

Data Architecture

Data Architecture
From Zen to Reality

Charles D. Tupper

AMSTERDAM • BOSTON • HEIDELBERG • LONDON
NEW YORK • OXFORD • PARIS • SAN DIEGO

SAN FRANCISCO SINGAPORE • SYDNEY • TOKYO
Morgan Kaufmann Publishers is an imprint of Elsevier

Acquiring Editor: Jenifer Niles
Development Editor: David Bevans
Project Manager: Danielle S. Miller
Designer: Alisa Andreola

Morgan Kaufmann is an imprint of Elsevier
30 Corporate Drive, Suite 400, Burlington, MA 01803, USA

© 2011 Elsevier Inc. All rights reserved

No part of this publication may be reproduced or transmitted in any form or by any means, electronic
or mechanical, including photocopying, recording, or any information storage and retrieval system,
without permission in writing from the publisher. Details on how to seek permission, further
information about the Publisher’s permissions policies and our arrangements with organizations such
as the Copyright Clearance Center and the Copyright Licensing Agency, can be found at our
website: www.elsevier.com/permissions.

This book and the individual contributions contained in it are protected under copyright by the
Publisher (other than as may be noted herein).

Notices
Knowledge and best practice in this field are constantly changing. As new research and experience
broaden our understanding, changes in research methods or professional practices, may become necessary.
Practitioners and researchers must always rely on their own experience and knowledge in evaluating
and using any information or methods described herein. In using such information or methods they should be
mindful of their own safety and the safety of others, including parties for whom they have a professional responsibility.

To the fullest extent of the law, neither the Publisher nor the authors, contributors, or editors, assume
any liability for any injury and/or damage to persons or property as a matter of products liability,
negligence or otherwise, or from any use or operation of any methods, products, instructions, or
ideas contained in the material herein.

Library of Congress Cataloging-in-Publication Data
Tupper, Charles.
 Data architecture : from zen to reality / Charles Tupper.
 p. cm.
 Includes bibliographical references and index.
 ISBN 978-0-12-385126-0 (pbk.)
 1. Data structures (Computer science) 2. Software architecture. I. Title.
 QA76.9.D35T85 2011
 005.12—dc22 2010049600

British Library Cataloguing-in-Publication Data
A catalogue record for this book is available from the British Library.

ISBN: 978-0-12-385126-0

Printed in the United States of America
11 12 13 14 15 10 9 8 7 6 5 4 3 2 1

For information on all MK publications visit our website at www.mkp.com

http://dx.doi.org/
http://www.elsevier.com/permissions
http://www.mkp.com

Dedications

I dedicate this book to Carol Ann Dawes, for her profound
friendship and endless belief in me; to my wife, who has unwav-
eringly supported me in this endeavor; and most of all, to my
friend and mentor, Richard Yevich (may you rest in peace),
for without his trust and faith in me, this would never have
happened.

Wherever you are, Richard, I hope you are smiling because,
yes, it’s finally done.

http://dx.doi.org/

PREFACE

First, note that I have used Zen in the title of this book. I have
been asked many times why I used such an esoteric term. After
all, what is the meaning of Zen? To clarify the meaning of Zen,
we must examine the philosophical environment that gave rise
to Zen: Indian and Chinese philosophies. In India, Buddhism
arose out of a Hindu environment, and later one form called
Mahayana evolved. Taoism, a philosophy that also contributed
much to Zen, was developed in China.

It was in China where imported Mahayana Buddhist ideas
fused with existing Taoist ideas to form what was later called Zen.
Concepts that are typically attributed to Mahayana Buddhism
and Taoism are integral parts of Zen thought. These concepts
helped me in my choice for the title.

Zen is a philosophy, a religion, a psychology, and a way of life,
but these are interpretations of Zen. It is said that Zen is com
plex and contradictory but remarkably simple; that Zen is empty
and void but remarkably full and delightful. Simply put, Zen is a
way of being. It also is a state of mind. Zen involves dropping ill
usion and seeing things without distortion created by your own
perceptions.

Words and concepts can be useful, but mistaking them for
reality can cause many problems. Concepts about reality are not
reality. The menu is not the food. In order to experience Zen, one
needs to dissolve all preconceptions, beliefs, concepts, and judg
ments about the self and the universe and see the now.

So what is Zen? Zen simply is. Often it seems that the search
for Zen’s meaning reveals nothing but contradictions. Any real
ization of truth seems impossible. Yet, Zen has a unique way of
pointing at the “thatness” of everything. Zen brings us face to
face with the true original nature of things, undefiled by cultural
conditioning and neurotic tendencies.

When this is applied to data, it simply means that data is. It
exists in its own state, without our perspectives and views of it.
It has a now and a whatness of existence. So it is this “presence
or oneness” of data that we begin with and move toward discrete
interpretations of how it can be shaped, molded, viewed, illus
trated, structured, and understood. It is with this in mind that the
book is titled Data Architecture: From Zen to Perceived Reality.

I wrote this book because something has been fundamen
tally lost in the last decade in the information technology world.
We are no longer developing information stores that address the

http://dx.doi.org/

xxii PREFACE

present and future needs; we are merely generating information
stores that meet the current needs.

Like everything else over the last 15 to 20 years, new prod
ucts are being designed from a tactical point of view with built
in obsolescence. There is no longterm view, no strategy, without
which it is impossible to develop data stores that are built to last.
It is time to revisit the basic principles from which we deviated to
get to this point.

Instead of the evolution that was prophesied in the 1970s and
early 1980s, what happened instead was a revolution where many
good things were lost and destroyed at the expense of developing
things rapidly and at low cost. This is not a polemic against what
has occurred in the last 10 to 15 years but merely a commentary
and observational review of some of the basic principles that
were the basis of the initial evolution.

It is time to revisit those principles and try to rescue and rein
state some of those values to validate our course in building
proper data architectures that will stand the test of time. It is also
time to review many of the principles posited by Peter Drucker
concerning the knowledge workers that interact with those data
architectures.

You see, the evolution started with a basic principle that
knowledge is created from data by people for people to use for
the greater good of all people. Modern business has somehow
drifted away from people and quality and is now focused on
money and speed. On a more specific note, this book’s goal is to
raise the awareness of the single most ignored component of the
original evolution in the IT world: architecture.

Architecture—the method of design and planning things
before they are constructed—is being overlooked or bypassed
in the haste to develop and deliver the product. The focus has
shifted from the process to the product. The quality, and even
the quantity, doesn’t appear to matter anymore as long as the
product gets out and the delivery time is short. This short deliv
ery time, dovetailed with builtin obsolescence, is leading the
inroads to the explosion of consumerism. With the advent of the
rampant consumerism comes the downfall of the principles of
building things to last.

The focus in recent times has been on how fast “it” can be
done without defining what “it” is. A plan is nothing without
an architecture or strategy behind it. Would you hire 37 carpen
ters to build a house with no blueprints? You would probably
end up with a house with ten bedrooms, three kitchens, and no
bathrooms.

PREFACE xxiii

Without architecture, there is chaos. To quote John Zachman
in the preface to his newest Ebook:

If you get really honest and search all of history, seven thousand
years of known history of humankind, to find out how humanity
has learned to cope with two things, complexity and change, there
is one game in town: ARCHITECTURE.

If it (whatever it is) gets so complex you can’t remember
everything all at one time, you have to write it down …
ARCHITECTURE. Then if you want to change it (whatever it is),
you go to what you wrote down … ARCHITECTURE.

How do you think they build hundred-story buildings or
Boeing 747’s, or IBM supercomputers … or even simple things
like a one-bedroom house or a Piper Cub or the PC on your desk?
Somebody had to write it down … at excruciating levels of detail …
ARCHITECTURE. Now, if you want to change any of those things
(with minimum time, disruption, and cost), how do you change
them? You go to what you wrote down … ARCHITECTURE. The key
to complexity and change is ARCHITECTURE.

The understanding of the overall structure is necessary if the
goal is to be achieved. Too often we are trying to deliver the prod
uct and we set up metrics to find out why things are too slow. And
too often the metrics involved become more important than the
progress they are intended to measure.

More often the goal actually gets lost in the frenzy to ensure
accurate metrics. In order to ensure a lasting artifact or construct,
a methodology must be followed. It doesn’t matter what the
methodology is as long as it begins with the conceptual or stra
tegic, moves downward and broadens to the design level, goes
through a preconstruction assessment process, and then broad
ens again at the construction or implementation level.

At each level, the work products need to be mapped against
the matrix or the environment in which it will function. This is
done in order to ensure that there will be no disjoints as the effort
is expanded with each level of development. With the utilization
of a methodology comes the delivery of the artifacts that are so
desperately needed.

These are the policies, plans, guidelines, metrics, and struc
tures that allow the design to be modeled and evaluated to some
degree before construction. Along with these artifacts are the
organizational structures and separation of responsibilities that
ensure balanced and efficient products to the software devel
opment process. When the software process develops efficient
and extensible mechanisms that guide and control the business

xxiv PREFACE

process, the result is a smootherrunning organization that cre
ates its product more cost effectively. Moreover, the organization
is in a better position to deal with market pressures and changes.

The book itself is divided into four sections, with a fifth sec
tion that covers specialty databases. The first four sections are
The Principles, The Problems, The Process, and The Product.
Each section consists of four chapters that cover associated prob
lems within that subject area.

The Principles section covers the data architecture and data
design principles that are necessary to reintroduce architec
ture into the business and software development process. The
Problems section deals with the business and organizational
issues of modern businesses and how structured and architected
approaches may help them remain flexible and responsive. The
Process section deals with the software application development
process and defines some tools, techniques, and methods that
ensure repeatable results in software development. The Product
section deals with the artifact results of the process and how and
what can be done with the output products to make them more
efficient in the realworld environments. The fifth section, which
covers specialty databases, deals with different database issues
that have arisen in the business data processing environment.
These include data warehousing, objects and objects relational
databases, and distributed databases.

The book was written at a conceptual level and can also serve
as an index to other works that would provide more detail. It was
designed to educate those in business management who are
involved with corporate data issues and information technology
decisions. It is also structured enough to serve as a text to those
in a higherlevel education process who will be involved in data
or information technology management.

I hope this book helps to channel the chaotic and sometimes
frenetic activity in modern business today. Using architected and
methodological approaches will produce better business organiza
tions. Better business organizations will retain and leverage their
data while producing better applications more cost effectively.
Costeffective businesses produce better products more efficiently,
thereby increasing their profit margin. If done properly, there will
be more profit, less waste, and a happier workforce. I hope you
enjoy reading this book and finding growth in the process.

3
Data Architecture.
© Elsevier Inc. All rights reserved.2011

1
UNDERSTANDING
ARCHITECTURAL PRINCIPLES

Defining Architecture
ar·chi·tect (är'ki-tekt') n. (Abbr. arch., archt.)

1. One who designs and supervises the construction of buildings
or other large structures.

2. One who plans or devises: The United States is considered
to be the chief architect of the economic recovery of the
Middle East.
The word “architect” is of Greek origin and is composed of two

roots: arch and tect. Arch means “primary,” “primitive,” or “com-
ing before,” and tect means “make” or “come into being.” Thus,
when the two roots are combined to form the word “architectos,”
it can mean “coming before” “come into being.” Using these
multiple meanings, we can figure out the definitions of architect
and architecture. A good working definition of architecture would
be “a primitive plan” or “a plan before construction.” This defini-
tion captures the essence of it: Architecture is an analytical effort
that is created prior to the occurrence of any real construction
activity. It is the abstracted framework or outline that provides
guidelines for the construction from the beginning to the end.

The discussion of architecture is interesting both from the
point of its expansive concepts to its detailed specificity at the
point of physical implementation. The following is an excerpt
from an Information Architecture course (that ultimately never
came to fruition) that speaks to the concept requirements:

The object of this course is to lead to an understanding and
application of the principles of design—particularly architectural
design. The fundamental purpose of architectural design is
illuminated by the logic of the process of design: target, options,
concepts, actions, and completion. Exploring the design process
integrates both the physical and nonphysical requirements and
influences; the measure of human processes and the collective

4 Chapter 1 Understanding architectUral principles

events of many processes; the social and cultural influences
operating in such processes; and the meaning of information
extensions, directions, order, and closure.

The importance of the relationship between human processes
and the information environment is introduced with an emphasis
upon construction of information models. Composition, especially
the theory of wholes and parts, is examined in the light of
structural reusability, continuity, and change—principles and
conditions applicable either to a single business process or, in a
much wider context, to the task of capturing an entire enterprise
into its business environment.

Architecture is an ancient skill that has been practiced by
visionaries since the prehominids decided to create and build
shelters to cope (interface) with the chaotic life patterns of their
natural world. A primitive designer probably had the same level
of respect in his tribe as the shaman (if they were not one in the
same). As humanity evolved, these special individuals carried
forward the inherent principles or patterns that had proven suc-
cessful in their evolution. Knowledge of structures and the pat-
terns and mechanisms of building was accumulated and passed
on—and on and on. This process of handing down skills and pat-
terns hastened the development of communication.

What would happen if a primitive hut builder created a very
radical design? Most likely, no one would accept the structure
unless the designer communicated the advantages of the new
design to the tribe. Additionally, when the primitive designer/
builder started his effort, he just had to create a few huts. As tribal
growth occurred, there was much more work to design and lay
out the groundwork for many huts and meeting places in addi-
tion to creating the huts.

These habitation structures had to be made to interface with
and take advantage of the natural background and environ-
ment. The designer/builder’s input to the site selection of camp-
ing grounds became critical. He became an integral asset to the
tribe’s survival. Just as the designer/builder had to keep learning
to construct and maintain the structures out of local materials,
he had to accumulate and retain the knowledge he had gained to
be passed on to future primitive architects.

All along the way there was a continual implementation of
what knowledge had been accumulated up to that point, and,
more important, that knowledge was made public. It would not
be kept private or restricted because the tribe’s livelihood rested
on the designer/builder’s integrity. The design had to be under-
stood and accepted by the entire tribe and had to be depended

Chapter 1 Understanding architectUral principles 5

on for the tribe’s survival. At each level appropriate knowledge
was imparted to those concerned.

The individuals in the tribe were educated in the best tech-
niques. This skill sharing allowed more growth and stability.
Implementation had provided a new plateau to build on. As the
tribes were educated, all of the members learned the skills nec-
essary to build and keep the structure intact. Adaptations had to
be made for the differences in environment. Some of the designs
had to be ultimately flexible, while others had to be extremely
stable and less flexible. Evolution of designs became more com-
plex and more important to the survival of the whole tribe. The
adaptability of the designs became an important feature of the
designs and was therefore included in the saved information.
These codes of construction and site selection became, after a
millennium, building codes. This body of principles and logic
used in designing for those codes would ultimately be called
“architecture.”

These individuals were astute at recognizing patterns in the
real world around them. The strength of a wood and grass wat-
tle hut wasn’t as great as a cave’s, but it served the same purpose:
it kept them safe from the elements. After all, caves wouldn’t be
available everywhere they went, so such natural shelters were
at a premium and often had to be competed for. Primitive hut
designers realized that a hut could be built in the same design as
a cave—tall in the middle and low at the sides for storage room
and sleeping. Fire could be put at the mouth of the hut or outside
with the heat reflected in, or, better yet, heated stones from the
fire could be rolled into the hut to radiate warmth.

Situating the construction on a higher foundation isolated it
from the ravages of heavy rains. Building it on the sheltered side
of a hill kept cold winter blasts from chilling the inhabitants and
also protected the fire. They also learned to build these shelters
close to water and plentiful sources of game. In essence they
adapted the housing to the environment, being respectful of it
and integrating the structure with as many natural principles as
possible.

Pattern recognition and pattern use are embedded in the
principles of early humankind’s existence, so the use of archi-
tectural principles is quite ancient. While it may have had differ-
ent names through the ages, and its practitioners had different
labels, the principles are the same: Plan before you build, and
design with the user in mind. Integrate the plan into the environ-
ment where it will be situated.

These are the same principles that prompted the first individ-
ual of vision to step out of the cave and find a way to bring it along

6 Chapter 1 Understanding architectUral principles

with him as he moved around to follow food. He had the respon-
sibility of defining a working structure and method, showing and
convincing others that the structure and method were feasible,
and, finally, ensuring that the structure and method would be
reusable in spite of the local environmental conditions. All of these
concepts and his ability to perceive the patterns where they could
best be implemented led to humankind’s success and adaptation.

Obviously, we no longer have to worry about building safe
habitats for cave dwellers. They already did that themselves. But
we learned things along the way. And the primitive art and sci-
ence of architecture evolved from simple tribal housing to pro-
viding a place for the very essence of cultures. Architecture and
its principles have burgeoned and expanded to include all parts
of the fabric of today’s society.

Design Problems
The design process is unique, and it is easy to see that the goal

of the design process is a solution. So this all seems very simple,
but unfortunately, this is not the case. As we have already dis-
cussed, the real crux of design is defining the problem in the con-
text in which it must be resolved. The contextual analysis is the
hard part. In a true design process, the work area must first be
defined and delineated from the context it is in. Whether it is a
problem or opportunity, it needs to be separated from the matrix
in which it exists. If the matrix or context is dynamic, however,
the problem area is dynamic as well.

The design solution ends up being a balancing of the solution
to the forces defining the problem’s boundaries. It becomes an
integral fit and, if constructed properly, will adjust to the context
in which it exists. Take a simple problem like building a mechani-
cal device. The forces in play are economy (or the cost of the
components), performance (both of the product itself and of the
ability to create the product), simplicity (the more components
involved, the more complex the building process), and interfit
(assembling the components to create the product).

Material handling studies indicate that the fewer the types of
material used, the faster assembly will be, so simplicity is impor-
tant. This will conflict with the performance force because we
know that using the best material for each part will make the
product last longer. The performance may affect the interfit force
vector, since the materials chosen for the best performance may
require more effort to assemble than simpler, less functional
materials. All of these force vectors affect economy because they
all impact the price of the item in some way. It is the balancing of

Chapter 1 Understanding architectUral principles 7

PERFORMANCE

––

+
–

–

–
INTERFIT

ECONOMY

Assign a value based on interaction and it will provide
the quadrant for best delivery

SIMPLICITY

Figure 1.1 Forces on a design
problem.

these forces that determines the solution. Figure 1.1 shows how
the resolution can be reached. By assigning a positive or negative
quality to the interaction among these forces, we can come up
with a simple solution depending on the product’s purpose.

We have chosen economy as our driving force, so we can see
that a positive relationship exists between simplicity and econ-
omy. Based on this, we can apply whatever performance and
complexity choices we want as long as they remain in that quad-
rant. If assembly was primary and simplicity was secondary, then
balancing would be in that quadrant, with the resulting solution
not being as economical as might be desired.

While this is an extremely simple visual display of a complex
set of interactions, in the end it is the balancing of those dynamic
forces at work in the context of the problem/solution area that will
provide the optimum solution. Simply put, the problem area can-
not be removed from its context because it is a part of the context
of the whole and is defined by the dynamic forces working on it in
that context. How, then, are problems addressed in an architectural
manner? The answer is, by using patterns and pattern interactions.

Patterns and Pattern Usage
What is a pattern? Christopher Alexander (1979) is an archi-

tect who processes at a high level of abstraction. He has revolu-
tionized many spheres of thought by his presentation of intuited
principles. These principles unify many efforts and disciplines
through art, architecture, and science. Included in these are
“scientific art” or “artistic science of information architecture
and design.” He embodied these principles in a philosophy of

8 Chapter 1 Understanding architectUral principles

architecture, which involves patterns and pattern usage. In his
book The Timeless Way of Building, he described the characteris-
tics of architectural patterns as follows:

Each pattern is a three-part rule, which expresses a relation
between a certain context, a problem, and a solution. As an
element in the world, each pattern is a relationship between a
certain context, a certain system of forces that occurs repeatedly
in that context, and a certain spatial configuration, which allows
these forces to resolve themselves. As an element of language,
a pattern is an instruction, which shows how this spatial
configuration can be used, over and over again, to resolve the
given system of forces, wherever the context makes it relevant. The
pattern is, in short, at the same time: a thing, which happens in
the world, and the rule which tells us how to create that thing,
and when we must create it. It is both a process and a thing—both
a description of a thing which is alive and a description of the
process which will generate that thing.

Concepts for Pattern Usage
While the concepts behind the Alexander principles may

seem mystical and far removed from information structures, they
work for precisely that reason. They are so abstracted as to be
general enough to define the common truths and rules of inter-
action about anything, including data and information. They
reflect the essence of the inherent patterns of the data. The par-
adigm that Alexander propounds is that anything built or con-
structed is based on three concepts that he calls The Quality, The
Gate, and The Timeless Way. We’ll look at each briefly.

the Quality
The Quality is created when the attributes in the design make

that design “live”—that is, designs that are flexible, extensible,
adaptable, and reusable and have other qualities of living things,
except, of course, self-reproduction and metabolism. What
Alexander is saying is that the characteristics of some designs
make them more responsive to change than other designs. By
being in harmony with their environment, they become respon-
sive to the changes in that environment.

the gate
The Gate is the common pattern language (CPL), which is

the universal network of patterns and pattern relationships

Chapter 1 Understanding architectUral principles 9

contained within the planner, the builder, the user, and the
environment in which the building will take place. It is a multi-
dimensional model that involves all of the forces shaping the
architectural structure in the area where it will be built.

A pattern language for a specific architectural structure is
chosen by the designer from the overall CPL. Whether the target
architectural structure is simple or complex, it is critical that the
chosen language be functionally complete (it must address the
needs of all involved). The value of simple patterns cannot be
underestimated; without them, integrated common pattern lan-
guages would not exist. The Gate is a mechanism, a door if you
will, by which Alexander’s quality is achieved. It simply means
that the set of chosen interactions within an individual design
have been defined and formalized specifically for that design.

the Way
According to Alexander, pattern languages are applied using

The Way. That is, they are applied one pattern at a time to suc-
cessively evolve an initial architecture and unfold it into a “live
design,” or said in Alexander’s words, a design with “The Quality.”
This is simply stated as serially building up the master pattern
and common pattern language over time by the integration of
the individual patterns and their individual pattern languages.
The initial way of doing this is to focus on the generic centers
with the problem areas, developing clusters and defining their
interactions and relationships. Subsequent to this, each pattern
that is integrated makes more explicit, or “flowers,” the previous
design by amplification and extension. With each cycle of inte-
gration, more and more definition is reached until the problem
areas coalesce out of the seeming chaos. In data architecture, the
parallel would be the integration of business views to understand
and compile the use cases and process paths for a model.

Alexander also added some additional complementary con-
cepts to this paradigm to ensure that architectures are created
with The Quality. These are universal recursive properties, cen-
ters, and structure preserving transformations. I will endeavor to
simplify these somewhat.

Universal recursive properties
Alexander describes these properties as “measurable” proper-

ties of living things that also have an aesthetic appeal. He iden-
tified these “universal” recursive properties in the structures
of buildings over the last 10-plus years. The recursive aspect is
unique in that it encourages the self-referencing feedback that

10 Chapter 1 Understanding architectUral principles

allows further definitional evolution to occur. This is the way the
amplification and extension of the pattern languages and designs
occur.

While this may seem highly abstracted, it is merely stating that
a feedback mechanism within a design is necessary to ensure
that the design stays alive and responsive to changes that may
occur in its environment.

centers
As we have seen, centers are the loci of the preceding recur-

sive properties. Without these loci, the integration of the patterns
and designs is not possible. They act as reference points and
overlay points during the integration process. Alexander found
that structures that have the characteristics of living things have
centers. In data architecture, we would call these entity cluster
areas within a business “subject areas.”

structure-preserving transformations
Alexander describes these transformations as those that pre-

serve the preceding universal properties. As such, we may recur-
sively differentiate a “whole” preserving these properties and
generating “centers” surrounded by the recursive properties. This
allows us to extract a specific design as a copy of the whole and
then customize it for the specifics needed. It also allows the exis-
tence of the whole to live alongside or nested above it. By preserv-
ing the essential nature of the structure, it can share this essence
as a child or a clone of the original.

In data architecture this is represented by the subject area
mapping within and the enterprise architecture that can allow
specific models to be generated from and reconciled back to
the enterprise model. Every entity in creation has an architec-
tural template whether or not it is seen or acknowledged. This is
the pattern by which it was developed and is maintained. In liv-
ing things it is DNA sequences, and in other creations it is com-
posed of other building blocks. It is the same in data processing,
although it might not seem so.

Principle
An architecture is the response to the integrated collections of models and views within the problem area being

examined.

Chapter 1 Understanding architectUral principles 11

Sometimes the underlying architecture appears to depend on
the chaos theory and produces a chaotic environment and sys-
tem. As a result, sometimes the application gets built, and some-
times it is abandoned.

Over the last 30 years of information systems design and
implementation, the author observed that you can build infor-
mation systems without architectures. You will also build the
same system again and again and again, improving it each time
until in effect you have created the correct architecture over time.
However, it is more cost-effective and efficient to build quality
systems using an architectural approach from the beginning.

Information Architecture
in·for·ma·tion (in'fər-ma'shən) n. (Abbr. inf.)
Knowledge derived from study, experience, or instruction.

Knowledge of a specific event or situation; intelligence. See syn-
onyms at knowledge. A collection of facts or data; statistical infor-
mation. The act of informing or the condition of being informed;
communication of knowledge. Example: Safety instructions are
provided for the information of our passengers.

Therefore, if we combine the definitions of architecture
and information, we get “one who designs and supervises the
construction of knowledge derived from study, experience, or
instruction, or knowledge of a specific event or situation, or a
collection of facts or data.” The information architect’s job is to
define the nature and scope of an information service before the
first line of code is put into place. Information architecture is the
plan for the data, much like an architect’s drawing.

Today, people in the business world are mired in data—data
that is collected, saved, split, spliced, spindled, folded, and muti-
lated to create useful information. When the data are read, they
supply the information the reader is seeking. Once this informa-
tion is gathered and controlled, however, the user must retain it
as he or she gathers more information. And to complicate things
even further, the user must be taught how to use the information.
That is the real challenge!

How can we structure not only the data but also the gleaned
information so that it will make a difference? It is imperative for
us to structure and keep the data because it may be needed later
to derive a different set of information. The user needs to under-
stand what is being saved and why.

Knowledge workers want to find the necessary information,
understand it, use it to solve their problems, and get on with the
rest of their daily business. They interact with information daily.

12 Chapter 1 Understanding architectUral principles

In order to complete their tasks, they need to find answers to
questions, complete forms, access data, find specific numbers,
and learn about products and services. All of this requires some
form of data structure to allow them to complete their tasks.

Organizations are always seeking ways to improve produc-
tivity and quality. It is easy to apply metrics to a structure that
is known and understood. They don’t want to waste resources
on poorly architected structures and processes that are difficult
to maintain. Not only does it waste resources, but the solutions
created are often obsolete before they are completed. Interested
parties in the data processing industry estimate that 80 percent
of the cost of an application process is the cost of maintenance.
Changes to poorly architected structures and processes take lon-
ger, and often changes that are implemented to these structures
feel arbitrary and haphazard. Structures and processes without
solid, extendable information architecture require and entail
more levels of decisions, approvals, and political battles. Simply
put, it is easier and cheaper in the long run to do it correctly. The
correct way is to analyze and then implement, not the other way
around.

Structure Works!
Information architecture gives meaning to the mass of unre-

lated needs, words, and pictures and fits them together so it can
be used. The skill is in the knowledge of framing and structuring
the data. Organizations need people who can extract information
from those who have it, put this information in a structured form,
and maintain or refine it over time. The people who are able to
do this are the architects of that business’s information. Modern
business strategists believe that organizations that can manage
layers of knowledge (processes, procedures, technologies, mes-
sages, figures, experience) in a “living design” mode as defined by
Alexander can maintain a competitive edge.

As just mentioned, today’s corporations seek to employ archi-
tecture as a way of organizing their current business solution
complexities and chaotic technology environments. Most corpo-
rations have had a track record of failed and unintegrated efforts
that have resulted in their inability to produce business solutions
in a rapid, cost-effective manner. So they try to enforce architec-
ture as a blanket over the problem areas. This leads to further
chaos, as increasing manpower and money are expended on
integrating the disintegrated environment.

This is kind of like trying to drain a swamp while fighting off
the alligators that have taken up residence. Trying to change

Chapter 1 Understanding architectUral principles 13

Principle
Analyzing and defining an area must be done prior to doing any activity within that area. Without understanding

all that must be done, incorrect assumptions can be reached. Short-term vision may handicap future development.
Inappropriate scoping may produce artificial boundaries where there should be none.

things in the middle of a process is seldom successful. It is far bet-
ter to understand what management plans to use the swampland
for, survey and chart it, drain the swamp (making it uninhabitable
for alligators), and prepare a map of the newly revealed obstacles.

Architecture is the embodiment of the philosophy that requires
the analysis of the area of focus prior to any activity within that
area. This ensures that the expense is minimized and the project
can be scrapped if it is deemed impossible, too expensive, or a lit-
tle of both. Architectures require that everyone concerned in the
analysis, design, and construction must utilize the same set of ref-
erence materials and frameworks for making decisions. These ref-
erence materials and decision frameworks are generally specified
in principles, guidelines, policies, or standards.

Many feel that once the principles, policies, guidelines, and
standards have been defined for a given architecture, some level
of inflexibility has been introduced. In truth, some standards are
somewhat rigid. More flexibility is gained by using principles,
policies, and guidelines that allow for the specification of excep-
tions or limits of acceptability. (Ambiguity is less acceptable when
building an organizational infrastructure than when describing
approaches to creating architectures.) When a proper architecture
with its attending reference structure of policies, principles, guide-
lines, and standards is in place, development takes place in an
environment that is free of impediments. In addition, the result-
ing applications will integrate and coordinate more efficiently. The
architecture itself becomes at this point extensible, allowing fur-
ther definition and design to take place.

Architectures evolve through this process of refinement and
extension. In many cases general rules are made specific as
needed to resolve business problems. Therefore, even if the ini-
tial architecture is flexible, over time it may acquire many of the
characteristics of a rulebook if not kept viable by constant vigi-
lance and maintenance.

Alternatives to the architecture approach are constantly being
sought because of the evolution in both software and hard-
ware that is accelerating with time. In this rapidly changing

14 Chapter 1 Understanding architectUral principles

environment, architecture may appear to be a roadblock to
rapid business decisions and solutions, but this is not the case.
Architecture provides guidelines and frameworks by which these
decisions can be made more easily, since an “inventory” of what
already exists is available. It is also true, however, that architec-
ture precludes trial-and-error processes and experimental discov-
ery. This is no more evident than in the object-oriented paradigm.
However, we must learn a lesson here: just as trial and error and
experimentation belong in the lab for discovery purposes, a plan
must exist for development outside the laboratory to allow com-
mon understanding and coordinated development to take place.

This is where Alexander’s principles can be applied. By retain-
ing the essence of the initial pattern and framework, the whole
may be retained while it is allowed to evolve to solve a business
problem. The technique that each corporation must learn is that
its architectures must remain living organisms that evolve with
the business need. Neglecting this, the architecture will grow old
and inflexible and eventually die.

Problems in Architecture
If architectures are the solution to the common design and

construction problems that currently exist, why aren’t they more
prevalent? In some cases, the question is, why didn’t they work? If
there are problems or pitfalls with the architect approach, what
can be done to remedy the problems or avoid the failings?

As we see it, there are three basic problems that must be
addressed with today’s architectures:
1. In most corporations, a poor correlation exists between archi-

tectures and the day-to-day business of information sys-
tem development. This is common in newly implemented

Principle
Using architecture leads to foundational stability, not rigidity. As long as the appropriate characteristics are in place

to ensure positive architectural evolution, the architecture will remain a living construct.

Principle
Well-developed architectures are frameworks that evolve as the business evolves.

Chapter 1 Understanding architectUral principles 15

architectures because most developers cannot adapt to
changes midstream, but this flaw can also be observed in
established architectures when the architecture itself is not
supported by management and therefore is bypassed and
avoided by the developers. When the architecture is imple-
mented, the feasibility and utility of the architecture will be
determined after it has been in use for a while. Much like sail-
ing a boat across a lake on a windy day, many tacks must be
made to get to the other side. A problem arises, however, if the
architecture continues to remain unlearned and unused. Then
it will become an alien rigid mechanism that will require mas-
sive amounts of pressure from management to force the use
of it.
In the second instance, the established architecture is viewed

as too “ambiguous” or “pie-in-the-sky” and therefore is of no use
in the day-to-day effort at the detail level. Often the developer
realizes much too late that the success of the project is most often
achieved on the planning table and the construction and imple-
mentation work is merely the execution of the plan.
2. The architectures today are both top-down in nature and

nondistributive in focus. Too often “analysis paralysis” takes
place, and the concept of requirements collection is overem-
phasized to the detriment of the project. It is a fact that the
more time spent in analysis, the shorter the time spent in
development. However, one can get caught in an analysis trap
and go beyond the scope or boundary that had been estab-
lished. Care must be taken not to do this. Additionally, there
is the problem of the moving framework. Architecture must
have some fluidity to remain viable. The top-down approach
to architecture best accomplishes this, but time and over-
analysis can produce a rigid structure that cannot adjust
easily to change. When we define a target structure in any
level of specification or detail, we limit the options that can
be used to implement it. In most cases these are construc-
tive boundaries, but they still limit the possible solutions to
the implementation. As policies are interpreted to standards
and procedures and the resulting structures become embed-
ded in applications, the cost of changing a standard or policy
increases. Because of the cost of changing the standards and
policies, the architecture can become stiff and unused. In the
long term, if not watched carefully, the atrophied, prematurely
aged architecture is often defended as the status quo, even
though its viability has expired. The result is that radical solu-
tions must be taken to reenergize the development process.
Again, by following Alexander’s principles, organizations can

16 Chapter 1 Understanding architectUral principles

deal with these problems by allowing and promoting shared
centers and clusters. The principles, policies, and standards
associated with these can develop and unfold just as the
design does as it evolves.

3. Some of the problems today have a great deal to do with the
architects themselves. In addition to the overanalysis previ-
ously mentioned, in many cases the architect did not scope
the business problem appropriately, and the result is the
“investigative” architecture that grows as each extended data
and process path is followed to its conclusion. The result of
this is an overall architecture that is doomed to fail, primar-
ily because the time and effort expended captured an out-of-
scope requirement at a time when it was ill defined. This also
leads to the elimination of the possibility of adding purchased
packages to the software inventory by measuring and assess-
ing the packages using inappropriate and poorly defined
requirements. When out-of-scope requirements are used to
select software packages, the packages don’t meet the busi-
ness needs. Also, the effort often ends up with a new defini-
tion for the enterprise universe, which should not happen.
All of these problems can be ameliorated by having a strong

enterprise architecture and a model-driven development meth-
odology (which we will cover later in the book). Enterprise archi-
tectures must follow a different set of rules and remain at a higher
level of abstraction in order to provide the seeding necessary for
other lower-level models. Alexander’s principles apply here, too.
By following the approaches that encourage the definition of the
centers and clusters of the business, the enterprise architecture
becomes almost a by-product of the process. Using this enter-
prise architecture allows the essence of the enterprise’s business
to be captured, and yet development can flourish to unfold and
blossom the overall architecture with each successive individual
implementation.

Architectural Solutions
Individual development architectures are intended to limit

choices. By doing this, they can be used to guide manpower and

Practice
Make architecture work by placing the responsibility for the solution in the hands of the key stakeholders. They are

responsible for making the architecture live.

Chapter 1 Understanding architectUral principles 17

development efforts down planned pathways to achieve target
goals. In this manner they also achieve repeatable results.

The key to making an individual architecture work is placing
the responsibility for the solution in the hands of the key stake-
holders. The architect in this scenario is the technical assistant to
the decision-making process. The resulting solutions should be
reviewed and reassessed over time. The architect must continue
to understand the implementation, provide technical knowledge,
and facilitate data conflicts.

Such a pivotal person, however, can face many pitfalls.
Architects by nature have the ability to see the concept or abstrac-
tion by distancing themselves from the details. At the same
time, good architects can discuss a detail’s impact on the whole
because they have a clear understanding of the whole as well as
an ability to descend to the level of detail necessary to understand
the problem. If they are too distant from the work, they will alien-
ate the business community and miss the real requirements. If
they are too close, they will misinterpret some requirements and
miss others completely. The best option to pursue is to ensure
that the individual architecture deliverables are specific, well
understood, and treated as milestones in the development pro-
cess rather than documentation requirements. A well-husbanded
architecture will make the design live.

Architectures must be viewed as living, breathing mecha-
nisms that are dynamic in their growth based on the changes in
the environment. They should be utilized more as frameworks to
build within rather than a strict code of adherence during con-
struction, and the output should be viewed more as an artifact of
the process than a fixed set of documentation that must be pro-
duced. They must wed the information and process requirements
together in a structure that facilitates the business function. One
school of thought emphasizes this premise.

The “Form Follows Function” Concept
Nobody knows for sure who first proclaimed, “Form follows

function.” Most historians believe it was Horatio Greenough, and
all agree that Louis Sullivan, the master architect of the American
skyscraper of the late nineteenth and early twentieth centuries,
made it his slogan, though not entirely his guideline. In any event,
“form follows function,” or functionalism, became the prime
tenet of the modern movement of architecture from its inception.

Form follows function is a good idea—the belief that prac-
ticality and common sense engender good design principles.
But this must be examined in a little more detail because it

18 Chapter 1 Understanding architectUral principles

can be misconstrued if taken at the simplest, highest level.
Unfortunately, too many people in the world of architecture,
including data architecture, have tried to make the form fit the
function rather than just design by the inherent characteristics of
the form and let the functions be captured as they evolve.

The form, or the coalesced inherent characteristics of some-
thing, allows it to perform some functions well and others poorly.
A brick makes excellent building material, yet when used as a
hammer, it leaves something to be desired. (Conversely, build-
ing a house out of hammers is a ludicrous thought.) But the use
of a brick for a lightweight structure to be built on a platform is
contraindicated where another building material would be fine.
Using a hammer of any kind, be it sledge, claw, or ball-peen, is
preferable to using a brick to pound in a nail.

Therefore, a family or collection of like things might have
more interchangeability when needed. Also, in order to classify
a thing and group or level it in a grouping hierarchy properly,
one must know the complete characteristics about the thing.
To design a form for a collected set of characteristics of data,
one has to understand all of its possible uses. When the form is
designed properly, it is operable in many different functions and
therefore becomes reusable. When all the functions are defined
that can reuse the form, then the collected function/form also
becomes reusable.

The question then becomes, how do we create architectural
patterns with data that will serve the immediate need and the
future need of the businesses as they evolve? At the same time,
how do we make the components reusable so we do not have to
custom-make things each time? Some of these questions can be
answered with standardized languages and specified roles and
responsibilities, but these are only part of the solution. There
must be an understanding of the business need and the business
environment in which we are addressing the problem. Also, there
must be an understanding of what the business environment is
evolving to and how the architectural structure will solve the
business user’s problem.

The principles involved in information architecture are as
follows:
l Understand the object of construction in terms of its com-

position and the environment in which it exists. Is there har-
mony or discord?

l Understand the object of construction in terms of its own evo-
lution. Is it extensible?

l Understand the use of the object of construction in a current
and future way. Can it be used for another purpose later?

Chapter 1 Understanding architectUral principles 19

l If the function is to be agile, is the form dynamic and flexible
in order to respond to the quickly changing pressures within
its environment?

Guideline: Composition and Environment
Always design with an understanding of what the environ-

ment will be for the information structure. If it is in harmony
with the current environment, training and knowledge trans-
fer will be simplified. If the composition is similar, then current
infrastructure methods and personnel can be used to achieve the
goal. For example, building a relational database is independent
of a platform or DBMS manufacturer. Always leverage the com-
position and environment you have.

Guideline: Evolution
Always design without time as a boundary. Structures that

have a characteristic of being extensible and flexible survive
longer because they require less effort to implement change.
Entropy is at work in the universe, so don’t implement tightly
bound, rigid structures. Corner cases and exceptions will destroy
rigid structures in minimal time. Change is inevitable and must
be allowed for and even encouraged. The only type of conserva-
tism that should be entertained is that the structure should only
be as big as it has to be. No excess need should be put in it.

Guideline: Current and Future
Always design structures that are unbiased to the current

usage. If it is built with the first two principles, it will always be
used until there are no more reasons to use it. Unbiased struc-
tures tend to keep room for growth and change while allowing
corner cases and exceptions to be handled outside the struc-
ture. For example, schools designed for the baby boom became
community centers and finally senior centers before some actu-
ally were taken over for local government offices as the popu-
lation grew and aged. They are still in use 40-plus years after
being designed and built. It is important to keep it as close to the
original concept and understanding as possible. In the case of
schools, they were places where groups could gather as a whole
or be divided into smaller groups. It was a place where many
activities could be conducted at the same time.

20 Chapter 1 Understanding architectUral principles

These are basic patterns that have evolved with iteration, and
they are all basic precursor tenets to the use of architecture in
the information world that also embrace the basic principles of
Alexander. In the next chapter we will discuss frameworks, which
also follow Alexander’s principles. We conclude with a brief par-
able about architecture.

a parable
In England there is a wall that is several thousand years old.

It has existed from a time where there was little sense of owner-
ship, throughout the rolling years, down to modern times where
everything is owned and has a price tag. It has served as a barrier
for keeping warlike attackers out, and as times became more civi-
lized, it became part of fortification for towns. Eventually, as the
towns disappeared, it became a pasture wall. This wall is amazing
for two reasons:
1. It has existed for these thousands of our measured years.

Through the thousands of seasonal changes, countless wars,
fires, storms, and earthquakes, it has stood steady, still serving
the purpose for which it was built: separating the people or
things on one side from those on the other. It forms, protects,
and defines a boundary.

2. It is also amazing for its structure. One would think that to sur-
vive these thousands of years, it had to be massive and rigid,
but it is not. In fact, it is the opposite of solid, massive, and
rigid. It has many chinks, gaps, and holes in it, and it looks as
if it could fall down at any moment. As it turns out, its struc-
ture is the very reason for its survival. Wind blows through
the holes, rain drains through the gaps and chinks to the
earth, and snow fills the holes. If the snow turns to ice, the
ice has room to expand without causing further damage to
the wall. Even in the hottest scorching sun, there was room for
the rocks to expand without cracking other rocks. Through thou-
sands of seasons the structure of the wall proved its survival.
The lesson we should learn from this is that massive rigid

structures do not stand the pressures of time. Lighter, more open
structures allow changes to be made without tearing down and
building a new structure. The open structure provides flexibility
to the forces brought about by the pressures of time.

The principle illustrated by this parable (which, by the way, is
true) is that a structure need not be massive to stand the tests of
time. It merely needs to be architected with the primary forces
that will act on it in mind and that it must still serve the neces-
sary purpose.

Chapter 1 Understanding architectUral principles 21

Data Policies (Governance), the Foundation
Building Codes

To properly come into an age where architected develop-
ment produces repeatable results, a modal shift is required by
the enterprise as to how the investment object that we know as
data is perceived. In most cases, companies have not achieved
this modal shift. Data are perceived as just a necessary part of
doing business. They have not learned to leverage that data and
therefore end up being left behind in the marketplace by their
competitors.

Why go through the effort of educating the staff and changing
the enterprise culture’s perception of data? Many reasons exist, but
the first and foremost is that the marketplace today is data driven.
He or she with the best data (including speed, data integrity, and
applicability) can service clients faster and respond to market
forces more rapidly with less impact than his or her competitor.

Those who have made the modal shift have integrated cer-
tain operating concepts into the culture of their companies. The
most fundamental of these are generally embodied in the data
policies and principles that are espoused and committed to by
all levels of management. This is more commonly known as data
governance.

The implementation of data policies, functions, and roles is
examined in more detail in later chapters. At the architectural
level, it is important to understand that these principles exist to
ensure the integrity and protection of hard-earned assets that
the company can leverage for multiple purposes. The data policy
principles defined following represent the foundation of data
governance and should be accepted and acknowledged by all
data owners, data stewards, data captains, data custodians, and
dedicated resource knowledge workers.

Data Policy Principles
1. Data must be assembled and maintained in an integrated

manner to support the evolving business needs and to ensure
customer service of the highest quality.

2. Data, and the structures and constructs used to develop and
house it, are renewable and reuseable assets of the enterprise
and as such need to be secured in the most prudent manner
possible.

3. Data must be of the highest quality and integrity possible
to ensure that the business decisions made based on it are

22 Chapter 1 Understanding architectUral principles

responsive to the company’s needs in a dynamic and competi-
tive business environment.

4. Data must be stored or placed in the structures and locations
most appropriate to its optimal utilization and safekeeping by
using the best options available in the technology forum.

5. Data ownership policies and custodial responsibilities must
be defined in order to ensure the accountability of the needed
quality and integrity within the organization.

6. Data must be captured, validated, scrubbed, and utilized
according to industry-wide standards and methods, using
accepted tools and techniques that ensure consistency.

7. Data must be captured, validated, and scrubbed at the earliest
point in the enterprise process to ensure that all subsequent
dependent processes have minimal impact to data quality
issues.

8. Data sharing must be encouraged and fostered to ensure that
the business decisions that are being made are consistent
between different business areas within the enterprise
Without commitment to the data policy at all levels, the data-

driven engine that maintains the competitive edge will fail to
move the company forward and eventually will lead to noncom-
petitive strategies and operations.

References
Alexander, C. (1979). The timeless way of building. New York: Oxford University

Press.
Alexander C. (October 24, 1964) Notes on the synthesis of form. Cambridge, MA:

Harvard University Press.

23
Data Architecture.
© Elsevier Inc. All rights reserved.2011

ENTERPRISE ARCHITECTURE
FRAMEWORKS AND
METHODOLOGIES

Architecture Frameworks
In Chapter One, we saw how side products of the process by

which people formalize patterns are inherent in their psyche.
This resulting product is an attempt to provide an ordered com-
munication interface between the inherent patterns in an indi-
vidual’s psyche and his or her external world. These can also be
called interpretive layers, platform specifications, level defini-
tions, or concept aggregations. All of these definitions focus on
the interpretive layer between an individual and his or her exter-
nal world.

As we saw, architect Christopher Alexander first introduced the
concept of patterns as a tool to encode the knowledge of the design
and construction of communities and buildings. Alexander’s pat-
terns describe recurring elements and rules for how and when to
create the patterns. Some designers of data processing software
have begun to embrace this concept of patterns and use it as a lan-
guage for planning, discussing, and documenting designs.

In his seminal and far-reaching works on pattern analysis,
Christopher Alexander provided a far better definition of the
interface between man and reality than any specific group of
scientists or think tank wizards. This is because he abstracted
rather than focused by exclusion. Alexander is a prime example
of his own principles; an architect by profession, his insights and
general observations provide deep and far-reaching meaning to
all parts of life, including how we process data for commercial
information purposes. It is in this frame of thought that we can
approach how we can use patterns for the processing of data,
extract information from that data, and discover how that infor-
mation can be used in today’s world.

2

http://dx.doi.org/

24 Chapter 2 EntErprisE architEcturE framEworks and mEthodologiEs

When creating architecture of a very high level, such as the
architecture of the software development process, it is necessary
to have a framework to identify and specify the components of
the architecture. The artifact structure of this framework in both
document and word form is the methodology specification.

We are not talking pie in the sky here. While we may be
addressing something very abstracted, we also need to realize
it has an impact in the real world. We will discuss these in more
detail, but the world of architecture—particularly information
architecture—can have a significant effect on your bottom line.
The importance of architecture can be determined by answering
a few simple questions:
l Is your organization spending too much money building IT

systems that deliver inadequate business value?
l Is IT seen as improving or hampering your business agility?
l Is there a growing divide between your business and IT

personnel?
l Finally, and perhaps most important of all, is your organization

truly committed to solving all of these problems, and does that
commitment come from the highest levels of the organization?
If the answer to all of these questions is yes, then enterprise

architecture is the program you should embrace. It is up to the
management of the organization to take up the standard and
lead. Today, four enterprise architectures dominate the field:
the Zachman framework for enterprise architecture, The Open
Group Architecture Framework (TOGAF), the Federal Enterprise
Architecture (FEA), and a Gartner Framework. The first problem
was managing the increasing complexity of information technol-
ogy systems. The second problem was the increasing difficulty in
delivering real business value Windows systems.

All of these problems are related. The more complicated a sys-
tem is, the less likely it is to deliver maximum business value. The
better you manage complexity, the more you improve the likeli-
hood that you will deliver real business value.

So should you care about enterprise architecture? That depends
on how you feel about positively affecting your organization’s bot-
tom line. If managing system complexity and delivering business

Principle
An architecture represents combined perspectives in a structured format that is easily viewable and explains the

context of the area being analyzed to all those viewing it.

Chapter 2 EntErprisE architEcturE framEworks and mEthodologiEs 25

value are priorities for you, you care about enterprise architecture
methodologies. If you are focused on maintaining or rebuilding
IT credibility in your organization or if you strive to promote the
use of IT to maintain a competitive position in your industry, you
should continue to read this chapter. If these issues don’t concern
you, then these methodologies have little to offer.

The relationship between complexity and planning for build-
ings is similar for information systems: If you are building a simple
single-user system, you might not need architects at all. If you are
building an enterprise-wide, mission-critical, highly distributed
system, you might need a database architect, a solutions architect,
an infrastructure architect, a business architect, and an enterprise
architect. This chapter discusses possible methodologies that could
be utilized to develop the overall architectural vision for an orga-
nization. This is the responsibility of the enterprise architect, who
specialized in the broadest possible view of architecture within the
enterprise. This is the architect’s architect—the architect who is
responsible for coordinating the work of all of the other architects.

Building a large, complex, enterprise-wide information sys-
tem without an enterprise architect is like trying to build a jet
plane without a master aeronautical engineer. Can you build a jet
without using a master aeronautical engineer? Probably. Would
you want to fly it? Probably not.

Here are some of the terms you will see in this chapter:
l Architect—one whose responsibility is the design of an archi-

tecture and the creation of an architectural description.
l Architectural artifact—a specific document, report, analysis,

model, or other tangible asset that contributes to an architec-
tural description.

l Architectural description—a collection of products (artifacts)
to document an architecture.

l Architectural framework—a skeletal structure that defines
suggested architectural artifacts, describes how those artifacts
are related to one another, and provides generic definitions
for what those artifacts might look like.

l Architectural methodology—a generic term that can be
described in a structured approach to solving some or all of
the problems related to architecture.

l Architectural process—a defined series of actions directed to
the goal of producing either an architecture or an architec-
tural description.

l Architecture—the fundamental organization of a system
embodied in its components and their relationships to one
another, the environment, and the principles guiding its design
and evolution.

26 Chapter 2 EntErprisE architEcturE framEworks and mEthodologiEs

l Enterprise architecture—an architecture in which the sys-
tem in question is the whole enterprise, especially the busi-
ness processes, technologies, and information systems on the
enterprise.
We will use these key terms to discuss enterprise architecture

methodologies, the problems these methodologies are trying to
solve, and their approaches and relationships to one another.

Brief History of Enterprise Architecture
The field of enterprise architecture essentially began in 1987 with

J. A. Zachman’s (1987) article “A Framework for Information Systems
Architecture.” Zachman laid out the challenge and the vision of
enterprise architectures that would guide the field from that point
through the present. The challenge was to manage the complexity
of increasingly distributed systems. It is said that the costs involved
and the success of a business depend on its information systems.
Zachman’s vision was that business value and agility could best be
realized by a holistic approach to overall systems architecture that
explicitly looks at every important issue from every important per-
spective. His multiple-viewpoint approach to architecting systems is
what he originally described as an information systems architectural
framework, which was later renamed as an “enterprise architecture
framework.”

The Zachman Framework for Enterprise
Architecture

The Zachman framework is a template for organizing architec-
tural artifacts (in other words, design documents, specifications,
and models) that takes into account both the artifact targets (for
example, business owners and system builders) and the particular
issue that is being addressed (for example, data and functionality).

Zachman originally explained his IT template using the build-
ing industry as an analogy. In that industry, architectural artifacts
are implicitly organized using a two-dimensional organization.
One dimension is “the various players in the game.” For a physi-
cal building, some of these players are the owner (who is pay-
ing for the project), the builder (who is coordinating the overall
structure), and a zoning board (which ensures that construction
follows local building regulations).

The building architect prepares different architectures for each
of these players. Every player demands complete information, but

Chapter 2 EntErprisE architEcturE framEworks and mEthodologiEs 27

what constitutes completeness is different for each of the players.
The owner is interested in a complete description of the functional-
ity and aesthetics of the building. The builder is interested in a com-
plete description of the materials and the construction process. The
owner doesn’t care about placement of studs in the walls or what
nails are used or what shingles are used. The builder doesn’t care
how the bedroom windows are aligned with the morning sun.

The second dimension for a particular artifact organization is
the descriptive focus of the artifact: the what, how, where, who,
when, and why of the project. This dimension is independent of
the first. Both the builder and the owner need to know what, but
the owner’s what is different from the builder’s what. The answer
to what depends on who is asking the question.

In his first papers and in a subsequent elaboration in 1992,
Zachman proposed that there are six descriptive areas of focus—
data, function, network, people, time, and motivation—and six
player perspectives—planner, owner, designer, builder, subcon-
tractor, and enterprise. These dimensions can be arranged in a
grid, as shown in Figure 2.1.

SCOPE
(CONTEXTUAL)

Planner

BUSINESS
MODEL

(CONCEPTUAL)

Owner

SYSTEM
MODEL

(LOGICAL)

Designer

TECHNOLOGY
MODEL

(PHYSICAL)

Bu lder

DETAILED
REPRESEN

TATIONS
(OUT OF

CONTEXT)

Subcontractor

FUNCTIONING
ENTERPRISE

SCOPE
(CONTEXTUAL)

Planner

BUSINESS
MODEL

(CONCEPTUAL)

Owner

SYSTEM
MODEL

(LOGICAL)

Designer

TECHNOLOGY
MODEL

(PHYSICAL)

Builder

DETAILED
REPRESEN

TATIONS
(OUT OF

CONTEXT)

Subcontractor

FUNCTIONING
ENTERPRISE

Example
Function

Example
Organization

Example
Schedule

Example
Strategy

How
Function

Who
People

When
Time

Why
Motivation

List of Processes List of Organizations List of Cycles List of Goals

END Class of
Business Objectives

ENDS Business Objective
MEANS Business Strategy

ENDS Structural Assertion
MEANS Action Assertion

ENDS Condition
MEANS Action

ENDS Sub condition
MEANS Step

e.g. Business Plan

e.g. Business Role Model

e.g. Role Design

e.g. Role Specification

PROCESS Class of
Business Processes

PEOPLE Class of
Business Organizations

CYCLE Class of
Business Cycles

TIME Business Event
CYCLE Business Cycle

TIME System Event
CYCLE Processing Cycle

TIME Execute
CYCLE Component Cycle

TIME Interupt
CYCLE Machine Cycle

PEOPLE Organization Unit
WORK Work Product

PEOPLE Role
WORK Deliverable

PEOPLE User
WORK Screen/Device

Formats

PEOPLE Identity
WORK Job

e.g. Business Process Model e.g. Work Flow Model e.g. Master Schedule

e.g. Processing Structure

e.g. Control Structure

e.g. Timing Definition

e.g. Application Architecture e.g. Human Interface
Architecture

e.g. Presentation
Architecture

e.g. Security Architecture

Example
Network

Where
Network

List of Locations

NODE Class of
Business Locations

NODE Business Location
LINK Business Linkage

NODE I/S Function
LINK Line Characteristics

NODE Hardware/
System Software

LINK Line Specifications

NODE Address
LINK Protocols

e.g. Logistics Network

e.g. Distributed System
Architecture

e.g. Technology
Architecture

e.g. Network Architecture

e.g. System Design

e.g. Program

I/O Business Resources
PROCESS Business Process

I/O User Views
PROCESS Computer

Function

I/O Data Elements/Sets
PROCESS Computer Function

I/O Control Block
PROCESS Language

Statement

Example
Data

What
Data

List of Things

ENTITY Class of
Business Entities

e.g. Semantic Model

e.g. Logical Data Model

e.g. Data Design

e.g. Data Definition

ENTITY Business Entity
RELATION Business

Relationship

ENTITY Data Entry
RELATION Data

Relationship

ENTITY Table/Segment/etc
RELATION Pointer/Key

ENTITY Field
RELATION Address

Figure 2.1 Enterprise architecture framework. © 1986–2005 John a. Zachman,
Zachman international.

28 Chapter 2 EntErprisE architEcturE framEworks and mEthodologiEs

From the business owner’s perspective, “data” means business
entities. This can include information about the entities them-
selves, such as customers and products, or information about
relationships between those strategies, such as demographic
groups and inventories. If you are talking to a business owner
about data, this is the language you should use. From the per-
spective of the person implementing the database, “data” does
not mean business entities but refers to rows and columns orga-
nized into tables and linked together by mathematical joins and
projections. If you are talking to a database designer about data,
don’t talk about customer demographic groups; talk about nor-
mal form relational tables.

It is not that one of these perspectives is any better than the
other or more detailed than any other or is of higher priority than
the other. These perspectives on data are critical to a holistic
understanding of the systems architecture. It is the architect who
integrates these into a cohesive whole.

As mentioned earlier, Zachman’s framework consists of six
functional focuses, each considered from the perspective of
a major player. Figure 2.1 shows the 36 intersecting cells in a
Zachman template—one for each meeting point between a play-
er’s perspective (for example, business owner) and a descriptive
focus (for example, data). As we move from left to right in the grid,
we see different descriptions of the system, all from the same play-
er’s perspective. As we move from top to bottom, we see a single
focus, but the change is the player who is viewing that focus.

Zachman’s framework first suggests that every architectural
artifact should live in one and only one cell. There should be no
ambiguity about where a particular artifact lives. If it is not clear
in which cell a particular artifact lives, the problem most likely
lies with the artifact itself.

Second, Zachman’s framework suggests that an architecture
can be considered a complete architecture only when every cell
in an architecture is complete. A cell is complete when it contains
sufficient artifacts to fully define the system for one specific player
looking at one specific descriptive focus. When every cell is popu-
lated with appropriate artifacts, there is a sufficient amount of data
to fully describe the system from the perspective of every player
(stakeholder) looking at the system from every possible angle.

Third, the framework suggests that the cells in a column
should be related to one another. Consider the data column (the
first column) in the template. From the business owner’s per-
spective, the data are information about the business. From the
database administrator’s perspective, however, the data are rows
and columns in the database.

Chapter 2 EntErprisE architEcturE framEworks and mEthodologiEs 29

Although the business owner thinks about data quite differ-
ently from the database administrator, some relationship between
these perspectives should exist. Someone should be able to fol-
low an owner’s business requirements and show that the database
design is, in fact, being driven by those requirements. If the busi-
ness owner has requirements that are not traceable down to the
database design, it must be asked if the business needs will be met
by this architecture. On the other hand, if there are database
design elements that do not trace back to the business require-
ments, we might ask if we have included unnecessary data at the
database level.

The Open Group Architecture Framework
The Open Group Architecture Framework is best known by

its acronym: TOGAF. TOGAF is owned by the Open Group (www.
opengroup.org). The TOGAF view of an enterprise architecture
is shown in Figure 2.2. As shown, TOGAF divides an enterprise
architecture into four categories:

Business architecture describes the processes that the business
uses to meet its goals.
Application architecture describes how specific applications
are designed and how they interact with one another.
Data architecture describes how the enterprise data stores are
organized and accessed.
Technical architecture describes the hardware and soft-
ware infrastructures that support the applications and their
interactions.
TOGAF describes itself as a “framework,” but the most impor-

tant part is the architecture development method, better known
as ADM. ADM is a process for creating architecture. Given that
ADM is the most visible part, it can be categorized as an archi-
tectural process instead of either an architectural framework or a
methodology.

Business
Architecture

Application
Architecture

Data
Architecture

Technical
Architecture

Figure 2.2 togaf’s enterprise architecture.

http://www.opengroup.org
http://www.opengroup.org

30 Chapter 2 EntErprisE architEcturE framEworks and mEthodologiEs

As an architectural process, it is complementary to the
Zachman framework. Zachman relates how to categorize your
architect artifacts, and TOGAF gives you a process for creating
them. TOGAF defines the world of enterprise architecture as a con-
tinuum of architectures, called the enterprise continuum, which
defines the process of creating a specific enterprise architecture as
moving from the generic to the specific. TOGAF ADM provides a
process for driving this movement from the generic to the specific:
1. The most generic architectures are called Foundation

architectures.
2. The next level of specificity is referred to as Common Systems

architectures. These are principles that one would expect to
see in many, but not all, types of enterprises.

3. The level of specificity after that is called Industry architec-
tures. These are principles that are specific across many enter-
prises that are part of the same business domain, such as
pharmaceutical enterprises.

4. Finally, the most specific level is called Organizational archi-
tectures. These are architectures that are specific to a given
enterprise.
Figure 2.3 shows the relationship between the enterprise con-

tinuum and the enterprise architecture development method
(ADM).

TOGAF defines the various knowledge bases that live in the
foundation architecture. Today you might run into the technical
reference model (TRM) and the standards information base (SIB).
The TRM is a suggested description of the generic IT architecture,
and the SIB is a collection of standards and pseudo-standards
that the Open Group recommends you consider in building an IT

Enterprise Continuum

Foundation Architectures

Industry Architectures

Organizational Architectures ADMADM

Common Systems Architectures

Figure 2.3 the togaf enterprise continuum.

Chapter 2 EntErprisE architEcturE framEworks and mEthodologiEs 31

architecture. TOGAF presents both the TRL and the SIB but sug-
gests that neither is required.

For any organization, the day-to-day experience of creating an
enterprise architecture will be driven by the ADM, a high-level view
that is shown in Figure 2.4. TOGAF ADM consists of eight phases
that are cycled through after an initial “priming of the pump.”

In some organizations, achieving buy-in for an enterprise
architecture can be difficult. This is especially true if the effort is
driven from the IT organization and even more so when there is
a history of distrust between the business and the technical side
of an organization. This often necessitates the use of an external
consultant.

A

Architecture
Vision

Preliminary
Management

Framework and
Principles

B

Business
Architecture

C

Information
Systems

Architectures

D

Techonlogy
ArchitectureE

Opportunities
and Solutions

F

Migration
Planning

G

Implementation
Governance

Requirements
Management

H

Architecture
Change Mgmt

Figure 2.4 the togaf architecture development method (adm).

32 Chapter 2 EntErprisE architEcturE framEworks and mEthodologiEs

As soon as a request has been received, an external consultant
who is skilled in TOGAF principles can ensure that the project has
the necessary support within the company to define the scope of
the project, identify constraints, document business requirements,
and establish high-level definitions for both the current architecture
and the future architecture. The current and future definitions of
technology architecture (category D in Figure 2.4) will include high-
level definitions for all four of the EEA subarchitectures shown in
Figure 2.2: business, technology, data, and application architectures.

The culmination of the effort will be a statement of architec-
ture work, which must be approved by the various stakehold-
ers before the next phase of the ADM begins. The point of this
phase is to create an architecture vision for the first pass through
the ADM cycle. The TOGAF consultants will guide the company
toward choosing the pilot project, vetting the project against the
architectural principles established in the preliminary phase, and
ensuring that the appropriate stakeholders have been notified.

In Figure 2.4, the architectural vision created in circle A (archi-
tecture vision) will be the main input into circle B (business
architecture). The TOGAF consultants’ goal in circle B is to create
a detailed base and target business architecture, as well as per-
form a gap analysis between them. A successful phase B requires
input from many stakeholders. The major outputs will be detailed
descriptions of the base and target business objectives and the gap
descriptions of the business architecture.

Circle C (information systems architecture) does for the infor-
mation systems architecture what phase B does for the business
architecture. TOGAF defines nine specific steps for this phase,
each with multiple substeps:
l Develop a base data architecture description.
l Review and validate principles, reference models, viewpoints,

and tools.
l Create architecture models, including logical data models,

data management process models, and relationship models
that map business functions to CRUD data operations.

l Select data architecture building blocks.
l Conduct formal checkpoint reviews of the architecture mod-

els and building blocks with stakeholders.
l Review critical criteria (performance, reliability, security,

integrity).
l Complete the data architecture.
l Conduct a checkpoint/impact analysis.
l Perform a gap analysis.

The most important deliverable from this phase will be the
target information and applications architecture.

Chapter 2 EntErprisE architEcturE framEworks and mEthodologiEs 33

Technology architecture (circle D) completes the technical
architecture and the information technology infrastructure nec-
essary to support the target architecture. Technology architecture
assesses the various implementation possibilities, identifies the
major implementation projects that must be undertaken, and
evaluates the business opportunity associated with each.

The standard recommends that the TOGAF consultant’s first
pass at technology architecture should focus on projects that will
deliver short-term payoffs and create an impetus for proceeding
with longer-term projects. This is good advice in any architec-
tural methodology. Therefore, the TOGAF consultant should be
looking for projects that can be completed as cheaply as possible
while still delivering the highest perceived value.

Circle F (migration planning) is closely related to technology
architecture. In this phase of the TOGAF, the consultant works
with the company’s data governance body to sort the projects
identified in phases into priority orders that include not only the
costs and benefits (listed in D) but also the risk factors.

In circle G (implementation governance), the TOGAF consul-
tant takes a prior list of projects and creates architectural speci-
fications for the implementation projects. These specifications
include acceptance criteria and lists of risks and issues.

In the final phase, H (architecture change), the consultant
modifies the architectural change management process with any
new artifacts created in this last iteration and with new informa-
tion that becomes available. The consultant is then ready to start
the cycle again. One of the goals in the first cycle is the transfer
of information, so the consultant’s services are required less and
less as more and more iterations of the cycle are completed.

Much of the results of the process can be determined as much
by the consultant’s/company’s relationship as it will be by the
TOGAF specification itself. TOGAF is a very adaptable methodol-
ogy, and specifics for the various architectural artifacts are sparse.
TOGAF allows phases to be done in random order, skipped, com-
bined, reordered, or reshaped to fit the needs of the situation.
Therefore, two different TOGAF-certified consultants may use two
very different processes, even when they are both working with the
same organization.

The Federal Enterprise Architecture
The Federal Enterprise Architecture (FEA) (CIO, 2001) was

implemented by the U.S. federal government in an effort to unite
its myriad agencies and functions under a common enterprise

34 Chapter 2 EntErprisE architEcturE framEworks and mEthodologiEs

architecture. The Federal Enterprise Architecture effort is still in
its infancy, since most of the major pieces have been available
only since 2006. FEA is the most complete of all the methodolo-
gies discussed in this chapter. It has both a comprehensive tem-
plate, like Zachman, and an architectural process, like TOGAF.

FEA can be viewed as either a methodology for creating an
enterprise architecture or the architectural result of executing
that process for a particular enterprise. In this chapter, the FEA
is reviewed from the methodology perspective as to how it can be
applied to businesses in the private sector.

FEA can be described as consisting of five reference models,
one for each area of activity: business, service, components, tech-
nical, and data. But there is much more to FEA than just the ref-
erence models. A full recap of FEA must include the following:
l A perspective on how enterprise architectures should be

viewed
l A set of reference models for describing different perspectives

of the enterprise architecture
l A process for creating an enterprise architecture
l A transitional process for migrating from a pre-EA to a post-

EA paradigm
l A taxonomy for cataloging assets that fall within the purview

of the enterprise architecture
l An approach to measuring the success of using the enterprise

architecture to drive business value
Some examinations of FEA’s benefits follow.

the fEa View on Enterprise architecture
The FEA view on EA is that an enterprise is made up of seg-

ments. A segment is a major business functionality, such as human
resources. Within FEA, segments are divided into core mission area
segments and business services segments. A core mission area seg-
ment is one that is central to the purpose of a particular agency
within the enterprise. For example, in the Health and Human
Services (HHS) agency of the federal government, health is a core
mission area segment. A business services segment is one that is
foundational to most organizations. For example, financial man-
agement is a business services segment that is required by all fed-
eral agencies.

Another type of enterprise architecture asset is an enter-
prise service, which is a well-defined function that spans agency
boundaries. An example of an enterprise service is security man-
agement. Security management is a service that works in a uni-
fied manner across the whole breadth of the enterprise.

Chapter 2 EntErprisE architEcturE framEworks and mEthodologiEs 35

The difference between enterprise services and segments is
confusing. Although both are shared across the entire enterprise,
business services segments affect only a single part of the orga-
nization, whereas enterprise services affect the entire enterprise.
For example, in the federal government, both the HHS and the
Environmental Protection Agency (EPA) use the human resources
business services segment. However, the people who are managed
by human resources are different in HHS than those in the EPA.

Both the HHS and the EPA also use the security management
enterprise service. But the security credentials controlled by the
security management service are not specific to either of those
agencies. The fact that segments are defined globally facilitates
reuse across agency boundaries. One can define the usage seg-
ments across the enterprise and then use a defined set to locate
opportunities for architectural reuse.

Figure 2.5, for example, shows a segment map of the federal
government from the FEA Practice Guide (OMB, 2006a). As shown,
many segments (the vertical columns) are used in multiple agen-
cies, and any or all of these are good candidates for sharing.

Business
Services Core Mission Area

E
n

te
rp

ri
se

S
er

vi
ce

s

SBA
Treasury

Defense
EPA

Interior

F
in

an
ci

al
M

an
ag

em
en

t

H
u

m
an

R
es

o
u

rc
es

H
ea

lt
h

C
o

m
m

u
n

it
y

an
d

S

o
ci

al
 S

er
vi

ce

E
d

u
ca

ti
o

n

E
co

n
o

m
ic

D
ev

el
o

p
m

en
t

N
at

u
ra

l
R

es
o

u
rc

es

H
o

m
el

an
d

S
ec

u
ri

ty

Justice
DHS

Energy

Mapping / Geospatial / Elevation / GPS

Security Management

Records Management

Agen
cie

s

HHS

Figure 2.5 segment map of the federal government fEa reference models.

36 Chapter 2 EntErprisE architEcturE framEworks and mEthodologiEs

The five FEA reference models are focused on establishing a
common business language. The goal is to facilitate communica-
tion, cooperation, and collaboration across agency boundaries.
According to the FEAPMO (OMB, 2006b):

The FEA consists of a set of interrelated “reference models”
designed to facilitate cross-agency analysis and the identification
of duplicative investments, gaps, and opportunities for collabora-
tion within and across agencies. Collectively, the reference models
[compose] a framework for describing important elements of the
FEA in a common and consistent way.

Another example would be if the Internal Revenue Service
(IRS) decided it needed a population demographics system to
track taxpayer data. After a lengthy search for a system with these
characteristics, they proceed to build one. Unknown to the IRS,
the Government Printing Office (GPO) has a population demo-
graphics system that is almost exactly what the IRS needs. They
just happen to call it a customer-information system. So the IRS
goes out and builds its system from scratch instead of adapting
or expanding the one already built by the GPO. If they continue
to do so, the IRS will waste considerable money.

This, then, is the goal of the five FEA reference models: to
give standard terms and definitions for the domains of enter-
prise architecture and to facilitate collaboration and reuse
across the federal government. The five reference models are as
follows:
l The business reference model (BRM) gives a business view

of the various functions of the federal government. For exam-
ple, the BRM defines a standard business capability called
water resource management that is a subordinate function of
natural resources that is considered a line-of-business of the
broader services for citizens’ business areas (2007).

l The components reference model (CRM) gives an IT view of
systems that can support business functionality. For exam-
ple, the CRM defines a customer-analytics system that was
described earlier in the hypothetical interchange between the
IRS and the GPO (2007).

l The technical reference model (TRM) categorizes the vari-
ous technologies and standards that can be used in building
IT systems. For example, the TRM defines HTTP as a protocol
that is a subset of a service transport that is a subset of service
access and delivery (2007).

l The data reference model (DRM) defines standard ways of
describing data. For example, the DRM defines an entity as
something that contains attributes and participates in rela-
tionships (OMB, 2007).

Chapter 2 EntErprisE architEcturE framEworks and mEthodologiEs 37

l The performance reference model (PRM) defines standard
ways of describing the value delivered by enterprise architec-
tures. For example, the PRM describes quality as a technol-
ogy measurement area that is defined as “the extent to which
technology satisfies functionality or capability requirements”
(2006c).

the fEa process
The FEA process concentrates on developing a segment archi-

tecture for a subset of the overall enterprise (in FEA’s case, the
enterprise is the federal government and the subset is a govern-
mental agency) and is described in FEA Practice Guidance (OMB,
2006d). The overall segment-architecture development process is
as follows:
l Step 1: Architectural analysis—defines a simple but concise

vision for the segment and relates it to the organizational
plan.

l Step 2: Architectural definition—defines the target architec-
ture of the segment, defines the performance goals, develops
design alternatives, and develops an enterprise architecture
for the segment, including business, data, services, and tech-
nology architectures.

l Step 3: Investment and funding strategy—justifies the pro-
gram funding; defines ROI.

l Step 4: Define the program management plan and execute
projects—create a plan for managing and executing the proj-
ect, including milestones and performance measures that will
assess project success.

the gartner process
So far, we have seen three different methodologies that come

together under the banner of enterprise architectures. This last
methodology is a little different. It isn’t a taxonomy (like Zachman),
a process (like TOGAF), or a complete methodology (like FEA).
Instead, it can be defined as a practice. It is the enterprise archi-
tecture practice of a large IT research and consulting organization:
Gartner.

How do you choose a physician? Do you interview candidates
on how well they know the medicine? Do you sit candidates down
and ask for a detailed description of the methodology each fol-
lows for a diagnosis? You might ask your friends, but they probably
only know a limited pool of candidates. One approach to choos-
ing a physician is to go to a well-known institution (a hospital

38 Chapter 2 EntErprisE architEcturE framEworks and mEthodologiEs

or medical school) and choose from among their staff. In this
approach, you are counting on the institution to have chosen
highly qualified physicians. Does that institution insist on rigid
standards for its physicians to follow? Even if it does, it is not your
primary concern. Your initial concern is only the reputation of the
institution.

This is very similar to the Gartner approach to enterprise
architecture. You invite Gartner consulting because they do or
don’t use TOGAF. You don’t use Gartner because they do or don’t
follow Zachman’s taxonomy. You use Gartner because they are
well known in their field. You assume that they hire well-qualified
specialists and encourage collaboration and best practice.

If you are a Gartner customer and you check the Gartner
library for research notes describing their enterprise architec-
ture practice, you can find many such documents—for exam-
ple, Gartner Enterprise Architecture Process: Evolution 2005 and
Gartner Enterprise Architecture Framework: Evolution 2005 (Greta
James et al., 2005). However, these documents contain little
descriptive information and, in any case, were published in late
2005. Gartner contends that these best practices are timeless, and
they continue to update them as appropriate. To summarize the
Gartner practice: Architecture is a verb, not a noun. What exactly
does that mean? It means that the ongoing process of creating,
maintaining, and leveraging an enterprise architecture gives that
enterprise architecture its vitality. An architecture that is just a
bunch of by-product artifacts that sit gathering dust is useless.

Gartner believes that enterprise architecture is about partner-
ing together three constituents: business owners, information
specialists, and the technology implementers. If you can inte-
grate these three groups and unify them behind a common vision
that drives business value, you have succeeded. If not, you have
failed. Success is measured in pragmatic metrics, such as driving
profitability.

Gartner believes that the enterprise architectures must start
with a target architecture, not with the current state. If you are
cleaning your garage, you don’t exhaustively document every-
thing being thrown out. Gartner focuses on what and where the
end goal is. Gartner recommends that an organization begin by
defining where its strategic direction is and what business drivers
it is responding to. Gartner will want this story in plain business
language. The only goal is making sure that everybody under-
stands and shares a single vision.

Most organizations are facing major changes in their busi-
ness processes. The process of creating an enterprise architecture
vision is the organization’s opportunity to collaborate and ensure

Chapter 2 EntErprisE architEcturE framEworks and mEthodologiEs 39

that everyone understands the nature, scope, and impact of the
upcoming changes in their business process.

When the organization has this single vision of the future, the
impact of the vision will force changes in the business, techni-
cal, information, and application architectures of the enterprise.
The shared vision of the future will require modifications to all of
these architectures. To Gartner, enterprise architecture is about
strategy, not about engineering. It is focused on the target. The
two things that are most important to Gartner are where an orga-
nization is going and how it will get there.

Let’s say the company management likes what it hears. How
will the Gartner engagement proceed? With FEA, TOGAF, or
Zachman, management needs to start by finding a qualified con-
sultant who understands the methodology. With Gartner, this step
is much the same. Gartner sends an EA consultant. The first thing
the consultant wants to do is make sure the architecture is driven
from the highest levels of the corporation. Exactly how the consul-
tant will proceed is difficult to predict because Gartner does not
have a firm, step-by-step process. However, it is likely that the con-
sultant will start by focusing on management’s strategic vision for
the company. He will want to specify vision in business terms and
reject any discussion of technology. Here are some possible busi-
ness vision statements the consultant might elicit:
l The company will have stores in at least ten states, spread out

over eight geographic regions by the year 2013. It will accom-
plish this mainly through acquisition of regional pharmacies.

l The company will be able to assimilate new regional systems
within 180 days of finalization of purchase.

l The company will reduce its purchasing costs by 10 percent by
centralizing regional purchasing into a central system.

l The company’s central office will be able to view consolidated
sales and inventory reports from all stores that include data
up to and including the previous day.

l The company will be able to reduce its inventory to no more
than a ten-day supply.

l Patients will be able to transfer prescriptions from any of the
company’s pharmacies to any other.

l Patients will be able to request prescription refills though a
Web interface and receive e-mail notification of their avail-
ability for pickup.
None of these visionary statements mentions technology

(except as a delivery mechanism in the last statement). The con-
sultant keeps these early discussions focused on business strategy.

Part of the consultant’s job will be to prioritize the bulleted
items. Let’s say management decides that the highest priority is

40 Chapter 2 EntErprisE architEcturE framEworks and mEthodologiEs

consolidating purchasing, because this will improve profitabil-
ity in the near term. The consultant will soon work to turn man-
agement’s idea about consolidated purchasing into a common
requirements vision (CRV). The CRV is where we will see some of
the changes that will be required to drive management’s vision
for the company. The consultant will work with the business to
develop a target business architecture that supports consolidated
purchasing. As soon as they have defined the future system, they
will review their current architecture to see what can be reused.

The consultant will work with the CIO to develop a target infor-
mation architecture that allows regional inventories tracking and
procurement consolidation. They will also work on the technical
architecture for the IT systems that will support the new business
architecture. After they understand the future, they will look at cur-
rent architectures for opportunities to reuse existing assets.

After the consultant has completed the high-level architecture
for their strategic vision, they will step back from the picture until
the consolidated purchasing system has been implemented. As
soon as the implementation of consolidated purchasing has been
completed, the consultant will step back in to help with the next
iteration. His approach will be to keep the architecture at a high
level and business-focused, and hone in on details only when
and where necessary.

Conclusions
This chapter covered a broad introduction to the field of

enterprise architecture. Two of the four major methodologies
(Gartner and FEA) have undergone major changes in the last two
years alone. As this review has shown, these methodologies are
quite different from each other, both in goals and in approach.
This is good news and bad. It is bad news because it increases the
complexity for many organizations if they are choosing a single
enterprise architecture methodology. The good news, however,
is that these methodologies complement each other. For many
organizations, the best choice is all of these methodologies,
blended together in a way that works well within that organiza-
tion’s constraints. Whatever route is chosen, it is important to
understand enterprise architecture as a path, not a destination. It
is not a project but a program. An enterprise architecture has no
value unless it delivers real business value as quickly as possible.
One of the most important goals of any enterprise architecture is
to bring the business and technology sides together so both are
working effectively toward the same goals.

Chapter 2 EntErprisE architEcturE framEworks and mEthodologiEs 41

In many organizations, there is a culture of distrust between
the technology and business folks. No enterprise architecture
methodology can bridge this divide unless there is a genuine
commitment to change. That commitment must come from the
highest level of the organization. Methodologies cannot solve
people issues, but they can provide a framework in which those
problems can be solved.

As soon as you have that commitment to change, an enter-
prise architecture methodology can be a valuable tool for guiding
that change. This change can manifest itself in many ways. Some
of the predicted benefits from a successfully implemented archi-
tectural enterprise include the following:
l Improvements in using IT to drive business adaptability
l Closer partnership between business and IT groups
l Improved focus on organizational goals
l Improved morale, as more individuals see a direct correlation

between their work and the organization’s success
l Reduced numbers of failed IT systems
l Reduced complexity of existing IT systems
l Improved agility of new IT systems
l Closer alignment between IT deliverables and business

requirements
It is obvious that an organization that does well in these

key areas will be more successful than one that doesn’t. This is
true regardless of whether success is measured with tangible
results, such as profitability and return on investment, or intan-
gible results, such as customer satisfaction and lower employee
turnover.

Enterprise Data Architectures
These artifacts of the framework process represent the inher-

ent relatedness of data components in current usage struc-
tures. Enterprise data architectures are the transcription of the

Principle
The enterprise architecture delineates the data according to the inherent structure within the organization rather

than by organizational function or use. In this manner it makes the data dependent on business objects but independent
of business processes.

42 Chapter 2 EntErprisE architEcturE framEworks and mEthodologiEs

Principle
Processes that use data change far more frequently than the data structures themselves.

information owner’s product requirements from the owner’s per-
spective. Current data architectures are dependent on the prem-
ise that data resides at the center of modern data processing.
Data must be approached from the highest level of perspective,
since it is perceived as the real-world objects it represents and
exists as a function of normal business operation.

Architectures, particularly the enterprise data architectures,
insulate a business from unnecessary data change and provide an
immediate means of assessing impending change. When architec-
tures are fully specified, they provide explicitness and specification
of the composition of the product without the creative effort and
investment of building a prototype or the need for detailed analy-
sis. We can assess the impact of change with minimal expense.

Therefore, the enterprise data architecture is essentially a
strategic design model that becomes the environmental founda-
tion for the multiple development activities that ensue on owner
approval of the enterprise development plan. The fundamental
benefits of an enterprise data architecture are as follows:
l Enterprise data architectures provide global understanding of

the business data needs while still representing the corporate
policies.

l Enterprise data architectures allow strategic development of
flexible modular designs by encapsulating the data with the
business while insulating it from the technology process.

l Enterprise data architectures provide a framework for com-
munication between the customer and developer/service
agent so the customer understands the scope, options, and
price of the product/service.

l Without an enterprise data architecture, decentralization, dis-
tribution of information, or reallocation of control would be
impossible and would in fact create chaos.

Enterprise Models
The typical organization has a vastly diversified collection of

organizations, policies, processes, systems, values, and beliefs.

