

http://devlicio.us/blogs/casey

Domain Driven Design
Step by Step Guide

Casey Charlton 2009 (casey@goinsane.co.uk)

Contents
Foreword ... 4

The Ubiquitous Language ... 5

In Conclusion ... 5

Bounded Contexts ... 7

Example Ecommerce Contexts.. 7

Bounded Context or Context? .. 8

Surely Bounded Context’s Must Interact? .. 8

In Conclusion ... 8

There Is No Database .. 9

What is Persistence Ignorance and Why Does it Matter? .. 9

Where Does Persistence Ignorance Appear in DDD? ... 9

So Why “There Is No Database”? .. 10

In Conclusion ... 10

Command Query Separation as an Architectural Concept ... 11

What Does CQS Mean at an Architectural Level... 11

Does This Mean We Have More Than One Set of Data? .. 11

Duplication of Data ... 12

In Conclusion ... 12

Entities and Value Objects .. 13

Entities .. 13

Value Objects .. 13

Hey, I’ve Heard of These, We Have Them in .Net! ... 13

So Entities and Value Objects Just Store Data? .. 14

And We Put These Things Into Repositories Right? .. 14

In Conclusion ... 14

Where is the Code? A Brief Interlude ... 15

Aggregates and Aggregate Roots .. 16

A Simple Example .. 16

So What is the Point of an Aggregate? ... 16

Restrictions on Aggregates and Aggregate Roots ... 17

In Conclusion ... 17

Services ... 18

So … Domain Services Are … What? ... 18

Shouldn’t Logic Be on the Entities Directly? ... 18

So What Are the Characteristics of a Good Domain Service?... 18

Some Examples of Services ... 18

Services in the Ubiquitous Language .. 19

In Conclusion ... 19

DDD: What Kind of Applications Is It Suited To? .. 20

Where is Domain Driven Design a Good Fit? .. 20

Internal Applications ... 21

Outsourced Applications ... 21

ISV Applications ... 21

Data Centric Applications .. 21

The Bad News.. 21

The Good News ... 21

In Conclusion ... 22

Reference .. 23

Fundamental Patterns .. 23

Good Online Reading .. 23

Books ... 23

Foreword

There is a lot of interest in DDD recently, both in the book, and in the methodology, and in the
buzzword.

As a book and methodology, DDD is an excellent way to approach complex software problems,
and make them far more understandable and manageable. As a buzzword, DDD is in danger of
being corrupted like many other good software practices.

To try and clear up some of the confusion around DDD, I am intending to start a series of short
blog posts, covering aspects of DDD and trying to demystify it.

Domain Driven Design is actually pretty simple. It really isn’t that hard. That said, developers
seem to have a hard time grasping it. I put this down to a great deal of inexperience, with many
people who have just read the book in a cursory way saying “we are doing domain driven design”
– these people then confuse the issue for others.

Very few people could claim to have done full-on-balls-to-the-wall DDD, due to the relative
“newness” of the book, and the time the ideas it contain talk to peculate down. In addition I work
in the .Net space, where DDD has taken longer to penetrate than the Java space where the book
was formed. I have practiced DDD in some way on three live projects, to a lesser degree in some
aspects, and closer to the “one true way” in others. So, like almost everyone doing DDD, I am no
expert, beware anyone that claims they are.

That said, some of the “community” have done more with DDD than others. Their wisdom is well
worth picking up along the way – with no specific favouritism or deliberate omission, I heartily
recommend you read stuff by Jimmy Nilsson, Greg Young, Colin Jack, Udi Dahan and of
courseEric Evans.

Some take the book, Domain-Driven Design: Tackling Complexity in the Heart of Software, to be
“the one true bible”, but like everything in software, it is only a good starting point. That said, if
you are stepping into DDD with more than a gentle dip in the water, this book will prove to be a
very solid basis for going forward without drowning – I recommend it strongly.

For a quicker introduction, I recommend (and have done so in the past), downloading the InfoQ
eBook Domain Driven Design Quickly. This distillation of Eric’s work provides a really strongly
overview of what DDD is, and how it can help you.

