146

MessageEntity class 79
Message property 269
MessageSelected property 82, 90
Messenger class 143, 144
methods, navigation control services

GoBack 58
GoForward 58
Navigate 58
Navigated 59
Navigating 59
Refresh 58
StopLoading 58

mexHttpBinding 344
Microsoft Enterprise Library 292
Microsoft Extensibility Framework 295
Microsoft Public License (Ms-PL) 263
Microsoft WCF RIA Services 176
Mix10 MVVM

URL 173
Mix 11 MVVM Deep Dive

URL 173
mocking 272
mock model

creating, MEF used 148-155
mocks 272
Modal AdminEditionView.xaml

dialog 69, 70
modal dialogs

about 47
ChildWindow 47
creating 47
example 47

Model View ViewModel.
See MVVM pattern

Moq 279
MSBuild 257
MSDN

reference link 339
URL 71

MSTest
about 257
client code, testing with 260-262

[396]

MVVM-based sample application
creating 119, 120, 121
project, creating 126
project structure, creating 122-125

MvvmLight 274
MVVM Light message

client side exceptions 311
MVVM Light Toolkit

about 137
incorporating, into project 137
Messenger class 143, 144
RelayCommand 139-142
URL 137
ViewModelBase 138

MVVM pattern
about 116
dissecting 116
layers 116
Model 120
MVVM-based sample application,

creating 119, 120
RIA Services, fitting into 216
URL 173
View 120
View layer, interacting with

ViewModel layer 117
ViewModel 120
ViewModel layer, interacting with

View layer and Model layer 118
MyBookingsVM class 366
Mycontrols 44
MyDomainService 185, 382
MyFirstDataBinding 74
MyTextMessage class 144
MyTweet.Model 126, 127
MyTweet.View 130-132
MyTweet.ViewModel 128-130

N
navigation control services

about 58
Deep Linking 61
methods 58
URI parameters 60

Navigation Framework
about 51, 52
Frame 54
Web, navigating 51

NavigationService 170
NetworkCredential object 306
notepad

executing, from application 244
NotificationTraceListener 294
NotifyMonthsViewMode.cs 84
NotifyOnValidationError property 96
NuGet 279
NUnit 257

O
obfuscation process

limitations 374
ObservableCollection 104, 355
OnEntry() method 301, 304
OnError method 309 311
OnException method 301
OnExit method 301
OnMethodBoundaryAspect attribute 300
OnPropertyChanged function 84
OOB application

about 226, 227
custom interface, installing 232
trusted applications, advantages 241
trust mode, enabling 239-241
uninstalling 234
updates 235
working, offline 236, 238

OOB mode
doubts 230
Silverlight application, executing 227-229

OpenReadCompleted event 360
O/R Mapping Tools 217
Out of Browser application. See OOB

application

P
Packt .Libs.Navigation 167
Packt.Libs.Navigation 166
Packt.Libs.Navigation.Contracts 167

D
ow

n
lo

a
d
 f
ro

m
 W

o
w

!
e
B
o
o
k

<
w

w
w

.w
o
w

e
b
o
o
k.

co
m

>

[397]

Packt.Libs.Threading 171
Packt.Libs.Utils 172
Packt.Libs.Windows 172
Page control 39, 46
Page_Load 320
partial class

adding, to sample 209
Path property 75, 76
patterns, Silverlight

about 115
MEF 145
MVC 116
MVP 116
MVVM 116

P/Invoke
about 245
call support, enabling 246

pluginLoaded function 322
Popup control 39
Postback 74
PostSharp

about 299, 300
URL, for free community edition 299
using 302-304

PriorityFilter 294
ProgressBar 172
project structure

defining 156
folder 156
main solution, creating 158-162
project folder 156
solution 156
solution folder 156

project structure, LOB application case
study

about 163
folder structure 163, 164
main solution structure 164

project structure, MVVM-based
sample application

creating 122
MyTweet.ViewModel 124
MyTweet.Views 122

PropertyChanged event 82, 104
PropertyChangeEventArgs object 80
Property Error class 93