Chapter 2 EntErprisE architEcturE framEworks and mEthodologiEs 43

Within that organization, information technology in most com-
panies has a large collection of diversified applications, networks,
organizations, processes, projects, systems, and technologies. An
enterprise model is constructed most properly by mapping the
components of an organization, its IT organization, and its sys-
tem architecture all together.

By applying the Alexander model of design to the pattern-based
architecture, we can see how it affects these enterprise states. The
“quality” is created when the characteristics in the enterprise design
make that design “live.” That is, the enterprise design will con-
tain the captured characteristics that ensure the flexion, extension,
adaptation, and reuse and have other qualities of living things.

“The Gate” is whatever common pattern language embodies
the universal network of patterns and pattern relationships dedi-
cated to the enterprise domain being modeled. When designing a
specific application within this enterprise domain, a pattern lan-
guage for a specific design should be chosen by the designer from
the common pattern language in use at the organization.

As stated before, pattern languages are applied using “The
Way”—in this case, whatever integration method has been advo-
cated for the enterprise. That is, we apply one pattern at a time,
successively evolving an initial architecture into an unfolded “live
design,” or in Alexander’s terms, a design with “The Quality.” This,
simply put, is the iterative reconciliation of a completed architec-
tural area into the whole of the enterprise data architecture.

The most important task at hand is to capture and define
those patterns within the enterprise that will allow a common
pattern language to be defined for that enterprise. It is a time-
consuming yet rewarding task in that it optimizes the benefits
of a structured approach such as Zachman’s framework merged
with the abstractive qualities of an object framework mechanism.

Because of its simplicity and sympathetic nature to both the
traditional/Zachman and the OO movement, the pattern archi-
tecture movement as a whole is growing in the industry, and the
most common CPLs will be defined for all common industries at
some point in the form of templates.

The Enterprise Data Model
The enterprise data model is of particular importance in

understanding the data architecture because it is at this level that
all diversified applications, networks, organizations, processes,
projects, systems, and technologies come together. It is, and
always will be, about the data. For the purposes of this book, the

44 Chapter 2 EntErprisE architEcturE framEworks and mEthodologiEs

enterprise data architecture is the focal point, while the enter-
prise activity model and all the other associated encapsulations
are excluded. It is not that they are any less critical, but because
they are best handled in a book dedicated to the subject.

The Importance of the Enterprise Data Model
In the typical organization, the components of the enterprise

data model assets do not necessarily form a coherent whole. In
fact, most of the corporate environments don’t keep current
enterprise data models, and the ones that do do not enforce a
systematic control over its evolution or maintenance. In many
companies, multiple, nonintegrated models are created by the
accountants, business analysts, and software developers. They
are not strategic planners. The reason it is so important to know
how the enterprise operates today is because it most likely will be
changed rapidly and incrementally. Keeping an ongoing model
for the enterprise’s data is essential to managing environmental
risk and change. In fact, this model can and should be used as a
configuration management tool for the entire enterprise.

The enterprise no longer can be managed solely by using the
leadership of its executives, nor can it just manage by financial
numbers, the revenue produced by the marketers, or the produc-
tion of its operations. It must look at all of its processes and data
and define a way to manage them collectively. However, it is also
true that one cannot dwell into every detail of every process. A
unique balance for the enterprise must be found in order for the
model to be simultaneously useful and manageable.

A pattern has been defined as “an idea that has been useful
in one practical context and will probably be useful in others.”
Patterns offer the promise of helping the architect to identify com-
binations of architecture and solutions that have been proven to
deliver effective solutions in the past and may provide the basis for
effective future solutions.

Pattern techniques are generally acknowledged to have been
established as a valuable architectural design technique by
Christopher Alexander (1979), who described this approach in his
book The Timeless Way of Building. This book provides an intro-
duction to the ideas behind the use of patterns, and Alexander
followed it with two further books—A Pattern Language and The
Oregon Experiment—in which he expanded on his description of
the features and benefits of a patterns approach to architecture.

Software and buildings architects have many similar issues to
address, and so it was natural for software architects to take an

Chapter 2 EntErprisE architEcturE framEworks and mEthodologiEs 45

interest in patterns as an architectural tool. Many papers and
books have been published on them since Alexander’s book,
perhaps the most renowned being Design Patterns: Elements of
Reusable Object-Oriented Software (Gamma et al., 1995). This
book describes simple and elegant solutions to specific problems
in object-oriented software design.

Object Concepts: Types and Structures
Within Databases

Every object within the database has a type, and each type has
an internal and an external definition. The external definition,
also called the specification, consists of the operations, properties
or attributes, and exceptions that users of the object can access.
The internal definition, also called the implementation, consists
of all the details of the operation and any other requirements that
are not visible to the user of the object.
l A class is a specification that defines the abstract behavior and

abstract state of an object type.
l Literal specifications only define the abstract state of the object.
l An operation is the abstracted behavior of an object.
l A property is the abstracted state of an object.
l A representation is the implementation of that property.

Inheritance
This characteristic has been referred to or called many names.

It is called most commonly the super type–subtype relation-
ship or generalization specification relationship. The concept
is to express the relationship between types as a specialization
of the type. Each subtype inherits the operations and properties
of its super type and adds more operations and properties to its
own definition. For example, coffee, beer, and soda are all bever-
ages and inherit the general operations and properties of bever-
ages, yet they have their own unique operations and properties.
Persistency, or the ability to persist or remain intact after an oper-
ation is completed, is often defined as being inherited from a
higher level of persistency class.

Object Life Cycles
Each object has a unique identifier or object ID (OID). As

it goes through its life cycle from creation, to locking, through

46 Chapter 2 EntErprisE architEcturE framEworks and mEthodologiEs

comparison with other objects, to copying to create new objects
with the same property values, and finally to deletion, it retains
the OID. An object may be transient (that is, managed by the pro-
gram language run-time system) or persistent (that is, sustained
and managed in storage by the ODBMS). Rules state that the
object lifetime is independent of its type.

Relationships and Collections
Relationships map objects to other objects. Relationships

can be classified as one to one, one to many, and many to many.
Actions on relationships occur through standard relationship
operations. This translates into operations that form or drop rela-
tions, or to add or remove a single object from the relationship.
The “to” side of the relationship corresponds to one of the follow-
ing standard collection classes:

Set – an unordered collection of objects or literals with no
duplicates allowed
Bag – an unordered collection of objects or literals that may
contain duplicates
List – an ordered collection of objects or literals
Array – a sized, ordered collection of objects that is accessible
by position
Dictionary – an unordered sequence of associated value pairs
with no duplicates.
This should provide enough background on the object approach.

Let us move forward or, more specifically, upward and apply these
principles to architectural frameworks.

Since the principles concerning objects are easily generalized,
it is easy to see how they can be used at a higher level of abstrac-
tion. The use of these principles allows the concepts of frame-
works to exist for objects and groups of objects that not only
apply to the data but to the processes as well.

Object Frameworks
While the development and initial baseline effort to estab-

lish an object framework can be expensive in the sense of time
involvement before the applications can be developed, it can
also be purchased from many reliable vendors. The vendors have
developed the generalized routines that are common to all object
approach projects and captured them in object framework tem-
plates. The frameworks are easily implemented and easily exten-
sible. This allows a company that is new to the object approach

Chapter 2 EntErprisE architEcturE framEworks and mEthodologiEs 47

to enter into the object world in a facilitated manner and save in
investment in setup and definitional efforts.

By having the generic superstructure of the object framework,
it allows OO designers and programmers to leverage OO by hav-
ing frameworks that span the spectrum of application activi-
ties and functions. Frameworks deliver built-in functionality at
all levels and provide ready value when an application is being
started. It is far more efficient than when this necessary func-
tionality is being built piece by piece. It also ensures software
reuse by encouraging framework usage, which in turn increases
productivity and integration. Finally, it provides a development
environment structured for object-oriented activity that ensures
rapid application development and specification.

Object Framework Programming
The way object frameworks, in general, achieve these benefits

over other development approaches is based on two fundamen-
tal principles. Frameworks are not simply collections of classes.
Object frameworks provide infrastructure and interconnection in
the design. It is these interconnections within a framework that
can provide the architectural model and design for programmers
and free them to apply their knowledge and skills to the busi-
ness problem area. By providing process and data infrastructure,
a framework significantly decreases the amount of code that the
developer has to program, test, and debug. The developer writes
only the code that extends or specifies a defined framework’s
behavior to suit the program’s requirements.

But there are learning curve anomalies that need to be con-
sidered as well. The object framework method requires adjust-
ment by even the most flexible developer because it automates or
makes available to the programmer a significant amount of pre-
defined functionality. It has this effect because the object frame-
work drives the process, not the other way around. Using an
object framework programming requires a shift in the program-
mer’s activity mindset and logic.

In traditional procedural systems, the programmer’s own pro-
gram provides all of the infrastructure and execution sequence and
as such makes calls to libraries as necessary. However, in object
framework programming, the role of the framework is to provide
the flow of control, while the programmer’s code waits for the call
from the framework. This is a significant benefit, since programmers
do not have to be concerned with the infrastructure details but can
focus their attention on their business problem area.

48 Chapter 2 EntErprisE architEcturE framEworks and mEthodologiEs

There is, however, a learning or unlearning curve of short
duration associated with frameworks. This change in the respon-
sibility of control can be a significant change for programmers
who have experience only in procedural programming.

Pattern-Based Frameworks
Much focus in the industry today, from tools to products to the

latest books, depicts and defines business modeling and reengi-
neering with objects—for example, Andersen Consulting’s Eagle
Model, SES Software’s Business Architect, Platinum’s Paradigm
Plus, and Rational ROSE, to name a few. Modeling methods based
on objects have an advantage over traditional process model-
ing techniques because they facilitate the dialog between user
and technical people; allow processes to be considered objects;
and provide a mechanism to find “business objects.” These
techniques are being bundled and marketed as pattern-based
frameworks.

Modeling and designing methods that focus on the business
pattern analysis are very successful because these patterns are
easy to implement as business architecture constructs. Pattern-
based frameworks also provide a level of abstraction that is more
appealing to business people—in other words, they don’t have
to understand object models to use patterns. An example from a
TOGAF pattern framework website (http://www.opengroup.org/
architecture/togaf8-doc/arch/chap28.html) follows.

Architecture Patterns in Use
Two examples of architecture patterns in use are outlined in

the following subsections, one from the domain of an IT customer
enterprise’s own architecture framework and the other from a
major system vendor who has done a lot of work in recent years in
the field of architecture patterns.
l The U.S. Treasury Architecture Development Guidance (TADG)

document provides a number of explicit architecture patterns,
in addition to explaining a rationale, structure, and taxonomy
for architectural patterns as they relate to the U.S. Treasury.

l The IBM Patterns for e-Business website gives a series of
architecture patterns that go from the business problem to
specific solutions, first at a generic level and then in terms of
specific IBM product solutions. A supporting resource is IBM’s
set of Red Books.

Chapter 2 EntErprisE architEcturE framEworks and mEthodologiEs 49

l The following material is intended to give the reader pointers
to some of the places where architecture patterns are already
being used and made available in order to help readers make
up their own minds as to the usefulness of this technique for
their own environments.

U.S. Treasury Architecture Development
Guidance

The U.S. Treasury Architecture Development Guidance doc-
ument, formerly known as the Treasury Information System
Architecture Framework, provides a number of explicit architec-
ture patterns. Section 7 of the TADG document describes a ratio-
nale, structure, and taxonomy for architecture patterns, while the
patterns themselves are formally documented in Appendix D.
The architecture patterns presented embrace a larger set of sys-
tems than just object-oriented systems. Some architecture pat-
terns are focused on legacy systems, some on concurrent and
distributed systems, and some on real-time systems.

TADG Pattern Content
The content of an architecture pattern as defined in the TADG

document contains the following elements:
Name
Each architecture pattern has a unique, short descriptive name.
The collection of architecture pattern names can be used as a
vocabulary for describing, verifying, and validating information
systems architectures.
Problem
Each architecture pattern contains a description of the prob-
lem to be solved. The problem statement may describe a class
of problems or a specific problem.
Rationale
The rationale describes and explains a typical specific prob-
lem that is representative of the broad class of problems to
be solved by the architecture pattern. For a specific problem,
it can provide additional details of the nature of the problem
and the requirements for its resolution.
Assumptions
The assumptions are conditions that must be satisfied in order
for the architecture pattern to be usable in solving the problem.
They include constraints on the solution and optional require-
ments that may make the solution easier to use.

50 Chapter 2 EntErprisE architEcturE framEworks and mEthodologiEs

Structure
The architecture pattern is described in diagrams and words
in as much detail as is required to convey to the reader the
components of the pattern and their responsibilities.
Interactions
The important relationships and interactions among the com-
ponents of the pattern are described and constraints on these
relationships and interactions are identified.
Consequences
The advantages and disadvantages of using this pattern are
described, particularly in terms of other patterns (either
required or excluded), as well as resource limitations that may
arise from using it.
Implementation
Additional implementation advice that can assist designers
in customizing this architectural design pattern for the best
results is provided.

TADG Architecture Patterns
The TADG document contains the following patterns.

Architectural Design

Pattern Name Synopsis

Client-Proxy Server Acts as a concentrator for many low-speed links to access a server.

Customer Support Supports complex customer contact across multiple organizations.
Reactor Decouples an event from its processing.
Replicated Servers Replicates servers to reduce burden on central server.
Layered Architecture A decomposition of services such that most interactions occur

only between neighboring layers.
Pipe and Filter
Architecture

Transforms information in a series of incremental steps or
processes.

Subsystem Interface Manages the dependencies between cohesive groups of
functions (subsystems).

IBM Patterns for e-Business
The IBM Patterns for e-Business website (www.ibm.com/

framework/patterns) provides a group of reusable assets aimed
at speeding up the process of developing e-Business applications.

http://www.ibm.com/framework/patterns
http://www.ibm.com/framework/patterns

Chapter 2 EntErprisE architEcturE framEworks and mEthodologiEs 51

A supporting IBM website is Patterns for e-Business Resources
(www.ibm.com/developerworks/patterns/library). The rationale for
IBM’s provision of these patterns is as follows:
l Provide a simple and consistent way to translate business pri-

orities and requirements into technical solutions
l Assist and speed up the solution development and integration

process by facilitating the assembly of a solution and mini-
mizing custom one-of-a-kind implementations

l Capture the knowledge and best practices of experts, and
make it available for use by less experienced personnel

l Facilitate the reuse of intellectual capital such as reference
architectures, frameworks, and other architecture assets

l IBM’s patterns are focused specifically on solutions for
e-business—that is, those that allow an organization to lever-
age Web technologies in order to reengineer business pro-
cesses, enhance communications, and lower organizational
boundaries with the following :
l Customers and shareholders (across the Internet)
l Employees and stakeholders (across a corporate Intranet)
l Vendors, suppliers, and partners (across an extranet)

l They are intended to address the following challenges encoun-
tered in this type of environment:
l High degree of integration with legacy systems within the

enterprise and with systems outside the enterprise.
l The solutions need to reach users faster; this does not

mean sacrificing quality, but it does mean coming up with
better and faster ways to develop these solutions.

l Service-level agreements (SLAs) are critical.
l Need to adapt to rapidly changing technologies and dra-

matically reduced product cycles.
l Address an acute shortage of the key skills needed to

develop quality solutions.
IBM defines five types of patterns:

l Business patterns, which identify the primary business actors
and describe the interactions between them in terms of differ-
ent archetypal business interactions such as:
l Service (a.k.a. user-to-business)—users accessing transac-

tions on a 24/7 basis
l Collaboration (a.k.a. user-to-user)—users working with

one another to share data and information
l Information aggregation (a.k.a. user-to-data)—data from

multiple sources aggregated and presented across multiple
channels

l Extended enterprise (a.k.a. business-to-business)—integrating
data and processes across enterprise boundaries

http://www.ibm.com/developerworks/patterns/library

52 Chapter 2 EntErprisE architEcturE framEworks and mEthodologiEs

l Integration patterns, which provide the “glue” to combine busi-
ness patterns to form solutions. They characterize the business
problem, business processes/rules, and existing environment
to determine whether front-end or back-end integration is
required.
l Front-end integration (a.k.a. access integration)—focused

on providing seamless and consistent access to business
functions. Typical functions provided include single sign-
on, personalization, transcoding, and so on.

l Back-end integration (a.k.a. application integration)—
focused on connecting, interfacing, or integrating data-
bases and systems. Typical integration can be based on
function, type of integration, mode of integration, and by
topology.

l Composite patterns, which are previously identified combina-
tions and selections of business and integration patterns, for
previously identified situations such as electronic commerce
solutions, (public) enterprise portals, enterprise intranet por-
tal, collaboration ASP, and so on.

l Application patterns. Each business and integration pattern
can be implemented using one or more application patterns.
An application pattern characterizes the coarse-grained struc-
ture of the application: the main application components,
the allocation of processing functions and the interactions
between them, the degree of integration between them, and
the placement of the data relative to the applications.

l Run-time patterns. Application patterns can be implemented
by run-time patterns, which demonstrate nonfunctional, ser-
vice-level characteristics, such as performance, capacity, scal-
ability, and availability. They identify key resource constraints
and best practices.
The IBM website also provides specific (IBM) product map-

pings for the run-time patterns, indicating specific technology
choices for implementation.

It is the utilization of these business pattern frameworks, which
are abstractions of the object frameworks just described, that allow
the enterprise to be modeled in a manner that captures the current
“enterprise entity” in its current state. It also allows that captured
structure to be flexible and responsive to business change.

The integration of all of these into a single comprehensive
enterprise object model will provide the basis for pattern-based
enterprise architecture. While many individuals, such as Jacobson
(1995), have published on the use of objects in business engineer-
ing and reengineering, only one has proposed the use of patterns
in development of an enterprise model. Michael Beedle (1998) has

Chapter 2 EntErprisE architEcturE framEworks and mEthodologiEs 53

proposed its use to create the enterprise model, verify this model
using the Zachman framework, and subsequently use the model
to reengineer the workplace using a new technique called business
process reengineering.

Enterprise Data Model Implementation
Methods

Although this will be covered in more detail in the specialty
database section concerning data warehouses, we can briefly dis-
cuss these here. There are two primary methods for implement-
ing the enterprise data model.

A bottom-up approach sets infrastructure standards and
introduces governance processes to ensure adherence to those
standards, while a top-down approach formalizes analysis of the
current state with respect to business processes, application,
data, and technology. Each approach entails senior management
commitment and promises an improved relationship with the
business as technology planning is brought in sync with business
planning as concerns the data involved. Following are some of
the benefits and drawbacks of each.

Benefits of top-down approach
l Establishes a clear view of the existing data environment in

the beginning.
l Emphasizes business issues with data at the outset.
l Establishes broad scope and vision for data at the beginning.

drawbacks of the top-down approach
l Top-down methods can become overly abstract.
l The data collection and analysis delay the introduction of

governance.
l The formal methodologies require training to get started.

Benefits of the Bottom-up approach
l The method can have significant impact immediately.
l Early successes build credibility rapidly.
l Problems are tackled in priority sequence.
l Scope and complexity build gradually.
l It does not need a large central EA team at the outset.

54 Chapter 2 EntErprisE architEcturE framEworks and mEthodologiEs

drawbacks of the Bottom-up approach
l The infrastructure origination of the effort hampers efforts to

expand scope.
l A standards-based approach emplaces governance as a police

action.
l The technology focus appears insensitive to business issues.
l Some areas in need of much improvement must wait for

attention.

preliminary conclusion
In conclusion, we can look at the two methods and realize

that, sometimes, neither works. In cases such as these, a hybrid
or side-in approach may be taken. It selects the best characteris-
tics of each implementation method and minimizes the negative
aspects of each.

hybrid approach
A hybrid or side-in approach to enterprise data architecture

implementation involves the purchasing of an industry standard
model and implementing it and adjusting it to the company’s needs.
Based on the implementation, the data governance process and
any enterprise efforts such as an enterprise data warehouse can
be sourced from this. Subsequently, as projects are identified and
implemented, they are brought into line with data governance poli-
cies and integrated into the emerging enterprise data architecture.

References
Alexander, C. (1979). The timeless way of building. New York: Oxford University

Press.
Alexander, C. (October 24, 1964) Notes on the synthesis of form. Cambridge, MA:

Harvard University Press.
A practical guide to Federal Enterprise Architecture by the CIO Council, Version

1.0. (2001, February).
Beedle, M. A. Pattern-based reengineering. <http://www.fti_consulting/users/

beedlem>.
Bittler, S., Kreizman, G. (2005, October 21) Gartner enterprise architecture

process: Evolution 2005.
FEA practice guidance. (2006a, December). Federal Enterprise Architecture

Program Management Office, Office of Management of Budget.
FEA consolidated reference model document, Version 2.1. (2006b, December).

Federal Enterprise Architecture Program Management Office, Office of
Management of Budget.

http://www.fti_consulting/users/beedlem
http://www.fti_consulting/users/beedlem

Chapter 2 EntErprisE architEcturE framEworks and mEthodologiEs 55

FEA consolidated reference model document, Version 2.1. (2006c, December).
Federal Enterprise Architecture Program Management Office, Office of
Management of Budget.

FEA practice guidance. (2006d, December). Federal Enterprise Architecture
Program Management Office, Office of Management of Budget.

Federal Enterprise Architecture Program EA Assessment Framework 2.0. (2005,
December).

Gamma, E., et al. (1995). Design patterns-elements of reusable object oriented
software. Reading, MA: Addison-Wesley.

Jacobson, I., et al. (1995). The object advantage. Reading, MA: Addison-Wesley.
James, G. A., Handler, R. A., Lapkin, A., & Gall, N. (2005). Gartner enterprise

architecture framework: Evolution 2005. Gartner ID: G00130855.
James, G., Handler, R. A., Lapkin, A., Gall, N. (2005, October 25) Gartner enterprise

architecture framework: Evolution 2005.
The data reference model, Version 2.0. (2005, November). Federal Enterprise

Architecture Program Management Office, Office of Management of Budget.
Sowa, J. F., & Zachman, J. A. (1992). Extending and formalizing the framework for

information systems architecture. IBM Systems Journal, 31(3), 590–616.
Zachman, J. A. (1987). A framework for information systems architecture. IBM

Systems Journal, 26(3), 276–292.

Other Suggested Reading
Date, C. J., & Darwen, H. (1998) The foundation of object relational databases.

Reading, MA: Addison-Wesley.
Larman, C. (2002). Applying UML and patterns. Upper Saddle River, NJ:

Prentice-Hall.

57
Data Architecture.
© Elsevier Inc. All rights reserved.2011

ENTERPRISE-LEVEL DATA
ARCHITECTURE PRACTICES

Enterprise-Level Architectures
Information is power in the modern world, and organiza-

tions with the most accurate and readily accessible data make
the fastest decisions with the least negative impact. Making the
best business decisions will positively affect the bottom line. This
is something all businesses strive for. It translates into competi-
tive advantage for the companies that are willing to invest in it.
Of course, there is an investment, and often there is a slow ini-
tial start-up time, but it tends to accelerate once the initial setup
activities have been accomplished.

In the next chapter you will learn more about the development
of the organizational structures, objects, methods, and resources
for implementing an enterprise-level information architecture,
including the subarchitecture’s enterprise-level system architec-
tures, enterprise-level data architectures, and enterprise-level
technology architectures.

3

Practice
l System architectures ensure that the current and future processing capabilities of the enterprise are not impaired

during the development process.
l Technology architectures ensure that the enterprise is developing the right applications on the right platforms to

maintain the competitive edge.
l Data architectures are the heart of business functionality. Given the proper data architecture, all possible functions

can be completed within the enterprise easily and expeditiously.

http://dx.doi.org/

58 Chapter 3 EntErprisE-LEvEL Data architEcturE practicEs

System Architectures
An enterprise-level system architecture is an inventory mech-

anism that provides an automatic checklist of applications by
function. This, taken in conjunction with an evaluation of each
application within a scorecard range, allows strategic sequencing
to take place in the mapping of new development applications
(replacements) and remedied ones (reengineered). This ensures
that development will take place when it is best suited to do so.
Indirectly, it provides a matrix of application code to function, and
in doing so provides some input into the reusability of the current
code. The business systems architecture provides the mapping of
current application systems to current data stores. All of these are
of critical importance in maintaining control over one of the most
expensive resources that the corporation invests in.

Enterprise Data Architectures
Enterprise-level data architectures ensure that the disintegra-

tion of integrated data stores is minimized. This ensures that cur-
rent activity is sustainable while new development can take place.
Also, using the same template also ensures that a foundation exists
for the implementation of new techniques and technologies. They
place tools and methods in relation to one another by virtue of an
engineered structure. They also provide a way of quantifying risks
and costing for or against implementing a new component of the
architecture. In order to achieve the lofty objective of a corporate or
an enterprise data architecture, it requires that organizational man-
agement address data as the critical resource and asset that it is.

Enterprise Technology Architectures
Enterprise-level technology architectures ensure that the enter-

prise is developing the right applications on the right platforms to
maintain the competitive edge that they are striving for. Precious
time in opportunity assessment is not wasted keeping a structure
in place that provides a defaulting choice mechanism for each
application. Also, the technology architecture provides a road map
within each technology platform to ensure that the right tools
and development options are utilized. This prevents additional
time being spent extricating the application effort from previously
experienced pitfalls.

But architectures aren’t enough to ensure that the process and
templates are used properly. Without the infrastructure mechanisms

Chapter 3 EntErprisE-LEvEL Data architEcturE practicEs 59

in place, the architectures, processes, standards, procedures, best
practices, and guidelines fall by the wayside. We will cover in detail
in the next chapter what groups are necessary and what roles they
perform. With these data infrastructure mechanisms in place, the
architectures have a chance of surviving the onslaught of the chaos
brought about by changing priorities, strategic advantage, and just
plain emergencies. We will cover the system and technology archi-
tectures with more detail in subsequent chapters, where they are
more appropriately addressed.

Enterprise Architecture
Terminology—Business Terms

We should take a moment to discuss some terminology and
title structures to ensure that we understand those things that are
involved in the infrastructure mechanisms. Detailed in the next
few paragraphs are some of the terms and objects that we will be
talking about.

First is a Business Entity Cluster (BEC). This is analogous to an
Alexandrine “center” (as mentioned in the last chapter); a BEC is
a consolidation or coalescence of data foci that deal with a “com-
mon” area of business subject matter within the corporation. Often
business entity clusters appear to align themselves parallel to the
abstracted division-level data needs of a corporation. While this
is not a requirement, the situation often falls into place that way
because it makes sound business sense. BECs are often expanded
to the level necessary to cover all data foci in the enterprise’s con-
cerned applications that have been integrated or will be integrated.

Within these BECs are groupings or subclusters of entities
that are denoted subject areas. It is of great importance to under-
stand that this subject area orientation is concerned with the
abstracted views of data independent of any lower process or
business needs that are associated with it. They are specific as to
data but independent of process. This is to ensure that while it
will support the current business activity load, it is open and flex-
ible for future down and outward specification. An example of a
subject area would be finance or human resources.

As we descend one more layer we encounter business prob-
lem areas, which we can also refer to as data applications areas.
These represent the collections of the specific data needed to
support the business processes that advance the company’s
strategies and policies.

From the activity perspective, the Business Activity Segment
(BAS) reflects a consolidation or coalescence of business activity

60 Chapter 3 EntErprisE-LEvEL Data architEcturE practicEs

foci within the corporation. Just as in the BECs at this level of
abstraction, these are sympathetic in nature to the processes nec-
essary for the organization process needs at the divisional level.

Within these BASs are groupings of subactivities known as
functions. Another parallel can be drawn to the data side by real-
izing that functions are the process equivalent of subject areas
in that they represent the abstracted process needs of the cor-
poration at the departmental level. Functions are defined inde-
pendent and without concern for the lower-level data needs. A
function can be defined as an activity that has no start of com-
pletion other than with the life cycle of the corporation—for
example, accounting or shipping. Again, these tend to resolve
themselves to a departmental level of activity.

As we descend one more layer on the process side, as we did with
the data, we come to functional process areas (FPAs), which can also
be called process applications or simply applications. With this par-
allel structure in mind between process and data and the organiza-
tional levels associated with it, we can start dealing with composite
objects and organizations specifically that address them.

The Enterprise Model
A compendium of the highest level of data and process mod-

els is an enterprise architecture model. This is a model that cap-
tures high-level business entities (BECs) and high-level business
processes (BASs) that reflect the major reasons for the enter-
prise’s (corporation’s) existence. It is highly abstracted in nature
and content, and it looks at things from the 50,000-foot level.
There is not a great deal of detail, but the main subject areas are
defined within their BECs and high-level functions are defined
within their BASs. Further, external, subsidiary models deal with
the specification of data at the application level.

In previous paragraphs we spoke of data architectures and
system architectures as being part of the enterprise architecture.
Other names we will use as synonyms for the manifest product
of these architectures will be corporate data model and corporate
activity model.

The Enterprise Data Architecture from a
Development Perspective

The major premise here is that the enterprise data architec-
ture (or an active copy of it) will be the source and repository of

Chapter 3 EntErprisE-LEvEL Data architEcturE practicEs 61

all development models. This ensures consistent development,
minimization of disintegration, and enterprise data architecture
concurrency. In the following paragraphs we will talk about the
roles and responsibilities of various levels of management. We
will do this in parallel with the different levels of data abstraction.

To do this, we will look at data and organization from a top-
to-bottom approach. If we look at the major phases of a model-
driven development process, we will see that each of these
stages is definable, is discrete, and produces work products that
are usable in the next phase of the development process. These
stages are an analogous implementation of the Zachman frame-
work stages. The first of these stages is planning.

planning
Planning is the major function that provides a road map into

the future that includes all strategic efforts and the ability to
respond to competition-triggered or spontaneous events. By
defining that road map into the future, resources can be planned
for, expenses can be projected, purchases can be made, and
deliveries can be completed on or near the time they are neces-
sary to be completed. Models developed here will feed the analy-
sis and design stage.

analysis and Design
Analysis is a major function by which business requirements

are investigated and documented in such a way as to be reus-
able for other purposes such as reference, validation, assessment,
education, and traceability. By capturing the business require-
ments for each business area, the processing needs of that area
are directly addressable and ensure that the knowledge of the
business application is defined. This analysis is done indepen-
dent of consideration of the organizational structure and the
technology platforms available. This is to ensure maximum flexi-
bility in choice for the target architecture. Models developed here
will feed the transformation or translation stage.

transformation
The transformation process translates the business require-

ments in a logical business model into a model that is “accli-
matized” to the target environment it will be operating in. This
translation includes DBMS specification as well as resource
specification such as physical DASD storage for data and indexes.

62 Chapter 3 EntErprisE-LEvEL Data architEcturE practicEs

Also included in this stage are those changes to the logical and
physical model structure that will ensure good performance.
The overall effort is to create the smallest physical “footprint” on
DASD for the resulting database while still retaining all the origi-
nal characteristics of the business requirements. Models devel-
oped here will feed the implementation stage.

implementation
The implementation process moves the translated model into

a physical environment. This includes the utilities that are run
against the database, as well as mechanisms that are created to
recover or secure images of the data for security and safety pur-
poses. The implementation also allows active programs to exe-
cute their processes against the data store. This is known as the
application function and is the only reason that the database
exists. The application code or programs allow the business user
to interact with his data in a formalized or ad hoc manner.

Practice
The following are the major factors in the success of the implementation of an enterprise architecture:

l Identification of subject area
l Identification of subject area drivers
l Naming and object standards
l A commitment to data sharing
l A data dictionary tool or lexicon
l Defined and controlled domain constraint data
l Proper organizational controls

Subject Area Drivers
Before we go much further, we must consider some facts

about subject areas. Within each subject area lies a core or base
entity that is the focus of the subject area—the nucleus of the
Alexandrine “center.” It is, as it were, the kernel of the subject
area. It often is represented by an entity whose primary identifier
can be readily correlated to the filing tab hierarchy that was used
when the system was manually controlled. If the system wasn’t a
manual system, then it would be the file organization key, such

Chapter 3 EntErprisE-LEvEL Data architEcturE practicEs 63

as the key set in a VSAM database. These kernel entities and their
identifiers are collectively known as subject area drivers. A few
examples of kernel entities in a financial area are loan, account,
and customer. In a manufacturing area, they would be product,
market, sales, and inventory (both material and product).

This is because when changes are made to these entities, it
most often ends up being propagated throughout the entire sub-
ject area. Knowing what subject area drivers are critical to an
enterprise often allows subject areas to be skeletally defined and
then fleshed out over time in the process of enterprise activity
modeling. There are critical success factors for subject area imple-
mentation when this is done. Aside from the architectural depen-
dencies we have just noted, there are others that are more indirect.

Naming and Object Standards
One of the most critical components of the architecture is a

defined set of naming structures for all objects in the process. The
identification process helps define which activities are associated
with what data items, as well as specification as to what stage the
object is in the design process. Object names should be the result
of a consistent translation of the business reference to the object
assigned in either a manual or automated mechanism that ensures
uniqueness. The lexicon or data dictionary for the individual appli-
cation must reuse the corporate lexicon in order to ensure data
sharing opportunities. (A friend of mine in the industry once said,
“The biggest problem with data dictionaries is that they are often
written by IT people, not businesspeople. They tend to state the
obvious (e.g., restate the name) rather than provide any real insight
into meaning, domain of values, usage or source.”)

Often there is an adjunct to a passive lexicon or data diction-
ary. This is an automated routine for the generation of data-
base object names based on the known or defined standard.
The names often consist of a root, one or more modifiers, and a
class word. The root is the main descriptor of the name and tells
the reader what the object is concerned with. The modifiers are
qualifiers that amend or further define the root. The class word
defines what type or class of object it is. An example would be:

Root account
Modifiers overdraft and limit
Class word code
Therefore, the name would be “account overdraft limit code.”
The routines themselves use algorithms to abbreviate the for-

mal, long names that may be up to 30 to 60 characters long into

64 Chapter 3 EntErprisE-LEvEL Data architEcturE practicEs

something more acceptable to the programmer and DBMS limita-
tions. The abbreviated names are then used in the creation of the
database objects.

The initial start of these algorithms is usually a base pool of
the appropriate industry abbreviations. If a known abbreviation
is found, it is used in the name. If no abbreviation is found, the
abbreviation algorithm is engaged to shorten the name. Because
the algorithm always functions the same way, the names for simi-
lar or related objects have resemblance and consistency.

This algorithm can be used for data names in all stages of
development but is most critical in the transformation/transla-
tion stage. Having standard names for the same objects ensures
that there is consistency among all those involved in the design
process when referring to specific objects. For example, develop-
ers can talk to database administrators and clients in the same
language by using the same object names.

An additional character may be used in the physical names to
indicate the object type when there are several that are derived
from one. For example, a view of a table may have a “v” in the
name at a particular node to indicate a view. An “I” may be used
in the same situation to denote indexes.

Data Sharing
In order to accomplish maximum productivity in an enter-

prise architected environment, it is critical to define those things
that are associated with the sharing of data. Among the most crit-
ical are the characteristics of the data itself and some of the prob-
lems that arise with multiple users of the same data. First, we will
cover different data classes, and then we will discuss the sharing
rules and limits.

Data sharing requirements
 1. Data sharing should be defined as a policy and standard

approach. In effect, all development must be sanctioned by
management as being rooted in the subject areas and that a
standard data-driven approach is defined and published by
management.

 2. Data ownership, data content security, and action sequencing
must be resolved. Specifically, the ownership of data must be
defined. Initially it must be defined at the entity level and sub-
sequently at the attribute level. Ownership definition includes
specification of all create, read, update, and delete (CRUD)
categories. Also, data content security must be defined. This

Chapter 3 EntErprisE-LEvEL Data architEcturE practicEs 65

includes the change rules concerning the data content as well
as the release/distribution of the data. Finally, action sequenc-
ing must be accomplished to ensure that the shared data is
accessed at the appropriate time in the attribute life cycle.
This action sequencing defines in what sequence the data is
updated, changed, or deleted.

 3. A glossary of data sharing terms must be available for reference
by the users of the data. This is most appropriately addressed by
having a complete and comprehensive data dictionary.

 4. Naming standards for entities and attributes must foster
understanding of the data. The names of the attributes and
entities must reflect the real business use of the data. No two
attributes can have the same name. There must be one pri-
mary agreed-upon name for an attribute, and alias names
should be discouraged in the long term.

 5. Validation logic and translation rules must be defined for
domains being shared. Valid values and ranges must be
agreed upon and published for use in accesses of the domain
data. Translation rules must be defined to minimize the pro-
liferation of aliases.

 6. The shared data model must be the simplest nonredundant
image of the data that can be constructed (using canonical
synthesis or CASE tools like Er Studio or ERwin).

 7. Domain constraint data (valid value, valid ranges, transla-
tion, existence, and algorithmically derived data) must be
separated from business data with no keyed relationships to
the applications data.

 8. Generalization hierarchies must be fully expressed (all super
type–subtypes defined) in order to ensure that all data are
available for sharing. This allows future or shared develop-
ment to occur.

 9. The logical data format must exist in a standard form (mini-
mally, third normal form). This is generally documented in
an ERD and associated attribute lists. This is true for struc-
tured as well as object approaches.

10. The stability of the business rules concerning the business
data must be defined. If the business rules are not defined,
the shared databases disintegrate into individual application
databases reflecting singular business views.

11. The business need time frame for data sharing must be prac-
tical. It is inappropriate to have business users that have dif-
ferent data refresh requirements on the same database unless
there is a lowest common denominator that they can share.

When the subject areas are defined, there are logical integration
issues that must be addressed to ensure that current and ongoing

66 Chapter 3 EntErprisE-LEvEL Data architEcturE practicEs

activity can be coordinated. Resolution of these issues also ensures
data sharing capability. As in all situations where data are gathered
for common use, there are some considerations and “rules” that
should be observed to maximize the use of the data:
l All subject entities must be added to an existing subject area.

If a suitable subject area does not exist, it must be created.
l Project models must be reconciled to the subject area logical

model in order to get into the release concept with implemen-
tation methods.

l The subject area logical model must remain as close to third
normal form as possible. Collapsing and other forms of
denormalization should not be done in the SALM but can and
should be done in the appropriate application physical model.

l Relationships can exist between subject areas. It is, after all,
merely a relationship between two entities within entity clus-
ters. Optionality of relationships should be handled according
to prevailing standards on the topic.

Data Dictionary–Metadata Repository
A data dictionary represents a compendium of all data defi-

nitions at the lowest level. That is, it consists of data attribute
names and the definitions and characteristics associated with
them. Normally it is established at the enterprise level but some-
times at the application level on an exception basis. While it is
not necessary to compile this, it can be used as a guideline or
source of new data names.

The enterprise level lets the pool of data attributes be reused
throughout the enterprise, ensuring integrity of output while
fostering understanding of the data. While it is critical to have a
data dictionary of some kind, it doesn’t matter how it is imple-
mented. As long as it contains or references the procedures and
policies that ensure that all development is assisted or imple-
mented by way of a data dictionary, it will ensure success and
data sharing.

Dictionary policies and procedures must be defined and publi-
cized due to the need for the developer, the modeler, and the client
to all agree on how to encode the requirement in the dictionary. It
must be sponsored from IT management as well as client manage-
ment, since it is often seen by the client as unnecessary overhead.
But, as we have seen, once it is defined for the transaction system,
it becomes available for the reporting and EIS systems that will
follow later on. It will also provide a basis for data sourcing for the
data warehouse that will eventually be designed.

Chapter 3 EntErprisE-LEvEL Data architEcturE practicEs 67

Domain Constraints in Corporate and
Non-Corporate Data

Domain constraint data fall into two levels of distinction. The
first we can refer to as the corporate level; it represents that set
of data that the corporation, as a whole, uses. That is to say, it is
reference data for all departments in the corporation. This type
includes company office tables, zip code tables, shipping tables,
department cost codes, as well as other translations, and the like.

The second level of domain constraint data is those that apply
to an individual application and represent domain limits for data
unique to that application. Examples of these are permitted val-
ues for car color in the 1998 model year of General Motors trucks
and postal codes for shipping locations for specific product types.
Therefore, the second category is at a lower level or more specific
level of detail. Whether the domain constraint is first or second
level is immaterial when it comes to validation rules/policies and
translation rules/policies. These two must be defined to ensure
that the domain constraint is used properly and accurately reflects
the true limits required by the business entity using it.

Organizational Control Components
The organizational components that engender full control of

an architected approach to database design include data admin-
istration, database administration, and model repository man-
agement. In the context of having a comprehensive strategic data
plan, having data architecture implies that the infrastructure of
the organization is present and competent to handle the needs
of the organization. Therefore, enterprise data architecture must
include the mechanisms to support the models of the organiza-
tion’s data:
1. The capture and transformation of logical data models
2. The capture and retention of the physical data models and

schemata
3. The process and means by which the physical models and

schemas are implemented
4. The DBMS engines and DBMS extensions that will be used to

support the architecture
5. The products used to manage the database, such as the tools

and techniques that are used to ensure data integrity and
quality on the platforms where they are housed
This is a tall order but critical to the success of the effective

organization. Let us cover each of these areas in turn.

68 Chapter 3 EntErprisE-LEvEL Data architEcturE practicEs

Data Administration
The data administration area consists of the personnel who

are involved in the capturing of the business requirements from
the business problem area. Also, they are responsible for integrat-
ing with and receiving model constructs and high-level defini-
tions from the corporate architects and capturing these within
reusable constructs such as case tools and data dictionary/repos-
itories. They are also responsible for maintaining these model
structures over time and ensuring that they reflect the business.

Data administration’s focus is on managing data from a con-
ceptual, DBMS-independent perspective. It coordinates the strat-
egies for information and metadata management by controlling
the requirements gathering and modeling functions. Data mod-
eling supports individual application development with tools,
methodology(ies), naming standards, and internal modeling
consulting. It also provides the upward integration and bridg-
ing of disparate application and software package models into
the overall data architecture. This overall data architecture is the
enterprise data model and is critical in the organization’s ability
to assess business risk and the impact of business changes.

Database Administration
The database administration area is responsible for the struc-

tures that will be designed from the models that the data admin-
istration area produces. Also, as input they will take information
about where the application will run and how it will be used in
order to structure and organize it appropriately.

As the multitier architectures, data distribution and replication,
data warehousing, stored procedures, triggers, and Internet data
management bring new focuses to bear in the information process-
ing community, the database administration area must respond
to these pressures in a rapid and infrastructurally sound manner.
Many organizations, through growth or unmanaged technology
architecture, find themselves in the unenviable position of manag-
ing and controlling multiple DBMSs with anywhere from two to two
hundred databases of each type. Keeping control of an armload of
live eels is easier than managing this type of environment.

What can an organization do to counterbalance the entropy
that results from these complex environments? What are the
main problem areas? The following are some of them:
l Multiple hardware platforms, such as mainframe, server

(database, network, and Web), and workstation

Chapter 3 EntErprisE-LEvEL Data architEcturE practicEs 69

l Different operating systems that each have their own com-
mand set and interface

l Different DBMS engines that operate from different meta-
model architectures and control management languages

l Multiple physical locations that distribute data across the
street, town, state, or country

l Middleware connectivity that is used to connect all the differ-
ent locations and hardware and operating systems

l Data management tools that can be used to move, massage,
restructure, propagate, replicate, and maintain large struc-
tures housing the different types of data

l Managing the application/DBA support interface, which will
provide the efficient development for the many applications
that will serve the multitude of users
The depth of knowledge required by the DBA organization

in these areas is substantial, depending on the organization’s
investment in each area. Because data is the focus in modern
information processing, it is the core of the applications and in
the applications of the DBMSs. Unfortunately, they are seen as
bottlenecks in the process. This is simply because the complexity
of the environment allows or promotes performance degradation
and the breakdown of processes within it.

How does an organization manage to keep up? In the old
days (a few years ago at the current speed of technological evo-
lution), the DBA was a crotchety technologist who had unques-
tioned technical information and absolute authority over the
data. This is not so anymore. Because of the speed of evolu-
tion, the technical absolutism has given reign to a conceptual
knowledge of the internal structure of the DBMSs and data-
bases. Technical knowledge alone is insufficient to ensure the
success of the DBA function within an organization. Today, for
example, business rules, relational optimization, access meth-
ods, integrity constraints, stored procedures, and user-defined
functions exist within the database. The database isn’t an
owned thing anymore. It is shared by the DBA, the application,
and the user.

The most that can be truly said today is that the DBA area
owns the structure of the data and has a custodial responsibility
for the data integrity and data quality. What tools does the DBA
need in order to function properly? Simply put, they fall into three
categories:
1. Object management tools that enable the DBA to perform

everyday functions on the objects with his or her domain.
Their functionality is limited to object migration, browsing,
and modification.

70 Chapter 3 EntErprisE-LEvEL Data architEcturE practicEs

2. Utilities, which are the tools that allow the DBA to maintain
the databases. These maintenance functions include load-
ing data, unloading data, reorganizing data, backing up data,
recovering data, and validating data structure integrity.

3. Performance monitoring tools, which are tools that help iden-
tify and correct performance problems such as performance
monitors, SQL analyzers, capacity planning and performance
modeling tools, and systems adjustment tools.
These tools are necessary for the ongoing success of DBAs;

make sure you have them on hand.

Setting Up a Database Administration
Group

The most commonly asked question is, “How do I set up and
develop a DBA organization?” Well, the rules are flexible and cus-
tomizable, but the most common areas to consider are the fol-
lowing ones:
l Build a centralized DBA area. In other words, have an area that

supports both production and development. This will keep
maximum depth of support, foster cross training, increase
communication, and provide continuity within the develop-
ment life cycle (no transitions within the development cycle). It
serves to ensure information sharing and creative solutions to
major problems. Most crises are solved by the meetings held in
the cubicle aisles and not in the conference rooms.

l Place the DBA area in optimal position within the IT orga-
nization. The DBAs are the custodians and stewards of the
data asset for the organization and as such approach data-
base design from a long-term and enterprise-wide data strat-
egy perspective. Their client (application development and
maintenance), however, approaches the data from a deadline-
oriented, project-driven, and tactical perspective. This is a
guaranteed collision that needs to be managed.

l The DBA area must have significant autonomy in relation-
ship to the client community. If they do not have it, then
their effectiveness is degraded and their expertise degraded to
being merely rubber stamps to the application development
area’s whims. A truly strategic information resource man-
agement function should encompass both data administra-
tion and database administration and report at the CIO level.
If this is not possible, then it should be a separate peer-level
organization within the support groups.

Chapter 3 EntErprisE-LEvEL Data architEcturE practicEs 71

l Embed continuity of objectives in functional areas. This con-
tinuity must exist among the DBA, the data administration,
and model repository management areas. It is critical that
these three areas have a seamless and rapid method for design
development. If this is not done or is poorly engineered, it
is a self-fulfilling prophecy: the design process becomes an
impediment to the development process. It is an absolute
requirement that these three areas work in tandem or lock-
step, with the work products of the first feeding directly into
the second and so forth. The policies and procedures should
dovetail, and there should be no loose ends to prevent full clo-
sure of the design process. This will also provide a complete
audit trail from the analysis stage through design and finally
to implementation.

l Publish standards for the development process and the
implementation of databases. These standards cover the
naming of database objects, coding of SQL, use of triggers and
stored procedures, commit frequency, and referential integrity,
among others. This type of documentation should be in the
developers’ hands before they create the prototype or proof of
concept databases. An education process may be necessary
with the developers that allow questions and answers to take
place that will allow ambiguity to be resolved. This should also
have specific details as to how purchased software packages are
handled upon selection.

l Perform design reviews and preimplementation walk-
throughs. Design reviews should take place with the specific
people needed for that level of validation. Architecture and
scoping should be done with the user, analysis and design
should be done with the application leader and team, and
implementation should be done with operations and support
organizations.

l Implement service-level agreements. The user customer should
understand the operational climate of their application and
database. Their service level should be defined and published
with system documentation to afford future monitoring. The
specific metrics that will be used to agree on successful perfor-
mance should be defined and published. The following catego-
ries should also be addressed, such as responsiveness to error
call, hours of support coverage, availability, maintenance win-
dows, and recovery time.

l All of these and other specifics will help ensure the suc-
cess of the database administration process within the IT
organization.

72 Chapter 3 EntErprisE-LEvEL Data architEcturE practicEs

Repository Management Areas and Model
Management

The model repository management area is the group of per-
sonnel who are engaged in the maintenance and integration of
all application models to the model inventory as well as to the
corporate model. They are responsible for the maintenance of
that data store that encompasses the data dictionary whether it is
part of the modeling CASE tool or not.

An enterprise’s information architecture must be capable of
containing multiple levels of information (i.e., conceptual/plan-
ning models, logical models, and physical design models). The
capture of information can be top-down, bottom-up, or middle-
out, depending on the tools and methodologies being used.

Many current industry reports support the strategy of using
multiple BPR tools. These reports state, “Using direct bridges
between multiple modeling tools that have been purchased
over time will in effect build a best-of-breed solution for large-
scale enterprise modeling and may be the best decision given
the amount of investment an enterprise has in a given set of
technologies.”

The model management policy must support a release-based
system development methodology. A release is a group of busi-
ness processes that can be delivered with a minimum of time and
effort without compromising the options for the delivery of the
rest of the business processes.

A model management strategy is of little use unless there are
policies and procedures in place that back up the strategy. By this
we mean that models that are generated at the application level
are seeded from an enterprise model and are reconciled back to
it. If there is no enterprise model to source from, it can be built
by aggregation. This is a process by which the enterprise is built
by integration of all of the modeled application views. Also to
be considered is the history of the models, which represents the
application requirements state as of a given date.

Also critical in this subcomponent of the infrastructure is the
need for training of the user of the model management process.
This includes those application personnel as well as repository
personnel who are involved with the retrieval, update, and recon-
ciliation of the models to the enterprise or corporate model.

Another area of significant concern is the area of human
resources that are to be invested in the process from the user or
client community. These subject matter experts (SMEs) are those
individuals who have a complete and thorough understanding

Chapter 3 EntErprisE-LEvEL Data architEcturE practicEs 73

of the business processes and the business data. They are criti-
cal in the requirements-gathering phase to ensure that the true
requirements have been met by the design and also to provide
issue resolution when and if this occurs between the appli-
cation developer, the data administrator, and the database
administrator.

In summary, the enterprise-level architecture and model are
dependent on the existence and coordination of infrastructure
areas that maintain the currency and quality of the enterprise
model, the subject area drivers, the data-sharing standards, the
data object naming standards, the development and implemen-
tation methodology, and the rules that control the domain con-
straint data.

These infrastructure areas are the information architecture
group, the data administration area, the database administration
area, and the model repository and management area. Proper
staffing and training are critical for success in initiating, imple-
menting, and maintaining an enterprise architecture.

References
Although I have not cited any sources because this is excerpted from my

own unpublished writings, the content of this chapter is rooted in the
fundamentals expressed in the following books.

Fleming, C. C., & von Halle, B. (1989). Handbook of relational database design.
Reading, MA: Addison-Wesley.

Tannenbaum, A. (1994). Implementing a Corporate Repository. The Models Meet
Reality: John Wiley & Sons, Inc. New York, NY, USA.

75
Data Architecture.
© Elsevier Inc. All rights reserved.2011

UNDERSTANDING
DEVELOPMENT
METHODOLOGIES

Design Methods
Many software projects suffer from budget overruns, time

synchronization problems, and the delivery of applications that
do not satisfy the specified client requirements. Moreover, the
developed application systems need to be responsive to change
and yet be maintainable to reflect changing requirements. In
order to address these issues in a structured manner, design
methodologies were created. Many design methodologies have
survived the revolutions that have taken place in the data pro-
cessing industry, and they still provide methods of addressing
these issues.

4

Principle
Methodologies provide guidelines for the application development process. They specify analysis and design

techniques as well as the stages in which they occur. They also develop event sequencing. Lastly, they specify
milestones and work products that must be created and the appropriate documentation that should be generated.

Computer-aided software engineering (CASE) tools are use-
ful for supporting the software development process by provid-
ing heuristics encoded into their software that help with design
decisions. They are also helpful with the preparation and main-
tenance of the design documentation, which often includes
graphic as well as textual material.

Increasingly, CASE software tools are available with some
capacity for code and database schema generation. Commentary

http://dx.doi.org/

76 Chapter 4 Understanding development methodologies

on this subject will be covered in another chapter. In order to
examine some of the characteristics of the existing methodolo-
gies, we must review when and where the methodologies arose
and what problems were trying to be solved at the time. Practical
discussion of the problems with some of these implemented
methodologies will be discussed in a later chapter. The review
covered here is to show the stepwise evolution to current signifi-
cantly successful methodologies.

There are many different types of development methodolo-
gies that have been developed over the years since simple file
systems were used in the 1960s and 1970s. They have all centered
around how to address business activity and business data, and
in what order. As you will see in the next chapter, the focus on
data shifted from the separate business functions that use par-
ticular data to the data that are used by many processes. This
shift dictated a data-driven approach in the requirements defini-
tion area in response to the business need. This has further been
driven by the object oriented paradigm that focuses on all pro-
cesses for a particular piece of data.

Why Do We Need Development
Methodologies?

The heart of all development methodologies is the servicing
of business needs. There was, and is, a business need to develop
applications that utilize data responsively to the competitive
needs of the marketplace. In the next chapter, we will cover some
of the methodologies for application development, how they
originated, and what benefit they supplied in the evolution of
methods. We will start with the earliest of the designed methods
and cover in brief the concepts of each. We will start from struc-
tured methods and go through structured programming, then
go on to structured analysis, and finally we will cover structured
design.

We will also cover a particularly successful structured design
(information engineering) that originated decades ago but still is
viable and in use today. It is an overall development control pro-
cess that ensures success and integration (including application
development templates and service-level contracts to ensure on-
time development), as well as metrics to ensure accurate moni-
toring of the development process in its various stages. We will
also briefly cover another competing method—the object design
method—which has been used on smaller applications that
requires significant interface with the user.

Chapter 4 Understanding development methodologies 77

The Beginnings
There was a time when activities were always done by hand,

and each work artifact was custom made. This applied to every-
thing, including sculpting, painting, carving, building, tool mak-
ing, and the like. For examples here, we will deal with an ordinary
building activity: furniture building.

Furniture building has existed since man created places
to reside in. Through the ages it became a profession as some
craftsmen became quite good at it and specialization took place.
The problem was that furniture produced by skilled craftsmen
was very expensive. When the artisan died, there were only his
apprentices who could repair or create another piece of the same
style. The quality of the furniture varied significantly between
craftsmen, and none of the pieces from the different craftsmen
had interchangeable parts. Even the tools that were used to cre-
ate and repair the furniture were custom made and varied from
craftsman to craftsman.

All of this was challenged by the introduction of powered
machines into the activities process. With the advent of the
machine, custom craftsmen processes could be broken down
into component activities and a machine used to create them.
William Morris, the furniture maker, was one who recognized
early that machines could, and would, eventually replace people
in the manufacturing of furniture. He dabbled in using machines
to produce furniture but was dissatisfied with the quality of the
final product. He eventually chose to reject the concept at that
time and return to hand designing and building his exquisite
pieces that we cherish today. It was not until another furniture
maker, Gropius, decided to use machines in furniture making
that the machine was finally harnessed to compete in this way.
The machines did come and they did replace the process, and in
doing so, they lowered the prices of the delivered goods. It made
sense from a price and repairability perspective. The conclusion
we can reach is that market pressures will force the inevitable
and that avoiding a design or process problem will only be a tem-
porary measure. It has to be solved.

Structured Methods
If we advance the calendar forward to modern times and

the age of computers, a similar problem can be seen. The same
issues that had occurred in the furniture-making world (and
other activities) held true in data processing. The structured
methods approach evolved from the need to standardize things

78 Chapter 4 Understanding development methodologies

in order to maximize the process. To bring the craftsman-
versus machine-made conflict into perspective, we can consider
the efforts that went into the mass-production process that Eli
Whitney first instantiated.

Eli Whitney, who resided in Westborough, Massachusetts, was
adept at machinery making. Two of his inventions would have
profound effects on the country: the cotton gin, which revolu-
tionized the way southern cotton was cropped and processed,
and his interchangeable parts, which would revolutionize north-
ern industries and, in time, become a major factor in the North’s
victory in the Civil War.

Before Whitney’s concepts were in place, every useful machine
or mechanism was created by hand. That is, when a new one was
needed, it had to be built from scratch. Each part was developed
separately and then fitted together by the same single artisan. The
same artisan had to do all the work, or it might not fit with the
other components. The process was very slow, there was no sepa-
ration of labor effort, and no power tools were available at the time.

When Eli Whitney was contracted in 1798 to develop rifles
for the new army of the colonies, he analyzed the conventional
procedure and saw where it was failing. Using this knowledge,
he created a procedure we have come to know today as the
American system of manufacturing, which is comprised of the
use of power machinery, the use of interchangeable parts, and
the division of labor. This would set the stage for the nation’s sub-
sequent Industrial Revolution.

Whitney created a process where all the components could be
manufactured separately according to a planned standard of size
and shape. When the time came to demonstrate that he could
create the rifles, he and a small group of skilled workmen assem-
bled a rifle in minutes rather than the many weeks that had been
required for each rifle before.

Principle
Standards must be defined because assembly implies that all pieces of a particular type are uniform. All of any

particular part must be interchangeable between constructs. A defined procedure or method has been defined for
assemblage. Each assembled product is evaluated or measured against a representative standard.

Other structured processes followed suit, such as assemblage
from preconstucted modules. These concepts have been in use
since that time. They were structured procedures to ensure an

Chapter 4 Understanding development methodologies 79

assembly process could take place rather than the handcrafting
or being built to order process.

As seen from these time periods, these are not new concepts.
But when the data processing industry began its evolution and
change, the concepts found new ways to be applied. Let’s exam-
ine the sequence of the evolution in data processing.

Structured Programming
Structured programming was the first implementation of

structured techniques used in data processing. The advent of
structured programming began in the early 1970s and was due
primarily to the efforts of Dijkstra (Dahl et al., 1972). They put
forth the ideas of defining levels of abstraction and the definition
of stepwise refinement.

Briefly this can be described with the concepts stated in the
following paragraphs. Traditional application analysis started
with application processes that were in existence at the time;
improvements to these processes were derived by meeting
with the client and arriving at new output products from the
application. The analyst would then begin to work backward
to define the data and the data structures to hold the data. This
would continue until the business need was met.

The newly proposed program construction techniques
involved the assessment of the program code itself. There was
a formalization of the standard structure of the programs, and
evaluations were introduced to complete the concept of how to
best sequence the functionality within programs. This rigor would
reduce redundancy within the programs and allow some com-
monality when dealing with multiple programs. The uniformity
introduced would lend itself to easier maintenance. In addition,
these concepts were applied to the connectivity of programs and
their linkages into larger programs.

Structured Design
The second evolutionary step that occurred in structured

techniques was structured design. The structured design move-
ment began in the mid-1970s. Due to the efforts of Yourdon and
Constantine (1975), with their definition of structured design,
and Jackson (1975) and Orr, with their respective design method-
ologies, by 1975 the structure philosophy had made some gains
and inroads.

These, plus the improvements seen as a result of structured
programming, fostered a renewed interest in applying more

80 Chapter 4 Understanding development methodologies

structured concepts in other areas. The renewed interest in
structured concepts was applied to the problem-solving process
of the programs and their interfaces. Where the structured pro-
gramming concept addressed an instruction-level view of the
program, the structured design focused on the concept of the
program module as a building block. It advocated a top-down
approach of program development in module form, with the top
modules being developed first. It also advocated the packaging of
logic into modules, ensuring that problem isolation for program
failures or “bugs” was enhanced.

By ensuring that the modules were tested as they descended
down in the processing hierarchy, the application could be tested
as it was developed rather than waiting for the entire application
program to be coded prior to testing. It was also tested as a whole
once completed, but the process allowed a more gradual ramp-
up time with better division of labor in the development process.
More could be done with fewer people over time.

Structured Analysis
The structured concepts reached their peak in the struc-

tured analysis approach, which is currently in existence in
many different forms. In the structured analysis approach, the
current application system was captured in the “data flow dia-
gram.” The technique itself advocated the separation of the logi-
cal design and physical implementation. To achieve this, the
existing data store was viewed as the old physical model, and a
new logical model was derived from it. If there were no previ-
ous system in place, then the manual process would be ana-
lyzed as if it were one and documented as so. This new logical
design was then focused on what was done rather than how it
was done.

Changes could then be applied to the logical model that
encompassed the client’s desired changes. The changed model
would become an even “newer” new model and be translated
into a new physical model for implementation. As a result of the
impact this approach had on the evolution of the relationship
between the business problem and the program solution, the
concept of modularization was refined. This refinement gave uni-
formity to program module structure, interface and communica-
tion restrictions between modules, and quality measurements.
Later, some of the significant findings during this time were use-
ful in forming the conceptual roots of object oriented design,
which we will cover in more detail elsewhere.

Chapter 4 Understanding development methodologies 81

Still Having Problems
In the late 1970s, there were still problems in developing

quickly created, efficient programs and data stores that provided
the necessary response time for the application client. The prob-
lem wasn’t in the programs, and it wasn’t really in the design.
Where could the problem be? Simply put, it was occurring when
there wasn’t enough time spent in evaluating before a creation
effort began. The seeds of the failure were in the starting parts.

Something was wrong with the basic premises that the efforts
were beginning with. Not enough analysis was taking place before
building. There was no way to know when analysis was complete.
By the late 1970s, multiple views of structured analysis were being
fielded. Along with this, there were efforts on the data structure
side by Edgar Codd (1970) with the normalization and relational
theory. The time was ripe for analyzing the true cause of the poor
application quality.

Requirements Definitions
By this time, the true source of problem solutions had been

traced back to the poor definition of the requirements. Because
these were used as the primary form of metrics for the problem
solution to be measured by, it would seem necessary to apply
some standardization to this area as well. By use of the data flow
diagram, where data to be reused later were defined in “data
stores” and the use of a “data dictionary,” the requirements were
more understandably captured. It is captured in a manner that
is understandable and acceptable to the client as well as the
analyst.

Problems with Structured Approaches
Despite all of the advantages of using structured techniques,

there were problems inherent in the complete path of structured
techniques: structured programming, structured design, and struc-
tured analysis. They primarily were based on the evaluation of the
current application system, be it automated or not. They were based
on the procedures that would aid in automating the current appli-
cation but not for enhancing the application. They would also fall
short in that situation where integration was desired. Data in any
corporation is to some degree redundant, but using structured tech-
niques propagated the creation of additional redundant data stores.

82 Chapter 4 Understanding development methodologies

The result was that each analyst was utilizing her own mod-
els and dictionaries without coordinating with other analysts.
The result of this was that data that should have a common
name ended up having different names and characteristics, even
though it was the same data. By the same token, common logical
data structures, by now called entities, ended up being composed
of different data. As time went on, it became an increasingly com-
plex effort to manage, but it was attempted with some manner
of success through the later part of the 1970s. This too, however,
would soon end up failing but not for the poor definition of the
requirements. It would be brought about by a revolution within
the evolution: the computer information revolution of the 1980s.

Personal Computers and the Age of Tools
By the early 1980s, a small, quietly evolving “life form” exploded

into an evolutionary niche reminiscent of the rise of mammals
in earth’s prehistory. That life form was the personal computer or
microcomputer. The prodigious expansion of computers during
this time frame led users to be more data literate and aware of its
usefulness. Added to this awareness was the increased develop-
ment of databases. And also thrown into the mix was an explosion
of competition in the business world. What was happening was
that new processes needed to be in place sooner, ensuring com-
petitiveness in the marketplace.

Applications couldn’t be developed fast enough, even with all
of the structured approaches in place and in use; the pace could
not be met. The search to produce things faster created a flurry
of new languages, new report generators, database tools, query
tools, and code generators.

The awareness finally occurred when the decision was made
to use computers to help design computer processes. By encod-
ing the structured methods of the earlier years into tools that
could be used for design, speed of development could be gained.
They could be used to alter structured diagrams, maintain data
dictionaries, and automate the data modeling that had been
developed—all of which brought speed to the design process.

All of these tools are in use today but in a more robust form
because they too evolved in order to produce even faster devel-
oped applications. These robust tools are regarded as a new
breed of tools that fall into the category of CAD (computer-aided
design) products. Although this is an old term that came about in
the early days of structured techniques, it was applied thoughout
the 1970s and 1980s as a generic class of automated tools that

Chapter 4 Understanding development methodologies 83

produced applications faster. This era saw the interconnection
of design tools to the implementation tools for databases and the
code generators for application code creation.

In theory, one could capture user requirements and generate
an application directly, without contact with a programmer. In
fact, there are still problems associated with requirements cap-
ture, and unless the structured concept is taught to the client, the
requirements may still end up being fraught with gaps and failures.

Engineering Concepts Applied
The structured concept has basic characteristics that need to

be understood in order to understand the intrinsic functioning of
the CAD tools today. The first characteristic is that of abstraction.
To do this is to view something by itself without reference to
common connections. When it is applied to a person, place, or
thing, it allows the intrinsic traits of the abstracted entity to be
viewed without reference to its placement or use. Just as you
can understand the true meaning of a word by examining it out
of a sentence, doing the same for an entity allows more detailed
examination.

The second characteristic is structured approach. This is
exactly what it seems to be. It is a step-by-step process that has
been defined that ensures that a procedure or method is followed
and that the work products of one step are used as input to the
following step. This also referred to as stepwise refinement. By
following the step-by-step approach, all projects are in definable
stages at any given point of time. When the input products of each
step and the output products are defined, then reusability and
sharing are by-products. These steps and processes are repeatable.
When they are not deviated from, they educate the developers
into a faster methodology with each new application designed.

The third characteristic has to do with component isolation.
This is separation or distinct isolation of the overall problem into
a series of problem components so each can be addressed in
turn without dealing with the complexity of the whole. Business
problems had become so complex that it was almost impossible
to entertain the entire business problem, never mind the abstrac-
tions of it. By solution of all of the isolated problem components,
the resultant solutions can be integrated and the complete solu-
tion set produced.

Which brings us to a related fourth characteristic: hierarchical
ordering. Hierarchical ordering is the next step to be done after
component isolation. The hierarchical ordering of the solution

84 Chapter 4 Understanding development methodologies

components is done in such a way as to allocate each problem
component to a layer in order to get integration. As the name
implies, there is a hierarchy that allows the solution components
to be viewed as layers. From the top, as each layer is removed,
the subordinate layers with more detail can be viewed. When
the solutions are integrated at the lowest level, each higher level
can be viewed in an integrated manner. So whether following
top-down or bottom-up approaches, the integrated result can be
achieved.

Other Principles Utilized
Other principles of using computers and computer logic to

design systems were in the process of manifesting themselves at
this time as well. These also helped with the further definition of
how best to develop applications. The first principle was that of
obscuring, which was used as a modification of the breakdown
process or decomposition activity necessary in structured design
and structured analysis. This allowed only that data necessary
for use by a detail process to be defined with that process. This
fostered unit-level process specification and therefore facilitated
modular programming.

The second principle concerned the separation and regroup-
ing of logical things together physically. This allowed programs to
deal with data at a particular location within the program with-
out navigating all over the place. It aggregated processes together
so the data only needed to be touched by the program code once.

Finally, there was the principle of logical independence. This
was a premise asserting that data should be defined in its logi-
cal state as if it were not operated on by any process. This allowed
the data to be defined without the constraint of having some pro-
cess to use it.

The Birth of Information Engineering
All of these principles plus those of the structured techniques

went into the formalized process that became known as informa-
tion engineering. Two people central to this methodology were
James Martin (1981) and Clive Finklestein (1981). This methodol-
ogy took a fundamentally different approach from all the meth-
ods and techniques that had preceded it. By bundling all the
known advantages into a methodology package and changing the
central driving themes, it was possible to bring new forces to bear
on the problems in data processing.

Chapter 4 Understanding development methodologies 85

A common premise that was true in all corporations was that
they had the data they needed to run their business (otherwise
they would be out of business). Another thing was basically true:
data within a corporation, once defined, tended to stay stable in
its definition. New uses were found for existing data, and, rarely,
new data was added, but most of the time it was stable. Lastly
was the basic fact that business processes evolved very quickly.
New ways to use data for competitive purposes churned the
application need.

Information Engineering recognized that data has inherent
properties of its own, independent of how it is used. It also rec-
ognized that some data are related to other data independent of
use. The information engineering methodology embodied all the
aforementioned principles, facts, and concerns into four basic
tenets in its operation (1989).
l The first tenet is a principle of rigorous analysis. This basically

states that data have an inherent structure. Analysis of this
structure must be completed before process logic is defined. As
a follow on, it should be captured for future use and reference.

l The second tenet, data independence, states that the inherent
logical structure of the data should be captured in model form
independent of how the data are used by any process and
independent of how they will physically be implemented.

l The third tenet, strategic data planning, was a product of all
the burgeoning systems being developed without a game
plan. It states that there must be planning, definition, and
structuring of data throughout an enterprise in order to facili-
tate data reuse and data exchange among many processes.

l The fourth and last tenet of information engineering, the prin-
ciple of end-user access, states that end users should be facili-
tated in their quest for access to their data. This is a result of
the clamoring of all professionals in the industry to have
access to data that might increase their competitive advantage.

Information Engineering as a Design
Methodology

We have examined some of the behavioral tenets of informa-
tion engineering. Let us look at some of the characteristics it has
when in use:
l It applies the structured techniques on an enterprise-wide

basis rather than on a project basis. Instead of having many
projects making up their own model according to their own
standards, a common approach is being used.

86 Chapter 4 Understanding development methodologies

l It progresses in a top-down fashion from the highest level
of data abstraction to the lowest. For example, it deals in
descending order with:
l Corporate systems planning—A formal procedure and plan

for definition of that set of existing and planned applica-
tions that provide the corporation to ensure competitive
edge in the marketplace.

l Corporate information planning—Another formal proce-
dure and plan that identifies that set of information at a
high level, which will be required for the corporate systems
planning and will be used to “seed” all subordinate busi-
ness area analysis:
– Business area analysis (BAA)—Procedure and plan to

deal with analysis of the major subject areas within the
corporation.

– Systems design—Application design procedures for the
design of all applications within a BAA.

– Construction—A set of procedures that creates the
application physical structures that will be used to
house the data, as well as that set of procedures that
have captured how it will be used.

– Implementation—A set of procedures for implement-
ing the application, which may or may not utilize a code
generator to do so.

l As it progresses, it builds an increasing store of knowledge
about the enterprise, its models, and application designs.
Although it may take time, the process will capture all the nec-
essary data and processes that allow the corporation to run its
day-to-day operations.

l It provides a framework for application development. By using
models and defined procedures, it facilitates an organized
step-by-step process for application development. It utilizes
a repository for the accumulated knowledge that will be reus-
able for subsequent efforts.

l The corporate-wide approach allows maximum coordination
and integration between separately developed applications.
This maximizes reusability of both code and design. With the
formalized application development process and the diction-
ary/encyclopedia that is required by information engineering
acting as a repository for requirements and model caching,
this maximizes the opportunities of data sharing while assur-
ing the minimum set of data definitions.

l It involves clients at all of the preceding stages to a high
degree. By encouraging and advocating client involvement in
the requirements process at all levels of interface from top to

Chapter 4 Understanding development methodologies 87

bottom, the methodology ensures that the true requirements
have been met. This ensures that both IT and non-IT know
the processes and deliverables for all tasks. It also ensures that
any application created using these methods will meet the
usage requirements of the client.

l It facilitates the evolution of different applications and, in turn,
the evolution of the corporation. By developing applications
faster and more responsive to client needs and ensuring the
maintenance of these applications is minimized, it allows the
corporation to respond more quickly to business pressures in
the open market. The corporation can venture into fields that it
couldn’t before and trust its data in doing so.

l It identifies how automation can best achieve the strategic
goals of the corporation. By assessing what needs to be auto-
mated and in what sequence, it provides a strategic pick list
that allows the corporation to make the wisest decisions con-
cerning the allocation of its human and financial resources.

The Synergy of Tools and Information
Engineering

Parallel with and integral to the development of information
engineering, the use of computers to aid in the design process
allowed larger, more complex problems to be addressed. Simply
put, it was because the problems had become too large for the
human brain to retain all the necessary information. Definitions,
layouts, character representations, report requirements, and
identifiers were among the hundreds of pieces of information to
be retained. Additionally, the requirement to retain graphics as
well as textual data added an additional level of complexity to the
solution. To do the designs properly, computer automation and
the use of design tools were required.

As another factor in this crazy equation of the 1980s was the
fact that with the use of computers increasing phenomenally in
business, everything was needed more quickly. Decisions had to
be made more quickly, data needed to be found more quickly,
reports created more quickly, transaction response needed to be
quicker. Speed was of the essence, but not at the sacrifice of accu-
racy and integrity. Be there first, with the best data, using the least
resources to win in the marketplace.

Automation was the only way to cope—automation of both
the application and application development process itself. In
order to do this, some marriage of method and machine was nec-
essary to ensure that business problems could be solved as fast

88 Chapter 4 Understanding development methodologies

as possible. The result would be a structured, formal manner that
would allow reuse and produce repeatable results.

The information engineering methodology utilized the inte-
grated efforts of everything that existed at its inception to formal-
ize, within tools and without, a method for proceeding forward. As
a result, almost all current CASE tools that are used in the design
process acknowledge or inherently have manners of designing
according to IE standards.

The IE approach has proven successful in recent years, hold-
ing sway over other development methodologies. Because it dealt
with the corporation as a whole, it provided a common answer to
many problems being faced by corporate management.

Problems with Information Engineering
But in the world of quick results and instant response, the

effort sometimes took too long to establish. In order to truly
implement the full IE foundation, the investment is significant,
sometimes up to a full year to define the strategic data plan alone.
Another six months or another year in creating the information
strategy plan would follow this year. It is a long time frame to be
laboring without some form of payback.

It is true that there is formality that provides limits and meth-
ods to the corporate environment where there may have been
no methods or, worse yet, conflicting methods. There is also true
architectural definition that puts companies in a much more
responsive position as to change in the market or business climate.

Many companies regarded this as too steep an investment
before any return would be seen at the application develop-
ment level and chose not to use it. They felt the pain in the busi-
ness process area, and that is where they wanted the relief. They
understood that there are things they have done to get them in
the mess, but what they wanted was a way out, not a list of the
steps to be implemented in order not to have this happen again.

What they wanted was a solution at the application develop-
ment level. Further, they wanted the application-level solution to
be usable as a future construct toward that total environmental
solution proposed by IE. In the configuration that was being used
at the time for information engineering, it was all or nothing.

In those companies that did adopt it and fostered its growth
and used it, an undercurrent of resistance began to form. It
began to be regarded as a bottleneck to development. This is true
to a degree in that until the practitioners were skilled, it took lon-
ger to achieve the goal. But in many companies it got a bad rap

Chapter 4 Understanding development methodologies 89

just because it set boundaries and limits on what was being done.
It became just another obstacle in the path of disciples of the
application development method of the month club.

Also of concern is the overall fact that when beginning with
the corporate level and descending downward, one must have the
staff and commitment to ensure that the process is followed and
that the requirements are met. Many companies didn’t have or
want a corporate architecture group, a data administration group,
a repository/encyclopedia group, and a database administration
group. So much infrastructure and expense required supporting
it. Along with this, policies, standards, and procedures had to be
defined and propagated. There were education classes to be con-
ducted, and tools and workstations to be purchased and installed.

At the application level, there is the view that traditional IE is
best suited for designing transaction-processing systems. They
feel that management information systems and data warehouses
are not favorably treated if done in an information engineering
manner. This is truly a misconception because without the high-
level definition involved by IE, the true scope of an MIS reporting
database or data warehouse could not be defined. Without the
architecture in place, the decision support was only available at
the application level, not at the enterprise level.

So information engineering was a right idea but possibly in
the wrong flavor. Many companies in the business world needed
a different flavor of the original. It is a flavor of the methodology
where the burden of building the entire infrastructure to support
the effort wasn’t required to be shouldered by the initial project
setting down the path.

Implementing the Best of IE while
Minimizing Expense

It is to that end that a new flavor of IE is suggested that takes
the best of both worlds and accomplishes the most with it.
Simply put, it is the implementation of IE from two vectors at
once: top-down and lateral. But this must be done in a sequence
that minimizes cost.

The first step or stage should be the top-down definition of
the information strategy plan (ISP). This is an attempt to deter-
mine the objectives of the enterprise and what data are needed
to support it. The steps that we detail following this step may be
done without doing ISP but it would be like building a house on
top of gelatin. It would be unstable and shaky. The ISP can be
accomplished with some degree of completion within several

90 Chapter 4 Understanding development methodologies

months if the SWAT team approach is taken. The information
strategic plan must break down the enterprise into its major sub-
ject areas, and within these the business entity types must be
defined. At the same time the business processes must be cap-
tured at the same level. In this same phase an additional step
must be taken to identify major subject area drivers and inter-
subject area relationships.

The data modeling phase would be next in the modified
approach. It would be a lateral phase as opposed to a top-down
phase. By lateral, we mean using data and process modeling to
develop the enterprise repository by accretion or addition to the
whole. This would be accomplished by adding and integrating
the modeled data and process results to the repository with each
application designed and implemented. Where the top-down
approach was too limiting, it is far easier and less costly to build
the repository content one application at a time and integrate the
results to the whole. The process or activity analysis can then be
further used in the interaction or mapping phase.

This phase is the mapping of processes against data, which
then validates both the data model and the process model. It will
ensure that all the business problem requirements have been
captured in the solution data and process models. These will
then enter the last stage of the modified version of IE: repository
integration.

This last stage allows the integration of the captured busi-
ness requirements into a repository for future use. By setting up
the mechanism to integrate applications by subject area, there
is a scorecard or inventory of what has been done in each sub-
ject area and what needs to be done. Additionally, this allows a
buildup or ramp-up time for the other infrastructure functions to
be created before they are needed. By the time that many appli-
cations needed to be integrated, the standards, policies, and pro-
cedures associated with this new brand of IE would be in place
and be in use. Also, the repository and data and database admin-
istration staffs would be in place and be trained as well. In the
following chapters we will cover the model-driven approaches
that will accomplish a streamlined methodology in an optimal
manner, including object design.

References
Codd, E. F. (1970). A relational model of data for large shared data banks.

Communications of the ACM, 13(6), 377–387.
Codd, Edgar ‘Ted’, (1970). A relational model of data for large shared data banks,

communications of the ACM, 13(6), (June 1970).

Chapter 4 Understanding development methodologies 91

Constantine, L., & Yourdon, E. (1975). Structured design. New York, New York:
Yourdon Press.

Dahl, O.-J., Dijkstra, E. W., C. A. R. Hoare, (1972). Structured Programming.
New York, New York: Academic Press.

Martin, J., & Finkelstein, C.: Information Engineering, Savant Institute,
Carnforth: Lancs UK (1981).

Finklestein, C. (1992) Information Engineering—Strategic Systems Development.
Addison-Wesley, Sydney: Australia.

Jackson, M. A. (1975). Principles of Program Design. New York, New York:
Academic Press.

Martin J. Information Engineering—books 1–3 (1989). Englewood Cliffs, NJ:
Prentice Hall.

Orr, K. T. (1980). Structured programming in the 1980s. In: Proceedings of the ACM
1980 annual conference ACM '80 (pp. 323–326). New York: ACM Press.

DeMarco, T., (1979). Structured Analysis and System Specification. Englewood
Cliffs, NJ: Prentice Hall, ISBN 0138543801.

95
Data Architecture.
© Elsevier Inc. All rights reserved.2011

BUSINESS EVOLUTION

The Problem of Business Evolution
This chapter describes the importance of the underlying busi-

ness structure in relational database design, including business
units, business politics, culture, and standards and policies. It
explains optimum organizational policies and procedures struc-
ture for successful database design. As in all processes there are
some general functions that are maintained in the business pro-
cess that make it work more effectively. These are the functions,
developed over time, that have applied to all businesses from the
smallest store to the largest megacorporation. In the beginning,
all businesses were started and run by one individual. The time
it took for them to become megacorporations may have been
brief, or they may still be in flight. Examining some of the base
concepts involved by using a small business as a model may be
helpful.

In a small business, the owner has all information about
his or her business at hand. He knows who his best customers
are. He knows their accounts and his customers’ creditworthi-
ness. He knows his own inventory levels and who and where his
suppliers are. He even is aware of his suppliers’ lead times. He
knows the level of activity and the turnover and can establish his
market base to ensure his own profitability.

By providing a reasonable product or service at a reasonable
price, the owner knows that she will survive as long as she has
no market overlap with others in the same business and there is
a need for her product or service. She has established the direc-
tion of her company by choosing to service or produce a prod-
uct that her market needs. She has provided a channel for sales
either by inviting the customer in or by delivering the service
or product out to them. Finally, she has provided objectives in
the form of the quality of service or integrity of the product to
the customer.

When the business owner is successful, his business grows.
The volume of his sales increases. The profits roll in. He works

5

96 Chapter 5 Business evolution

at ways to ensure the best response to his customers’ needs.
He finds better suppliers and more quality material to make
his products with. This increases his sales, as he soon becomes
known as a purveyor of quality goods for a minimal price.

Expansion and Function Separation
Soon he cannot handle all of the positions and functions

himself and has to hire a staff to fill the roles that he cannot. He
separates his activities into each of the functions that he used to
perform and trains someone to fill each role. Each appointee
handles the data associated with his/her specific area or func-
tion. As he/she operates in the subsection they are responsible
for, they become familiar with the data associated with the func-
tion and manage their own data. Further growth is the result of
this efficiency that the business owner has put in place. He has
more product, more sales, more profit, more sales, and so on. And
this goes on until individuals cannot handle the functions any-
more. It has become too much work for a single person again.
Each appointee then has to select new people and train them.
These people increase the efficiency and result in more sales
and more business and so on. Growth is rampant, and the sep-
arated functions evolve into departments and the staff has
increased manifold.

At this point in time the functions are still the same, but the
scope and context of them have changed significantly. No longer
is it possible for the one person to know all of the business data.
Each functional area keeps its own information and makes sure it
handles its own piece of the business. The owner has no real con-
trol. It is delegated out to the people who control the functions
for him. In order to make sure everything is working right, the
owner makes sure that sales data are sent to inventory control
and accounting to ensure that billing is taking place. He wants to
make sure that everything is going to run smoothly.