When you remember that DDD is really just “OO software done right”, it becomes more obvious
that strong OO experience will also stand you in good stead when approaching DDD. To do my
part, I am intending to start a series of blog posts covering various aspects of DDD, to try and
make DDD seem somewhat more approachable, and hopefully to try and show that DDD is a
whole lot simpler than many make it appear.

http://jimmynilsson.com/blog/
http://codebetter.com/blogs/gregyoung/archive/2009/01/16/ddd-the-generic-repository.aspx
http://www.lostechies.com/blogs/colinjack/archive/2008/10/22/ddd-and-complexity.aspx
http://www.udidahan.com/2009/01/26/altnet-ddd-podcast/
http://www.amazon.com/Domain-Driven-Design-Tackling-Complexity-Software/dp/0321125215
http://devlicio.us/blogs/casey/archive/2008/09/01/domain-driven-design-quickly-infoq.aspx
http://www.infoq.com/minibooks/domain-driven-design-quickly
http://www.infoq.com/minibooks/domain-driven-design-quickly
http://www.infoq.com/minibooks/domain-driven-design-quickly

The Ubiquitous Language

Britain and America are two nations divided by a common language
(George Bernard Shaw / Oscar Wilde)

It could be said that the business and developers are two nations divided by a common language.
If you listen to conversations between developers and the business guys they are writing code for,
they seem to speak the same language, but often have entirely different meanings.

This disjoint is what the concept of the Ubiquitous Language (or UL) is intended to eliminate
in Domain Driven Design.

The concept is simple, that developers and the business should share a common language, that
both understand to mean the same things, and more importantly, that is set in business
terminology, not technical terminology.

Developers have historically had a hard time with talking to the business – developers are by
nature technical, and have a bad habit of letting their technical “geek” terms leak into their
conversations. We are all guilty of it at the best of times.

The Ubiquitous Language in DDD is a negotiated language between the Domain Experts and the
technical guys – but the rule is that the Domain Experts lead and the technical people follow. As
the UL evolves, and this may take weeks or many months, the language becomes more and more
refined.

Eric Evans has some good examples in his book of how the UL is drawn out of the conversations
between the domain experts and the development team, so I won’t duplicate them here – suffice
to say you should be listening to how your users and domain experts refer to things, and try and
fit in with their language.

One thing to bear in mind here is that although the UL is drawn in the language of the business, it
can also include things that might seem like technical terms.

A recent conversation on a DDD list discussed things like Paging and whether these belonged in
the domain. Some people then decided that these were technical terms, and on their (IMO
misunderstanding) reading of the book, they stated that words like Paging are technical terms
and shouldn’t be in the UL

That assumption has two basic problems:

1) Users have adopted terms like Paging as their own. They know what Paging means … it is
present in 90% of the applications and web pages they use. So Domain Experts adopt this
language when expressing their requirements. They probably won’t use a term like Paging in
regard to the domain, but they may well use it in their user stories, use cases or requirement
documents. Whether this concept carries through to the domain is an implementation issue.

2) There are many technical terms that exist in the UL already, Eric listed them in the book.
These are common pattern names, that the technical team introduce to try and help the Domain
Experts formalise their concepts. So terms like Specification and Event may well appear in the
UL.

In Conclusion

The Ubiquitous Language is the foundation of Domain Driven Design, it is the basis on which
your technical team can become part of the business, and work in their interests, rather than

being see as “the geeks who sit in the corner and deliver buggy software” – don’t be two
departments divided by a common language

Bounded Contexts

It was brought up indirectly in a comment on my last post … the idea of a Ubiquitous

Language (UL) seems like it is too all encompassing. Indeed it is – unless you are working on a

very simple application, one language just isn’t enough. Not only that, but a single “mammoth

model” will also be too large, unwieldy, and eventually turn into a Big Ball of Mud. That is where

the idea ofBounded Contexts come into the game.

Bounded Contexts in DDD is one of the “advanced” topics, it doesn’t even appear in the book

until well over halfway. However, I am going to introduce it now, so that later in this series, the

terms don’t become an obstacle… in the book you could flick a few hundred pages ahead, here

you don’t have that luxury. Feel free to skip this post until later if it doesn’t make much sense

now.

Suffice to say you could model your entire domain as a single thing, with a language to cover

everything, but if you look at the business you are trying to model, it is unlikely that is how they

see things.

An example of Context here would be within an ecommerce system. Although you could model

this as a single system, it would also warrant splitting into separate Contexts. Each of these

areas within the application have their own Ubiquitous Language, their own Model, and a

way to talk to other Bounded Contexts to obtain the information they need.

Example Ecommerce Contexts

Well the obvious starting point would be the customer facing Context – let’s call this

theShopping Context – this is the part of the application that lets a customer browse the

catalogue, search for items, pick items, and put them in their shopping basket.