public API web service
consuming 357
JSON format, processing 360, 362
Twitter API 358
Twitter API, calling 360
Twitter project, starting 358

public REST service
consuming 357

Q
quality insurance processes 256

R
RaiseCanExecuteChanged 141
RangeAttribute 198
Real windows 250
Recordset 73
Reflector 301
RefreshButtonClick 360
RefreshCommand command 366
RefreshCompleted handler 361
RegisterScriptableObject method 324
registry

entry, writing on 243, 244
regression tests 256
RegularExpressionAttribute 198
RelativeSource 77
RelayCommand 139-142
RemoteServiceTraceListener 294
RequiredAttribute 198
Reservation class 278
ReservationNavigation 62
ReSharper 255, 274
ResponseTweetSearchArgs class 149
REST based web service

about 343
JSON form 343

REST (Representational State Transfer) 357
REST services 357
RIA Services

about 176, 177
additional resources 223
challenges 176
changes, cancelling 208

[398]

composition 211, 213
context lifetime discussion 217, 218
country entity, including 210, 211
data, accessing 175
encapsulating, in model 216, 217
fitting, in MVVM 216
many-to-many relationship issue,

solving 215
model factory 218
partial class, adding 209
services layer generator 177
simple database, using 178
transactions 209
validation 198

RIA Services and security
URL 387

RIA Services context 217
RIA Services project

creating 179-184
Domain service, creating 184-187

RIATec 156
Rule CA2200

URL 287
Rule CA2202 285

S
sample Navigation Application

creating 55, 56
new page, adding 56-58

sample projects proposal, WCF service 344
Sandbox 14
SatisfyImport 170
SaveRoom method 108
ScriptableMember 323
ScriptableType attribute 323
SearchAsync method 360
SearchResult class 361
SearchViewModel class 151
security

about 369
client-side security 369
server-side and communication

security 369
SelectedCityName property 367
SelectedValue property 82
Selenium-Silverlight 262

semantic analysis 255
server code

testing 257-260
server-side and communication security

about 374
authenticating, with RIA Services 377, 378
authentication, in WCF service 381
authorization, in WCF service 381
authorizing, with RIA Services 379, 380
communications, protecting with SSL 382
cross-domain calls 375
security, in communications 376
validations 374

server validations 205, 206
server, WCF service

building 345-348
service client implementation, LOB

application case study
about 364
existing MyBookingsVM, changing 367
service configuration 367
Service Reference, adding 364, 365
support, deserializing 365
UI, drawing 366
ViewModel class, building 365

Service-Oriented Architecture (SOA)
URL 342

services layer generator
functions 177

SetMessage method 344
Signing an XAP with a code certification

URL 387
Silverlight

about 12
accessing, from JavaScript 322
additional resources 38
advantages 12
architecture 13-17
best practices 283
ClientAccessPolicy.xml 376
client code, testing with MSTest 260-262
coding guidelines 283
controls definitions 39
Crossdomain.xml 376
DOM handling 326
exception handling 283, 284
exception types 289, 290

[399]

global exception handling 289
installed application, detecting 231
LOB application case study 62
modal dialogs, creating 47
Navigation Application, creating 55
navigation control services 58, 59
Navigation Framework 51
offline installatoin 235
OOB applications 226, 227
OOB application, uninstalling 234
patterns 115
security 369
server code, testing 257-260
unit testing 257
validations, adding 92-96
WCF service, consuming from 354, 355
windows and controls, creating 40

Silverlight 4
WCF service, enabling 349, 350

Silverlight 5 12
Silverlight, accessing from JavaScript

about 322
complex data, returning 323
functions, exposing 323
methods, exposing 323
Silverlight object, accessing 322
Silverlight object, registering 322, 324

Silverlight application
adding, to ASPX page 318, 319
executing, in OOB mode 227-229

Silverlight architecture
about 13, 14
coding, directly into the markup

language 18
Hello World project, creating 15
new project, creating 16, 17

Silverlight Data Binding
URL 112

Silverlight Form 320
Silverlight-JavaScript interaction

about 327
address book 328
ASPX pages 332
JavaScript code, calling 335, 336
Visual Studio solution 330
web services 332