Separate Function Communication
In actuality there is the beginning of a crisis. In one function

or department, such as inventory control, there is an immediate
need for the data concerning what has been sold to the sales and
marketing department and to what customer. This ensures that
inventory is kept at “just in time delivery” levels, which will keep
expenses down. It also provides a basis for customer service if

Chapter 5 Business evolution 97

there are problems with the product. When this occurs, reporting
procedures are introduced to record sales, extraction from
inventory, and profits. These data are then sent to other depart-
ments as reports to ensure that the other departments are kept
informed. But physical reports are limiting, time consuming, and
because most of the work is manual, prone to error.

Manual Data Redundancy
But now the company is keeping two or three or more redun-

dant sets of customer data: one for the sales department, one
for the invoicing department, one for the inventory department,
and one for the accounting department. Since the communica-
tions of the changes to the common data have not been instan-
taneous, the information in the different departments is now
not equivalent and now not accurate. The business can continue
to flow the reports and even develop electronic feeds between
computer systems to ensure sharing of data at the earliest pos-
sible point to keep integrity. Unfortunately, that is not a solution
because data for the different areas are designed differently and
accuracy is lost. Data and information slip through the cracks,
and some of it is not retrievable. Data gathered by customer
service on a returned defective product may not get to the sales
and marketing, new product, or quality control areas in a timely
enough fashion to solve the problem before more products go
out the door. Maintenance and change control on the manual
version of this structure/process is rigid and incredibly complex.
Automating it to an electronic solution produces computer feeds
that are subject to the same problems, delays, and missing data.
Let us examine the company’s data requirements at this stage of
its evolution.

Each department, though keeping its own unique data due
to its separated function, must keep some common data for use
as well. A good example of the common data shown thus far is
customer data. As each department has its own procedures for
acting on their own version of data, they also each have activities
that act on the data that are common—that is, customer data.

Additions, deletions, and updates to customer data that are
common to other departments may need to be made by indi-
vidual departments. How can they communicate the changes?
Obviously, distributed reports are a poor method, and electronic
feeds are better but still not instantaneous. The solution is to
share it.

98 Chapter 5 Business evolution

Departmental communication problems, data redundancy,
and delayed incorporation of data changes can result in the
inaccuracies in the data used throughout the company. Brought
about by the separation of the functions that occurred with the
growth of the business, we see that common data, customer
data, has now been disseminated. This is true not only within
departments but throughout the company. This data redun-
dancy and inaccuracy have introduced a serious problem to
management.

While the operational management that oversees the day-
to-day operations only needs the data within their departments,
top management needs a cross-departmental look at specific
data. This specific data are the data that have been analyzed for a
defined purpose.

Management organization and Data
The head of the organization must now look at selected data

or metrics data to evaluate how profitable her company is. She
must look at information about her company. The improved
data systems and the sharing of data make it now possible for the
head and the management to draw on vast reservoirs of data that
have been accumulated but been heretofore inaccessible. The

Practice
Suppose you had a requirement to allow ten people to touch a basketball in ten minutes. Each individual must touch

it and do what they need with it. In most cases they would need to touch it, but one or two would need to sign it or
mark it for posterity. Each individual in the group was designated as a Ball Toucher or a Ball Signer. The simple solution
would be to pass the ball from one person to the next until all have touched or signed the ball. That is a fine and a good
solution. But what happens when there are many more balls to be touched? Based on the speed of the passing and the
time for touching or marking, the process would be slowed. A single limit would soon be approached that could not be
surpassed. It is the limit of the process and is reflected in the maximum number of basketballs that are in transit at one
time.

What would happen if the Basketball Processing Co. management got together and said, “You are taking too long.
We need to get more throughput?” They might be right, so you have to find a way.

The way to solve management’s problem is to put each ball in one place on a moving line and move it past a point in
the process where all Touchers or Signers can touch or mark it at the same time. Of course, some etiquette might have
to be worked out as to who needs to do what first—Signer or Toucher—but it is easily worked out, and the process is
sped up hundreds if not thousands of times.

Chapter 5 Business evolution 99

technology has helped the business owner in her rise from a sim-
ple company to a large one with many departments. It helped her
to gather, manage, consolidate, and summarize the data for man-
agement use. But in order to do this, there needs to be a more
consistent approach to development of the information systems
and processes and how and where the data are stored.

Data Planning and Process Planning
Data analysts and process analysts are people who are facile at

defining the specific data and processes within a given business
area. For example, if they were to visit the inventory control depart-
ment, they would talk to the users and management and define
the best ways to improve the process and data use for that depart-
ment. However, if they were to go on to a second department, such
as sales and marketing, after the implementation of the changes
to the inventory control department, the analysis and redesign for
the second business area might come in direct conflict with the
changes already made.

What they really wanted was a single set of data that would
serve the data needs of both departments, but what they got was
the data of one and then the conflicting data of the other. This con-
flict appeared because the data needs of both were not looked at
prior to any implementation or development, and moreover they
were looked at from the perspective of the processes they had to
serve. The process perspective on a finite set of data will only select
that set of data that will serve that process, thereby excluding
data that might serve other or follow-on processes. Management
tends to want to develop single application systems to minimize
costs and then single-thread the development of these to control
the cost.

What they did is called “stovepipe” development, and its long-
term impact is devastating. Organizations do change; they must
change in order to survive. Applications developed in a mono-
lithic or stovepipe manner are custom-built to the specifica-
tions that they were given. Each one is developed sequentially.
The systems they introduced with such fanfare become crippling
ball-and-chains that hindered the effective action of the company
and its responsiveness to the market pressure in the industry.
Often the applications are so mutually isolated that they cannot
be made to reconcile without manual processes. This action is
seen by the information technology department as unresponsive
and overfunded. Databases that were touted as being the savior
of the user and business are now viewed as inadequate. When

100 Chapter 5 Business evolution

this happens, information technology and databases are found to
be limiting factors in the ability of the organization and business
opportunities and customer service suffers.

Corporate Architecture
What is needed is a form of corporate architecture. Most

enterprises have not reached the potential that they could have.
They have often used old methods and used process-oriented
solutions. Instead, they should have used a more datacentric
approach that took into consideration the strategic future of the
organization.

What has happened in the small company that evolved is not
unique. In fact, it is rampant in the world of business today. In
1979, Richard Nolan (1979) of the Harvard Business School wrote
an article for the Harvard Business Review entitled “Managing the
Crisis in Data Processing.” In it, he described stages of data and
processing awareness in companies from his analysis of many
major companies. While this assessment is 30 years old, the
problems still exist. The lesson has not been learned or under-
stood as to how to maximize efficiency.

In Nolan’s article he defines six stages of growth, which we will
examine in detail:

Stage 1: Initiation
Stage 2: Contagion
Stage 3: Control
Stage 4: Integration
Stage 5: Data administration
Stage 6: Maturity
These are covered in a little more detail following as to how

they affect or reflect the growth aspect of the organization.
Stage 1: Initiation. The first few applications to handle the com-
pany’s data are developed. These are mostly cost-reducing
applications such as payroll, accounting, order control, billing,
and invoicing. As each application is implemented, users and
operational management start identifying additional business
need. The information technology department is small and is
a job shop. Overall, information technology exerts no control
during this stage.
Stage 2: Contagion. This is when the burgeoning requests
for new applications that seem to spread by contact begin to
move into swing. This stage is characterized by growth—big
and fast. As the user demands for new applications increase,
information technology finds itself unable to keep up with the

Chapter 5 Business evolution 101

growth. It soon degrades into a period of uncontrolled growth,
with each application being built without reference to or con-
sideration of the other applications. The result of this is the
proliferation of redundant and replicated data and processes.
There seems to be no control, and there is no common focus
or planning. Integration is lost, and bridge systems and man-
ual reconciliation units have to be created.
Stage 3: Control. Information technology at this point has rec-
ognized that it needs to introduce something to curb the run-
away development. The lax controls of Stage 2 have had their
impact. Users are frustrated and angry at their inability to get
information. Management cannot get the information they
need for decision support. There are application backlogs, and
application maintenance costs are sky-high. Information tech-
nology attempts to again control by restructuring the existing
applications, instituting a database management group, and
formalizing planning and control by introducing development
methodologies. Application development slows while the infor-
mation technology is restructuring and rebuilding.
Stage 4: Integration. Existing applications are retrofitted. The
use of models becomes the center of application development
methodology. The users get more information out of access to
the data and thereby increase their demands for more from
information technology. Information technology expands to
meet the demand, and costs spiral upward.
Redundant data and lack of company-wide data analysis
frustrate the attempts for the information technology area to
develop control and planning applications. Information tech-
nology becomes aware of how important the database is in
the restructuring and retrofitting process. This represents a
fundamental change in the way the applications are built. The
change is from simply automating procedures to the examina-
tion and consolidation of data for processing. The integration
of the data moves the company and information technology
into Stage 5.
Stage 5: Data administration. This is the organizational arti-
fact of the integration of the data and the applications. In this
stage, organization-wide strategic planning is implemented,
information resource management is emphasized. A top-
down development methodology is defined that is datacentric
and based on stable data models. The reporting data are spun
off into reporting and decision support databases. After effort,
final application retrofitting is completed on existing appli-
cations. Finally, as the company starts to approach Stage 6,
applications start to emulate the organizational processes.

102 Chapter 5 Business evolution

Stage 6: Maturity. In this stage, organization-wide data anal-
ysis and data modeling have been completed and imple-
mented. Applications mirror the enterprise’s function, and
the corporate structure has changed to allow for an architect
approach to be fostered and followed.

Using Nolan’s Stages of Growth
Nolan’s stages of company growth enable us to determine the

stage that a company’s data processing has reached. Different
divisions and departments may be in different stages, so a mul-
titiered strategy may be needed to approach the problem at an
enterprise level. Datacentric analysis and design techniques can
be used to identify the critical data to all levels of management
and process throughout the company. It can then be organized
into a single corporate model or kept as separate subject area
data models that reflect the business function areas.

But this begs the question: What if a company is in the throes
of, say, Stage 2 and wants to jump to Stage 4 without going
through Stage 3? Is it possible? The answer is, of course, it is!

Nolan’s six stages of growth are a valuable representation of the
data processing history in most corporations. By review of what
the problems were for each stage and by avoiding them and tar-
geting the goals of the appropriate stage, a company can avoid the
problem areas that others have become bogged down in. Modern
software and methodologies can also help avoid certain stages of
the growth pattern.

If we were starting a company’s information technology from
scratch, the steps necessary would be a compilation of what we
have seen in the various stages. The higher the level entered on,
the better. The reason for this is that in the highest level (Stage 6),
form follows function—that is, the organization is constructed in
the best possible way to process the data. The form of the organi-
zation follows the function the enterprise is fulfilling.

In the case of a start-up company with the luxury of ramp-up
and planning time, the necessary time to do strategic require-
ments planning and appropriately design enterprise-wide data
architecture could be taken. As noted before, it is really impracti-
cal to have corporate architecture at the detail level. Therefore, the
need is to define the corporate information groupings within that
corporate architecture that would represent the data and func-
tional areas. Subsequently, it is necessary to perform specification
within these subject areas in order to develop the applications and
databases necessary to support the detail business process of each

Chapter 5 Business evolution 103

of these subject areas. When this is completed and the develop-
ment of these architected subject area databases is pursued, the
company would be able to enter the Nolan Sequence at Stage 5.

When viewing the Nolan Sequence, it is important that it be
viewed from bottom to top. This shows the increases in the level
of efficiency of processing of data, the minimization of cost of
processing and storage, and the increased responsiveness to
market pressures. It is easy to see why new companies strive for
the architected approach: it’s cheaper in the long run. But what if
a company can’t come in at the top of the Nolan Sequence?

Problems with Older Organizations
An older corporation has many more problems getting to

Stage 5, primarily because there is much more analysis of data and
processes that must be done. These will take much longer to ana-
lyze, resolve conflict, and integrate. Second, the cost of converting
all the code that currently runs against the old data structures is pro-
hibitive unless done over a transitional path via migration. In order
for any action to take place in an older company, bridges need to be
built between the past and the targeted future so when reprogram-
ming takes place, the future structure will already have the correct
method and structure and the data conversion is ensured. For the
older company, living with a patchwork of old structures and new
structures is inevitable. Sometimes the load can be lightened by tak-
ing reporting data and separating it from the transactional systems
data and allowing the transactional structures to be changed with
minimum impact to the user reporting use.

A serious problem, however, in most old corporations is the
dedication to the old methods. Most of the developers in older
companies’ skills are geared toward sequential processing and
structured analysis. Some managers easily admit that they do not
trust databases and prefer flat file processing. Other company
infrastructure elements, such as standards and policies, adhere
to the old methods. Many of the information technology staff in
this type of environment believe that the user community will not
buy into the new approach. On top of all of this is the situation
where you have an old-line client manager who is barely speaking
to information technology because of its failure to solve his prob-
lems. This is why some companies never get beyond Stage 3 or 4.
Sometimes the human and educational problems are just too
much to overcome.

In those companies that do have a commitment to their own
future, there is a strong desire to do the informational analysis

104 Chapter 5 Business evolution

that will provide them the working framework from which to
respond to the future.

Business Today
Business today is a world of burgeoning markets, increased

competition, and shrinking profit margins. We live in a world
where Internet companies are sending phone calls and phone
companies own Internet backbones.

Banks are making headway ventures with heretofore unopened
financial products, and insurance companies are merging with
banks. Health insurers are merging with provider organizations to
keep their costs down. Technology companies are opening doors
to other technology companies to assume greater market share in
related areas. Alliances and joint ventures abound. Why own just
part when you can own some of your own suppliers as well as the
distributors?

These create tremendous pressures within organizations to
develop a business structure that is nonredundant and respon-
sive to the business pressures. Pressures on the business are from
within as well as from without. Stockholder pressure makes many
business decisions (whether the board of directors admits it or
not). The strategic response needs to be reactive. It has to react
differently to encroachment than it would to a market blending.
(External strategies will not be covered here, since we want to
focus on the problems within the business.)

Businesses have had to become cost-controlling, focused, and
attentive to the market need. With increased competition comes
the need to be innovative and evolve. What can be done, and
when will it end?

Analogy
An analogy here is appropriate. In the country of

Nicaragua, there is a lake that was once part of the ocean.
Lake Nicaragua, covering 3,150 square miles, is a lake almost
as big as a small sea. It is the twenty-first largest lake in the
world. As noted before, it was believed to be an inlet from the
ocean that, by virtue of a volcanic eruption and earthquake,
was isolated from the ocean and became landlocked.

Unlike other landlocked marine environments, it did not
increase in salinity—quite the contrary. Over the years it
became desalinized by rivers and is now a freshwater lake. It
is a very big lake. What happened to the marine creatures that
were in the inlet? Some died, and others lived and adapted.
The sharks that were in the inlet at the time of the eruption and
earthquake survived and adapted and are now true freshwater
sharks (others live in tidal and brackish estuary and river waters).

When in the ocean, these sharks were the same as
their brethren in all respects, including size, speed, and

appetite. What do you suppose they evolved into in the lake
environment—where there were fewer food resources,
being pressured to evolve from salt water to freshwater and
in a closed environment? They evolved into a somewhat
smaller, faster shark in response to the pressures of the
environment.

They learned how to hunt the freshwater fish that were
coming down into the lake from the rivers. They would have to
adapt in order to survive, and so they have. It is a wonderful
lake today, with the sharks fully adapted to the freshwater.
Through it all, the target food species would be evolving in its
own response to the increased aggression. It would become
faster, more elusive, and harder to catch and would develop
camouflage. It would continue in a dynamic state, assuring
that all pressures on all species were met and equilibrium
established. Nature would find a balance, just as we must do
in this critical time of increased competition.

106 Chapter 5 Business evolution

While the case of the sharks may seem to be a poor analogy,
please take the time to understand it. We live in a dynamic busi-
ness world where competition is becoming sophisticated and
intense. The customer has more choices, and therefore big busi-
nesses have no choice but to evolve. They have to become leaner
and more efficient. They need to become quicker to respond and
more attractive to the customer. The old and slow businesses that
depended on brute force and massive size will not survive very
long without financial hemorrhaging. The death will not be the
brutality of consumption by the competitors but it either will be a
death of starvation as its food supply (the customer base) is con-
sumed from underneath it by smaller, quicker competitors, or it
will be the bleed-out of financial resources as the company tries
to keep its bloated business line afloat.

In order to get the customer, companies need to slim down
and become more responsive to what will help achieve their
objectives. As to the questions “What can be done?” and “When
will it end?,” they need to be examined individually.

When Will It End?
Let’s take the easy one first: When will it end? It refers to the

dramatically changing business environment. The answer is that
it won’t end. It will continue to dynamically adjust to the pres-
sures that are affecting it both externally and internally. It will
adjust even if the pressure is intense and unexpected. An intense
response will come, and the equilibrium will be reestablished.
Another new force will come and upset the equilibrium, and
another response will be the result.

It will evolve because it must. It will go through cycles of
merger and divestiture, and product changes and diversification.
Companies will become giants. We are seeing this now with the
merger-mania that has overtaken the marketplace. At some point
in the future, these merged giants will break up into smaller pieces,
not because of government regulations but because of competi-
tion forces and the inflexibility of their own weight. Government
meddling will only cause another force that needs to be met with
in order for equilibrium to be established. The speed at which the
mergers take place has become so rapid in the marketplace that
many of the newly merged organizations wait for years or longer to
merge data processing facilities for fear of the extensive expense.
Worse yet is the possibility of divestiture of divisions of the merged
organization; this would break apart the newly merged informa-
tion technology department.

Chapter 5 Business evolution 107

Government regulation and antitrust actions will do nothing
but temporarily cripple the giants, leaving more room for the
smaller companies to grow. This is all in response to what is hap-
pening in the marketplace. There are no hard and fast rules that
anyone can apply that will ensure that a company will survive.
The only thing that is sure is that the environment will change,
and the only variable in the change equation is really the rate of
change.

What Can We Do about It?
As for the other question—What can be done about it?—there

are many things that can be done about it. The knee-jerk reac-
tion to this from the 50,000-foot level will be, “We know our own
companies better because we have made them lean and mean,
we know what business we are in because we have analyzed and
designed it for precisely for the purpose it is serving, and we
know where our businesses are going.”

Businesses have to deal with where their organizations are going
by better strategic planning. Many books have been written about
strategic planning, but unfortunately, many of these books are dry
and not applicable because they don’t deal with the real-world basis
of the commercial world. If a strategy is to be viable, it has to start
by using reality as the foundation for it. Most of the literature in the
market is based on the development of corporate objectives. The
existence of the organization, with its current products, markets,
and channels, is assumed, and as such is taken as fundamental.
These are then used to project forward for corporate goals and
objectives. Because there is no detailed analysis of the current envi-
ronment to validate the future assumptions, there is a basic flaw in
the objectives, goals, and strategies developed. They have no basis in
reality. It is the right idea with the wrong implementation.

For example, it is well known that many inefficient processes
and functions are made tolerable and even efficient by the use of
undocumented procedural workaround efforts made by employees.
Employees maximize the effectiveness of poor-quality processes
because they don’t want to waste their time.

When the current state of the corporations is used as a basis,
and projection is done forward from that state, then all of these
undocumented efficiencies will not be included in the formu-
lations of the strategic plans and efforts. The resulting plan will
have overlooked efficiencies that will result in implementation
of a software product that will not handle the current business
needs or the future ones as well.

108 Chapter 5 Business evolution

Generic Subject Areas for Corporate
Architectures

The Practice box shows the generic subject areas necessary to
define a corporate architecture. These corporate subject areas are
appropriate for any organization that has a fundamentally open
but core ideology that embraces its mission and purpose. By keep-
ing the generic structure in the corporate data architecture, the
business flexibility is present to pursue expansion in any direc-
tion desired. The structure will be there to hold any new market or
products that are ventured into as the company evolves.

Practice
The following are the architectural clusters of information entities that almost all corporations need to keep. Their

contents are defined in more detail following.
External organizations would contain entity clusters and entities such as:

l Vendors
l External agencies
l Third-party service and administrators
l Product resellers

Customer would contain entity clusters and entities such as:
l Customer
l Customer activity
l Customer contract
l Customer listings
l Customer address
l Customer requirements

Finance would contain entity clusters and entities such as:
l Accounting
l Billing
l Collecting
l General ledger
l Accounts payable
l Accounts receivable
l Taxes

Chapter 5 Business evolution 109

Regulation would contain such entity clusters and entities as:
l Regulatory bodies
l Federal, state, or local governing agencies

Sales and marketing would contain entity clusters and entities such as:
l Sales
l Products
l Services
l Service bundle options
l Bids and bidding
l Promotions

Business strategy and planning would contain such entity clusters and entities as:
l Plan
l Strategy
l Business operation
l Business architecture

Locations would contain such entity clusters and entities as:
l Address of company operations
l Address of company properties
l Address of company

Service delivery would contain such entity clusters and entities as:
l Service providers
l Service channels
l Service components
l Service processes

Equipment would contain such entity clusters and entities as:
l Hardware
l Software
l Third-party software packages

Plant would contain such entity clusters and entities as:
l Production facilities
l Warehouse storage
l Manufacturing sites
l Distribution mechanism

Supply would contain such entity clusters and entities as:
l Supply vendors
l Supply disbursement
l Logistics
l Inventory

110 Chapter 5 Business evolution

Corporate Information Groupings or
Functional Areas

In the following paragraphs, these groupings are analyzed to
see how each of these affects the business and their importance
to the organization’s bottom line. While all of these do not occur
in all companies, the ones that do not are generic enough to
apply to the functional areas that are not specified by one of the
following categories.

They are referred to as strategic business subject areas
because they represent the infrastructure area functions that
maintain the integrity of the business. By extension of this mind-
set and premise, the detail process and data are the result of the
analysis of these infrastructure strategic business subject area
functions. These subject areas can be the organizational template
for a new company or the target structure for a corporation trying
to move toward a higher stage of development.

As noted in Nolan’s stages and the descriptions along with them,
there are methods and steps that can be used to migrate from one
stage to the other. This migration can take place as long as the criti-
cal analysis and integration take place at the appropriate time by
the appropriate level of the organization within these subject areas.

external organization
This strategic business subject area refers to any party, public

or private, that the company deals with in the course of doing
business, regardless of the role it plays (customer, partner, vendor,
government department or agency, trade association, or charitable

Human resources would contain such entity clusters and entities as:
l Employees
l Job descriptions
l Managers
l Management hierarchy

Product would contain such entity clusters and entities as:
l Product offers
l Product disclosures
l Product liabilities
l Product specifications

Chapter 5 Business evolution 111

organization). This is core information about that organization,
not its relationship to the company or its performance in regard to
that relationship. For example, it would not contain business inter-
action rules for the companies, but it would contain deliverable
and definition info, and contact information examples.

Customer
This strategic business subject area refers to any organiza-

tion or private party who buys services from the company. If you
are a telco, it is a telecommunications customer, either public or
private. If you are a financial institution, it is banking, stocks and
bonds, or fund management. If you are a manufacturer, it is the
user or purchaser of the product, either retail or wholesale. This
subject area includes all entities having to do with prospects for
such purchases, current purchasers, and former purchasers as
well as customer contracts, complaints, claims, and accounts.

Finance
This strategic business subject area refers to a collection of

services to manage the company‘s financial assets including
general ledger, accounts receivable, fixed asset evaluation, cash
management, and costing. This subject area includes all enti-
ties having to do with accounting, with the exception of invoic-
ing and its associated entities. This is because they are part of the
business process. The finance systems are the support systems
of the money control processes such as accounting, general led-
ger, and payroll. These exist to insure that there is control over
the finances that flow into and out of the company. They are
maintained under a classification called corporate or finance
systems and are usually controlled with very strong security and
the integrity issues surrounding them are paramount. This is not
for frivolous reasons; it is important that this level of attentive-
ness be maintained due to federal and state business laws, the
commercial code, and other codes of business operations. These
reasons ensure that the company’s resources are protected from
legal and illegal access or destruction.

Regulation
This strategic business subject area concerns the statutory law

or government agency rule that licenses, governs or restricts the
company‘s operations. It may involve compliance reporting, such
as for the Internal Revenue Service, state treasurers, or others,

112 Chapter 5 Business evolution

such as for the FAA. There are voluntary regulatory agencies as
well such as the AMA. This subject area includes entities having to
do with employment, environment, operations, finance, or safety.

sales and Marketing
This strategic business subject area refers to collection of the

company sales prospectus, competitors, customers, other par-
ties, marketing geography, and other factors, which are treated as
a unit from the company’s perspective. It also includes all those
entities and processes associated with the sales activity at the
company. These functions exist to ensure that there is a constant
income to ensure growth. Within marketing there is a subarea
that consists of functions that deal with new products and also
another subarea that deals with the maintenance and change
control of existing products.

Business strategy and Plan
This strategic business subject area concerns the statement

of direction and an associated implementation plan for a period
of one to five years. This subject area includes all entities having
to do with goals, policies, objectives, directives, guidelines, stan-
dards and procedures, organization structure, budget perfor-
mance and metrics, and business requirements from the highest
level to detailed procedures. It is the most underpopulated sub-
ject area in most businesses today, mainly because of the misun-
derstanding of its purpose. It has to do with what tools you have
in place to deal with the impact of change.

These infrastructure mechanisms allow the organization to
anticipate and interpolate signals in the marketplace and adjust
their process in advance of the change or at least to have a plan
to deal with it.

location
This strategic business subject area concerns the geographic

location mechanisms and procedures used by the company in
providing services to its customers. This subject area includes all
entities referencing equipment such as customer addresses of all
kinds, service location addresses, reference locations, and so on.

service Delivery
This strategic business subject area concerns the efforts

to accomplish and the results of all services performed in the

Chapter 5 Business evolution 113

servicing of a customer at the company. This subject area includes
all related topics such as work orders, product orders, service
requests, repair requests, maintenance, negotiation processes,
billing/invoicing, and account maintenance. It is the primary pro-
cessing area for what the enterprise does as a profit mechanism.
It is the enterprise’s reason for being.

equipment
This strategic business subject area concerns powered or non-

powered vehicles or service machinery used by the company
to provide services and maintain its networked infrastructure.
This subject area includes all entities referencing equipment.
Examples of these are telephones, lines, circuits, PBXs, and main-
tenance equipment.

Plant
This strategic business subject area concerns any location used

by the company to conduct business. This subject area includes all
entities referencing office buildings, yards, and terminals where
equipment units are assembled or dissambled. They represent the
physical structures associated with the enterprise.

supply
This strategic business subject area concerns the company

material inventory, its suppliers, and all related events. This sub-
ject area includes topics such as vendor contracts, support capa-
bility, vendor performance records, purchase orders, supplier
invoices, material inventory, and office support systems.

Human Resources
This strategic business subject area concerns any person who

is, was, or potentially may be responsible for the execution of tasks
at the company. This subject area includes all entities relating to
employees, potential employees, pensioners, and related compen-
sation, as well as career planning, succession planning, and benefits
and support programs.

Product
This strategic business subject area concerns the actual or

planned products and service products that the company offers
to internal and external customers. This subject area includes all

114 Chapter 5 Business evolution

related topics including price, schedule, product requirements,
complaints, and promotion and advertising requirements.

Business strategies
This strategic business subject area contains information

pertaining to analysis of the external business environment and
defined business and marketing strategies. Growth strategy is a
subarea within this area that deals with expansion growth and
mergers and acquisitions. This exists to ensure that the software
inventory in the company environment is maintained and con-
trolled in order to assess the impact of the merger or acquisition
on the functionality of the current company. It also provides a
prioritization or selection criteria as to whose functionality will
serve the merged company better.

Corporate Knowledge
One of the largest problems today, other than the inability to

architect solutions, is the fact that the body of corporate knowl-
edge is dwindling. It is a fact that as the baby boom generation
grays and heads toward retirement, the generic knowledge of
how things work is rapidly vaporizing. No longer available are
the generalists who understood the business flow and the need
for integration. No longer is the corporate architect available.
Everything today is focused on the specialist who provides the
coverage for the latest evolving niche.

Information technology as a rigid framework for development
has exploded, and there are a myriad of products and methods
to fill the void. Who is to say what is right for the company? Who
will make the choice as to what platforms will be used and what
hardware? What are missing are the generalists who were the
interpreters, the architects, and the designers that made sense
out of the chaos.

Whether it was because business schools didn’t think that
information technology architects or architecture knowledge
would be needed in their headlong rush to make management a
science independent of its application, or whether the informa-
tion explosion itself left everything in chaos remains to be seen.

The fact remains: there are not enough people at the manage-
ment level who understand the overall workings of businesses.
Poor strategic decisions concerning data, hardware, and software
are being made without a real understanding of the facts.

Management has become a neutered mechanism that allows
and foments the assurance that a manager with no technical

Chapter 5 Business evolution 115

competence can tell a technical person he is wrong when all facts
and reality point to the technical person being right. Companies
need to address this issue within their own domains as it leads to
inability of their applications to survive the disintegration of the
integrity of their data resources.

Eventually it leads to the complete failure of the company to
compete with others that are trying to move up Nolan’s stages. It
also leads to the technical brain drain to consulting organizations
and the loss of corporate knowledge that will be sorely needed
in the far more competitive future. It is a vicious irony that when
these knowledge resources are needed most, the finances of the
companies will be sequestered. It is then that a company with
more insight and more responsive capability will get them.

Organizations need to identify their need for this resource,
recruit carefully, and nurture these individuals carefully. These
people will be management’s answer to the need for understand-
ing when their current management has no skill or capacity to
adapt to a fulminating technology world.

References
Humphrey, W. S. (1989). Managing the software process. Reading, MA:

Addison-Wesley.
Nolan, R. L. (1979). Managing the crisis in data processing. Cambridge, MA:

Harvard University Press.

Other Suggested Reading
Date, C. J. (2000). A retrospective review and analysis. Reading, MA:

Addison-Wesley.
Date, C. J. (2000). An introduction to database systems. Reading, MA:

Addison-Wesley.
Nolan, R. L., & Croson, D. C. (1989). Creative destruction: A six-stage process for

transforming the organization. Cambridge, MA: Harvard Business School
Press.

Roetzheim, W. H. (1988). Structured computer project management. Englewood
Cliffs, NJ: Prentice Hall.

117
Data Architecture.
© Elsevier Inc. All rights reserved.2011

BUSINESS ORGANIZATIONS

Purpose and Mission of the Organization
Once the stable data foundation that is being used by the

organization today has been defined by adequate analysis, then
a projection can be made of the data foundation that will be
needed in the future. In order to perform this current organiza-
tional analysis, a review must be done of the prime purpose of
the organization’s existence: its purpose and mission.

The purpose and mission of an organization may appear to be
obvious. In fact, it may be too obvious. So obvious, in fact, that it
is never documented and is assumed to be present. For example,
the purpose of a school is to educate. The purpose of a store is
to sell retail goods. The purpose of a bank is to make money by
accepting and storing other people’s money at one rate of interest
and lend that same money out at a higher rate of interest.

Looking at the mission and purpose of an organization, the rea-
son for their being is easily seen in more detail. There was a time
when management was not so short-sighted and ruled by the price
of the organization’s stock in the marketplace. There was a time
when management understood the process and was an integral
component of the process. This was a time when management was
not regarded as a science unto itself but as a mechanism to control
the business to ensure profitability.

From this era, Peter Drucker (1993) states that by defining the
purpose and mission of an organization, management estab-
lishes the three most important reasons for the organization’s
existence, and even more importantly, where the organization
will go in the future. Drucker identifies these questions as:
1. What is our business?
2. What will our business be?
3. What should our business be?

The answer to each of these questions is not obvious and
rarely easy to get to. But it is critical for management to address
them continuously if they are to stay competitive in the market-
place, manage more effectively, and maintain profitability.

6

http://dx.doi.org/

118 Chapter 6 Business OrganizatiOns

Drucker states, “There is only one reason for a business orga-
nization: to create a customer.” This was true in the 1970s, 1980s,
and 1990s, and it is true today. The organization’s customers
are a major part of its reason for being. Without identifying the
customers and their needs, we would be unable to completely
define the mission and purpose of the organization. Even if the
customer base changes all the time as businesses reinvent them-
selves, the mission and purpose should be such that it can and
does adapt to the changes.

Ideology, Mission, and Purpose
As Jim Collins and Jerry Porras (2004) note in their book Built

to Last, companies that survived while their competitors failed
were not motivated primarily by profit but by a core set of ideals.
They state, “In short, we did not find any specific ideological con-
tent essential to being a visionary company. Our research indi-
cates that the authenticity of the ideology and the extent to which
a company attains consistent alignment with the ideology counts
more than the content of the ideology.”

An organization that exists without an ideology that defines its
mission and purpose drifts like a ship without a rudder; it cannot
control its own destiny. It is subject to the currents of the market-
place without any resistance and direction. Eventually the uncon-
trolled movement will bring it into trouble by forcing it to respond
to events and tasks that were never part of its original intention.
When it is in these troubled times, even an excellent management
team cannot save the organization from foundering.

The core ideals, purpose, and mission must be defined and
documented, not in agonizing detail but in a manner in which it
can be readily referred to in the future. Here is a list of the core
ideology values from Built to Last:

GE
l Improving the quality of life through technology and innovation
l Interdependent balance between responsibility to customers,

employees, society, and shareholders
l Individual responsibility and opportunity
l Honesty and integrity

Procter and Gamble
l Product excellence
l Continuous self-improvement
l Honesty and fairness
l Respect and care for the individual

Chapter 6 Business OrganizatiOns 119

Sony
l To experience the sheer joy that comes from the advancement,

application, and innovation of technology that benefits the
general public

l To elevate the Japanese culture and national status
l Being a pioneer; not following others but doing the impossible
l Respecting and encouraging each individual’s ability and

creativity
Disney

l No cynicism allowed
l Fanatical attention to consistency and detail
l Continuous progress via creativity, dreams, and imagination
l Fanatical control and preservation of Disney’s “magic” image
l “To bring happiness” to millions and to celebrate, nurture,

and promulgate “wholesome American values”
Wal-Mart

l “We exist to provide value to our customers”—to make their
lives better via lower prices and greater selection; all else is
secondary

l Swim upstream; buck conventional wisdom
l Be in partnership with employees
l Work with passion, commitment, and enthusiasm
l Run lean
l Pursue ever-higher goals

Motorola
l The company exists “to honorably serve the community by

providing products and services of superior quality at a fair
price”

l Continuous self-renewal
l Tapping the “latent creative power within us”
l Continual improvement in all the company does—in ideas, in

quality, in customer satisfaction
l Treat each employee with dignity, as an individual
l Honesty, integrity, and ethics in all aspects of the business

Hewlett-Packard
l Technical contributions to fields in which we participate (“We

exist as a corporation to make a contribution”)
l Respect and opportunity for HP people, including the oppor-

tunity to share in the success of the enterprise
l Contribution and responsibility to the communities in which

we operate
l Affordable quality for HP customers
l Profit and growth as a means to make all of the other values

and objectives possible

120 Chapter 6 Business OrganizatiOns

It is understandable from the essence of these core ideologi-
cal values that they provide a basis for a mission and objectives to
continue in spite of changing times and business climates.

By keeping a tenacious grasp on the ideology that best suits the
business organization and by answering Drucker’s three questions,
it is possible to ensure that the organization can define what the
business is now, what it will be, and what it is capable of becoming.
Organizations do not stand still. They grow and respond dynami-
cally to pressures in the marketplace. If they do not adjust and
grow, then they are dying or soon will be. But it is not just growing
and adapting that is critical; it is sustaining that core set of ideals
that foster the mission and purpose.

Design with the Future of the
Organization in Mind

Taking this core ideology-sponsored mission and purpose
down into the structure of the organization, particularly the
information technology department, can have very positive ram-
ifications. Organizations need application systems to handle the
processing of the data to accomplish the mission and purpose.
The development of an application system (and the data store
that is an integral part of it) is not an idle undertaking. It may take
months or even up to a year to develop it fully. If management
loses focus on the mission and purpose of the organization and
instead focuses on the development of only what the business
needs now, when the project is completed in a year, what has
been produced is a system that can handle last year’s business.

Too often this is how it is done. In the interest of solving the
immediate problem, management usually ends up just develop-
ing the short-term solution. After many years of this, the results
are cobbled applications that are mostly exception code and data
stores that are fragmented and disintegrated. An organization
that has become lost and inflexible will never be highly profitable
in a competitive marketplace.

While all organizations don’t evolve rapidly, and thus do not
suffer the indignity of systematic degeneration, the world is rife
with rapid change, and most organizations must deal with the
change as it comes. If the management concentrates on defining
what the organization and data requirements are now and ignore
where they will be tomorrow (or five years from tomorrow), they
will find themselves in the trouble they wish so much to avoid.
They may end up being able to change the applications enough
to squeak by. But the data will have been structured in a way that

Chapter 6 Business OrganizatiOns 121

the evolving organizational needs are served less and less by it
until that structure is barely usable.

Without taking the time to do strategic planning and proper
data architecture, the application will have a defined shelf life
that is measurable by the ability of the data architecture to serve
the business. These go hand in hand with the core ideology of the
mission and purpose. Architectures correlate directly to the mis-
sion and charter. They are the artifact of direct translation of the
mission and purpose statements applied to the business problem
at the time.

It is only by examining the major functions and information
necessary to support the mission and purpose that the best way
to structure the organization can be seen. By examining prod-
ucts, services, markets, and channels, it can be determined, with
some degree of integrity, how the organization can best go about
the prime objective of “creating a customer.” Based on this, the
structure of the organization can be “adjusted” to best achieve it.
This does not necessarily state that “form follows function,” but it
does allay itself to the principle that if an organization is focused
on its ability to identify the customers’ needs and develop prod-
ucts that suit those needs, it will continue to survive in the
marketplace.

As part of the examination process of the necessary major
functions and information, it is critical to consider the business
plans and business strategies. This is when the second and third
of Drucker’s questions can be responded to. It is necessary to
make sure that the future is considered when designing or adjust-
ing the structure of the organization and developing control
mechanisms. By ensuring that the company is lean and effective,
it is also necessary to examine what products, markets, and chan-
nels will be used in the future.

Generalize for Future Potential
Directions

Strategic requirements planning targets future products as
well as today’s products. All alternatives for the product, services,
markets, and channels must be examined in order to develop a
mechanism that is generic enough to handle all of the different
types. By developing the structure to handle the lowest common
denominator, the business structure has the flexibility to respond
to what the market needs when it needs it. This minimizes or
pushes to the lowest level the requirement to “specialize.”

122 Chapter 6 Business OrganizatiOns

When business management “specializes,” they overly focus on
the process. When this is done, the organization will train people
for, hire people for, or manage specific areas without reference
to other areas within the organization in order to maximize con-
trol and measurability. By embracing specialization, the organiza-
tion micromanages specific areas. What this does is minimize the
growth of the staff as well as the organization. Personnel in the
organization do not want to be pigeonholed to a specific task and
then told exactly how to do it. This would remove any possibility
of them bringing something new to the work and also limits their
view of the big picture. This is happening today because of organi-
zational mistakes associated with specialization.

This specialization also results in overstaffing as more person-
nel are hired for specific areas that might be similar or related
as natural extensions of these specific areas. It introduces func-
tional redundancy as well as personnel redundancy, which cuts
into profitability. Specialization is a form of structural rigidity and
compartmentalization that prevents adaptability to future needs
and so must be resisted at all costs. It is no wonder that many
organizations are looking for downsizing options when they
made the mistake in the first place. Worse yet, they are looking
at outsourcing as a saving option. We will cover outsourcing and
downsizing as options in the next chapter.

By “generalizing,” management allows the organization to be
more flexible in adapting to pressures that face it. Keeping the core
ideology supported mission and purpose in mind, management
needs to design the organization in such a way as to ensure its
ability to evolve. By designing for the generic approach, the newer
areas of evolution provide the growth areas for current personnel
and on a natural learning foundation from their previous skills. By
structuring the organization for flexibility, it will allow it to deter-
mine what the marketability of new products might be. It will also
help in the estimation of the cost of their development. The people
within an organization that provide this capacity are the strategic
planning group. This area was covered in previous chapters from a
different perspective.

Unfortunately, strategic planning is usually the purview of the
“innovation and research” departments of organizations. In the
brutality of the cost-cutting efforts in recent years in business
organizations, these research and planning groups have been the
first victims. The second victims have been the information archi-
tecture. Often, the reasons they give for their sacrifice is, “It takes
too long for the efforts of the aforementioned departments to
affect the bottom line of the organization.” It is unfortunate that

Chapter 6 Business OrganizatiOns 123

business organizations feel this way because these are the two
organizational areas that will help keep the organization profitable
for years to come.

In order to be successful, an organization really needs to have
the products under development before the bulk of the need
arises in the marketplace. In order to do this, they need to have
defined the need and quantification for their product, retooled
their current manufacturing mechanism to set up development
of the product, and then delivered the first release of the product.
There is no time to respond quickly if there is no strategic basis to
react from.

To quote Drucker, “From the definition of its mission and
purpose, a business must arrive at objectives in a number of
key areas: It must balance these objectives against each other
and against the competing demands of today and tomorrow. It
needs to convert objectives into concrete strategies and concen-
trate resources on them. Finally, it must think through its strate-
gic planning—that is, the decisions of today are the business of
tomorrow.”

Organizational Structure
From the mission and purpose it is easy to see that objectives

are the primary embodiment of the lower-level specification
of the mission and purpose. Objectives are fundamental to an
organization. While this may seem like an old concept, it is still
true. It has been buried in the flurry of responses that try to come
up with quicker ways to react to pressures in the marketplace.
Business objectives determine which way we should structure
the business. They determine what the activities will be and what
we will do in order to achieve the purpose.

In some ways, business objectives are like a road map: They
provide guidance as the organization moves into the future,
allowing an alternate path if necessary to keep moving. Unlike a
road map, however, there is no specific destination for an organi-
zation in mind. Contrary to this, what is needed is just the guid-
ance mechanism that keeps the movement in the right direction.
It also keeps the organization profitable in spite of the direction
it might be following at the time. Using a road map, the optimal
path will always be chosen and all other alternatives discarded.
This kind of discarding is not something that can be done by an
organization. The prudent thing is to be mindful and to capture
and retain information about alternatives, since they will prove
invaluable in the future.

124 Chapter 6 Business OrganizatiOns

What Are the Basic Functions in an
Organization?

So how should management structure organizations best han-
dle the functions that make up their business process? There are
three classes of functions that generally take place in organizations:
l The operating function. This is the work done that manages

what is currently present in the organization and exploits the
potential of the processes and data and resolves problems
with the day-to-day operation of the organization.

l The upper management function. This is the work done that
manages where the company is going, plots where it should
go, and measures the progress on the chosen path by use of
defined metrics.

l The innovation or research function. This analyzes and devel-
ops alternatives for the future for the upper management
function of the organization.
The operation function management of the organization is

easy to identify. Management of this type is the head of the line
functions of the organization. Examples of these are the head of
accounting, the manager of production, and the head of MIS.

Upper management of the organization are also easily identi-
fiable: the president and board, or executive team, or some other
leadership team that ensures that the administration of the orga-
nization is taking place appropriately within the organization.

The innovative or research management is not so easy to
identify. In a lot of companies it has been folded into the upper
management function, while in others it is a small group that
advises from a distance. In some companies it is given token rec-
ognition but has little or no influence.

Objectives from all of these classes of management help cod-
ify the strategies as well as provide the blueprint for mapping of
the necessary information. An information plan concerning the
data architecture can be developed from these requirements and
can be passed down to the subordinate business management
structure.

The Information Needs of Management
As noted before, the information needs of management fall

into the three functional levels of management. Operating man-
agement reflect the organization as it runs today. The exist-
ing procedures and data have been defined and established by
middle management and operating management and reflect the

Chapter 6 Business OrganizatiOns 125

operating needs of the organization. It allows operating manage-
ment to carry out the day-to-day operations and responsibilities.
Reporting procedures provide the necessary information to make
decisions at this level.

While operating management is concentrating on today, inno-
vative management is concentrating on tomorrow. Innovative
management is concerned with what products, services, and activ-
ities the organization will be working with in the future. It is con-
cerned with the information about trends that are happening now
and comparisons with the experiences of the past. By analyzing
these, they can project the trends into the future. The need is to
assess the viability of products and services, and in order to do this,
they need market analysis and sales analysis data to base these on.

Top management, historically, has not received their data
when and in the format that they need it. When they asked for
information, they received reams of report pages that did noth-
ing for them. This was the data in the undigested form. What they
needed was a more analyzed form of the data. Instead of needing
to know what the status of today’s deliveries is, they need to know
if there is a downward trend in a particular product line. This is
a need that was never really answered and has been solved time
after time in the business world by more and more sophisticated
mechanisms. Over time, this problem has been addressed by the
development of decision support systems, management infor-
mation systems, and executive information systems. Now data
marts and data warehouses are addressing it.

The information technology area is a business group (often
kept with the other service organizations within the innovative
management group) whose sole responsibility is to service the
need to the operating management group, the innovative manage-
ment group, and the top management group in all of their busi-
ness needs. It also exists as an adjunct support group for the tools
and warehouse data that are maintained for all groups in the orga-
nization. (Chapter 22 covers data warehousing.) The data organi-
zation or information technology organization will be covered in
the next chapter of this book in greater detail to examine its cur-
rent inadequacies and what can be done to make it more effective.

Organizations Don’t Know What
They Don’t Know

Continuing with the breakdown of the organization using a
“data-driven” approach will help generate information plans for
each area. By doing this, the information requirements of the

126 Chapter 6 Business OrganizatiOns

organization are being defined independently of their primary
use and thereby allow them to be “generalized” for the multiple
users within the organization. It is important to define these as
independent of the processes they are currently associated with.
It may sound illogical, but organizations only know what they
know, and conversely, they don’t know what they don’t know.

Management may understand how the business works today,
but if they design and adjust their organization to maximize its
potential on this basis, they will only be left behind in the mar-
ketplace. It is unfortunate, but the latter will kill the business very
quickly. By taking a data-centered or data-driven approach, the
organization defines the data and how they will use it. The defini-
tion allows them to integrate the future use (soon to be defined
by strategic planning) along with current use without damaging
the data structure or the organizational structure. This approach
maximizes the responsability of the data architecture and the
enterprise.

An information plan for the operating function would include
an analysis of all the data requirements used for the day-to-day
activity of the company. These would be captured in high-level
data and process models that were easily relatable or orga-
nized in the subject areas mentioned in Chapter 5. These would
include the corporate grouping or subject areas of customer, sup-
ply, product, service delivery, sales and marketing, and location.

An information plan for the innovative function would
include an analysis of the entire data requirement of the research
and development function of the organization. These would be
captured in high-level data and process models that were easily
relatable or organized in the subject areas mentioned in Chapter 5.
These would include the corporate grouping or subject areas of
business strategies and to some degree sales and marketing. The
innovative function shares this subject area with the operational
business function.

An information plan for the top management function would
include all of the data requirements used for this function in the
organization. These would be captured in high-level data and
process models that were easily relatable or organized in the
subject areas mentioned in Chapter 5. These would include the
corporate grouping or subject areas of external organizations,
regulation, finance, staffing, and human resources.

After the data requirements are in this data architecture, the
“business views” can be defined for each subfunction within
each function area. The business views are nothing more than
the composite of those data pieces that are needed for each busi-
ness process for that area.

Chapter 6 Business OrganizatiOns 127

In summary, what can be seen is that throughout the his-
tory of data processing, the business processes have driven the
method of application development. It is because of the strict
focus on the implementation of these processes and the lack of
consideration for future use of the data that most applications
today are accepted as being produced with built-in obsolescence.
With this inattention to strategic planning and resulting informa-
tion planning within subject areas, the enterprise has little assur-
ance that their mission and purpose are truly being adhered to.

It is not a hopeless case, however. Organizations can make
the evolutionary changes that will provide the capacity to jump
stages in the Nolan Sequence simply by even partially adopting
the data-driven approach and beginning to refine their applica-
tion development methodology. Of course, the strategic planning
and information analysis must be done for the affected business
area within the organization to some degree. What usually hap-
pens is that it ends up creating a small residence of data entities in
many of the corporate grouping or subject areas of the data archi-
tecture that have been mentioned. A business organization can
begin an enterprise architecture with the implementation of a sin-
gle application. It may seem small at first, but as each successive
application is sourced from and is integrated back into the data
architecture, the corporate groupings’ population expands. From
experience it takes no more than four applications to completely
define some residence in all of the subject areas.

It can start small but be built up over time as long as the focus
is on a shared data architecture. It is as simple as sourcing the
new application project’s information from the data architecture.
Then, as each new application project is developed, the data are
integrated with the data architecture. By this method the corpo-
rate groupings are built by accretion and not by static analysis.

Information Strategy for Modern Business
Just as Nolan had suggested, a new look at the way information

is used is critical to the way the organization can capitalize on its
information asset. In their book Information Revolution, Davis,
Miller, and Russell (2006) report on new ways to use information to
grow your business. I have excerpted and restructured some of their
findings in the following paragraphs. Other explorations of this sub-
ject area are encouraged in the referenced material.

In order to move forward, in many cases an assessment of
where you are is critical. When reassessing your information man-
agement strategy, seven business realities must be considered.

128 Chapter 6 Business OrganizatiOns

Business reality #1: Business Cycle times are shrinking
The productivity tools that facilitate your organization to design,

develop, and deliver faster than ever are also doing the same thing
for your competition. Computer-assisted design, e-marketing, and
other technology-based advantages such as these also have a
darker side. They shorten business cycles into a fraction of their
previous time-to-market. At one point in time, this was measured
in years; now it is measured in weeks. In the intensity of the com-
petitive Internet-fueled marketplace, today’s window will close
on tomorrow’s opportunity. This rapidly changing environment
demands agility and on-the-spot decisions. Survival and profitabil-
ity require up-to-the-minute understanding of the big picture and
constant innovation.

Business reality #2: You Can Only get so Much Juice Out of a turnip
In the recent past, organizations invested significant time

and money optimizing operational processes and implementing
enterprise resource planning systems to produce much-needed
cost savings and competitive advantage. In actuality, so did the
competition. Operational optimization for efficiency’s sake is like
squeezing a turnip. The first time you squeeze it, you get a signifi-
cant return on investment. The next time you get a little less. And
the next time even less. The absolute best you can accomplish
with an ERP solution is retaining parity with your competitors.

Business reality #3: the rules are Different
The rules are different; there is no more “business as usual.”

There was a time when the business world could operate like a
fairly played game of Monopoly. March around the board acquir-
ing more through corporate mergers, and accumulating wealth.
But the rules are different now. The winner of today’s game would
not be the one who accumulated the most real estate and utili-
ties. It would be the one who invents transatlantic travel, time-
shares, adjustable rate mortgages, frequent flyer miles, tourism,
and online ticketing

But there are still old rules present that existed when business
was as usual. The old rules that still apply are money counts, and
profitability matters. Customers are number one. Competitors are
hungry. But some of the methods that were used under business
as usual have created problems. Some of these new problems are
the mergers and acquisitions increased corporate influence and
revenues but also increased the difficulty of keeping agility and
enterprise-level perspective. Productivity of human advancements
that increased yields into tighter and tighter turnaround cycles

Chapter 6 Business OrganizatiOns 129

also ratcheted up baseline expectation from company manage-
ment and customers.

Information technological advancements that generated giga-
bytes of data also are now drowning the systems that were sup-
posed to capture and retain that data. And the technologies that
were supposed to be cure-alls failed to resolve the root business
issues because of the interdependency of people, knowledge,
process, and culture.

Business reality #4: the Only thing that is Constant is the unending
Volatility of Change

Change is endemic; it comes around more often and more rap-
idly than ever. Volatile markets destroy companies for having poor
business models and punish their management harshly for indeci-
sion. Conversely, volatile markets reward a company’s agility and
a willingness to take calculated risks. But how does a company
embrace meaningful change and realign the corporate strategy to
match this? How does one choreograph corporate change while
minimizing risk and maximizing returns? In reality, organizations
need to harness and drive change rather than react to it. They need
to focus on creating value for the organization in the future rather
than depending on historic results to carry them through.

Business reality #5: globalization Both Helps and Hurts
The Internet and corporate virtual networks have transformed

the smallest organizations into global entities. On the plus side
this means that the marketplace is as widespread as the reach of
the communication networks. The organization’s suppliers and
other partners can be strategically chosen from the locations
with the lowest costs. You can attract the best and brightest talent
for collaborative teams without requiring them to relocate.

On the minus side, globalization means that your customers
are increasingly crossing borders and expect a response to their
needs in the country in which they operate. Process and quality
control are now complicated by continents being spanned, dif-
ferent languages being spoken, different international standards
being imposed, and cultural differences having to be understood.
New international outsourcing and marketing operations also
raise the complexity of doing business.

Business reality #6: Penalties for ignorance are Harsher than ever Before
The penalties of not knowing the facts about organizational

financial data are harsher than ever. As a result of the recent
high-profile corporate accounting debacles, the SEC now holds

130 Chapter 6 Business OrganizatiOns

chief executives of public corporations personally accountable
for the veracity of their financial reporting.

The Sarbanes-Oxley Act requires that top executives person-
ally swear by their financial statements. Executives who certify
statements they know to be false can face criminal charges, fines,
and jail terms of up to 20 years. If there is any doubt, just ask ex-
WorldCom chief executive Bernie Ebbers. In July 2005, Ebbers
was sentenced to five years in prison for his role in an $11 billion
accounting scandal. At its core, the law does not require anything
more than ethical business conduct. However, as corporations
become more complex and operate at higher speeds across vir-
tual geographies and markets, it is harder to offer up a snapshot
of the financial accounting that is not accurate, and it may have
nothing to do with malfeasance.

Business reality #7: information is not the By-product of Business but the
Lifeblood of Business

Information is not a by-product of business but is the life-
blood of business. The natural outcome of business realities 1–6
is that more organizations have to be faster and more responsive
than ever. They have to be more innovative and adaptable. They

V. Innvoation

IV. Optimization

III. Integration

II. Consolidation

I. Operation

In
fo

rm
at

io
n

C
ap

ab
ili

tie
s

Strategic Value of Information

Figure 6.1 the stages of business evolution.

Chapter 6 Business OrganizatiOns 131

have to achieve more with less and have more profit in their short
tenure as the market leader. The common foundation required
for all of this is based in information.

Decision makers must have up-to-the-minute access to intel-
ligence above all of the influences and the issues that can affect
their decisions. The climate of the new economy requires auton-
omy based on the broadest possible perspective inside and out-
side the company.

Companies must extract maximum value from the informa-
tion they have about suppliers, customers, competitors, and
global markets. This information is essential in order to know
what the market wants, how to supply it as efficiently as possible,
and how to promote it in ways that will maximize market share.

Business treatment of information passes through five stages
as the organizations mature (Figure 6.1). In most cases they never
get past the midpoint before internal stress and external pres-
sures cause them to lose focus. We will review the evolutionary
stages and their characteristics. Figure 6.1 shows the five stages,
and Table 6.1 defines each stage, much like Richard Nolan did in
his work decades ago.

Maximizing the Value of Information
Success in managing information as a strategic asset is

dependent on the integrated function of infrastructure, process,
people, and culture. Ideally they would all be working in har-
mony. A company’s maturity depends on these dimensions, but
it can also be represented in a business evolutionary model that
includes five stages:
l An operational level. The operational enterprise organization

focuses on individual day-to-day activity. It might be a startup
or mature organization struggling with the here and now
operational problems or an entrepreneurial organization with
a strong leader. While these types of organizations seem dif-
ferent, they share similar characteristics.

l A consolidation level. The consolidated enterprise organiza-
tion has a department-level perspective. At the consolidation
level of business evolution, organizations have consolidator
information and management across functional areas. They
have unified departments and implemented solutions that
satisfy the department-level needs. Also at the second level
of evolution individual departments within the organization
have consolidated their own information into silos that serve
department-level needs. Within this organization there is little
regard for an enterprise plan as our priority.

Admin
Logo

132 Chapter 6 Business OrganizatiOns

Table 6.1 Locations of Internal Forces
in an Organization

Infrastructure Knowledge
Process

Human Capital Culture

Definition: The hardware,
software, and networking
tools and technologies
that create, manage, store,
disseminate, and utilize
information.

Definition: The policies,
practices, standards,
and governance that
define how information
is generated, validated,
and used; how it is
tied to performance
metrics and reward
systems; and how the
organization supports
its commitments
to strategic use of
information.

Definition: The
organization’s
human assets and
the quantifiable
aspect of their
capabilities
including their
recruitment,
training and
ongoing
assessment.

Definition: The
organization and
human influences on
information flow. The
moral, social, and
behavioral norms of
the organizational
culture as embodied
in attitudes, beliefs,
and perceptions about
information being an
enduring strategic
asset.

OPERATIONAL LEVEL

Characterized
by individual
data
ownership
and control
when used to
control daily
processes.

The operational
infrastructure relies
on manual system or
unnetworked distributed
PCs. Intranet capabilities,
collaboration tools, and
governance processes
are missing or limited.
Analytical tools are present
but they tend to be client-
based rather than server-
based. Information costs
are high due to redundant
processes, duplication of
interfaces and extracts, and
inconsistent data processes.
Separate transactional
systems support fragments
of the total operation.

The operational
knowledge processes
are uniquely individual.
Peers in the same
department work
in different ways.
Information mavericks
emerge. Information
management focuses
on day-to-day
operations and not
long-term plans.
Information processes
are variable and
undocumented.

At the operational
level, people work
autonomously
in unstructured
environments
information
mavericks are
common. Tend
to be outgoing
and risk tolerant.
Differentiate them
through subtle
internal competition
and motivate them
using individual
recognition. They
see change as an
evil threat to the
status quo.

At the operational
level, cultures
reward charismatic
leaders and PC
renegades and create
a gratifying working
environment for them.
The environment is
internally competitive
and lacks consistent
evaluation and
performance criteria. It
is an everyone out for
themselves information
culture.

(Continued)

Chapter 6 Business OrganizatiOns 133

(Continued)

CONSOLIDATION LEVEL

Individual
perspective
is replaced by
departmental
or functional
level
standards,
metrics and
perspective.

The infrastructure applies
department-level hardware,
networking, and software.
Data stores and decisional
applications are designed
and developed. Even though
some of these tools such
as modeling and mining
may exist, they are not
used consistently and are
still a problem across the
organization.

At the consolidation
level knowledge
process consolidates
data and decision
making at the
department level.
Peers in a group do the
same work in the same
way they use systems
and processes that
are consistent within
their department. Two
departments often
come up with different
results.

At the
consolidation
level mavericks
and data wizards
still reign
supreme, but they
are more likely
to be middle-
management,
competing
with peers for
recognition from
the boss. They
selectively align
themselves with
loyal team players
rather than
individuals.

At the consolidation
level in an organization,
culture embodies
an us versus them
mentality where each
department pursues
its own interests and
people are rewarded
for contributing to
departmental goals.
Incentives are based
on departmental
goals even at the
enterprise expense.
Tribal knowledge and
internal politics distract
the company from
staying focused on the
marketplace.

INTEGRATION LEVEL

Characterized
by the
consolidation
effort being
expanded and
propagated to
the enterprise-
wide process,
including
standards,
metrics, and
perspectives.

At the integration level
information management
processes are formalized
under a central point of
control. A streamlined,
enterprise-wide
infrastructure, including
software, hardware,
databases, and networking,
eliminates redundancy and
enables a single version of
the terms. IT processes are

At the integration
level knowledge
process shifts from
an operational focus
to an analytic focus
that reports not only
what was but what
is and what can be.
The organization will
mobilize resources
around markets and
customer relationships

At the integration
level people
collaborate well
within their peer
groups on an ad
hoc basis but they
also think outside
the functional unit
about the greater
good of the
enterprise
with a

Integration-level
culture places a high
value on the quality
of information for
enterprise-wide
performance results.
Information is viewed
as a corporate
asset. Information is
widely accepted as
an essential tool to
operate the

Table 6.1 (Continued)

Infrastructure Knowledge
Process

Human Capital Culture

134 Chapter 6 Business OrganizatiOns

defined and provide audit
trails and integrity and
accountability.

rather than functions
and product groups.
Information processes
are predictable
and repeatable
performance
management is
automated.

holistic view that
enables them
to understand
and appreciate
how their efforts
contribute to
enterprise goals.

business and create
value throughout the
enterprise.

OPTIMIZATION LEVEL

Characterized
by an
organization
that is aligned
with the
markets it
participates
in and gains
market
leadership
by using
predictive
insights about
customers,
suppliers,
and business
partners.

At the optimization
level the information
structure represents an
enhancement to the level
III infrastructure rather
than a new framework. It
provides complete context
for all decision-making
and makes it available
as the natural course of
business rather than as a
constant process. Business
systems are linked across
the supply chain from back-
office functions through
customer touch points
enabling communications
data sharing and continuity
across functional areas
and extended business
relationships.

At the optimization level
the knowledge process
focuses on maximizing
performance and
efficiency and
incrementally improving
the quality timeliness
and availability of
information. New
quantitative metrics,
real-time analytics
and closed-loop
feedback processes
fuel continuous
movement of those
business models.
Integrated customer
information is analyzed
to detect patterns,
predict behavior and
understand customer
needs for consistent
and immediate
customer response.

At the optimization
level people are
driven, diverse,
adaptable, and
thrive on new
challenges. They
prefer creative
challenges to
predictable tasks
and are not afraid
to take risks.
They bring diverse
intellectual skills
to the table, and
use historical and
predictive analysis
to increase the
effectiveness
of their
organization in
an ever-changing
marketplace.

The organization at
the optimization level
empowers individuals
to continually
make incremental
improvements and
gives them feedback
information in order to
do it well. Managing
change becomes a
competency. Internal
competition has
been replaced by
collaboration and
interdependency.
Access to internal and
external information
provides broad
understanding, allows
communities of interest
to share experience
and fine-tune the
business process.

(Continued)

Table 6.1 (Continued)

Infrastructure Knowledge
Process

Human Capital Culture

Chapter 6 Business OrganizatiOns 135

l An integration level. Organizations at the integrated enterprise
level share an enterprise-wide perspective. Organizations at
this level have acknowledged the strategic and competitive
value of information and have defined an information man-
agement framework to satisfy organizational-level objectives.
Rather than focusing on individuals or departments, IT solu-
tions enhance the organization’s capacity to create value for
customers and stakeholders

l An optimization level. Organizations at the optimize enter-
prise level are agile, adaptable, and efficient. Organizations at

INNOVATION LEVEL

Characterized
by an
organization
that has
reached the
optimization
level and
sustains
the market
leadership
and revenue
growth by
continuing
creativity and
renewal.

An organization at the
innovative level has an
infrastructure that is
sophisticated and flexible
as well as being extensible
to meet any integration
or expansion challenges
that the organization might
encounter. It has a rich
suite of analytical tools by
which new ideas can be
tested and refined in virtual
environments. It provides
network for creativity
including methods to
organize and foster ideas
and manage emerging work
products.

At the innovation
level knowledge
process uses extensive
analytics to model the
future and minimize
risk while fostering
constant innovation.
New business models
are regularly created,
simulated and tested.
Collaboration crosses
familiar boundaries
and is enterprise-
wide, and employees
continuously offer new
ideas, and in fact, they
are encouraged to
do so.

At the innovation
level people are
proactive, creative
thinkers with
entrepreneurial
mentality. They
hold various
roles within the
organization yet
can be pulled
together for quick
interdisciplinary
teams. They focus
on moving the
enterprise forward.
They constantly
contribute new
ideas and foster
viable ideas from
concept to revenue
as quickly as
possible.

The culture in an
organization at
the unabated level
embraces thinking
outside the box where
the only bad idea is
an unspoken one.
While not all ideas
make it to fruition, the
organization generates
a significant amount
of its growth and
development of new
ideas.

Table 6.1 (Continued)

Infrastructure Knowledge
Process

Human Capital Culture

136 Chapter 6 Business OrganizatiOns

this level have been optimized for efficiency while constantly
realigning and adjusting to changing markets. Access to cur-
rent information is immediate. When the market grows or
jobs increase, organizations at this level quickly adjust and
re-optimize to the adjusted bussiness model.

l An innovation level. Organizations at the innovative level cre-
ate continuous and sustainable growth through innovation.
Organizations at this level institutionalize innovation and
transform the enterprise from an operational and reactive one
and IT into a consistent proactively self-renewing company.
This type of organization creates sustainable growth by con-
tinuously generating new products and services.

Forces in the Organization
l Infrastructure: IT architecture.—the hardware, software, and

connectivity that supports information flow
l Intelligence tools: The applications used to transform raw data

into useful knowledge
l User access: The flow of meaningful intelligence to the users

who need it
l Knowledge process:
l Degree: The extent to which processes are defined and

enforced
l Consistency: The extent to which processes are uniform across

the enterprise
l Metrics: The types of measures that the company tracks to

gauge its success
l Human capital:
l Skills: The capabilities that are sought or nurtured in the com-

pany’s knowledge workers
l Motivators: The intrinsic and extrinsic forces that drive people

to do what they do
l Dynamics: The nature of interactions among individuals.
l Culture:
l Rewards: The compensation structure, both formal and infor-

mal, and how it shapes behavior
l Adaptability: The company’s acceptance of or resistance to

change
l Dynamics: The nature of interactions among teams and with

the upper management
l Attitudes: The collective personality and engendered by the

corporate culture

Chapter 6 Business OrganizatiOns 137

Table 6.1 shows the locations of the internal forces in the
organization mapped against the levels of evolution the organi-
zation will go through in its utilization of information for growth
purposes.

The goal of any organization is to reach the innovation level
with all of its internal power foci. It is almost an impossible task
to sustain long term. The reason for this is that dynamic factors
are always at work. Factors such as financial cycles, internal fac-
tors such as human attrition and reorganizations, and infrastruc-
ture changes such as new software and hardware platforms all
lead to dropping from the innovation level back to the optimiza-
tion stage, or even further back. However, if an enterprise organi-
zation embraces the evolution, the higher performance level can
be regained.

References
Collins, J., & Porras, J. (2004). Built to last. New York: HarperCollins Publishers Inc.
Davis, J., Miller, Gloria J., & Russel, A.: (2006), Information Revolution. Hoboken,

NJ: John Wiley and Sons.
Drucker, P. F. (1993). Managing for the future: The 1990s and beyond. Plume/

Penguin Books, New York, NY.

139
Data Architecture.
© Elsevier Inc. All rights reserved.2011

PRODUCTIVITY INSIDE THE DATA
ORGANIZATION

Information Technology
It is appropriate now to cover a different problem area. This

will be a high-level review of the relationship among organiza-
tional structures, information technologies, and productivity.
Initially it will cover trends in information technology, trends in
organizational change, and a brief overview of what has been
called the productivity anomaly. Then it will cover the impact
that information technology change may have on the organiza-
tion, obstructions that prevent effective use of information tech-
nology, and ways to eliminate these obstructions to best use
information technology.

What Is Information Technology?
Information technology can be broadly defined as the use of

computers, software (operating system/tools and application),
communications, and networks to ensure that the information
needs of an organization are being satisfied. This can be regarded
as a baseline concept, although there are many different defini-
tions of what information technology might be.

The implementation of an IT organizational structure has
occurred in two stages. The first stage (phase 1) started in the
1960s and involved the use of computers as a solution to math-
ematical and logical problems. The second stage (phase 2) of
the revolutionary change started in the 1970s and involved the
improvement of the man–machine interface and the use of the
computer for other than the initial reasons it was introduced
(that is, high-speed numerical processing).

There is an important difference that has been defined by
Thomas Landauer (1995) between the two phases in the infor-
mation technology revolution. In his work he points out that
computers in the 1960s handled stage 1 tasks very well. Many

7

http://dx.doi.org/

140 Chapter 7 Productivity inside the data organization

examples can be referenced that have resulted in significant sav-
ings and efficiencies in this area. Manufacturing and banking
institutions provide the best examples of this type of usage.

Phase 2 activities began in the 1970s and included such current
activities as spreadsheet processing, word processing, manage-
ment information systems reporting, OLAP processing, and data
warehousing. It is in the second stage that the computer was being
used for purposes it wasn’t originally envisioned for and that do
not see the savings and efficiency advantages that were evident in
the first stage.

Trends in Information Technology
Many projections that were posited in the early 1980s indicated

that the future would be built on the usage of computers. The pro-
jection of one in four people in industrialized countries interfacing
with a computer each day seemed alarmist and overreactive at the
time. Yet today, in the new millennium, industrialized societies are
interfacing with computers at a rate that has exceeded that.

Increasing business dependence on automated processing
has forced organizations to invest higher and higher budgets into
information technology for seemingly less payback or return. This
dependence and the resulting required investment are occurring at
a very bad time. The business marketplace has become extremely
competitive today. The company that delivers the new product in
a new field will make first blood and garner the lion’s share of that
market. In response to the increased need for performance, hard-
ware vendors are selling more computer power for cheaper dollars.
They are also selling disk storage at decreasing prices and increasing
the amount of data online by enormous amounts.

If this is all true, then why is the cost of information technology
going up in the face of all the lowering costs and hardware technol-
ogy breakthroughs? Many believe it is the software that is causing
the problem. Off-the-shelf software has become more expensive to
purchase. Vendors are trying to recoup their investment in a shorter
period of return by levying high licensing fees. Software develop-
ment companies have to develop products that meet the need or
develop the market and generate the product. All of this is expen-
sive. This is passed on to the buyer in order to cover costs. To aggra-
vate the situation, the alternative effort of developing code has also
become more expensive to write because of higher personnel costs
(this will be covered soon as being one of the major costs of infor-
mation technology today).

Chapter 7 Productivity inside the data organization 141

Vendor Software Development
Let’s look at software development costs for a moment. In the

speed of the technological evolution in hardware, new changes
have to be made to the software to take advantage of the new hard-
ware options. The cycle time of a hardware change has been faster
and allows computers to speed up. Since the invention of the inte-
grated circuit in 1958, the number of transistors that can be placed
inexpensively on an integrated circuit has increased exponentially,
doubling approximately every two years (Moore, 1965).

Likewise it has become an annual event or even twice a year
that software releases come out. This is to take more and more
advantage of the hardware leaps that have taken place. The struc-
turing of software purchase and licensing fees has gone up as well,
increasing the overall cost. All of these things have increased dol-
lar payout for businesses. This payout is offsetting the savings that
were gained when hardware prices were lowered with the techno-
logical advances. The end result is that costs in information tech-
nology are still rising.

New market strategies have been developed where the price of
keeping abreast of the latest release of the software became critical.
It is often said that the latest options in the releases solve all the
problems. It only becomes clear commitment to the next release
that does indeed solve all the older problems … and also brings
on a raft of new ones. Users are becoming angry, and budget-
meisters are concerned about where it will end.

The Other Option
The other scenario, developing code, has become more expen-

sive due to the lack of knowledge of the latest software technolo-
gies. Knowledge of the latest skills usually involves hiring gurus or
high-priced consultants for knowledge transfer to the employees
that will perform the coding work. Unfortunately, the knowledge
transfer is not always the best, and often the consultant walks out
the door with little or no skills embedded in the retained person-
nel. This is a subject covered in greater detail in this chapter.

Additional costs associated with the computer and soft-
ware are formal and informal training, setup, maintenance, and
upgrading the costs for workstations. Although no estimates are
available for this type of cost, it is the feeling of many that these
peripheral costs exceed the cost of the main computers and
networks.

142 Chapter 7 Productivity inside the data organization

Trends in Organizational Change
The term organizational change is relatively broad and can

apply to strategies, to company structures and even to the busi-
ness practices of an organization. Some researchers have defined
organizational change as including the following:
1. Competitive strategy, which is the set of business efforts that

ensure viability in the marketplace.
2. Structural characteristics of the organization, including hier-

archy, functional lines, and organizational boundaries.
3. Work processes, including flow of work, job design, and work

allocation. This involves the work within the information
technology department only.

4. Human resource practices, which includes human resource
practices within information technology and the use of sup-
pliers and contractors.

5. Industrial relations practices that involve the strategies that
interface with external organizations for government, regula-
tory, or labor management practices.

Trends have affected all of the preceding areas and in doing
so have affected the organization in the form of organizational
trends.

Some of these organizational trends include the following
(listed in the order of frequency that they appear to be used by
organizations):
l Reengineering or changing the processes within the

organization
l Reliance on increased functional flexibility or, to put it

another way, cross-training of current personnel for multiple
tasking and sharing

l Downsizing, resizing, or rightsizing, which are sobriquets for
removal of personnel (covered more in the next chapter)

l Increased integration or the collapse and integration of
redundant structure and process within the organization that
either increases or decreases centralization

l Adoption of flexible working hours as a motivational incentive
for employees

l Delayering or the elimination of layers of management within
the organization hierarchy

l Increase in overtime utilized by the organization
l Increase in use of temporary or consulting help

All of these organizational trends are being implemented
because no one is happy with the return on investment of their
information technology dollars.

Chapter 7 Productivity inside the data organization 143

There seems to be a law of diminishing returns operating when
it comes to information technology within the organization. Many
have called it a productivity problem, whereas others consider it
a productivity anomaly. It is simply that the expected efficiencies
and savings are not evident in the IT environments.

Productivity
But what is the problem with productivity? Why, when more

dollars are being spent on information technology than ever
before, does it seem that companies are getting less in return?
What exactly is this productivity issue? Is it perception or reality?

Let us start with the premise that productivity is the creation of
the product in the most efficient manner that will ensure a profit
margin for the company. It is measurable as the variance between
cost to produce and sell and the total of sales. But information
technology does not produce a salable product. It produces a
product that supports the production and selling of the real prod-
uct. Still, even when IT costs are bundled into the production costs,
it can be measured. Unfortunately, the IT costs have not been
dwindling as part of the production costs but have been growing.

The overall production efficiency gains that were felt in the
sixties did not propagate through the decades through today.
In fact, the efficiencies seem to be declining according to some
studies despite the proliferation of information technology and
computers throughout the economy and business world.

Looking into history, it is easy to see that emerging technolo-
gies transformed the economies, improved productivity growth,
and raised living standards. Examples of these are the diesel and
gasoline engines, turbine generators, and other contributors to
the industrial revolution. This emerging technology transforma-
tion continued and propagated through the first part of the twen-
tieth century as exemplified by the use of railways and electrical
power. But this latest emerging technology, the information tech-
nology that encompasses both computer and software, does not
appear to be following in the same footsteps. Despite massive
investments in information technology, it appears that produc-
tivity efficiencies and savings have slowed since the 1970s.

Explanations for the Anomaly in Productivity
The possible reasons for this anomaly can be clustered into

several categories:
l Business has evolved and has become more complex, but it

is truly using the benefits. The expected gains in productive

144 Chapter 7 Productivity inside the data organization

efficiency are present, but they are not showing because busi-
ness hasn’t figured out how to assess them properly.

l Businesses are still evolving. The expected gains in productive
efficiency have not been realized because business doesn’t
really know what it is yet. When business gets past the learn-
ing curve of the computer, it will be able to truly measure
productivity.

l It is just evolutionary change. This indicates that the expected
productive efficiency gains are not here and shouldn’t be
expected because computers and IT are merely tools and not
all that important to the original idea of productivity.
We will cover each theory in detail and see how they address

the problem and how they are related to organizational
structures.

Business has evolved and is using the Benefits
According to this theory, the benefits of information technol-

ogy have been actualized, but measurements have failed to cap-
ture them. This viewpoint has several aspects to it. One aspect of
this view is that in the nonbusiness area where there is no mea-
sured output of a product, productivity is zero. For example, pro-
ductivity gains from information technology use in government,
education, and health areas (as opposed to manufacturing) will
not show any productive efficiency gains by the standard mea-
surement techniques.

Similar problems exist in the financial and services sectors.
These two areas have made significant information technology
investments but have shown little productivity gain according
to the standard definition. Perhaps it is because finding the right
metrics is harder to accomplish or the true cost of information
technology can’t be delineated with enough specificity.

So either measurement problems are more difficult to solve or
the number of the areas affected has grown. One argument that
supports this is that in areas where the output is measured very
well and the investment in information technology has been sig-
nificant, such as the telecommunications industry, the produc-
tivity gains have proven to be substantial.

The implication then is that in areas where large investments
were being made in information technology and there were no
metrics defined, the output was poorly assessed or not measured
at all. Therefore, there are productivity savings and efficiencies
present; they just haven’t been made visible. Complicating this is
the nonmeasurability of some of the components of information

Chapter 7 Productivity inside the data organization 145

technology investment that have made life better in the generic
sense. Examples of these components are conveniences to the
public (ATM access for banks), access to more information
(World Wide Web), and new services (e-mail and instant messag-
ing communications).

Businesses are still evolving
According to this theory, information technology has the

potential to enormously increase productivity, but there are bar-
riers that have prevented this from happening. Over time, when
the barriers are removed, the productivity will be realized and the
train will finally arrive. Some things posited in supporting this
scenario are poor organizational structures, poor data architec-
ture design, and marginal usefulness of computer systems.

There is some merit to this theory because there have been
lagging periods after a new technology implementation that
allowed the customers to adjust to the change. For example, it
took several decades for television to be propagated before the
explosion of its use began to occur. Part of the increase in speed
of the propagation of television was the drop in price to the con-
sumer, which helped foster distribution and transmission.

Another factor noted as being a roadblock is a familiar one:
poor organizational structures. As noted in previous chapters,
poor organizational structures only make matters worse. To para-
phrase one observer in the field:

At best, a computer system merely reinforces the processes and
hierarchies that are already present in an organization; at worst,
they amplify them. Bad systems, when automated, simply let you
make more mistakes—faster. As successful organizations have
found, real productivity gains are only ever realized when certain
critical enablers are present. These are a sense of shared vision and
mission, clear communications, stable and understood processes,
and a fervent zeal for continued improvement.

An additional factor implied supporting this theory is that
there is insufficient training to fully exploit information technol-
ogy gains. As seen with the evolution of the hardware and soft-
ware in the industry, the rate of change is accelerating and it is
very difficult to keep a workforce fully apprised of all the nuances
without spending inordinate amounts of time on training.

A final supporting concept for this theory is that the computer
is failing the test for commercial usability and usefulness. Thomas

146 Chapter 7 Productivity inside the data organization

Landauer (1995) indicates that “the usability of the computer is
poor because of lack of standardization and is fraught with exces-
sive complexity (i.e., the user has too many features and options
to learn).” He also indicates that its “usefulness is limited, as rarely
more than a small number of the features on computer are used
fully.” His belief is that computers will be realized for their capa-
city to be powerful tools for the service economy through task
analysis, iterative design processes, and trial use.

it is Just evolutionary change
The final theory for explaining the productivity anomaly is

that the computer and information technology are just not that
important. It purports that computers and computer systems
just aren’t as productivity enhancing as originally believed. In
short, there were high expectations based on the first wave of
productivity, but it turns out they are just tools.

Concepts that support this are the lack of widespread orga-
nizational change with the implementation of advances in
information technology, the underestimation of information
technology operations costs, and the confusing scenario of the
accelerating technology change. For certain areas there can be
no doubt that information technology has had a fundamental
impact. Some of these are the airline and telecommunications
industries. But for other nonspecific industries and business,
it did not fundamentally change the business process. It only
facilitated the automation of something. For example, the users
of spreadsheets, word processing, e-mail, and the Internet have
not been significantly or positively impacted by these improve-
ments. In fact, in some ways they have negatively affected the
productivity.

Examples of this antiproductivity are spam and junk
e-mail (jokes, memes, chain letters) and the Internet (non-
work searches), which degrade the productivity in all informa-
tion technology departments to some degree or another. From
another perspective, the cost of the information technology
operations and the computers may have been underestimated.
This cost covers the upgrading of networks, purchasing of moni-
toring tools, technical support, and the training of employees
to create or use new computer applications. It also involves the
degradation of expensive human resources rather than inexpen-
sive ones. (Executives and senior staff now are forced to spend
more time understanding and using information technology in
order to use the new control tools.)

Chapter 7 Productivity inside the data organization 147

The confusing scenario of accelerating technology change is
based on the fact that the pace of technology evolution is accel-
erating. Computers, both hardware and software, are symbols of
this. According to that concept, there should be a corresponding
improvement in productivity. But what if information technol-
ogy has really not been accelerating but is instead just moving
forward at a constant velocity? It sounds paradoxical, but the
“perception” of its acceleration might be based on the prolifera-
tion of so many products and options in the marketplace. The net
result would be that the fragmentation within that technology
would be dispersed and distributed over a wider range, thus giv-
ing the appearance of less productivity.

Information Technology and Its Impact on
Organizations

There have been four basic impacts predicted by the pundits
in the industry for the impact of Information Technologies on the
organization:
l Information technology changes many facets of the organi-

zational internal structure, so it affects the roles, power, and
hierarchies in the organization. By virtue of this, it should end
up eliminating the middle management in an organizational
structure. In fact, two distinct results have occurred associated
with this: There has been an increase in organizational man-
agement centralization in some industry cases and the oppo-
site decentralization in other industries. It does indicate that
information technology is searching for an optimal identity
that will allow it to evolve where necessary.

l Information technology will stimulate the formation of solu-
tion-focused teams that along with communication tools will
become the primary organizational form. This would flat-
ten the top-to-bottom hierarchy significantly. Peter Drucker
(1998) speculated that the symphony orchestra might be the
model of the organization of the future. Within this model,
each player would be responsible for his or her own specific
piece of the entire work, with minimal guidance from the con-
ductor. While this might be desirable, it has not happened,
and probably never will, due to top and senior managements’
inability to deal with strategic rather than operational issues.
Live for the now and manage to the stock price is de rigueur.

l Information technology will force the disintegration of orga-
nizations due to steadily decreasing costs of interconnections

148 Chapter 7 Productivity inside the data organization

between businesses. Therefore, companies will have to change
their organizations to a market-based form that will use exter-
nal service-based organizations to perform the work requested
by the hierarchical organization. This purports that the organi-
zational structures are being degraded through the crumbling
of boundaries between businesses. This crumbling is facili-
tated by the combined effects of increased electronic informa-
tion flow, use of common databases, and tight electronically
bound interorganizational processes. This has evolved partially
as market pressures have increased within different parts of
the industry. Unfortunately, the metric being used is how the
market share is being affected by the stock price instead of just
competing for market share.

l Information technology has proven that improved com-
munication ability and improved data accessibility lead to
increased system integration across product line function and
geographic lines. Therefore, the change to the organization is
predictable and expected. According to this, with integration
of data and process comes the natural progression of integra-
tion of organization across functional, geographic, and prod-
uct boundaries. This remains to be seen as businesses and
organizations coevolve.

Why Invest in Information Technology?
With any and all of the preceding theories being true to some

degree, why and to what degree will organizations invest in
information technology? As pointed out before, organizations
invest in information technology to provide a flexible, adapt-
able environment for future business, improve the integrity and
stability of the data and the processes the organization depends
on, and improve the quality of products and customer relations.