You may be thinking this is it for a simple ecommerce system – and for a simple system it

probably is. However on larger systems there are other Contexts that should probably come into

play

When the customer clicks “checkout” then we need to process that order, this is going to involve

the Ordering Context to take the shopping basket, process the payment and to create the

relevant instructions for picking, the Inventory Context (which may have been involved earlier

to display “items in stock”) to reserve the items in the warehouse, and the list may go on

depending on the scale of the entire application.

Each of these Bounded Contexts has a specific responsibility, and can operate in a semi-

autonomous fashion. By splitting these apart it becomes more obvious where logic should sit, and

we can avoid that BBOM.

http://en.wikipedia.org/wiki/Big_ball_of_mud
http://en.wikipedia.org/wiki/Big_ball_of_mud

Bounded Context or Context?

The term Context is a general description of a grouping of concepts, the term Bounded

Context is more specific – a Bounded Context is an area of your application which has

explicitly defined borders, has it’s own model, has its own Model, and maintains it’s own code.

Within the Bounded Context everything should be strictly consistent.

Usually, we can use the terms Context and Bounded Context interchangeably, though I tend

to talk in terms of Context about the business side of things, and the term Bounded

Contextabout the technical implementation.

In essence, a Bounded Context is an application in its own right. By splitting your large

application into many Contexts, you gain all the advantages of modularity, separation of

concerns and loose coupling – but on a much larger scale than many developers often think.

Surely Bounded Context’s Must Interact?

Indeed they do need to. Within DDD this is done using a Context Map. Again, I will skip the

details for now, but suffice to say, a Context Map is a clearly defined way of talking between

Bounded Contexts. The book has a number of examples of how this could be implemented,

and many more will become apparent as you progress. The Context Map is the contract your

Bounded Context provides to the outside world, other Bounded Contexts

In Conclusion

We skipped a fair way ahead here, so don’t get too stuck up on Contexts, just bear in mind they

exist, and they resolve issues around conflicting Ubiquitous Language terms, allow Models to

focus on specific problems, and provide a loosely coupled application architecture.

There Is No Database

Do not try to bend the spoon; that's impossible. Instead only try to realize the truth:
There is no spoon.
The Matrix

Again prompted by discussion on the DDD Yahoo list, this post is intended to explain what on the
face of it is a pretty dumb assertion – there is no database in DDD!

I’m sure right at this point, jdn is reaching for his keyboard to point out that I am dangerously
close to repeating The Tao of Domain Driven Design. Yes, I love my mystical analogies!

But if you think about this apparently stupid statement, in the context of Domain Driven Design,
it has a subtle and important point – DDD is all about the domain, not about the database, and
Persistence Ignorance (PI) is a very important aspect of DDD.

What is Persistence Ignorance and Why Does it Matter?

This relatively new principle says we should try and keep our code free of anything that refers to,
relates to, or propagates, aspects of the mechanism we intend to use for persisting our data –
traditionally the good old relational database.

Early versions of this were focused on the imaginary requirement that we should be able to
change from SQL Server to Oracle with relatively little effort. Changing connection strings wasn’t
good enough, so various frameworks and adapters appeared to try and make this happen.
Frequently however, knowledge of not only what specific database would be used, but even the
fact that the data would be stored in a database leaked into our objects.

With persistence ignorance, we try and eliminate all knowledge from our business objects of how,
where, why or even if they will be stored somewhere.

This is a major step towards decoupling our real code and logic from infrastructure concerns like
data access, it therefore benefits us hugely in terms of testing, maintenance and change.

Where Does Persistence Ignorance Appear in DDD?

Pretty much everything in DDD is designed around PI, the basic pattern that is used for
accessing Entities and Value Objects (the core building blocks of DDD which I will cover in
my next post) is the Repository.

I won’t cover Repository in detail at this point in the series, but the primary purpose of a
Repository is to represent itself as a collection, albeit a collection with fairly specific and
advanced querying. The Repository provides a simple and powerful mechanism for making
your Domain totally unaware of the actual persistence framework you are using behind it.

As a Repository is a collection, anything that uses it is completely unaware of where the Entity
or Value Object may or may not have been stored.

http://www.blogcoward.com/
http://devlicio.us/blogs/casey/archive/2008/09/10/the-tao-of-domain-driven-design.aspx

So Why “There Is No Database”?

Domain Driven Design states specifically, in the name, why – we are designing our applications
from the point of view of the Domain, and the Domain is drawn from the Ubiquitous
Language we negotiate with our Domain Experts.