Silverlight Navigation Framework
about 52
integrating, in browser 53
UriMapper 53

Silverlight object
registering 324

SilverlightShow
URL 71

Silverlight Toolkit
URL 27

Silverlight Unit Testing. See SilverlightUT
SilverlightURL project

creating 319
SilverlightUT

about 262
asynchronous client code,

testing with 269-271
synchronous client code,

testing with 263-269
SilverUnit 262
simple data binding, CRUD 194-197
Single Responsibility Principle (SPRY) 261
SL_JS.Entities 331
SL_JS.Model 331
SL_JS.Server.DataLayer 331
SL_JS.Server.Entities 331
SL_JS.View 331
SL.JS.ViewModel 331
SL_JS.ViewTestPage.aspx 332
SOAP-based web service

about 342
UDDI for services discovery 342
WSDL for services definition 342
XML format 342

SoapClient suffix 353
SOLID principles 261
solution folders, LOB application

common 165
model 165
modules 165
server 165

solution folders, project
common 159
model 159
modules 159
server 159
tests 159

[400]

Source 77
src folder

about 157
CompanyName.Libs 157
CompanyName.ProjectName 157

StackPanel control 24, 34, 78
static analysis 255
static code analysis tool 283
StatLight 263
StringFormat 99
StringLengthAttribute 198
stubs 272
StyleCop 255
substitutes

unit tests, isolating via 272
synchronous client code

testing, with SilverlightUT 263,-269
system tests 256

T
Team Foundation Services 306
TestClass attributes 259
Test-Driven Development (TDD) 256
testing

methodologies 256, 257
types 255, 256

testing, types
dynamic analysis 255, 256
static analysis 255

TestMethod attribute 259
test project 257
TestRunner.App 167
tests 256
TFS Bug Report Service 304, 306
TheFloorIndex property 106
TheFloorIndexSelected property 106
TheFloors property 106
TheName property 98
TheRoomIndexSelected property 107
TheRoom property 108
TheRooms property 106
Tim Heuer

URL 71
Toolbox palette 27

trace listeners
selecting 294

trace sources
selecting 294

transactions, RIA Services 209
TranslationResult dependency property 90
TranslationResultUC 88
trusted applications

about 238
advantages 241
calls, making to COM+ 242
files, accessing 242
notepad, exceuting from 244

trusted mode
enabling 239-241

Trusted OOB application
about 238
real windows 250

try block 284
Tweet class 361
TweetModel class 150
TweetSearch 156
Twitter API

about 358
calling 360

Twitter project
starting 358, 359

TwitterSearchApi 359
TwoWay mode, data binding modes 82

U
UnhandledExceptionEventHandler 288, 289
Unit of Work pattern

about 217
URL 217
working 217

unit testing
about 256
with Silverlight 257

unit tests
isolating, via substitutes 272

Unity 295
UriMapper 53
uriMapper key 62

[401]

URI mappings
examples 54

URI parameters 60
URL

used, for transfering information from
ASPX page to Silverlight 319

UserControl
about 39, 41
creating 41
example 41-44
instantiating, from code 44, 45

user interface (UI) 359
using statement 285

V
ValidateAll() method 99
ValidateOnDataError property 93
ValidateProperty method 98
validation

about 198
adding, DataAnnotations used 97, 98
adding, in Silverlight 92-96
BindingValidationError 96
levels 198

Validation and Bindings tutorial
URL 113

validation attributes
CustomValidationAttribute 198
DataTypeAttribute 198
EnumDataTypeAttribute 198
RangeAttribute 198
RegularExpressionAttribute 198
RequiredAttribute 198
StringLengthAttribute 198

validation levels, RIA Services
DataAnnotations 198
Domain services 205

validations, server-side and
communication security 374

Validator object 98
vexing exceptions 290
View layer

interacting, with ViewModel layer 117
ViewModel

about 83, 311
example 83-86

ViewModelBase
about 138
Galasoft.MvvmLight, adding 138
INotifyPropertyChanged interface 138
RaisePropertyChanged, adding 138