The positive effects of information technology have been felt
by the shrinking of time and distance to nil. Geographically dis-
tributed processes can now be completed across countries and
time zones with impunity. It is understandable that organiza-
tional history is imbedded in the use of common databases by
many users and can be maintained over long periods of time.

Telecommunication has opened wide the communications
options of organizations. Prior to the recent years, mail and tele-
phone were the only methods of communication. Now we have
fax, e-mail, cellular phones, cellular modems, voice mail, paging,

Chapter 7 Productivity inside the data organization 149

handheld computers, texting, and videoconferencing, all of which
have added many channels to the communications options.

Information access has increased through the use of inte-
grated database systems and new access mechanisms and search
engine tools via the Internet. Information technology has proven
it is possible to reduce the number and levels of management and
therefore has flattened some organizational hierarchies. Some
theoreticians insist that hierarchies (and the power-broking they
entail) are inherent in human nature and will continue despite
any efforts to the contrary. This is perhaps too cynical.

Also, as a result of information technology investment, there
has been a decentralization of decision making. Organizations
originally concentrated their decision making in the upper lev-
els of the organization. As seen in previous chapters, it is critical
that the decision-making power needs to be delegated downward
for the best efficiency of the business process. In conclusion, the
effect of information technology and the investment in it have
been very positive—that is, as long as a chosen focus is decided
on, the path to the future is architected, and it is embraced from
top to bottom in the organization.

Ineffective Use of Information Technology
One area of easily observed concern is the negative attitude

taken by individuals in relation to changes made by and for infor-
mation technology. Many executives and midlevel managers are
ambivalent to information technology. Older senior executives
often feel particularly uncomfortable and threatened by infor-
mation technology. In doing so, they end up not using it cor-
rectly and thus fulfill their own prophecy. Employees other than
management may also feel threatened, particularly if there is the
possibility of job loss or the fear that the technology will be too
difficult for them to understand.

Another impediment is the absence of synergy among the
organization, the individual, and group efficiencies. Changes in
individual efficiency do not necessarily indicate group or organi-
zational productivity. Some of the specifications of these barriers
are as follows:
l Choosing slower forms of communication. An example may

be using e-mail to communicate rather than speaking or
instant messaging (which can be up to five times faster).

150 Chapter 7 Productivity inside the data organization

l Formalized communication. An example is that communica-
tion is maximized when both parties are at the same level of
knowledge and understanding. It is lower and slower when
one party has to teach and communicate to the other at the
same time.

l Quality versus quantity. So much energy is expended on
reediting text, fine-tuning print fonts, formatting, and embel-
lishing presentation material that it consumes any informa-
tion technology savings on the task.

l Increased requirements for skill and complexity. The fre-
quent introduction of new hardware and software to informa-
tion technology leads to rapid skills obsolescence or imposes
major learning burdens on workers.

l Generation of more work by computers. Despite what it may
seem, computers may actually increase paperwork by produc-
ing information faster to the worker than it can be reasonably
used.

l Administrative overhead. The technical support required to
keep information technology operating may lead to hiring
high-salary employees, which eats up any cost savings.

l Management control. Information technology is often
charged with providing organizational management with per-
formance data. This data usually fosters managerial control
but does nothing significant to the decision-making capability
or productivity.

Other Impediments to Organizational
Efficiency

These are also a series of factors that nonspecifically affect
the productivity of information technology in the organization.
These are possible areas of concern when productivity is ailing
for reasons other than what has been pointed out so far.
l Poor-quality training provided to users
l Lack of ongoing user support availability
l Limited extent of user involvement of the user in new applica-

tion development
l No reward mechanism for using the new applications
l No job security for the workers
l Poor coordination between groups using the applications
l Political conflict within the organization (turf battles)
l Absence of a willingness to accept the new applications

Chapter 7 Productivity inside the data organization 151

Organizational Impediments to Information
Technology

In order to overcome some of the impediments in organiza-
tion, changes in management behavior must be made. It does
appear that management has been misunderstanding the mea-
surement of information technology. Most management appears
to measure information technology by one or two criteria instead
of several. Moreover, they often do not share the results in detail
with the information technology group, so there is no feedback or
results to allow the information technology department to make
changes. A gap between hostile camps soon develops.

Tom Peters advocates approaches that would radically slash
payrolls and eliminate certain structures and organizational lev-
els altogether. Peters sees little role for management except to
stay out of the way of the new organization that must act for the
most part autonomously. His view could be considered similar to
the reengineering efforts of the 1990s. These efforts claimed that
the fault was not with the technologies but rather in the business
processes, which still reflected organizational thinking from a
previous time. Peters feels that the right business structure must
first be created and then automated.

One form of the radical reorganization that has been tak-
ing place is downsizing. Although it is covered in greater detail
in the next chapter, it should be covered here from the perspec-
tive of impact to the organization. Management often orches-
trated the downsizing, believing that the productivity that would
increase would help them to reduce some of the costs they had
been incurring. However, in many cases the downsizing did not
have the desired effect, mainly because the managers making the
downsizing decisions did not have an adequate understanding of
the big picture for the organization or were focused on whether
or not they themselves were ‘safe’. They ended up reducing the
workforce but not the work—making already workload-taxed
workers more overtaxed. Thus, as a result, many of the wrong
people, levels, or functions in the organization were cut. In most
cases, long-term costs increased because of downsizing.

Technological Solutions for Information
Technology

It has been noted that information technology has not made
the hoped-for improvements for the productivity of managers.

152 Chapter 7 Productivity inside the data organization

However, managers that do not have as many repetitive tasks as
their subordinates can be made more productive with the use of
management, project, and communication software.

Bruce Love (1993) identified the nature of the problem as
being twofold: the problems with the information itself and the
nature of the information technology organization. He identifies
three obstacles to exploiting information as a resource:
l The prevailing limits and vision of information
l The limits of supporting technology
l The nature of information, its sheer size, volatility, and the

difficulty associated with managing it
Although these points are not covered here in detail, further

reading of his work is suggested to have a better understanding of
his perspective.

Many arguments can be made with respect to what will best
serve to increase productivity after the introduction of informa-
tion technology. One suggestion is that the managers must make
changes to increase their own productivity, and it in turn will
increase their subordinates. Among the actions the managers
may take is the introduction of new organizational structures to
facilitate the productivity effort. However, there are also solutions
that suggest that the problems with information, software, and
technology must be addressed first. In both cases they represent
opportunities to help solve the problem.

Human Resource Issues in Information
Technology

There have been studies that show that aligning human
resource efforts and information technology implementations
solves many of the problems that result in productivity loss. It
appears that a synergy was created when new human resource
practices were implemented along with information technology
changes. This synergy was best seen in an environment where
the workers had a voice in their own futures. It also appears that
human resources is involved in resolving internal conflict issues
that deal with the politics of the organization. It is said that orga-
nizations that are the most profitable tend to be the healthiest
and least internally conflicted. They are comfortable with their
goals. The organizations that espouse this decide how they want
to run themselves, decide how they will handle their people,
and finally decide how they will handle information technology.
In these healthy companies, information technology decisions
come after the more fundamental issues are handled.

Chapter 7 Productivity inside the data organization 153

Paul Strassman (1995) states that firms can improve their
information productivity by maximizing their knowledge capital,
which is making the best use and reuse of their knowledge work-
ers and their own acquired corporate knowledge.

Quality of the Workforce
Another human resources issue is the changing of the qual-

ity of the workforce. The new worker is less motivated to learn
and acquire knowledge than the older worker. This is not
because they are less qualified but because the educational
process has focused on specialization of tasks rather than
understanding the concepts of the whole process.

New workers are less inclined to focus on improvement
and broad-scale problems without incentives and motivation
because they have a different work ethic that is more results-
based and material than that of older workers. There is also
a sense of entitlement in the newer generations of workers
that has been instilled as the “me” generation has passed on
its heritage of self-focus to their offspring. All of these factors
introduce a different flavor into the blend of the workforce
and can create gaps and conflicts between younger and older
workers.

Summary
As in the case of most complex puzzles, there are several

solutions. It can be said that the different theories specified
earlier in this chapter really are facets of the problem that
contribute to an overall explanation. It is, however, easier to
understand the different theories. This is because they deal
with the measurement of expected results, which are real
components.

In many situations, computers are workhorses for activ-
ity. They reduce human effort. Based on definable indicators
of output produced, the introduction of computers and com-
puter systems has facilitated both growth and productivity. In
areas such as telecommunications, these gains are measure-
able. In banking, finance, and parts of government administra-
tion, they may not be. If the same rule-set that the others are
measured by is applied, these other areas would look stagnant
when they aren’t. Output measurement appears to be a major
part of the productivity problem.

154 Chapter 7 Productivity inside the data organization

Maximizing the Use of Information
Technology

A major conclusion that can be gained from the material in
this chapter is that information technology is not a panacea.
That perspective must be understood. In terms of importance,
it ranks below the fundamental issues such as human resource
strategies and must be integrated after the fact into these
strategies.

Michael Scott-Morton (1991) concluded, “None of the poten-
tially beneficial enabling aspects of information technology can
take place without clarity of business purpose and a vision of
what the organization should become. A clear mission visible
to, and understood by, the organization is a well-known prereq-
uisite for any organization change. However, when the issue at
hand is organizational transformation, enabled by technology,
it appears particularly important to invest a large amount of
time and effort in getting the organization to understand where
it is going and why.”

It appears that two major conditions have to exist for a suc-
cessful organizational transformation to take place. The first
is that the organization has to align its corporate strategy and
information technology. The second is that the organization
must have a robust information technology infrastructure in
place, including electronic networks, and understood standards
and procedures.

A final conclusion from Scott-Morton (1991) is, “One root
cause for the lack of impact of information technology on the
improved economic performance of organizations is the orga-
nization’s unwillingness to invest heavily and early enough
in human resources. Changing the way people work can be
extremely threatening and therefore takes a great deal of invest-
ment. There must be investment in new skills, in psychological
ownership of the change process, and in the safety net under
the employee so there is no fear of taking prudent risks. These
investments are required to be taken throughout the organiza-
tion, as management itself is part of the change. The ultimate
goal is to give all employees a sense of empowerment.”

Without looking at the entire organization as an enterprise,
which is an organism unto itself, the problems cannot be cor-
rected. Specifically the problems have left information tech-
nology underutilized and left wide gaps between departments
within the organization. This only foments the political strife
and turf battles that are so destructive.

Chapter 7 Productivity inside the data organization 155

References
Drucker, P. F. (1988, January–February). The coming of the new organization.

Harvard Business Review, volume 66, 45–53.
Moore, G. E. (1965). Cramming more components onto integrated circuits.

Electronics Magazine, volume 38, number 8, April 19, 1965.
Landauer, T. K. (1995). The trouble with computers: Usefulness, usability, and

productivity. Cambridge, MA: MIT Press.
Love, B. (1993). Enterprise information technologies: Designing the competitive

company. New York: Van Nordstrand-Reinhold.
Morton, M. S. (1990). The corporation of the 1990’s: Information technology and

organizational transformation. New York: Oxford University Press.
Peters, T. (1992). Liberation management: Necessary disorganization for the

nanosecond nineties. New York: Alfred A. Knopf.
Strassman, P. (1995). The politics of information management. Information

Economics Press, New Canaan, Ct.

157
Data Architecture.
© Elsevier Inc. All rights reserved.2011

SOLUTIONS THAT CAUSE
PROBLEMS

Downsizing and Organizational Culture
While the average worker has become numb by the near daily

accounts of new layoffs, a New York Times (1996) national survey
finding is perhaps more telling: Since 1980, a family member in
one-third of all U.S. households has been laid off. By some mea-
sures, downsizing or “rightsizing” has failed abjectly as a tool to
achieve its principal goal: reduce costs. Downsizing for the sake
of cost reduction alone is now being looked on as shortsighted.
Considering downsizing from the perspective of increased global
competition, changing technologies, and the changing nature of
work provides an interesting insight. It is clear that downsizing
can be seen both as a response to and as a catalyst of organiza-
tional change.

From the business perspective the most significant effects of
downsizing are cultural within the organization. This is an indis-
tinct connection between downsizing and organizational culture
because there are different variations and approaches to down-
sizing. Proactive downsizing is planned in advance and is usually
integrated with a larger set of objectives. This is often done in the
case of well-thought-out merger processes. Reactive downsiz-
ing is typified by cost-cutting in order to meet budget goals. It is
usually done after periods of inattention to organizational or pro-
ductivity problems by management. It is also the most demoral-
izing forms of downsizing.

Downsizing can range from involuntary reductions to resigna-
tion incentives and job sharing. There are also different options of
deciding who remains and who leaves. There are different modes
of downsize planning—from secretive sessions by management
to solicitation and discussion of ideas from employees. There are
different standards of notice of terminations, from same-day ter-
minations to generous 90-day or longer notices. There are even
differences in intent. Reductions can be planned to create as little

8

http://dx.doi.org/

158 Chapter 8 SolutionS that CauSe ProblemS

a break as possible from what they have known in the past, or
they can create deliberate disruption to the status quo.

Downsizing Defined
The term downsizing is problematic in its usefulness. Often,

because it is associated with “giving people the axe,” it is not
a term that many want to use. Some researchers are concerned
that downsizing has become closely associated with the con-
cept of organizational decline and its negative effects. Cameron
(1994), for example, defines downsizing as a positive and purpo-
sive strategy: “a set of organizational activities undertaken on the
part of management of an organization and designed to improve
organizational efficiency, productivity, and/or competitiveness.”

Downsizing, when it is defined this way, falls into the cat-
egory of management tools for achieving desired change, much
like restructuring and reengineering. Clearly, this viewpoint is
extremely broad. Downsizing very likely will impact or impinge
on in-place change efforts such as the introduction of “total qual-
ity management,” “reengineering,” or “reinventing” initiatives.
They are not the same as Cameron’s definition.

Very few organizations implement downsizing in a way that
improves their effectiveness. Most organizations deteriorate in
terms of levels of quality, productivity, effectiveness, conflict, low
morale, loss of trust, and rigidity. In order to look at this subject
objectively, downsizing can be simply defined as a reduction in
the size of the workforce.

Culture Change
Changing an organization’s culture is a messy business.

Studies have indicated that this change becomes tougher as orga-
nizations become more established and successful. The very basis
for a company’s earlier success can hinder necessary changes
under different market conditions. Also, research supports the
idea that organizational culture change is a multiyear effort, thus
making the implementation more complicated.

If the definition of culture change is broadened to include
both intended consequences and unintended consequences,
then it is a statement of fact that downsizing is a catalyst for cul-
ture change. Organizational theorists like Lewin (Ash, 1992) and
Argyris (1992) have insisted on the need for a destabilizing ele-
ment in any change process. The existing status quo is conceptu-
alized as a stasis state in which forces resisting change and forces

Chapter 8 SolutionS that CauSe ProblemS 159

pushing for change have found equilibrium. They feel that in
order to shift the balance, the situation needs to be destabilized.
Euphemistically speaking, people have to be shaken to get their
attention so they will be aware of a need for change.

Downsizing qualifies as a destabilizer of the status quo even
under the mildest circumstances, such as where departures
are voluntary attrition. Management literature abounds with
examples of burnout, depression, anger, and betrayal as com-
mon responses by survivors of layoffs. However, not all responses
are negative. Some people appear to get “charged up,” finding
new excitement in their work, being challenged by the prospect
of “doing more with less,” or saving the organization. But these
people are usually in positions of power or those who were happy
they had “dodged a bullet.”

In any event, it must be acknowledged that downsizing has
changed the unwritten contract of employment. No longer can
the employer offer job security. The “new” contract is conditional
employment. Sometimes training and development opportuni-
ties provide some amelioration to this situation.

From a broad cultural perspective, downsizing can be seen as
the embodiment of the “creative destruction” inherent in capital-
ism. Although many management personnel feel that downsiz-
ing is not easy to watch and people will get hurt, they feel that
this is the way the market takes care of itself. Bridges (1994) and
others warn the rank and file that only the foolish will let their
fates be decided by those they work for. The wise ones will think
and act like private consultants even if they fall under the label
“employees.”

The symbolic aspects of culture change associated with down-
sizing should not be overlooked. The very act of downsizing cre-
ates an appearance of leadership that is taking charge. An older
example of this is the Clinton-Gore program in the U.S. govern-
ment. They made the claim that by eliminating 272,900 fed-
eral jobs, they had reduced the cost of government. They were
applauded for achieving the goal. The symbolism associated with
the change weighed more heavily on people’s minds than the
costs, which included contracting out at a much higher price for
services previously provided in-house. In fact, they expensively
outsourced the work to the private sector, and there were no sav-
ings, only increased taxes. It was the appearance of change that
was exciting to the media.

Speaking of politics, the political aspects of culture change
within an organization that are associated with downsizing are
also very dramatic. Downsizing represents a shift in power toward
top management and shareholders. The unspoken message is

160 Chapter 8 SolutionS that CauSe ProblemS

that management isn’t afraid to decide who “has a future” with
the organization and who doesn’t. The message is clear: “If you
want to continue to work here, you will have to work harder and
more responsibly, be a team player, and so on and so on.”

Organizational-Level Analysis
If there is a right way to downsize, it is through careful examina-

tion of the organization it will be applied to. Organizational-level
analysis emphasizes the need to plan, analyze, and implement
downsizing carefully, since it must have the desired effect of
improving and streamlining work processes. Key assumptions
in this analysis include an engineered notion of organizations, in
which the parts are examined to improve the fit with the whole.
Organizational survival must be seen as a prime directive. Along
these lines, some research has revealed some interesting things.

In one of the key early works on downsizing, Tomasko (1990)
identifies corporate cultures based on mistrust as a leading
cause of excessive staffing. American corporate culture, he con-
tends, rewards winners, not losers; places control at the top of the
agenda; and causes people to believe that it is better to hide mis-
takes than admit them. In consequence, staff groups are formed
to serve as watchdogs. Managers respond by attempting to gain
control of even more bloated corporate bureaucracies. Tomasko’s
solution is to use downsizing to create a flatter, leaner organiza-
tion in which a team environment prevails and people trust one
another to contribute to common goals.

In the 1990s Cameron and others conducted extensive studies
of downsizing in terms of the number of organizations involved,
breadth of investigation, and time span. Their conclusion was that
downsizing was a necessary and positive approach to becoming
more competitive. Also, it was an appropriate response to the dis-
proportionate growth in the white-collar workforce over recent
decades.

The successful companies in their study not only reduced the
work force but also engaged in organizational redesign and sys-
tematic efforts at quality improvement. Successful companies
engaged in downsizing as a purposeful and proactive strategy.

Several books in the industry addressing culture change in
management explicitly state what many will not state: that part
of the intentional aspect of downsizing in the midst of culture
change is the infliction of pain on at least some to get the atten-
tion of all. This is the therapeutic “slap in the face” that has been
referred to.

Chapter 8 SolutionS that CauSe ProblemS 161

Tichy and Sherman (1994) talk of avoiding the “boiled frog
phenomenon,” in which frogs boil to death while the water slowly
changes from cold to boiling. Kearns and Nadler (1992) con-
clude, “You also have to create dissatisfaction with the status quo.
Otherwise, why are people going to work hard to disrupt it? And
you cannot wait around until everyone feels induced pain from
the marketplace, because then it’s too late. So you need to have
induced pain. You need to throw a few punches here and there.”

Other analysts defer praise for downsizing. These analysts
argue that an organization does not exist only for profits; that is,
profits should be viewed as a means to other ends, rather than as
the only end. They believe that shareholders have taken over too
much of the power. Their opinions are that institutional share-
holders have gotten greedy and have imposed a gouging price
on the multitudes of employees who have lost their jobs. These
opinions surmise that any realized performance increases may
be at the expense of hollowed-out companies.

Downs (1995) expresses an even harder view. He decries the
public acceptance of a “culture of narcissism,” in which corpora-
tions have only one objective: profit. Part of this culture of nar-
cissism is reflected in the increase of senior executive salaries by
1,000 percent between 1980 and 1995, the same period of time
in which record layoffs were amassed. And this increase hasn’t
slowed. To quote CNN from August 30, 2005:

If sky-high executive pay at publicly traded companies gives you
vertigo, you might want to read this sitting down. In 2004, the
ratio of average CEO pay to the average pay of a production (i.e.,
nonmanagement) worker was 431-to-1, up from 301-to-1 in 2003,
according to “Executive Excess,” an annual report released Tuesday
by the liberal research groups United for a Fair Economy and the
Institute for Policy Studies. That's not the highest ever. In 2001, the
ratio of CEO-to-worker pay hit a peak of 525-to-1. Still, it's quite
a leap year over year, and it ranks on the high end historically.
In 1990, for instance, CEOs made about 107 times more than the
average worker, while in 1982, the average CEO made only 42
times more.

Organizational/Individual-Level Analysis
The analysis at the organizational/individual interface should

be focused on healing the effects of downsizing on those who
remain in the organization. Research in this area has provided
documentation of the harmful effects downsizing can have on the
“survivors”; these effects have been described in terms of lower

162 Chapter 8 SolutionS that CauSe ProblemS

morale, high stress, and a employee mindset marked by anger,
envy, and guilt.

Brockner and colleagues (1994) studied the “fairness” of layoffs
from a procedural justice perspective. Their results showed a link
between perceived fairness of the layoffs and the survivor’s com-
mitment to the organization. Among the fairness factors Brockner
examines is the connection with existing corporate culture.

Organizations such as IBM, which have traditionally had a
policy of averting layoffs, are likely to be perceived by employ-
ees as violating a personal contract and therefore seen as more
unfair when they finally do resort to layoffs. When the conversion
by IBM to the downsizing corporate mentality occurred, it was
viewed as a betrayal by many who had worked there for decades.

Downsizing’s Impact on Culture
For organizations, particularly the IBMs of the world that long

resisted layoffs, it is hard to imagine that the organizations or
their cultures have remained anything close to intact. Answers
must be defined for the following questions:
1. For whose benefit does the organization exist? It is clear that

organizations do not exist today for the well-being of rank-
and-file employees as they once did. With the stock market
driving business choices the way it does, it seems clear that
the shareholders have the upper hand. They are partnered
with CEOs who received an average pay raise in 1995 of 23
percent (Washington Post). Look at who is making money and
who is not.

2. What are the basic assumptions among people about work-
ing relationships in the organization? The basic assump-
tions about working relationships have changed. Many of
the assumptions have changed in ways that cannot be well
assessed. It appears, minimally, that relationships are less
“familial” and much more competitive than in the past. What
is the value of commitment and loyalty? What is the impact of
discarding the concept that the organization is a community—
even a family? How will that play out in terms of cooperation
given to others as opposed to “backstabbing” in the intense
competition for scarce resources? There are no answers to
these questions. The only conclusion to be reached is that
things have changed, not how they have changed or to what
degree.

3. What are the basic assumptions the organization and the
employee make in relation to each other? In order to really
understand downsizing, it is necessary to look beyond the

Chapter 8 SolutionS that CauSe ProblemS 163

stated rationale for reductions. How many organizations
admit, for example, that one of the key objectives of a layoff
is to dump the “dead wood”? There is much more than meets
the eye. It is intuitively plain that IBM today is in the same
business as they were in the past. It will take time and study to
know if these new organizations are as habitable for modern
workers as they were in the past.

A Different Approach to Culture Change and
Downsizing

How can senior management steer an appropriate course?
This is not an easy task. In the private sector, the stock market
seems to well reward a tough approach to downsizing. For exam-
ple, AT&T’s Robert Allen was criticized about, but still received, his
pay package of $16 million during 1995, the same year he began
to downsize 50,000 people out of their jobs This has occurred at
other organizations time and again. Overall, the media have given
friendly coverage to downsizing.

While being moralistic about changes in organizational cul-
ture is best resisted, there are still many leaders who wish to
accept responsibility for the “moral” or “spiritual” fabric of the
life of their organizations. For those persons, the leader needs to
examine just how well the type of downsizing proposed fits with
the values and beliefs he or she would like to see carried forward.
It may require the leader to put aside the technical rationale for
reductions provided by external consultants. It may also require
reconsidering the implementation strategy devised by a legal
team in conjunction with an outplacement service.

Summary
It is evident, even definitional, that senior management’s mind-

set will have a great deal to do with how downsizing is imple-
mented in an organization. It also seems, beyond question, that
downsizing acts as an organizational destabilizer and thus as a
catalyst for cultural change. Whether the resultant cultural change
is beneficial to the organization as a whole is open to specula-
tion. Because downsizing is a relatively recent phenomenon at the
white-collar level, time will have to differentiate between short-
term effects and reactions and the longer-term consequences.
Perhaps less bloated bureaucracies will free people to get more
work done and to interact more positively. Perhaps a whole

164 Chapter 8 SolutionS that CauSe ProblemS

generation of management thinkers understated the value of loy-
alty and commitment that accrued over long and stable employ-
ment tenure. Time will tell the story.

Outsourcing
What is outsourcing, and why does outsourcing jobs make

sense? Outsourcing information technology functions can
include a number of different components of the information
technology department, including the following:
l Disaster recovery
l Network management
l Maintenance of operating system
l Maintenance of application software
l Maintenance of hardware
l Web creation, maintenance, hosting
l E-commerce development

Some of the information technology functionality can more
easily be outsourced than others. One of the easy functions to
outsource is maintenance. This can be done to vendors for which
there are reasonable connections. For example, maintenance of
hardware can rest with the manufacturer or vendor from whom
the equipment was originally acquired.

Alternatively, there are many firms that can function in this
area. Hardware maintenance provided by a third party is often set
up as being bundled with the lease for that equipment. Disaster
recovery is a functional area where outsourcing is more critical
than with any other. It can be successful if implemented correctly.

A good disaster recovery plan is imperative to lowering the risk
of a system failure due to any number of causes: natural disasters,
power outages, fires, and floods. The problem is, while initially
easy to develop and set up, disaster recovery plans are seldom
maintained or tested well by internal functions. Disaster recovery
plan maintenance and testing tend to become low-priority tasks,
as there are always more pressing current issues to deal with and
resolve.

If the disaster recovery strategy is not maintained as a living
evolving strategy, then failure is imminent. By the time informa-
tion technology typically gets around to testing and maintaining
the disaster recovery plan, situations typically have changed so
dramatically that the plan is obsolete and, therefore, useless.

Network management and upgrades, web development and
hosting, and e-commerce development are growth areas where
very few companies can justify the expenditure for additional
personnel. These areas of information technology are changing

Chapter 8 SolutionS that CauSe ProblemS 165

so rapidly that it takes cutting-edge expertise to manage and
develop. Education must be constant in order to keep up on the
latest developments with the technology.

When outsourcing to the expert consultant or service group/
vendor, you take some risk. The expert is going to demand top
compensation and can, in times of a seller’s market, hold an orga-
nization hostage for higher pay. This approach is typically fatal to
their employment with that company, but they can easily move
to another. They are opportunistic feeders. They walk out the
door with no knowledge transfer taking place. Then the hiring
company is stuck reorienting another expert to the methods and
background.

In some cases, the cost of having all information technol-
ogy functions in-house may be justifiable. As an example, the
hardware maintenance of some equipment may be able to be
performed by an internal employee whose job function might
include being the contact person for the company and the out-
source vendor(s). That person might perform maintenance on
hardware, perform daily backups, maintain system job queues,
and ensure that maintenance and upgrades to application soft-
ware are performed by the outsource vendor(s). A person with
this skill set is easier to find in the market, less likely to leave, and
less risky to the internal in-house function.

Another area where in-house personnel could be justifiable
includes software application upgrades. This is true in packaged
applications with no modification to the source code. If there are
modifications, a cost justification needs to be made to employ an
internal programmer to maintain upgrade applications or out-
source the function to a firm with programming expertise. They
simply apply the patches or upgrade supplied.

In-house programmers of this type are seldom cost justifi-
able in small firms, but they may be cost effective in large orga-
nizations with a large amount of modified code. Even in these
instances, turnover and the risks associated with it should be
considered—especially for “business-critical” applications. It all
comes down to cost/benefit analysis of each function and deter-
mining the level of risk you are willing to accept.

With some of these caveats in place, some of the positive
aspects of outsourcing can be discussed. There are a number of
benefits to outsourcing the information technology function.
Only continual education and exposure to the latest products
and developments in the market provide expertise to outsourced
information technology professionals. Firms providing outsourc-
ing services must provide their employees with the necessary
expertise in many areas or they will face dissatisfied customers.

166 Chapter 8 SolutionS that CauSe ProblemS

Contracts don’t last long if the servicing agent doesn’t have the
skills. Internal information technology department employees
must be afforded this same degree of education in order to be
retained. Many companies consider the combined costs of salary
and benefits, employee turnover, recruitment fees, and educa-
tion investment a virtual wash when compared with outsourced
information technology services fees. So there is no real saving
there.

Generally, the outsourced information technology services are
considered a lower risk. Under no circumstances should develop-
ment be outsourced to outside vendors. We will cover this later,
but as stated, outsourced information technology services should
be those considered to be low risk.

Availability of resource is a second benefit to outsourcing. The
vendor will also more likely have a pool of employees from which
to draw (redundancy in an internal information technology staff
is impossible to maintain except in the largest of companies). An
indirect benefit of nonemployee staffing is the related human
resource cost benefit. By outsourcing, you are hiring a company,
not an employee. Administrative headaches and costs of main-
taining an employee for low-risk tasks are thereby eliminated.

Another benefit of not having an employee is the savings of
costs of training and ramp-up. While it is true that these costs are
to some extent included in the fees the outsourcing firm charges
for their services, the risk and probability of higher than average
turnover within a company should be recognized and addressed.

Maintaining outsourced services can also increase the reliabil-
ity of a company's system. The chances of a good outsource ven-
dor going out of business is less than that of an employee in the
information technology staff leaving the company.

A further benefit of outsourcing information technology is
that control of the systems rests with management. The vendor
providing services works for the company and, in most cases,
doesn't get involved with internal company politics and hidden
agendas. Control is maintained outside the information tech-
nology function. The risk of the system being left abandoned or
neglected is reduced.

While there is less risk with a large internal information tech-
nology department, few firms can afford the cost of a department
large enough to employ people with the required degree of exper-
tise in all areas of information technology. Additionally, many
companies have asked themselves if they really want to be in the
information technology business. Many would rather concen-
trate on their core business, improving their processes and capi-
talizing on current market trends and technologies.

Chapter 8 SolutionS that CauSe ProblemS 167

Out-of-pocket costs may be somewhat higher than that you
would pay an employee. You may have to pay travel costs and per
diems to get an outsourced resource on site, but these costs can
be negotiated. Picking the right outsource resource should cost
no more than hiring an employee. Unfortunately, many compa-
nies do not spend enough investigating an outsource vendor.

All information technology outsource firms are created equal.
They are as different as the employee candidates you interview.
To minimize the risk of hiring a “bad” vendor, be sure to choose
a firm with expertise in most, if not all, of the software you use.
Inexperience in one area should not preclude choosing the ven-
dor if other important qualifying factors are present. It is also
important to ask for a copy of the vendor's errors and omissions
insurance.

Most important, choose a firm with good references and a his-
tory of long-term relationships. There are many firms that come
and go from the marketplace. Above all, recognize three things
when negotiating contracts with the outsourcing companies:
l Outsourcing companies do not grow the way the hiring com-

pany does. They may be able to handle the business now, but
what allowances will they make for you when growth exceeds
expected rate? You may have to bear the burden of their
expansion costs.

l If you do not specify everything that can possibly happen in
the contract period, there is usually a three-year window in
which you have the ability to maximize the outsource. The
first year is the honeymoon in which everything goes well
between you and the vendor. The second year, the vendor has
discovered all the problems that you didn’t tell him about and
what made you consider outsourcing in the first place. You
have discovered that the small clause in the contract allows
the vendor to charge for everything not nailed down. The hon-
eymoon is over. At the end of the third year, by mutual con-
sent, you consider a new arrangement with a different partner.

l An audit after the three-year period would indicate in most
cases that you have saved very little and you still have the
same original problem you had when you outsourced. Actually
you are a little more in the financial red, since they have
been doing the maintenance and the people or the new ven-
dor hasn’t a clue as to what has been done to the code. A new
learning curve has to be traveled. And it will be at the compa-
ny’s expense.
In summary, outsourcing is good if you can do it as a complete

package and if you are a small firm that can readily use it. Large
firms will find it more profitable to keep projects and information

168 Chapter 8 SolutionS that CauSe ProblemS

technology in-house and only outsource the less frequently
used functions such as disaster recovery, human resources, and
administrative systems.

Rapid Application Development
Consider briefly the progress of the past 30 years. During the

1970s, the age of “programming productivity,” the creation of new
languages, tools, and development methodologies enabled pro-
grammers to improve their productivity by orders of magnitude.
During the 1980s, the age of “software quality,” the focus was on
software processes and continuous process improvement. Quality
results have been published in the literature for the past couple of
years and indicate improvements in an order of magnitude range
along several vectors (decreased defects, increased productivity,
decreased cycle time, decreased number of personnel required to
achieve results, and decreased percent rework after release).

The decade of the 1990s was the age of “Internet time.” The
advent of the Internet and associated new software technologies
(for example, Java and framework development) enable software
developers to field products in cycle times of six months or less.
The combination of best practices that have evolved over the past
30 years in productivity; including approaches, quality improve-
ment, and technology are impressive and match progress in
other fields of engineering. Taken collectively, they form an
assortment of tools with which to attack software development.
While the progress is real and arguably impressive, the reasons
for failures in software development are largely the same today as
they were 30 years ago.

A 1988 U.S. Air Force science study concluded that there were
three common risks that were cited for failure (where failure
ranges from excessive cost and/or schedule delays to never field-
ing a system):
1. Staffing risk. If a team of developers, end users, and systems

maintainers had not worked together before and did not learn
to communicate effectively, they were not likely to develop a
successful system without schedule delays or cost overruns.

2. Technology risk. Teams that pursued a new technical approach
(for example, the first foray into client-server computing)
found that the lack of experience with a new technology, archi-
tecture, or development approach contributed to failure.

3. Requirement risk. By far, the most often-cited reason for failure
was poor management of requirements. This risk was charac-
terized by frequently changing requirements, requirements
that were not well understood, and requirement proliferation.

Chapter 8 SolutionS that CauSe ProblemS 169

The bottom line is that experience counts. An experienced
team that is developing a similar system to one that it has previ-
ously developed with a customer and end user with whom it can
communicate well is much more likely to produce high-quality
systems on time and at cost.

rapidly Developed Prototypes
To commercial companies, rapidly developed prototypes were

often “throwaways.” These prototypes were often too fragile to
scale into a tested, deliverable system. But they served a critical
purpose: they enabled businesses to quickly capture requirements
and depict them in a meaningful way to end users. The tools of the
day allowed them to work interactively with end users to evolve
a more complete understanding of those requirements. In effect,
they provided a means of communication through which a devel-
opment team could discuss and reach common understanding of
the requirements.

Many have criticized rapid application development (RAD)
as lacking rigor, leading to fragile systems that do not scale, and
serving to raise end user and management expectations to unre-
alistic levels. These criticisms are valid unless a more disciplined
approach to RAD is followed that couples RAD with the lessons
learned in productivity and quality. A newly proposed approach
to disciplined RAD would entail these steps:
1. Prototype-based requirements capture
2. Architecture design and analysis
3. Component specification with maximum reuse
4. Rapid development of integral modules
5. Frequent testing with end users and systems personnel
6. Distributed with support tools to allow for evolution

The progress in software technology now makes this approach
much more likely.

Step 1 addresses the major source of risk described: require-
ments. Prototype-building tools allow rapid development of
cases to illustrate system operation. These in turn are useful for
defining requirements. Because end users and management
often see ways to improve their work processes as a result, this
approach has also proven useful in business reengineering. Thus,
prototype-based approaches provide a useful way to do require-
ments analysis.

Steps 2 and 3 address technology risks. As in other engineer-
ing fields, it is useful to define the architecture early during sys-
tem development and to conduct analyses to assess attributes
such as data throughput, usability, and security issues. Too many

170 Chapter 8 SolutionS that CauSe ProblemS

poor-quality applications are being attributed to misunder-
standing technical constraints until realization of the software
system in executable code. Recent advances in software architec-
ture development and analysis (for example, see Brockner et al.,
1994) provide an engineering basis for early architecture speci-
fication. In addition, a lesson learned from reusable software
development is the criticality of software architecture in which
to embed reusable software components. Components that do
not exist or that cannot be easily retrofitted into the architecture
can be developed using a rapid prototyping approach (step 4).
Requirements and architecture provide design constraints to
bound and guide the development of these modules.

Steps 5 and 6 are also very important. It is critical that end users
and system maintainers participate regularly in testing. Although
listed as a separate step (a final test before delivery needs to be
done), it is also useful to use prototype-based test data to assess
the output of each step.

Lastly, since requirements often change over the life cycle of
the system, it is important to consider how systems will be used
and will likely evolve. Then plan for that evolution. The structure
in the preceding approach comes from having well-defined and
well-understood processes. In addition, training for new employ-
ees and continuing education for all employees is an important
aspect to ensure that the development team can cope with tech-
nical change.

So how can the first decade of the new millennium be char-
acterized? Trends suggest that there will be more powerful com-
puting coupled with a low-cost, high-bandwidth communication
infrastructure. There will be continued downsizing of organiza-
tions and more outsourcing. There will be marketplaces for reus-
able objects and software components, such as architecture
models and warehouse structures.

References
Argyris, C. (1992). Knowledge for action: A guide to overcoming barriers to

organizational change. San Francisco: Jossey-Bass.
Ash, M. G. (1992). Cultural contexts and scientific change in psychology: Kurt

Lewin in Iowa. American Psychologist, 47(2), 198–207.
Bridges, W. (1994). Job shift: How to prosper in a world without jobs. Reading, MA:

Addison-Wesley.
Brockner, J., Konovsky, M., Cooper-Schneider, R., Folger, R., Martin, C., & Bies, R.

(1994). Interactive effects of procedural justice and outcome negativity on
victims and survivors of job loss. Academy of Management Journal, 37.

Cameron, K. S. (1994, Summer). Investigating organizational downsizing—
fundamental issues. Human Resources Management.

Chapter 8 SolutionS that CauSe ProblemS 171

“CEOs at major corporations got 23 percent raise in ’95,” p. c1 (March 5, 1996).
Washington Post.

Downs, A. (1995). Corporate executions. New York: AMACOM.
Kearns, D., & Nadler, D. (1992). Prophets in the dark: How Xerox reinvented itself

and beat back the Japanese. New York: HarperCollins.
Tichy, N., & Sherman, S. (1994). Control the destiny or someone else will. New York:

HarperCollins.
Tomasko, R. M. (1990). Downsizing: Reshaping the corporation for the future. New

York: AMACOM.

175
Data Architecture.
© Elsevier Inc. All rights reserved.2011

DATA ORGANIZATION
PRACTICES

Fundamentals of All Data Organization
Practices

Over the next several pages are discussions of some of the
fundamental practices that have to take place in any software
engineering development process. As there are many different
methods that are focused on many levels, there will be no specific
focus until there has been a more detailed discussion of each of
the methods. Suffice it to say that these following points need to be
in all methods to some degree or another whether they are embod-
ied in a technique or are a significant separate step. Each will be
covered in some level of detail so as to provide an understanding
of what the subject is and how it benefits the development process.

Subsequent to the discussion of the fundamental practices,
the rest of this chapter will be dedicated to a discussion of the
different techniques that are currently used and their advantages
and disadvantages.

Corporate Data Architecture
With all this terminology in mind, let us try to understand

the human components of the infrastructure required to make
architectures work. This is best initiated by covering the roles and
responsibilities of those involved in the infrastructure and then
relating it to the objects previously discussed.

The first of these is a corporate data architecture group. It is
specifically charged with the responsibility of creating and main-
taining a corporate data model and a corporate activity model.
That is, they have the responsibility to define all the BEC’s and
BAS’s within the enterprise down to the subject area level. The
reporting structure for this group should be independent of any

9

http://dx.doi.org/

176 Chapter 9 Data OrganizatiOn Practices

function and they should be considered as a corporate resource
as opposed to a strictly defined information technology resource.
This corporate data architecture should be independent from, but
facilitative of, whatever methods are in use in the corporate venue.

Corporate Data Policy
The following are some basic corporate data principles or

policies that must be in place and adhered to in order for the
effort to work. These have been discussed before and have been
defined in different contexts in other chapters of the book, but
it is appropriate to recap them here to ensure the understand-
ing that all data must be viewed by the corporation in a manner
that will promote its care and maintenance. This takes commit-
ment from both the maintainers and management. The following
tenets indicate the primacy of the concern:
l Data must be assembled and maintained in an integrated

manner in order to support the evolving business needs and
to insure customer service of the highest quality.

l Data, and the structures and constructs used to develop and
house it, are renewable and reusable assets for the corpora-
tion and as such need to be secured in the most prudent man-
ner possible.

l Data must be of the highest quality and integrity possible to
ensure that business decisions made using it are responsive to
the needs in a dynamic and competitive business environment.

l Data must be stored or placed in the structures and locations
most appropriate to its optimal utilization and safekeeping by
using the best options available in the technology forum.

l Data ownership policies and custodial responsibilities must
be defined in order to ensure the accountability of the needed
quality and integrity within the organization.

l Data must be captured, validated, scrubbed, and utilized accord-
ing to industry-wide standards and methods using accepted
tools and techniques that ensure consistency.

Architecture Team
This is a team of designers that is usually subordinate in

responsibility to the corporate architects and deals with designs
at the application implementation level. The placement of this
organization is usually in close proximity to the database admin-
istrators whose responsibilities include implementing the archi-
tecture team’s designs.

Chapter 9 Data OrganizatiOn Practices 177

Design Team
This is another critical fundamental in the software develop-

ment process that is part of the project structure. How the devel-
opment team is built often foretells whether there will be optimum
success in creating a project. All development methods and pro-
cesses that are discussed here suggest that there should be a core
team of empowered people to guide the project to successful
completion. A core group remains that controls and develops the
integrals of the application. The process should specify who the
members of the core team are, as well as other members on call for
the project. They should be empowered to develop by delegated
authority of upper management. There should not be an up-the-
ladder authorization process for everything in the application.

Develop the Project Structure
A project structure provides the framework within which the

development effort will be accomplished. While simple and high
level, it provides guidelines and flow that cover the topography
of the local development landscape. It also highlights early on in
the process a simple fact: projects that are ill-defined and fuzzy
in requirements inevitably will miss deadlines and have budget
overruns. It doesn’t matter what the project structure or control
mechanism is as long as there is one. It will take different forms
for the different methods and these will be touched on to a small
degree in that discussion.

Scope Definition
The process of defining a scope is also fundamental. It is a

twofold concern, however. The first part of concern is the over-
all, higher-level scope of what is being architected. This scope
must be defined and managed at a high level. The last thing
desired is to deliver a rat trap, especially when the user asked for
a mousetrap.

The second part of the concern is that of individual develop-
ment component creep. If proper closure is not put on each level
of the requirements analysis, no matter what the method, the
scope of the development of that component may change (be
expanded or decreased), in which case it will no longer integrate
with the whole. Depending on which method of development is
used, this has to be managed in different ways; the following is a
discussion of those methods.

178 Chapter 9 Data OrganizatiOn Practices

On the high level, scope can be contained by implementing
strong project boundaries. This overall scope creep is avoided by
defining goals, structure, use, and clarity of a project. This project
must stress the importance of being able to deliver a piece of the
project at every stage to ensure correctness of vision and a feeling
that something is getting done!

Project Plan
There is an old saying about the difference between an ama-

teur and a professional: a professional will plan everything out
prior to the start of the job, while an amateur will spend more
time and money redoing work because he is focused on doing
one thing at a time with no view of the whole.

The project plan is one of the main components of the contract
with the user that provides a timetable for that delivery. It is also
sequenced in a way as to use resources in an efficient manner. As a
tool, it is a mechanism that can be adjusted for unplanned activity.
One caveat, though: it must remain dynamic. Unplanned events
will take place, and as such they must be entered into the project
plan if they have affected the schedule. The plan can also be used
as a status tool for meetings with all concerned parties.

Data Architecture and Strategic
Requirements Planning

In all methods of development there is also a need for a stra-
tegic requirements planning area that will focus on those steps
necessary to create a high-level identification of the subject areas,
the business entity types, the major functions, and the major pro-
cesses identified. There is also a need for a corporate data policy.
Although this will be covered in detail in a different section of this
chapter, it needs to be stated here that there is no other method
for getting and keeping management commitment than to have a
corporate data policy that has been embraced by the senior man-
agement. Within data architecture and strategic requirements
planning are the following areas.

Data Gathering and Classification
This effort establishes the basic boundary identification for

the data-gathering effort. It defines the context of the effort in the
sense that it defines the reason the corporation needs the data at

Chapter 9 Data OrganizatiOn Practices 179

this particular place and time. It also is the stage where the generic
or topical areas of data use for the corporation are defined.

Business Area Data Modeling
This effort provides more understanding and linkage between

some of the data utilized by the business area for the function
being performed for the organization. The broad topical areas
defined in the data gathering and classification steps are here
further defined and annotated. Data relevant to the areas are
formalized into entities and relationships between them. This
modeling is done by the business area such that it will allow the
different areas to be viewed for analysis of the processes and
data that they use. These will be captured later in an automated
tool when the model is created. But at this stage it is merely the
assemblage of the data and establishment of the initial connec-
tions kept as documentation by a business area.

Current Data Inventory Analysis
This part of the information analysis is responsible for defin-

ing and capturing that data that are currently used to support
the current business function. This is different from the data
defined in the data gathering and classification and business
area data modeling in that current data inventory analysis has to
do with what data are used currently rather than what data will
be needed to support the business area in the future. This step
ensures that the data needed to run the current business are a
subset of that data defined in the first two stages. Ways to do this
include the capturing of data attributes from manual files, data-
bases, source documents, and output reports. It should be cap-
tured in the same format as the data from the first two steps in
order to facilitate the following step, which is the integration step.

Data and Function Integration
This is the final area of common functional practice and it

integrates the entity and relationship lists that have been devel-
oped out of the business area data modeling efforts. Here, these
data lists are combined, identifying those entities and relation-
ships that are redundant or shared. This is a difficult step in that
each business area may have a different name or description of
the data, although it may be the same.

180 Chapter 9 Data OrganizatiOn Practices

It is critical to define in this stage those that are true dupli-
cates and those that are different. Those that are different must
be renamed to ensure that all confusion will be removed for the
future development of the models.

Event Identification
Event identification is also a fundamental step that must take

place to define the activities that affect the data within the busi-
ness problem area. As is well known, an event is an occurrence
that sets in motion an activity that changes the state of an entity
within the model.

In this effort, the events or processes in the functions are defined
in terms of what adds, deletes, updates, or reads take place for each
entity within the event occurrence. Each of these must be defined
and documented for compilation in the next step. Events represent
the triggering of processes and procedures and analysis of them
often helps in the development of functional decompositions.

Procedure Definition via Functional
Decomposition

Functional decomposition is another fundamental activ-
ity that must take place. It is the breakdown of activity require-
ments in terms of a hierarchical ordering. In order to cover this
more fully, some terms and stages must be defined. A function is
defined as a continuously occurring activity that exists to meet
the needs of the corporation. Within each function are many
processes. These processes have a start activity, a process activ-
ity, and a termination activity, which completes the process. Each
process may or may not be broken down into subprocesses. Each
subprocess, like its parent, also has an initiation, an activity state,
and a termination, and it differs from the process in that it repre-
sents activity at the lowest level. That is, it is the activity or event
that takes place at the entity level.

There are multiple ways to formally interpret the functional
decomposition diagram. Since it is organized in a hierarchical
structure with indentations for each lower level of activity, it is
probably easiest to proceed from top to bottom and left to right.

Each function must be documented as to what requirement it
fulfills for the corporation and in what business subject area the
work is being done. Functions are composed of processes. Each
process must also be documented to ensure that the start activity

Chapter 9 Data OrganizatiOn Practices 181

or initiation trigger is defined and under what conditions it hap-
pens. It must also be documented to also ensure that the actual
activity is documented and what it comprises, and finally the com-
pletion or termination step of the process must be defined includ-
ing the state of the data at the completion of the process.

Within each process are subprocesses, which provide the
actual detail operational work on each business entity. The docu-
mentation for this must include the event or subprocess trigger,
the activity description, and the termination state of the business
entities involved. This decomposition is a necessary activity that
will define what the data is being used for. The form that these
decompositions take is specific to the method used, although
they share the same common layouts just defined.

Process Use Identification
Process use identification is another fundamental action that

is characterized by the compilation or integration of the identi-
fied events noted in the previous step. In this case, the events are
integrated in order to eliminate redundancy and the resulting
processes are optimized to ensure the business area’s require-
ments are fully met. In order to facilitate the completion of pro-
cess use identification, previous work must be done to examine
the data and processes involved.

This work includes subactivities such as process dependency
analysis and entity state transition analysis. Simply described,
process dependency analysis is the identification of the sequence
that multiple processes must be ordered in. A simple example of
this would be that a frozen steak needs to be defrosted before it
is put in the oven. A graphic example is demonstrated following.

It obviously is more complex than this, but you have the idea.
Entity state transition analysis is a graphic manner in which all
activities that can affect an entity can be viewed at the same time.
While this is a detail level, it does contribute to the overall body
of information that will be used to integrate the process uses. An
example of this is also provided following.

When the process use identification is completed, then all inte-
grated processes have been defined and sequenced in order to
ensure that all activity is optimized for maximum logical efficiency.

New Function Creation
When the process for completely breaking down the functions,

including processes and subprocesses, has been completed, they

182 Chapter 9 Data OrganizatiOn Practices

need to be reconstructed. They are rebuilt using an integration
process that eliminates redundant processing and also defines
shared processes. It is in this way that the current business pro-
cess can be ensured of being supported and the new functional-
ity requirements have been met. While this step may be embedded
in the techniques of the various methods, and in some methods is
not visible to the initial practitioner, the steps are there.

In the execution of the spiral conceptual method, for example,
each stage within the spiral provides more detail and more inte-
gration with the iteration before it. Details of this will be covered
in the methods section of this chapter.

Utilization Analysis via Process Use
Mapping

In order to complete this appropriately the data must be
complete and an accurate assemblage of the processes that are
applied to the data must have been identified as noted in pro-
cess identification. Note that this is still taking place at the logical
level and that there are a few physical considerations at this time.

The subset of data that is used in the processes must be defined.
They actually represent the different user views. Specifically, this
needs to be done to the attribute level in order to ensure that the
complete data complement is present. First, the entity referral
chain is defined. This is the entity chain in sequence of call order.
Second, the attribute set within each entity must be defined. These
are identifier attributes as well as data attributes. When this is com-
plete, these are then used as input into the next stage: access path
mapping.

Access Path Mapping
This step is that of integration of the many process use maps

that will show how the data are being accessed. The integration
of these integrated process use maps produces a traversal path
or access path that can be mapped against the model to show
where access will be heaviest. The information this gives to the
physical designer is invaluable. First, it will show where identifier
maintenance will be required most. Second, it will show where
activity volume will be heaviest, indicating a need for more fre-
quent reorganization and distribution of the data. Last, it will
show where tuning options must be put in place to ensure rapid
access. These will be covered more in Chapter 15.

Chapter 9 Data OrganizatiOn Practices 183

Entity Cluster Development and Logical
Residence Planning

Cluster development and logical residence planning is the
planning of the allocation and subsequent distribution analysis
of where the data are and where they are needed in order to be
processed. The following are some of the reasons for distribution:
l Network costs. It may be cheaper to keep multiple copies than

to send a large amount of data over long distances.
l Availability. Access to local data may significantly increase the

availability of the data.
l Security. The data that exist in multiple places can be used for

recovery purposes.
l Data structure. The same data may be kept in two different

structures or even platforms for maximum availability.
The following problems are inherent in data distribution:

l Inconsistent reads by accessors when updates are occurring
asynchronously.

l Excessive update cost for the multiple data sets.
l Recovery. When one data set goes down, how do you retain

synchronicity with the others?
Based on these items, the cluster development of entities and

the logical placement of the data can be done without too much
effort. The only difficulty is, of course, deciding into which cate-
gory it falls and then defining the residence plan of the data.

Application Development Templates
One of the easiest and most productive methods of leverag-

ing any development methodology is using predefined templates
for everything from project plans, documentation and milestone
templates, the testing templates, and finally to the user docu-
mentation and training. When templates are used, then there
is very little ramp-up time for the developer. She has merely to
take the template and delete the unneeded information and
insert the new material. It also provides consistency and uni-
formity. Unfortunately it requires that someone develop the ini-
tial templates. This is often the best use of consultants in a new
environment or where there has been a change in the techni-
cal development process and there is little detail experience to
be had. By providing the templates up front, all initial learning
curves are started at an advanced point. Use templates whenever
possible.

184 Chapter 9 Data OrganizatiOn Practices

Quality Assurance Metrics
What good is a developmental process that speeds up the

delivery of the application but results in inefficient code and per-
formance? The answer is none. If speed were simply the answer,
it would have solved the problem long ago. Unfortunately, when
speed is the driver of the delivery of the application, it takes far
longer in the end to reach a trouble-free application.

All the design issues overlooked in the analysis and design
stages end up becoming iterations of change in the evolving appli-
cation. Quality assurance needs to be a living process and attitude
accepted and maintained within the application development
methodology. In addition, it needs to be a gated process. That is, it
must be a controlled process that has measured points for evalua-
tion, progress, and quality checking. Without the metrics in place,
there is no way of determining if the quality of the output product
is consistent.

Maintenance Control Process
The maintenance control process is critical to the ongoing

success and is partnered with a very strong quality assurance
process. It should consist of three tiers of change control. The
first is the architectural level, the second is the application model
level, and the lowest level is the physical detail level.

The architectural level deals with new structures at the
enterprise or subject area level that provide the data and pro-
cess change control mechanism for new functionality or major
changes to existing functionality. It is characterized by creation of
new subject areas, new entities, and new activities and processes.

The second level is the application model level and deals with
changes to entities and application business processes. It is char-
acterized by the changes to entities, their keys, and the processes
that affect them. The lowest-level change control is that of the
detail change. It affects the detail process via a simple change to
the data structure, such as the application of performance tuning
and data characteristic changes.

The Software Development Methods
Up to this point, the discussion has been about basic business

design functions that must be included in whatever development
method is being used. There should be a brief discussion of the
methods before continuing on.

Chapter 9 Data OrganizatiOn Practices 185

Methods that are used in the software development practices
can be categorized by level. The topmost level is the architectural
level of detail, the next level is the working level of detail that is
familiar to most programmers and managers, and the lowest is
the atomic level. All of these are important, but it is important to
understand that each is useful in its own way. Each of the archi-
tectural methods will be discussed in some detail.

Architectural Development Methods
The “waterfall” method was described by Royce in 1970. It is

still the most widely used and most familiar method in the soft-
ware development world. A template of this process is shown in
Figure 9.1. It is called a “waterfall” for obvious reasons. All the
effort of one stage needs to be completed before going on to the
next stage. It is a fixed sequential process that has the work prod-
ucts of one level feeding as input to the next lower lever, much
like water going down a stepped spillway.

A development project based on the waterfall method has the
following characteristics:
1. You must carefully and completely define the output work

product before proceeding to the next stage.
2. You must commit to a set of requirements that have been fro-

zen at a fixed point in time.
3. Deviation from the defined requirements or the succeeding

design is an indication that you failed in the requirements-
gathering process.
While this waterfall process has been helpful in promulgat-

ing the understanding of some of the techniques and concerns
that we have had earlier in this chapter, it still has some short-
comings. Figure 9.1 shows the basic process steps and provides
some sequencing information. The shortcomings are the
following:
1. It does not adequately allow response to changes in require-

ments; that is, there is no way to adjust for missed require-
ments or newly materialized requirements. There is simply no
way to go up the waterfall.

2. It assumes a uniform and orderly sequence of development
stages. It assumes that the stages are predictable in length and
each is required.

3. It is rigid when it comes to rapid development techniques
such as prototyping, in which some developed components
might be kept and others thrown away.

4. There is no real risk assessment done until late in the process.

186 Chapter 9 Data OrganizatiOn Practices

Since the 1970s, developers and methodologists have been
trying to address the inadequacies of the waterfall method. A
solution that has worked with some degree of success is the
“iterative waterfall” approach. The only difference between this
approach and the traditional waterfall approach is that there are
multiple iterations of analysis data gathering and design before
going on to the next stage. Simply put, there are iterative data
gathering/design presentation sessions, which are reviewed with
the user before progressing on. It must be iterated until comple-
tion to ensure that all requirements have been gathered before
moving on to the next stage. This altered approach has met
with some success but still has some flaws. It has addressed the
changing and materializing requirements but has not addressed
the rigidity or the sequencing. All requirements still need to be
completed before moving onward despite a staggered or layered
approach, as shown in a primitive development diagram.

In 1988, B. W. Boehm developed the spiral development
method shown in Figure 9.2. As one can see in its process, it
addresses some of the problems associated with the waterfall
method. Every stage of requirements analysis is accompanied/
followed by a risk analysis phase. Also, the requirements go from
simple (i.e., architectural) to more detailed as the spiral moves

System
Requirements

Software
Requirements

PSR
Preliminary
Software
Review

Preliminary
Program
Design

Preliminary
Design

Software
Requirements

System
Requirements

Analysis

Program
Design

Coding

Testing

Operations

Analysis

Program
Design

Coding

Testing

Usage

Coding

Testing

FSAR
Final

Software
Acceptance

Review

Operations

Document No. 6
Operating

Instructions

Document No. 5
Test Plan
(SPEC)

System
Requirements

Generation

Document No. 1
Software

Requirements

Document No. 2
Preliminary

Design (SPEC)

Document No. 3
Interface

Design (SPEC)

Document No. 4
Final Design

(SPEC)

CSR
Critical

Software
Review

Program
Design

Analysis

1. Complete program design
 before analysis and coding
 begins
2. Documentation must be
 current and complete
3. Do the job twice if possible
4. Testing must be planned,
 controlled, and monitored
5. Involve the customer

Figure 9.1 the waterfall model. From royce, 1970.

Chapter 9 Data OrganizatiOn Practices 187

outward. It also is a better predictor of expense, since the further
analysis is done, the more expensive it gets.

But none of these methods truly represents the real work
flow. As Watts Humphrey (1989) Managing the software pro-
cess pp. 249–251, said, “Unfortunately, the real world of software
development doesn’t neatly conform to either of these models.
While they represent the general work flow and provide overview
understanding, they are not easily decomposed into progres-
sively finer levels of detail that are needed to guide the work of
the software professionals.”

Additionally there are many more architectural models,
such as the Agile method, the V method, and even the double

Progress
Through
Steps

Determine
Objectives,
Alternatives,
Constraints

Commitment
Partition

Cumulative
Cost

Evaluate Alternatives:
Identify, Resolve Risks

Risk
Analysis

Risk
Analysis

Concept of
Operation

Requirements
Plan, Life

Cycle Plan

Proto-
type1

Prototype2

Prototype3

Code

Unit
Test

Integration
and Test

Implemen-
tation

Plan
Next Phase

Develop, Verify
Next-Level Product

Acceptance
Test

Requirements
Validation

Design Validation
and Verification

Integration
and Test

Software
Requirements

Software
Product
Design

Detailed
Design

Operational
Prototype

Risk
Analysis

Development
Plan

R
A

Figure 9.2 the spiral model of the software process. From Boehm, 1988.

188 Chapter 9 Data OrganizatiOn Practices

V method. All deal with how to best capture the requirements,
interpret them, and implement them in the shortest period of
time to give the users what they want.

The basic problem with architectural-level models or univer-
sal models, as they are called, is that they are, well, architectural.
They are high-level flows that have been generalized to account
for individual differences in detail processes. While this is a good
method of communication and is necessary for the contin-
ued survival of the company, it is not what a software developer
needs. To this point, it has been enough to speak about these as
a common frame of reference. It does provide the understand-
ing and communication basis for all involved. Unfortunately,
the developer of the software referencing the data architectures
needs something more specific.

Atomic Process Models
At the opposite end of the spectrum from architectural process

models are atomic process models. These “elementary” process
models are enormously detailed for an entire corporation. These
have been covered in several places in the book and will be exam-
ined concerning their physical considerations in later chapters.
They represent the compendium of all lowest-level tasks needed
to complete the process. They exist for all of the processes in the
company. One can see just how complex this compendium would
become … and how useless it would be.

By the time the complete process compendium was defined
to the level of detail required, it would be obsolete. These
atomic or elementary process models are far more useful when
the unique process is being used to develop the software code
for a specific activity within an application. Precise definitions
and information flows are important at this level. When these
elementary processes are developed, they should be abstracted
into a higher-level model to ensure integrity and ability to be
shared if they were developed independently of a functional
decomposition or reconciled with the other processes within
the function defined within the functional decomposition of the
application.

Entity Process Models
These application-specific models are more accurate than

task-based process models because they deal with the real objects
(the entities) that persist and evolve through defined states of

Chapter 9 Data OrganizatiOn Practices 189

sequences and transitions. Each entity must be defined to include
the following:
1. All entity processes and their states
2. A definition of the triggers that cause the process to occur
3. A complete process model without limits or constraints
4. A constrained process model with those measures in place

that control it
These can be and should be compiled and abstracted to the

application level and from there reconciled and abstracted
to the architectural level. In all cases, the information should
be retained so that information navigation can take place up
through levels of abstraction to the architectural level or down to
the lowest level.

The Unified Method
Enter the unified method. This is a method based on the spi-

ral method proposed by Boehm in 1988. It differs in that it has
four basic states that are repeated and expanded outward by
iteration:
l Inception – defining the approximate vision, business case,

scope, and vague estimates
l Elaboration – refining the envisioned, iterative implementa-

tion of the core architecture, reconciliation of high risks, iden-
tification of most requirements and scope, and more realistic
cost projections

l Construction – iterative implementation of the lower risk
and easier elements with a focus toward deployment of the
software

l Transition – testing and full deployment
These stages are iterated with short, fixed objectives that sel-

dom last more than a few weeks. Its advantages over the water-
fall are obvious. The subsequent iterations can pick up or further
analyze something that was missed in the iterations before. It
is ultimately flexible and does not keep a rigid design in place.
Instead, the design is flexible and grows and expands as the data
and process knowledge grow.

This method has been embraced fully by the object-oriented
community and has proven to be an excellent method for work-
ing on these projects as they grow. Further experience will be
necessary to fully understand whether this method is suitable
for large-scale nonobject development, but the future looks
promising.

190 Chapter 9 Data OrganizatiOn Practices

References
Boehm, B. W. (1988). A spiral model of software development and enhancement.

IEEE Computer.
Humphrey, W. (1989). Managing the software process. Reading, MA:

Addison-Wesley, pp. 249–251.
Royce, W. W. (1970, August). Managing the development of large software

systems. Proceedings of IEEE WESCON.

Additional Reading
Larman, C. (2002). Applying UML and patterns. Upper Saddle River,

NJ: Prentice Hall.

191
Data Architecture.
© Elsevier Inc. All rights reserved.2011

MODELS AND MODEL
REPOSITORIES

What Are Models and How Did They Come
About?

A model is a symbolic or abstracted representation of some-
thing real or imagined. Building a model, such as a building or
theme park, helps to visualize the design before the real thing is
constructed. For a city architect, a computer simulation viewed
from 1,000 feet above planned streets may reveal potential traffic
and congestion areas.

It is in this manner that a data model helps visualize data
structures to evaluate how completely and accurately they reflect
the business problem. It is preferable to change a designed
structure before any application system is built, since design
changes generally cost significantly less than application code
changes.

But just as important as this is the model’s ability to present
the designs revealingly. Data modeling concisely represents the
endless body of dry material requirements that tend to obscure
the more structural and powerful design facts of a complex
business application. Skeletal structures can be more easily
seen and other uses of a design understood when viewed as an
integrated whole, rather than as voluminous text requirement
listings.

The essence of a model lies in its efficient representation
of the business problem area. This is achieved by eliminating
unnecessary detail and substituting symbolic references for the
actual components of the business subject. Therefore, a model
need not be simply a smaller prototype of the real thing; it may
use words, pictures, or any combination of media. In this way
a data model drawn on a few pages can represent the struc-
ture of a database, which could occupy gigabytes of database
storage.

10

http://dx.doi.org/

192 Chapter 10 Models and Model repositories

Data Models Introduction
Many forms of symbolic notation have been developed that

enable data models to represent various levels of abstraction.
Some are lexical, others graphic; the better approaches are both.
One of the earliest, Peter Chen’s (1976) Entity Relationship model
offers a set of shapes and lines that, much like musical notation,
deliver a wealth of information with sparse economy of drawing.
Entity relationship (ER) modeling was readily adopted outside
academia, introducing the concepts of data modeling to a gen-
eration of information professionals.

Chen’s ER spawned a number of variations and improvements,
some of which have been embodied in computer-assisted software
engineering (CASE) products employing ER methodology, in some
it defines an entity as “a thing or object of significance, whether
real or imagined, about which information needs to be known or
held.” Another source agrees that an entity is “something about
which we store data.” Chen’s original ER technique made a firm
(if not clear) distinction between entities, as just defined, and the
relationships between them. To cope with inevitable complexities,
Chen allowed relationships to have attributes of their own, mak-
ing them look a lot like entities. This gave rise to heated debate
over just what is an entity versus a relationship. Given the lack of
clarity in definitions, it is not surprising that Edgar Codd said in
1990, “The major problem with the entity-relationship approach
is that one person’s entity is another person’s relationship.” Chris
Date (1995) agreed, saying, “The ER approach is seriously flawed
because the very same object can quite legitimately be regarded as
an entity by some users and a relationship by others.”

Information engineering (IE) is a streamlined refinement on
the ER theme that discards the arbitrary notion of the complex
“relationship” with an n-ary (i.e., the number of entities related)
of two, three, four, or even more. IE models them as simply asso-
ciated entities. Every relationship in IE is binary, involving two
entities (or possibly only one if recursed). Information engineer-
ing also simplified the graphic notation in diagram style. It has
become fundamental for a number of CASE products, including
Powersoft’s Data Architect and several others.

Another common modeling technique is IDEF, developed in
the late 1970s and early 1980s. IDEF was later extended by vari-
ous parties into a set of tools and standards that were adopted by
the U.S. Air Force as the required methodology for government
projects. IDEF is semantically weaker than ER and IE and forces
its practitioners into arbitrary methods, which lack a sound foun-
dation in theory. Nonetheless, it is a workable, easily learned

Chapter 10 Models and Model repositories 193

methodology. It has been taken up either by choice or for govern-
ment contracts by many modelers. The CASE tools Erwin, System
Architect, and ER Studio offer IDEF1X data modeling products.

Entity relationship, IDEF1X, and information engineering all
translate business requirements into formal symbols and state-
ments, which can eventually be transformed into database structural
code. Thus, the modeling process reduces undisciplined, nonmath-
ematical narrative to algebraic regularity. Early practices, when
data modeling techniques were not widely known, were to build
on a bottom-up approach. Analysts harvested an inventory of raw
data elements or statements and analyzed them. This examination
was frequently conducted via data flow diagram (DFD) techniques,
which were invented for the express purpose of discovering the data
items so their structure could be considered. Expert analysis of this
pool, including various forms of normalization, rendered aggrega-
tions of data elements into entities. Unfortunately, the number of
entities in a database is typically an order of magnitude less than the
number of data elements. In approaching this work and its inher-
ent multitude of details, there is often the discouraging experience
of watching the work funnel into a black hole of diagrams and docu-
ments, only sometimes allowing the escape of an illuminating ray of
understanding.

Top-down, entity-based approaches (ER, IE, etc.) are more con-
cise, more understandable, and far easier to use than those that
build up from a multitude of details. Top-down techniques rapidly
fan out through the power of abstraction to generate the multitude
of implementation details. Current practice therefore leans toward
capturing a much larger range of structural features toward mod-
eling entities (e.g., “customer,” “order”) first, since most informa-
tion systems professionals now understand the concept of entities
or tables in a relational database. Entities are later related among
one another and fleshed out with attributes; during these pro-
cesses the modeler may choose to rearrange data items into dif-
ferent entity structures. While this delays the analysts’ inevitable
problem of populating the model’s details, it has the correlated
shortcoming of placing responsibility for critical structural deci-
sions on the designers. This does not suggest that professional
data analysts are incapable of making such decisions but rather
that their time could be better spent if the CASE tool can make
those decisions—swiftly, reliably, and consistently—for them.

Proponents of the object role modeling (ORM) schools repre-
sent that their methodologies accomplish precisely that, in addi-
tion to enabling and constraints better than in ER-based methods.
In ORM it is the structure of relational mapping rather than the
whim or experience of a designer that determines how data items

194 Chapter 10 Models and Model repositories

(“objects”) are assembled into entities. This does not remove all
judgment and creativity from the designer. Rather, it allows them
to rise to a symbolic level of discussion concerning business issues
and implementation options.

Contrary to a frequent misconception, the academic founda-
tions of ORM date back 20 years. This is the same era that gave
birth to ER. Over the years, several CASE tools have employed
this methodology, yet there still is no commercial product avail-
able. For a more comprehensive display of ORM, see Asymetrix’s
InfoModeler or read the works of Microsoft’s Terry Halpan (2005).
The modeling methodologies just discussed deal with conceptual
and logical understanding of data but not necessarily the physi-
cal details of its storage. Additional techniques from the area of
relational design are generally employed to represent tables, col-
umns, indexes, constraints, and other storage structures from
which to implement a data design.

What Does Modeling Do for Us?
Modeling reduces sets of complex requirements to a simpli-

fied and standardized format so people can work with them and
have a common level of understanding of them. It allows the
business information to be presented in an unambiguous and
concise format that can serve as a mechanism of communication
between the users of the system, the designers of the system, and
the builders of the system. In addition, it allows a scaled version
to be created without the investment of building the full-blown
product. By virtue of this fact, the logistical as well as the plan-
ning problems that might arise during the design process can be
detected and dealt with in a reasonable manner without the bur-
den of a real stake. It ensures that the development infrastructure
is in place for the real thing.

Finally, models allow us to map processes against the data and
evaluate their behavior. If the model structure does not support the
business processes, then knowledge is gained without expenditure
of the time resource and impact on applications. Models allow us
to evaluate the potential performance of the structure under varied
conditions, giving us throughput and output capacity information
that can be used to fine-tune or redesign the model if necessary.

Process Models Introduction
In the context of computing systems, the term “process mod-

eling” has come to be associated with a number of ideas, all

Chapter 10 Models and Model repositories 195

concerned with the dynamic activities of organizations, busi-
nesses, or systems. The basic idea is that such systems can be
thought of as operating on multiple functions. The activity within
each function exists as a number of interrelated processes. To
study and understand systems, one constructs “process models”
according to particular viewpoints and using modeling tech-
niques. Further, models constructed from some viewpoints form
the basis for computer systems used to support a particular
behavior for an organization. Such computer systems are really
themselves models of businesses or organizations. These ideas of
forming different types of process models are described in a little
more detail following.

Process Models—Why?
The members of the project team must understand what a

process is essential for. Developers cannot code for a process they
do not understand; they have to know the process in order to be
able to effectively perform the process. Project managers need to
have an understanding of the process if they are to make accurate
assessments about the process status and take corrective actions.
Customers of a software development organization need to under-
stand the development process to be able to independently track
progress, give advice, and consent to a process and subsequent
changes. When different development teams cooperate on the
same software project, they need to understand each other’s pro-
cesses to determine how the processes will fit together and what
needs to be changed so they are able to integrate it. Developers
working in different phases of a process (for example, quality
assurance engineers, developers, and maintenance staff) have to
communicate with each other. Process modeling can facilitate the
interaction between the groups. Lastly, new employees can faster
contribute their qualification if they get taught the process.

How Are Automated Models Developed?
In the days before automated design processes, all mod-

els were created manually. They followed a strict set of rules or
behaviors as to placement, description, and retained informa-
tion. These rules ensured that anyone using the method would
be able to have repeatable results. These results consisted of a
graphical diagram and detailed text information about the things
desired to keep information about and the business rules that
dictate the way these things interact with one another. The world

196 Chapter 10 Models and Model repositories

is moving at a much faster pace nowadays than it was when
things were done manually. Today, models are usually developed
using a computer-assisted software engineering (CASE) tool that
allows all of the modeling to take place in a user-friendly environ-
ment and captures and retains the results in a formal framework.

While the details of how the information gets into the tools is
covered in the next chapter, it is simply entered and retained in
structure within the tool. Many of the inherent rules and prin-
ciples that provide the rigor for the model are embedded within
the CASE tool, so it is more comfortable to use them rather than
developing a model from scratch. The rules inherent in the tool
adhere to the methodology that is embraced by the tool. After
completion it should reflect the complete business requirements
of the application under design.

How Are Models Retained?
Data models are retained via a model repository—that is, via

a storage bank of data models. There are many different meth-
ods of maintaining a repository, both manual and through the
use of software products that will retain the models. It would be
oversimplifying it to say a model repository is just a simplified
library for application models. Based on the architecture concepts
discussed in Chapter 1, there is a need to find ways of defining
architectures (and capturing their resulting models) at all levels,
from the enterprise level down to the individual application
level. Along the way there needs to be a method of integrating the
redundant components of models and reusing these when appro-
priate by extracting the reusable construct out of the integrated
whole. This will prevent us from getting out of synchrony when
multiple people are using the same models as a source. Over and
above all of this, there are the problem and probability of multiple
versions of the same business area model being used for subse-
quent change releases, meaning sequenced changes. Repositories
do this via versioning, integration, and a check in and out mecha-
nism like Source Safe.

This will be discussed more in detail (how models are actually
developed and what constructs they contain) in the next chapter.
Some of the questions that will be answered include, What are
the constructs of the data models that are brought to the reposi-
tory? What are the constructs of a process model? Why keep data
models in a formal repository and process models as artifacts
(reports, indented lists, decomposition diagrams) and not in a
repository?

Chapter 10 Models and Model repositories 197

Model Repository Policy and Approach
As brought up before, an enterprise’s information architec-

ture must be capable of containing multiple levels of information
(i.e., conceptual/planning models, logical models, and physical
design models). The capture of information can be from top-
down, bottom-up, or middle-out, depending on the tools and
methodologies being used.

The logical corporate repository providing an integrated model
management strategy may be comprised of many different tools.
Each of these tools has varying degrees of capability for supporting
strategic, tactical, and operations business analysis methodologies;
however, none of them effectively manages the complete informa-
tion technology life cycle of conceptual business planning, logical
and physical data analysis and design, logical to physical trans-
formation, and implementation. To take advantage of the specific
strengths of each, direct bridging, reconciliation, and reporting
mechanisms between the tools must be in place to enable the
business planning tool to feed the logical modeling tool that will
feed the physical database design tool and at the same time lever-
age the investments already made in the corporation’s stages of IT
planning and systems development. The output of the physical
design tool will be the translated, implementable model.

Figure 10.1 describes how the tools are used in the IT busi-
ness systems development life cycle. Each tool maintains its own
repository, and the shaded areas represent the shared objects
within each of the repositories that are managed.

The architectural or business planning tool’s specific strength
must be its ability to provide and maintain enterprise models at
the conceptual or information systems plan (ISP) level. It must
provide the business analyst with the necessary tools and infor-
mation to do high-level process/data analysis, process strength
analysis, application area analysis, and various other options that
facilitate the definition of IT systems and technology structures
planned for development. These models are critical to maintain

Enterprise
Planning
Models

Enterprise
Logical
Models

Enterprise
Physical

Database
Models

Model
Repository Logical Modeling Tool

Physical Modeling Tool

Strategic Planning Tool

Figure 10.1 shared repository
objects.

198 Chapter 10 Models and Model repositories

because they represent the organization’s software investment
at the 50,000-foot level. With these models and this tool, busi-
ness analysts can assess the impact of change at different levels of
abstraction without necessarily impacting lower levels of analysis.

The logical modeling tool must support the data administra-
tion function of IT to perform application-level logical and physi-
cal data analysis and set up the corporate model repository. The
logical modeling tool’s specific strength must be in its manage-
ment and maintenance of logical and physical data models. It
must maintain a comprehensive data dictionary that allows the
data administrator multiple views of the corporation’s data, and
data analysis at this level is the cornerstone of corporate data
management. The models handled and retained by this tool rep-
resent the captured business requirements of a particular busi-
ness function at a point in time. When changes are necessary, as
they will be over the life of the application, this is the sourcing
point for those changes.

The physical modeling tool will be used by the DBA group
for physical data design and record management. Its strength
must be its database design capabilities and its ability to reverse-
engineer physical models. It must track evolving versions of DDL
and interfaces with DDL repositories. The models handled and
retained by this tool represent the physical structure and schema
of the data stores that will exist to service the applications. The
logical and physical modeling tool may be one in the same or
two separate tools based on the delineation of the infrastructure
responsibilities.

Shared Repository Objects
The use of multiple business process reengineering tools is

a strategy supported by the Gartner Group’s “Strategic Analysis
Report,” dated February 22, 1996. This report has been updated
since then but still is applicable. This report states that “using
direct bridges between multiple modeling tools that have been
purchased over time will in effect build a best-of-breed solution
for large-scale enterprise modeling and may be the best decision
given the amount of investment an enterprise has in a given set
of technologies.”

The data administrator (DA) is responsible for the mechanism
to synchronize the common objects in the architectural planning
tool, the logical modeling tool, and the physical modeling tool.
The DA participates in the enterprise planning (subject, business
entity type, and entity) analysis in strategic planning tool in all
areas where data objects are being created or changed.

Chapter 10 Models and Model repositories 199

The logical modeling tool is used to develop the enterprise
business logical models. Models are developed without regard
to the existing systems inventory, database management sys-
tem (DBMS), technology platform, or communications facility.
Application logical model (ALM) development is based on speci-
fications from the project where the data administrator and the
application team analyze and decompose data elements and work
activities down to the elementary level of unit of work, and then
capture and store the results in the logical modeling tool. ALMs
are transformed into application database models (ADBM), and
the DBA performs database design and converts them to physical
databases.

In the case where physical models are reverse-engineered from
physical models to logical models from legacy systems, a model
repository management group identifies the processes and enti-
ties involved and then prepares a report for business requirements
analysis.

The model repository management group maintains the
integrity of the repository and any interfaces between the logi-
cal and strategic planning tools. To maintain continuing integ-
rity between the strategic modeling tool and the logical modeling
tool, the repository manager will ensure that any objects com-
mon to both repositories—whether discovered during archi-
tectural modeling tool business modeling or logical modeling
data modeling—are first added to the architectural model and
then transferred to the physical model. This will ensure that the
appropriate enterprise business analysis is done prior to systems
design. In addition, the repository administrator performs proce-
dures on a weekly or other scheduled basis to report all changes
of objects in the logical modeling tool and to report all inconsis-
tencies of objects occurring in both the architectural modeling
tool and the logical modeling tool. The conceptual/logical incon-
sistencies must be reviewed to ensure consistency and integrity.

Model-Driven Releases
The model management policy supports a “Release-release”-

based system development methodology. Release (capital R)
means a group of business process changes representing many
applications that are linked or integrated together via process-
ing feeds. Release (small r) means that a set of business process
changes within that can be delivered with a minimum of time
and effort without compromising the options for the delivery of
the rest of the business process changes.

200 Chapter 10 Models and Model repositories

Supporting an Application Release
The architectural model is the product of the process and

information analysis that has occurred with the business spon-
sors and subject area owners. The organization of the archi-
tectural model is high-level service functions and processes,
with the associated subject area clustering of business entity
types. The information content of the architectural model is
transferred to the enterprise logical model as a one-time start-
ing point. From then on, business changes are transferred from
the architectural model to a logical modeling tool staging model
before being exported to the enterprise business logical model.

The staging model is a temporary logical modeling tool model
where the new business requirements from the architectural
model are analyzed to determine what the impacts might be to
the enterprise logical model before applying them.

Model repository management, with the application teams,
specifically selects or carves out entities from subject areas and
subsubject areas (BETs) for all applications involved in a release.
The subject area selection includes all the objects necessary to
support entity relationship modeling for the application models
in that release (Figure 10.2).

Application efforts that are overlapping are grouped into
releases. This is an artificial construct that provides develop-
ment synchronization points for the application teams involved.

If there are no overlaps, then the application
becomes its own release. If there are mul-
tiple efforts, the application teams work to
meet a common database delivery date for
the release. Multiple application models are
permitted. However, detailed coordination
across application models is required to con-
trol concurrent updates to the same processes
or entities.

The application logical model is trans-
formed after quality control review. The trans-
formation process translates the ARM into
physical structures and creates the application
database model (ADBM), after which it is trans-
ferred to the physical modeling tool.

The DBMS-specific considerations pro-
vide the application database model with the
objects required for the initial release of the
database. The objects include the components
of the design and the database objects (data-
base, table spaces, data records, link records

Enterprise Business Model
Organized by Subject Area

S1 S2 S3 S4 S5 S6

AERM

Figure 10.2 subsetting the
application model out from the
repository.

Chapter 10 Models and Model repositories 201

and entry points). After all modeling is complete, each application
model is reviewed before it is integrated back into the enterprise
logical model (Figure 10.3).

The application logical model is transformed after quality
control review. The transformation process translates the ALM
into physical structures and creates the application database
model (ADBM). The DBMS-specific considerations provide the
application database model with the objects required for the ini-
tial release of the database. The objects include the components
of the design and the database objects (database, table spaces,
data records, link records, and entry points). The initial release
number is set at 1.0 as specified in the model naming standards.

The work to create and complete an application database
model is done in a modeling tool by the DBAs. Application data-
base models for multiple application model releases will be gath-
ered together and grouped according to a release synchronization
mechanism that allows the applications to be implemented in an
appropriate sequence. When the release is assembled, then the
DDL can be generated and the physical database construction
commenced.

Version Type: Participation
Participation in the model management process is denoted

in Table 10.1, which refers to generic administration areas

Enterprise Business Model
Organized by Subject Area

AERM

S1 S2 S3 S4 S5 S6

Figure 10.3 reconciling the
application model back into the
repository.

202 Chapter 10 Models and Model repositories

within the organization that are involved in the support of the
infrastructure.