If we were to start with a database the it would be Database Driven Design. If we were to
consciously or subconsciously bring elements from the database into our Domain, then we
would risk compromising our Domain model purely to support the persistence layer we had
chosen.

In Conclusion

Start from the premise “there is no database”, try to evolve the UL, the Domain, and everything
that entails, without concern to the database you may or may not use in the end.

Eric covers in his book points where you may need to compromise one side or other, and good
reasons for doing so, but if you start from a pure point of view, at least you will be making
informed and explicit decisions about your compromises.

Command Query Separation as an Architectural Concept

There has been some confusion recently around a recent evolution of DDD, the idea of Command
Query Separation (CQS) at the architectural level.

This post is yet again jumping ahead into the “advanced” stuff, so go ahead and skip this if you
just want to get the basics down first… those will come soon I promise.

Many of you will be familiar with CQS in its original form, Bertrand Meyer presented it as:

“every method should either be a command that performs an action, or a query that returns data
to the caller, but not both. In other words, asking a question should not change the answer”
wikipedia

On the method level it is an excellent principle to follow, but Greg Young introduced (at least I
heard it from him first) the idea of Command Query Separation at the architectural level. This
was also discussed a long time back by such luminaries as Eric Evans and Martin Fowler.

What Does CQS Mean at an Architectural Level

In DDD, as presented by Eric Evans originally, the Repository concept is responsible for
abstracting your Entities and Value Objects away from the way they are persisted. To retrieve
an Entity, or a set of Entities, you would use a Repository method like
.GetAllOutstandingInvoices or pass a Specification into a generic query method.

This is a perfectly viable and valid way of querying your Entities, but it does have some issues
around some aspects of an application, these are generally referred to as Reporting issues.
Reporting issues may well be reports in the classic database style, or may be such things as user
interfaces that require searching, sorting, paging and filtering of data.

The concept of applying CQS at an architectural level says, our Domain and transactional
operations will use the Repositories, but for Reporting operations, we will use a separate
mechanism. The Command is the Domain operations, the Query is the Reporting operations.

Does This Mean We Have More Than One Set of Data?

Perhaps. For the vast majority of systems this shouldn’t be an issue, whatever sits behind the
Repositories can also provide the data for the Reporting side of things. This after all is just an
issue of Bounded Context again – we have a separate Bounded Context for Reporting, and
as Bounded Contexts have their own code and data access, this Context can encapsulate all
read requests, and just read them off the same store that your Repositories in your main
Domain do.

For example, your main Domain may be using an ORM like NHibernate sitting behind your
Repositories. It will provide a rich mapping from your Entities into the database behind.

Your Reporting Context may well use NHibernate too, but with a simplified model designed
for read purposes, or you may even just have an ADO DataReader sitting in the Reporting
Context, reading directly from the database that NHibernate is writing to elsewhere.

It is certainly viable to have more than one persistence mechanism however and larger more
complex systems may well duplicate data. I can almost hear a bunch of you shouting “Heresy!”.

http://en.wikipedia.org/wiki/Command-query_separation
http://codebetter.com/blogs/gregyoung/archive/2009/01/13/dddd-master-detail-question.aspx
http://domaindrivendesign.org/discussion/archive/reporting_from_database.html

Duplication of Data

“We spend a great deal of effort maintaining data, maintaining integrity, maintaining
consistency, and some fool wants to duplicate this problem all over, now we have two lots of data
to manage and synchronise!”

Well, no. When you think about it, this is just data for read purposes. And that means that this
data can be a subset or a combination of data from our Domain. It could be created by events
being published from the Domain, or it could be created by taking a snapshot of
the Domain data.

The only issue that really exists is that this data could be stale or inconsistent – it may be 5
seconds out of date, or 10 seconds, or maybe just 1 second – but this data may not be up to date.

Well, of course it may not be up to date… but is any of the data in your system really up to date?
Even if you just requested it from your Domain, and it appeared on screen, before you hit any
key on your keyboard, that data is already stale – by the time you press “update” someone or
something else may have modified the data.

Eventually the data may be up to date and consistent, it just may not be the instant you request it.

So yes, the data may be stale, but is that really an issue? (hint: the answer is no)

In Conclusion

It may pay to split your Reporting concerns from your Domain concerns, keeping your
Domain clear of ad-hoc reporting concerns, and UI concerns. It may also be far more effort than
it is worth if the system does not have either massive numbers of these kinds of queries, or just is
not that complex.