ViewModel class 85
ViewModel constructor 152
ViewModel layer

interacting, with View layer and
Model layer 118

ViewModel object 94
ViewModel properties

about 106
search string 120
TheFloorIndexSelected 106
TheFloors 106
TheRoom 108
TheRoomIndexSelected 107
TheRooms 107
tweet results 120

ViewModel public methods
AddNewRoom 108
DeleteRoom 108
LoadData 109
SaveRoom 108

Visual Studio 2010
about 12
downloading 12

Visual Studio 2010 Premium 283
Visual Studio 2010 Ultimate 283
Visual Studio solution 330

W
W3C 342
Waterfall model 256
WCF

about 304, 343
elements 343

WCF RIA Services SP1 13
WCF service

about 343
basicHttpBinding 343
binaryMessageEncoding 344
binding 343
complex types, using via WCF 355, 356
consuming, from Silverlight 354, 355

[402]

enabling, for Silverlight 4 349, 350
endpoints 343
implementation 348
interface 348
messages 343
mexHttpBinding 344
operations 343
protocols 343
referencing, from client 351-353
service 343
URL 343
ws2007HttpBinding 344
wsHttpBinding 343, 344

WCF service implementation
about 343
client UI, designing 350, 351
sample projects proposal 344
server, building 345-348

WeatherInfo object 366
WeatherQueryVM class

about 365
commands 366
input properties 366
methods 366
output properties 366
weather service 365

WebBrowser control
about 226, 248
limitations 249
working 248

WebClient class 287, 358, 360
web service

about 342
REST based web service 343
SOAP-based web service 342

white-box testing 256
Windows Communication Foundation.

See WCF
window show method 51
WPF 225
WPF-Click once 235
wsHttpBinding 343

X
XAML

about 12, 22
advantages 23
basic concepts 22

XAML code 101
XAML extensions 75
Xmlns 44
XUnit 257

Thank you for buying
Mastering LOB Development for Silverlight 5:

A Case Study in Action

About Packt Publishing
Packt, pronounced 'packed', published its first book "Mastering phpMyAdmin for Effective
MySQL Management" in April 2004 and subsequently continued to specialize in publishing
highly focused books on specific technologies and solutions.

Our books and publications share the experiences of your fellow IT professionals in adapting
and customizing today's systems, applications, and frameworks. Our solution based books give
you the knowledge and power to customize the software and technologies you're using to get
the job done. Packt books are more specific and less general than the IT books you have seen in
the past. Our unique business model allows us to bring you more focused information, giving
you more of what you need to know, and less of what you don't.

Packt is a modern, yet unique publishing company, which focuses on producing quality,
cutting-edge books for communities of developers, administrators, and newbies alike. For more
information, please visit our website: www.packtpub.com.

About Packt Enterprise
In 2010, Packt launched two new brands, Packt Enterprise and Packt Open Source, in order to
continue its focus on specialization. This book is part of the Packt Enterprise brand, home to
books published on enterprise software – software created by major vendors, including (but
not limited to) IBM, Microsoft and Oracle, often for use in other corporations. Its titles will offer
information relevant to a range of users of this software, including administrators, developers,
architects, and end users.

Writing for Packt
We welcome all inquiries from people who are interested in authoring. Book proposals should
be sent to author@packtpub.com. If your book idea is still at an early stage and you would like
to discuss it first before writing a formal book proposal, contact us; one of our commissioning
editors will get in touch with you.

We're not just looking for published authors; if you have strong technical skills but no writing
experience, our experienced editors can help you develop a writing career, or simply get some
additional reward for your expertise.