Seamless Development Control Process
A model management policy is not platform-specific. A platform

is made up of physical components (operating system, DBMS sub-
systems, CICS regions, networks, servers). The presented model

Table 10.1 The Model Management Process

Model Participant Activity

Architectural Model Corp. Architecture Data
Administration

Bus. Req. Analysis
Data Req. Analysis

Application ER Model (Logical
Modeling Tool)

Data Administration Data Modeling
Process Modeling

Transformation within Logical
Modeling Tool

Data Administration ERD Denormalization
Using Primitive Process Transformation

Denormalize Logical Model Database Administration Attribute Level Denormalization Based on
Access Info. via Logical Modeling Tool

Transform Logical Model Database Administration Forward-Engineer Model
via Logical Modeling Tool

Application Model DBA/Model
Repository Management

Perform Physical Modeling

Generate DDL from ADBM DBA/Model
Repository Management

Standard Relational DDL Generated

Implement Database Database Administration Construction of Data Structure by DBA

Reverse-Engineer from DDL to
Physical Model

DBA/Model
Repository Management

Reverse-Engineer via
Physical Modeling Tool

Reverse-Engineer Physical
Model to Logical Model

Data Administration Capture R.E.’d Model in
Logical Modeling Tool

Conduct Physical Modeling
from Reverse-Engineered
Physical Model

Database Administration Perform Physical Modeling in Logical
Modeling Tool

Generate DDL Database Administration Using Logical Modeling Tool

Implement Database Database Administration Construction of Data Structure by DBA

Chapter 10 Models and Model repositories 203

management provides a standard model structure that will support
multiple platforms. Models are not tied to specific test environ-
ments or platforms. However, each production target platform and
associated test environments have unique characteristics, which
result from the particular technology of the production target plat-
form. The output of each model process is a database. As such
these are environment-specific as determined by the DBMS.

Test Environments, Releases, and Databases
A test environment is usually limited to a platform. It is made

up of physical components that allow systems to be created,
modified, and tested as distinctly separate from another occur-
rence of the same system.

For each system, one release per environment (development
test, user test, production fix) is supported. Multiple system
releases within the user test environment, system test environ-
ment, and production fix environment should not be allowed
due to data overlay and program promotion problems.

The development database will support the development test
environments. The development database is generated from the
appropriate version of a physical database model. The model,
database, table spaces, data records, link records, and entry points
are migrated as appropriate.

The migration path through the test environments for database
structures is development database to user test database, and user
test database to production database. The data definition language
(DDL) is generated once and then migrated through the test envir-
onments to production.

Release Stacking
Release stacking is a release management mechanism by which

multiple releases for an application can be controlled; thereby
allowing each release to be developed with overlapping time
frames, but minimizes risk by tightly controlling the passage of
releases through the test environments. The risk of running multi-
ple, fully overlapping, releases is in direct proportion to the ability
to control shared changes, fully integrate and fully test the over-
lapping releases prior to production implementation.

The migration of multiple releases through the test environments
simply requires that one release must clear a test environment
before the next release can be installed within that environment.

For example, system release 1.0 moves from the development
test environment to the user test environment on 5/1. System

204 Chapter 10 Models and Model repositories

release 2.0 can be installed in the development environment on
5/2. Release stacking allows an application development team to
effectively run three releases: one in the development test envi-
ronment, one in the user test environment, and one in the pro-
duction fix environment. The source code representing each
release is segregated via release-based libraries.

While it is possible to establish a release-stacking schedule
that moves a release into a test environment immediately follow-
ing the movement out of that environment by the prior release,
this will limit the ability to freely move changes or corrections
between test environments for a single release, specifically from
development test to user test. When a single release occupies
both the development and user test environments, the move-
ment of corrections from development to user is straightforward.
These corrections generally result from the discovery of errors
during user testing.

It is recommended that the release prior to a release with data-
base and dependent software changes is given sufficient time to
fully stabilize in the user test environment by having access to
both the development and user environments. It is strongly rec-
ommended that releases with database and dependent software
changes are not stacked immediately upon the prior release.

Libraries associated with the models are release based—that is, the
release code number of the model is appended to the library name.
This builds a direct correspondence between the contents of a library
and the model, which was the source for the contents of the library.

Emergency Corrections
An emergency fix is a production event, which results from

the identification of a critical problem affecting production-
implemented code and requiring immediate correction. The
result of an emergency fix event is a production temporary fix
(PTF), which must be applied to the production-implemented
code. There are only two types of production changes: release-
based changes and production temporary fixes. The incorpora-
tion of a PTF in the subsequent system release makes the PTF a
permanent piece of the system software. Database changes are
not initiated in the production fix environment.

Emergency Correction Procedures
The system release implemented in production is supported

by a model within the server repository. During an emergency

Chapter 10 Models and Model repositories 205

fix event, this model, reflecting the system release in production,
will be the primary model for activities, which lead to the genera-
tion of the PTF. When analysis of the problem is completed, the
following steps can be initiated.

PTF Implementation for Shared Batch and
Online Objects

For systems that share objects between batch and online pro-
cedures, the implementation of a PTF that affects these objects
must be coordinated to ensure that the correct load modules
are available to both batch and online. If the PTF affects objects
that are not shared between batches and online, the PTF may
be implemented based on the needs of the batch or online por-
tion of the system, whichever is affected. However, if the objects
affected by the PTF are shared between batches and online, all
factors must be considered in the implementation of the PTF.

References
Chen, P. (1976, March). The entity-relationship model—toward a unified view of

data. ACM Transactions on Database Systems, 1.
Codd, E. F. (1990), The relational model for database management, Version 2,

Addison-Wesley, ISBN 0-201-14192-2.
Codd, E. F. (1969, August 19). Derivability, redundancy, and consistency of

relations stored in large data banks. IBM Research Report. San Jose, California
Date, C. (2005, September). An introduction to Database Systems. Addison

Wesley. In T. Halpin (Ed.) ORM 2 Graphical Notation. ORM2-01.

Other Suggested Reading
Bobak, A. R. (1997). Data Modeling and Design for Today’s Architectures. London:

Artech Books.
Reingruber, M., & Gregory, W. W. (1994). The Data Modeling Handbook: A best-

practice approach to building quality data models. John Wiley & Sons.
New York, New York.

207
Data Architecture.
© Elsevier Inc. All rights reserved.2011

MODEL CONSTRUCTS AND
MODEL TYPES

Data Model Constructs
The purpose of data modeling is to develop an accurate

model, or graphical representation, of the client’s information
requirements and business processes. The data model acts as a
framework for the development of the new or enhanced applica-
tion. Over time, applications gather layers of change, just like an
onion. These layers represent the adding of new functions and
features, as well as the correction or adjustment of old features.

With all this accreted change we can see the original core of
the application only with difficulty. Systems and applications
often fall victim to this cobbling, accretive process. The essence
of an application is then lost in the shuffle of paper and the com-
pilation of day-to-day activity. Data modeling in an analysis ses-
sion encourages both the developer and the client to remove the
excess layers, to explore and revisit the original core of the appli-
cation again. The new analysis determines what needs to feed
into and what needs to feed from the core purpose.

Application Audience and Services
The analysis sessions suggested usually involve both the

designers (project team) and the client. After the client and proj-
ect team representatives agree on a scope and objectives state-
ment, it is important to identify the true user of the application.
Who uses the application? Who is affected by the application?
Answers to these and similar questions help the participants stay
in focus when searching for the desired application results.

After assembling the scope and objectives and an applica-
tion user list, a list of major functions provided by the applica-
tion is then developed. This list includes the functions of the
existing application and any desired future functions in the new

11

http://dx.doi.org/

208 Chapter 11 Model constructs and Model types

application. From this list, the information requirements of each
function are modeled. Eventually all of the functions will be
modeled. At this point it is important to be clear.

The functions to be modeled have been modeled, not the pro-
cesses within them. Descending to the process level will bias the
model. Process modeling will be covered separately. This analysis
effort, as noted in previous chapters, should be done in an itera-
tive manner, with each stage giving cleaner and more definitive
requirements.

Entities
The next step in modeling a function is to identify the entities

involved in that process. An entity is a thing or object of signifi-
cance to the business, whether real or imagined, about which the
business must collect and maintain data, or about which infor-
mation needs to be known or held. An entity may be a tangible or
real object like a person or a building; it may be an activity like an
appointment or an operation; it may be conceptual as in a cost
center or an organizational unit.

Whatever is chosen as an entity must be described in real
terms. It must be uniquely identifiable. That is, each instance or
occurrence in time of an entity must be separate and distinctly
identifiable from all other instances of that type of entity. For
example, if designing a computerized application for the care of
animals in a zoo, one of its processes might be tracking animal
feedings. Within that process, there are two entities: the Animal
entity and the Feeding entity. An Animal has significance as a
living thing. Each Animal is uniquely identified by its biologi-
cal name or some other unique reference to it. Feeding has sig-
nificance as a substance to feed things that eat. Each Feeding is
uniquely identified by type of food, as well as date and time of its
delivery.

Attributes
After you identify an entity, then you describe it in real terms

or through its descriptors or qualifiers. An attribute is any detail
that serves to identify, describe, classify, quantify, or otherwise
qualify the state of an entity occurrence. Attributes are specific
pieces of information that must be known or held.

An attribute is either required or optional. When it is required,
there must be a value for it. When it is optional, there may
be a value for it. For example, some attributes for Animal are

Chapter 11 Model constructs and Model types 209

description; date of acquisition; carnivore, herbivore, or omni-
vore; and animal weight. The description is required for every
Animal. Again, some of the Feeding entity attributes are date and
time of application, amount of food, and type of food. The date
and time are required for every Feeding. The attributes reflect the
need for the information they provide. In the analysis meeting,
the participants should list as many attributes as possible. Later,
they can weed out those that are not applicable to the application
or those the client is not prepared to spend the resources on to
collect and maintain. The participants agree on which attributes
belong with an entity, as well as which attributes are required or
optional. The smallest distinct sets of attributes that uniquely
define an occurrence of an entity are called primary keys. These
will be covered later in this chapter.

Relationships
After two or more entities are identified and defined with

attributes, the participants in the sessions determine if a rela-
tionship exists between the entities. A relationship is any associa-
tion, linkage, or connection between the entities of interest to the
business; it is a two-directional, significant association between
two entities or between an entity and itself. Each relationship
has a name, optionality (optional or mandatory), and cardinality
(how many). A relationship must be described in real terms.

Rarely will there be a relationship between every entity and
every other entity in an application. If there are only two or three
entities, then perhaps there will be relationships among them all.
In a larger application, there will never be relationships between
one entity and all of the others.

Assigning a name, optionality, and cardinality to a relationship
helps confirm the validity of that relationship. If you cannot give a
relationship all of these things, then maybe there really is no rela-
tionship at all. For example, there is a relationship between Animal
and Feeding. Each Animal must be given one or more Feedings.
Each Feeding must be for one and only one specific Animal.

Primary Identifiers
I would like to make a note here on the process of identifying

a unique occurrence of a single entity. There needs to be a way of
doing this because the primary basis of data processing has been
based on processing unique rows, one at a time. With the advent
of relational theory, it is possible to address a group of rows as

210 Chapter 11 Model constructs and Model types

a set of data. But the premise here is to discuss how to retrieve
the one row back on a process call from a data store. In order to
do this, there has to be an attribute or set of attributes within
the entity that, when taken together, will allow a single row to be
retrieved. This attribute or set of attributes is known as a primary
key. This will have further ramifications when model transforma-
tion and physical models are discussed.

Entity Types
I would like to make another further note on entities. First, there

are three forms that it may take in a model. These include kernel,
dependent, and associative. The associative entity will be covered
in a few paragraphs under the many-to-many relationship resolu-
tion, since it is the resolution or intersection object of the many-
to-many relationship between two entities. A dependent entity is
one that meets all the criteria of an entity but has an additional one
of it being dependent on the presence of another, superior entity.
By this I mean that a dependent entity is a child in a parent – child
relationship. The primary key of a dependent entity is the key of the
parent, along with any discriminatory attributes of the child that
make it unique. By taking the key of the parent, it ensures inheri-
tance of all the parent’s characteristics and allows navigation up
and down the hierarchy. A kernel entity is a central entity within all
of the models. That means they exist in some form or shape from
conceptual to physical. These are generally first defined in a high-
level model and made more explicit as the models are made more
explicit. Kernel entities represent the core of the business and are
not dependent in any way. They are primary actors in the business
functions and processes represented in all of the models.

Entity Relationship Diagrams
To visually record the entities and the relationships between

them, an entity relationship diagram, or ERD, is drawn. As noted
before, an ERD is a pictorial representation of the entities and the
relationships between them. It allows the participants in the mod-
eling meeting to easily see the information structure of the appli-
cation. Later, the project team uses the ERD to design the database
and tables. Knowing how to read an ERD is very important. If there
are any mistakes or relationships missing, the application will fail
in that respect.

Each entity is drawn in a box, and each relationship is drawn
as a line between entities. The relationship between Instructor

Chapter 11 Model constructs and Model types 211

and Course is drawn on the ERD as follows. Since a relationship
is between two entities, an ERD shows how one entity relates to
the other, and vice versa. Reading an ERD relationship means
you have to read it from one entity to the other, and then from the
other to the first. Each style and mark on the relationship line has
some significance to the relationship and its reading. Half the rela-
tionship line belongs to the entity on that side of the line. The other
half belongs to the other entity on the other side of the line.

When you read a relationship, start with one entity and note
the line style starting at that entity. Ignore the latter half of the
line’s style, since it’s there for you to come back the other way. A
solid line at an entity represents a mandatory relationship. In
the preceding example, each Course must be taught by a single
Instructor. However, one Instructor can teach many Courses. A
dotted line at an entity represents an optional relationship.

The way in which the relationship line connects to an entity is
significant. If it connects with a single line, it represents one and
only one occurrence of that entity. If the relationship line con-
nects with a crow’s foot, it represents one or more of the occur-
rences of the entity. As long as both statements are true, then you
know you have modeled the relationship properly. Figure 11.1
shows the parts of the ERD that the statement uses (notated by
the broken line).

After some experience, you learn to ask the appropriate ques-
tions to determine if two entities are related to each other and
the cardinality of that relationship. After agreeing on the entities
and their relationships, the process of identifying more entities,
describing them, and determining their relationships continues
until all of the functions of the application have been examined.

Types of Relationships
There are many types of relationships, of which a few must be

detailed for basic understanding (Figure 11.2). The first is a 1:1
relationship. This indicates that for every one occurrence of an
entity, there exists one and only one occurrence of another entity.
The second is a 1:M relationship. This relationship indicates that

“TEACHES” and “IS TAUGHT BY” DEFINE HOW AN
INSTRUCTOR AND COURSE ARE RELATED

TEACHES

IS TAUGHT BY
INSTRUCTOR COURSE

Figure 11.1 relationship:
example.

212 Chapter 11 Model constructs and Model types

for each one occurrence of one entity, there are multiple occur-
rences of another entity. The third is an M:M relationship. This
indicates that for all of the occurrences of entity X, there are
multiple occurrences of Y. It also means that for each and every
occurrence of Y, there are multiple occurrences of X. The fourth
type of relationship is a parallel relationship. This is uncommon,
but it does occur. It indicates that there are different subsets of X
that relate to a subset of Y. These are called subset relationships
and should be considered as one relationship for practical pur-
poses. The last type of relationship is a recursive relationship.
This is a relationship that relates to another occurrence of itself.
An example of this would be a company table where one com-
pany owned another company as a subsidiary. How these rela-
tionships will be handled will be covered in later chapters.

This process of analysis continues until all the entities in the
business problem area have been made explicit and related to
one another. Each entity and relationship has been detailed to
the exhaustion of the working knowledge of those present in the
meeting. When this data analysis has been completed, it is time
to look at how the processes relate.

Model Types
conceptual Business Model

Explained simply, a conceptual data model (CDM) shows (in
graphic and text form) how the business world sees information
it uses. It often suppresses or blurs details in order to emphasize

Y

Y

Y

Y

X

X

X

X

X

1:1

1:M

M:M

PARALLEL

RECURSIVEFigure 11.2 types of
relationships.

Chapter 11 Model constructs and Model types 213

on the big picture. Conceptual data modeling is one of the most
powerful and effective analytical techniques for understanding
and organizing the information required to support any organiza-
tion. This form of model focuses on the big picture, and the really
important strategic objectives that will ensure prosperity for the
organization. Data are shared across both functional and organi-
zational boundaries in the business. As a result, this is critical for
removing redundant data and process in the conduct of the orga-
nization’s processes by increasing shared data use and encourag-
ing process reuse.

There are a number of basic steps involved in conceptual
business modeling. It is, of course, an exercise in the gathering of
requirements from a user environment. The difference between
conceptual models and lower-level models is detail. To put it sim-
ply, conceptual models are highly abstracted, architectural-type
views of the business area. At their level they capture the major
entities and how they might be related together. The conceptual
data model is not specific in nature but is generic. The relation-
ships within it are not made explicit as to type or cardinality. They
are just present. Domain constraint data (that set of limits placed
upon reference domain data or validation data) are not included.
This model is only intended to capture the highest level of busi-
ness use so there is an understanding of what the process is. It
is accompanied by a high-level activity hierarchy or functional
decomposition diagram that depicts the major functionality that
is accomplished in the business problem area.

The functional decomposition diagram is a hierarchical struc-
ture that identifies, defines, and logically groups the business
functions that are performed by the current system. It isolates
the processes; it shows no data inputs, outputs, data stores, or
sources of information. The principal objective of the FDD is to
show the primitive functions of the system for which logic is to
be specified. It will be further examined and analyzed in much
greater detail in the next phase of this project: logical model
development.

logical Model
The logical data model or information systems model is

a more structured interpretation of the conceptual business
model. It exists as a communications mechanism within the
more technical environments that are populated by database
analysts and designers, as well as systems analysts and design-
ers. It is more explicit in nature than the conceptual model and
focuses on the detail level of entities and their relationships.

214 Chapter 11 Model constructs and Model types

However, the same concerns exist in logical models as they did
in conceptual. The model should be impartial to the way the data
is used and arranged in the manner in which is naturally associ-
ated and that semantics (to a lesser degree in logical modeling) is
important.
l The first step is to place the conceptual model into entity

normal form. This means that the model is optimized with
respect to consistency of treatment of entities: entities defined
in simple and standard manner, elimination of redundancy in
entity content (no overlapping entities), and stability of enti-
ties as defined by the concerned business problem area.

l The next step in the process is to resolve any many-to-many
relationships by defining an association entity. This entity should
be attributed with all data items that are associated uniquely
with the entity interface. An additional step must be taken here
for all association entities. It is to review, with an eye toward nor-
malization, all newly attributed data items. Particular care must
be given to the removal of repeating groups.

l The next step is to determine those data items that uniquely
identify an occurrence of the entity. There can be many of
these identifiers, called candidate identifiers. All should be
documented as to content and structure.

l Immediately after the candidate identifiers have been defined,
a selection of the primary identifiers must be made from the
candidate list. These are the specific identifiers that uniquely
identify a single occurrence of the entity. The other candidates
should not be discarded as they are viable identifiers that may
be used for other purposes. These primary identifiers can be
referred to as primary keys.

l The next sequential step is to attribute the entities that have
been defined and keyed. The process of attribution is to find
the single, most appropriate home for a data item on one of
the entities present. If no home is found, it is a possibility that
a new entity has been found. If this occurs, the item must be
researched and resolved before continuing. Attribution is
heavily dependent on the semantic definition of a data item
as well as its characteristics. These have to be correct, or mis-
attribution can occur (it would be discovered later, but why
waste the time?).

l Primary keys should then be propagated downward to all
dependent entities (characteristic and association entities)
as foreign keys. Large (many columns) keys should be noted
for evaluation in the physical translation. Concatenation of
keys will be necessary in association entities. All unique attri-
butes from the parent entities (super-types) are propagated to

Chapter 11 Model constructs and Model types 215

the category entities (sub-types) of the generalization hierar-
chies. This should also be done for any aggregations involved
in the model. This is critical to perform as further analysis in
the business problem area may indicate that only the parent
entity should be kept or that only the category entities should
be kept. This is a decision made in physical interpretation, but
it cannot be properly done if the information is not present at
that time.

l Finally, the domains of all attributes should be defined, and
any constraint rules governing these domains should be
defined. Domain information can be defined as the execution
of special business rules within the business problem area.
Examples of this are edit rules, valid values for content of the
domain, valid ranges for content of the domain, and derivable
data algorithms for content of the domain. However, these are
not specific to the logical model but are critical in verifying
that all domain constraint information has been defined and
that it has not been mistakenly attributed to entities as data.
Along with the logical data model should be a process model

of the same level of specification. It should contain information
about the processes that affects the entities in the logical data
model. It can be in the form of hierarchically defined decompo-
sition diagrams or a graphically depicted process in a detailed
data flow.

physical Model
The physical model is an even more detailed and structured

interpretation of the logical business model. It exists as a defini-
tion mechanism within the technical environments that elabo-
rates what changes have been made to the logical model in
order to adapt it to the environment that it is targeted to exist in.
Along with the physical data model should be access path dia-
grams that show in detail what transit paths will actually be taken
through the model as each process is executed. By tracking and
accumulating these paths, key structures within the model and
the subsequent database will be highlighted that will have an
effect on performance.

Chapters 14 and 15 cover the options available in this trans-
lation in greater detail. Suffice it to say that up to the point of
development of the physical model, the target environment is
not critical or needs to be identified. When the target environ-
ment is identified, then the changes necessary to facilitate its
maximal efficiency in that environment can be made and the
physical model created.

216 Chapter 11 Model constructs and Model types

dimensional Model
Dimensional models are the physical implementation of a

denormalized entity relationship structure. They are most often
used in data marts and data warehouses and are treated as such
under the specialty databases section of this book.

Physical-Level Design
For a given conceptual schema, there are a large number of

physical design alternatives in a given DBMS. The following must
be analyzed:
l The DBMS queries and applications
l The expected frequencies of invocation of queries and

transactions
l The time constraints of queries and transactions
l The expected frequencies of update operations

More on these will be discussed in later chapters on physical
design.

Primary Keys
The primary key is the physical manifestation of the primary

identifier in a physical table. The rules and definition are analo-
gous with the entity being a table and the attribute(s) being peer-
able with columns. The formal definition is also transferable.
These and their specific details will be covered in Chapter 16.

In order to fully understand all the ramifications of primary
keys on the design, it is necessary to digress into two classifica-
tions of relationship types: identifying and nonidentifying. In
identifying relationships, the primary key attributes of the parent
or source entity become components of the primary key of the
child or target entity. This means that the child is characteristic or
existence dependent on the parent.

In nonidentifying relationships the primary key attributes
of the parent entity become nonkey attributes of the child. This
means that the child entity is not dependent on the parent and is
not existence dependent on it.

During this phase one of the most important things to do is
to create the relations/tables: each entity that was rendered in
the logical model representation becomes a relation or table
in the physical design. This includes the entire attribute load as
well as the identifiers. Particular attention needs to be paid to the
attribute data characteristics when the translation takes place
because they may vary by the implementation DBMS.

Chapter 11 Model constructs and Model types 217

The second step or phase is to implement the primary keys.
As discussed previously, these represent the identifiers that were
selected that would allow the data to be addressed as a set or a
single tuple or row. In actuality, an index must be created for each
primary key. In most relational DBMSs, these indexes are the pri-
mary means or retrieval, projection and navigation. Enforcement
for the primary keys will be listed in the set of restrictions and
constraints that must be encoded by programmers and or inher-
ent in the DBMS.

Implement the foreign keys: for each foreign key, an index will
be created; the key will be listed in the set of restrictions that
must be enforced by programmers and/or the DBMS.
Implement the nulls: for all practical purposes in commercial
applications, there are no fields for which nulls are allowed.
Implement the special restrictions: these must be included in
the list of restrictions to be enforced by programmers.

Normalization
Normalization is the arrangement of data items according

to their association with one another within a given framework
of reference. It is a process that has been used over many years
to arrange data in an unbiased framework so that it could be
referenced for design decisions. Normalization allows the data
to remain independent of its use. This independence from use
extends through to independence from change. To clarify this,
it must be said that the predominance of evolutionary change
within the business environment has to do with the processes
involved and not the data. In the relatively few instances of evolv-
ing data needs, change is more easily effected with normalized
data than with unnormalized. Another advantage to normalized
information is that it maximizes share ability in that the data is
not specifically oriented to any application. And finally, it allows
nontechnical users to understand the graphic representation of
the data.

Normalization occurs in stages. Once the normalization
activity has taken place within a stage, the data is said to be
in a “normal form.” There are several normal forms. The first
three are of concern in most commercial data models. A brief
description of these might be helpful in explaining the effects of
denormalization:

First normal form. All of the repeating groups of data col-
umns have been removed from the table and made into other
tables.

218 Chapter 11 Model constructs and Model types

Second normal form. All attributes not dependent on the com-
plete primary key are removed and attributed to more appro-
priate tables.
Third normal form. All attributes that depend on columns
other than those contained in the primary key have been
removed and attributed to a more appropriate table.
Fourth normal form. All attributes that depend on not only
the primary key but also on the value of the primary key are
moved to third normal form entities.
Fifth normal form. An entity is in fifth normal form if its
dependencies on occurrences of the same entity have been
moved into a structure entity. Simply put, every attribute has
a key.

Denormalization
It is into this world of normalization with its order and useful

arrangement of data that the issue of denormalization is raised.
Denormalization is the evaluated introduction of instability into
the stabilized (normalized) data structure.

If one went to such great lengths to arrange the data in nor-
mal form, why would one change it? In order to improve perfor-
mance is almost always the answer. In the relational database
environment, denormalization can mean fewer objects, fewer
joins, and faster access paths. These are all very valid reasons for
considering it. It is an evaluative decision however and should
be based on the knowledge that the normalized model shows
no bias to either update or retrieval but gives advantage to
neither.

Overall, denormalization should be justified and documented
so future additions to the database or increased data sharing can
address the denormalization issues. If necessary, the database
might have to be renormalized and then denormalized with new
information.

Overnormalization
Overnormalization produces numerous tables with greater

interdependency, which results in frequent joins affecting query
response. Overnormalization is a process that can be described
as a condition that may occur when normally grouped items
such as Address or Phone Number are broken down into normal-
ized components which leave the intelligence behind (the com-
monly recognized level of the data).

Chapter 11 Model constructs and Model types 219

It is also inherent in “overloaded” attributes, in which parts
of the attribute really represent a separate data item. An exam-
ple of this would be zip code, where the first three characters of
the zip code represent the state code of the state of residence.
The zip code therefore contains two data items in its group.
Overnormalization of this might lose the original intelligence
of the zip code and require a join operation to reunite it. Some
investigations into multifact data items which fall victim to over-
normalization was done by Dan Tasker (1989).

Domains
A domain is a valid set of values for an attribute that ensure

that values from an insert or update make sense. Each attribute
in the model should be assigned domain information, which
includes the following:
l Data type—Basic data types are integer, decimal, or charac-

ter. Most databases support variants of these plus special data
types for date and time.

l Length—This is the number of digits or characters in the
value—for example, a value of 5 digits or 40 characters.

l Date format—The format for date values such as dd/mm/yyyy
or yyyy/mm/dd.

l Range—The range specifies the lower and upper boundaries
of the values the attribute may legally have.

l Constraints—Special restrictions on allowable values. For
example, the Beginning_Pay_Date for a new employee must
always be the first workday of the month of hire.

l Null support—Indicates whether the attribute can have null
values.

l Default value (if any)—The value an attribute instance will
have if a value is not entered.

Domain Constraints
Domain constraint information is that information that is

associated with the domains of the attributes or data items.
These constraints consist of physical translation of the busi-
ness rules that apply to the content of the data item. They rep-
resent an attribute value relationship, not an entity occurrence
relationship, and therefore should not have any keyed activity.
There should be no key propagation. The reason for this is that
domain constraint tables by definition are independent reference
tables used by many different other entities for validation. If each
propagated a key to the domain constraint table, the foreign key

220 Chapter 11 Model constructs and Model types

structure would be enormous. Although many DBMSs and case
tools use this as a way of instilling referential integrity, it overly
complicates the process unnecessarily.

The occurrence of limited set values to domain data repre-
sent what is called the permitted value set for the domain. It rep-
resents metadata for that domain. Here are some examples of
domain constraints:
l Valid value sets. These are valid translation values for a partic-

ular data item. These include code tables, translation tables,
and existence check tables. For example, CT might be a valid
value for state code 21 in a valid state code table.

l Valid range table. These are valid ranges for a particular data
item. These can be numeric/alphanumeric range edit tables
or reasonability range tables. An example of this would be
state code must be a value between 01 and 52.

l Algorithmic derived data. This is data that is derivable by com-
putational activity, such as adding, subtracting, multiplying
or dividing a data item. An example of this would be review
date hire date 180.

l Translation. These are in effect valid value set tables that are
not used for validation but as a print translation table that
allows processing to be completed on the codified data and
translated only when it has to be presented to the outside
world, such as on a transaction screen or on a print.

Reference Data
These are a new class of table that may or may not be utilized

in the modeling infrastructure group. These tables represent data
that are unchanged by the application that they are being used
by. They may represent complex data that are beyond the simple
lookup tables described. It is clear, however, that although these
data may not be created or updated during the application busi-
ness process, they must be updated or created externally by some
other process that has definable currency and integrity.

Generic Domain Constraint Constructs
It is possible to create an aggregation construct (dissimilar

objects being treated the same for a specific purpose) to house
many varied types of limited-set, domain constraint data within
one entity. It falls into the designer added entity category and is
constructed with a “type” attribute to distinguish what type of
domain constraint it is, as well as a code for the different values.

Chapter 11 Model constructs and Model types 221

Reference
Tasker, D. (1989). Fourth generation data. Sydney, Australia: Prentice Hall.

Suggested Reading
Muller, R. J. (March 8, 1999). Database Design for Smarties: Using UML for data

modeling. San Francisco: Morgan Kaufmann.

223
Data Architecture.
© Elsevier Inc. All rights reserved.2011

TIME AS A DIMENSION OF THE
DATABASE

What Is to Be Done with Historical Data?
The scope of this problem is growing just as historical data

stores on large database servers are swelling with data. It is not
a trivial issue; modeling historical data, doing the logical design
of database components, and creating the physical implementa-
tions are tough tasks. However, the problem is often overlooked
because in the initial phases of system design, there isn’t any his-
torical data, and so the real problems haven’t arisen.

But with today’s capability (and need) to access, retrieve,
and process this data—both in production and in ad hoc query
systems—historical data issues are gaining attention. The access
mechanism for both processing and retrieval is primarily SQL,
but what about the peculiarities of historical SQL queries? What
are the performance issues for large databases? More difficult still
is archiving this data. The data must be archived according to the
underlying object’s structure at the time of archival, which may
or may not represent the object’s structure today. This approach
presents difficult design and access issues if the archived data
must be retrieved at a later date.

These issues will be covered in this chapter. In the first part
of the chapter the focus will be on data modeling. In the sec-
ond part the focus will be on the physical implementation and
access strategies required from the standpoint of large systems.
Although the material in this chapter applies to any large rela-
tional database, DB2 or Oracle will be used for specific examples.

Application History
A primary problem facing the information technology world

today is the implementation of history within the business appli-
cation. Business applications must often follow a trail of recorded

12

http://dx.doi.org/

224 Chapter 12 Time as a dimension of The daTabase

activity from the beginning of a process to the end. The specific
data needed for such processes is the connected sequence of
occurrences, which is associated with finite functions and spe-
cific points in time. Connecting this sequence of events, the
entity occurrence’s activation (or “birth”) can be recorded, docu-
ment the occurrence’s state changes and aging activities can be
recorded, and finally, mark the occurrence’s inactivation or ter-
mination can be recorded.

Thus, from a data professional’s perspective, history is a sig-
nificant design issue that must be considered from conceptual
architecture, though logical and physical models, to physical
implementation, and finally, to access definition and tuning. The
issue must be raised in each phase:
l In the architecture phase: What’s the best way to deal with

the application’s historical needs? What information must be
retained in order to facilitate the business process?

l In the logical modeling phase: How can history be specified in
the manner that will capture the business requirements and
present a basis for a clean translation to a physical model?

l In the physical modeling phase: How can it be ensured that
history is treated in accordance with technical specifications
for the DBMS target environment as well as the application
architecture?

l In the implementation phase: What specifically can be done
to take advantage of the options given by a selected DBMS?

l In the access and tuning phase: What impact do the charac-
teristics of the history, as well as the application’s access fre-
quency distribution and answer set volumes, have on physical
placement and indexing?
The application’s restart/recovery, disaster backup and recov-

ery, and security and audit considerations should not be over-
looked. However, these concerns are outside this chapter’s
scope, where the focus will be on retrieval and update concerns.
Archiving will be touched on, but only in the light of its relation-
ship to history.

How do we describe time? Throughout this chapter, the expres-
sions time-sensitive (time-dependent) and non-time-sensitive
(non-time-dependent) will be used. These terms describe the
entity occurrence’s attributes within the business problem area.
What is being defined is the continuous flow of the occurrence
sequence as measured and structured by calendar dates. Time
sensitivity is merely a measure of how susceptible an attribute’s (or
entire entity occurrences) value or content is to change. When dis-
cussing modeling issues in later chapters, it will be seen that time
sensitivity is inherent in any discussion of history.

Chapter 12 Time as a dimension of The daTabase 225

Some information on databases today is not considered
time-sensitive and, therefore, does not contain a date attribute.
While undated, it represents a static image of the information
being retained on the database. But what if the information was
to become time-sensitive? With no date attribute, it would be
impossible to tell when the information was effective, or when
it was recorded in the database. Luckily, this situation is not
encountered often, but when it does occur, the information in
the database’s current view must be upgraded with a date.

Where the business function requires a record or image in
time to be accessible, a date must be contained as an attribute
on the occurrence. This attribute may be what distinguishes the
occurrence from any other; thus, it must be defined as part of the
occurrence key to ensure uniqueness.

Classes and Characteristics
Information required for the business function may be classi-

fied historically in a variety of ways. In this chapter the following
will be discussed: current occurrence, simple history occurrence,
bounded simple history, and complex history. Current occurrence
is a static snapshot view of an entity occurrence’s attribute content.
Simple history is the signing or tagging of a date to the attribute
contents of the entity occurrence. (Based on the date tagged to the
occurrence, the attribute’s contents are valid for the date defined.)

Bounded simple history is the limiting or bounding of the
attribute values’ effectivity by an effective (begin) date and expi-
ration (closing date). It provides a definitive time interval when
the attribute values were in effect. Many occurrences provide a
continuous timeline of effectivity periods. Complex history is also
bounded by begin and end dates, but supports more complex
functions for the business and data. For example, these func-
tions include: out-of-sequence change activity, out-of-sequence
change activity with forward propagation, functions that sepa-
rate processing date and effective date of data as well as future
date processing.

The dates used to define the entity occurrence’s historical
characteristics selectively are Effective Date; Expiry Date; Posting
Date; Prior Effective Date; Prior Expiry Date; and Close Date.
Definitions follow:
l Effective Date records the specific date the entity occurrence

attribute values became usable for the business function.
l Expiry Date records the last specific date on which the entity

occurrence attribute value set is usable.

226 Chapter 12 Time as a dimension of The daTabase

l Prior Effective Date is the Effective Date of the previous effec-
tivity period during which the entity occurrence attribute val-
ues became usable.

l Posting Date is the date the change was applied to the record.
It is also referred to as the Last Change Date.

l Prior Expiry Date is the Expiry Date of the previous effectivity
period when the entity occurrence attribute values became
unusable for the business function.

l Close Date records when information is closed off or logically
deleted by the incidence of new or superseding information
that renders the occurrence unusable except for audit trail
purposes.

Current Occurrence
With current occurrence, a date is not needed because a

change event causes a new occurrence to be inserted and the old
one deleted; or, the information’s occurrence is overlaid with the
new version. The advantages to this type of information from a
historical perspective are that it represents the entity occur-
rence’s latest image. Only one occurrence exists for the attribute
value set that comprises the key of the occurrence.

Here are some basic rules for this type of history:
l Not more than one set of attribute key values may exist at one

time.
l If any dates are present on the record, they are not part of the

key.
l If new information is added with the same attribute key val-

ues, it either updates the current record or deletes the old and
adds the new occurrence.

Simple History
As defined earlier, simple history describes situations when a

simple date is used to tag or mark an occurrence with a Posting
Date. This date is used to tag or mark an occurrence with a
Posting Date. This tag is just for the purpose of defining when
the activity that initiated the entity occurrence happened, and
becomes part of the attribute values that make up the key to the
entity occurrence. The advantage to this type of history is that
although multiple occurrences of the key set attribute values
exist, a specific occurrence can be retrieved by specifying a par-
ticular Posting Date as the retrieval argument. A basic rule for
this type of history is that the Posting Date must be part of the
entity occurrence’s attribute key values.

Chapter 12 Time as a dimension of The daTabase 227

Bounded Simple History
This type of history is characterized by the need to look at

previous occurrences of the same data group to find which char-
acteristics were in force during a particular date window. By far,
this requirement is the most common one. It can be easily and
simply achieved by having an Effective Date and an Expiry Date.

Two viewpoints exist as to whether both dates have to be in
the attribute key values. The first says that both Effective and
Expiry dates should be present in the key for calculation pur-
poses. The second viewpoint is that only the Effective Date in the
key—and by default the next occurrence’s Effective Date—should
become the Expiry Date. Either way, the overall result is a con-
tinuous timeline of effective periods. This type of history provides
an existence continuum of what attribute values were in effect
and when. This type of history is also appropriate for future effec-
tive processing, meaning the ability to add the occurrence to the
physical environment prior to the Effective Date and letting it be
triggered on the Effective Date by date-driven processing.

In applications that allow change to entity occurrence attri-
butes during effectivity periods:
l A change to an occurrence is made only if the change’s

Effective Date is equal to the entity occurrence’s Effective
Date.

l If an update occurs, the Posting Date should be changed to
reflect the change’s date.
In applications that do not allow entity occurrence values to

change during an effectivity period:
l A new occurrence of the entity must be created and use the

current date or the Posting Date as the Effective Date.
l The prior entity occurrence must be updated with the Posting

Date as the Expiry Date.

Complex History
This third type of history (also called historical logging)

requires that all previous occurrences of the historical data be
available for retrieval in such a state that these occurrences can
be reapplied as necessary. This third type of history (also called
historical logging) exists to process out-of-sequence changes,
such as early terminations and retroactive changes. Two types of
complex history exist:

Type 1. This type allows processing of the out-of-sequence
change or termination after the original occurrence has been
logically deleted or marked closed as of a specific Close Date.

228 Chapter 12 Time as a dimension of The daTabase

This method is used when the out-of-sequence change or ter-
mination has no effect on subsequent occurrences.
Type 2. Complex history (the most complex of all) occurs
when an out-of-sequence change or termination affects all
succeeding or preceding occurrences. In this case, a chain
must be developed that lets the business process follow the
sequence of occurrences by their Effective and Expiry Dates.
This chain is accomplished by having the prior Effective and
Expiry Dates retained on each occurrence to facilitate retrieval
and updating.
Here are some basic rules for Type 1 complex history:

l Always use Effective, Expiry, and Posting Dates as part of the
entity occurrence key.

l When processing the out-of-sequence change, it is critical
that the previous occurrence be closed out as of the out-of-
sequence transaction’s effective date.
And for Type 2 complex history:

l First, this type of history activity should be discouraged; it is
extremely resource-consumptive. It must, after all, read each
occurrence precedent or subsequent to the out-of-sequence
change and update each until the business process reaches
the desired state of stasis. The second reason for discourage-
ment is that it causes problems with transaction audit trails. It
rewrites history in fact and in effect. Previously recorded audit
trails become invalid. And new audit trails must be generated.
It can and will cause audit exposure problems.

l If it is used, always use Effective, Expiry, and Posting Dates as
part of the entity occurrence key.

Logically Modeling History
In the early days of logical modeling, history was not reflected;

most people felt that multiple occurrences found in the entity’s
history were the result of cyclical or triggered events driven by
the business process. It was deemed desirable to keep the model
somewhat pure from the possible influences of process orienta-
tion. History—the perceived result of a process—was ignored or
at best, treated as a physical modeling concern. History is indeed
the result of a process, but the process involves just the entity of
concern. In modern terms, it could be described as an entity’s
multiple life change states.

Now, if history is viewed as another dimension of an entity—
the time dimension—how is it modeled? Building on much work
by senior people in the field, a more definitive specification can

Chapter 12 Time as a dimension of The daTabase 229

be made that still leaves the logical mode relatively intact and
pure. The specification is that historical detail is the associative
entity that results from the resolution of the many-to-many rela-
tionship between the finite set of the entity’s occurrences and the
infinite set of occurrences of time. Each occurrence can be asso-
ciated with one or more points in time, and each point in time
can be associated with one or more occurrences. Following the
rules for resolution of many-to-many provides an associative
object whose primary key is the concatenation of the primary
keys of the two associated entities. Put more simply, the result of
the association is an entity whose primary key is the primary key
of the original entity plus a date.

The process for attribution of these entities is based on a sim-
ple question of time dependency. Time dependency exists where
there is the possibility of attribute content change over time. If a
time dependency exists, then the attribute should reside with the
historical detail specified by date. If no time dependency exists,
then the attribute can remain on the primary entity that has
no date. The result of the modeling effort is two entities with the
same basic primary key, with the exception that the time-sensitive
one has a date as part of the key.

Relationships from other parts of the model to the affected
entities should primarily be made to the non-time-dependent
entity, rather than to the time-dependent one. Completing this
step lets the relationships exist without reference to time.
Relationships to the non-time-sensitive entity also prevent a date
in the key from being propagated to all the dependent entities in
the model. When the date is propagated throughout the model,
the unit of work is expanded tremendously. This expansion
occurs because the referential integrity within a relational data-
base is paramount. Without it, the database could contain incon-
sistent data. The expansion of the unit of work would exist for all
activity involving inserts and updates to the time-sensitive entity.

Physical Design of History
If the time (no pun intended) has been taken to model his-

tory properly in the logical model, the option to decide how best
to implement it physically can be easily made. Remember, both
time-sensitive and non-time-sensitive data have been modeled:
The time-sensitive data is the association object between the
entity and time. This association object is the historical detail
table that must be implemented. The non-time-sensitive entity
becomes the root table.

230 Chapter 12 Time as a dimension of The daTabase

To implement any physical database from a logical model,
data use patterns and access traversal paths must be defined;
these will lead us to an understanding of the integrated access
load that will exist on the database. These patterns and traversal
paths must be defined for access to history as well. As noted pre-
viously, the logical model contains primary, non-time-dependent
and time-dependent entities. Access patterns and traversal paths
will reflect the call pattern for the data in the database. If the data
calls are predominantly to the non-time-dependent-entity—and
then immediately to the time-dependent one—you can save
an access by denormalizing the two entities back together. Of
course, you should exercise caution in denormalizing, particu-
larly if dependent entities are involved that carry the propagated
key from the non-time-dependent entity. (Of consideration, too,
is the referentially constrained group containing the propagated
key. If “collapse” denormalization has taken place, the key includ-
ing the date would be propagated down the chain. The net effect
would be a cascade update to all the dependent entities.)

If most of the calls are to the entity’s current occurrence, denor-
malization (here, creating redundancy) of the time-dependent
characteristics from the time-dependent entity to the non-time-
dependent entity would provide the latest occurrence’s logical
image. Upon implementation of this construct, a table containing
the data’s most recent image manifests. The n1 and previous ver-
sions would be retained on an associative history detail table.

Physical Implementation of History
Translating the physical model into implementation involves

the selection of options and variables; the goal is an optimal
information structure that will address the business user’s need.
For simplicity, relational references will be used as the basis of
the examples (simpler because of the commonality of the models
in all stages of the relational design process).

One option that could be entertained during physical model-
ing of the access process has to do with the addition or insertion
of an occurrence; this is to partition or segment the table by date.
Partitioning may resolve some potential access problems, such as
retrieving a group of occurrences from the same history period.
However, it may also introduce hot spots (areas of high activity that
invoke channel and physical read-access contention) in the data-
base if the additions are all on the same or near the same dates.
Thus, evaluate partitioning very carefully. The negative side of the
impact can be difficult to adjust for during performance tuning.

Chapter 12 Time as a dimension of The daTabase 231

Partitioning may be performed vertically as well but only in the
case where you have extremely long rows in the time-dependent
physical model table. For vertical partitioning, the whole key must
be replicated for the second table—including the time-dependent
keys.

Physical placement of the time-dependent and non-time-
dependent tables may be done on different DASD devices,
thereby reducing contention. Indexes facilitate access by allow-
ing the query predicate to be as specific as possible with keyed
and nonkeyed discriminators. When building indexing for the
physical model tables, you should at a minimum address an
index on the primary identifier to include the time-dependent
keys. These keys will become the discriminators, which let us
retrieve (that is, access) the smallest set of history occurrences,
and for updates, these keys let us retrieve only a specific histori-
cal occurrence. Additional indexes—on part of the key or on non-
key attributes—should also be implemented based on access
traversal paths defined for the business activity.

Performance Tuning
As noted earlier, each entity in a business environment has

a life cycle of its own. The entity cycle (creation, multiple-state
changes, and termination) represents the business process infor-
mation accumulation over time. This history, and the cumulative
effect on the volume of occurrences on the physical table, is vari-
able based on the entity’s characteristics.

Thus the impact on the physical database of decisions regard-
ing physical model denormalization, as well as those regarding
the implementation option, must be reviewed frequently. Simply
put, the physical database characteristics will change over time
based on the acquisition and storage of history. Redesign and
reimplementation of some physical model tables are par for the
course once you have experienced performance decreases due to
history accumulation.

Finding Patterns
Another way you can address performance problems due to

history accumulation is archiving. As noted at the beginning of
this chapter, history should be a design consideration from the
earliest stages of the application’s development. As an adjunct
putting history into the design process, archiving should be a fac-
tor in the conceptual and logical phases, not just a tuning tool for
the physical database.

232 Chapter 12 Time as a dimension of The daTabase

Archiving concerns retiring data from a database as speci-
fied by criteria determined by the data user. Specifically, the
user must detail the format and at what level both history
and archived history must be retained. This goal is most often
achieved by developing a time and frequency graph of the infor-
mation’s access activity on the database. Generally, data retrieval
frequency diminishes along the activity timeline. Usually for a
simple processing relationship, within three to six months, access
activity tapers off. A good example is the mail-order business.

In certain other industries, however, such activity has a dif-
ferent pattern. For example, an airline reservation application
would start slowly and build rapidly, right up until flight time.
Activity would then drop off to a minimum after the flight left.

The frequency of updates and deletes has a different time pat-
tern than data retrieval activity, and therefore must be mapped
separately. For example, the window of change activity might
stretch over a long period of time for an airline reservation sys-
tem, whereas there would most likely be a smaller window in a
mail-order business. The separate activity graphs (data retrieval,
update, and deletion), when integrated, should display a curve
that will define an archival point best suited to the data con-
cerned (that is, to the industry’s data). Such knowledge will tell
us when to remove occurrences from the primary data store and
place them elsewhere.

By tracking and evaluating all these patterns, you will come
up with an archive plan, which may be developed side by side
with other history implementations. As for the physical imple-
mentation choices for archive data, these choices range from
storing it in tables on slower speed devices, to storing the data
as sequential records on tape. These will not be covered in detail
here, because they are often less a database structure concern
and more an issue of the environment’s technical structure. In
the second part of the chapter, changes in this strategy will be
discussed; however, as new techniques are under development
by the DBMS vendors, what can be said is that an archiving strat-
egy should be defined shortly after making decisions about the
application’s history strategy. To minimize the data that must
be retained online—an effort that will pay off in lower overhead
costs and better performance—archive efforts should parallel the
history efforts as much as possible.

Tips and Techniques for Implementing History
How to store and access historical data is a complex issue.

Performance and maintenance of historical data are trivial in

Chapter 12 Time as a dimension of The daTabase 233

newly installed applications: Every system runs beautifully with
minimal amounts of data. But data volumes will rise and expand
until the stress exposes the inherent weaknesses of the origi-
nal design template. The response to these stresses and the per-
formance changes that are made to adjust to them not only will
change the design but will also often affect the program code itself.

One way to respond to the stress of decreasing performance
is to look at the amount of data being retained. When the perfor-
mance goes beyond a specified negative threshold, it is time to
look at either purging or archiving the oldest data. Archiving does
create a new set of problems. For one, the data when needed is
no longer online and a special mechanism has to be executed
in order to recall it or make it available. Second, data structures
change over time, albeit slowly, and therefore the archived data’s
structure may not match the current data structure.

In the first part of this chapter, the logical side of implement-
ing historical data stores was reviewed. Now the physical imple-
mentation and query access can be reviewed. These techniques
could be applied to any large database, but the frame of reference
will be relational because most of the larger historical data stores
are maintained in relational environments. Two primary areas
for review exist: The type of history in systems, and the physical
database structuring of historical data and SQL accessing. SQL
accessing will be generic because the implementations of SQL on
the different vendors’ platforms each have idiosyncrasies.

Types of Systems
Historical data is a generic term and means different things

to different people. In previous paragraphs, historical informa-
tion was reviewed in these respective classes: current occurrence,
simple history occurrence, bounded simple history, and com-
plex history. With regard to these types of history, the underlying
physical structure will be sympathetic or associative to the data.
By this is meant that the physical table structure is dependent on
the volume, access characteristics, and total longevity of the his-
torical data. Data access in these stores is also dependent on the
type of information being stored.

Everyone wants all of the necessary data instantly accessible
all of the time. In the real world, this is simply not possible. Not
all data need to be retained forever; some data are used once and
thrown away, some data are updated in its historical state, and still
other data evolve from access to infrequently used data. These
dependencies emanate from data’s underlying operational nature.

234 Chapter 12 Time as a dimension of The daTabase

In a personnel system, the goal is to capture the data facts of
an employee’s life within a corporate entity accurately: from
simple changes in salary, to changes in occupational position,
through changes in name changes and dependency caused by
marital changes, to location changes. Over time, these changes
alter the historical image represented by historical data; for exam-
ple, organizations change, departments come and go, salaries
get restructured, and employee benefits packages and options
get replaced. The query to capture the life cycle of an employee
over time is complex. Imagine the history within the organiza-
tion. What is the salary history throughout the last five years?
Were you even employed for the company that long? Where were
you employed before? Is the benefit plan in use today that was in
existence when the employment began? Did you get married and
have children during the time frame?

This is an example of bounded complex history that can have
an unended life cycle, meaning that it cannot or should not ever
be deleted, only archived after some significant event (such as
changing jobs internally or being terminated).

There are major differences between personnel systems and
other application systems. An example of another kind of system
is one that stores financial data for a fixed period such as main-
taining financial data by day, within month, within year, for seven
years. While it has a fixed life cycle, the data itself can vary in its
access patterns; it is not subject to change.

The most difficult historical data to store are data that are
kept in certain service industries. This data is subject to out-of-
sequence change (a correction or adjustment of a past event),
or needs to be kept for inquiry purposes because of legal con-
tract reasons. In most instances, it can have a fixed life cycle, but
sometimes change to the data must be maintained forever to
handle certain types of inquiries. An example is a utility bill from
a company that supplies services to a home. Line items appear
on the monthly bill for each type of service delivered. It is pos-
sible that a mistake can be made that may not get noticed for
months or years. Corrections and adjustments must be made at
the point of discovery retroactive to its inception. In order to do,
that history must be examined.

Let us analyze this further: several charges on a phone bill
were found to be erroneous due to poorly routed traffic from one
country to another country after a year had elapsed. The busi-
ness need for inquiry existed; therefore, each line item had to
be examined by the customer and the service rep. As a result of
this, prior phone bills were also called into question. In the past,
in a poorly designed data environment this situation would have

Chapter 12 Time as a dimension of The daTabase 235

required long periods of correspondence through the mail to
determine and correct the errors. However, with access to his-
torical data, the items in question could be examined and proper
adjustments could be made immediately.

In one example of this type of application, rather than an
adjustment being posted, a correction entry is added to the data
with a different set of effective dates. In another example of this
type of system, the original line items are corrected with a trans-
action date, a new record is then inserted, and the effect rolled
forward.

In all of these systems and applications discussed, the data’s
life cycle and access types are defined not only on the types of
systems but also on the business requirements. Different corpo-
rations in the same industry do not store or maintain data in the
same way and may have very different ways of approaching their
customers. In corporations controlled or regulated by some exter-
nal body or organization, historical data are maintained accord-
ing to a set of predefined rules, and an auditing requirement is
also present. This becomes even more difficult to handle when
the data must be maintained for a historical period and the audit
trail changes must be maintained separately for the same period.

Physical Structure
While examining the various types of physical structures for

historical data, some tenets and premises should be defined.
First, it must be assumed that maximum data availability is a goal.
Second, a generalized approach to the problem can be taken.
Third, the data can be structured in either a vertical stack or a
horizontal plane. Lastly, it may also have to be partitioned, either
by the means available in the DBMS or by user partitioning.

In most application systems, data must be partitioned. This
partitioning requirement is generally driven by the small batch
window for utility maintenance or by the need for archiving
data. Archiving data is the example for discussion. It is a require-
ment to archive or purge a period of historical data at a certain
age. The physical problem is how to eliminate this data without
having to release and recreate the underlying physical structure.
Since most historical data is stored in date sequence, the cluster-
ing index will be by date and identifier (identifier in the generic
sense). The classic example is data stored on a 13-month cycle,
where the oldest month is dropped as a new month begins.

Assuming a large amount of data exist, it is inefficient to drop
the structure, remove the old data, and recreate the table based

236 Chapter 12 Time as a dimension of The daTabase

on partitioning by a new date range. The proper method is to
define another table that effectively maps the ranges in the par-
titioned table. When it comes time to drop a period of data, the
partition holding the data can be offloaded to archival storage
and replaced with rows for the new period. A control table can be
set up to record the change, completing the process. This method
works best to control fixed cycles of historical data.

Some applications require data to be accessed within a specific
historical window; others require access to individual components of
that window. Depending on the application’s requirements, historical
data’s horizontal distribution can produce much better performance.
This type of structure allows all data subperiods for a particular ID to
be stored in repeating columns within a full window—for example,
having all of the months of the year) on each row of a financial his-
tory table.

In many financial systems, data are accessed only within a spe-
cific period, and in these cases, data can be structured across a row
rather than in individual rows. Systems that roll up financial data
for a period can achieve a great performance boost if the data can
be stored horizontally within that specific period as just noted.
A second benefit for large quantities of data is for the horizontal
groups to be further partitioned by specific ranges within the iden-
tifier. By horizontal structuring, the number of I/Os can be signifi-
cantly reduced and DASD requirements are generally lower, since
the identifier is not repeated for the data within each period.

Whenever this structure is considered, it is always best to model
it both ways to prove the worthiness of the denormalization. The
alternative to this horizontal placement is the creation of an indi-
vidual row for each Identifier date-period combination. Although
it does waste more DASD, it allows each specific period to be oper-
ated on separately. Obviously, other methods can be used.

Date effective processing, required by most systems that record
and store historical data (bounded complex history especially), is
at best difficult to define properly for all access. Because data are
date- and perhaps time-sensitive and can change over time (as
with the personnel system), two dominant access requirements
exist: the need to change the data while retaining the old and the
ability to reconstruct what the data looked like at any point in
time. The issues become more complex where a parent table is
bounded by effective dates and changes must be made to a child
table also bounded by effective dates. Since data integrity must be
maintained and a change can come to a child between the dates
in the parent, defined referential integrity (RI) within DBMSs can-
not be used, and the RI defined via DBMS rules becomes more
complex and affects performance.

Chapter 12 Time as a dimension of The daTabase 237

A final problem is the ability to restore archive data to respond
to queries or business needs. Two major problems need to be
addressed: to what area do we restore the data and what format are
the data in (is the table’s structure archived the same as the table’s
current structure)? These issues are often overlooked until it is time
to answer the query. This question has no simple answer, but the
most common approach is to restore the data from the archive by
the period required into a separate data structure that is named
logically so programs can process it (if required) without change.
If the archived data’s structure is different from the current struc-
ture, either a translation program is required to extract from the
archive to the corrected format or the data must be returned to
the same structure using dynamic SQL to extract the queried data
from it. Obviously, many other methods can be used. The primary
point is that the data and its underlying structure must be archived
with a potential mapping that must be maintained throughout the
archived data’s life cycle, mapping it to whatever the data structure
is today.

Historical data have a tendency to grow far beyond the ini-
tial design’s scope. The issues for a comprehensive initial design
must address the data’s structuring and archival, the related
data’s archival, tracking the archived data by period and storage
medium, and the procedures for archive data restoration. If these
issues are not completed at the outset, difficult and sometimes
insurmountable problems will occur at a later time.

Dimensional History
Historical data as far as dimensional models and databases

will be covered as part of the specialty database section of the
book under data warehousing.

Reference
Tupper, C., & Yevich, R. (Nov. 1993). Gone but not forgotten. Database

Programming & Design, San Francisco, 12(6), 33–40.

Other Suggested Reading
Bobak, A. R. (1997). Data modeling and design for today’s architectures. London:

Artech Books.
Fleming, C. C., & von Halle, B. (1989). Handbook of relational database design.

Reading, MA: Addison-Wesley.
Reingruber, M., & Gregory, W. W. (1994). The data modeling handbook: A best-

practice approach to building quality data models. John Wiley & Sons,
New York, New York.

241
Data Architecture.
© Elsevier Inc. All rights reserved.2011

CONCEPTS OF CLUSTERING,
INDEXING, AND STRUCTURES

Cluster Analysis
Cluster analysis is a generic term applied to a large number

of varied processes used in the classification of objects. For the
last 30 years, cluster analysis has been used in a large number of
fields. For the purposes of this discussion, we will restrict inter-
action with clustering primarily to data. Although it is on these
principles that some of the foundation of relational theory was
based, the concept of clusters is pervasive through all types of
data structure theories. We will have a generic discussion on clus-
ters and segue into how this applies to data.

What Is a Cluster?
Everitt (1980) studied the definitions of a cluster and found

that the most common feature of the definitions was their vague-
ness and circular nature (terms such as similarity, distance, alike,
and placement are used in the definition but are themselves
undefined). For present purposes, let us agree that a cluster is
a region of high density within or surrounded by regions of a
lower density. This definition, by the way, allows the cluster to be
semantically referred to as a natural cluster.

Cluster Properties
It is clear that clusters have unique properties compared to

nonclusters. Cormack (1971) found that clusters had the proper-
ties of external isolation and internal cohesion. External isolation
refers to the separation of the entities in one cluster from those in
another cluster by some dimension of empty space. Internal cohe-
sion refers to the entities within a cluster being similar to each
other.

13

242 Chapter 13 ConCepts of Clustering, indexing, and struCtures

Sneath and Sokol (1973) described a number of properties of
clusters. We will discuss these briefly before moving on. They are
as follows:
1. Density – this is the property of a cluster to have high occur-

rence content in a local area as opposed to areas of low
concentration.

2. Variance – this is a property of looseness or concentration of
entities or points within the cluster itself.

3. Dimension – despite a cluster being amorphous in shape, it
does have external dimension. It has external boundaries;
therefore, it must have a “radius.”

4. Shape – this is a purely subjective evaluation of the cluster—
what does it look like: a sphere, an ellipsoid, and so forth?

5. Separation – the degree to which clusters overlap or remain
separated in the space in which they reside.

Cluster Theory Applied
How, then, can these conceptual categories and definitions

be applied to the data problems? Data are clustered as a result of
the natural processes that affect it. What impact will clustering
have on data, and how can we use it for our purposes? Well, there
are two components to this clustering. The first has to do with the
data characteristics such as date, time of date, reason for identi-
fication, and common mode of reference. The second has to do
with how those characteristics can be leveraged to provide infor-
mation retrieval and update capabilities.

The first part of clustering has to do with the intrinsic charac-
teristics of the data. What are the data clusters? How is data vari-
ance defined within the data cluster? What are the data cluster’s
dimensions? How are the data clusters related, and how far apart
are the clusters? In the beginnings of data processing, these clus-
ters were virtual materializations of the file cabinet contents they
were replacing. Just as in the file cabinets, some folders of the
files were thicker than others (clusters), and some folders were
empty. As data processing became more sophisticated, symbolic
representation and distribution of data left the virtual material-
ization behind, and the direct analogy to filing cabinets did not
apply any more.

Instead, file handlers were developed that interfaced with the
data, and the evolution of data processing moved forward. Finally,
as more and more data became usable, the file systems evolved
into DBMSs. It is a tremendous boon to commercial applications
that the development of data processing has advanced beyond

Chapter 13 ConCepts of Clustering, indexing, and struCtures 243

the state where physical location on a disk was paramount in the
retrieval and processing of it.

It is hard to tell which forced which. Did the need to store
more information force the growth of new methods of storage,
or did the advancements in storage technology allow more data
to be kept? It appears that it may have been both at one time or
another, or possibly a synergistic effect between the two.

Many of the solutions to the clustering of the data are embed-
ded in the types of DBMSs that have been developed. For exam-
ple, hierarchical clustering is when data are clustered by all the
occurrences within a specific level of the hierarchy, with each
subordinated level being chained to the level above it. Therefore,
to process an individual that has subordinates within multiple
levels, one simply identified the individual within each cluster as
the process descended through the hierarchy.

For example, relational clustering is when the data are clus-
tered in sets that are based on like characteristics, and these sets
(clusters) are linked or related to one another by some of the
inherent characteristics of each cluster. Therefore, to process an
individual member of a cluster (set) that had corresponding or
related members in another cluster, one simply threaded through
the sets to create the data chain.

As you can see, the DBMSs have evolved to handle the physi-
cal placement of the data and some of the clustering of the data.
These collections of the clustered and arranged data are called
databases. These databases are created within and managed by
the DBMSs that have evolved. They handle the recovery, process-
ing, and data interface with the database, as well as handling
some of the base data issues. They also have been expanded to
handle other issues, such as how to allow for growth, shrinkage,
and creep. Let us examine these issues briefly.

Growth is that process of accretion of members to a cluster of
data. Simply put, it is the process of gathering more members of
clusters than you currently have and retaining them. It involves
the DBMS having a mechanism that will locate space for the new
member of the cluster and the insertion of the member into that
space.

Shrinkage is simply that: the shrinking of a cluster of data via
divestiture of some members of the clusters that you are cur-
rently retaining. It involves the DBMS having a mechanism that
will locate, delete (or mark for deletion) a cluster member, and
then open up the space for reuse.

Creep is the slow but inexorable growth of a cluster within a
group of clusters that when left unchecked will influence the per-
formance of the data access. Simply put, if one cluster becomes

244 Chapter 13 ConCepts of Clustering, indexing, and struCtures

too big, then the process spends more time working with mem-
bers of that cluster than it does all the other clusters. This can be
caused by not understanding the nature of the clusters to begin
with or because the reasons for the cluster have changed (busi-
ness changes) or were unplanned for (product mixes or promo-
tional programs that cause an influx of members to the cluster).
There are no automated mechanisms within DBMSs to handle
creep. There are tools that tell the monitoring individuals that
creep is happening, but it must be handled by human interven-
tion, as the solution requires analysis and prudent decisions.

These are the phenomena that affect databases and the clus-
ters within them. They are the direct result of the insert, update,
and delete functions that are part of any given process. But if
these actions are examined in detail, it becomes evident how
actions interact with data clusters. This will have a profound influ-
ence on the understanding of keys covered later in this chapter.

Inserts
An insert is the addition of a member data to a cluster or

clusters by accretion; that is, the entire data complement of the
member is placed in the cluster with its like kind. But in order to
do this, there are some basic premises that need to be explored
to avoid error. The primary error that could take place is try-
ing to add something that is already there in the first place! This
predicates that the member content of the cluster be read and
matched against certain data characteristics and content to
ascertain that the member is not there before the insert or add is
attempted. How often is this done? The easiest way is to read the
actual member information out in the cluster to do an item-by-
item comparison to see if anything is different. This way might
become cumbersome if the number of the members in the clus-
ter were in the thousands or even millions. Another way would
be to select some abbreviated form of the data for comparison.
These abbreviations of the member content will be called keys
from this point forward in the book.

Once the comparison is made, then a search for a free posi-
tion is instigated in order to place the new member. When it is
found, the insert is easily accomplished, or a guard is put in place
to ensure that the processor is notified of the error. The place-
ment of the inserted member in relation to the cluster is not
material now. Its position will have an effect on efficiency, since
it may not be in juxtaposition to the other members of the clus-
ter, but it is certainly in closer position to this cluster as opposed

Chapter 13 ConCepts of Clustering, indexing, and struCtures 245

to another cluster. Wherever the location is, it will be marked in
such a way as to have its abbreviated data key indicate which
cluster it is a member of and where the bulk of the cluster or cen-
ter of the cluster can be located.

Updates
What, then, is an update? It is simply the changing of some

member information and leaving the remainder of the data
unchanged. How is this accomplished? Much like the insert, the
cluster needs to be read to find if it is a member of the cluster.
Comparing the abbreviated set of data characteristics, when a
match is found, the member information in the cluster is over-
lain where it stands. Everything is fine. But what if the new data
do not fit in the same position as the old data? In the insert, the
effort was to find a location for a brand new member. In the case
where the update will no longer fit, the same option is true. So
the current member’s place in the cluster is marked as closed,
and a new place is located for the member, just as in the insert.
Also, just as in the insert, the abbreviated data information is set,
depending on which cluster the member belongs to and where it
can be located.

Deletes
A delete is just that: the removal (or the marking for removal)

of a member of a cluster. Just as in the insert and update, the
location of the member within the cluster must be defined in
order to be removed. We again have to use the abbreviated mem-
ber data content in the key to identify the matching member.
Once that is done, then it is simply a matter of marking the loca-
tion where the member once was as an empty space or marking
it as a “logical delete,” which means that a pointer is set within
the record indicating it is not viable anymore.

Physical Structure
To this point the discussion has been about the logical con-

cepts of what clusters are and how they are interfaced within a
computing environment. The discussion was also about their
content and characteristics and how a member of a cluster can
be identified and even related to other members of other clus-
ters via an abbreviated characteristic list or key. Let us examine in

246 Chapter 13 ConCepts of Clustering, indexing, and struCtures

more detail how the physical structures manifest from these con-
cepts. These clusters, when materialized, become tables. Going
back to the original discussion on abbreviated data characteris-
tic sets, it was shown that by examining them in situ, it saved us
the effort of reading the rest of the data elements. It still required
work to go to the data cluster to read them. Somewhere along the
evolutionary line in database technology it was decided to sepa-
rate these abbreviated data characteristics out and to keep them
as a separate physical cluster to themselves.

Clusters in the real world of relational and networked data-
bases are called tables. A group of related tables is called a data-
base. With this in mind, let us look at keys and how we can deal
with them to make the tables more accessible.

Key History and Development
A primary key is a value or set of concatenated values that,

when projected against the database in a search argument, yields
“n” returned records. Since data processing began there has been
a need to operate on one record at a time. This is a limit of the
human interface, since ergonomics usually involves bringing up
an image of the one record and operating on it before returning
it to disk. In order to accomplish this, certain characteristics that
varied frequently within the record were selected that allowed
for discrimination from other records. Sometimes one charac-
teristic was not enough and they had to go to a second and third
characteristic. Sometimes it was only through the concatenation
or chaining of the multiple values that allowed discrimination,
however. As evolution continued in the data processing industry,
the file systems, which used the key or key chain approach, were
being converted to DBMSs (database management systems),
which used the keys more efficiently and provided more auto-
mated methods of backup and recovery as well as performance
tuning options.

Beginning with the first databases, the use of keys began
to have an effect on how the data were stored on the physical
devices retaining it. Prior to this time, the data tended to be seri-
alized, and the entire set of information was read past a magnetic
device read head and compared against the discrimination cri-
teria or sorted internally for a record location to be done. With
the advent of the DBMSs and the use of disks and data drums,
the criteria were actively put in the read head and the read head
moved over the data. This applied the criteria as a moving search
on the device.

Chapter 13 ConCepts of Clustering, indexing, and struCtures 247

Innovative research continued while DBMSs were developing
faster and faster methods of retrieving data. The concept of the
index was initiated during this development, and a reduced set
of the identifying keys was kept separate and apart from the data.
The index had the key values and an address where the associ-
ated data could be located. These were known as key sequence
data sets (KSDSs). VSAM functioned in this way.

Hierarchical and network databases took keys to a newer level
in the sense that they allowed data traversal pathways within the
databases by way of keeping physical addresses of the compo-
nents of the database stored. These physical addresses allowed
the data chains to be walked up and down, and in the network’s
case across the top of the chains. This maneuverability within the
data structure was a tremendous asset because the data could
be kept in its natural cluster order and yet be linked to all of the
other data associated with it.

With the advent of relational design, the data components
with similar characteristics and common keys would be grouped
into sets. The rationale was that set operations could be applied to
the resulting groups or sets. Thus, relational processing became a
possibility.

Let us examine this in a little more detail. Up until this time,
the only way to process data was one record at a time. It had to be
selected, examined, operated on, and then returned from whence
it had been retrieved. It was slow and labor intensive when the
record count was in the millions. It was, in fact, millions of reads.
With the advent of the relational concepts and the resulting gath-
ering of like data into tabular sets called tables, operations appli-
cable to all members of a set could be executed at the same time.
Instead of a million database reads, updates, and database writes,
it could simply be done as one update statement against a com-
plete set of a million rows. This was very powerful indeed, and
the resources saved and the processing efficiencies advanced the
cause of relational tremendously. But let us return to keys.

To repeat, the keys represented a unique set of data val-
ues that were representative of the whole and could be used as
retrieval criteria, but in this new relational language and data-
base there were no navigation addresses in the data record. The
only addressing was to be found in keys that were designed for
retrieval. Navigation around the database was accomplished by
the use of propagated keys between the tabular constructs. By
creating foreign keys (keys that were the primary keys of a foreign
object), a navigation path was always available. In this way the
data were freed up from a predetermined chaining method and
could be retrieved top to bottom, sideways, and bottom to top.

248 Chapter 13 ConCepts of Clustering, indexing, and struCtures

The path to the data could be threaded rather than reading all the
linked chains necessary to get the data.

Primary Keys
The primary key is the physical manifestation of the primary

identifier in a physical table. It is that unique set of concatenated
values that when presented as the argument will return one row
from the physical table queried. The rules and definition are
analogous with the entity being a table and the attribute(s) being
peerable with columns. The formal definition is also transferable.

In order to fully understand all the ramifications of primary keys,
there is a need to digress into two classifications of relationship
types: identifying and nonidentifying. In identifying relationships,
the primary key attributes of the parent or source entity become
components of the primary key of the child or target entity. This
means that the child is characteristic or existence dependent on
the parent and therefore must use its parent’s identity as part of its
own. The relationship between them carries this identity and so is
referred to as an identifying relationship.

In nonidentifying relationships, the primary key attributes of
the parent entity become non-key attributes of the child. This
means that the child entity is not dependent on the parent and
is not existence dependent on it. The relationship between them
does not carry this identity and so is referred to as a nonidentify-
ing relationship.

Foreign Keys
A foreign key is a column or column combination of one table

whose values are required to match those of the primary key of
some other table to facilitate navigation and facilitate occurrence
pairing. A formal definition can be stated as follows:

If T is a table whose primary key is key1, key2, key3, …, key n, and
in another table Q there is a set of columns C1, C2, C3, …, Can that
satisfy the time-independent constraint that for every row of Q
there exists a row of T with values key1 = C1, key2 = C2, key3 = C3,
and key n = Can. It can therefore be stated that the combination C1
through Can is a foreign key that refers to the primary key of T.

This is all well and good when the columns naturally fall into
the tables. What happens when they don’t fall into the table,
which is what happens most of the time? How does one navigate

Chapter 13 ConCepts of Clustering, indexing, and struCtures 249

and facilitate the action of traversal during retrieval? The answer
is propagation.

Foreign Key Propagation
Foreign key attributes must automatically migrate from entity

to entity based on the flow of the connecting relationship. In a
one-to-one relationship, the primary keys of each participant
are migrated to the other based on their equal participation. For
example, if entity X has a primary key of A, and entity Y has a
primary key of B, then the foreign key in A would be B and vice
versa. In a one-to-many relationship, the primary key of the one
participant is migrated to the many participant to ensure back-
ward navigation capability. For example (using the same naming
characteristics), if entity X has a 1:M relationship to entity Y, then
the primary key of A would be migrated to Y as a foreign key.

Problems arise in foreign key propagation when a relation-
ship has optionality. In this case, if X (primary key A) may or may
not participate in a relationship with Y (primary key B), then the
foreign key in Y may or may not be populated all the time. When
there are no values, then the foreign key is null.

Let us discuss a null for a moment. A null is a state of nonexis-
tence. It represents the capability of something to be present but
that is not present. Because of some of the rules initially devel-
oped to deal with the SQL implementation of relational algebra
and relational calculus, a state was necessary that would indi-
cate the capacity for presence where presence was not achiev-
able. Simply put, they invented a placeholder when there was no
surety of the ability to populate the attribute. While nulls are a
distasteful, but acceptable, reality, they were never intended to be
used as the possible definition of keys—in particular, the propa-
gated key that was to represent the foreign key in the target table.

Null foreign keys create navigation and selection problems.
How can one find a match for navigation when there is nothing in
the column to compare? Most of the time with investigation it is
easy to find a modeling solution that does not embrace the null or
optional value, such as by making the relationship nonidentifying,
which would allow the keys to be considered simple attributes.

Candidate Keys
These keys represent the number of all possible key combina-

tions that could be used to access the data on the tables or data
stores. These include partial key combinations or a secondary

250 Chapter 13 ConCepts of Clustering, indexing, and struCtures

group of the attributes that, used in combination with each other,
provide a retrieval path into the data. The primary key is a mem-
ber of (and the most important of) the candidate keys that pro-
vide unique access or singleton select capability. Other examples
of candidate keys are keys for reporting or group set retrieval for
cursor access. All other candidate keys represent alternate path-
ways to get at the full or partial data.

Natural Keys
Natural keys represent that concatenation of actual data values

that together represent a unique key identifier to access or retrieve
one single row or “singleton” record. The emphasis is on the natu-
ral component. It is a naturally occurring value like the “blue” in
blue car or the “tall” in tall men’s shop. It is not the name of the
column or attribute, but it is the content value that provides the
uniqueness. As data processing evolved, the natural keys became
lengthy and cumbersome. It would only seem practical, then,
that as things became more efficient in data processing, it would
become more efficient at identifying occurrences of records. To
accomplish that end, engineered keys were created.

Engineered Keys
Engineered keys represent the abbreviated values the outside

world has encoded things with in order to save time and process-
ing money. So instead of saying, “the 1998 gold Buick Riviera with
wire rims and the 300 hp engine” (wishful thinking), it has been
encoded as “VIN #” (Vehicle Identification No). Instead of say-
ing, “Malvern Willie Wagglethorp III,” he is encoded in the data as
“Employee #23135343.” A value has been assigned to a set of nat-
ural keys that can be related to something in the real world, such
as a badge number. These are representative and have become
ingrained in the data processing culture and even everyday
culture—for example, Social Security numbers.

Surrogate Keys
Surrogate keys represent a purely arbitrary number that is

often computer generated and is unknown outside the applica-
tion system. They occur in two flavors. The first is an artificial key
and the second is an identity column. We will cover these two in
the following paragraphs.

Chapter 13 ConCepts of Clustering, indexing, and struCtures 251

As noted before, artificial keys are arbitrary numbers gen-
erated to represent the value of a natural key or key string. In
order to maintain integrity, the value of these artificial keys
must be correlated to a natural key or key string. This is because
when output is produced from the actual application, there is
no way to identify what the individual record had to do with
because an arbitrary number was generated as a representa-
tion. The problem is with the transience of the artificial key.
Whenever artificial keys are used there has to be an association
table to resolve it. That is, there has to be a table that contains
the natural key in conjunction with the artificial key in order to
resolve it.

The second type of surrogate key is that of the identity. This,
again, is a system-generated key. It is different in that the DBMS
maintains the internal registry of the identity value. This identity
column then becomes the key and the natural key becomes part
of the attribute load of the entity. In some ways the identity col-
umn has enhanced processing, since unwieldy keys do not have
to be dealt with, and the large keys do not have to be propagated
to a subordinate table to maintain referential integrity. In other
ways it has compromised the rigor of the normalization process
in that it is allowed on any table whether it is normalized or not.
In effect, the identity column allows a cluster of attributes that
have nothing to do with one another to be clustered and treated
like an entity when in fact it is an aggregation.

As a further evolution the concept of a unity development. This
is a system-generated key that is internally kept by the DBMS. It is
created by whatever means necessary within the DBMS, such as by
hashing or otherwise, and maintained by the DBMS when used for
propagation. In the case of a unity, no external reference to a natu-
ral key is necessary, although it is good business analysis to iden-
tify them.

High Water Keys
The first of these is the so-called high water key (highest

key value yet recorded) and the closely related next sequential
number key. These represent the next available key value in an
ascending key sequence. Neither of these allows for the reuse of
keys that may have belonged to a deleted record. But they are
useful in an application where there is a high level of insert activ-
ity. The high water or maximum value to date key is retrieved,
incremented, stored back in the key hold, and used in the identi-
fier of the new insert and so on.

252 Chapter 13 ConCepts of Clustering, indexing, and struCtures

One of a Kind Keys
A variation on the theme of this is the one of a kind (OOK)

number. This is a key value that is generated from a random
number generator and compared to known key values. It is used
for insert of a unique value as well. The high water mark key and
one of a kind key are often used as a logical locking mechanism
that prevents interruptive access during long units of work.

Let us examine this logical locking mechanism in action
briefly. A table is set up with a single row resident in it. This rep-
resents the highest value attained to present. The row is read into
the process and kept while the unit of work process is being per-
formed. A lock is kept on the row and any subsequent actions
that try to retrieve the row are told it is locked. When the unit of
work is complete and the row is ready to be written out, the lock
is released so the next transaction can get at it. This logical lock-
ing mechanism acts as a gatekeeper that channels many transac-
tions into a single file access.

The high water mark also represents a quick method to get to
the maximum or next number without searching the entire table.
It functions merely by getting the current value for the process,
temporarily storing it for yourself in the process and then imme-
diately going back to the Single row table and updating the value
to be self 1. Thus, in milliseconds the next number is available.

As stated before, these are great time savers, but they make no
effort to reuse key values that have been deleted in the process.
They are therefore one-way encoding or upward marking mecha-
nisms that might run to the physical limit of the sequence of the
attribute before the process obsolesces. You may just run out of
numbers. Reuse is a good saver of the number sequences but
involves complexity that may not be desirable in the process you
are building. It is best to make this decision early in the design of
the database and process.

Other Specialized Keys
Get range keys and key banding are another method of deal-

ing with keys. This is a mechanism that separates key values into
bands. A band represents a value range of the keys. In this sce-
nario, a band is allocated to a particular process, and all the num-
bers in that range are used up before another range is allocated.
This is useful where a number of different processes may be add-
ing records at the same time and need to be kept separate. Also,
it is useful where that unit of work may generate more than one

Chapter 13 ConCepts of Clustering, indexing, and struCtures 253

record and this allows more freedom and less interaction with a
key generator. Key ranges are managed outside the system but
can be referred to inside the application via program logic that
references the ranges.

References
Cormack, R. M. (1971). A review of classification. Journal of the Royal Statistical

Society, Series A, Edelbrock, UK, 321–367.
Everitt, B. (1980). Cluster analysis. New York: Halstead Press.
Sneath, P., & Sokol, R. (1973). Numerical taxonomy: The principles and practices of

numerical classification. San Francisco: W. F. Freeman.

Suggested Reading
Aldenderfer, M. S., & Blashfield, R. K. (1984). Cluster analysis. Sage Publications

Inc., Newbury Park, CA.
Boyd, L., Jr., & Iverson, G. R. (1979). Contextual analysis: Concepts and statistical

techniques. Belmont, CA: Wadsworth Publishing.

255
Data Architecture.
© Elsevier Inc. All rights reserved.2011

BASIC REQUIREMENTS FOR
PHYSICAL DESIGN

Requirements for Physical Design
At this point in the development life cycle the logical model

exists and there is an application architecture design. Hopefully
(and unfortunately this is not always the case), the majority
of requirements will have been defined and physical database
design can begin. It is this author’s belief that there is a direct
proportion between time spent in the previous analysis and
design phases and the success of the project. It is truly a case of
“pay me now or pay me later.”

This chapter focuses on all the input necessary to create a
good physical design that will stand the test of time in terms of
flexibility, availability, and performance. In the previous chapter,
the considerations in choosing a DBMS were reviewed, as well as
the environment that the database and application will be run-
ning in. This is a review of the same considerations but from a
different aspect, that of the application database.

How Much Data?
It is important to determine as early as possible how much

data will need to be kept and how it will be maintained, archived,
and/or purged. These are frequently the hardest questions to get
answers to. The retention requirements as to how long to retain
data on a specific table or even for the entire database in the
end must be answered by the user of the application. Retention
often has to do with legal considerations, as well as recovery and
restart concerns. This is a more detailed review of the different
areas of application in the physical design and the best ways to
handle them.

14

http://dx.doi.org/

256 Chapter 14 Basic RequiRements foR Physical Design

History
Although this was covered in detail in Chapter 12, it is good to

understand how it, along with the other factors involved, affects
the physical implementation of the model. History is a process
that produces multiple occurrences of the characteristics that
comprise a row of information. Since it is somewhat physical
in nature, it should be addressed either at the end of the logical
design or at the beginning of the translation to physical design.
In either case, the type of history will affect the data volume and
processing load on the database. If addressed as part of the logical
model, the many-to-many relationship resulting from the inter-
section of the time entity and the data entity is resolved into an
association entity. This association entity can be implemented
as a separate table by propagating the key as defined in the nor-
mal logical modeling procedure and then adding the specific date
attribute to the key that will distinguish the row as unique. (It
can also be collapsed back into the nonhistorical component
if the attribute load is not significant.) If history has not been
addressed as part of the logical model but is instead regarded as a
physical data design problem, then different date attributes must
be created and added to the entity being translated. Because his-
tory has a significant impact on the database and is complex by
itself, there is an entire chapter dedicated to its implementation.

Population Quantification of Application Data
In the previous chapter the concern was what the footprint

size of the database would be in the choosing of a DBMS. Here,
the concern is with the actual processing of the data. This is
where the question is developed and answered. Where is the best
source for the data and how do we get into the database? In most
scenarios the effort is converting the data from an older, slower
system to a newer, faster one. The process is relatively simple
then. It is merely to write conversion programs that change the
structure of the data into the format needed for the new applica-
tion structure. It is then simply a minor problem to run a utility,
usually supplied by the DBMS vendor to load the data into the
table. Unfortunately, sometimes the data must be separated and
normalized before it can be put into the format necessary to be
loaded. This adds an extra step into the conversion process but a
necessary one.