However, bear in mind that this is a good option for allowing the Domain to evolve without
concerns from other parts of the wider application leaking into it, and is a good tool to have ready
when you face this issue.

Entities and Value Objects

Finally, after 5 posts in the series, we get to the beginning point, the basis of all things… Entities
and Value Objects. OK, maybe a small exaggeration, but Entities and Value Objects (VO)
form the core building blocks of Domain Driven applications.

Why has it taken this long to get to something so fundamental? Well, mostly I got distracted by
shiny things along the way – topics came up and I felt the need to “get them down on paper”
before I forgot where I was. I am at that age where, if I don’t do something when I think of it, I
rarely get around to it. Oh yeah, Entities and Value Objects – almost forgot!

Back in the good old days we used to have things called business objects, these were classes that
held some data, had some methods, and we threw into a database.

DDD has refined this concept a little, by splitting the idea of these business objects into two
distinct types, Entities and Value Objects

Entities

“this is my Entity, there are many like it, but this one is mine”

The key defining characteristic of an Entity is that it has an Identity – it is unique within the
system, and no other Entity, no matter how similar is the same Entity unless it has the same
Identity.

Identity can be represented in many ways on an Entity – it could be a numeric identifier (the
classic CustomerID), it could be a Guid (the classic … oh never mind), or it could be a natural key
(like the CustomerNumber your Customer was given by your CRM system when they first bought
from you).

Examples of common Entities are: Customer, Product, Container, Vehicle

Whichever way you choose to represent it, an Entity is defined by having an Identity.

Value Objects

The key defining characteristic of a Value Objects is that it has no Identity. Ok, perhaps a little
simplistic, but the intention of a Value Object is to represent something by it’s attributes only.
Two VOs may have identical attributes, in which case they are identical. They don’t however
have any value other than by virtue of their attributes.

Another aspect common to VOs is that they should probably be immutable, once created they
cannot be changed or altered. You can create a new one, and as they have no identity, that is just
the same as changing another one.

Examples of common Value Objects: Money, Address, ProductCode

Hey, I’ve Heard of These, We Have Them in .Net!

Don’t confuse Entities and Value Objects with Reference Types and Value Types, they sound
similar but bear only a passable resemblance. Both Entities and Value Objects would be
usually be implemented in .Net as Reference Types (Class not Struct).

So Entities and Value Objects Just Store Data?

Definitely not! The point of DDD is to create a rich Domain – if you only stored data in your
Entities and Value Objects, you would have an anaemic domain model – one of the primary
anti-patterns to DDD.

Entities should have methods on them that logically belong there – so a Customer might have
a .UpgradeToPreferredStatus and a VO representing Money may have a methods to .Add,
.Subtract, and so on. These methods would obviously come from the Ubiquitous Language
(“we can Upgrade a Customer to Preferred Status”, “we can Add two amounts of Money
together”)

In fact, in DDD there is less concern about what or how the your Entities and VOs store data,
and more concern about how they represent that data and how they manipulate that data.

Some would go so far as to remove Setters and Getters from them entirely – though my personal
preference is to remove Setters only, and make Getters representative of the outside “shape” of
the Entity.

For VOs create only constructors, after all they are meant to be immutable.

For Entities use only constructors or strong methods to make any changes. Directly changing
properties can have nasty side effects, and leave Entities in a temporarily invalid state.

And We Put These Things Into Repositories Right?

Not quite, at least not all of them directly, we will cover that in the next part of the series, the
concept of Aggregate Roots.

In Conclusion

The “”things” in your business will usually be represented by Entities and Value Objects in
DDD. They form the shape of your Domain, and would generally be the things you draw up on
that class diagram on the wall.

Where is the Code? A Brief Interlude

Right about now I can hear murmurs, "I haven't seen any code yet"

That is because I view Domain Driven Design firstly as a design methodology, secondly as an
architectural style, and lastly as some great software patterns.

I don't believe I am alone in that view, after all it is a significant way into the book before
anything resembling UML appears, and even further before anything code-like is introduced.
Now you could pickup the book, extract some of the key terms and half a dozen patterns, and
undoubtedly you would be writing better software ... but I suspect you may have missed the
"wood for the trees" or put another way "You spent so much time focusing on the details, and
missed the bigger picture"

DDD is a better way of thinking about software design, it helps you translate what users and
businesses need into software that meets those needs. The patterns may make your software
more stable or more maintainable, but it is the methodology that guides you to deliver something
fit for purpose.