Windows Phone 7 Silverlight
Cookbook
ISBN: 978-1-84969-116-1 Paperback: 304 pages

All the recipes you need to start creating apps and
making money

1. Build sophisticated Windows Phone apps with
clean, optimized code.

2. Perform easy to follow recipes to create
practical apps.

3. Master the entire workflow from designing
your app to publishing it.

Microsoft Silverlight 4 and
SharePoint 2010 Integration
ISBN: 978-1-849680-06-6 Paperback: 336 pages

Techniques, practical tips, hints, and tricks for
silverlight interaction with SharePoint

1. Develop Silverlight RIAs that interact with
SharePoint 2010 data and services

2. Explore the diverse alternatives for hosting a
Silverlight RIA in a SharePoint 2010 Page

3. Work with the new SharePoint Silverlight
Client Object Model to interact with elements
in a SharePoint Site

Please check www.PacktPub.com for information on our titles

Microsoft Visual Studio
LightSwitch Business
Application Development
ISBN: 978-1-84968-286-2 Paperback: 384 pages

A jump-start guide to application development with
Microsoft's Visual Studio LightSwitch

1. A hands-on guide, packed with screenshots
and step-by-step instructions and relevant
background information—making it easy to
build your own application with this book
and ebook

2. Easily connect to various data sources
with practical examples and easy-to-follow
instructions

Managing Data and Media
in Silverlight 4: A mashup
of chapters from Packt's
bestselling Silverlight books
ISBN: 978-1-84968-564-1 Paperback: 430 pages

Manage data in Silverlight, build and maintain rich
dashboards, integrate SharePoint with Silverlight,
and more

1. A mashup book from expert Silverlight
professionals, from 6 Packt donor titles -
professional expertise distilled in a true sense
starting at just $19.99

2. Packed with practical, hands-on examples,
illustrating techniques to solve particular data
problems effectively within your Silverlight
business applications

Please check www.PacktPub.com for information on our titles

D
ow

n
lo

a
d
 f
ro

m
 W

o
w

!
e
B
o
o
k

<
w

w
w

.w
o
w

e
b
o
o
k.

co
m

>

	Cover
	Copyright
	Credits
	Foreword
	About the Authors
	About the Reviewers
	www.PacktPub.com
	Table of Contents
	Preface
	Chapter 1: Express Introduction to Silverlight
	Introduction to Silverlight
	Installation
	Silverlight architecture
	Creating the Hello World project
	Creating a new project
	Coding directly into the markup language

	Dragging-and-dropping controls
	Interacting with Code-Behind
	XAML basic concepts
	What is XAML?

	Basic elements for layout definition
	Canvas
	StackPanel
	Grid
	Controls

	LOB application case study: applying what we have learned
	Summary
	Additional resources

	Chapter 2: Forms and Browsing
	Controls definitions
	Creating windows and controls
	UserControl
	Example of UserControl
	Instantiating the control from code (Code-Behind)

	Page control

	Creating modal dialogs
	Example of modal dialogs

	Navigation
	Navigating the Web
	Silverlight Navigation Framework
	Integrating Navigation Framework in the browser
	UriMapper

	Frame

	Creating a sample Navigation Application
	Adding a new page

	Navigation control services
	URI parameters
	Deep Linking

	LOB application case study: applying what we have learnt
	MapView.XAML page
	AdminView.XAML Page
	Modal AdminEditionView.xaml dialog

	Summary
	Additional resources

	Chapter 3: Data Binding
	Understanding DataSource
	Path
	Binding sources
	DataContext
	Change notifications
	Data binding modes

	Introducing the ViewModel
	ViewModel example

	Dependency properties
	Data binding from Code-Behind

	Adding validations
	BindingValidationError
	DataAnnotations

	Converters
	IValueConverter

	LOB application case study: applying what we have learned
	Entity classes
	ObservableCollection
	AdminViewModel object

	Data binding

	Summary
	Additional resources

	Chapter 4: Architecture
	Patterns
	MVVM pattern
	Creating an MVVM-based sample application
	Creating the project structure
	Coding the project

	MVVM Light Toolkit
	ViewModelBase
	RelayCommand
	Messenger

	Managed Extensibilty Framework (MEF)
	MEF definitions
	Parts and contracts
	Composition

	Creating a mock model using MEF

	Solution and folder structure
	LOB application case study: applying what we have learned
	Project structure
	Folder structure
	Main solution structure

	Libraries
	Packt.Libs.Navigation
	Packt.Libs.Threading
	Packt.Libs.Utils
	Packt.Libs.Windows