In either case, the most important things to be concerned about
are the quality and integrity of the data. Some things to consider

Chapter 14 Basic RequiRements foR Physical Design 257

when defining the best source of the data are: (1) use the most
current data possible and (2) use the data with the most integ-
rity. These rules should be used together and interdependently. It
is best never to use the newest data if it is from the least reliable
source. Conversely, never use the data with the most integrity if it is
so old that it is of little use. Work with the user client to define what
is the best of both worlds. Document the conversion process and
sources. This will help in future references and conversions.

Concurrency
Concurrency is that concern when two or more things are

being done simultaneously or near simultaneously. The concur-
rent processes may or may not be using the exact same resources.
Concurrency issues fall into two subcategories. The first issue is
that of the concurrency of user traffic. It is important to quantify
the number of users that will be using the application at the same
time and in what manner (i.e., what kind of transaction or report-
ing activity is taking place). Is it 300 users per day or per hour?
Are they doing simple queries or complex ones? Are they doing
reporting with queries that produce bulk result sets that will be
subreported on?

This is tangential input that is gathered when the access path
information that has been gathered is being considered. The con-
currency of the number of users will have an impact on the num-
ber of physical entry ports into the database. It will also have an
effect on the number of processes that the DBMS can run at the
same time, which may or may not be regulated. The number of
users and their transaction type and volume per time period are a
critical physical consideration that the systems programmers and
DBAs will need to be aware of.

The second issue of concurrency is how many internal types
of accesses will be using the same set of database objects at the
same time. While these two are related, the second has to do
with managing the integrity of data within the objects. This is of
immense concern with the management of data when online
transactions are performed. In most DBMSs there is something
called “locking” that manages who has access to what data at
what time. This locking by a lock manager ensures that data
being written are not overwritten. Two users trying to get the
same object from the database will not end up having the same
data and both will try to change it to something different.

There are some provisions in some DBMSs that allow for
“dirty” reads that allow someone to read an object that has been

258 Chapter 14 Basic RequiRements foR Physical Design

detected as being updated by someone else. There is software
help in these cases that will allow the status of the object to be
reread and checked to see if it has been updated, which might
invalidate the other work done on the record. At the very worst,
a reread must take place, and at the very least, the data read and
sequence of the process have been saved.

There was and still is, to a degree, a consideration for
application-level control of concurrency. It is called “logical lock-
ing” and is a manner of controlling the flow of update access to
the database object by way of a keyed gateway. It ensures that
only one person at a time is allowed complete access to a spe-
cific piece of data on a table without depending on the DBMS. It
is useful in those situations where the unit of work is a long one
that would certainly be beyond the boundaries of the internals of
the DBMS. In this logical locking process, a value is entered into
a gate key and is stored there. The unit of work captures the value
that is in the gate key field. It then goes about its work. When
the unit of work is completed, it checks to see if the gate key has
changed. If the key has changed, then a reread is done and repro-
cessing takes place to ensure that the update is done to the most
recent data. If it has changed, then the unit of work is written,
confident that nothing has been overlain.

Logical locking can also put inserts in sequence by reading
the current value in the gate key field and incrementing it by 1 to
store the next sequential value in the gate key field. This ensures
that no overlays can take place and the field will have a constantly
ascending value. These are application-specific mechanisms to
be used when the physical DBMS cannot handle the locking con-
siderations to keep concurrency active.

Security/Audit
Security in the database design process concerns the intended

reliance on a structure (either in the DBMS or developed by the
application) that ensures protection from unauthorized access.
Audit, in this same process, is concerned with the ability to detect
and report invalid, unauthorized, or incorrect use of the data
(either implemented in the DBMS or by the application).

Security must be established at the level of granularity that
supports the protection requirement. If protection from unau-
thorized access is at the transaction level, then the security should
be at this level. If it is at the table level, then views should be
used. If it is necessary at the column level, then special encryp-
tion routines should be used. Caution should be used when

Chapter 14 Basic RequiRements foR Physical Design 259

implementing security, since the finer the level of granularity, the
more overhead associated with the process. After all, the most
secure room is a room with no windows or doors. Unfortunately,
one cannot get things into it or out of it. An acceptable level of risk
must be established by the user in conjunction with the data pro-
cessing community in order to ensure secure and efficient system
and database development.

Another concern is whether you should have an open shop or
a closed shop. An open security shop allows all data to be read
unless otherwise defined as secure. This minimizes the number
and structure of the controls in order to protect the data. A closed
shop, on the other hand, has all the access defined to specific
authorization groups with specific privileges to each group.

The overall areas of concern with security should be the
following:

Unauthorized access from external users
Inadvertent
Deliberate

Unauthorized access from support personnel
Recovery
Maintenance
Initial load

In order to establish unauthorized access from external users,
a security framework must be in place. It should consist of mul-
tiple tiers of increasingly difficult gating mechanisms:
l Level 1, physical access exists for read-only non-application

data, such as morning status, bulletins, and news.
l Level 2, access to applications outside the gate, might be

access to the application main menu.
l Level 3 might be access to restricted transactions on the

menu.
l Level 4 could be restricted access to the business view on the

tables being accessed.
l Level 5 can be the restriction of view by encryption of specific

columns.
All of these levels of gating allow the granularity to be estab-

lished for the application. At each level a mapping can be made
for particular criteria that allow passage within. This is usually
comprised of a privileges table and a personnel table matrix.

Critical to the entire structure is the need to be embraced at
each level. In other words, once you have made it through a gate-
way, there is only one way out: the way you came in. Normally, the
gateway is controlled by the use of closed menu envelopes that
will allow you access within the envelope you are in. If you have
access to the envelope or envelopes within the main envelope,

260 Chapter 14 Basic RequiRements foR Physical Design

you may progress; otherwise, you can stay where you are or leave.
The concept of envelopes is critical to security. There should
never be a situation that an accessor is not within an envelope of
some sort. Additionally important is the need to record anyone
who comes in or out of the envelope. Access logs may be critical
in solving data destruction events.

In truth, most people do not deliberately try to destroy data
(although this is on the rise). In reality, most data destruction by
people is by inadvertent means. It is in these cases that the access
logs can be useful. If it is a program that is doing the destruction,
it can be pinpointed and corrected rapidly.

But what about the other side of security exposure? What of
the side of security away from the public? This consists of the
exposure to the maintainers of the physical infrastructure. These
are the people who support the integrity mechanisms for backup
and recovery and utilities for reconstruction. These people are
usually controlled by the mechanisms that are embodied in the
utilities that they have power over. Also, the windows of unde-
tected opportunities to corrupt data are few and far between. In
most cases this type of access is more tightly controlled than the
application access.

Audit
Audit must be established to produce proper documenta-

tion to support the granularity of the security. For example, the
establishment of accountability (who, when, where, how, and, to
a small degree, what) is generally adequate in a simple record-
ing system that does not disburse or maintain funds. In others,
the establishment of responsibility (the who and the what are
necessarily more specific here) is critical due to the sensitiv-
ity of the application or the financial profile of the company.
Implementation of audit requirements should be done so as to
minimize the impact on physical hardware resources.

Archive/Purge
As part of the normal design a separate task concerning

archiving takes place. Archiving considers the retirement of data
from the database on the retention and retrieval requirements of
the user. Specifically, time and frequency studies should be done
in coordination with the user to ensure that data are retained in
the format and at the level where it is most needed. Generally,
data retrieval frequency diminishes along the timeline of activity.

Chapter 14 Basic RequiRements foR Physical Design 261

Usually, for a simple processing relationship, access activity drops
off within three to six months. An example of this would be a mail-
order business. Other complex processing relationships such as
airline reservations start slowly and then build rapidly until flight
time and then are archivable. In the airline example, the time
period may be one year for advanced booked flights. Other com-
plex processing relationships may have archivable information
along a timeline, such as order/invoice processing.

It is prudent to define these data retrieval needs and points
of archivability with the user and make these definitions part of
the design documentation. Implementation of these definitions
ensures that only necessary data are retained online. In addition,
it is also prudent to establish those points of time when the data
are no longer needed for any reason and can be purged from all
files. These points of time may involve legal as well as business
constraints.

Recovery/Restart
Generally, recovery can be defined as the need to rebuild a

database due to hardware failure or other nonsoftware failure.
Restart, on the other hand, is the need to reset a database to a
prior point due to program error. These are loose terms and argu-
able definitions, but restart and recovery are separate and dis-
tinct in both scope and impact to the user.

Restart is the resetting of the database and the rerunning of
update information transactions to achieve currency of data due
to program failure. In the DB2 world, data are not written to the
database until a commit point is initiated. As a general rule of
thumb, a commit point should be issued either by a certain num-
ber of records or by time. If done by time in batch, the commit
should be done at least once per half-hour of run time. As the
commit is done, the committed key to the row should be saved.
If a software error occurs, a rollback to the last valid commit can
be done and a restart initiated on the last committed key. Online
transactions automatically have a commit written when a sync
point occurs, so commits are not needed within the transactions.

Recovery is the rebuilding of the database after destruction or
other form of integrity compromise. It is done from image copy
tapes that restore the database to a particular point of time and
then either log forward or remain at the recovery point and the
activity subsequent to the recovery point but prior to the destruc-
tion is redone. Recovery takes careful planning to ensure that the
appropriate level of backup is present. All files participating in the

262 Chapter 14 Basic RequiRements foR Physical Design

recovery must be available at the time of the recovery. Of addi-
tional concern is the impact of referential integrity on the recov-
ery process. As noted before, all referentially constrained tables
must be recovered at the same time to avoid integrity errors.

Sort/Search Requirements
Candidate qualifiers (alternate keys) identified during the

logical modeling process should be reviewed at this time for use
as inversion lists that can be implemented as alternate indexes.
Care should be taken not to create these on partial key lists of the
primary identifiers (primary keys), since this would be superflu-
ous in most cases and the DBMS would probably not utilize it.
These usually tend to be index requirements that are in a differ-
ent order than the primary key and exist to support an alternate
access path. They increase performance for these accesses.

Reorganization and Restructuring
Data will fill the database and grow with time. When this hap-

pens, the controls over the structure of the database will be taxed
to maintain good performance because the volumes and size no
longer reflect the original design. The way that growth and insert
activity are handled by most DBMSs is to store the new record
as close to the rest of its like data as possible. After months and
even years, this distance from the original data may become sig-
nificant. In fact, it has become disorganized in the sense that like
data are not contiguous anymore. In order to respond to this,
most DBMSs have developed utility routines that will reorganize
and restructure the physical data to resemble the original layout
and physical data clustering that was designed. These are often
called reconstruct or REORG jobs and must be done on a fre-
quent enough basis to ensure good performance.

Data Integrity
As mentioned previously, relational database vendors are

pushing more and more functionality into the database engine.
As a result, enforcement of database integrity can be pushed into
the definition of the database objects. But should it be? The fol-
lowing topics discuss how the database can be used to enforce
data integrity and the wisdom in doing so.

Chapter 14 Basic RequiRements foR Physical Design 263

Referential Integrity
In the process of design, it is common for association and

characteristic entities to have identifiers that are concatena-
tions of the original kernel entity. There is a natural dependency
enforced by the keys of these associations and characteristic enti-
ties. It is prudent to implement a mechanism that verifies the
presence in the parent entity of a unique set of identifiers that
would be inserted in the dependent entity. This mechanism is, in
fact, what referential integrity is. It can be placed in the database
during the design process, or it can be coded into the applica-
tion logic as the programs are developed. The database approach
is what is normally recommended because the data are easier to
change and the relationship is, in fact, data oriented. There will
be performance implications whether the referential integrity is
put in the application code or in the DBMS. There are consider-
ations that must be made if the constraints are being placed in
the application. A few of these are as follows:
l On INSERT activity the following steps must be done
l On DELETE activity the following steps must be done
l On UPDATE activity the following steps must be done

Application referential integrity can be placed in individual
programs or in callable modules that all application programs
can refer to. To reduce the overall size of the load version of the
programs, it is recommended that callable modules be used. On
the other hand, if constraints are not desired in the application,
then the DBMS is the appropriate choice. However, there are a
few things of note in the DBMS:
l A delete with the restrict option will not be allowed to operate

if there are rows in referentially dependent tables.
l A delete or update must acquire locks on the parent table, as

well as on all dependent tables or their indexes in order to
perform the referential integrity check.

l The recovery process is very specific for all referentially con-
strained tables. All tables that are referentially constrained
must be recovered at the same time, even if only one has
changed.
Despite these concerns, there are reasons for implementing

referential integrity in the database rather than implementing it
in the application program:
l If referential integrity exists in the database, it does not have

to be coded many times within the application programs.
l Referential integrity changes are more easily implemented

within the database than when in application code.

264 Chapter 14 Basic RequiRements foR Physical Design

Overall, the need is to define the level of commitment to the
implementation of referential integrity and then decide whether
it should be implemented in the application (education of pro-
grammers) or in the DBMS (education of the DBA).

Data Access
In order to do a proper physical database design, it is impor-

tant to understand how and how frequently data will be accessed.
Where does this information come from? Ideally, process models
should contain references to business functions that will indicate
how frequently a business process should be followed. This can
be translated to pseudo-SQL (pseudo-code that does not need to
parse but needs to contain access and ordering information). The
criticality and concurrency of transactions are also important.
This section will cover the following subparts of information vital
to physical design of a high-performance database system.
l Access implications: Data gathering and analysis must be

done in the manner in which the user accesses the data.
Additionally, the tools used for the access must be taken into
consideration. For example, reporting tools often are broad
spectrum—that is, they will work with many different DBMSs,
and as such they use very generic methods for access. Unless
they have a pass-through option, like WebFocus does for
Microsoft Access and SQLServer, the passed through query will
have poor access performance. If the access method is through
a GUI front end that invokes DBMS stored procedure triggers
or functions, then it is far more tunable for performance.

l Concurrent access: Concurrent access is of concern for
two considerations: network load and locking contention.
Network load is not discussed here. Locking implications are
dependent on the required access. If the data are required to
be held static—that is, unchanged—an exclusive lock must
be secured by the program executing the action. This exclu-
sive lock prevents others from accessing the data while it is
in use. There is an option to allow a read of the information
while it is locked, knowing it will be changed. This is known
as a dirty read and is done when the data needed are not
those being updated. When too many programs are trying
to access the same data, locking contention develops and a
lock protocol is invoked, depending on the DBMS involved.
In some cases the lock is escalated to the next higher object
level in order to prevent a buildup of processes waiting to
execute.

Chapter 14 Basic RequiRements foR Physical Design 265

Privacy Requirements
Security controls for the data depend on its confidentiality.

Payroll systems are notoriously tightly controlled, even to the
point that test data are kept confidential from the programmers
working on the system. Unfortunately, security is frequently over-
or underimplemented, causing security problems or perfor-
mance problems. This section will cover the following topics to
help the designer understand how to implement database secu-
rity and how it interacts with operating system security systems
such as RACF or Top Secret.
l Operating system security: Operating system security is usu-

ally relegated to an external security product that has direct
user exit relationship with the operating system. This ensures
that security attacks against the operating environment are
thwarted and recorded for review and analysis. They normally
function by setting up a profile of a group and/or individual
that specifies the privileges allowed for that particular group
or individual. Because each operating system has different
requirements, they won’t be specified in detail here.

l Audit trails: Audit trails exist to provide a historical trace of
activity from the unchanged state of the data to the changed
state reflecting the differences. It is necessary to capture the
identity of the changer, the time, and the date of the change,
and lastly the location and agent used in order to make the
change. This information will allow researchers to follow the
audit trail backward should the need arise. It also provides a
record of accountability for those making the changes.

l Database security: Database security is a third tier of defense
against unauthorized access. Most DBMSs require user ID
access for all database users. This ID is set up individually
or as a group to allow a set of privileges to be performed on
database objects. The privileges can be Read, Insert, Delete,
Update, and Execute. There are also several group levels
such as Data Reader, Data Writer, Systems Admin, and Data
Base Owner. All of these can be implemented in a menued
approach to ensure maximum security coverage without
impacting database performance.
All of these layers of security need to be implemented in over-

lapping and dovetailed fashion in order to maximize defense
against unauthorized intrusion or security compromise. Work
between the data administration, database administration, the
security, and audit functions will provide the best solution for
the least cost with the least performance impact. In turn, it will

266 Chapter 14 Basic RequiRements foR Physical Design

address the security needs from both a legal (Sarbanes-Oxley)
and a corporate security perspective.

Suggested Reading
Elmasri, R., Navathe, S. B. (1999, August). Fundamentals of Database Systems.

Reading, MA: Addison-Wesley Publishing.
Fleming, C. C., & von Halle, B. (1989). Handbook of relational database design.

Reading, MA: Addison-Wesley.
Martin, J. (1973). Security, accuracy, and privacy in computer systems. Englewood

Cliffs, NJ: Prentice Hall.
Reingruber, M., & Gregory, W. W. (1994). The data modeling handbook: A best-

practice approach to building quality data models. John Wiley & Sons,
New York, NY.

267
Data Architecture.
© Elsevier Inc. All rights reserved.2011

PHYSICAL DATABASE
CONSIDERATIONS

Three-Level Architecture
There are three very distinct and important rules or tenets

about databases that are critical to keep in mind. These are sepa-
ration/insulation of the program and data, multiple user access
activity support, and usage of a repository to store the database
schema. The purpose of the three-level architecture is to separate
the user from the physical database. As one can see from Figure
15.1, the three levels consist of the following:
1. An internal level or schema, which describes the physical

storage requirements and structure of the database. This will
describe the complete details of the data storage requirements
in terms of files and space needed for data stores, as well as
indexing or hashing.

2. The conceptual level or schema, which describes the structure
of the whole database for all users. This level hides the details
of the physical database and focuses more on describing the
data content and its use in understandably named database
objects. It is a high-level data model that reflects all the enti-
ties and attributes that can be used at this level to fulfill this

15

Will Handle

Reporting and

Transaction

Normalized:

Clustered

for Group

Retrieval

Data

Reporting
and Query

Both Types Transaction
Processing

Clustered

for Specific

Process

Data

Figure 15.1

http://dx.doi.org/

268 Chapter 15 Physical database considerations

need. Relationships are also reflected here and are in user-
understandable terms.

3. Last is the external level or schema. This level consists of the
integrated user views of the client base. Each external view
will describe the information needed for each business area,
eliminating that view from others. These user views often
take the form of visual basic screens or graphic user interface
(GUI) front ends that provide the user access to the data they
are authorized to see and present it in a user-friendly manner.
A lot of DBMSs don’t keep them as three different layers, but

some combine the top two and others the bottom two. In any
case, the premise of these layers is to show and define the bound-
aries of the three types of requirements. What is important is that
these separate three layers are abstracted up and away from one
layer: the physical layer. These layers are really the descriptions of
the data needed at that level.

In order to allow these layers to talk to one another, it is essen-
tial that the mappings of the data carried at each level map to
the one it communicates with. Thus, there is a mapping layer
between the internal layer and the conceptual layer, and another
mapping between the conceptual layer and the external layer.
Therefore, when a query comes in from the external user through
the GUI front end (which is in fact the external layer), it must
go through the external conceptual mapping to the conceptual
layer. From the conceptual layer it must go through a mapping
to the physical layer. Each layer represents a reformatting of the
data to make it useful at that level. But with the use of models,
then all three can be related through the mapping software tool
and the relationships between the levels maintained. This is also
called the ANSI/SPARC database model, and if the models used
in traditional and object-oriented design are examined, the simi-
larities can be seen.

Architecture Layer Entity Relationship Model Level Object Model Level

User View Layer Business Model Level Presentation Level

Conceptual View Layer Logical Model Level Business Level

Physical View Layer Physical Model Level Physical Level

Let us examine each of these architectural layers and some of
their characteristics.

Chapter 15 Physical database considerations 269

the User View layer
This layer allows the user to manipulate and use the data. In

the entity relationship world, it consists of data entry screens,
reports, and the panels that make up the application. In the
object world, this represents the presentation objects that the
user must interact with each day.

This layer is highly denormalized. That is, the data may be
redundantly carried on many screens, reports, and panels.
Examples of user views might be the customer order screen, the
item description query screen, and a customer invoice report.

the conceptual layer
It is in this layer that the main entities, relationships, attri-

butes, and keys in the business domain are initially identified. It is
important to remember, as said many times before, that this layer
is platform and implementation independent. From this layer one
could derive a network, hierarchical, relational, or object database
model. At this point, all that is important is that the underlying
structure of the database is being defined, no matter where the
final database will reside. The underlying structure of the concep-
tual model will contain duplicate information, but it is most often
in the form of access keys. A small amount of denormalization
occurs as a result of defining primary keys and propagating foreign
keys by the implementation of relationships. In the network data-
base it allows the side and downward navigation without perfor-
mance implications when this model is translated to the physical.
In the relational model this is necessary for proper navigation and
allows the up and down and left and right traversals to take place
in the database without ever suffering performance implication.

The main difference between the user view and the conceptual
view is that the user view sees the database as a series of data entry
screens and reports that contain redundant data that exists purely for
the convenience of the user or users. (Two separate users may have
almost the same information, but they each need it their own way.)

The conceptual view contains redundant data only when
required to identify a row or in order to enforce business rules
embodied in a relationship between two entities—that is, in the
aforementioned keys that are defined within the entities to facili-
tate navigation.

the Physical layer
This last layer describes the true physical structure of the data-

base. Specifically, it describes the physical structure of the database

270 Chapter 15 Physical database considerations

down to the detail level. This physical layer describes the database
in terms of table or file layouts, data column names and charac-
teristics, and indexes. If clustering indexes or physical partitioning
mechanisms are supported by the DBMS, these are also defined
here. Also, primitive sizing numbers can be derived from this data
by multiplying the number of bytes per row times the number of
rows expected in the table structure. This size should be added to
by the length of the keys times the numbers of rows, which will give
the size of the indexes that will be needed to maintain this table.

So it is easy to see that by starting with the external layer and
capturing those requirements, the users’ needs have been met.
Those requirements can then be analyzed to find out what in the
next level needs to be defined. This analysis provides a basis for
the designers and developers to work from. And then, finally, the
analysis of the actual physical structure can be used to support
all three layers that the operations and DBA personnel need to
accomplish their work. The project team can now relate how all
of the views discussed to this point focus on the physical data-
base. This is where the rubber meets the road, as it were.

Data Independence
Before continuing much further, the concept of data inde-

pendence (touched on earlier in the discussion of information
engineering and structured analysis) needs to be discussed. Data
independence is simply an easier way of saying that due to the
separation and isolation properties of the three layers, it is pos-
sible to make changes to one level of the architecture without it
affecting other layers. The basic principle of abstraction applies.
The further one is abstracted from the absolute detail, the more
that can be done without affecting the physical construct of the
detail. This data independence between layers can be defined in
two different modes.

logical data independence
This is simply the ability to change the conceptual layer with-

out changing the external layer. For example, columns can be
added to any entity that allows additional processes to be written
against the database objects without having to redefine the exter-
nal layer. Changes can also be made to integrity constraints in
the conceptual model without affecting the external layer design.
By the process of mapping, the change has prevented any impact
on the user while activity goes on. Eventually when the new data
are needed, a new user view will be created.

Chapter 15 Physical database considerations 271

Physical data independence
This is simply the ability to change the internal layer without

having to change the conceptual layer. This can include such
things as moving table structures to different devices, separating
the indexes from the tables, or logging transaction activity dif-
ferently. An example of this can be illustrated as simply as being
able to change the data characteristics of an individual index or
reorganizing them for faster performance, or the change can be
as sweeping and forceful as moving the entire database structure
to a new DBMS platform. (Remember that the conceptual layer
is platform and DBMS independent and can easily be picked
up and moved to a different DBMS as long as it is in the same
family.)

Database Languages
When a design is complete for a database and a DBMS is

selected for the database, the conceptual and internal schema
need to be defined so the mappings and other activity are under-
standable. In DBMSs where there is no strict delineation between
the two layers, a single specification is used to provide the map-
pings. This specification, known as data definition language
(DDL), is used by the DBA and designers to define both concep-
tual and internal schema. In DBMSs where there is a strict sepa-
ration between the two, then the DDL is used for the conceptual
layer schema only, and a separate specification storage definition
language (SDL) is used for the internal layer schema.

Once a database is created and populated with data, users
must have a manner in which to manipulate the data. A specifi-
cation called data manipulation language (DML) is used for this
purpose. There are two subtypes of DML: a high-level or non-
procedural DML and a low-level procedural DML. The high-
level DML can be entered interactively through terminals and
other mechanisms (including programs) to manipulate the data
for transactional purposes. These high-level DMLs are called
set-at-a-time DMLs because they deal with the set of data on
the database that has particular characteristics. The low-level
or procedural DMLs have to be embedded within application
code. This type of DML is subject to retrieving a single row or
small subgroups within sets of data. Because it cannot be oper-
ated on as a set and each record must be looked at singly, it is
called record-at-a-time DML. This type of DML must be used in
conjunction with such program constructs as loops in order to
process the data as needed. DBMSs of all kinds implement these

272 Chapter 15 Physical database considerations

specifications separately. It is just important to know that these
specifications exist and that they must be examined and learned
separately for each DBMS.

Classification of Database Management
Systems

We will now examine all the primary types of database man-
agement systems and use an example to show the differences
For the simplicity of it, we will call the first entity the Employee
entity, the second the Work Project entity, and the third the
Employee Benefits entity. These entities appear as they are imple-
mented in the different DBMSs. Copies of the attributes of these
entities are described in Table 15.1.

The first type of system for review is the hierarchical struc-
ture of databases. This database model arrived in the early 1970s
as a way of addressing the need to process information in faster
modes than via file system mechanism. It has the visual appear-
ance of an inverted tree root or dendrite pattern. At the topmost
point is what is referred to as the root structure. This root record
has physical pointers to other dependent and nondependent
records called segments. Figure 15.2 shows the model for a hier-
archical system.

Table 15.1 Entity Attributes

Employee Record Work Project Employee Benefits

Employee ID Employee ID Employee ID

Last Name Project ID Salary
First Name Project Desc. Title
Social Security Number Bonus

Department
Employee Deductions
Federal
State
City
Elective A
Elective B

Chapter 15 Physical database considerations 273

The characteristics of this model are that
the physical pointers must be maintained in
order to navigate around through the root
and segments. Parent–child relationships
are allowed, and parents can have multiple
child segments. Children could not, however,
have multiple parents. This was the limita-
tion because in order to navigate, sometimes
it would require going all the way back up the
navigation call chain of pointers to the root
before going to another root and then down
in a new call chain. It was stiff and caused
unnecessary overhead in the less structured
processes like the reporting aspect of business.
Special segments were often created as work-
arounds that would contain pointers to other
segments to avoid the upward travel in the call chains, but they
didn’t completely solve the problem.

The next type of DBMS was the network database. The term
network does not refer to the electronic network but to the
visual graphic that allows interconnection between physical
segments in a nonhierarchical manner. Yes, it uses most of the
same structure of the hierarchical DBMS, including pointers.
The major difference is that the network model allowed chil-
dren to have multiple parents rather than a single parent. This
facilitated navigation tremendously throughout the databases,
increasing efficiency. The shortcoming to this database was
that the pointers still allowed only navigation to what they were
related to. Each relationship was tied to a physical pointer that
had an address associated with it. When the database content
changed, pointers had to be recalculated, leaving room for error
and having to do a lot of work. Figure 15.3 shows the model for a
network system.

The third type of DBMS was the relational. From the previous
paragraphs, it is obvious that hierarchical and network database
models had problems, specifically between parent–child and
child–parent relationships. These limitations prevented applica-
tion developers from solving real-world problems in the database
and forced them to put some of the business rules in the pro-
grams. This forced maintenance cycles to occur for each time a
business change came in that affected the database. Worse yet,
both of these models suffered from the limitation that when a
new relationship was required, physical coding and restructuring
(pointer recalculation) had to be done. Enter into this arena the
relational DBMS model.

COMPILATION OF PROCESS LOGIC DIAGRAMS
Event procesess Yellow, Green, Blue and Purple

C

A

B

D A

B

M R

MP L

B

O

P

Figure 15.2

274 Chapter 15 Physical database considerations

Developed by Edgar “Ted” Codd in
1972, the relational DBMS model (origi-
nally called System R) had a unique
strength in that it was based on the com-
bined mathematical principles of set the-
ory and frequency distribution. This was
unlike the other DBMS models, which
were based on the processing needs of
the program using the data. They were
not centered on the characteristics of
the data, and as we have discussed previ-
ously, processes that affect the content of
the data structure change much more fre-
quently than data structure does.

In the relational DBMS model, enti-
ties are called relations and consist of
collections of attributes. Each relation is
labeled with a primary identifier, which

allows the unique identification of each tuple or occurrence.
Relations also contain special attributes called foreign keys that
allow navigation to be completed. The beauty of the primary and
foreign keys is that they do not contain physical pointer infor-
mation. They contain business information that links the enti-
ties together, making navigation completely open to wherever it
needs to go. Although this method is slightly slower than the pre-
vious methods, it is much more flexible and application report
friendly.

The next type of DBMS is the object database model. This
last type of DBMS has been touched on in several places and
will be covered in the last section of this book because it has
limited uses as a commercially viable volume processing
DBMS.

Factors Impacting Physical Database
Design

When the physical design is completed, not only is the most
appropriate structure to house the data desired but also a design
that guarantees the best performance. This twofold desire is
attainable; it is not a pipe dream. For any given conceptual-level
design, there are many different possible physical implementa-
tions. It is not possible to choose the best implementation with-
out looking at all of the actions that will be taking place against
the physical database.

B

A

M L P

B

A

B

A D

C

B

D

C C

P

R

R

M L

O

O

O

G

DEVELOP THE COMPOSITE LOAD MAP

Figure 15.3

Chapter 15 Physical database considerations 275

Analysis of Queries, Reporting, and
Transactions

The activity against the database is critical. A reporting
database has a different physical structure than a transaction
database. The reporting one is denormalized to get the most data
in the most usable structure with each database call. The trans-
action database is denormalized to put all of the pieces together
that are needed for the process of transaction being served. The
normalization process gone through for the conceptual level
leaves the data in a neutral position not favoring reporting or
transactions. Here by choosing whether the database is a report-
ing (or query response) database, a transaction database, or both,
the direction for the necessary denormalization is defined. If
building a reporting database, then the clustering and collapse of
long-dependency chains to retrieve more data with each call can
be undertaken. If building a transaction database that needs to
run very rapidly, the data should be in smaller clusters and gath-
ered by how the process will use the data. A simple analogy is that
selecting a reporting database denormalization is like selecting a
workhorse for an effort. It can carry a heavier weight, but it moves
a little more slowly. Transaction database denormalization is like
selecting a sleek racehorse. It has very little to carry, but it moves
very fast. But what of the databases that need to be used for both?

Neutral-type databases that need to do both reporting and
transaction processing must stay unclustered or in normalized
form. This allows SQL joins and relational algebra to be applied
to the structure for maximum efficiency for both, without physi-
cally changing the database for a specific workload.

Queries, Reports, and Transactions
Part of the consideration for physical database design is the

activity being passed against it. The transaction, query, or report
creates a unit of work that threads its way through the data-
base in a traversal route that can be mapped. Some of the pro-
cess mapping has been covered in Chapters 9 and 10, but a small
recap would not hurt here. Functional decomposition in those
chapters was defined as the breakdown of activity requirements
in terms of a hierarchical ordering and is the tool for analy-
sis of activity. The function is at the top of the hierarchy and is
defined as a continuously occurring activity within the corpora-
tion. Within each function are many processes. Processes have a
start activity, a process activity, and a termination activity, which

276 Chapter 15 Physical database considerations

completes the process. Each process may or may not be broken
down into subprocesses. Each subprocess or event also has an
initiation, an activity state, and a termination and differs from
the process in that it represents activity at the lowest level.

Interpreting the Functional Decomposition
Since the functional decomposition is organized in a hierar-

chical structure, it is easiest to proceed from top to bottom and
left to right. Each function is documented as to what requirement
it fulfills. Functions are composed of processes. Each process is
documented to ensure that the start activity or initiation trig-
ger is defined, its process is defined, and finally the completion
or termination step of the process must be defined. Within each
process are subprocesses, which provide the actual detail opera-
tional work on each potential table involved.

Event Identification
A separate but related task is called event identification. An

event is an occurrence that sets in motion an activity that changes
the state of a potential table within the database. This event is
really what triggers a process. These processes are what end
up adding, creating, deleting, or updating the potential tables
involved. In this stage the events or processes within functions
are defined in terms of what adds, deletes, updates, or reads take
place for each entity within the event occurrence. Each of these
must be defined and documented for compilation in the next
step. What these represent is the unit of work that the transaction,
query, or report that the application is requiring of the database.

Process Use Identification Reviewed
Process use identification is characterized by the compilation

of the identified events noted in the previous step. In this case
the events are mapped and integrated in order to eliminate rep-
lication and the resulting processes are optimized to ensure the
business areas requirements are fully met. When completed they
represent the canonical result or nonredundant set of events that
cause access to the database.

Utilization Analysis via Process Use Mapping
This is a big word for the complete and an accurate assem-

blage of the event/processes that are applied to the database. In

Chapter 15 Physical database considerations 277

order to do this properly, the subset of data that is used in the
process must be defined. First, the database traversal chain is
defined for each event or process. This is the potential table navi-
gation chain in sequence of call order. Simply put, it is a sequen-
tial list of the potential tables that will be accessed and what keys
will be used in the navigation. When this is complete for each
event/process, these are then used as input into the next stage:
access path mapping.

Time Constraints of Queries and Transactions
To this point there is an understanding of what type of activity

is going to come to the potential database. There is even knowl-
edge of what potential tables. What is not known is, do two criti-
cal things both have to do with time? The first question is, what
is the frequency of the transactions, queries, and reports? Often
transactions are expressed in terms of arrival rate for processing.
Without getting into the details of queuing theory and the like, it
is just important to understand how many of what accesses are
expected. This information with the access map will also point out
future hot spots in the potential database, even before it is built.

The second critical thing is, what is the time constraint of
the activity? Simply put, what is the service-level agreement for
the activity? If it is a report, is it within hours or overnight? If it
is a transaction or query, is it subsecond or is longer accept-
able? Is the transaction or query synchronous or asynchronous?
This information along with the frequency of the activity and the
access use map will allow the physical designer to choose equip-
ment, platforms, and network configurations that will support
the application needs.

Analysis of Expected Frequency of Insert,
Delete, Update

The expected frequencies of these particular types of activi-
ties reflect the potential load on the DBMS. It may influence
the choice of DBMS or platform. Inserts also have a consider-
ation on free space available and index reorganization. Deletes
have an impact on data reorganizations to reclaim fragmented
space. Updates also have a consideration, particularly if they vary
the length of the row. Reads are minimal in load on the DBMS.
The number of each type of each of these activities will help the
designer make physical choices.

278 Chapter 15 Physical database considerations

Other Physical Database Design
Considerations

There are three other references that are used that aid in the
choice of implementation DBMS and platform. These have to do
with the DBMS itself and not necessarily with the data it is trying
to push or pull. While it may seem to be a somewhat shortsighted
approach to look at these DBMS-specific issues, it is a pragmatic
designer that does it. The best-designed systems and databases
can fail if placed on the wrong devices, running under the wrong
DBMS, or having a poor match between the DBMS and the oper-
ating system of the machine that it is running on. The following
are some of the factors that can affect the success or failure of the
database:
1. Response time. This is the end-to-end time for the transac-

tion from when the Send key was hit until the results occur. It
is easy to see that what is being retrieved can affect the time
spent by the DBMS, but what is not known is what other fac-
tors the DBMS might encounter such as the system load,
operating system schedule, or network delays. What needs to
be done here is to analyze the unit of work with the systems
people at a high level to ensure that there is nothing intrinsic
about the transaction that will affect the response time.

2. Space utilization. Again, this has little to do with what the
application is trying to store in the database, but it applies
more to the way the DBMS stores the data. This is critical from
a work-in-progress perspective. Typically, if a lot of sort/merge
activity is being done and there isn’t enough free system stor-
age, then the sorts will just run slower and slow everything
down. The space taken up by the DBMS is also critical. If the
software takes up too much room, then you need more stor-
age just to process. This is what happened in the PC world
with the difference between the Microsoft Windows and IBM’s
OS/2. Many people bought Windows for its convenience fac-
tors, only to find they needed a bigger machine in order to run
real work.

3. Transaction throughput. This is the average number of trans-
actions that can be processed by the database system within
a given period of time. A benchmark can and should be run
on varying DBMSs on the same type of system with the same
type of workload in order to get unbiased results. These bench-
marks can be purchased or arranged with unbiased testing
organizations, whose sole business is to evaluate DBMSs. It
is critical though that this benchmark for throughput must

Chapter 15 Physical database considerations 279

be measured under peak conditions. Again this transaction
throughput has very little to do with the application or the spe-
cific database structure but much more to do with the DBMS
and its ability to service the transactions in the environment
that it will be running in.

Population on the Database
Quantification of the amount of data on the database is

critical in making decisions about the choice of platform and
DBMS. Three factors will affect the population of the database
after its initial installation and population: growth, purge, and
archive.

Growth is affected by two things. The first is the number of
inserts or “adds” being done within a calendar period. These
account for the steady increase in size of a normal database that
is keeping track of its data over time. The second way growth is
affected is the number of bytes changed with the update of the
variable-length fields. The first can have a profound impact on
the database if there are many tables with long rows. While the
second of these two effects of growth seems trivial, let me remind
you of the 4,000-byte variable fields seen so commonly nowadays
that will be used for comments on the database once the history
starts rolling in. These Text and Comments fields tend to be land-
mines that can cause explosions when least expected. Allow for
them, because they will happen.

Delete/purge is that set of rows or population that will be
removed via some criteria at periodic intervals. While this is a
desirable thing, remember that the population has to be at maxi-
mum before the purge or archive will resize the database popula-
tion. This does not apply to logically deleted rows, where the row
is marked but never removed. These logically deleted rows are
just status marked and have no effect on the population of the
database. In fact, they may sometimes inhibit active efficient pro-
cessing from taking place due to the exception logic that must be
put into the application programs to bypass them. Logical deletes
and purging will be covered in the next chapter.

Data archive is another way in which the database popula-
tion is affected. If an archive sweep based on data is run, then the
diminishment counts of the database should be applied to the
annual calculation of the database population. If it is a single-
point archive, such as every third year, this should be docu-
mented as a cyclical data archive of the database so proper DASD
can be allocated as the cycle continues.

280 Chapter 15 Physical database considerations

References
Bobak, A. R. (1997). Data modeling and design for today’s architectures. London:

Artech Books.
Codd, E. F. (1970). A relational model of data for large shared data banks.

Communications of the ACM, 13(6), 377–387.

Suggested Reading
Fleming, C. C., & von Halle, B. (1989). Handbook of relational database design.

Reading, MA: Addison-Wesley.
Reingruber, M., & Gregory, W. W. (1994). The data modeling handbook: A best-

practice approach to building quality data models. John Wiley & Sons,
San Francisco, CA.

281
Data Architecture.
© Elsevier Inc. All rights reserved.2011

INTERPRETING MODELS

Physical Design Philosophy
The object of the design process is to provide a physical struc-

ture that is flexible enough to provide rapid response to access
activity and yet be reflective of the true business use that it is
being designed for. In the early design stages, the DBMS selection
is independent of the model. A model is translated to the physi-
cal model after a choice of DBMS has been made. It is here that
the model is adjusted to the particulars of the environment it will
run in. It is also here that choices will be made concerning tech-
nology platforms, as well as data placement decisions.

Objectives
The following basic objectives of relational or object relational

database design should be prioritized during the initial points of
the design cycle:
l Integrity
l Flexibility
l Performance
l Accessibility

Design alternatives will often support conflicting objectives. It
is when this happens that the prioritized objectives list will help
the decision process. Each of these is examined in the following
paragraphs.

Integrity is the characteristic that ensures that the database
will have the appropriate rules and mechanisms in place to
ensure that the data are not easily compromised and the inserted
data contents are subject to rigorous processes. Integrity is
addressable at two levels: structure and validity. Structural integ-
rity means that every database table object in a database must
be understandable in a business context. Components should
not be implemented solely for technical or performance reasons.
Operational data components do not reflect any real business

16

http://dx.doi.org/

282 Chapter 16 InterpretIng models

object. Referential integrity of all relationships between entities
must be maintained, either in the database structure or in the
application code. Data redundancy must be minimized.

The column types and attributes available in a DBMS must be
used to optimize the data validity and usability. If user-defined
attributes or characteristics are used, the business user should be
aware of their use and purpose.

It is critical that the initial database design provide flexibility
through the use of normalization techniques. Normalized data struc-
tures provide a design that requires minimal modification to handle
changes to the existing business model. Additions or changes to enti-
ties or relationships must be documented to ensure that all func-
tional dependencies have been identified and referential integrity
is ensured. Flexibility is maximally insured by the neutral bias of the
model. It should not tend toward a reporting structure, nor should it
tend to an operationally efficient structure. By being neutral it allows
better indexing opportunities to be used to tune the database.

Performance issues are normally at odds with both integ-
rity and flexibility. The trade-offs must be carefully considered.
Typically, a flexible design requires potentially expensive join
processing, whereas a performance-oriented design would
denormalize data structures to reduce joins. The denormalized
design would then have to maintain data redundancy and inherit
potential integrity problems. Best performance for an opera-
tional database that is used for reporting is usually attained by
indexing and prejoining tables. This allows flexibility and integ-
rity to coexist with the performance mode.

The nature of relational databases is to allow the physical
structure to be closely relatable to the logical business model.
This allows all users to interpret the data structures more easily
and thereby make the contained information a more valuable
asset. The relational database allows access from a number of dif-
ferent routes such as CICS, TSO, and Batch activity. In addition,
many reporting packages, such as Webfocus, Forest and Trees,
and Crystal Reports, allow access to the data through ODBC con-
nections. When the physical structure is understandable by the
business, their use of these tools enhances their productivity.

In summary, these four objectives must be defined and pri-
oritized during the initial project effort. Additionally, they must
be monitored throughout the application development cycle in
order to ensure that consistent results can be guaranteed.

Most successful data processing projects manipulate these
objectives to ensure that the priority order maximizes the projected
efficiency in the selected processing environment. This is validated
with the business user at every stage of the development cycle.

Chapter 16 InterpretIng models 283

The Entity Relationship Model
Models as they come from the logical modelers represent the

compilation and interpretation of the business requirements of
a specific area by the modelers. This embodiment of the busi-
ness requirements allows a common object to be viewed by all
those dealing with it to minimize gray areas and to maximize
understanding.

While the known entities represent the areas of business
focus and the attributes represent the compiled facts about
them, many do not understand more than this. For example, the
relationships between the entities represent the business rules
as to how each entity behaves in participation with the other.
Additionally, many do not realize how critical a key or identifier
is to not only the design process but to what the key becomes on
model translation as well.

This chapter covers some of the basic components of models,
their characteristics, and, more specifically, the actions that can
be taken to adjust and transform the model for maximum per-
formance while still maintaining the same characteristics as the
original business model. By maintaining the original character-
istics, the business user is ensured that his or her requirements
will be met when the model is implemented as a database. The
maximum design efficiency is achieved through the use of data
model and process model interaction. The rigor produced allows
flexibility, as well as comprehensiveness.

Interaction Analysis
All interaction analysis and mapping exercises depend on

the development of a process or activity decomposition dia-
gram. This is a breakdown of all of the activities of the business
area in the enterprise that are being worked on. It is normally
created in a top-to-bottom listing with a left-to-right expansion.
A natural sequence is assumed but not necessary in the top-
to-bottom arrangement of the activities listing. At the far left top
of the diagram are the initial processes of the businesses. These
follow down on the left side at the highest level of the process.
After this is defined, all direct subprocesses are defined by add-
ing an indented list under each major process on the left. When
these are completed, they then are broken down into their sub-
processes and added to the diagram by further indenting and
adding under each subprocess. This continues until all processes’
activities are defined down to the elementary level. Two examples

284 Chapter 16 InterpretIng models

appear in Figures 16.1 and 16.2. One shows the pictorial represen-
tation of the activity decomposition, and the other shows a small
detail section for explanatory purposes.

Interaction analysis is the process of evaluating each process
and determining the data requirements of each and developing

A A1

B3

C2

C3

C4

B

C

D

E

B1

C1

D1

E1

B1A

C1A

C2A C2B

D1BD1A

E1A

C2C

B1B B1C

B3A

ACTIVITY DECOMPOSITION DIAGRAM

B2

C3A

Figure 16.1

PURCHASING

ACTIVITY DECOMPOSITION : THE BREAKDOWN OF THE ACTIVITIES OF
THE ENTERPRISE INTO SMALLER AND SMALLER UNITS OF WORK

GOODS
RECEIPTS

PRODUCT ORDERING

RECEIVE DELIVERY

ASSESS DEMAND

IDENTIFY REORDERS

INSPECT DELIVERY

RE TURN ITEM

STORE PRODUCT

DECOMPOSITION DIAGRAMFigure 16.2

Chapter 16 InterpretIng models 285

R
Customer Customer Order

Customer Order
Customer Order
Customer Order
Customer Order
Customer Order
Customer Order

Customer
Inventory

Customer Account Customer Invoice Vendor Invoice

Vendor Invoice
Vendor Invoice

Product
C

C

C

CRUD

U
U

CRU
CR

RU

U
U

U
RU

RU

R

R
RU

RU

RU

RU

RU

RU

Figure 16.3 A CrUd matrix.

a matrix of what data are used by what process. By mapping the
data to the processes through interaction, all processes that do
not have data either are invalid processes or represent missing
data from valid processes.

Conversely, by reverse mapping all processes to the data, the
data that have no associated processes are either extraneous data
items or are missing the valid processes that need them. This
mapping can take many forms. Several will be covered here.

The CRUD Matrix
The first and simplest is the C-R-U-D matrix. This is a visual

array that is developed on paper or in computer text. The array
has two vectors: a vertical and a horizontal. The horizontal vec-
tor, normally put across the top of the matrix, is a list of entities
that exist in the logical model. The vertical vector, normally run
down the left side of the matrix, is a list of all of the processes that
exist in the business area being mapped. At each point where
the two vectors meet there is a box that should be filled out. Into
this box should be entered whether the action is a Create, Read,
Update, or Delete. This provides the mapping that validates what
processes use what data and the reverse. CRUD matrices also
show where incipient hot spots may exist in the resulting database
even before the logical model is physicalized. Figure 16.3 shows
an example of a CRUD matrix.

Entity Life Cycle Analysis/Entity State
Transition Diagrams

Entity life cycle analysis, although time consuming, is an
excellent way to determine if there are any elementary processes
that remain undefined or if additional attributes are needed to
ensure validity of the entities and processes associated with the

286 Chapter 16 InterpretIng models

ENTITY STATE = “A DEFINABLE, DISCRETE PERIOD IN THE LIFE OF
AN ENTITY”

FLOWERS HAVE BEEN SENT

SEND
ORDER ORDER

REPAIR

IN STATE
OF SENT

IN STATE

RESULTS IN AN
OCCURRENCE OF

RESULTS IN AN

CAR HAS BEEN REPAIRED

ENTITY STATEFigure 16.4

PREPARE

NULL

ON-ORDER

OVERDUE

PART

DELIVERED

DELIVERED

CANCELED

PAID FULLY

CANCEL

PAY

PAYPAY

MONITOR

PROCESSESSTATES

QUERY

QUERY

CHECK

CHECK

CHECK

ENTITY STATE TRANSITION DIAGRAM

Figure 16.5

Chapter 16 InterpretIng models 287

data and process models. This life cycle analysis has basic rules
that specify the following:
1. Each entity has a life cycle.
2. The entity must be in an entity state.
3. It must pass through the null and creation states.
4. It may exist in only one state at a time.
5. It changes states due to an elementary process.
6. It can change into any of several states (it is not sequentially

linked).
Figure 16.4 shows an example of an entity state.
Figure 16.5 shows an entity state transition. Note how the pre-

pare order state can go directly to the cancel order state. Also note
how the monitor order can lead to a delivery state or back to a pre-
pare order state if items had been missed on the original order.
While this mapping may seem complex, it is a simple but accurate
rendition of the business process in a text and graphical package.

Process Dependency Scope and Process
Dependency Diagram

Process dependency interaction analysis also depends on the
process decomposition having been done. A process dependency
scope is a further delineation of the activity decomposition dia-
gram. It groups activities into structured sets that are in depen-
dency order, which the activity decomposition may or may not

Figure 16.6

Process Dependency Diagram

A

B
B

F

F

G

G
H

H

C

D

C

D

E

E

I

IJ J

K

THE SCOPE IS DONE ON ONE LEG OF THE DECOMPOSITION AT A TIME
USING THE OUTPUT OF THE DECOMPOSITION DIAGRAM

K

1 1

2

2

3
3

288 Chapter 16 InterpretIng models

XII

III

VI

IX

XII

III

VI

IX

PROCESS DEPENDENCY DIAGRAM

SUPPLIER
RECEIVE

SUPPLIER
DELIVERY

RETURN
DELIVERED

ITEM

INSPECT
DELIVERED

ITEM

STORE
PRODUCT

PAY
SUPPLIER

SUPPLIER

Figure 16.7

EVENT ANALYSIS

SPECIFY THE EXACT EVENT OR SET OF EVENTS THAT TRIGGERS AN
ELEMENTARY PROCESS

IDENTIFY BUSINESS STIMULI / DEPENDENCIES BETWEEN
ELEMENTARY PROCESSES COMPRISING THE RESPONSE

Figure 16.8

be. In some cases several activities and their subprocesses may
take place simultaneously. See Figure 16.6. This allows the overall
dependency sequence to be defined in a graphic manner. Figure
16.7 shows an overly simplified example with clocks as a gating
mechanism showing time triggers.

Event Analysis
An event is a happening of interest to a process. See Figure

16.8. Event analysis involves three categories of event control
mechanisms: preconditions, triggers, and guards. Preconditions

Chapter 16 InterpretIng models 289

TRIGGERS:
EVERY PROCESS MUST HAVE ONE

ENTITY STATUS CHANGE
TIMER

OUTSIDE REQUESTPROCESS COMPLETION

Figure 16.9

WHAT IS PROCESS LOGIC ANALYSIS?

INTERACTION ANALYSIS

DATA ANALYSIS

PROCESS LOGIC ANALYSIS

AN ANALYSIS OF THE BUSINESS DETAILED LOGIC OF A
PROCESS

ACTIVITY ANALYSIS

B E
C

D

Figure 16.10

are those event control mechanisms that enable the process to
execute. Triggers initiate a process to execute. A guard prevents
a trigger from executing. We want to record temporal or timed,
externally requested, data change, and process status change
events. Figure 16.9 shows another way of determining sequenc-
ing and entity/process interaction.

290 Chapter 16 InterpretIng models

Process Logic Diagrams
Process logic diagrams are the result of the interaction analy-

sis between data and process. All other interaction analysis meth-
ods should be translated to a process logic diagram. The process
logic analysis diagrams become very critical in the denormaliza-
tion and performance tuning of the model as it is physicalized.
Figure 16.10 shows the method for creating a PLD.

Interaction Analysis Summary
Good model transformation requires that all of the interactive

activity between the data model and the process model has taken
place within the scope of the business context being implemented
to ensure that the business requirements have been completely
captured. This interaction activity must include a step of review,
which includes the business user of the model. See Figure 16.10.

Changes to ER Models
Many different changes can be made to models to increase

performance. These will be covered in more detail in the suc-
ceeding paragraphs. All of these considerations are based upon
common principles:
l All DBMSs function on a file basis. In the case of the relational

DBMSs, the files represent the tables that contain the data.
Each file (or table) that the DBMS must keep open or keep a
pointer in is overhead to the using application. Therefore, the
fewer the tables present (generically speaking), the better the
performance.

l All data that are retrieved by the DBMS must be evaluated
in some manner in order to decide which processing path it
must take. Depending on the complexity of the physical struc-
ture of data that has to be evaluated, it may have to be moved
to different portions of the DBMS to be evaluated. In other
words, if the data structure is not simplified or made efficient,
then the DBMS has to move a lot of data to a more complex
evaluation mechanism within itself, which involves a lot of
I/O, and this takes the form of slower throughput.

l Full-function DBMSs have automated recovery mechanisms
for units of work. Most of them function through the use of
logging for the units of work being applied. Good design of
a model can significantly affect the referential sets involved
in the units of work. The more complex and larger the unit

Chapter 16 InterpretIng models 291

of work, the longer it takes for logging, and subsequently the
longer it takes to recover these units of work.

l DBMSs are engines, and the better the quality of the fuel that
is put in, the more efficient they are. Even though some manu-
facturers have tuned their DBMSs’ engines to partially or
completely detect sequential input to take advantage of read-
ahead buffering, the fewer data that have poor quality or are
out of sequence, the more efficiently it will run.
A small note is inserted here to explain some of the acronyms

used in this chapter. DA stands for data administrator, the person
or group of people responsible for capturing business require-
ments in a logical model. DBA stands for database administrator,
the person responsible for translating the model into a form that
can be converted to data definition language (DDL). Specifically,
the DBA is responsible for designing and building the structure of
the database in the target environment.

Based on these simple principles, some forms of change to
the model can be made that will allow it to have a smaller “foot-
print” on the direct access storage device (DASD) device, while still
retaining the characteristics of the model that the business signed
off on. The denormalizations that are acceptable in this framework
fall into two categories: entity relationship diagram (ERD) denor-
malization and access-level denormalization. Each of these will be
covered in turn and discussed in non-tool-specific language that
can be used within or outside the use of a CASE design tool.

ERD Denormalization
the Collapse of 1:1 relationships

One-to-one relationships reflect that for each A there is one and
only one B. While the key attributes of the entities may or may not be
the same, their equal participation in a relationship indicates that they
can be treated as one by any unit of work being applied to the data.
Only the attribute loads are different. Combining the attribute loads
does not change the business view and decreases the access time
by having one fewer physical object (table) and
associated overhead (indexes). See Figure 16.11.

resolution of many-to-many
relationships

This means that for every A there are many
Bs, and for every B there are many As. While this

1) Combine attribute loads on 1:1
 relationships

2) This excludes GH parent–child relationships

COLLAPSE 1:1 RELATIONSHIPS

Figure 16.11

292 Chapter 16 InterpretIng models

makes for a complex interaction (the real amount of the occurrences
is the Cartesian product of both numbers of occurrences), many-
to-many relationships reflect the intersection of separate keyed
occurrences.

Manually this can be handled by creating a mutual entity
between the two entities, which is called an associative entity.
The key to this entity is the concatenated primary keys of the par-
ticipating entities. For example, if the key of A was 1 and the key
of B was 2, then the key of the associative entity AB would be 1, 2.
CASE tools automatically resolve this by creating an associative
entity during model transformation. However, tool manufactur-
ers generate nonstandard names for the associative entity and
the keys identifying it.

In order to produce standardized names, many DAs resolve
the many-to-many problem by creating the associative entity
and properly naming the keys. With the associative being devel-
oped, it often becomes obvious when processes are mapped
against the entities that the intersection entity (the associative) is
the real focus of interest. In the rare case that an associative has
no attribute load, then the one valid attribute is the date of the
relationship. In many cases the associative table is the only one
implemented, and the salient attributes of the participants are
migrated to the associative for implementation. See Figure 16.12.

resolution of recursive relationships
Recursive relationships represent self-referencing or involut-

ing relationships. While this may sound complex, it merely indi-
cates that there is a parent–child (possibly multilevel) hierarchy
involved. In the case of a single-level recursive, its behavior is sim-
ilar to a one-to-many relationship, with the key being propagated
as a foreign key to the other participant. The upshot is that the
recursed entity has a foreign key that is really another image of

RESOLVE M:M RELATIONSHIPS

1) Create an association object between the two objects

4) Create (2) 1:M relationships. Many is on assoclation object
3) Identify attribute load

2) Primary key of new object is concatenation of parent
primary keys

A AB B

Figure 16.12

Chapter 16 InterpretIng models 293

the primary key. CASE tool transformations gener-
ate a nonstandard foreign key name. The DA would
resolve the recursive relationship and properly
name the foreign key. In the case of a multiple-level
recursive, CASE tools resolve the relationship as it
did in the single level as stated before. The DA must
then manually create a foreign key (renaming it
uniquely) for each level of recursion. For example, if
a recursive relationship had three levels to its hier-
archy, there would be three foreign keys that were
associated to the primary key. See Figure 16.13.

Actions on Super Type–Subtype
Constructs

Super type–subtype relationships represent a type of parent–
child relationship. The child entities are dependent on the par-
ent, and each child specifies a particular type of the parent.
Normally they are mutually exclusive. Subtypes are promoted by
DAs into separate entity types, with the attendant primary keys
being propagated to the new entities. While this may seem con-
tradictory to the basic rules set up in the initial paragraphs, upon
review and access mapping, it becomes clear that activity most
often happens to the child entities and not the parent. In many
cases the parent can be discarded because the points of interest
may only be the children.

Based on access requirements, attribute loads of the child
entities, and volume statistics, the collapse of the children
upward into the parent may be justifiable. This is done by creat-
ing a type column in the parent and migrating all attributes of
the children up to the parent occurrence row. This will create null
fields, but this may be acceptable.

Based on other requirements, lateral collapse may be affected
between surviving children where the parent has been removed.
This is only justifiable where one of the children has most of the
accesses and the others have almost none. It is accomplished by
entering a type column in one of the sibling entities and moving
all of the attributes of all the selected children to it. Again, it will
result in null fields, but this should only be done in cases of negli-
gible access and negligible volume.

Many tools implement the subtypes and super type as sepa-
rate entities upon transformation, but as in the case of the many-
to-many, where naming conventions of the entity and the keys are
manufactured by the CASE tools, the results of the transformation

) De erm n
)

) Fo i
Note Hi to

Figure 16.13

294 Chapter 16 InterpretIng models

are nonstandard entity and attribute names. Additionally, many
CASE tools bring down all inherited attributes to each subtype.
The DA must promote the subtypes and correct the names to
ensure compliance to naming standards prior to transformation.
See Figure 16.14.

Actions on Multiple Relationships
Multiple relationships represent different business relationships

between the entities involved. These are called subset relation-
ships because they represent unique relationships between subsets
of the data on each of the entities. Subset relationships represent
different business views of the partial sets of entity occurrences on
the two entities—for example, half of A is related to half of B in one
specific manner, and the remainder of A is related to the remain-
der of B in another specific manner. An example of this would be a
multiple relationship scenario between sales and invoice. Sales can
be related to an open invoice, a back-ordered invoice, or a closed
invoice. The business area may want to model them this way. In
most cases they represent different life cycle states of one of the
participating entities. As in normal relationships, foreign keys are
propagated to the many entity. In model translation this can be
treated as a single relationship or as multiple single relationships.
It is easier and does no harm to consider it one relationship and
thereby save implementation of many objects. Additionally, it saves
the expense of determining which occurrences go on which tables
when they all have the same primary key.

Another way of handling it is by creating an associative entity
type between the two original entity types. The associative entity
type (in this case an aggregation) would include a code or type

RESOLVE SUPER TYPE–SUBTYPE CONSTRUCTS

PARENT

CHILD CHILD

1) Promote children to entities and discard parent
2) Implement parent and all children
3) Collapse children into parent and implement
4) Combine smaller children if one is large

CHILD

Figure 16.14

Chapter 16 InterpretIng models 295

attribute, which would be used as a discriminator to indicate
which subset was being associated. Either can be done in the log-
ical model as it is understandable to and approved by the busi-
ness owner. CASE tools individualize one of the relationships by
changing or adding a character to make the foreign key unique
during transformation. The result when DDL is generated for
multiple indexes (depending on the number of subsets) is that
duplicate indexes result (the foreign key of one has a modifier
added to its name). This is not acceptable or efficient and should
be handled by the DBA prior to translation. See Figure 16.15.

Resolution of Circular References
This is not a frequent occurrence, since it represents a logi-

cal modeling error. As such, it needs to be corrected before any
translation or transformation takes place. This correction must
be completed prior to the logical model being accepted. Circular
relationships exist in certain situations where third normal form

BA

SINGLE
RELATIONSHIP

SUBSET
RELATIONSHIPS

COLLAPSE MULTIPLE RELATIONSHIPS

1) Assure that these are subset relationships
2) Often represent life cycle states of entity

Figure 16.15

RESOLVE CIRCULAR RELATIONSHIPS

1) Are the result of incomplete business modeling
2) Are fine if all relationships are mandatory
3) If no simple solution, remodel to fourth normal form to
 remove possible null foreign key

A

B

C

D

Figure 16.16

296 Chapter 16 InterpretIng models

does not adequately define the business requirements. It mani-
fests itself as a dependency relationship loop that exists contain-
ing a partial dependency of one entity on another in the loop.
Simply put, a series of entities in a circular relationship would
end up in an endless loop if one were trying to navigate an access
path by the keys involved. An example of this is the employee-
manager-office-business entities. The problem occurs where
the employee may optionally be a manager. As one can see, the
navigational aspect of this construct leaves the accessor in a
quandary. The resolution to this is to create a fourth normal form
entity that resolves any optionality issues and populate it with
the appropriate attributes. This entity is a 1 to optional 1 relation-
ship but allows specification to remove the circular nature of the
relationship. See Figure 16.16.

Resolution of Duplicate Propagated Keys
Certain relationships are regarded as identifying because they

require the key of the participating parent to be included as part
of their own key. Because identifying relationships propagate keys
to receiving entities and those in turn could be identifying to other
entities, keys are propagated downward through the dependency
chains. In most businesses these dependency chains are short, and
there is little complexity involved; in other businesses these depen-
dency chains can become quite long—up to 10–12 entities. This
leads to a primary key of 10 to 20 attributes. When these long keys
are involved in relationships with other entities, it could cause a
situation where the dependency chain loops back to reconnect to a
previous entity (circular-type relationship) or a situation where two
dependent chains are resolved by an association object. The iden-
tifying nature of the relationship forces multiple keys of the same
name into the association object, thereby causing duplicate keys.

CASE tools automatically add a discriminator to prevent a
duplicate name, but this does not meet naming standards. In a
manual mode this is easily handled by naming the duplicated keys
differently or by eliminating one of them because they represent the
same data content value. In a CASE tool, several actions are possible
in order to resolve this: The first is to selectively remove the identify-
ing nature from the relationships before transformation. The second
way is to remove the redundant relationship in a circular relation-
ship. The third way consists of renaming the duplicate keys to a new
name that meets naming standards after transformation and allows
the duplication to continue. In all cases these should be resolved in
order to minimize key length and confusion at the same time. See
Figure 16.17.

Chapter 16 InterpretIng models 297

Access-Level Denormalization
Access-level denormalization falls into several categories.

These encompass the movement or change of structure within the
physical model based on the characteristics of the accesses that
will be using the data. Under no condition should denormaliza-
tion be done without access path justification. Some of the physi-
cal techniques are noted in the following. Again, let me state that
these are based on performance need rather than arbitrary whim.

Movement of Attributes
Movement of an attribute from one entity to another entity

is strictly based on access path justification by the project team
that includes the application personnel, as well as modeling per-
sonnel. DAs should not perform this without supporting docu-
mentation. In order to accomplish this form of denormalization,
the attribute is copied to the new entity and deleted from the
old entity. This is done in the physical model and represents an
attribute-level change that results in a change to the DDL and the
physical database structure. Changes of this type must be com-
municated to all involved personnel in order to minimize rework.

Consolidation of Entities
Consolidation of entities is not done very often. It represents

the task of physically combining the attributes of two tables into

PK, PK1,2FK2

PK1, PK1, FK1
FK2, FK2, FK3

PK, PK2, FK3

RESOLVE DUPLICATE (PROPAGATED) FOREIGN
KEY PROBLEMS

1) These are the result of propagated dependencies
 or characteristic entities
2) Result when two dependency chains have an M:M
 at lowest level
3) Delete one set of foreign key information from the
 entity

Figure 16.17

298 Chapter 16 InterpretIng models

one. The result may end up being the combined key of both or
the most detail-level key in a collapsed hierarchy. It is primarily
done to consolidate lookup or domain constraint data entities
into the parent entity. This may look to be counterproductive
from the logical views, but in reality it may be very logical if the
target entities have been the result of overnormalization (break-
down of complex group items to their atomic level). This is not
only done for DASD space conservation but for access reasons
(doing one read on a collapsed entity rather than three reads or a
join of three entities). Consolidation of entities must be justified
by the access paths provided.

Derived Attributes and Summary Data
This is the creation of entities or attributes to facilitate multiple

or special request views for the project team. This activity is strictly
based on access path justification by the project team, which
includes the application personnel as well as modeling personnel.

ACCESS DENORMALZIATION OF ATTRIBUTES

Denormallze attributes to speed up
 accesses within the projected
 physical model

Figure 16.18

CONSOLIDATION OF ENTITIES

A B

1) Collapse all 1:1 relationships into one entity
2) Consider collapse of all 1x:1 relationships

AB

Figure 16.19

Chapter 16 InterpretIng models 299

Entities are created as normal entities would be. No relationships
are defined connecting the entity to the rest of the entities in the
model. Attributes are created as normal attributes would be in the
entity where they will reside. Designer entities are normally for
summary data purposes where they are used as holders for par-
tial calculations or totals. Designer attributes are for totals, opera-
tional data such as switches, and next sequential number storage.

Implement Repeating Groups
Introduction of repeating groups is strictly based on access

path justification by the project team that includes the applica-
tion personnel as well as infrastructure personnel (DA and DBA).
Additionally, the repeating group would have to be a small volume
fixed group that cannot grow. Based on these criteria, DBAs do not
perform a lot of this denormalization. In order to accomplish it
when it is desired, attributes have to be created in the occurrence

Figure 16.20 DERIVED ATTRIBUTES

1) Derived attributes exist for three purposes:
 a) Used for operational purposes (switches)
 b) Used for processing or accessing purposes (flags)
 c) Used to hold external data (parameters)

 MC MF M M+

x

√

+
L

AC

987

654

321

=0

SUMMARY DATA

1) Summary data is retained when:
 a) Reporting or MIS data
 b) Results of intermediate calculations
 c) Cost of redundant recalculation is wasteful

Figure 16.21

300 Chapter 16 InterpretIng models

description just as they are for a normal attribute. This is done
until there is a column for each member of the repeating groups.

Introduce Redundancy
Introduction of redundancy is strictly based on access path jus-

tification by the project team, which includes the application per-
sonnel as well as infrastructure personnel. Introducing redundancy
is the redundant placement of an attribute on another entity in
order to facilitate faster performance. In most cases the DBA copies
the attribute to the new entity or creates it as a new attribute in that
entity because there is no relationship between the entities. The
important thing is to remember that for each redundancy intro-
duced there is a penalty as well. Each redundant attribute needs to
be updated at the same time as the original in order to be kept in
synchronization for referential integrity. See Figure 16.23.

INTRODUCE REPEATING GROUPS

1) Introduce only fixed numbered groups
2) Do not introduce variable-length columns
3) Be wary of the maintenance factor

Figure 16.22

X
A A

Y

Z
A

INTRODUCE REDUNDANCY

1) Selectively introduce redundancy based on:
 a) Frequency of maintenance of the redundant columns
 b) Access path justification only
 c) No key redundancy is allowed

Figure 16.23

Chapter 16 InterpretIng models 301

Introduce Surrogate or Synthetic Keys
Introduction of surrogate keys is based on the conservation

of space as well as faster access. It is investigated as a solution
for the cases where propagated key strings are too long or vio-
late implementation DBMS limitations. In those cases where it is
deemed viable, a surrogate key is created and the natural key is
either removed to a separate entity or placed as attributes within
the occurrence definition of the entity being operated on. In
those cases where the natural key is moved to a separate entity,
it is matched with the surrogate identifier, thereby creating an
association table upon implementation. See Figure 16.24.

Vertical or Horizontal Segmentation
In those cases where an entity occurrence exceeds the imple-

mentable row length of the target DBMS, vertical segmentation
must be accomplished. A new entity is created with the same key

DENORMALIZATION
SURROGATE OR SYNTHETIC KEYS

1) Use when natural key is too long
2) Must have a natural key behind it
3) Model must contain synthetic key resolution rules or
 algorithms

Figure 16.24

TABLE SEGMENTATION

1) Vertical segment table when row is too long
2) Horizontal segment based on volume or access

Figure 16.25

302 Chapter 16 InterpretIng models

as the original (made unique, of course) and the attributes of the
original row are separated in half and each half is attributed to
one of the entities. The result is two tables that can be joined into
a single entry based on occurrence key values. See Figure 16.25.

Access Path Mapping
This step is that of recording of the many event/process use

maps that will show how the data is being accessed. The assem-
blage of the process logic diagrams defined previously now will
be utilized. The access path defined in the PLD is recorded on
a physical model diagram of what the potential database tables
will be. Each PLD is recorded in a different color and aligned in
parallel. When this is done, it produces a combined set of overlay
traversal paths or access paths that can be mapped against the
model to show where access will be heaviest. This supplies the
following information to the physical designer:
1. It shows where identifier or index maintenance will be

required most.
2. It shows where activity volume will be heaviest, indicating a

need for more free space for insertion and frequent reorgani-
zation and distribution of the data.

3. It shows where tuning options must be put in place to ensure
rapid access.
Figure 16.27 shows the result of the integration of PLD1, PLD2,

PLD3, and PLD4. Figure 16.28 shows how, when they are com-
bined, they produce the composite load map.

The composite load map allows the designer to see the areas
for the final stages of physical model translation. He may choose
to ignore these but will have them available if and when the need

COMPILATION OF PROCESS LOGIC DIAGRAMS

A

B C

D A

P

Q

B

M R

B

LMP

PLD-1 PLD-2

PLD-3 PLD-4

Figure 16.26

Chapter 16 InterpretIng models 303

arises for performance tuning. The first of these is the identifica-
tion of potential “hot spots” in the new database that will be cre-
ated. See Figure 16.29.

The next area is the identification of referential groups. That
is, these are groups of entities that are updated as a group by the
processes that have been identified.

Finally, the composite load map identifies the unit of work
constraints. Similar to the referential groups in concept, this

DEVELOPMENT OF THE COMPOSITE LOAD MAP

A

B C

D

P

Q

A

B

M R

B

LMP

R

A

B C

D

P

Q

LMP

Figure 16.27

A D

CBLM

RO

P

THE COMPOSITE LOAD MAP OF ACCESSES Figure 16.28

304 Chapter 16 InterpretIng models

IDENTIFY HOT SPOTS

• Where do the accesses overlay
 each other on the ERD?

 1) High overlay paths indicate
 a) frequent index maintenance
 b) multiple indexes
 c) freespace considerations

 2) Frequent access to entities
 indicate:
 a) need for frequert REORGs
 b) possible higher-speed device

Figure 16.29

IDENTIFY REFERENTIAL GROUPS

Referential groups represent
those interrelated entities that
must be updated as a group.
These then become referential
sets that must be considered
when planning backup
recoveries and unit of work
scenarios

Figure 16.30

UNIT OF WORK CONSTRAINTS

1) Specify units of work for database
2) Units of work should not split referential sets
3) Commit strategy is based on number of
 completed units of work

Figure 16.31

Chapter 16 InterpretIng models 305

identifies a unit of work that must be completed for the entities
to be in a completed state. It may or may not involve multiple
access paths within the composite load map. See figure 16.30 and
16.31.

Conclusion
When all of the interaction analysis, denormalizations, and

composite load map definitions are completed, the performance
of the physical model can be determined before any physical
structure is created. It also provides a basis for future change
assessment when new business processes are added to the cur-
rent workload.

These techniques and methods will also minimize the actual
database “footprint” or space allocation on DASD, while at the
same time allowing the model to represent the business and be
flexible to those predictable business changes that might occur.
When significant business changes occur, these steps can be
applied again in the top-down process after the requirements
have been captured and integrated. Overall these represent
things that can be done at different stages in the design process
that will maximize efficiencies of the model.

Reference
Tupper, C. (1998, September). The physics of logical modeling. Article DBPD.

Copyright © 1998 Miller Freeman Inc.

309
Data Architecture.
© Elsevier Inc. All rights reserved.2011

DATA WAREHOUSES I

Early Analysis in this Area
Since the beginning of the organization of business processes

into functions that optimized record keeping and thereby the
ability to compete successfully in the marketplace, there has
been a need to display or report on the basic information that
was used by the direct functional processes. The business pro-
cesses were distilled and encoded in programming languages
that provided a concise set of actions to be performed on the
data. The data used for the processes were arranged in the most
optimal structure possible to ensure rapid movement through
the programs that represented the captured business processes.

Unfortunately, the structure of the data for optimal process-
ing for the business did not represent some of the information
(interpreted data) necessary to monitor or project trends in the
business. The very structure that allowed rapid processing of
transaction-type activity impeded the process of interpreting the
information and arranging it in a format that allowed business
decisions to be based on it. The early DBMSs (database manage-
ment systems) did not help the situation, since they tended to
be inflexible and required that the data be arrayed in a pattern
that the processing requirements for a specific business process
needed. If other business processes needed that same data, then
their business need was captured in a separate data structure.

During this time frame there were many people in the industry
trying to assess the risks involved with the burgeoning new field
of data processing. Among others, Richard Nolan (1979) docu-
mented his views of the problem. He identified six stages in data
processing as part of a classic article published in the Harvard
Business Review in 1979. His article, “Managing the Crises in Data
Processing,” explored the characteristics of the evolution that
occurs in organizations as they become aware of the value and
cost of the data they use.

As Nolan pointed out in his article very intuitively, there
is no absolute correct degree of integration for any business

17

http://dx.doi.org/

310 Chapter 17 Data warehouses I

environment because each organization has its own needs for
future automation. It is, however, easy to see that the lower it is
on the scale of integration of Nolan’s stages, the more expensive
it is to operate in the long run. This is because unintegrated envi-
ronments waste expensive resources, cause duplication of effort,
incur redundancy in maintenance, and aggravate problems in
the synchronization of data content.

Keen and Scott-Morton
It was into this arena that Peter G. W. Keen and Michael S.

Scott-Morton (1978) developed some concepts of business deci-
sion classification and decision support strategies for use in
reporting and projective analysis. Theirs was the first compre-
hensive look at the business need to provide intelligence on the
processing of the data for monitoring and control purposes. In
their work on decision support they identified three classes of
decisions: structured decisions, semistructured decisions, and
unstructured decisions.

Prior to current-day efforts, structured decisions were gener-
ally made by operating management because they were regarded
as needing certain expertise to be accomplished. We know now
that these decisions are easily automated and generally choose to
computerize them.

Semistructured decisions are less easily automated because
they rely on judgment, intuition, and experience of management.
The data that are needed for these semistructured decisions usu-
ally lies in the detail data of the business processes and can be
retrieved for interpretation.

Unstructured decisions are decisions that rely completely on
human intuition and analysis. The data needed for these must
be formulated and structured for the purpose of presentation for
evaluation, analysis, and assessment.

It is easy to see that what they were referring to in the struc-
tured decision classification was that set of data currently used
for transaction processing systems. The set of data that is appli-
cable for semistructured decisions is what is considered as
reporting system data. And finally, the set of data associated with
the classification of unstructured decisions is regarded as ad hoc
query data.

Their work relied heavily on the tenet that decisions made
by an organization must reflect the reality of that organization.
The data structures then must be developed in accordance with
that reality in order to solve the problems within it. Their work
affirmed that all businesses were primarily controlled by discrete

Chapter 17 Data warehouses I 311

sectors of management and that a knowledge base existed in
that management level that could exercise decisions based on
the analysis of the intelligence in the data. Unfortunately, their
assumptions were premature to the growth of the industry and
their concepts and tenets which could have been the bedrock of
business decision making became merely an acknowledged tech-
nique. They did not get the credit they deserved.

Decision Discussion
Over time it has become increasingly obvious that the knowl-

edge of the data has been pushed downward in the organiza-
tion and that the true understanding of the business processes
as they operate on the data is in middle or lower management.
In the words of Peter Drucker (1993), these “knowledge workers,”
then, are the set of individuals who utilize the information gleaned
from the data being processed in order to translate this into some-
thing more understandable to the senior management as well as
to maintain the monitoring and feedback processes to the overall
function of the business. It is from this group that the requirements
for decision support were born. These decision support require-
ments (foretold by Keen and Scott-Morton) needed to view data
from a different perspective that allows the data to be detached
from the processes that used it. Moreover, it also showed that there
are different levels of abstraction of the data and that these levels of
abstraction had different forms and structures of their own.

Components of Decisions
A decision consists of three parts: 1) What is the question that

is trying to be answered? 2) What are the data or information
needed to make the decision? 3) What action is taken based on
the decision?

The first part can be broken down as: what question(s) are
captured by analysis of the business process? What is being done
(is this a monitoring question?) in the process? Is the question
designed to help us follow the progress of a process? Is it a con-
trol mechanism that will help to slow or stop the business pro-
cess? Is it a feedback mechanism that will allow information from
the process to be used as input to subsequent iterations of the
same business process or perhaps a different one?

The second part refers to the data or information required to
supply the raw material for the answer to the question. Where
are the data? What form is it in? How accurate are the data? How
recent are the data? Are the data complete, or do the data depend

312 Chapter 17 Data warehouses I

on other pieces of data? What is the likelihood that the data for
the decision I am making will persist long enough to be evaluated
as either a good source or a bad source? The overall integrity of
the data being used for the decision will affect the quality of the
decision that is being made.

Lastly, the third part refers to what action will be taken based
on the needs of the decision? This refers to both internal and
external action. By internal action, I am referring to what actual
processing is required to format, restructure, or transform the
data into an array that will be sympathetic to the question being
answered. External action in the last phase is what action is taken
on the data as a result of the decision. Are partial products of cal-
culations kept? Are summaries kept? Are the data time bounded?
Are the internal actions transitional and have no lasting effect on
the data or does the internal action become an external action?
What is the presentation format? All of these affect the data as a
result of the decision process being performed.

Responsibility
Information technology, or the IT area, as it was called, inher-

ited the mantle of the analytical work that translates the decisions
into structures that support or allow translation of processing
arrayed data to information source. The people that needed to
make decisions needed the data in their hands in the format that
they desired it to be. This is a tall order for an organization whose
sole purpose was to pass data as quickly and as efficiently as pos-
sible. An additional problem was that all the DBMSs to this point
were designed to maximize the efficiency of the I/O process, since
the data needed to be read, staged, brought into memory, evalu-
ated and acted upon, and potentially restored. I/O was a limit-
ing factor in many situations for many applications. The retrieval
engines could be made to work only so fast. Vendors of the DBMSs
were slow in responding to the need for more decision support
retrieval engines but eventually began to address this issue.

In addition to this, there was the problem of who would gather
the questions and who would consolidate the structural plan for
the needed data. These problems fell on barren ground in some
parts of the industry; in others the analysis was relegated as part
of the modeling process along with logical and physical model-
ing. These requirements had to be gathered and assembled from
the business areas to ensure that the true data requirement for the
questions being asked was present and could be made to provide
the answer.

Chapter 17 Data warehouses I 313

The data administration data analyst became responsible for
the research and interviews that comprise this activity. It was
important that the data being defined or captured provide the
raw material for the question to be asked. It is also important that
the questions themselves be captured, not only for posterity but
also as a foundation for future analysis.

In order to provide the best solution for decision support prob-
lems, the major specific area to be defined is, “What is the data
requirement?” The specific areas may be associated with type of
retrieval need or in other cases the structure and format of the
data. While spoken of in generic terms, these specific areas and
the requirements that support their consideration have evolved
only in specification since the early days of decision support.
These will provide the basic premises of the data warehouse
concept. To that end let us consider the fundamentals first and
consider the following: Restructuring and/or reorganization
requirements for data allow the data to be arranged to better facil-
itate access for those users that use the data in a different or non-
standard manner. An example of this would be the reorganization
of a table to be in a candidate key sequence rather than a primary
key sequence.

Segmented or partitioned requirements for data usually have
to do with the accomplishment of bringing the data closer to
the user. They can also be used to physically separate different
characteristics about the same data. In all cases the structure of
the data store is unchanged, but the data contents of the parti-
tions are different.

Summary requirements for data are present when there is a
need to allow viewing of the data store at higher levels of abstrac-
tion. By looking at the higher-level view of the data store, trend
analysis and problem identification can take place by manage-
ment operating at this level of abstraction. Levels within summary
allow the separation of some information into the subcategories.

These categories will translate into more familiar modern-day
objects and concepts that are developed in this chapter. It is then
to the point where different options of data arrangement are con-
sidered to facilitate the reporting and querying aspect of infor-
mation management. Decision support databases that provide
report outputs and online query outputs have been the result of
this need. Reporting databases were often kept apart from query
databases in the early days to facilitate the type of activity being
performed. Reports tended to deal with larger volumes of data
viewed serially, whereas queries were much more specific. It is
into this arena that the report writers and query engines began to
compete.

314 Chapter 17 Data warehouses I

Report Writers and Query Engines
While there were many different tools in the marketplace,

the ones that survived had some common characteristics. These
characteristics were that they upheld the basic tenets of decision
support, they were flexible and responsive to the using industry
pressures, and they allowed the drivers of the evolutionary pro-
cesses of tool development to be the worker groups that had to
use the data.

Many of these tools were or are based on some form of data
dictionary or lexicon of the available data attributes that facili-
tates the queries being formulated. Others functioned on embed-
ded code structures or associated data layout definitions within
the tools that allowed parameterization to be utilized in selecting
data from the database. Behavior rules associated with the data
attributes were defined or made explicit in the dictionary mean-
ing of the attribute or data layouts and thereby allowed the que-
ries to be engineered with some level of efficiency. To optimize
the interface, the structures and arrays of the data were arranged
in such a way as to facilitate the utilization of these lexicons, dic-
tionaries, and layouts. Thus, reporting and query databases were
created. They survive today because they address a consistent
need within the business to monitor and control ongoing busi-
ness processes. They did not address that rapidly evolving portion
of decision support known as trend analysis or projective analysis.

During this period of time, business management as a whole
was becoming aware of the abundance of its own product types
in the marketplace. It was also becoming aware of how fast it
would be required to bring new products to the marketplace to
ensure market share. It needed data to address this area in order
to compete successfully and the current reporting data structures
were too limited or inflexible to provide.

Warehouses versus Reporting Databases
Warehouses are the evolved concept of decision reporting

that allow the data to be placed in an open area. The attractive
perception of the warehouse is built on every person’s concept
of what a warehouse is: a no frills or glossy, large, open structure,
with the sole purpose of storing everything in such a way that any
given item or object in it can be accessed or retrieved in the mini-
mum time possible.

Along with the good concept were bad concepts like, “If I don’t
want it, I’ll toss it in the warehouse” or “I want to archive my data

Chapter 17 Data warehouses I 315

there” or “Dump all the corrupt (lacking integrity) data in there,
and we’ll get to it later.”