Of course, eventually you are going to need some code, as a comment on my last post indicated. I
am going to postpone that for a while I am afraid, I apologise in advance if anyone is eager to get
typing. We have a few more fundamentals of DDD to explore first, then I promise I will start to
delve a little into how to best implement these things in C# code.

Aggregates and Aggregate Roots

We are family
I got all my sisters with me
Sister Sledge

Some things belong together, like Apple Pie and Ice Cream, or Sonny and Cher. And so it is with
Entities and Value Objects (VOs) – some of them belong together.

Aggregates are groups of things that belong together. An Aggregate Root is the thing that
holds them all together.

I will warn in advance, as I proof read this post, it was pretty complicated – while I have tried to
simplify the concepts, I am not certain I have totally succeeded. Hopefully Aggregates will
become more clear later in the series when I start exploring them in code.

A Simple Example

In all Object Oriented programming we are used to dealing with objects that have references to
other objects, and in DDD it is no different. For example, our Customer may have a reference to
the customer’s Orders.

An Aggregate is slightly different, where as Customers and Orders can exist in the system
independently, some Entities and Value Objects make absolutely no sense without their
parent. The obvious example following on is Orders and OrderLines.

OrderLines have no reason to exist without their parent Order, nor can they belong to any
other Order. In this case, Order and OrderLines would probably be an Aggregate, and the
Order would be the Aggregate Root

The rule of Cascading Delete is sometimes cited as a good way to tell if you have a group of
Entities or VOs that should be an Aggregate – if the parent, in this case the Order, was
deleted all other parts of that Aggregate below Order would be deleted too. So if it doesn’t
make sense that a parent being deleted would also delete all children, then you don’t have an
Aggregate, you just have a good old fashioned reference.

So What is the Point of an Aggregate?

Well the first and most obvious point of an Aggregate is that it operates to a large degree as one
“thing”. Notably the Aggregate Root is the single Entity that controls access to the children.

Where you may have a Customer with operations like .UpdateToPreferredStatus and you may
have an Order with .GetSumTotal – the OrderLines of an Order would not have any logic
exposed outside of the Order Entity – in other words to add a new OrderLine, or to change an
OrderLine, you would tell the Order to make the changes – Order.AddNewItem for example.

In this respect, Aggregates provide a clean pattern to keep logic where it really belongs.

Another aspect of Aggregate Roots is that they are the Entities that are dealt with by Repositories.

In our examples above, we would have a Customer Repository, and an Order Repository,
but there would not be an OrderLine Repository. It is the responsibility of the Aggregate
Root Repository to deal with persistence of all the children of that Aggregate.

Restrictions on Aggregates and Aggregate Roots

The main, and possibly obvious restriction on Aggregate Roots is, they must be Entities, and
cannot be Value Objects. Back to the previous post, you will remember that Entities have
Identity, and Value Objects do not – you could not ask a Repository to retrieve an
Aggregate Root if it had no Identity.

Within an Aggregate, the other players can be Entities or VOs as the domain dictates. For
example, expanding our Order example further, the Aggregate may comprise the Order
(Aggregate Root), the Order may have an OrderNumber (Value Object), some
OrderLines (Entities), and a Shipping Address and Billing Address (Value Objects)

Entities can hold references to any Aggregate Root, but never to any other Entity or VO
within the Aggregate. To access any other part of the Aggregate, you must navigate from the
Aggregate Root.

How the component parts of an Aggregate are persisted is a matter for the implementation
behind Repository, but if you were using an ORM like NHibernate for example, the changes are
that the Value Objects would be NHibernate Components nested in their parent entity record
and the Entities would be old fashioned mappings, each with their own table.

In Conclusion

Aggregates provide a logical grouping of Entities and Value Objects that belong together at
all times. An Aggregate Root is the gatekeeper to the Aggregate. Each Aggregate is treated
as a single unit for persistence purposes.

By logically grouping Entities and VOs in this way, we provide a mechanism to strictly
manage a grouping of objects, and a way to allow us to treat a number of different Entities and
VOs as one.

Services

There can be no word more common in development, and no word used for such a multitude of
different things as “service”

It was therefore unfortunate that Eric Evans introduced yet another concept of Service in DDD,
one which has since been referred to by some as a Domain Service. However, people often use
the term Service in isolation, as Eric did in his book – so if it is in relation to the Domain, it is
probably what I prefer to call a Domain Service – otherwise it is likely to be one of those
“other” services.