	Summary
	Additional resources

	Chapter 5: RIA Services Data Access
	Accessing data
	RIA services pieces
	Creating a Domain Service and consuming it from a Silverlight application
	CRUD
	Read
	Create
	Update
	Delete
	Error control
	Simple data binding

	Validation
	DataAnnotations
	Simple validations
	Custom and shared validations
	Entity-level validations

	Domain Services validations
	Server validations
	Asynchronous validations

	Advanced topics
	Cancelling changes
	Transactions
	Domain Service and partial classes
	Include
	Composition
	Solving the many-to-many relationship issue

	RIA services and MVVM
	Encapsulating RIA services in a model
	Context lifetime discussion and model factory

	LOB application case study: applying what we have learned
	Server
	Test
	Model
	Modules

	Summary
	Additional resources

	Chapter 6: Out of Browser (OOB) Applications
	Out of Browser (OOB)
	Executing an application in OOB mode
	Enhancing the experience—tooling up and updating
	In-browser/OOB detection
	Detecting the application installed
	Installing the custom interface
	Uninstalling an OOB application
	Offline installation
	Updates

	Offline work
	How it works

	Breaking the sandbox—trusted applications
	Enabling trusted mode
	Advantages of trusted applications
	Accessing files
	Making calls to COM+
	P/Invoke
	Cross-domain calls
	WebBrowser control
	Real windows

	In-browser trusted applications
	LOB application case study: applying what we have learned
	Summary
	Additional resources

	Chapter 7: Testing your LOB Application
	Types of testing
	Methodologies
	Unit testing with Silverlight
	Testing server code
	Testing client code with MSTest

	Libraries to test Silverlight code
	Testing synchronous client code with Silverlight Unit Testing
	Testing asynchronous client code with Silverlight Unit Testing
	Isolating unit tests via substitutes

	LOB application case study: applying what we have learned
	Summary
	Additional resources

	Chapter 8: Error Control
	Following best practices
	Exception handling
	Getting started
	Try and catch
	The "finally" expression
	Strategies

	Asynchronous patterns
	AsyncCompletedEventArgs
	ExceptionRoutedEventArgs/UnhandledExceptionEventHandler

	Global exception handling

	Understanding the exception types
	Fatal exception
	Boneheaded exceptions
	Vexing exceptions
	Exogenous exceptions

	Logging
	Enterprise application framework
	Architecture
	Practice
	Exception handling

	PostSharp

	Reporting bugs
	Architecture
	Service implementation
	Client implementation

	LOB application case study: applying what we have learned
	Server side
	Client side

	Summary
	Additional resources

	Chapter 9: Integration with other Web Applications
	Page architecture
	Communication between an ASPX page and Silverlight
	Accessing Silverlight from JavaScript
	Exposing methods and functions
	Returning complex data
	Registering a Silverlight object

	Accessing JavaScript from Silverlight
	HtmlPage object

	DOM handling from Silverlight
	HtmlDocument
	HtmlElement

	Interaction between Silverlight and JavaScript
	Address book
	Visual Studio solution
	Login page
	Contact list
	Contact edition

	Calling JavaScript code

	LOB application case study: applying what we have learned
	Summary
	Additional resources

	Chapter 10: Consuming Web Services
	Definitions
	Implementing and consuming a WCF service
	Proposal for sample projects
	Building the server
	Enabling WCF service for Silverlight 4
	Designing the client UI
	Referencing a WCF service from client
	Consuming a WCF service from Silverlight
	Using complex types via WCF

	Consuming a public API web service
	Twitter API
	Starting the Twitter project
	Calling the Twitter API
	Processing JSON format

	LOB application case study: applying what we have learned
	Implementation of the service client

	Summary

	Chapter 11: Security
	Client-side security
	Critical information
	Signing assemblies
	XAP and certificates
	XAP and obfuscation

	Server-side and communication security
	Validations
	Cross-domain calls
	Security in our communications
	Authentication and authorization with RIA services
	Authentication
	Authorization

	Authentication and authorization in WCF services
	Protecting communications with SSL

	LOB application case study: applying what we have learned
	Server side
	Client side

	Summary
	Additional resources

	Index