Likewise there were concepts that there are very few rules gov-
erning how a warehouse works. Most of the concepts other than
the initial everyman concept is wrong. Yes, they are large, open
structures whose sole purpose is to store everything in such a way
that any given item or object in it can be accessed or retrieved in
the least time possible. But they have very specific rules of storage
in them, since one type of material (acid) might affect the integ-
rity of another type of material (silk). Also, they have an organiza-
tion that is specifically keyed as to location (row and bin number).
They are monitored for fullness and for environmental consider-
ations like temperature and dryness.

Higher Level of Abstraction
Data warehouses are collections of data from many different

levels of abstractions, where data in a reporting database is gen-
erally at one level of specificity or granularity. The different levels
of abstraction allow the data warehouse to be used for multiple
purposes and also allow the different levels of abstracted data
to be used simultaneously. The result is that far more questions
can be answered within a data warehouse than in a multitude of
reports from reporting databases.

Based on Perceived Business Use
Although both are based on the perceived use of the data by

the business community, the data warehouse is a more open
structure and in time may supersede or obsolesce some reporting
databases in the business environment. The key here, though, is
that the business uses of the warehouse are multilevel and provide
complex data results for evaluations, whereas the business use of
the reporting databases is usually more run of the mill. In effect,
reporting databases are used to monitor and control, and ware-
houses are used to analyze, define, and project based on different
types of data. Data warehouses are used for profitability analysis,
pricing analysis, target market identification, risk analysis, fraud
detection, and management cost projection. These are very differ-
ent types of use, indeed.

Structure Evolution
Reporting databases generally are specific to the question they

are being asked to answer. They are usually uncomplicated in

316 Chapter 17 Data warehouses I

nature and provide little in the way of analysis other than totals
or specific breakdowns for known classifications. They do not
change significantly over time other than some modifications
that may add columns or new totals or classifications. On the
other hand, data warehouses may start as merely an application-
specific analysis basis that allows trend analyses and the like. As
time passes and the application becomes more mature and is
integrated with other applications and the inherent needs of the
business, the data warehouse too must grow and evolve. Based on
this simple premise, all warehouses should be designed as flexibly
as possible while still answering the business questions.

Warehouse Components
The following is an overview of the data warehouse in brief

terms. Figure 17.1 is a visual chart of the warehouse components.
The data warehouse purposes are many, including the following:
l Profitability analysis
l Pricing
l Target marketing
l Risk analysis
l Customer retention
l Fraud detection
l Management costs

Why Can’t OLTP Data Stores Be Used?
OLTP tables are, for the most part, normalized or denormal-

ized for efficiency and performance. They will definitely not be in

OPERATIONAL
DATA STORES

DATA
WAREHOUSE

DATA QUERY
AND
REPORTING
TOOLS

OLAP
REPORTING
TOOLS

DATA
MINING
TOOLS

Figure 17.1 Data warehouse components.

Chapter 17 Data warehouses I 317

a state that is usable for the warehouse. They also have eliminated
redundant data that sometimes is desirable in the warehouse.
Activity against the OLTP databases would entail complex joins of
many tables in order to get the data they need. Additionally, since
large volumes of data are needed, the retrieval from a relational
database is not efficient.

DSS Requirements
In order to provide the data necessary for the decision sup-

port needs of the business, several factors about the data need
to be considered. We will cover these separately. The first need
is for trending data. Trending requires the retention of historical
data; the more data retained the better. This retention allows time
period comparisons such as month over month and year over
year comparisons. A second requirement is nonvolatility of data.
This is the characteristic that the data is not changed once it is
loaded. If the data were changeable, then the comparisons and
trends would be meaningless.

The performance of decision support activity requires the
ability to handle high-volume input and high-volume extract out-
put. And, lastly, the data should be separate and apart from the
OLTP operational data stores to ensure noncontention.

Warehouse Characteristics
The data warehouse characteristics are that the data stored

is subject area oriented. It is usually focused on customer, prod-
uct, or business activity. It provides integrated data that has been
gathered from many sources and has been standardized and for-
matted for the business user’s retrieval. It is nonvolatile—that is,
it is not subject to update. Data in the warehouse is time invari-
ant. It is stable and remains so by being exempt from purges.
In order to keep it stable and nonvolatile, the data is refreshed
(reloaded or added to) and is exempt from update operations.

Warehouse Modeling
Modern businesses are faced with the problems of change.

They are faced with change in their markets, changes in their
products, changes in the legal arena in which they operate, and,
unfortunately, in the data processing as well. On top of all this,

318 Chapter 17 Data warehouses I

businesses face increased competition for the same market share.
The requirement today is to respond to the changes in such a
way as to minimize impact and maximize speed of response.
Structured techniques and methods are critical to achieve this
goal. They aid in the production of higher-quality, more inte-
grated systems in a more accelerated manner. Modeling is one
such structured approach.

Warehouse Modeling Depends on
Architectures

Data architecture is the transcription of the information own-
er’s product requirements from the owner’s perspective. Data
architecture is dependent on the premise that data reside at the
center of modern data processing. As discussed in previous chap-
ters, data must be approached from the highest level of perspec-
tive, since it is perceived as the real-world objects it represents
and exists as a function of normal business operation. The notion
of enterprise data architecture delineates the data according to
inherent structure rather than by use. In this manner it makes the
data dependent on business objects, yet makes it independent of
business processes. Processes that use data change far more fre-
quently than the data itself. Data architectures, particularly the
enterprise architecture, insulate a business from unnecessary data
change.

The enterprise data architecture is essentially a strategic
design model that becomes the environmental foundation for
the development activities that ensue on owner approval of the
plan. Many enterprise data models that are available for purchase
today have been specifically tailored to the industry standards for
that line of business. If you have no foundation architecture at
the enterprise level, then this is a place to start. The following are
some of the fundamental benefits of data architecture:
l Architectures provide global understanding of the business

data needs, while still representing the corporate policies.
l Data architecture allows strategic development of flexible

modular designs by insulating the data from the business as
well as the technology process.

l Architectures provide a framework for communication between
the customer and service agent so the customer understands
the scope, options, and prices of the products/services.
Without architecture, decentralization of control would

produce chaos.

Chapter 17 Data warehouses I 319

Enterprise-Level Data Architecture
Enterprise-level data architectures ensure that disintegration

of integrated data stores is minimized. This ensures that current
activity is sustainable while new development can take place.
Using the same template also ensures that a foundation exists
for the implementation of new techniques and technologies. It
places tools and methods in relation to one another by virtue of
an engineered framework. It also provides a way of quantifying
risks and costing for or against implementing a new component
of the architecture. All of these points are critical in modeling and
developing a stable data warehouse, enterprise or otherwise.

References
Drucker, P. F. (1993). Managing for the future: The 1990s and beyond. Plume,

New York, NY.
Kimball, R., Reeves, L., Ross, M., & Thornthwaite, W. (1998). The data warehouse

lifecycle toolkit: Expert methods for designing, developing, and deploying data
warehouses. John Wiley and Sons. New York, NY.

Keen, P. G. W., & Scott-Morton, M. S. (1978). Decision Support Systems: An
Organizational Perspective. Reading, MA: Addison-Wesley.

Scott-Morton, M. S. (1991). The corporation of the 1990’s: Information technology
and organizational transformation. New York: Oxford University Press.

Nolan, R. L. (1979). Managing the crisis in data processing. Cambridge, MA:
Harvard University Press, March–April.

Suggested Reading
Berson, A., & Smith, S. J. (1997). Data warehousing, data mining, & OLAP.

New York: McGraw-Hill.
Bischoff, J., & Alexander, T. (1997). Data warehouse, practical advice from the

experts. Upper Saddle River, NJ: Prentice Hall.
Nolan, R. L., & Croson, D. C. (1989). Creative destruction: A six-stage process for

transforming the organization. Cambridge, MA: Harvard Business School
Press.

321
Data Architecture.
© Elsevier Inc. All rights reserved.2011

DATA WAREHOUSES II

Reprise
In brief summary of the previous chapter, the discussion has

been the evolution of the data warehouse from its early begin-
nings in reporting through its maturing stages of decision support
and into the realm of the true data warehouse. In that chapter
Keen and Scott-Morton and their exploration of the decision pro-
cess within companies was discussed. The components of a deci-
sion were discussed. The responsibility of informational sharing
was discussed as being put squarely on Information Technology’s
shoulders. There was a recap of how the report writers and query
engines drove the effort to design report databases. Also noted
in the discussions were the differences between warehouses and
reporting databases.

Background
There is often a significant discussion concerning whether a

data warehouse should be relational or dimensional. While there
is no discussion necessary on whether the logical model will be
relational, the concern often rests in whether the physical model
would be relational or dimensional. Properly addressing the mat-
ter of dimensional modeling versus relational modeling requires
a number of definitions and some fundamental facts about the
organization’s data and how they use it.

The Many Types and Levels of Data
There are three levels of decision making within an organiza-

tion: operational, tactical, and strategic. While some of these lev-
els feed one another, they each serve distinct purposes and have
their own set of data. Operational data deals with day-to-day
operations. Tactical data deals with near-term decisions. Strategic
data deals with long-term decisions.

18

http://dx.doi.org/

322 Chapter 18 Data warehouses II

Likewise, process for decision making changes as one goes
from level to level. At the operational level, decisions are struc-
tured. At the tactical level, decisions are semistructured. Strategic
decisions are unstructured. Within each level of organization, there
are minimally four different kinds of data: internally owned, exter-
nally acquired, self-generated, and derived. External data, such as
competitive data, are purchased from outside agencies. Derived
data are data that are mathematically created. Strategic data are
generally comprised of internally owned and external data, roll-up
hierarchies, and derived data.

Management-oriented data, which can fall in all of the catego-
ries of decision data (but predominantly the last two), focuses on
management metrics. It often uses different grains of data, such
as transactions, periodic snapshots, and summaries, which roll up
to different levels. Management also requires cross-functional
information. External data are often used to supplement internal
data for management reports.

Most data today that are used for management decision
purposes reside in a data warehouse. As you might suspect,
warehouse data are not used for transaction processing and
maintenance but for reporting and different forms of analysis,
such as data mining. The warehouse is read-only, and the envi-
ronment it functions in needs to be able to support a wide range
of query types, such as ad hoc and standardized. The warehouse
can be queried directly or used to supply extracts or additional
data sources called marts.

Proper analysis and reporting require data from multiple rel-
evant sources. These can be internal, external, self-reported, and
even simulated data sources. The data must be vetted to ensure
its quality. This means that it must be cleansed to produce data of
good quality before being integrated into the warehouse. In order
for the warehouse to be created in the most efficient manner, it
should be designed by a formal process called modeling.

Data Modeling: Definitions
An ER model is a logical and graphical representation of the

information needs of an organization. The objects of interest are
gathered into exclusive groupings called entities. These group-
ings are assigned characteristics that describe them, called attri-
butes. The identifier or key attribute is the most important one.
Finally, one grouping or entity can be associated with another via
a connection called a relationship.

A logical model is an ER representation of a business problem,
without regard to implementation, technology, and organizational

Chapter 18 Data warehouses II 323

structure. The purpose of a logical model is to represent the busi-
ness requirement completely, correctly, and concisely. A con-
straint of this type of model is that all redundancy is removed in
order to focus purely on the business requirements and rules.
A logical model is not implemented; instead, it is converted to a
physical model against which optimizations are performed, and
this is implemented. A physical model is the specification of what
is implemented. Physical models should be optimized, efficient,
and robust.

Logical to Physical Transformation
The conversion of a logical model to a physical model

depends on many factors, including the size and complexity of
the data, the complexity of the queries, and the number of users.
The conversion from logical to physical models can vary in com-
plexity, depending on the requirements. As shown in Figure 18.1,
a logical model undergoes transformations as it progresses from
a purely logical model to a physically implemented model.

The three forms of optimizations or compromises are non-
risk, risk-involved, and technical choices. A compromise is the
emphasis of one feature, which becomes an advantage, against
another feature, which then becomes a disadvantage. Another
word for compromise in this case is called denormalization.
Nonrisk denormalizations do not introduce redundancy or
any integrity compromises. They merely combine or split enti-
ties. Risk-involved denormalizations do compromise integrity
and/or nonredundancy. For example, one could store derived
data, including individual summaries and aggregate tables; add
redundant data and relationships; or replace natural keys with

DATA

DATA DATA

LOGICAL

DATA
ANALYSIS DESIGN DETAIL PHYSICAL IMPLEMENT

NO-RISK RISK

BASED

TECH.

EXT.

EXT.
EXT.

CHOICECOMP.

PHYSICAL DBMS

DATABASE

Figure 18.1 Progression from logical model to physically implemented model.

324 Chapter 18 Data warehouses II

artificial/surrogate keys. Technical choices are DBMS-specific
options, structures, or parameters. Most of these choices involve
subtle compromises. For example, one could add indices, which
can improve query performance but degrade load performance.

Entity Relational Models
Some practitioners from both the dimensional and corporate

information factory camps use the term ER model incorrectly.
They use it synonymously with a normalized model. For those who
do so, there is a presumption that ER models are implemented
directly as ER physical models, but in most situations they are not.

ER models are converted to physical models, and the physi-
cal models are implemented using denormalization techniques.
An ER model can be used to represent any business problem
domain. ER models can be logical or physical. Further, any logical
model can be denormalized when it is implemented. The logical
model represents the business information needs of the organi-
zation, independent of implementation. A physical model repre-
sents that which will be or is implemented, and is optimized.

Placement of Models
Figure 18.2 summarizes the placement of logical, physical,

and dimensional data models in the overall spectrum of devel-
opment. The logical (or ER) model and dimensional model do
not cover the same development stage. The ER model is a logical
model and represents the business. The dimensional model (off-
set in blue) is a predominantly physical model and must be an
efficient design. A direct, judgmental comparison of the logical
to dimensional is inappropriate, as would be that of apples and
oranges.

DATA

PLANNING

ANALYSIS

DESIGN

IMPLEMENT

DIMENSIONAL MODEL LOGICAL MODEL PHYSICAL MODEL

PROCESS NETWORK TECHNOLOGY

Figure 18.2 Placement of
the dimensional, logical, and
physical models.

Chapter 18 Data warehouses II 325

Dimensional Modeling: Definitions
The purpose of a dimensional model is to improve perfor-

mance by matching the data structure to the queries. The star
schema concept arose out of the databases used to service query
engines of the 1980s that required the data to be arrayed in such
a manner as to facilitate expeditious processing, called the star
schema. While it appears not to have any correspondence to the
normal modeling concepts, it in fact does. These constructs have
been highly denormalized and codified into the structure of the
model such that it becomes a physicalized model that is designed
for a specific set of questions to be answered.

It consists of a central fact table containing measures, sur-
rounded by a perimeter of descriptor tables, called dimensions.
In a star schema, if a dimension is complex or hierarchically lev-
eled, it is compressed or flattened into a single dimension. This
compression causes some redundancy, but does improve perfor-
mance. An example of one is shown in Figure 18.3.

As noted before, star schema constructs include the following:
l Fact tables represent the set of facts (summable attributes, not

descriptive attributes) at a specific level of granularity (detail)
that the business area is concerned with.

l Dimension tables represent the implementation view of the
access into the fact table. It often contains the keys and the
descriptors of the data within the fact table as it pertains to
the context of the dimension. Simply put, it is the embodi-
ment of the access rules and path attribute values that allow
specific perspective access to the fact table.

l Custom fact tables result when the granularity of a fact table
is complex or of multiple levels and need to be separated from
the original fact table.

l Custom dimension tables are the result of multiple specific
conflicting business access views and result in the possible
snowflake of dimensions.

Denormalization and the
Dimensional Model

The process of systematic denormal-
ization of models is reserved for physical
models. The conclusion from this (and
other discussions noted here) is that the
star schema and snowflake schema are
not logical models but physical models.

DIMENSION
#1

DIMENSION
#3

DIMENSION
#2

DIMENSION
#4

FACT
TABLE

Figure 18.3

326 Chapter 18 Data warehouses II

Dimensional Model Evaluation
Dimensional modeling has strengths and weaknesses, just as

relational modeling does. In the reality of databases, there are
three ways to improve performance: use better hardware, use
better software, and optimize the data. Dimensional modeling
uses the third method. The primary justification for dimensional
modeling is to improve performance by structuring the data to
compensate for the inefficiency of join processing

The secondary purpose is to provide a consistent base for
analysis. Dimensional modeling does come with a price and with
restrictions. There are times and places where dimensional mod-
eling is appropriate and will work and other times and places
where it is less appropriate and can actually interfere with the
goals of a warehouse.

Data Evolution
The world makes up its own patterns, driven by dynamic

forces generated from within and without. As a result, questions
we may have now may or may not be stable. It is in this frame of
reference that we enter to consider dimensional versus relational.

The dimensional model is based on the principle that infor-
mation the user wants can be accessed best by structurally asso-
ciating dimensions with facts. The premise for this is that most
fundamental business questions are based on real business pro-
cesses and thus are reasonably determinable and stable. It is also
based on the belief that dimensionalized data allows better per-
formance and is more user-friendly.

The relational model is based on the principle of fully
expanded hierarchies, normalizing all business relevant data and
eliminating redundancy. The premise for this is that if all data are
defined, then business processes (currently known or otherwise)
can be mapped against it. A second premise in the relational
model is if the model is normalized, it can be denormalized to
any degree necessary to get better performance.

What Are the Choices?
Oversimplifying it, it can be said that dimensional modeling

requires all business processes to be known and driving the data
from there and relational modeling requires all business data to
be known and then defining the processes that use it. Chapter 20
discusses the enterprise data warehouse model. However, the

Chapter 18 Data warehouses II 327

following graphical depictions will help resolve any confu-
sion and be more definitive than some of the more abstracted
descriptions in that chapter.

Applicability of the Dimensional and
Relational and Hybrid Models

We will cover all three types of the conceptual architecture in
turn. The first is the relational.

relational
It is often called the top-down approach, since it starts at the

highest level of abstraction and goes downward with the increas-
ing levels of complexity. I advocate it at a logical level but have
reservations at lower, implementation levels. We will examine it
from a data content level to see the impact of its implementation
on business intelligence and analytics reporting.

Advantages associated with the relational architecture are as
follows:
l It presents the entire enterprise’s future data complement in

one place at the atomic level, thereby eliminating data silos,
including legacy data.

l It identifies business issues at the outset and provides a strate-
gic view of data needed by the business across all functions.

l It allows identification of a broad scope of change across the
enterprise, as well as providing a good foundation for risk
assessment when business change or evolution is occurring.

l It provides, by artifact in the ETL, the entire source data inven-
tory from all source systems and identifies decommission and
life support candidates.
As you can see in Figure 18.4, the data from the source sys-

tems are extracted from the source systems or operational data
stores and are ETL-ed (extract, translate, and loaded) into the
staging area, where it is formatted, scrubbed, integrated, and
loaded into the relational data warehouse. The data are loaded
at the atomic level so operands can be executed against it to cre-
ate higher levels of summary data for use in the data marts if
required. The data are ETL-ed by subject area into subject area
marts, where it can be queried and reported on. While Figure 18.4
assumes subject area orientation to the marts, it is not necessary
to have them so. The marts or persistent view data repositories
can be built to user specifications based on their business view
requirements of the integrated data.

328 Chapter 18 Data warehouses II

Some of the problems associated with the relational model
from a business reporting perspective are as follows:
l It takes more time to build the entire structure before the user

can experience the full benefit.
l The atomic-level data warehouse has to be built and then the

data marts derived and populated from it.
l Cross-functional reporting is not possible until all the subject

area data marts are developed.
l The modeling effort is duplicated. There is one effort to model

the entire warehouse and then a second modeling effort to
develop each of the subject area marts.

l There is a higher cost to develop the relational and it is larger
and less agile. There are more physical objects and programs,
and more databases, models, and ETL to build and maintain.

l There is a higher risk due to the long development cycle. The
long delivery cycle creates problems due to not addressing
natural business evolution and future business changes.

l In the relational scenario, governance means oversight of the
architecture definition.

l The data collection process delays the introduction of data
governance.

l The process requires enterprise-level data skills and business
reengineering skills.

Source 1

Source 2

Source 3 ETL ETL ETL
RELATIONAL

DATA
WAREHOUSE

QUERY

ABC

SUBJECT AREA
MARTS

STAGING
AREA

Source 4

Source 5

KEY
CHARACTERISTICS

SUBJECT AREA
MARTS

SUBJECT AREA
MARTS

Data warehouse is in
relational format,
atomic-level data

stored

Subject area marts
are in dimensional

format, one per
subject area

User access is mainly
from the data marts,

not from the data
warehouse directly

Figure 18.4

Chapter 18 Data warehouses II 329

Dimensional Architecture
The second conceptual architectural model type is the dimen-

sional architecture. It is often called the bottom-up approach,
since it starts at the lowest level of detail and goes upward with
the increasing levels of integration. This author advocates it at a
physical level but has reservations at higher, more abstract lev-
els. We will examine it from a data content level to see the impact
of its implementation on business intelligence and analytics
reporting.

Advantages of the dimensional model are as follows:
l There is a shorter delivery time for the warehouse. The analyt-

ical platform can be built sooner and provide value sooner.
l Cross-functional reporting is possible within the data ware-

house once it is developed.
l The data modeling effort is done once. Additional modeling is

not necessary unless the aggregates are desired.
l There are less complexity and fewer components. There are

fewer databases objects and ETL streams to build and maintain.
l There is one single focal point for data governance.
l Prioritization is simple, since it addresses the business’s pain

points first.
As one can see, much like the relational architecture, the

source system data is ETL-ed into a staging area, where it under-
goes the scrubbing, cleansing, and validation necessary (Figure
18.5). It is stored at the atomic level as well. Where it differs
from the relational architecture is that from the staging area it is
dimensionalized—that is, it is separated into the data facts (the
summable, aggregatable attributes) and the data dimensions (the
perspective for viewing the data). Aggregations and specialized
persistent data marts can be created from these facts and dimen-
sions, but it is not necessary, since these can be done “on-the-fly.”
As you can see, there is one fewer ETL step in this architecture.

Some of the problems associated with the dimensional
approach are as follows:
l The focused origination of the effort hampers efforts to

expand scope. Once the initial projects are developed within
a dimensional architecture, future influences of upcoming
projects are sometimes thwarted for political and cultural rea-
sons—and the effort can become stalled or stopped.

l The formalized dimensional approach is often perceived as
a gating or policing action requiring standard conventions,
thereby putting data governance at a disadvantage. This per-
ception can be an additional reason that can hamper IT com-
munity buy-in and future attempts at expanded scope.

330 Chapter 18 Data warehouses II

l Some business areas in need of improvement must wait or are
overlooked. Some dimensional architects overlook potentially
reusable efforts due to the lack of an integration architecture
as they pursue their dimensional architecture.

Where Is the Relational Data Warehouse Best
Suited?
l Where there is a lot of data scrubbing/massaging done on leg-

acy source data
l When source systems have many data quality issues in

existence
l Where business processes are not distinct and are overlapping
l Where the key purpose of the warehouse is operational

reporting
l Where there is little transformation from relational source

Figure 18.5

KEY
CHARACTERISTICS

Data marts are
optional. Can be

created for
special purposes

Data warehouse
is in dimensional
formal, atomic-

level data stored

Users can directly
access the data

warehouse

Source 1

Source 2

Source 3 ETL ETL
DIMENSIONAL

DATA
WAREHOUSE QUERY

QUERY

QUERY

AGGREGATES

STAGING
AREA

Source 4

Source 5

XYZ

The Dimensional Data Warehouse Conceptual
Architecture

ABC

SPECIALIZED
MARTS

Chapter 18 Data warehouses II 331

l Where performance is not an issue
l Where analytical requirements are minimal—for example,

drill down, aggregation, and so on

Where Is the Dimensional Best Suited?
l Where the data warehouse is needed to provide integrated

data and thus support reporting and analytics
l Where persistent data repositories (data marts) are optional

structures, required only for specialized reasons
l Where certain types of flexibility are needed
l Where the data warehouse needs to be developed from

defined business processes, not specific reports
l Where the user is not required to know the reporting needs,

only the grain and the facts involved in their business process

Hybrid ER-Dimensional
Hybrid ER-dimensional schema can be implemented for

enterprise data warehouses. However, some fundamentals need
to be discussed. First, these approaches must use an architec-
turally driven approach. Therefore, they will have a foundation
within the corporate architectures and corporate data and pro-
cess models. This foundation itself allows an enterprise to be
more responsive to business needs as the enterprise expands to
meet the competitive needs in the marketplace. Second, because
it has a foundation in the corporate data model and process
model, the key structures of the enterprise data warehouse are
sympathetic to the operational data stores that are tapped to
supply the data to the warehouse. Thus, it goes a long way in lim-
iting data translation and data conflict resolution issues between
business owners. And last, because it is linked to the corporate
architecture, it will be driven by the same set of business drivers
that the enterprise is facing. This minimizes the turnaround time
of development, since the skeleton of the structure is known. This
gives decision support data to the enterprise for rapid analysis
when it needs it.

This author proposes a hybrid approach that chooses portions
from each approach and modifying and merging them accord-
ing to the specific needs of the organization. The hybrid structure
will do the following:
l Provide a strategic data plan to define what is converted to

dimensional, what remains legacy life support, and what is to
be decommissioned. This is done by setting a broad scope at

332 Chapter 18 Data warehouses II

the beginning of the project and accomplishing a full inven-
tory of the current default architecture.

l Specify and document with the business what issues need to
be addressed at the enterprise level, thereby addressing the
business’s plan points first.

l Provide an integration architecture that sequences and pri-
oritizes relational as well as dimensional efforts within the
hybrid warehouse.

l Have immediate short-term impact and successes with imple-
mentation of dimensional structures.

l Support those areas that are not ready to be reengineered with
a relational implementation (but will be considered in the
future).

l Build enterprise-level scope and complexity gradually by inte-
gration every step of the way. It also allows the knowledge
base to expand as each area is converted and integrated.
As you can see in Figure 18.6, the data are extracted from

the source system and ETL-ed into a staging area. Some of the
data are dimensionalized and are ET-ed into the dimensional
data warehouse fact and dimension tables. Other data not yet

Hybrid Relational - Dimensional Data Warehouse
Conceptual Architecture

Source 1

Source 2

Source 3

ETL ETL

ETL ETL ETL

DIMENSIONAL
DATA

WAREHOUSE
QUERY

QUERY

QUERY

QUERY

AGGREGATES

STAGING
AREA

Source 4

Source 5

RELATIONAL
DATA

WAREHOUSE
FOR LEGACY
PROCESSES

SPECIALIZED
MARTS XYZ

ABC

Figure 18.6

Chapter 18 Data warehouses II 333

destined for conversion to dimensional are ETL-ed and stored in
an atomic-level relational data warehouse for continued access
under legacy conditions. As future projects for business intel-
ligence and reporting are dimensionalized for the business user,
the data will be ETL-ed into and integrated with the dimensional
data warehouse. Reusability is ensured by the use of conformed
dimensions. They are eliminated from the relational warehouse
at this time and ETLs repointed to the original data source.

Problems Associated with the Hybrid
Approach

The problems associated with the hybrid approach are few in
nature but must be addressed:
l The primary objection is the establishment of the target enter-

prise data architecture to ensure integration.
l The secondary objection is that the current inventory needs to

be established.
l There is no standard language to be utilized for mapping the

current to future architecture.
All of these objections can be resolved with the utilization

of commercially available solutions. I will address each of these
in turn.

Target Enterprise Architecture
While there is no argument that an enterprise data architec-

ture needs to exist for this and many other reasons, the devel-
opment of an enterprise data architecture may be a long and
costly exercise. One way of solving the dilemma is to purchase
an industry standard model (as defined in the TOGAF enterprise
architecture methodology) that has been tailored to our respec-
tive industry. Justifying it needs to be done to answer the ques-
tion “Buy or build?”

Building an Enterprise Data Model
In order to justify the expense of purchasing an enterprise

data model, there is a need to consider the cost justification logic
for the “buy or build” decision for the enterprise data model.
Here is some background information for that decision:
l Figures from Gartner and other similar research organizations

regularly report that many enterprise modeling projects either

334 Chapter 18 Data warehouses II

fail to deliver or only partially deliver due to business pres-
sures. Starting with a prebuilt industry standard model greatly
reduces risk of failure.
It is important to note that if the design of the enterprise data

model is done internally, the following facts should be noted:
l According to firms like Gartner, most large companies build-

ing a large-scale enterprise or DW model find that it takes a
team of several people 12 to 18 months to design a compre-
hensive enterprise data model. From a time perspective this
makes a “buy” scenario more than justified. By simple calcu-
lations we can see what it would cost.

l Summary of possible build costs:
This projects a build cost of [3 people 375 person
days $1,200/day (rough estimate for three enterprise data
architects) $1,350,000].
[This cost does not account for the cost of the business SME’s
time that is required to gather data and vett the model once
developed, which would further lengthen the development time.]

l Internal enterprise modeling projects typically get bogged
down in negotiations over definitions of entities and attri-
butes, which often lead to data quality issues and (expensive)
erroneous conclusions due to misinterpretation.

l An industry standard model provides unambiguous business
definitions for all entities and attributes. This helps nontechni-
cal businesspeople clearly understand the model and derive
benefit from it. (More and more companies exploit the high-
quality metadata further by flowing an enterprise data model
through to their ETL and business intelligence tools so their staff
can benefit from the clear and detailed definitions in the data
sourcing and reporting environments when making decisions.)
Additionally, it leverages any enterprise data governance effort

that is being conducted by providing a model dictionary and
metadata repository of all enterprise entities and attributes.
l Internally conducted enterprise data modeling projects will

usually not incorporate outside experiences at other companies
and risk continued propagation of existing information struc-
tures, which led to the requirement for the project in the first
place. External models contain different industry perspectives.

l Purchased models can be used immediately, whereas an
enterprise data model based upon internal designs typically
must wait 12 to 18 months for design completion before it can
be used.
Most companies cannot afford the wait; just the cost of not

being able to make better business decisions and plans for an
extra 18 or more months dramatically outweighs the cost of the
purchasable models.

Chapter 18 Data warehouses II 335

There are over 50 commercial enterprise architecture pack-
ages available for review. Many of them are tailored for specific
industries. Most of them avail themselves and integrate fully with
the equally available ERP data models, such as those from SAP.
Significant research has been made in this area by Jean-Paul Van
Belle (2007) of the University of Cape Town, South Africa.

Current Data Inventory
In order to ensure that the enterprise model being developed

or purchased meets the current and future needs of the organi-
zation, a current inventory of the models and processes that are
being replaced needs to be documented. Admittedly, this would
be done as a part of the build solution if that was chosen, but it
would still take the same amount of time. A faster and easier way
exists.

There are a significant amount of data design and model-
ing tools that allow reverse engineering of current data stores.
Many of them have internal mapping tools that allow genera-
tion of relationships based on names and characteristics. While
this is not a slam dunk solution, it will make short work of defin-
ing an entire data processing enterprise versus spending the 6 to
10 months of analytical work to produce a current application
inventory down at the detail attribute level.

Some of the tools associated with this capability are ERwin,
Embarcadero ER Studio, and Power Designer Data Architect, just
to name a few. All will allow the tables and other physical objects
to be reverse-translated to a logical model. Manual processes and
spreadsheet data still need capture, and this has to be done the
old-fashioned way.

Standard or Corporate Business Language
On the integration project, like master data management or

data lineage definition or application and data consolidation, it
is necessary to know what data you have, where it is located, and
how it is related between different application systems. Software
products exist today to move, profile, and cleanse the data. There
are also products that address discovery and the debugging of
business rules and transformation logic that mean they are dif-
ferent systems from one another.

If this is done manually, the data discovery process will
require months of human involvement to discover cross-system
data relationships, derive transformation logic, assess data con-
sistency, and identify exceptions.

336 Chapter 18 Data warehouses II

The data discovery products like Exeros and Sypherlink
Harvester are software products that can mine both databases
and applications to capture the data and metadata to define the
core of a common business language and store it for actionable
activity. It would take very little effort to turn the result into a cor-
porate dictionary.

It is critical after the compilation that the accumulated result
be opened up to all enterprise businesses to resolve and define
data conflicts and definitional issues. Even this can be done
expeditiously with the use of a Wikipedia-type tool that allows
clarifications to be done in an open forum. This both accom-
plishes the standardization of the language and resolves issues,
while educating the corporation as a whole.

Conclusion of Hybrid Approach
As noted, all of the exceptions to the hybrid approach can be

addressed using automated tools. The goal is to provide a com-
mon enterprise integration model, a common business lan-
guage, a relational enterprise warehouse for legacy application
data awaiting transformation projects, and finally a dimensional
reporting warehouse for those business applications identified as
the most critical to be measured, monitored, and used for critical
decision purposes.

References
Kimball, R., Reeves, L., Ross, M., & Thornthwaite, W. (1998). The data warehouse

lifecycle toolkit: Expert methods for designing, developing, and deploying data
warehouses. San Francisco, CA: John Wiley and Sons.

Van Belle, J. P. (2007). Evaluation of enterprise reference models. In: P. Fettke &
P. Loos (Eds.), Reference modeling for business systems analysis. Herschey/
London: Idea Publishing.

Suggested Reading
Berson, A., & Smith, S. J. (1997). Data warehousing, data mining, & OLAP.

New York: McGraw-Hill.
Bischoff, J., & Alexander, T. (1997). Data warehouse, practical advice from the

experts. Upper Saddle River, NJ: Prentice Hall.

337
Data Architecture.
© Elsevier Inc. All rights reserved.2011

DIMENSIONAL WAREHOUSES
FROM ENTERPRISE MODELS

Dimensional Databases from Enterprise
Data Models

Data warehousing is currently one of the most important
applications of database technology and practice. A significant
proportion of IT budgets in most organizations may be devoted
to data warehousing applications. Although there is a high failure
rate, high levels of user satisfaction and ROI have been reported
about such applications. One of the most important issues in
data warehouse is how to design appropriate database structures
to support end-user queries.

Existing approaches to data warehousing design advocate an
axiomatic approach where the structure of the data warehouse is
derived directly from user query requirements. This chapter dis-
cusses a method for developing dimensional data warehouses
based on an enterprise data model represented in entity relation-
ship form. This is a more structured approach to data warehous-
ing design and ensures the structure of the warehouse reflects
the underlying structure of the data. It also leads to more flexible
warehouse design, which makes it more responsive to change.
And it is a surety that change will inevitably happen.

Warehouse Architecture
A data warehouse is a database that provides a single, con-

sistent source of management information for reporting and
analysis across the organization (Inmon, 1996; Love, 1994).
Data warehousing forces a change in the working relationship
between IT departments and users because it offers a self-service
for the business model rather than the traditional report-driven
model. In a data warehousing environment, end users access
data directly using user-friendly query tools rather than relying

19

http://dx.doi.org/

338 Chapter 19 Dimensional warehouses from enterprise moDels

on reports generally generated by IT specialists. This reduces user
dependence on IT staff to satisfy information needs.

A generic architecture for a data warehouse consists of the fol-
lowing components:
l Operational application systems. These are systems that record

the details of business transactions. This is the source of the
data required for the decision-support needs of the business.

l External sources. Data warehouses often incorporate data
from external sources to support analysis (purchased statisti-
cal data, raw market statistics data).

l ETL. These processes extract, translate, and load the data
warehouse with data on a regular basis. Data extracted from
different sources are consolidated, standardized, and recon-
ciled with data in a common, consistent format.

l Enterprise data warehouse. This is the central source of deci-
sion-support data across the enterprise. The enterprise data
warehouse is usually implemented using a traditional rela-
tional DBMS.

l User interface layer. This GUI layer provides a common access
method against the enterprise data warehouse. Commonly
this is where business intelligence tools are found.

l Persistent dimensionalized data repositories (data marts or,
conversely, cubes). These represent the specialized outlets of
the enterprise data warehouse, which provide data in usable
form for analysis by end users. Data marts are usually persis-
tent views tailored to the needs of a specific group of users
or decision-making tasks. Data marts may be implemented
using traditional relational DBMS or OLAP tools. Cubes are
multiple-dimensional arrays that support the same type of
analytical queries as data marts.

l Users. Users write queries and analyze data stored in data
marts using user-friendly query tools.

Dimensional modeling
From Ralph Kimball’s (1996) perspective, the data warehous-

ing environment is profoundly different from the operational
one. Methods and techniques used to design operational data-
bases are inappropriate for designing data warehouses. For
this reason, Kimball proposed a new technique for data model-
ing specifically for designing data warehouses, which he called
“dimensional modeling” (we touched on this in the previous
chapter). The method was developed based on observations of
practice and by vendors who were in the business of providing
data in a user-friendly form to their customers.

Chapter 19 Dimensional warehouses from enterprise moDels 339

Dimensional modeling, although not based on any specific
scientific formula or statistical data occurrence theory, has obvi-
ously been very successful in practice. Dimensional modeling
has been adopted as the predominant method for designing data
warehouses and data marts in practice and, as such, represents
an important contribution to the discipline of data modeling and
database design.

In early works Kimball posited that modeling in a data ware-
housing environment is radically different from modeling in an
operational environment and that one should forget all previous
knowledge about entity relationship models:

Entity relation models are a disaster for querying because they
cannot be understood by users and cannot be navigated usefully by
DBMS software. Entity relation models cannot be used as the basis
for enterprise data warehouses.

It can be countered that the rigor in relational modeling is
equally applicable to the warehouse context as it is in the oper-
ational context and provides a useful basis for designing both
dimensional data warehouses and relational data warehouses.

Dimensional Model Concepts
There are two major differences between operational data-

bases and data warehouses. The first is end-user access. In a data
warehousing environment, users write queries directly against
the database structure, whereas an operational environment
makes users generally access the database from an application
system front end. In a traditional application system, the struc-
ture of the database is unknown to the user.

The second is that the warehouse is read-only. Data warehouses
are effectively read-only databases from which users can retrieve
and analyze data. Data stored in a data warehouse is updated via
batch load processes. The problem with using traditional data-
base design methods in the data warehousing environment is that
it results in complex database structures that are not easy for end
users to understand and use. A typical operational database consists
of hundreds of tables linked by a complex network of relationships.

Even quite simple queries require multitable joins, which are
error prone and beyond the capabilities of nontechnical users.
This is not a problem in OLTP systems because the complexity
of the database structure is hidden from the user. Another major
reason for the complexity of operational databases is the use of
normalization.

340 Chapter 19 Dimensional warehouses from enterprise moDels

Normalization tends to multiply the number of tables
required, since it requires putting out functionally dependent
attributes into separate tables. The objectives of normalization
are to minimize data redundancy (Edgar Codd, circa 1970). This
maximizes update efficiency because a change can be made in a
single place. It also maximizes insert efficiency because there is
only one place for the insert to be done. It does, however, penal-
ize retrieval. Redundancy is less of an issue in a data warehousing
environment because data are generally entered by batch load-
ing, and this precludes trying to find the records for update.

The primary objective of dimensional modeling is to produce
database structures that are easy for end users to understand
and execute queries against. The secondary objective is to maxi-
mize the efficiency of the queries. It achieves these objectives
by minimizing the number of tables and relationships between
them. This reduces the complexity of the databases and mini-
mizes the number of joins that require end-user query.

Review of Basic Components of
Dimensional Models

Fact tables. In data warehousing, a fact table consists of the
measurements, metrics, or data facts involved in a business pro-
cess. It is often located at the center of a star schema surrounded
by dimension tables. Fact tables provide the summarizable val-
ues that dimensional attributes are used to analyze. Fact tables
are often defined by their granularity of detail or grain. The grain
of a fact table represents the most basic level by which the facts
may be defined and summarized.

A fact table typically has two types of columns: those that con-
tain facts and those that are foreign keys to dimension tables. The
primary key of a fact table is usually a composite key that is made
up of all of its foreign keys. Fact tables contain the content of the
data warehouse. Fact tables store different types of measures like
additive, nonadditive, and semiadditive measures.

Dimension tables can be additive, nonadditive, or partially
additive.
l Additive: measures that can be added across all dimensions
l Nonadditive: measures that cannot be added across all

dimensions
l Partially additive: measures that can be added across some

dimensions and not with others
A fact table might contain either detail-level facts or facts that

have been aggregated. Fact tables that contain aggregated facts
are called summary tables.

Chapter 19 Dimensional warehouses from enterprise moDels 341

Differences between Dimension and
Fact Tables

The question is often asked: What is the difference between
a dimension table and a fact table? It is easiest to begin with an
understanding of normalized data. Based on a relational system,
we structured data for transactional systems (operational data-
bases). Normalized data are held in a very simple structure. The
data are stored in tables; each table has a key and contains cer-
tain data relating to another table. A normalized data table con-
tains only data about the subject of the table.

When we need to make connections between the entities
(tables), we use the keys to connect the two tables. We use a for-
eign key in one table to point to the primary key in the other
table, and vice versa. One advantage of having data normalized
is there is very little redundancy; each piece of data is stored once
and only once.

In a dimensional model system, many of these rules go by the
wayside. The fact tables contain the numerical measures whose
attributes can be calculated or summed, and the dimension table
contains the information about the ways in which we want to
capture or view the data.

Dimension tables in particular are highly denormalized, so
there is often massive data duplication. This is because we want
to ensure that the users can get what they want from that particu-
lar table with the minimal amount of joins.

Dimension tables spell out the analysis that the users want to
perform. Fact tables, on the other hand, contain numerical mea-
sures the users want to analyze. They are often called measure
tables. In reality they are more than measures. Fact tables contain
the context within which the measures are placed. A measure is
a simple numerical value with a context applied to the data fact.

Star Schemas
The most basic building block used in dimensional models is

the star schema. A star schema consists of one large central table
called the fact table and a number of smaller tables called dimen-
sion tables that radiate from the central table. The fact table forms
the center of the star and the dimension tables forms the points of
the star. A star schema may have any number of dimensions:
l The fact table contains measurements that may be aggregated

in various ways.
l The dimension table provides the basis for aggregating the

measurements in the fact table.

342 Chapter 19 Dimensional warehouses from enterprise moDels

l The fact table is linked to the dimension tables by one-to-
many relationships.

l The primary key of the fact table is the concatenation of the
primary keys of all of the dimension tables.
A more concrete sample of a star schema is shown in Figure

19.1. In the example, sales data may be analyzed by product cus-
tomer retail outlet.

Dimension tables are often highly denormalized tables and
generally consist of embedded hierarchies. The advantage of
using star schemas is that it reduces the number of tables in the
database and the number of relationships between them, so the
number of joins required in user queries is minimized. Ralph
Kimball (1996) stated that the use of star schemas to design data
warehouses results in 80 percent of queries being single-table
browses. Star schemas may be implemented either in specialized
tools or using a traditional DBMSs.

Star Schema Design Approach
The Kimball approach is an axiomatic approach that is based

on the analysis of business process requirements. It begins by
identifying business process, identifying the grain of the data,
defining the relevant facts that need to be aggregated, defining
the dimensional attributes to aggregate by, and then forming

Product

Sales summaryCustomer
Retail
Outlet

Date

Figure 19.1 a star schema.

Chapter 19 Dimensional warehouses from enterprise moDels 343

a star schema based on these. It results in the data warehouse
design that is a set of discrete star schemas. However, there are
some practical problems with this approach:
l User analysis requirements are unpredictable and subject to

change over time, which provides an unstable basis for design.
l Sole use of business processes can lead to incorrect design

because an unskilled designer may not understand the under-
lying relationships in the data.

l It may result in loss of information through aggregation,
which limits the ways in which data can be analyzed.

l The approach is often represented by examples rather than
via abstracted design principles.
The method reviewed here addresses these issues by using an

enterprise data model as the basis for the warehouse. This uses
the relationships in the data that have been documented and
provides a much more structured approach to developing data
warehouse design.

Enterprise Data Warehouse Design
This represents the foundation level of the data warehouse,

which is used to supply data marts with the data. The most
important requirement of the enterprise data warehouse is that it
provides a consistent, integrated, and flexible source of data.

Most in the industry feel that traditional data modeling tech-
niques (entity relationship modeling and normalization) are
appropriate at this level. Normalized database design ensures
maximum consistency and integrity of the data. It also provides
the most flexible data structure. For example, new data can be
easily added to the warehouse in a modular way, and database
structure will support any analyst’s analytical requirements.
Aggregation or denormalization at this stage will lose informa-
tion and restrict the kind of an analysis that can be carried out.
An enterprise data model should be used as the basis for struc-
turing the enterprise data warehouse.

Structure Design
Star and star-like schemas often represent the detail level of the

data warehouse, where the data are accessed directly by end users.
Data are extracted from the enterprise data warehouse and placed
in these schemas to support particular analysis requirements. The
most important requirement at this level is that the data are struc-
tured in a way that is easy for users to understand and use.

344 Chapter 19 Dimensional warehouses from enterprise moDels

For this reason, dimensional modeling techniques are most
appropriate at this level. This ensures the data structures are as
simple as possible in order to simplify user queries. The following
section describes a technique for developing dimensional mod-
els from an enterprise data model.

Categorize the Entities
The first step in producing a dimensional model from an

entity relational model is to categorize the entity entities into
three classes:
l Kernel or core entities. Kernel or core entities document

details about particular events that occur in the business—for
example, orders, insurance claims, salaries, payments, and
hotel bookings. It is these events that decision makers want to
understand and analyze. The key characteristics of kernel or
core entities are that:
l They describe an event that happens at a point in time.
l They contain measurements or quantities that may be

summarized (hours, pounds, gallons).
l For an example, a dental insurance claim records a particular

business event and the amount claimed.
l Kernel or core entities are the most critical entities in a data

warehouse and form the basis for creating fact tables and star
schemas. Not all kernel or core entities will be of interest for
decision support, so user input will be required in identifying
which entities of this type are important.

l Detail entities. A detail entity is one which is directly related
to a kernel or core entities via a one-to-many relationship.
Detail entities define the specifics of each business transac-
tion. Detail entities answer the who, what, when, where, how,
and why of the business event. For example, a sales transac-
tion may be defined by a number of specific detail entities:
l Customer: who made the purchase
l Product: what was sold
l Location: where was it sold
l Time frame: when was it sold

l An important detail of any transaction is time. Historical anal-
ysis is an important part of any data warehouse. Detail entities
form the basis for constructing dimension tables in the star
schema.

l Dependent entities. Dependent entities are entities that are
related to detail entities by a chain of one-to-many relation-
ships. That is, they are functionally dependent on a detail

Chapter 19 Dimensional warehouses from enterprise moDels 345

entity either directly or in a transitive manner. Dependent
entities represent dependency chain (hierarchy) participants
within the data model, which may be collapsed into detail
entities to form dimension tables in a star schema.
When there are situations where entities fit into multiple cat-

egories, there is an ordered set rules for resolving the confusion.
The ordered set of rules are:
l Categorize the entity as kernel or core entity first. If not kernel,

then
l Categorize the entity as a dependent entity. If not dependent,

then
l Categorize the entity as a detail entity.

For example, if an entity can be classified as either a depen-
dent or a detail entity, it should be classified as a dependent
entity. Always categorize at the highest level available.

In practice, some entities will not fit into any of these catego-
ries. If this is the case, these entities are not consequential to the
hierarchical structure of the dimensional model and should not
be included in star schemas. Taking the resulting model, perform
the following step.

Identify Dependency Chains
Dependence chains are an extremely important concept in

dimensional modeling and form the primary basis for deriv-
ing dimensional tables from the entity relationship model. As
discussed previously, most dimensional tables in star schemas
contain embedded dependency chains. A dependency chain in
an entity relationship model is any sequence of entities joined
together by one-to-many relationships aligned in the same direc-
tion. For example, Figure 19.2 is a dependency chain: state is a
parent entity, region is a child of state, sales location is a child of
region, and so on. Normally we would see this vertically, but it is
truly omnidirectional if read by the relationships.
l State is a parent entity.
l Region is a child of state.
l Sale location is a child of region.
l Sale is a child of sale location.
l Sale item is a child of sale.

An entity is called a terminal entity if it is at the end of a
dependency chain and an originating entity if it is at the start of
one. Terminal entities can easily be identified, since they are the
entities with no one-to-many relationships. Originating entities
are entities with no many-to-one relationships (or root entities).

346 Chapter 19 Dimensional warehouses from enterprise moDels

Produce Dimensional Models
We use two separate operations to produce dimensional mod-

els from entity relationship models:
l Operation one: Collapse data dependency chains. Parent-

level entities can be collapsed into child-level entities within
a dependency chain. Figure 19.3 shows a state entity being
collapsed into the region entity. The region entity contains its
original attributes plus the attributes of the collapsed table.
This introduces redundancy in the form of transitive depen-
dency, which violates Codd’s third normal form. Collapsing a
dependency chain is therefore for a form of denormalization.
Figure 19.4 shows a region being collapsed into a location. We

can continue doing this until we reach the last kernel entity of
the dependency chain and end up with two tables—in this case
sale and sale item. An argument could be made for collapsing up
sale item into sale, but the volume of sale item might preclude it
by introducing too much redundancy.
l Operation two: aggregation. The aggregation operation can

be applied to a terminal or originating entity to create a new

Sale Item Sale Sale location Region State

State ID

State Name

Reg ID

Reg Name

State ID

Loc ID

Loc Name

Reg ID

Loc Type ID

Sale ID Sale ID

Sale Date

Posted Date

Cust ID

Loc ID

Discount percent

Product ID

Qty

Unit price

Figure 19.2 a dependency chain.

Sale Item Sale Location Region State

State IDReg ID

Reg Name

State ID

State Name

Collapse

Loc ID

Loc Name

Reg ID

Loc Type ID

Sale ID Sale ID

Sale Date

Posted Date

Cust ID

Loc ID

Discount percent

Prod ID

Qty

Value

Figure 19.3 Collapsing a state entity.

Chapter 19 Dimensional warehouses from enterprise moDels 347

entity containing summarized data. A subset of attributes is
chosen from the source entity to aggregate (aggregation attri-
butes) and another subset of attributes chosen to aggregate by
(grouping attributes).
Aggregation attributes must be numerical quantities. For

example, we could apply the aggregation operation to the sale
item entity to create a new entity called product sold summary.
This aggregated entity shows for each product: total sales amount
[quantity 3 price], the average quantity per order, and the aver-
age price per item on a daily basis. The aggregation attributes
are quantity and price, while the grouping attributes are prod-
uct ID and date. The key of this entity is the combination of the
attributes used to aggregate by (grouping attributes). It must be
clearly understood that the aggregation process loses informa-
tion. We cannot reconstruct the details of the individual sale
items from the product sold summary entry.

Options for Dimensional Design
There are several options for producing dimensional models

from entity relationship models that have been created thus far:
l Creation of a flat table schema
l Creation of a stepped table schema
l Creation of a simple star schema
l Creation of a snowflake schema
l Cluster existing star schemas

Each of these options represent different trade-offs between
complexity and redundancy. Here we discuss how the collapsing
dependency chains and aggregation operators previously defined
may be used to produce different dimensional model.

Sale Item Sale RegionLocation

Reg ID

Reg Name

State ID

Loc ID

Loc Name

Reg ID

Loc Type ID

Reg Name

State ID

State Name

Sale ID Sale ID

Sale Date

Posted Date

Cust ID

Loc ID

Discount

Product ID

Qty

Value

Collapse

Figure 19.4 region entity “collapsed” into a location.

348 Chapter 19 Dimensional warehouses from enterprise moDels

The Flat Table Schema
A flat table schema is the simplest scheme possible without los-

ing information. This is created by collapsing all entities in the data
model down to into the terminal entities. This minimizes the num-
ber of tables in the database and therefore minimizes the possibil-
ity that joins will be needed in end-user queries. In a flat schema we
end up with one table for each terminal entity in the original data
model. Such a schema is analogous to the flat files used when using
statistical packages such as SAS. The structure does not lose any
information from the original data model. Unfortunately, it contains
massive redundancy in the form of transitive and partially depen-
dent dependencies but does not involve any aggregation.

One problem with the flat table schema is that it leads to
aggregation errors when there are dependency relationships
between kernel entities. When we collapse a numerical amount
from higher-level kernel entities into another, they will be
repeated in the sample data model if a sale is comprised of three
sale items. The discount amount will be stored in three differ-
ent rows in the sale item table. Adding the discount amounts
together as we summarize results in triple counting.

Another problem with flat schemas is that they tend to result
in tables with large numbers of attributes increasing the row
length. While the number of tables is minimized, the complexity
of each table is increased. This is not the best solution, but it can
be made to work in certain situations.

The Stepped Table Schema
A stepped table schema is formed by collapsing entities down

the dependency chain, stopping when they reach a kernel entity.
This results in a single table for each kernel entity in the data
model. Figure 19.5 shows a stepped table schema resulting from
the sample data model. The stepped table schema is commonly
used to create reporting databases. This option does not confuse
an inexperienced user because a separation between the levels of
kernel entities is explicitly shown.

Simple Star Schemas
A star schema can easily be derived from an entity relation-

ship model. Each star schema is formed in the following way:
l A fact table is formed for each kernel entity. The key of the table

is the combination of the keys of its associated detail entities.

Chapter 19 Dimensional warehouses from enterprise moDels 349

Prod Type ID

Prod Name

Value

Qty

Prod ID

Sale ID

Sale Item

Prod Type Name

Tax

Tax Type Name

Tax Type ID

Sale ID

Sale Tax

Sale Fiscal Yr

Sale Yr

Sale Qtr

Sale Mo

Sale Date

Sale ID

Sale

Posted Date

Posted Mo

Posted Qtr

Posted Yr

Posted Fiscal Yr

Discount Percent

Cust ID

Cust Name

Cust Type ID

Cust Type Name

Cust Reg ID

Cust Reg Name

Cust State ID

Cust State Name

Loc ID

Loc Name

Loc Type ID

Loc Type Name

Loc Reg ID

Loc Reg Name

Loc State ID

Loc State Name

Figure 19.5 a stepped table schema.

350 Chapter 19 Dimensional warehouses from enterprise moDels

l A dimension table is formed for each detail entity by collaps-
ing related dependent entities into it.

l Where dependent relationships exist between kernel entities,
the child entity inherits all of the dimensions (and key attri-
butes) from the parent entity.

l Numerical attributes within kernel or core entities should be
aggregated by key attributes.
Figure 19.6 shows a star schema that results from the sales

kernel or core entity. This star schema has four dimensions, each
of which contains embedded dependency chains. The aggregated
fact is discount amount.

Figure 19.7 shows the star schema that results from the sale
item kernel entity. This star schema has five dimensions: four
dimensions from its parent kernel entity (sale) and one of its
own (product). The aggregated facts are quantity and item cost
(quantity 3 price).

Sale
Location

Loc ID

Loc Name

Loc Type ID

Loc Type Name

Loc Reg ID

Reg Name

State ID

State Name

Sale

Sale Date

Posted Date

Cust ID

Loc ID

Sum (discount)

Period

Date

Mo
Posted

Qtr

Yr

Fiscal Yr

Customer

Cust ID

Cust Name

Cust Type ID

Cust Type Name

Cust Reg ID

Reg Name

State ID

State Name

Figure 19.6 sale star schema with four dimensions.

Chapter 19 Dimensional warehouses from enterprise moDels 351

A separate star schema is produced for each kernel table in
the original model. The multiple star schemas that result can be
related by keyed relationships between the kernel entities fol-
lowing the normal key propagation rules defined in ER model-
ing (i.e., the primary key of the originating kernel is propagated
as a foreign key to the dependent kernel). It also can be related
to existing or external data marts in the same way. While there
is no official name for this, it can be considered a special type of

Sale Date

Sale Item

Sale

Posted

Posted Date

Cust ID

Loc ID

Prod ID

Sum of Qty

Sum of Item Cost

Loc ID

Location

Loc Name

Loc Type ID

Loc Type Name

Loc Reg ID

Reg Name

State ID

State Name

Date

Period

Month

Otr

Yr

Fiscal Yr

Prod ID

Product

Prod Name

Prod Type ID

Prod Type Name

Cust ID

Customer

Cust Name

Cust Type ID

Cust Reg ID

Cust Type Name

Reg Name

State ID

State Name

Figure 19.7 star schema from sale item kernel entity.

352 Chapter 19 Dimensional warehouses from enterprise moDels

extended star schema, since it represents a connected lattice of
star schemas.

Snowflake Schemas
In a star schema, dependency chains in the original data

model are collapsed or denormalized to form dimension tables.
Each dimension table may contain multiple independent
dependency chains. A snowflake schema is a star schema with
all dependencies explicitly shown. A snowflake schema can be
formed from a star schema by expanding out (normalizing) the
dependencies in each dimension. Alternatively, a snowflake
schema can be produced directly from the entity relationship
model by the following procedure:
l Form a fact table for each kernel entity. The key of the table is

a combination of the keys of the associated detail entities.
l Form a dimension table from each detail entity.
l Where dependency chain relationships exist between ker-

nel entities, the child entity inherits all relationships into the
detail entities (and key attributes) from the parent entity.

l Numerical attributes within the kernel entity should be aggre-
gated by the key attributes. The attributes and functions used
depend on the application.

Star Schema Clusters
My opinion is that neither pure star schema (which are fully

collapsed dependency chains) nor the pure snowflake schema
(fully expanded dependency chains) is the best solution. As in
many design problems, the optimal solution is a compromise
between the two options.

The problem with fully collapsing dependency chains is that
it can lead to redundancy between dimensions when they are
collapsed if there are shared dimensions. This can result in con-
fusion for users, increased complexity in ETL processes, and
inconsistent results from queries.

In the interest of clarity on this subject, shared dimensions
can be identified by splits within dependency chains. A split
occurs when an entity acts as a parent in two different dimen-
sional dependency chains. This results in the entity and all of its
ancestors being collapsed into two separate dimension tables.
Split entities can be identified as dependent entities with mul-
tiple one-to-many relationships. On occasion they converge again

Chapter 19 Dimensional warehouses from enterprise moDels 353

lower down. This author refers to them as propagated dependency
chains.

In the sample data model shown in Figure 19.8, a split occurs
at the region entity. Region is the parent of both Location and
Customer, which are both detail entities of the sale entity. In the
star schema representation, State and Region would be included
in both the location and customer dimensions when the hierar-
chies are collapsed. The result is an overlap or sharing between
dimensions.

This author defines a star schema cluster as one which has
the smallest number of tables while avoiding overlap between

Cust ID

Customer

Dimension Table

Cust Name

Cust Type ID

Cust Reg ID

Cust Type Name

Reg ID

Region

Subdimension

Reg Name

State ID

State Name

Loc ID

Location

Loc Name

Loc Reg ID

Loc Type ID

Loc Type Name

Cust ID

Sale

Fact Table

Sale Date

Posted Date

Loc ID

Sum | discount

Figure 19.8 star schema cluster.

354 Chapter 19 Dimensional warehouses from enterprise moDels

dimensions. It is a star schema that is selectively snowflaked
to separate out dependency chains or subdimensions that are
shared between different dimensions. These subdimensions rep-
resent a shared bridge between dimensions.

I define a star schema cluster may be produced from an entity
relationship model by using the following procedure. Each star
schema cluster is formed by the following steps:
l Form a fact table for each kernel entity. The key of the table is

a combination of the keys of the associated detail entities.
l Collapse dependent entities down their dependency chains

until they reach a split entity or detail entity. If a split entity
is reached, then a subdimension or shared dimension table
should be formed. Collapsing should begin again after the
split entity. When a detail entity is reached, a full dimension
table should be formed.

l Where dependent relationships exist between kernel entities,
the child entity inherits all dimensions (and key attributes)
from the parent entity.

l Numerical attributes within a kernel entity should be aggre-
gated by the key attributes (dimensions).

iterate to refine the Design
In practice, dimensional modeling is a cyclic process. The star

clustering procedure described in step three is useful for produc-
ing an initial design but will need to be refined to produce the final
design. Most of these refinements have to do with further simplify-
ing the model. Some basic forms for refinement are as follows:
l Combine fact tables. Fact tables with the same primary keys

(i.e., the same dimensions) should be combined. This reduces
the number of star schemas and facilitates comparison activ-
ity between related facts.
l Combine dimension tables. Creating dimension tables

for each detail entity often results in a large number of
dimension tables. In order to simplify the structure, related
dimensions can be consolidated together into a single
dimension table.

l Resolve many-to-many relationships. Most of the com-
plexities that arise in converting a traditional entity rela-
tionship model to a dimensional model result from
many-to-many relationships or intersection entities.
Many-to-many relationships cause problems in dimension
modeling because they represent a break in the depen-
dency chain and cannot be collapsed.

l Two options exist for dealing with many-to-many relation-
ships: (1) ignore the intersection entity, or (2) convert the

Chapter 19 Dimensional warehouses from enterprise moDels 355

many-to-many relationship to a one-to-many relationship
by defining a predominant relationship.

l Handling subtypes. Super type–subtype relationships can be
converted to a hierarchical structure or by moving the sub-
types and creating a dependent entity to distinguish between
subtypes. This can then be converted to a dimensional model
in a straightforward manner.

review of the process
The preceding method is useful for developing a dimensional

data warehouse design from an enterprise data model. These are
the basic steps:
l Develop or purchase an enterprise data model.
l Design an enterprise data warehouse. This will be closely

based on enterprise data model but will be a subset of the
model, which is relevant for decision-support purposes. A
staged, accretive (project subject area by project subject area)
approach is recommended for implementing the enterprise
data warehouse, starting with the most important subject areas.

l Classify entities: classify all entities in the enterprise data
model as either kernel, detail, or dependent entity.

l Identify dependency chains: identify the dependency chains
that exist in the enterprise data model.

l Design a data warehouse: develop star schemas or clus-
tered star schemas for each kernel entity in the enterprise
data model. Each clustered star schema will consist of a fact
table and a number of dimension and subdimension tables.
This minimizes the number of tables while avoiding overlap
between dimensions.

Review of Design Options
In summary there are a range of options for developing

dimensional data warehouse models to support end-user queries
from an enterprise data model. These options represent different
trade-offs between the number of tables (complexity) and redun-
dancy of data. The advantages of this approach to model transla-
tion are as follows:
l It ensures that data in the enterprise data warehouse reflect

the underlying relationships in the data.
l It develops data warehouse designs based on a common

enterprise data model and simplifies the ETL processes.
l An existing enterprise data model provides a useful basis for

identifying information requirements in a top-down manner
based on what data exists in the enterprise. This can usually

356 Chapter 19 Dimensional warehouses from enterprise moDels

be combined with the bottom-up dimensional analysis to
provide a hybrid approach.

l An enterprise data model provides a more stable basis for
design and user queries which may be unpredictable and sub-
ject to frequent change. This approach also ensures flexibility
in the enterprise data warehouse to support the widest span
of analytical requirements by storing data at the most appro-
priate level.

l It maximizes the integrity of data stored in an enterprise data
warehouse.
This one method, although not simple, can provide some

guidance to designers of data warehouses when working from a
defined enterprise data architecture.

Detail analysis by the architect or designer is still required to
identify the entities in the enterprise data model that are relevant
for decision making and the classification of them. However,
once this has been completed, the development of the dimen-
sional model can take place.

Using an entity relationship model of the data provides a bet-
ter starting point for developing dimensional models than start-
ing from a purely dimensional analytical modeling approach
based on the identified business process.

References
Inmon, W. (1996). Building the data warehouse (2nd ed.). New York: John Wiley &

Sons.
Kimball, R. (1996). The data warehouse toolkit. New York: John Wiley and Sons.
Kimball, R. (1997, August). A Dimensional Manifesto. New York: John Wiley and

Sons.
Love, B. (1994). Enterprise information technologies. New York: Van Nordstrom

Reinhold.

Suggested Reading
Chen, P. P. (1976, March). The entity relationship model: Towards an integrated

view of data. ACM Transactions on Database Systems, 1(1), 9–36.
Codd, E. F. (1970, June). A relational model of data for large shared data banks.

Communications of the ACM, 13(6), 377–387.
Devlin, B. (1997). Data warehouse: From architecture to implementation. Reading,

MA: Addison-Wesley.
Halpin, T. (1995). Conceptual schema and relational database design: A fact

oriented approach. Sydney: Prentice Hall.

357
Data Architecture.
© Elsevier Inc. All rights reserved.2011

THE ENTERPRISE DATA
WAREHOUSE

As we’ve said before, 20 years ago, a new field was created that
came to be known as enterprise architecture. The goal initially was
to address two problems: application complexity (organizations
were spending more and more money building IT applications)
and poor business alignment (organizations were finding it more
and more difficult to keep increasingly expensive IT systems
aligned with the business needs). From the business perspective,
it was more cost, less value.

The problems that were recognized two decades ago have
today reached a crisis point. The cost and complexity of IT sys-
tems have exponentially increased, while the ability of deriving
real value from those systems has decreased. Today’s bottom line
to the business is even more cost, even less value. Large organi-
zations can no longer afford to ignore these issues. The field of
enterprise architecture that 20 years ago seemed to be an abstract
research exercise has become a critical necessity.

Over the last decade, IT management visionaries have inter-
ceded to bring order to the chaos that ensued as businesses
became more competitive and data became the primary busi-
ness driver. Their first step was reestablishing the control of a
central IT management organization over computing resources.
Their second step was the dedication of one or more staff to a
formal architecture program.

Enterprise Data Warehouses
In order to stay competitive, an enterprise must continue to

meet and exceed both the internal and external customers’ needs.
The enterprise needs to increase its competitive agility, and in
order to do so, the CIO of the enterprise must respond by dropping
the traditional role of simply managing the business-technology
interface.

20

http://dx.doi.org/

358 Chapter 20 The enTerprise daTa warehouse

Today’s CIO, as well as most of the IT organizations in the
enterprise, should see themselves evolving into the new role of
improving corporate performance. To achieve business objectives
that will meet and exceed the need, the CIO must work side by side
with business executives to rethink and reinvent how the company
can innovatively anticipate and respond to changes in the market.

It is an ongoing effort (or a program, if you will) to measure,
analyze, innovate, and implement. Then do it again, applying
what you learned from the last cycle. Then do it again, and again,
and so on. During this cyclical effort, the CIO and IT must lever-
age the company’s data assets for the betterment of the entire
enterprise. Applications may come and go, but data are here to
stay, and data are the drivers of every modern business. It all boils
down to a single, complex question: “Do we have the data that
will tell us what has occurred in the past, what is happening now,
and what is likely to happen in the future to our enterprise?”

Information technology is responsible for providing the data
basis for key metrics and indicators such as revenue growth, mar-
gin improvement, and asset efficiency at both the enterprise and
division levels. Simply put, data are the foundation for operating
a business. It must be available from a secure source, at the right
time, and in the right format. A repository like this is called an
enterprise data warehouse. The key requirements for this enter-
prise data foundation include the following:
l Data that are relevant across the enterprise
l Trusted, accurate data that produce consistent answers
l Cross-functional enterprise analytical capability

When an enterprise data warehouse is proposed as a solution
to the business needs that are present, the responses are already
forethought, and I am sure we have all heard them before. For
example, some typical responses are, “We tried this before and
failed.” “We are already spending too much for resources on IT.
Why spend more?” “Nothing is broken, so there is nothing to fix.”
“What will [the enterprise warehouse] give me that I don’t have or
can get now?”

All of these responses can be addressed by ensuring that:
l Business sponsors understand the role that data play in their

business and that their partnership with IT is essential to the
future success of the enterprise.

l An enterprise architect presents a solid plan as to how EDW fits
into the company’s overall IT environment and architecture.

l Tactical data warehousing and data integration projects are
implemented in sequence, with the focus being integration.
This builds the overall EDW infrastructure, thereby providing
value to the business while the enterprise warehouse is under
development.

Chapter 20 The enTerprise daTa warehouse 359

Why Would You Want an Enterprise Data
Warehouse?

An enterprise data warehouse is a strategic repository that
provides analytical information about the core operations of an
enterprise. It is distinct from traditional data warehouses and
marts, which are usually limited to departmental or divisional
business intelligence. An enterprise data warehouse (EDW) sup-
ports enterprise-wide business needs and at the same time is
critical to helping IT evolve and innovate while still adhering to
the corporate directive to “provide more functionality with less
investment.”

Organizations that implement enterprise data warehouse ini-
tiatives can expect the following benefits:
l It provides a strategic weapon against the competition. The

data that are needed to beat the competition to market are
universally accessible in the structure needed to make agile
business decisions.

l It addresses data governance and data-quality issues that pro-
foundly limit the operational and strategic use of the cross-
functional data. It also eliminates redundant purchasing of data.

l It addresses compliance requirements by validating and cer-
tifying the accuracy of the company’s financial data under
Sarbanes-Oxley and other compliance requirements.

l It improves alignment between IT and their business partners
by enabling IT to deliver multiple initiatives, including data
warehousing, data integration and synchronization, and master
data management. These are all developed from the same data,
and all of it can be propagated and reused for other purposes.

l It ensures cross-functional and cross-enterprise collaboration
by guaranteeing that data are provided with relevant business
context and meaning. A definitive meaning is ascribed for
each context (i.e., there may be multiple defined “market bas-
kets,” but each will be identified clearly by name and use).

l It increases business productivity by leveraging integrated
data for business decision queries and reports, thereby reduc-
ing delivery costs and time.

Enterprise Data Warehouse Defined
An enterprise data warehouse is a common data foundation

that provides any and all data for business needs across applica-
tions and divisions. Enterprise data warehousing is the program
that consists of designing, building, and managing an EDW to
meet the requirements of the consuming applications.

360 Chapter 20 The enTerprise daTa warehouse

What Are the Important EDW Driving Forces?
l Presence of business-relevant data across the enterprise. An

EDW allows organizations to access, discover, and integrate
data from virtually any business system, in any format.

l Universal data access by the business. Studies have shown
that significant amounts of project time and effort are spent
on gaining access to appropriate data. Operational and appli-
cation reporting data are housed in a multitude of applica-
tions and storage media. Universal data access to data in one
place provides one-stop shopping for the business.

l Data services mechanism for neutral access. To enable flexible
reuse of data assets, a data services front end is a logical abstrac-
tion layer between data sources and consuming applications.
This absence of fixed connection frees the EDW to serve multi-
ple downstream applications. It also allows flexibility and adap-
tation should requirements change or new consumers emerge.

l Metadata management for business consistency. Data flows,
data relationships, and the business context and definitions
for data are often poorly documented. Attempts to integrate
data without a foundation for governance create rework or
manual analysis and coding. Metadata management can pro-
vide visibility to enterprise data and relationships across all
types of applications and systems.

l Presence of trusted, accurate data. An EDW equips organi-
zations to manage data quality in a programmatic manner.
Maintaining data integrity and security across extended groups
throughout the data life cycle is required to meet the gover-
nance and compliance objectives.

l Data quality. An EDW improves data quality. The presence of
poor data quality is a costly issue. Findings from a recent sur-
vey found that over 65 percent of those surveyed reported sig-
nificant problems as a result of defective data:
l More than 50 percent had incurred extra costs as a result of

the need for internal reconciliations.
l Thirty-three percent had been forced to delay or scrap new

systems. Data quality must be approached as a program.
Integrated data quality, including data profiling, scrub-
bing/matching, and remediation, is critical to enhancing
the accuracy and value of data assets.

l Data lineage. An EDW enables an enterprise to predict, assess,
and manage the impact of change to enterprise data with a
map of data dependencies.
To see what can potentially happen with the implemen-

tation of a data warehouse, I have provided a parable. It is a

Chapter 20 The enTerprise daTa warehouse 361

combination of many case studies that obscures the origin of
each organization.

Case study: an enterprise data warehouse
practical parable

A hypothetical telecommunication service provider went
through profound growth as a result of mergers and acquisitions
(let’s say 30 of them in 7 years). The result was a patchwork of
silo-type applications cobbled together across the many merged
entities.

The company was unable to provide near real-time operational
data consistently. The “daily reporting” often took more than a day,
and changing reports often required significant analysis and
development, sometimes months. Access to new information
from other operating entities of the merged organizations was
nearly impossible without coding new interface applications. Data
quality was a major issue. There were no consistent governance
and data standards. Furthermore, because of the lack of reuse
and standardization, each application was addressed in a one-off
manner.

Solution
After acquiring an Industry Standard model they enriched

it with their unique specifications that varied from the Industry
Standard Enterprise Model. From this Enterprise Model, they
developed an enterprise data warehouse to address these prob-
lems they had been faced with. The company consolidated the
silos and created a common framework for managing the data.
Their vision was to move toward a single Source (emphatically
not a “version”) of truth and to provide relevant business report-
ing across the enterprise in a timely manner. They consolidated
multiple reporting warehouses and data marts. They also used
metadata at the core of their EDW to standardize common busi-
ness terminologies, to ensure reuse of data and logic, and to
deliver a common view of data.

Their results were remarkable. The EDW enabled the com-
pany to analyze all aspects of business by tracking key met-
rics and performance indicators. As a result of the first phase of
EDW deployment, the company improved service levels in daily
reporting from days to hours or less, and reduced the small proj-
ect delivery time from several months to several weeks.

In addition, with the EDW, the company enhanced enterprise
data access to the point where they could forecast revenues and

362 Chapter 20 The enTerprise daTa warehouse

staffing for all divisions. Executive officers, compliance manage-
ment, and internal audit now had access to data-quality dash-
boards that tracked data-quality indicators against targets.

The EDW improved data integrity by enforcing robust secu-
rity. Enterprise-wide data standards and a common, reus-
able technology infrastructure enabled faster application
development, testing, and roll-out. With the EDW, the company
increased visibility across numerous operational entities and
now had the agility to respond to new business requirements and
opportunities as they arose.

Some parts of this parable will ring true with each and every
enterprise out there that does not have an established enterprise
data architecture and enterprise data warehouse. Examine a
sample of case studies, and this will be verified by them.

The Best Practices for EDW Implementation
To establish information as a shared asset across the enter-

prise, IT needs to follow best practices in implementing their
enterprise data warehouse:
l Analyze the volatility and the commonality of data to deter-

mine data reusability. Certain types of data are used by specific
applications and should not be considered enterprise data.
Other types of data, such as customer data, are relevant across
the business and should be treated as master data. Similarly,
most transactional data attributes have no use beyond the
context of the specific transaction, whereas master data or ref-
erence data need to persist and be controlled over time.

l Utilize a staged, incremental approach that shows business
returns at each step. It is important to demonstrate the flex-
ibility of the architecture by targeting specific areas and taking
a least disruptive implementation approach. A good start is
to restructure and reuse legacy data in the new environment.
The use of metadata and standard practices ensures that the
complete solution can be built by accretion, without compro-
mising architectural integrity and flexibility.

l Approach data modeling and business process analysis from an
enterprise perspective. Enterprise data warehouses require newer
methods such as business process modeling to enable businesses
to leverage the warehouse data in better and more powerful ways.

l Establish enterprise standards and data governance. The busi-
ness agility, reuse of data, or business logic is worthless or, at
best, rapidly obsolescent if IT does not adhere to governance
and standards. In addition, IT has to put in place competency

Chapter 20 The enTerprise daTa warehouse 363

centers to make sure that the various business divisions and
IT groups working with an enterprise data warehouse follow a
common set of procedures and techniques, ensuring consis-
tency and manageability of the overall environment.

Enterprise Data Architecture Implementation
Methods

For any organization, what will happen after the decision to
build an enterprise data architecture depends on the approach
taken. From the architectural point of view, a bottom-up
approach involves setting the infrastructure standards and intro-
ducing governance processes to ensure adherence to those stan-
dards, while a top-down approach involves a formal analysis of
the current state with respect to business process, application
programs, data, and technology components.

Both approaches require senior management commitment and
mark the first step of a journey toward changing how IT communi-
cates, makes decisions, and engages in planning. Both approaches
also promise an improved relationship with the business as tech-
nological planning is integrated with business planning. While
there is no argument that an EA needs to exist, following are some
of the benefits and drawbacks of each method.

The Top-Down Approach
The most positive aspects of the top-down approach, in order

of importance, are that it does the following:
l Establishes a clear view of the existing environment in the

beginning. The initial data collection activity enables a con-
sensus regarding the current state environment, which is a
critical component for defining the target solution.

l Emphasizes business issues at the outset. The top-down
approach explicitly concerns improving the business. Techno-
logy plays a supportive role as the enabler of the business.

l Establishes a broad scope at the outset. There is a broad scope
in the top-down approach. With the appropriate management
support, all areas in need of improvement become subject to
the EA program’s efforts. Negative aspects of the top-down
approach are that:
l Top-down methods can be overly abstracted and not be

impactful. The formal approach and broad scope require
upfront training, process definition, and communication

364 Chapter 20 The enTerprise daTa warehouse

efforts to launch the program. Conceptual frameworks
and broad-based models for enterprise-wide involvement
must be created. The team then must engage in the time-
consuming data collection process to establish the current
state. This can result in high expectations for enterprise-
wide impact. In fact, there probably will be little impact in
the first year of the program’s existence. It is very difficult to
maintain organizational focus and commitment over a long
time.

l The data collection and mapping process delays the imple-
mentation of governance. In the top-down approach,
governance means oversight of the architecture. Many top-
down EA programs delay the introduction of governance
processes that could influence design and technology
selection, resulting in missed opportunities.

l The formal methodology requires a knowledge base to get
started. Few organizations currently have the internal staff
that understand the formal approach to EA. Training is
required, both for the EA group and for the business and IT
community that participate in the processes.

l The methodology requires business process reengineer-
ing skills. The creation of a business process inventory and
the focus of eliminating redundancy and reengineering the
current state require that the EA team have the expertise to
draw important conclusions from the analysis of the current
architecture data.

The Bottom-Up Approach
Positive aspects of the bottom-up approach are as follows:

l The method can have significant impact immediately. Given the
appropriate authority by the CIO and integrating the technology
architecture in a straightforward manner, sufficiently motivated
organizations can implement a solution in 6 to 12 months. This
can translate to millions in cost savings and cost avoidance.

l Early successes build credibility rapidly. Early wins start the
EA effort off on the right foot and build credibility for the more
politically complex efforts that follow.

l Problems are undertaken in priority sequence. The potentially
overwhelming scope of an EA effort is simplified in a bottom-
up approach. The biggest problem is attacked first, then the
next, then the next, and so on. This can lead to significant
early successes.

Chapter 20 The enTerprise daTa warehouse 365

l Scope and complexity of the architecture and model build
gradually. Bottom-up allows technologists and managers to
learn as they go. Success is more likely when the problems
are encountered in small size rather than trying to manage a
large, complex scope from the beginning.

l A large central EA team is not needed to start. Creating a base
architecture usually involves a central project manager and
the borrowed expertise of internal SMEs. There is no need
for funding additions to staff to create the EA group until the
project has garnered credibility.

l The technology-oriented starting point can facilitate the
effort. Many organizations can implement technology stan-
dardization efforts without reading EA textbooks, becoming
familiar with abstract EA concepts, or even calling the project
EA. Technology standardization often saves significant dollars.

l Standardization savings can help justify governance pro-
cesses. Governance processes are often politically difficult to
implement. When technology standardization and consolida-
tion have yielded significant savings, management can be per-
suaded to review and participate in other technology choices
and projects.
Negative aspects of the bottom-up approach are as follows:

l The IT infrastructure origination of the effort often impedes
efforts to expand scope. Once the infrastructure-based EA
group has cleaned up technology standards and attempts to
broaden its scope, it is often blocked from influencing other
development staff for political and cultural reasons.

l A standards-based approach emplaces governance as a polic-
ing activity. The most typical introduction of governance is via
a board that reviews projects and designs and rejects nonstan-
dard approaches. This makes architects the villains and can
hamper business community buy-in and future attempts at
expanded scope.

l The technology orientation appears to ignore business issues.
Governance processes introduced to prevent the introduction
of nonstandard technology don’t please application develop-
ers or business project sponsors.

l Some areas that are in need of much improvement must wait.
Bottom-up architects often perceive more clearly the prob-
lems that remain rather than the positive accomplishments
they have made. The business can get frustrated watching the
next technology problem being created because of the lack of
an overall application or integration architecture as the tech-
nical architecture is being pursued.

366 Chapter 20 The enTerprise daTa warehouse

Your Choices
Based on these review points, if you need to:

l Standardize your infrastructure technology architecture
l Standardize your application architecture
l Develop a technology road map
l Control project technology choices
l Show results within 12 months from an EA program
l Control scope and resource commitments carefully
l Avoid formal, abstract methodologies
 you should choose bottom up,

Alternatively, based on these review points, if you need to:
l Focus on information and data in the enterprise
l Establish a broad scope at the beginning of the EA program
l Satisfy management’s project funding requirements
l Evaluate your business architecture
l Analyze the relationships between business processes,

applications, and technology
 you should choose top-down.

Preliminary Conclusion
In conclusion, we can look at the preceding two methods com-

pletely and realize that sometimes neither works. What if there is a
muddled mixture of legacy and planned efforts? What if you have
an enterprise architecture but want to implement key areas first?
How do you ensure integration and consistency over time?

In such cases, a Hybrid or Side-In (as opposed to top-down or
bottom-up) approach may be an alternative. It selects the best
characteristics of each implementation method and minimizes
the negative aspects of each.

The Hybrid Approach
The following is a brief description of the Hybrid or Side-In

approach to enterprise data architecture implementation.
Purchase an enterprise-level model. The Hybrid or Side-In

implementation approach involves the purchasing of an industry
standard model and implementing it and adjusting it to the busi-
ness subject area need. Based on the implementation, a data gov-
ernance process and any enterprise efforts such as an enterprise
data warehouse can be sourced from this. Subsequently, as proj-
ects are identified and implemented, they are brought into line

Chapter 20 The enTerprise daTa warehouse 367

with data governance policies and integrated into the emerging
enterprise data architecture.

Positive aspects of the hybrid approach are a combination
of the best features of top-down and bottom-up processes with
minimization of the negatives of both. These are restated here in
that context:
l The approach begins by establishing a clear view of the exist-

ing environment. The initial data discussion activity enables
consensus regarding the current state environment, which is a
critical element for effective planning.

l Business issues are emphasized from the beginning. The
hybrid approach ensures priority for improving the business.
Technology plays a support role as the enabler of the business.

l It establishes a broad scope at the outset. The hybrid
approach embraces the broad scope, much as the top-down
approach did. Thus, with the appropriate management sup-
port, all areas in need of improvement become subject to the
EA program’s efforts.

l The program can have significant impact immediately. Given
the appropriate authority by the CIO and sufficiently motivating
organizations, it can be accomplished in 6 to 12 months. This
can translate to millions in cost savings and cost avoidance.

l Early successes build credibility rapidly. Early wins start the
EA effort off on the right foot and build much-needed cred-
ibility for the more politically complex efforts that follow.

l It attacks problems in priority sequence. The potentially over-
whelming scope of an EA effort is simplified in a priority and
sequence approach: This can lead to significant early successes.

l Scope and complexity build gradually. The hybrid approach
allows technologists and managers to learn as they go. Success
is more likely when the problems are encountered in bite-size
chunks.

l It does not need a large central EA team at the outset. Creating
a technical architecture usually involves a central project
manager and the borrowed expertise of internal SMEs. There
is no need to obtain funding for additions to staff to create the
EA group.