So … Domain Services Are … What?

Well, if Entities and Value Objects are the “things” in our Domain, the Services are a way of
dealing with actions, operations and activities.

Shouldn’t Logic Be on the Entities Directly?

Yes, it really should. We should be modelling our Entities with the logic that relates to them and
their children. But sometimes that logic either doesn’t fit on the Entity, or it would make the
Entity bloated and unwieldy.

That is when Services come into the picture. They help us split logic that deals with multiple
Entities, or that deals with complex operations or external responsibilities, into a separate
structure more suited to the task.

So What Are the Characteristics of a Good Domain Service?

Oddly, they are much the same as the properties of any other good services… but to reiterate Eric
Evans directly, they are:

 The operation should be something that relates to a concept that does not naturally fit
on an Entity or VO

 The interface is defined in terms of the elements of the Domain Model
 The operation is stateless

The first two of those are pretty obvious and easy to apply, the last is in general a good definition
of a Service, and although some would argue there is no such thing as stateless, don’t express
state explicitly, and presume instance of your Services should not affect each other.

Some Examples of Services

So far we have been using an ecommerce system as a basis for the examples, so I’ll continue here.

When a customer adds items to their shopping basket, they will expect to see the items totalled,
and things like shipping costs calculated.

These things might conceivably sit on the Shopping Basket Entity – but a bit of deeper
thought shows that this is probably not a perfect fit. For a simple system the basket might be able
to contain all the logic required, but expanding our system and moving it to a DDD focus would
probably extrapolate Services to deal with these issues – PricingService and
ShippingCostingService could well be two of the players in this game.

After all, apart from needing to deal with the items in the Shopping Basket, these operations may
well require communication with other services, calculation and pricing engines, external
suppliers … in other words, they have a lot of responsibilities that we do not want to bring into
our Entity.

Now instead of our ShoppingBasket having .GetTotalPrice and .GetShippingCost methods, we
can use a Domain Service to get this information, and keep our Entity focused on the real tasks,
managing the items in the ShoppingBasket

Services in the Ubiquitous Language

Entities and Value Objects live comfortably in the UL, they are the “things” that our Domain
Experts and Users talk about.

Services also live in the UL, they are the actions that our DEs and Users talk about… where you
see a noun in the conversation, it is likely to be an Entity or VO. When you see a verb, it may well
be a Service

In Conclusion

Services provide a way of expressing actions and operations within our domain. Where as
Entities and Value Objects, the “things”, provide the building blocks, Services provide the
plumbing between them and allow us to express more abstract concepts.

Just beware of creating an anaemic domain model; Services are there to support Entities and
VOs, not to strip their logic from them.

DDD: What Kind of Applications Is It Suited To?

In many conversations, and in many comments here, you hear phrases like “well that’s not really
suited to DDD” or “DDD isn’t the best fit for that problem”. You even see those kind of comments
on my blog, and often they are posted by me.

This obviously leaves a number of people confused, after all DDD is the wonder cure for every
software illness, surely there is nothing it cannot do!!!!

Download the eBook of the Series so far …

Where is Domain Driven Design a Good Fit?

DDD is a software methodology suited to a particular kind of application – one where there is
significant complexity, and there is a significant focus on a well defined business model.

Complexity

The subtitle of Eric Evans book says it all - “Tackling
Complexity in the Heart of Software” – DDD is a way of
making complex systems more manageable, better
understanding their intricacies, and simplifying a subject
that could otherwise be overwhelming – i.e. avoiding a
classic big ball of mud.

 We often end up with a Big Ball of Mud when we started
out with a fairly sketchy idea of the requirements we had,
and built our software in such a way that rigidity set in
early on. Over time as new requirements evolve, we bolt
them on to what we had before, and piece by piece we end
up with our Mud Ball … or as I like to imagine it – a Borg
Cube – where all your code has been assimilated, and is
now part of the collective.

By applying DDD we can break that complexity down into methods of extracting better models
from our users and domain experts, and apply software patterns that let us add and evolve to the
model, without it becoming a rigid monolith.

Focused Business Model

From within the text of the work by Eric Evans, you will soon find that there is a heavy emphasis
upon the business side of the equation – there is constant reference to Domain Experts. These
Domain Experts represent the business, and should be intimately familiar with it’s inner
workings. Not the workings of the software, or the way the business analysts see the software –
but the business itself.

Therefore, you will find it hard if not impossible, to gain full benefit out of DDD if you do not
have Domain Experts up close and personal for the duration of the project – this means that
doing DDD on an ISV style application will be hard, you just don’t have the access to the business
model of your customers in the way that you should.

It will also be hard to fit DDD to your project if your requirements are too flexible or generic, as
again a lot of ISV products are by their nature. DDD is very geared towards providing a highly
bespoke solution for an individual business.

http://www.goinsane.co.uk/Domain%20Driven%20Design%20-%20Step%20by%20Step.pdf

What DDD is good at is drilling deep into a business model, and turning that business into
a software model.

Internal Applications

Obviously from what I have said so far, DDD is best suited to large projects, where the
development team is in-house with the business they are providing a solution for. This ensures
that you can gain maximum benefit from what DDD has to offer.

Outsourced Applications

If your development team is outsourced, but writing a bespoke application for a single client,
then DDD could be made to work. The key to doing this successfully would be ensuring you had
constant access to domain experts, and that their time was not in high demand elsewhere.
Constant verification with the Domain Experts would be an important aspect of making this
work, and obviously this would be easier with the team on the client’s site.

ISV Applications

By their nature, ISV applications have two qualities that are not a good fit for DDD … they have
very generic requirements, and they have highly user customisable models. These kind of
applications may well benefit from a lot of the common sense in DDD, and some of the patterns,
but DDD will be no magic bullet here.

Data Centric Applications

Some applications are fundamentally just data manipulation programs. Obviously all
applications deal with moving data around, but some live for the data and some live for the logic.
DDD is very firmly in the logic camp – so is not suited to applications where the primary focus is
on retrieving data. modifying that data, and then putting it back into a database.

For data centric operations you would probably be better off using something like an Active
Record pattern, or even a DAL over stored procedures. You may find some benefits in some of the
more cursory aspects of DDD, and perhaps using some of the terminology, but trying to make
DDD fit here will not be a pleasant experience.

The Bad News

Probably 95% of all software applications fall into the “not so good for using DDD” categories.

Most are fundamentally Data Centric – most websites are, most desktop applications are …
fundamentally most data updating and reporting applications are data centric.

Of the remaining applications, a large percentage don’t come close to being complex. They may
be tricky, or big, but not complex.

The Good News

For the 5% of applications where DDD is a good fit, it is a very good fit. For those situations, DDD
will help you crack a very tough nut. Here, DDD may be the silver bullet for that werewolf that
your manager just pointed to your desk.

And even if your application isn’t in that 5%, there is a wealth of wisdom and experience
encapsulated in Domain Driven Design – use what you think applies to your situation, and you

will find your software becoming more flexible, more reactive to your audience, and easier to
understand – just don’t expect miracles, and beware of over complicating your code for the sake
of it – sometimes simpler really is better.

In Conclusion

There are no hard and fast rules about what DDD is best suited to, and I just made those statistics
up, but no software methodology is going to be the miracle cure.

Take from DDD what you think benefits you and your situation – but accept that it cannot be
everything to every person.

Reference

Fundamental Patterns

 Entities

 Value Objects

 Repositories

 Bounded Context

 Context Map

 Aggregates

 Services

Good Online Reading

 Martin Fowler’s On CQS: EagerReadDerivation

 Greg Young’s Blog

 Udi Dahan’s Blog

 Colin Jack’s Blog

Books

 InfoQ Free eBook : Domain Driven Design Quickly

 Domain-Driven Design: Tackling Complexity in the Heart of Software (Eric Evans)

http://domaindrivendesign.org/discussion/messageboardarchive/Entities.html
http://domaindrivendesign.org/discussion/messageboardarchive/ValueObjects.html
http://domaindrivendesign.org/discussion/messageboardarchive/Repositories.html
http://domaindrivendesign.org/discussion/messageboardarchive/BoundedContext.html
http://domaindrivendesign.org/discussion/messageboardarchive/ContextMap.html
http://domaindrivendesign.org/discussion/messageboardarchive/Aggregates.html
http://domaindrivendesign.org/discussion/messageboardarchive/Services.html
http://martinfowler.com/bliki/EagerReadDerivation.html
http://codebetter.com/blogs/gregyoung/
http://www.udidahan.com/?blog=true
http://www.lostechies.com/blogs/colinjack/
http://www.infoq.com/minibooks/domain-driven-design-quickly
http://www.amazon.com/Domain-Driven-Design-Tackling-Complexity-Software/dp/0321125215