Implementation Summary
For many enterprises, none of these approaches will therefore

be a complete solution. For some organizations that are new or
unsure, the alternative, hybrid approach is recommended. Since
it is a blended approach, it consists of choosing pieces from each

368 Chapter 20 The enTerprise daTa warehouse

approach and modifying and merging them according to the spe-
cific needs of the organization.

But even a blended or hybrid approach will only be as good
as the organization’s commitment to making changes. This com-
mitment must be driven by the highest level of the organization.
With a commitment to change and a tailored methodology for
guiding that change, the promise of enterprise architecture is
within reach. With a solid enterprise data architecture seeding a
solid enterprise data warehouse, the journey to enterprise redefi-
nition can commence.

References
Date, C. (1998). Relational database writings (1994–1998). Boston:

Addison-Wesley.
Date, C., & Darwen, H. (2000). The third manifesto. Boston: Addison-Wesley.

369
Data Architecture.
© Elsevier Inc. All rights reserved.2011

OBJECT AND OBJECT/
RELATIONAL DATABASES

Object Oriented Data Architecture
In order to cover the subject of object and object/relational

databases, there must be a thorough understanding of the con-
cepts involved in object oriented architecture. Then some of the
components of the extended entity relationship diagramming
method can be examined. This fosters and includes concepts
that will support both the object model and the relational model
and their respective design processes. In this chapter the over-
all design of the object database will not be discussed, but some
of the concepts that go into the design and development of the
models will be. Object oriented architecture is based on the prin-
ciple of recursive design. That is, it can be addressed by the fol-
lowing set of design constraints within a given enterprise:
1. Everything in the enterprise is an object. It is something

that can be viewed and examined unto itself. It is an inde-
pendent thing that can be specifically defined and that has
characteristics.

2. Objects perform computation and process by making requests
of one another through the passing of messages. This allows
the data to be worked on by the process in place. As noted in
other chapters, by the different layers of interaction and map-
ping, the objects can be kept from being embedded in a matrix
that needs constant changing.

3. Every object has its own memory, which consists of other
objects that are replications of its image. This is the history of
the object that allows information to persist as objects after
the process is complete.

4. Every object is an instantiation or instance of a class. A class
groups, collects, or encompasses similar objects.

5. The class is also the repository for behavior or process actions
associated with an object. These can be broken down into
subclasses and superclasses.

21

http://dx.doi.org/

370 Chapter 21 Object and Object/relatiOnal databases

6. Classes are most often organized into singly rooted tree struc-
tures, called inheritance hierarchies. Sometimes in complex
systems, the classes have developed multiple inheritances, in
which case the inheritance hierarchy really becomes a cross-
reference hierarchy or lattice hierarchy.
The problem with the object data architecture is that it is so

different from the traditional approach that there is often a need
to give examples in order to prove the concepts. In the traditional
approach it is far easier to understand the top-down or side-in
approach to integration. The principles involved can be easily
illustrated by considering how one would go about solving a real-
life problem.

Sample Object Oriented Design Concept:
Wiring Money

To illustrate the concepts of OOD in an easily understood
design framework, consider the problem of sending money to
a friend who lives in a different city. You can’t deliver the money
yourself, so you would have to use the local money-wiring agency.
We’ll call it Eastern Union.

The clerk at Eastern Union, Honey, has to be notified of the
address for the target of the money transmission, how much
money is to be sent, and the type of currency being sent. Honey
contacts a clerk, Bunny, at the Eastern Union office in our friend’s
city, who accomplishes the transaction, then contacts a delivery
person, who delivers the money. This all sounds very simple, but
let’s examine the complete process more.

When reviewed, it is obvious that there are other people
involved in this transaction. These include the participating bank
and anyone at the bank involved in the transaction—perhaps

somebody in charge of arrangements and the
wiring money process. The delivery person
may be a handling agency for a bunch of inde-
pendent bonded delivery people. Solving the
money-sending problem requires the inter-
action of an entire community of individuals.
Figure 21.1 shows where people exist in a
hierarchy.

concept 1: everything is an object
Actions in OOD are performed by agents,

called instances or objects. There are many

Material Object

Non-Living ThingLiving Thing

PlantAnimal
Reptile

Mammal

Human Cat Dog Platypus

Artist

Yolanda

Shopkeeper

Honey

Dentist

Duke

Rock Air

Figure 21.1 a hierarchy.

Chapter 21 Object and Object/relatiOnal databases 371

agents working together in our scenario. We have ourselves, the
target friend, the Eastern Union clerk, the Eastern Union clerk
in our friend’s city, the delivery driver, the participating bank’s
arranger, and the bank itself. Each agent or agency has a part to
play, and the result is produced when all work together to solve a
problem. The capacity of each object to interact is defined. In our
case it is captured in the roles they play and the responsibilities
they have had defined for them.

concept 2: Messages
Objects perform computations by making requests of one

another through the passing of messages. Actions in OOD are
produced in response to requests for actions, called messages.
An instance may accept a message and in return will perform
an action and return a value. To begin the process of wiring the
money, Honey is given a message. She in turn gives a message to
Bunny in our friend’s city, who gives another message to the driver,
and so on. Each message contains information necessary for the
object receiving it to act on.

How information Hiding Facilitates Messages
Notice that the user of a service being provided by an object

needs only to know the name of the messages that the object
will accept. It is not necessary to know all of the messages it can
accept or the object’s internal structure. There is no need to have
any idea of how the actions performed will be carried out in
response to the request. It is unimportant. The important thing is
that the message will be acted upon.

Having accepted a message, an object is responsible for car-
rying it out. Messages differ from traditional function calls in two
very important respects:
l In a message there is a designated receiver that accepts the

message.
l The interpretation of the message may be different, depend-

ing on the receiver.

Examples of Different Actions
Subjects involved:

Roberto: Money wirer
Yolanda: Roberto’s wife
Duke: Dentist

372 Chapter 21 Object and Object/relatiOnal databases

Process:
Beginning

Roberto.sendmoneyTo(myFriend); { this will work }
Yolanda.sendmoneyTo(myFriend); { this will also work }
Duke.sendmoneyTo(myFriend); { This will probably not work }

End

behavior and interpretation
Although different objects may accept the same message, the

actions (behavior) the object will perform will likely be different.
For example, Duke will not be sending money unless he knows
my friend or unless he and I reach an agreement beforehand. The
fact that the same name can mean two entirely different opera-
tions is one form of polymorphism, a topic that will be discussed
at length in subsequent paragraphs.

concept 3: recursive design
Every object has its own memory, which consists of other

objects. Each object is like a miniature machine—a specialized
processor performing a specific task. These tasks follow a principle
of noninterference—that is, they do not interfere with one another
in their processes.

concept 4: classes
Every object is an instance of a class. A class groups objects

that have similar characteristics and attributes. We will cover this
in more detail in subsequent paragraphs.

concept 5: classes
The class is also the repository for behavior associated with an

object. The behavior expected from Honey is determined from a
general idea concerning the behavior of the money-wiring clerks.
Honey is an instance of the class “money wire clerk.” The behavior
expected from Bunny (the receiver) is determined from a general
idea concerning the behavior of money-receiving clerks (which
may or may not be another instance of “money wire clerk”).

Behavior is associated with classes, not with individual
instances. All objects that are instances of a class use the same
method in response to similar messages.

How Hierarchies of categories affect classes
But there is more that we now know about Honey than just

that she is a money wire clerk. When going up the levels of the

Chapter 21 Object and Object/relatiOnal databases 373

abstraction of all things, it is obvious that she is an office clerk
and a human and a mammal and a material object, and so on.

At each level of abstraction, there is information recorded.
That information is applicable to all lower (more specialized) lev-
els. This leads us to concept 6.

concept 6: inheritance
Classes are organized into a singly rooted tree structure, called

an inheritance hierarchy. Information (data and/or behavior) asso-
ciated with one level of abstraction in a class hierarchy is auto-
matically applicable to lower levels of the hierarchy. If the classes
within an area are complex and interact in a complex manner as
objects, then the inheritance hierarchy is not single but com-
pound. This is referred to as a shared or lattice hierarchy. This
shared or lattice hierarchy illustrates a complex kind of inheritance
known as multiple inheritance. This will be covered in subsequent
paragraphs.

Elements of Object Oriented Design:
Overriding

Subclasses can alter or override information inherited from par-
ent classes. For example, all mammals give birth to their young in
a living state, but a platypus is an egg-laying mammal. In order to
properly execute the structure, it must be subclassed and overrid-
den. (Actually, there are at least two different schools of thought
on the issue of how classes go about overriding behavior inherited
from their parent classes.)

Analogy and Problem Solving
Because the OOD view is similar to the way in which peo-

ple go about solving problems in real life, intuition, ideas, and
understanding from everyday experiences can be brought to bear
on computing. On the other hand, common sense and everyday
life experiences are seldom useful when computers are viewed
in the traditional process-state model, since few people solve the
enormous activity volumes every day that the traditional archi-
tecture was designed to do. Common-sense logic was too specific
and unadaptable for such wide variance and volume. Some of the
solutions that the traditional approach developed to deal with
the common-sense problems dealt with the following issues,
which are more easily handled with object design.

374 Chapter 21 Object and Object/relatiOnal databases

Coping with Complexity
Another way to understand object oriented architecture and

design is to try and place it in a historical perspective. People
have always tried to use computers to solve problems that were
just a little more difficult than they knew how to solve. Perhaps
they were ever so slightly larger than the brains trying to under-
stand them. Software crises came about after people realized the
major problems in software development were made more com-
plex by oral and written communication difficulties and the man-
agement of interaction complexity.

Examining the history of mechanisms used to solve the prob-
lem of managing complexity can lead to a better understanding
of the role of OOD.

Interconnections: The Perpetrator of
Complexity

Many software systems are complex not because they are large
but because they have many interactions. These interactions
make it difficult to understand pieces in isolation or to carry them
from one design stage to the next, or to the next design, for that
matter. The inability to cleanly separate out components makes
it difficult to divide tasks. Complexity can only be managed by
means of abstraction, by generalizing the information that the
user of the design needs to know. Object design accomplishes this
in the simplest way.

Assembler Languages
Assembler languages and linkers were perhaps the first tools

used to abstract features of the raw machine. Within them addresses
could be represented symbolically, not as a number. The names
for operations could be given symbolic names or mnemonics.
Linking of names and locations could then be performed automati-
cally. These were devised as the first level of abstraction, one step
away from the actual machine language. Further levels of process
abstraction took place in other generalized process oriented lan-
guages. Unfortunately, these led further and further away from the
data as it existed in the raw state and forced a static view to be cap-
tured and held in order to allow the abstractions to work. But this
was a digression that took place by choice. Object and its tenets
were not mature at the time.

Chapter 21 Object and Object/relatiOnal databases 375

Procedures and Functions
Libraries of procedures and functions provided the first

hints of information hiding. As mentioned in the chapter on
Information Engineering, information hiding is what allows us to
operate on just that set of information that needed. They permit
the designer to think about operations in high-level terms, con-
centrating on what is being done, not how it is being performed.
Traditional design processes took advantage of this to simplify
their complex programs. Object accomplishes this handily by the
objectification of the data and the processes associated with it.

Modules
Modules are small macro-like pieces of code that process

one function for a particular piece of data. They function by way
of parameter passing. Modules basically provide collections of
procedures and data with import and export statements in the
parameters passed. This solves the problem of encapsulation (the
separation of data and processes associated with it from other
data and processes), but what if the programming task requires
two or more processes to interact? Object oriented design can
do this because the process is captured at the data level, not in a
fixed hierarchical data structure with a process bias.

Parameter Passing
Traditional design utilized a method of parameter passing to

accomplish the movement of control information between mod-
ules. It acted similar to messaging in object design but was far
more complex and only followed chosen process paths within
a program segment. This was because of the hierarchical fixed
nature of the traditional modularly designed programs. The
use of objects allows freedom of “communication” between all
objects as defined by their messaging capabilities.

Abstract Data Types
An abstract data type (ADT) is a user-defined data type that

can be manipulated in a manner similar to system-provided
data types. This data typing was discouraged by the traditional
approach because it causes modification to the static structures
they use. It is required and is a distinct advantage in the object

376 Chapter 21 Object and Object/relatiOnal databases

oriented design world. These abstract data types must have the
ability to instantiate many different copies of the data type and
can be implemented using provided operations, without the
knowledge of internal structure representation.

Objects with Parameter Passing
The following are some of the abstract data type characteris-

tics of objects:
l Encapsulation: This is one of the main concepts that make

object oriented differ from traditional designed databases. It is
also related to the concept of information hiding in program-
ming languages. In traditional databases the entire structure of
the database was visible to the user and the programs using it.
l In the object oriented world, the concept of information

hiding and abstract data types take the form of defining the
behavior of a type of object based on the external opera-
tions that can be applied to it. The internal structure of the
object is not known; the user only knows the interface with
the object. The implementation of the operation is also hid-
den from the users. In the OO world the interface part of
the operation is called a signature, and the implementation
side is called a method. The means of invoking a method is
by simply sending a message to execute the method.

l For some database applications, it is too constraining to
require complete encapsulation. In these cases the designer/
programmer can decide what attributes of the object are to
be hidden and which are to be visible. Thus, hidden attributes
are regarded as being completely encapsulated and address-
able via the methods route and the visible attributes regarded
as externally viewable to high-level query languages.

l Classification and classes: Classes are a way of organizing
things that permits sharing and reuse. The act of classifica-
tion is the systematic assignment of similar objects to object
classes. Often a group of objects share the same attributes and
by classifying objects it simplifies the data discovery process
for that and other objects. This also applies to subclasses that
experience inheritance.

l Instantiation: Instantiation is the inverse of classification. That
is, it is the generation and specific examination of distinct
objects within a class. It is an example of or a single selection of
an object. An object instance is related to its object class by the
relationship is an instance of.

Chapter 21 Object and Object/relatiOnal databases 377

l Identification: Identification is simply the mechanism of defin-
ing an identifier for an object or class. It does, however, exist
at two levels. The first level is the identification to distinguish
database objects and classes. This first-level identification is
exemplified by the internal object ID contained and main-
tained within the system. The second identifies the database
objects and relates them to their real-world counterparts. For
example, there may be an occurrence of Tupper, C.D., in the
Person object and 010-38-1369 in the Employee object, but they
both may refer to the same external real-world object.

l Aggregation and association: By nature of its name, aggrega-
tion is the grouping and compaction of some things to make
another thing. In object oriented, aggregation is the concept of
building up composite objects from their component objects.
The relationship between the component objects and the new
aggregate object is an is a part of relationship. These structures
are ideal when dealing with a group of things to make some
common changes.
l An association is the concept of grouping several indepen-

dent classes together for process purposes. This relationship
between the components and the association is called an
is associated with relationship. The difference between the
aggregation and association is that the association can be
made up of dissimilar components. Both of these constructs
allow us to take advantage of inheritance.

l Messages: These are a dynamic binding of procedure names to
specific behaviors, which we will define further into its detail
in the following paragraphs.

Object Oriented Architectures Summary
Object oriented design is not simply features added to sup-

port a programming language or even an application. Rather, it
is a new way of thinking. Object oriented design views the enter-
prise as a community of agents, termed objects. Each object is
responsible for a specific task.

An object is an encapsulation of state (data values) and behav-
ior (operations). The behavior of objects is dictated by the rules
and principles associated with its object class. An object will
exhibit its behavior by invoking a method (similar to execut-
ing a procedure) in response to a message. Objects and classes
extend the concept of abstract data types by adding the notion of
inheritance.

378 Chapter 21 Object and Object/relatiOnal databases

Enhanced Entity Relationship Concepts
An enhanced entity relationship (EER) diagram includes all of

the concepts and constructs that exist in an entity relationship
diagram, with the addition of the following concepts: subclasses
and superclasses, specialization and generalization, categories,
and inheritance. There isn’t a standardized language for this area
(although critically good work is occurring and has been pub-
lished by Chris Date and Hugh Darwen in their book). Their work
based on the exploration and clarification of the original rela-
tional model dovetails neatly with the work done on the EER. For
clarity, the most common terms available will be used, and when
pressed, these will be clarified.

Subclasses and Superclasses
Entities, which are discussed in Chapter 11, often have addi-

tional subgroupings that are of critical interest because of their sig-
nificance to the business area. For example, if a human resource
application is reviewed, there will be an entity called employee.
Within that entity there are different classifications of employees,
such as manager, director, vice president, technician, and engineer.
The set of occurrences in each of these groupings is a member of
the grouping but in the larger sense a member of the employee
group. Each of these subgroups is called a subclass, and the overall
employee group is called the superclass.

A critical concept here is that an occurrence of the subclass is
also an occurrence of the superclass. It is merely fulfilling a differ-
ent specific role. It has to exist as a member of both classes. For
example, in the preceding group, a salaried engineer who is also
a manager belongs in two subclasses: the engineer subclass and
the manager subclass. Another critical concept is that all entity
occurrences don’t have to be defined at the subclass level; some-
times there is no subclass, only the superclass.

Attribute Inheritance
An important concept associated with the superclass/subclass

is the concept of attribute inheritance. One of the definitions of
inheritance is “the derivation of a quality or characteristic from a
predecessor or progenitor.” Simply put, the child or subclass con-
tains qualities or characteristics of the superclass (parent or grand-
parent). Because an entity in a subclass represents membership
in the superclass as well, it should “inherit” all of the properties

Chapter 21 Object and Object/relatiOnal databases 379

and attributes of the superclass entity. The subclass entity will also
inherit all relationship instances that the superclass participates in.

Specialization
Specialization is the process of defining the subclasses of a

superclass. The set of subclasses that form a specialization are
defined on some distinguishing criteria of the different subclass
entities in the superclass. The specialization characteristic for our
previous example of employee (manager, director, vice president,
technician, and engineer) is the “job title” attribute. There can be
several specializations of an entity type that are based on other
identifying or specialization characteristics. An example of this
would be the subclasses of hourly paid and weekly paid as defined
by the specialization characteristic “pay method.”

If all members of the subclass have the same attribute value
on the same attribute in the superclass, then the specialization is
called an attribute-defined specialization. An example of this is the
“job title” example we just saw. If there is a conditional to the value
of an attribute that defines whether the subclass occurrence is a
member of the subclass, then it is called a predicate-defined spe-
cialization. An example of this would be a constraint that the value
in the “job title” field would have to be “engineer” for the occur-
rence to have membership in the engineer subclass. Depending
on the value of the attribute “job title,” an occurrence will be in one
subclass or another.

If the subclass has a specialization and it is neither of the pre-
ceding, it is called a user-defined specialization. This can take
whatever form is necessary for the application.

Generalization
The opposite of specialization is generalization. It is the sup-

pression of individualizing attributes to allow the grouping of the
subclasses into a superclass. For example, dogs, cats, bears, and
moose all are subclasses of quadrupeds (four-legged animals).
Notice that the generalization can be viewed as the inverse of the
specialization. The generalization in the first example was the
“employee,” and in the second example it was “quadrupeds.”

Generalization Hierarchies
A generalization hierarchy is the view of the structure from the

bottom up, which leads us to a more generalized or abstracted

380 Chapter 21 Object and Object/relatiOnal databases

view of the higher classes. A specialization hierarchy is one where
the view is from the top down, where each level leads to more
defined levels of specification. It is simply the top-down view or
the bottom-up approach and view that make the difference.

Multiple inheritance
A subclass with more than one superclass is regarded as a

shared subclass. For example, an engineering manager is a sala-
ried employee, an engineer, and a manager—three superclasses.
This leads to something called multiple inheritance, which is sim-
ply that it inherits characteristics from all of the superclasses with
which it is associated.

Physical Data Design Considerations
Polymorphism: Polymorphism (or operator overloading) is a
manner in which OO systems allow the same operator name
or symbol to be used for multiple operations. That is, it allows
the operator symbol or name to be bound to more than one
implementation of the operator. A simple example of this is
the “” sign.
In an application where the operands are of the type integer,
this plus sign means integer addition. In applications where
the operands are of the type set, then this means it represents
a union. From this you can see that an operator symbol or
name can have two different effects while being the same and
not changing its original characteristics.
Persistence: In most OO databases, there is a distinction
made between persistent classes and objects and the transient
classes and objects. Persistent objects and classes are just that.
They persist after the operation and existence is stored per-
manently. Persistence is one of the most difficult problems
to address in object, and it may or may not be completely
worked out as yet.
Persistent objects represent the historical aspect of the data-
base. Transient objects, on the other hand, exist solely during
the execution of the process and are released when the opera-
tion is complete.
Type hierarchies and class hierarchies: In most data-
base applications there are a lot of objects of the same type.
Therefore, most OO systems have a method for classifying
objects based on their type. But it goes to the extent that the
system permits the definition of new types based on other

Chapter 21 Object and Object/relatiOnal databases 381

predefined types, which leads to a type hierarchy. A type hier-
archy is typically defined by assigning a name and a number
of attributes and a method for the type. These together are
often referred to as a function. An example of a type function
would be:

PERSON: Name, Address, Age, and Social Security Number
(where the format was TYPE_NAME: Function, Function,
Function).

A class hierarchy, on the other hand, is a collection of objects that
are important to the application. In most databases the collec-
tion of objects in the same class has the same type. As previously
covered, the class hierarchy is usually the set of superclasses and
all subordinate subclasses in a top-down hierarchy.

Messaging
This is the operational heart of object oriented processing and

operational activity, which can be best described in the words of
one of the gurus in the field. The topic is the design of Smalltalk,
one of the first object languages and databases developed.

To quote Daniel Ingalls, August 1981, issue, Byte magazine in
Design Principles Behind Smalltalk:

In most computer systems the compiler figures out what kind of
number it is and generates code to add 5 to it. This is not good
enough for an object oriented system because the exact kind of
number something is cannot be determined by the compiler….
Smalltalk provides a much cleaner solution. It sends the name of
the desired operation along with any arguments, as a message to
the number, with the understanding that the receiver knows best
how to carry out the desired operation. Instead of a bit-grinding
processor raping and plundering data structures, we have a
universe of well-behaved objects that courteously ask each
other to carry out their various desires.

Object Identity
An object database must provide a unique identity to each

independent object stored in the database. This unique identi-
fier is typically implemented by means of a systems-generated
identifier. This object ID (OID) is not visible to the outside world
but is kept internally for the system to use when creating, acti-
vating, and using interobject references and operations. It is also
immutable. That is, the OID can never change for an object. If the

382 Chapter 21 Object and Object/relatiOnal databases

object it was assigned to is removed, then the OID should not be
reused, since this would have an impact on the historical abil-
ity of the database and on the persistency of the data within it.
The purpose of the systems generation is that the two main tra-
ditional methods of identification (use of attribute values and
physical addresses) leave the identifiers at the mercy of physical
reorganizations and attribute value changes.

Type “Generators” and Type Constructors
Complex objects within the database must be constructed of

other objects found within the database. Type constructors are the
mechanism for this purpose. The simplest constructors are base or
atomic, tuple, and set. For instance, if we view an object as a three-
term definition, we could have the object ID as the first term, the
second term would be the constructor type, and the third and last
would be the value we are establishing for it. In illustration some of
these would be:

object1 OID1, set, {I1,I2,i3}
object2 OID2, atomic, 5
object3 OID3, tuple, (DeptName, DeptNumber, DepMgr)
With these types of constructors, one can establish the new

object, get its object ID, and give it a value. This definitional pro-
cess may vary between different implementations, but the prin-
ciple is the same.

The support of these constructors requires the working presence
of type “generators.” (I am using Chris Date’s term here to separate
these from the constructor types that are used to create new physi-
cal objects in the database.) These “generator” constructors—set,
list, array, and bag—are collection types or bulk types. This helps to
set them apart from the simpler type of constructors. A set is a group
of like things. A list is similar to a set, only it is specifically ordered.
Because we know the sequence, we can refer to it by position, such
as the nth object in a list. A bag is also similar to a set except that it
allows duplicates to exist within the set captured in the complex
object. As we know, an array is similar to a list, with a third dimen-
sion added that we can also address by positional reference.

Summary
In this chapter we discussed the concepts and important prin-

ciples in the object approach to databases. We discussed object
identity, type constructors, encapsulation, type hierarchies, inher-
itance, polymorphism and operator overloading.

Chapter 21 Object and Object/relatiOnal databases 383

While it is not a complete picture, it will familiarize managers
with the concepts they need to investigate and research further
with the appropriate detail texts. Further reading on object/rela-
tional databases is recommended, since this appears to be the
next developmental stage in the evolution of data processing. It
will merge the benefits of the object design process with the effi-
ciency of relational data structures.

References
Date, C. (1998). Relational database writings. (1994–1998): Boston, MA:

Addison-Wesley.
Date, C., & Darwen, H. (2000). Foundation for Object/Relational Databases. The

third manifesto. Boston, MA: Addison-Wesley.
Ingalls, D. H. H. (1981, August). Design principles behind smalltalk. BYTE

Magazine. Reproduced with permission. © The McGraw-Hill Companies, Inc.,
New York, NY. All rights reserved.

385
Data Architecture.
© Elsevier Inc. All rights reserved.2011

DISTRIBUTED DATABASES

In order to describe how distributed databases are struc-
tured, we need to understand fully how centralized databases are
formed and what some of their characteristics are. In a central-
ized database all the components exist on a single computer or
computer site. The components of this centralized site or com-
puter consist of the data itself, the DBMS, and any other storage
media necessary to provide an orderly operation. Access to the
data stored in the centralized site has been provided by the use
of intelligent workstations and remote access terminals that uti-
lized directed communication links. In recent years a trend has
developed that allows the data and process to be disseminated to
a large geographic area and linked together via a communication
network. These networks are intelligent communications com-
puters and communication mechanisms of their own.

Some Distributed Concepts
First, let us state that a distributed database is a store of data that

should be logically housed together, but for one reason or another
it has been spread over a large geographic area. As stated before, in
today’s corporate world, business is not only country-wide but often
global in its reach. It is a fact we have to live with. These geophysi-
cally distributed sites or locations are connected (as we said before)
by a communication network that breaks down or all but eliminates
those geographical limitations that have been imposed upon it.

We will discuss some of the characteristics and concepts
about distributed databases (DDBS) and distributed database
management systems (DDBMS) in this chapter and cover some
of the concerns.

The Distributed Model
Let us take a look at a distributed architecture model. If we

look at it closely, we will see the familiar three levels of design

22

http://dx.doi.org/

386 Chapter 22 DistributeD Databases

covered in previous chapters: the user view layer, the conceptual
or model layer, and the physical layer. Let us look at each of these
familiar layers and see how they differ in the distributed model.

In the typical distributed model we can see that the user
view layer looks very much the same as the traditional database
design. As you remember, it was this layer that allows us the logi-
cal view of the database and permits us to design without the
constraints brought about by the physical world. It contains
that set of criteria that permits an intercommunication between
the top two layers. Since the look downward can also be a feed
upward, it must be taken into consideration.

The conceptual layer is similar as well. Since the user is
depending on being insulated from the physical world, he or she
is expecting that there is a coherent view of what data content is
available in the database. And it is so.

As the users look down into the database, what they see is the
view of one combined, or centralized database. When they are
expecting a retrieval of information, they expect it back in the
structure that their view has accustomed them to. The concep-
tual layer also contains the necessary mappings and translators
that allow it to talk upward to the user layer as well as downward
to the physical layer. This is still similar to the traditional model,
but there are some dissimilarities that we will cover later.

It is at the physical level that things differ significantly. The
physical layer is fragmented and distributed over many sites, and
possibly many different machines at those sites. Each site may or
may not be in the same format or data structure that is sympa-
thetic to the client site. One key principle to the distributed design
is to strategically place the data structures so as to discourage or
minimize distributed joins from being accomplished due to the
overhead they place on the system. Depending on what type of
database it is (read-only versus transactional), it may be more pru-
dent to replicate data than fragment it.

How Does It Work?
The user layer manages the user interface. That is, by utiliza-

tion of the conceptual layer mappings, it knows how to format and
translate all the interfacing activity to be applied to the appropri-
ate entity in the conceptual layer. It takes results being returned
and routes them to the appropriate device in the user’s world.

The conceptual layer manages the translation of the downward
view into the physical world by way of a global schema, which
identifies all the components in the distributed environment. This

Chapter 22 DistributeD Databases 387

is in turn connected to and associated with a global catalog that
maintains data mapping strategies and access paths. Also, as part
of the conceptual layer is a transaction monitor that works with
the global catalog to ensure it can “farm out” the work and coordi-
nate the response to the work unit correctly for presentation back
to the user. All of these things are bidirectional and allow the data
to flow upward as well as downward.

Distributed Data Design Concepts
The following are some concepts and techniques for disaggre-

gating the database into component structures that can then be
distributed. As has been pointed out before, it is best to develop
from a conceptual model that does not have any physical envi-
ronment bias. There are two main concepts that we can cover
here. The first one is fragmentation and the second is called data
replication. When we are examining data replication, we will
cover fragment allocation that will allow us to replicate pieces of
data to different areas. All of this information on the fragmenta-
tion and replication will have to be handled within the DDBMS’S
global system catalog.

Fragmentation
It is a basic assumption that all conceptual models that we are

starting with will be in a relational format. This allows the vari-
ous relations or tables to be placed in the locations where they are
needed. Obviously, the full table is the most common and com-
plete form of the fragmentation. An example of this could be where
a company has a particular department that operates strictly out
of one location and none other or is compartmentalized so some
functions only occur at specific sites. However, there are possible
situations where the tables could be broken down and distributed
to different locations, such as when a company’s personnel files are
allocated to the location where the employees work.

There are two ways to break down the tables for distribu-
tion of this type. The first is by horizontal fragment, which is the
selection of a subset of the rows of a table that when distributed
become the table definition and content at the distributed loca-
tion. This type of fragmentation is often controlled and/or guided
by key attribute values. For example, if employees with employee
IDs between 100 and 1,000 are at location A, and those between
1,001 and 2,000 were at location B, then the subset of records for
location A could be kept at A, and those for B could be kept at B.

388 Chapter 22 DistributeD Databases

In this case the employee ID was used as the controlling/locat-
ing attribute. Horizontal fragments don’t have to be limited to a
specific entity such as employee. A particular site may have all
of the horizontal fragments of all of the entities involved in the
company’s business at that site. It is in effect a microcosm of the
company built on the company’s lines and structures.

The second type of fragmentation is vertical fragmentation.
This type of fragmentation splits tables into multiple tables with
the same key. Let us look at the employee’s table again. We can
take the same employee table and separate all columns that
reference personal information (such as marital status, home
address, birth date, and sex) and keep them in one table. We can
then take the remaining columns that have to do with business
(skills, payroll, title, hiring information, and current rating) in
another table. This allows two separate processes in two separate
places to access and control the two subsets of data.

The drawback to this type of fragmentation is that in order to
facilitate the complete reuniting of the information, a complete
copy of the original primary key must be attached to each one of
the tuples in each of the tables, making it longer. Surrogate keys
are a possible solution, but it must be evaluated carefully before
implementation.

Replication
Replication is the creation of redundancy that will allow the

processes needing to access information to proceed smoothly
and effectively. It maximizes the availability but has its draw-
backs. At its very worst it is complete redundancy at every dis-
tributed location. This is the worst because the data has to be
freshened at each of the sites in order to keep it accurate. Very
careful evaluation should be done before entering the replication
game unless it is for slowly changing reference data that can be
updated on a weekly basis or if you have the interval of time and
overhead capacity to keep the data referentially intact.

The process of analyzing and selecting the best approach of
distributing the data for replication is called distributed data allo-
cation. Allocation is simply the process of defining what data will
be replicated on what site.

Homogeneous Distributed Model
When a distributed data model refers to data that are frag-

mented on similar devices in its geographic distribution, it is

Chapter 22 DistributeD Databases 389

called a homogeneous model. That is, all components of this
model are consistent as to platform, protocol, and communi-
cations interface. Homogeneous distributed designs are much
easier to implement than others because everything is consistent
and has no need for translation or reformatting.

Figure 22.1 shows an example of a common homogeneous
distributed model. Within this new homogeneous distributed
model we have but two concerns. The first is to ensure that we
have analyzed and fragmented the overall schema to build detail
schemas for the local databases so they service the local work
need. The data needs of the local users will take priority over the
centralized users if we want to maintain the autonomy that is so
highly prized.

The second consideration is that we have to fill the global
schema with all of the information from the local database sche-
mas so all the transaction activity can be directed appropriately.
This ensures that the centralized users get what they need with-
out victimizing the local sites for either control or performance.

Federated or Heterogeneous Distributed
Model

When the concept of the federated/heterogeneous model
was first introduced, it seemed impossible to use without
sophisticated software to accommodate and otherwise enable

Manufacturing Headquarters

Distributed database

Mfg.com

Sales.com

Sales

HQ.com

Figure 22.1 a homogeneous model.

390 Chapter 22 DistributeD Databases

the distributed process. With the advent of many different plat-
forms, all providing useful data, it becomes critical to address this
problem.

The problem with the federated/heterogeneous model, if you
remember, is the diverse distribution of data among many differ-
ent software products and data structures. It is not uncommon,
for example, to have relational, hierarchical, and network mod-
els all being part of a federated/heterogeneous model and each
of these being implanted on different vendors’ DBMSs. Nor is it
uncommon for us to see a conglomerate of client-server and cen-
tralized applications. How do we make them all work in today’s
marketplace?

As you will remember, the communication network is the key
to a distributed architecture. Into this need came the evolution
of the Internet and the Intranet (a corporate private form of the
Internet). With the communication links in place, let us examine
the federated/heterogeneous distributed model.

Looking at Figure 22.2, we can see the different front ends that
are present. They include user views, local servers, schemata,
and local databases. This can be categorized by the distributed
or centralized in viewpoint. It looks like all the other distributed
models, but there are additional components.

The new components of the federated/heterogeneous archi-
tecture are the import schema, the export schema, and the

Manufacturing Headquarters

Import schema

Export schema

Import schema

Federated/Heterogenous

Distributed database

Mfg.com

Sales.com

Sales

HQ.com

Figure 22.2 a federated (heterogeneous) model.

Chapter 22 DistributeD Databases 391

federated interface. The import and export schemas are to define
what data are to be imported into and out of the federation. In
other words, what accessibility do we want to give to the outside
world to the data, and what data do we want to access in the out-
side world?

These represent a layer in the security architecture. It is the
first layer and can be as specific as down to the column level. The
second level of this security architecture is the federated/hetero-
geneous interface.

Within the federated/heterogeneous interface is some-
thing called the protocol manager or contract manager. This is
responsible for partnering with the import and export schemas
to ensure that the only data that are viewed are specified in the
protocol manager or import/export contract. By examining the
messages coming in and going out of the federated/heteroge-
neous server and adhering to all the import and export rules, all
members of the federated/heterogeneous database can have the
access to the data they need for the time they need it.

This discussion on distributed models has been simply stated
in order to facilitate understanding the concepts. It is, however,
not nearly so simply implemented. We are only trying to discuss
the concepts involved, not the actual implementation, which may
have many different forms and involve many different products.

Distributed DBMSs
Why did distributed DBMS develop? What are some of the

advantages of distributed over centralized DBMSs? These are
good questions, and we answer them in the next few paragraphs.

Many applications are distributed by nature. A container
shipping company can have multiple locations or branches in
the same or different countries. How do companies handle this?
Most companies of any size have this problem (or advantage)
and handle it by distributed data processing. Imagine if you can
an application that services this Acme Container shipping com-
pany. The local application users can do their local work on their
local data structures at the local sites. The global or parent users
of the application can have access to the local data for summary
or control functions like locating shipments.

One characteristic of the local database in this company is
that most of the users and data sources and processes are located
at the local site. This permits autonomous or semiautonomous
activity. That is, it allows the local site control over its own data
without shipping its shipping data anywhere. This autonomy

392 Chapter 22 DistributeD Databases

allows separation of function to take place and local control
over local data. When the parent company needs the local data
for problem resolution or tracking, it can easily get to it using the
interconnections of the network.

Reliability and Availability
The distributed concept allows more reliability and availabil-

ity. Reliability is defined as the probability that the application
will be up and connected at any given time. Availability, on the
other hand, can be defined as the probability that the system will
be continuously available during a period of time. Reliability and
availability at a local level provide process independence should
the central location go down or lose connectivity, which was a
major flaw with the centralized structure. When further reliability
and availability and independence are needed, it can be ensured
by the replication of data at other sites so the process could be
done at the other site if the primary site is down.

Controlled Data Sharing
One of the major obstacles that had to be overcome was the

need for the ability to share certain data. In most cases it is a class
of data that we often refer to as reference data or domain con-
straint data. This is data that are common for validation and trans-
lation throughout the distributed database. By having access to
and sharing common reference data, it adds business integrity to
the overall distributed application. When this common reference
data are shared throughout the application, then there is no need
to reconcile between sites or to the centralized site. Of course,
there are reasons for sharing nonreference data on a read-only
basis, as well as having distributed update and insert activity take
place. It just has to be planned for and controlled through either
the application code or the vendor software.

Certain vendors’ distributed DBMSs allow for the sharing of
data from site to site while still allowing autonomous control to
the local site. This allows local control and processing but also
allows a limited form of control by a centralized or parent site. By
setting and defining options within the environment correctly,
the amount of data sharing and remote access to shared data can
be controlled to prevent unbalanced or poorly distributed access
loads to occur on any local site machine.

The limited control of data sharing can also be set to allow
distribution of DDBMS software changes to the remote sites in a

Chapter 22 DistributeD Databases 393

central push to local pull scenario. The software could be pushed
out of the central location and pulled and applied at the local
level. This allows for smoother distribution of software and the
consistency of protocol to make everything run smoothly.

Performance
Another advantage that fostered the growth of distributed

databases is improved performance. When a large database is
distributed, it becomes (in effect) a bunch of smaller ones. Each
smaller database, while retaining the overall characteristics and
structure of the other components, runs in its own environ-
ment and on its own hardware, software, and transaction load.
This will result in the local databases having much better per-
formance for queries and accesses run on the local database
than if they were in a large database. In addition, transactions
that involve access to more than one site can take advantage and
run the process streams in parallel, thus shortening the through-
put time of the transaction. The separate results are then recom-
bined to give the final answer.

The use of a distributed database also offers local tuning abil-
ity. When a distributed database is designed properly, it provides
for performance independence. For example, if for some reason
one particular distributed site had a hardware, software, or even
data volume problem, it can be analyzed, corrected, tested, and
implemented without impacting the performance of the applica-
tion of any of the other sites and users.

Qualities Required in a DDBMS
Distribution as a whole causes problems, but these are com-

plicated even further when it comes to the DBMSs that have to
handle the distributed process. One of the complexities that
is involved in the DBMS side of it is the need to handle certain
additional functionalities over and above those normally handled
by the centralized DBMS. Let us examine each of these additional
functions:
1. The distributed DBMS needs to be able to access remote sites

and transmit queries and data among the various sites by way
of a communications network. This means splitting the activ-
ity apart but keeping information on how to recombine it.

2. The distributed DBMS must be able to keep track of the data
distribution and replication within a DBMS catalog.

394 Chapter 22 DistributeD Databases

3. It needs to have the ability to devise execution strategies for
transaction activity that accesses more than one site.

4. It must have the ability to decide which copy of the replicated
data is the book of record data to ensure the proper control
over the update process.

5. It must have the ability to maintain consistency between all
the replicated copies of data.

6. Finally, it must have the ability to recover from individual site
crashes and new failures, such as communication failures.
All of these issues need to be dealt with by the distributed

DBMSs, and, indeed, most of the successful products in the
marketplace have addressed these to some degree or another.
Additional levels of complexity may arise when the location of the
data and the physical network topology are brought into play.

Other Factors
The design of the databases may have a profound effect on

the load that the DBMS must handle. An analysis of what data
are needed where, and where and how replication, segmentation,
or separation will be handled, is a necessary part of the design.
Critical importance must be considered when developing recov-
ery scenarios and backup plans.

The physical topology of the network that is connecting the
sites is also problematic. An example of this might be that sites 1
and 2 are directly linked by land lines (phone lines as opposed to
microwave or satellite), and sites 2 and 3 are also linked by land
lines. But there are no direct links between 1 and 3. This can cause
a problem. Because of this topology, all activity going from 1 to
3 must go through 2. This builds a certain dependence on site 2,
which profoundly affects performance management, distrib-
uted query management, and backup/recovery scenarios. Site
2 becomes the limiting factor in the process. To resolve this, it
becomes critical that the limiting or gating site be the most opti-
mally tuned, the best hardware equipped (speedwise), and the
best backed up and most secure. Above all in a distributed envi-
ronment, protect the investment.

An Overview of Client Server
Let us look at a bit of history before moving on. It might help

us understand the driving forces behind distributed process-
ing. Client-server architecture was developed to deal with the
new computer environments in which we exist. There were

Chapter 22 DistributeD Databases 395

many computers and data files and peripheral equipment that
needed to be linked together for efficiency purposes. The idea
was to bundle things together to allow economy of processing.
Specifically, the idea was to define servers (high-speed comput-
ers that exist to serve some capacity) to respond to the various
functionalities that might be needed for the everyday processes.

Following this line of thinking, we would have file servers,
which would contain all of the files needed by the group of users
that the network connecting them served. A specialized form of
this, the database server, would handle the group of users’ data
resource needs. A print server would store, queue, and print the
group of users’ hard-copy outputs. It is through this process that
specific electronic resources can be used for common functions
by many different clients. This idea was carried over to software,
where specialized software tools such as Microsoft products and
DBMSs could be installed on a common server and used by the
client group.

This client-server architecture has been used to facilitate the
growth and has been incorporated in the distributed DBMS pack-
ages as they moved closer and closer to the full support of a dis-
tributed environment. The technique that is being used most
commonly today is to divide the DBMS software into two com-
ponents to eliminate some of the complexities that we have men-
tioned in the preceding paragraphs. Some sites may run the client
software only. Other sites may be dedicated server machines of
some type. Still others might have both in their configuration.

Functionality within Client Server
Being able to divide the functionality between the client and

server environment has not been standardized. Different strate-
gies have been posited. One approach is to include the function-
ality of the centralized DBMS at a lower level. Several products
have taken this approach with their DBMSs. In these products a
SQL server is provided to the clients. SQL is a standard among all
relational DBMSs, and various servers, even those that are pro-
vided by different software vendors, can often be made to talk to
one another via SQL. Modules exist in these products that break
down global queries into local queries that can be handled at
each site. Interaction between the sites would loosely follow the
following protocol.
1. The client-server software parses a user query into a number

of independent subqueries. Each subquery is then sent to a
different site to be handled.

396 Chapter 22 DistributeD Databases

2. Each server processes its own subquery and sends the result
back to the sending client server.

3. The client-server software at the originating site then recom-
bines the result of the subqueries to come up with the com-
plete answer.
In this scenario the SQL server is called a database proces-

sor or database server. It is also called the back end server. The
client-server machine, on the other hand, is called the front
end processor or machine. The interaction between these two
machines can be defined explicitly by the user, or in other imple-
mentations it may be done automatically by the software.

In another scenario, the software of the DDBMS is separated
between the client and the server in a more integrated way. In this
case the server may contain the part of the DDBMS that handles
storage, concurrency, replication, and retrieval. Conversely, on the
client side, the user interface, data dictionary, and code used to
interact with programming languages, query optimization func-
tions, buffering, and the like are retained to ensure the best
functionality. This client-server interaction is often referred to
as tightly coupled, as opposed to the previous proposal, which is
regarded as loosely coupled.

A Typical DDBMS
In a typical DDBMS there are three generally recognized levels

of software:
1. The server level. This software is responsible for maintaining

local data management, much like a minicentralized DBMS.
2. The client software level. This software is responsible for distri-

bution activities. It reads a DDBMS catalog and routes or directs
all requests and queries to their appropriate destinations.

3. The communications level. This software enables the client
to transmit commands and data among the various sites as
needed.
Although this is not strictly part of the DDBMS, it does provide

the necessary communication linkages and services.
Aside from the basic functions that we have mentioned, a

possible function needed by the client side of the client-server
interface is the ability to hide the details of the data distribution
from the user. This, in effect, allows the user to write global que-
ries and processes as if the database were centralized. Moreover,
it does not require that the necessary site of processing be spe-
cifically noted. This is normally referred to as “distribution
transparency.”

Chapter 22 DistributeD Databases 397

Distribution Transparency
DDBMSs that have a high degree of distribution transparency

make it much simpler for the using client to access the data-
base, but it imparts a more complex operating environment and
increases the burden on the software to do translation, location,
and distribution within itself. Low-transparency systems, on the
other hand, need to have a well-educated and skilled client and
user community, since they are burdened with the specification
of the translation, location, and distribution. This requires that
the client software and users have more knowledge of the com-
plexities and can actively construct the transaction distribution
that is required.

Simply put, if the client sees a single integrated schema of all
the data, then there is a high degree of integration or transparency.
If on the other hand the client sees all the fragmentations, replica-
tion, and segmentation of the data, then there is no schema inte-
gration. In this second case the client needs to append the site
name of the residence of his or her data to the reference in the
query. As stated before, it is more complex, and the burden is on
the client side in this type of DDBMS.

Types of DDBMSs
Distributed database management system is a loose term that

covers many different types of DBMSs. The principal thing they
all share is the fact that the data and the software are distributed
over many sites and are connected by a network that allows com-
munication and processes to be shipped and activated from site
to site. In any discussion of the types we must consider some of
the characteristics that differentiate these types. One factor that
we have to consider is the homogeneity of the DDBMS software.

If all of the servers and all of the client computers and all
of the software are identical throughout the DDBMS, then it
is regarded as being homogeneous. If they are not, then it is
regarded as heterogeneous.

Another factor to be considered is the degree of local autonomy.
If the DDBMS has all access to the DDBMS through a client, then
the system is said to have no local autonomy. If, however, there is
direct access to the DDBMS by transactions and access is allowed to
the server, then it is said to have some degree of local autonomy. The
range of flexibility of autonomy is very wide. On the one hand, we
can have a single view, which looks like a single centralized DDBMS
and database and has access through a client. This provides no local

398 Chapter 22 DistributeD Databases

autonomy and resembles a centralized system using distributed
equipment for query and transaction purposes. On the opposite
side of the range is the federated database, which is an amalgam
of servers, each having its own independent DBMS, its own local
transactions, and its own local users. This results in a high degree of
autonomy because each system has to run independently, although
they can be connected when necessary.

In a heterogeneous environment such as the federated data-
base architecture, the needs of the other sites for access are han-
dled by the use of export schemas that will allow the structure to
be used and interpreted elsewhere. As you may have already sur-
mised, the federated database is a hybrid of the distributed and
centralized systems.

Problems in DDbMss
There are numerous problems that occur in distributed envi-

ronments that don’t happen in the centralized ones. This is sim-
ply due to the complexity of one versus the other. The complexity
is from both the physical components and the software compo-
nents. There is also the network, which in fact has become part
of the DDBMS. We can discuss some of the things here and then
address each in a conceptual manner. The specific method needs
to be addressed within and as part of the implementation of the
vendor’s DDBMS product.

One of the first problems is with the distributed information.
Multiple copies of data such as reference data need to be kept
in synchronicity with each other. A concurrency management
mechanism needs to be in place that coordinates the consistency
of these copies.

Individual Site Failure’s Effect on Data
Integrity

Failure of individual sites in the distributed network soon cre-
ates a situation where data has become nonsynchronous. Not
only does the transaction activity to the site have to be rerouted
or returned, it has to carry a message to resubmit or, better yet,
automatically resubmit the transaction after the recovery is com-
plete. It is for this reason that the recovery mechanism has to be
tied to the concurrency manager to ensure that when the site
does come up, it is immediately brought up to date so it can pick
up where everyone else is at that point and subsequently open
the door to transaction activity.

Chapter 22 DistributeD Databases 399

Individual Site Failure’s Effect on Traffic Flow
Individual site failure can also have a profound effect on

transaction flow. Based on the topology of the distributed envi-
ronment, key sites may severely affect transaction routing and
load balancing. While this is normally taken into consideration in
the distributed database design, it also affects the dissemination
and placement of the software that will accomplish the rerouting
of activity should something go awry.

Communication Failure
Another problem associated with DDBMSs is the failure of the

communication links. Complete dependency of the entire dis-
tributed environment is in the hands of the network. A mecha-
nism must be part of the DDBMS that will ensure that the overall
majority of the DDBMS and the applications that run on it can
continue running autonomously until the communication fail-
ure has been corrected. One way to compartmentalize and limit
failure is to partition the network into failure segments that will
allow the DDBMS to do precisely that. Unfortunately, network
partitioning increases the amount of complexity that has to be
dealt with in both application access and backup and recovery.

Distributed Commitment
Distributed commitment for data integrity is another problem

for DDBMSs. Commit strategies are developed to ensure that the
integrity of the work is finalized or “committed” when the unit
of work is completed. When the unit of work involves data from
many sites, the “commit” cannot be done until all of the indi-
vidual sites have completed their units of work. When a failure
occurs, data must all be “rolled back” to what it was before any
activity took place so a resubmission of a process will start with
a fresh slate. A two-phase commit protocol has been developed
that will address this by ensuring that there is an appropriate
handshake made before the sites commit. Most DDBMSs have
the capacity to handle two-phase commits.

Distributed Deadlocks
A deadlock or “deadly embrace” is defined as two differ-

ent resources that require the same resource at the same time.

400 Chapter 22 DistributeD Databases

Normally, most DBMSs have a prioritization and sequencing
scheme set up so no two processes are at the same point at the
same time. It does occasionally happen, and when it does, there
needs to be a mechanism in place that will choose one of the
deadlocked partners as the victim and terminate it. Without this
logic in place, a deadlock can cascade and build up additional
locking to the point where the DBMS will fail and come down.

Within the distributed environment, deadlocks are more preva-
lent because the objects of access are distributed. Therefore, when
Application A needs resources 1, 2, 3, 4, and 7 and Application
B needs 3, 4, 5, 6, and 7, Application A takes what it needs and
Application B takes what it needs. Whoever gets to 3 and 4 first will
be the temporary owner of these until they are done with them. All
this is fine until they both need 7. At this point, Application A has
grabbed, say, 1, 2, and 7, and B has taken 3, 4, 5, and 6. What begins
now is a deadly dance while each waits for the other to release its
use of the conflicted resource. And each continually checks for
the release by the other. Without the system choosing a victim, the
machine would back up and come down.

Summary
This is a very broad subject area, and we have only touched

on the salient points and concepts. If distributed databases hold
promise for the company’s business, then they should be investi-
gated further. Remember the simple caveat: if you break it apart,
remember two things: first, how many pieces there were, and sec-
ond, how they all fit together.

Reference
Elmasri, Ramez, & Navathe, Shamkant B. (1999, August). Fundamentals of

database systems. Reading, MA: Addison-Wesley.

INDEX

1:1 relationships, 211–212, 212f
collapse of, 291
see also Relationships

1:M relationships, 211–212, 212f

Abstract data types (ADTs),
375–376

Abstraction, 83
Access path mapping, 182,

302–305
PLD and, 302

Access-level denormalization, 297
Activity composition diagram

illustrated, 284f
interaction analysis and,

283–284
Adaptability, as force in

organization, 136
ADBM. see Application database

model
ADM. see Architecture

development method
Administrative overhead, 150
Aggregation

defined, 377
operation, 346–347

Agile method, 187–188
Alexander, Christopher, 7–8, 23
Algorithms, 63–64

for data names, 64
initial start of, 64

Antiproductivity, 146
Application architecture, 29
Application database model

(ADBM)
creation, 200
defined, 201

Application development
rapid, 168–170
templates, 183

Application patterns, 52
Applications

audience and services,
207–208

data dictionary, 63
distributed, 391
history, 223–225
releases, 199–201
scope and objectives, 207–208

Architects
defined, 25
problems with, 16
in Zachman framework,

26–27
Architectural artifacts

defined, 25
Zachman framework, 28

Architectural clusters, 108–110
Architectural descriptions, 25
Architectural development

methods, 185–188
Architectural frameworks, 25
Architectural level models, 188
Architectural methodologies, 25
Architectural principles

design problems, 6–7
pattern recognition, 5
understanding, 1

Architectural processes, 25
Architectural solutions, 16–17
Architecture development

method (ADM)
cycle, 32
defined, 29, 30
illustrated, 31f
phases, 31

Architecture team, 176
Architectures

alternatives, 13–14
as ancient skill, 4
area analysis and, 13
combined perspective

representation, 24
corporate, 100–102

day-to-day business
correlation problem,
14–15

defined, 3–6, 25
dimensional, 329–330
enterprise, 2, 16
enterprise-level, 57
evolution, 13
as evolving frameworks, 14
foundational stability and, 14
framework necessity, 24
frameworks, 23–26
guidelines, 13–14
information, 11–12
as living mechanisms, 17
nondistributive focus, 15–16
“pie-in-the-sky” problem,

15–16
problems in, 14–16
questions, 24
as response to integrated

collections, 10
standards, 13
system, 57, 58
target, 38
technology, 57–59
top-down nature, 15–16
warehouse modeling

dependence on, 318
Archiving, 231

database population and, 279
defined, 232
frequency, 232
physical design and, 260–261

Areas, analyzing and
defining, 13

Arrays, 382
Artificial keys, 251
Assembler languages, 374
Association, 377
Associative entities, 210, 292
Atomic process models, 188

http://dx.doi.org/

402 INDEX

Attitudes, as force in
organization, 136

Attributes, 208–209
access denormalization, 298f
aggregation, 347
creating with data, 214
database management system

(DBMS), 282
defined, 208
derived, as summary data,

298–299
domains of, 215
foreign keys, 249
inheritance, 378–379
movement of, 297
as optional or required,

208–209
overloaded, 219

Audit
physical design and, 260
trails, 265

Automation, 87–88
business dependence on, 140

Bags, 382
BAS (business activity

segments), 59–60
BECs. see Business entity

clusters
Boehm, B. W., 186–187
Bottom-up approach

benefits of, 53–54
business issues and, 365
defined, 53
drawbacks of, 54
enterprise data architectures,

364–366
governance, 365
impact, 364
problem priority sequence,

364
scope, 365
standardization, 365
technology-oriented starting

point, 365
Bounded simple history, 225,

227
defined, 227
example, 234

viewpoints, 227
BRM (business reference

model), 36
Built to Last, 118
Business activity segments

(BASs), 59–60
Business architecture, 29
Business area data modeling,

179
Business entity clusters (BECs)

defined, 59
subclusters, 59

Business evolution, 93
problem of, 95–96
stages, 130f
today, 104–106
what can we do about it?, 107
when will it end?, 106–107

Business evolutionary model,
131–136

consolidation level, 131
innovation level, 136
integration level, 135
operational level, 131
optimization level, 135–136

Business organizations. see
Organizations

Business patterns, 51–52
Business realities

cycle times are shrinking, 128
globalization both helps and

hurts, 129
information is lifeblood of

business, 130–131
information strategies and,

127
only constant is volatility of

change, 129
only so much juice out of a

turnip, 128
penalties for ignorance are

harsh, 129–130
rules are different, 128–129

Business reference model
(BRM), 36

Business strategies subject area,
114

Business strategy and planning
entities/entity clusters, 109

subject area, 112
Business today, 104–106

Candidate keys, 249–250
CASE tools. see Computer aided

software engineering
tools

Centers, 10
Circular references

existence of, 295–296
resolution of, 295–296

Class hierarchies, 381
Classes, 372

behavior, 372
classification and, 376
collection, 46
defined, 45, 372
hierarchies of categories and,

372–373
inheritance, 373
instances, 372

Client servers
functionality with client

server, 395–396
originating site software, 396
overview, 394–395
parsing, 395
server processing subqueries,

396
see also Distributed DBMSs

Cluster analysis, 241
Clustering

relational, 243
solutions, 243

Clusters
creep, 243–244
data, 242
defined, 241
deletes, 245
density, 242
dimension, 242
external isolation, 241
growth, 243
inserts, 244–245
internal cohesion, 241
physical structures, 245–246
properties, 241–242
separation, 242
shape, 242

INDEX 403

shrinkage, 243
as tables, 246
theory application, 242–244
updates, 245
variance, 242

Codd, Edgar “Ted”, 274
Collapse operation, 346
Collection classes

array, 46
bag, 46
dictionary, 46
list, 46
set, 46

Common pattern language
(CPL), 8–9

Common requirements vision
(CRV), 39–40

Communication
departmental problems, 98
failure, 399
formalized, 150
separation function, 96–97

Complex history, 225, 227–228
defined, 227–228
rules for, 228, 228
types of, 227–228

Component isolation, 83
Components reference model

(CRM), 36
Composite load maps

of accesses, 303f
defined, 302–303
development of, 303f

Composite patterns, 52
Composition, leveraging, 19
Compromises, 323–324
Computer aided software

engineering (CASE) tools,
75

for code and database schema
generation, 75–76

discriminators, 296–297
ER variations and

improvements, 192
in model development,

195–196
ORM and, 194

Conceptual business model,
212–216

in entity normal form, 214
functional decomposition

diagram, 213
steps, 213

Conceptual layer, 269
Concurrency, 257–258

application-level control of,
258

defined, 257
issues, 257

Concurrent access, 264
Consistency

distributed DBMSs, 394
as force in organization, 136

Consolidation level (business
evolutionary model), 131

Construction, 189
Core ideological values, 118

Disney, 119
GE, 118
for mission and objectives,

120
Motorola, 119
Sony, 119
Wal-Mart, 119

Corporate architectures,
100–102

business strategy and
planning, 109

customers, 108
equipment, 109
external organizations, 108
finance, 108–109
generic subject areas, 108–110
human resources, 110
locations, 109
plant, 109
products, 110
regulation, 109
sales and marketing, 109
service delivery, 109
supply, 109–110

Corporate business language,
335–336

Corporate data architecture,
175–176

Corporate data policy, 176
Corporate information

planning, 86

Corporate knowledge,
114–115

Corporate systems planning, 85
CPL (common pattern

language), 8–9
Cross-functional reporting, 329
CRUD matrix, 285, 285f
CRV (common requirements

vision), 39–40
Culture

of distrust, 41
as force in organization, 136
of narcissism, 161

Culture change, 158–160
defined, 158–159
different approach to, 163
downsizing and, 159
political aspects of, 159–160

Current data inventory, 335
Current occurrence, 225, 226
Customers

business organization
creation, 118

entities/entity clusters, 108
subject area, 111

DASD (direct access storage
device), 291, 297–298

Data
assembly and maintenance,

21
as business entities, 28
capture, 22
domain constraint, 65
evaluation, 290
evolution, 326
function integration, 179–180
gathering and classification,

178–179
lineage, 360
management organization

and, 98–99
management-oriented, 322
operational, 321
organization, 67
overload, 11
ownership, 22
partitioned, 235
perspectives, 29

404 INDEX

Data (Continued)
population quantification of,

256–257
processes using, 42
quality, 21–22, 360
reference, 220
as renewable/reusable assets,

21
scrubbing, 22
storage, 22
strategic, 321
summary, 298–299
tactical, 321
trusted, 360
usability, 362
utilization, 22
validation, 22

Data access
concurrent, 264
implications, 264
in physical design, 264–265
universal, 360

Data administration, 68
focus of, 68
personnel, 68

Data administrators (DAs), 198
Data analysts, 313
Data architectures, 178

benefits of, 318
in business functionality, 57
corporate, 175–176
defined, 29
enterprise, 58
see also Architectures

Data content security, 64–65
Data definition language (DDL),

271, 291
Data dictionaries

contents, 66
for individual applications, 63
as metadata repository, 66
passive, 63
policies and procedures, 66

Data discovery
process, 335
products, 336

Data flow diagrams (DFDs), 81,
193

Data governance, 21

Data independence, 270–271
logical, 270
physical, 271

Data integrity, 262
Data interdependence, 85
Data inventory, 335
Data inventory analysis, 179
Data manipulation language

(DML), 271–272
Data modeling, business area,

179
Data modeling phase, 90
Data models. see Models
Data organizations, productivity

inside, 139
Data planning, 99–100
Data policies

as foundation building codes,
21

implementation of, 21
principles, 21–22

Data redundancy, 97–99
Data reference model (DRM), 36
Data sharing, 64–66

business need time frame, 65
definition of, 64–65
encouraging, 22
glossary of terms, 65
model, 65
naming standards, 65
requirements, 64–66
translation rules, 65
validation logic, 65

Data sources, 322
Data warehouses, 309

architecture, 337–339
architecture components, 338
characteristics, 317
components, 316
components illustration, 316f
defined, 315, 337–338
dimensional, 321, 331
dimensionalized data

repositories, 338
DSS requirements, 317
ELT, 338
enterprise, 357
enterprise-level data

architecture, 321

external sources, 338
hybrid ER-dimensional,

331–333
levels of abstraction, 315
modeling, 317–318
modeling dependency on

architectures, 318
operational application

systems, 338
operational databases versus,

339
perceived business use, 315
as read-only, 339
relational, 321, 330–331
reporting databases versus,

314–315
structure evolution,

315–316
summary, 321
user interface layer, 338
users, 338

Database administration, 68–70
centralized area, autonomy,

70
centralized area, building, 70
centralized area, placement,

70
continuity objectives, 71
depth of knowledge

requirement, 69
design reviews, 71
development process

standards, 71
group, setting up, 70–72
object management tools, 69
performance monitoring

tools, 70
preimplementation

walkthroughs, 71
problem areas, 68–69
responsibilities, 68
service-level agreements

implementation, 71
tools, 69–70
utilities, 70

Database languages, 271–272
Database management systems

(DBMSs)
attributes, 282

INDEX 405

automated recovery systems,
290–291

classification of, 272–274
column types, 282
dirty reads, 257–258
as engines, 291
file-basis functioning, 290
referential integrity within,

236
see also Distributed DBMSs

Database security, 265
Databases

decision support, 313
distributed, 385
hierarchical, 272
network, 273
object, 274
OLTP, 316–317
physical considerations, 267
physical design factors, 274
population on, 279
relational, 273
reporting, 314–316
time as dimension of, 223
traversal chain, 276–277

Data-stores, 81
Date effective processing, 236
DBMSs. see Database

management systems
DDL (data definition language),

271, 291
Deadlocks, distributed, 399–400
Decision making

decentralized, 149
levels of, 321
operational, 321
process changes, 322
strategic, 321
tactical, 321

Decision support
databases, 313
performance, 317

Decisions
components of, 311–312
discussion, 311
management purposes, 322
reporting, 314
responsibility, 312–313
semistructured, 310

structured, 310
tenet, 310–311
unstructured, 310

Degree, as force in organization,
136

Deletes
analysis of expected

frequency, 277
cluster member, 245

Denormalization, 218, 275
access-level, 297
of attributes, 298f
dimension tables, 341, 342
entity relationship diagrams

(ERDs), 291–293
nonrisk, 323–324
surrogate keys, 301f
synthetic keys, 301f

Dependency chains
defined, 345
identifying, 345
illustrated, 346f

Dependent entities
defined, 210, 344–345
representation, 344–345

Derived attributes, 298–299, 299f
Design

with future of the organization
in mind, 120–121

methodology, 85–87
methods, 75–76
physical, 255
physical models, 229–230
physical-level design, 216
process, 6
solution, 6
structured methods, 79–80
team, 177

Design Patterns: Elements of
Reusable Object-Oriented
Software, 44

Design problems, 6–7
forces on, 7f

Designing
composition and environment

and, 19
current and future and, 19–21
evolution and, 19

Detail entities

defined, 344
as dimension table basis, 344
examples, 344

Development control processes,
202–203

Development methodologies, 75
defined, 75
need for, 76
servicing of business needs,

76
structured, 77–79
types of, 76

DFDs (data flow diagrams), 81,
193

Dimension models, 216
denormalization and, 325
evaluation, 326

Dimension tables, 325
combining, 354
custom, 325
denormalization, 341, 342
fact tables versus, 341

Dimensional data warehouses,
321

architecture, 337–339
best use of, 331
conceptual architecture, 330f
design option review, 355–356
from enterprise models, 337
entities categorization,

344–345
refining design, 354–355
structure design, 343–344
summary, 355
see also Data warehouses

Dimensional history, 237
Dimensional modeling, 338–339

in data warehouse design, 339
defined, 338
as iterative process, 354–355
primary objective, 340

Dimensional models
advantages, 329
aggregation operation,

346–347
basis, 326
collapse operation, 346
components, 340
concepts, 339–340

406 INDEX

Dimensional models
(Continued)

definitions, 325
design options, 347
dimension tables, 340
fact tables, 340
flat table schema, 348
placement of, 324
problems associated with,

329–330
producing, 346–347
purpose of, 325
snowflake schemas, 352
star schema clusters, 352–355
star schemas, 348–352
stepped table schema, 348

Direct access storage device
(DASD), 291, 297–298

Disaster recovery plans, 164
Discriminators, 231
Distributed commitment, 399
Distributed databases, 385

concepts, 385
design concepts, 387
design factors, 394
fragmentation, 387–388
performance, 393
replication, 388
summary, 400

Distributed DBMSs, 391–392
availability, 392
client server overview,

394–395
communication failure, 399
consistency, 394
controlled data sharing,

392–393
data tracking, 393
defined, 397
development of, 389
distributed commitment, 399
distributed deadlocks,

399–400
distribution transparency,

397
execution strategies, 394
functionality with client

server, 395–396
in heterogeneous

environment, 398

individual site failure effect on
data integrity, 398

individual site failure effect on
traffic flow, 399

load, 394
local autonomy, 397–398
problems in, 398
qualities required in, 393–394
recovery, 394
reliability, 392
remote site access, 393
software homogeneity, 397
software levels, 396
two-phase commits and, 399
types of, 397–398
typical, 396
update process control, 394

Distributed deadlocks, 399–400
Distributed models, 385–386

conceptual layer, 386–387
database view, 386
federated/heterogeneous,

389–391
functioning of, 386–387
homogeneous, 388–389
physical level, 386
user layer, 386

DML (data manipulation
language), 271–272

Domain constraint data, 65
corporate, 67
noncorporate, 67

Domain constraints, 219–220
defined, 219–220
examples, 220

Domains, 219
of attributes, 215
information, 219

Downsizing
as creative destruction, 159
culture change and, 159
defined, 158
as destabilizer, 159
different approach to, 163
effects of, 157
fairness, 162
impact on culture, 162–163
implementation of, 158
intentional aspect of, 160
as management tool, 158

organizational culture and,
157–158

organizational/individual-
level analysis, 161–162

organizational-level analysis,
160–161

studies, 160
summary, 163–164
survivors, 161–162
types of, 157–158

Drucker, Peter, 117, 118, 311
Duplicate propagated keys,

296–297
Dynamics, as force in

organization, 136

Economy, simplicity
relationship, 7

EDW. see Enterprise data
warehouses

Efficiency impediments,
150–151

Elaboration, 189
Emergency corrections, 204

procedures, 204–205
as production event, 204

Encapsulation, 376
Engineered keys, 250
Engineering concepts, 83–84

abstraction, 83
component isolation, 83
hierarchical ordering,

83–84
structured approach, 83

Enhanced Entity Relationship
diagrams, 378

Enterprise architectures, 41–42,
58

analysis and design, 61
benefits of, 16, 41, 42
business insulation, 42
business terminology, 59–60
commercial packages, 335
commitment to change, 41
conclusions, 40–41
data delineation, 41
data organization, 67
defined, 26, 357
from development

perspective, 60–62

INDEX 407

federal enterprise architecture
(FEA), 24, 33–40

Gartner framework, 24, 37–40
history of, 26
hybrid, 366–367
implementation, 62
the open group architecture

framework (TOGAF), 24,
29–33

planning, 61
rules followed by, 16
as strategic design model, 42,

318
success factors, 62
target, 333
transformation, 61–62
types of, 24
Zachman framework, 24,

26–29
Enterprise data models, 43–44,

334
bottom-up approach, 53–54
components, 44
design according to facts, 334
dimensional databases from,

337
hybrid approach, 54
implementation methods,

53–54
importance of, 44–45
internally conducted projects,

334
preliminary conclusion, 54
purchases, 334
top-down approach, 53

Enterprise data warehouses,
357–359

benefits of, 358–359
bottom-up approach, 364–366
case study, 361–362
choices, 366
data lineage, 360
data quality, 360
defined, 338, 359
design, 343
drivers, 360–362
hybrid approach, 366–367
implementation best

practices, 362–363
implementation methods, 363

implementation summary,
367–368

metadata management, 360
neutral access, 360
preliminary conclusion, 366
reasons for, 359
as solution, 358
as strategic repository, 359
top-down approach, 363–364
trusted data, 360
universal data access, 360

Enterprise models, 42–43, 60
dimensional warehouses

from, 337
purchasing, 366–367

Enterprise services, FEA, 34
Enterprise-level architectures,

57–58
practices, 57
summary, 73

Entities, 208
associative, 210, 292
attributes, 272t
attribution process, 229
categorizing, 344–345
collapsing, 346f, 347f
consolidation, 297–298
dependent, 210, 344–345
detail, 344
in ERDs, 210–211
kernel, 210, 344
life cycle analysis, 285–287
life cycles, 231
occurrence, dates to define,

225–226
relationships, 209, 229
subclasses, 378
superclasses, 378
terminal, 345
types of, 210
unique, 214

Entity clusters, 183
Entity process models, 188–189
Entity relationship diagrams

(ERDs), 210–211
defined, 210
denormalization, 291–293
illustrated, 211f

Entity relationship (ER) models,
192, 283, 324

benefits of, 193
changes to, 290–291
converted to physical models,

324
defined, 322, 324
snowflake schemas from, 352
star schema clusters from, 354

Entity state transition diagrams,
286f, 287

Entity states, 286f
Envelopes, security, 259–260
Environments, leveraging, 19
Equipment

entities/entity clusters, 109
subject area, 113

Event analysis, 288–289, 288f
categories, 288–289
preconditions, 288–289

Event identification, 180, 276
Evolution

architectures, 13
business, 93, 144–145
as design guideline, 19

Expansion and function
separation, 96

External actions, 312
External organizations

entities/entity clusters, 108
grouping, 110–111
subject area, 110–111

Fact tables, 325
column types, 340
combining, 354–355
custom, 325
defined, 340
dimension tables versus, 341

Federal enterprise architecture
(FEA), 24, 33–40

business reference model
(BRM), 36

components reference model
(CRM), 36

data reference model (DRM),
36

defined, 33–34
enterprise service, 34
enterprise services versus

segments, 35
as methodology, 34

408 INDEX

Federal enterprise architecture
(FEA) (Continued)

performance reference model
(PRM), 37

process, 37
reference models, 34, 36
reference models goal, 36–37
segment map, 35f
segments, 34
technical reference model

(TRM), 36
view on enterprise

architecture, 34–37
see also Enterprise

architectures
Federated/heterogeneous

distributed model, 389–391
components, 390–391
export schema, 390–391
illustrated, 390f
import schema, 390–391
problem, 390
protocol manager, 391

Fifth normal form, 218
Finance

entities/entity clusters,
108–109

subject area, 111
Financial systems, data access,

236
First normal form, 217
Flat table schema, 348
Foreign keys, 248–249

attributes, 249
defined, 248
implementation of, 217
null, 249
propagation, 249
see also Keys

Form
defined, 18
designing, 18
dynamic and flexible, 19
follows function concept,

17–19
Fourth normal form, 218
FPAs (functional process areas),

68
Fragmentation, 387–388

horizontal, 387–388

vertical, 388
Functional decomposition

defined, 180
diagram, 213
interpretation, 180
interpreting, 276
procedure definition via,

180–181
Functional process areas (FPAs),

68
Functions

creation, 181–182
data integration, 179–180
defined, 60, 180
documentation, 180–181
in-house, 165
innovation or research, 124
modeling, 208
operating, 124
organizational, 124
outsourcing, 164
separate communication, 96–97
separation, 96
upper management, 124

Gartner framework, 24, 37–40
business visions, 39
common requirements vision

(CRV), 39–40
defined, 38
partnering constituents, 38
as practice, 37
strategy, 39
target architecture, 38
see also Enterprise

architectures
The Gate, 8–9, 43
Generalization, 379

defined, 379
hierarchies, 65, 379–380

Generic domain constraint
constructs, 220

Globalization, 129
Groupings

business strategies, 114
business strategy and

planning, 112
customer, 111
defined, 110–114
equipment, 113

external organization,
110–111

finance, 111
human resources, 113
location, 112
plant, 113
product, 113–114
regulation, 111–112
sales and marketing, 112
service delivery, 112–113
supply, 113

Hierarchical databases, 272
Hierarchical ordering, 83–84
High water keys, 251
Historical data, 223

defined, 233
difficult to store, 234
dimensional models and, 237
growth, 237
performance and

maintenance, 232–233
restoring, 237

History
as another dimension of

entities, 228–229
application, 223–225
bounded simple, 225, 227
complex, 225, 227–228
as design issue, 224
dimensional, 237
implementation tips and

techniques, 232–233
logically modeling, 228–229
physical design and, 229–230,

256
physical implementation of,

230–231
simple, 225, 226

Homogeneous distributed
model, 388–389

concerns, 389
defined, 388–389
illustrated, 389f

Horizontal fragmentation,
387–388

Horizontal segmentation,
301–302

Hot spots identification, 302–
303, 304f

INDEX 409

Human capital, as force in
organization, 136

Human resources
entities/entity clusters, 110
issues in information

technology, 152–153
subject area, 113

Hybrid enterprise data
architecture, 366–367

change commitment and,
368

enterprise model purchase,
366–367

positive aspects of, 367
see also Enterprise

architectures
Hybrid ER-dimensional data

warehouses, 331–333
conceptual architecture, 332f
conclusion, 336
defined, 331–332
enterprise-level scope and

complexity, 332
implementation of, 331
integration architecture, 332
issue specification, 332
problems associated with,

333
strategic data plan, 331–332
support, 332
see also Data warehouses

IBM Patterns for e-Business
website, 50–53

application patterns, 52
business patterns, 51–52
composite patterns, 52
defined, 48
integration, 52–53
integration patterns, 52
pattern rationale, 50–51
pattern types, 51–52
reusable assets, 50–51
runtime patterns, 52

IDEF, 192–193
IDEFIX, 193
Identification

defined, 377
event, 180
process use, 181

Identifying relationships, 248,
296

Inception, 189
Individual site failure

effect on data integrity, 398
effect on traffic flow, 399
see also Distributed DBMSs

Information
access, increasing of, 149
business treatment of, 131
data structure for, 11
defined, 11
exploiting as a resource, 152
hiding, 375
interaction with, 11–12
as lifeblood of business,

130–131
needs of management,

124–125
planning, 86
processing trends, 140
time-sensitive, 225

Information architecture,
11–12

defined, 11
function of, 12
principles, 18–19

Information engineering
at application level, 89
best of, implementing, 89–90
birth of, 84–85
computer use, 87
data properties and, 85
as design methodology, 85–87
as ER theme refinement, 192
integrated efforts, 88
problems with, 88–89
synergy of tools and, 87–88
top-down definition of ISP,

89–90
in-use characteristics, 85–87

Information plans
generation, 126
innovative function, 126
operating function, 126
top management function,

126
Information Revolution, 127
Information strategies

business realities and, 127

for modern business, 127–131
Information strategy plans

(ISPs), 89–90, 197–198
Information systems

complexity and planning
relationship, 25

without architectures, 11
Information technology, 139

advancements, 129
benefits as actualized, 144
cost, 140, 146
data basis for key metrics,

358
defined, 139
emerging, 143
as evolutionary change, 146
human resource issues in,

152–153
impact on organizations,

147–148
improved communication

and, 148
ineffective use of, 149–150
law of diminishing returns,

143
maximizing use of, 154
measurement, 151
organizational impediments

to, 151
organizational structure

implementation, 139
positive effects of, 148
potential to increase

productivity, 145
reasons for investing in,

148–149
as rigid framework, 114
sole responsibility, 125
technological solutions to,

151–152
Infrastructure

areas, 73
as force in organization, 136

Ingalls, Daniel, 381
Inheritance, 45

attribute, 378–379
classes, 373
defined, 378–379
hierarchy, 373
multiple, 380

410 INDEX

Innovation level (business
evolutionary model), 136

Innovative or research
management, 124

identification, 124
information needs, 125
information plan, 126

Inserts, 244–245
analysis of expected

frequency, 277
defined, 244
number of, 279
placement, 244–245

Instantiation, 376
Integration level (business

evolutionary model), 135
Integration patterns, 52
Intelligence tools, as force in

organization, 136
Interaction analysis, 283–285

activity composition diagram
and, 283–284, 284f

defined, 284–285
summary, 290

Internal actions, 312
“Internet time”, 168
ISPs (information strategy

plans), 89–90, 197–198
Iterative waterfall approach, 186

Keen, Peter, 310–311
Kernel entities

characteristics, 344
defined, 210, 344
as most critical entities, 344
numerical attributes within,

350
Kernel tables, 351–352
Key sequences data sets

(KSDSs), 247
Keys, 246–248

artificial, 251
banding, 252–253
candidate, 249–250
duplicate propagated,

296–297
engineered, 250
first use of, 246

foreign, 248–249
hierarchical and network

databases and, 247
high water, 251
history and development,

246–248
natural, 250
one of a kind, 252
primary keys, 216–217
ranges, 252–253
specialized, 252–253
surrogate, 250–251, 301, 301f
synthetic, 301, 301f
as unique set of data values,

247–248
Kimball, Ralph, 338, 339
Knowledge

corporate, 114–115
process, as force in

organization, 136
requirement in database

administration, 69
KSDSs (key sequences data

sets), 247

Lake Nicaragua analogy, 105
Landauer, Thomas, 139–140,

145–146
Lexicons

for individual applications, 63
passive, 63

Life cycle analysis
entity, 285–287
rules for, 285–287

Lists, 382
Locations

entities/entity clusters, 109
subject area, 112

Logical data independence, 270
Logical independence, 84
Logical locking, 258
Logical modeling tool, 198, 199
Logical models, 213–215

as communication
mechanism, 213–215

conversion to physical
models, 322–324

defined, 322–323

impartiality, 213–215
placement of, 324
purpose of, 322–323

Logical residence planning, 183
Logically modeling history,

228–229
Love, Bruce, 152

Maintenance control process,
184

Management
control, 150
data and, 98–99
information needs, 124–125
innovation or research, 124
as neutered mechanism,

114–115
objectives, 124
operation function, 124
upper, 124

Management-oriented data, 322
Manual data redundancy, 97–99
Material handling, 6–7
Messages, 377
Messaging, 381
Metrics, as force in organization,

136
M:M relationships, 211–212,

212f
associative entities and, 292
resolution of, 214, 291–292,

354
see also Relationships

Model management, 72–73
policy, 72
strategy, 72
user training, 72

Model repositories
defined, 196
logical corporate, 197
management group, 199
policy and approach, 197–198
reconciling application model

back into, 201f
shared objects, 197f, 198–199

Model-driven development
methodology, 16

Model-driven releases, 199

INDEX 411

Modeling
benefits of, 194
data warehouses, 317–318
dimensional, 338–339
logical, 198, 199
object role (ORM), 193–194
physical, 198, 199

Models, 191
application, multiple, 200
architectural level models, 188
atomic process, 188
attributes, 208–209
automated, development of,

195–196
CASE tools development,

195–196
conceptual business, 212–213
constructs, 207
data, 192–194
defined, 191
dimension, 216
distributed databases,

385–386
distributed models, 388–391
emergency corrections, 204
enterprise, 42–43
enterprise process, 188–189
entities, 208
entity relationship, 192, 283,

290–291
interpreting, 281
libraries associated with, 204
logical, 213–215
management process, 202t
participation, 201–202
physical, 215
placement of, 324
primary identifiers, 209–210
process, 194–195
relationships, 209
representation efficiency, 191
retained via model repository,

196
staging, 200
subsetting out from the

repository, 200f
test environments and, 202–203
types of, 212–216

universal, 188
Modules, OOD, 375
Motivators, as force in

organization, 136
Multiple inheritance, 380
Multiple relationships

actions on, 294–295
collapse of, 295f
representation, 294
resolution of, 295f

Naming, 63–64
data sharing standards, 65

Natural keys, 250
Network databases, 273
Nolan, Richard, 309–310
Nolan's stages of growth

contagion stage, 100–101
control stage, 101
data administration stage, 101
defined, 100
initiation stage, 100
integration stage, 101
list of, 100
maturity stage, 102
using, 102–103
as valuable representation,

102
viewing, 103

Nonidentifying relationships,
248

Non-time sensitive, 224
Normal forms, 217–218
Normalization, 217–218, 340

defined, 217
denormalization, 218
overnormalization, 218–219
stages, 217–218

Nulls
defined, 249
implementation of, 217

Object databases, 274
Object frameworks, 46–47

benefits, 47
generic superstructure, 47
learning/unlearning curve, 48
programming, 47–48

Object ID (OID), 381–382
Object management tools, 69
Object oriented data

architecture, 369–370
design constraints, 369–370
problem with, 370

Object role modeling (ORM),
193–194

Objectives, 123
continuity, 71
management, 124
relational databases,

281–282
Object-oriented design (OOD)

abstract data types (ADTs),
375–376

analogy and problem solving,
373

assembler languages, 374
class hierarchies, 381
complexity, coping with, 374
interconnections, 374
messaging, 381
modules, 375
overriding, 373
parameter passing, 375
persistence, 380
physical considerations,

380–381
polymorphism, 380
procedures and functions, 375
sample concept, 370–371
summary, 377
type hierarchies, 380–381

Objects
actions, 371–373
behavior, 377

behavior and interpretation, 372
complex, 382
computations, 371
concepts, 45
defined, 370–371, 377
IDs (OIDs), 45–46
implementation, 45
life cycles, 45–46
memory, 372
with parameter passing,

376–377

412 INDEX

Objects (Continued)
persistent, 45–46
relationships, 46
specification, 45
transient, 45–46
type, 45

Objects of construction, 18
Obscuring, 84
One of a kind (OOK) keys, 252
On-line objects, PTF

implementation for, 205
Online transaction processing

(OLTP), 316–317
OOD. see Object-oriented design
Operating management

function, 124
identification, 124
information needs, 125
information plan, 126

Operating system security, 265
Operational data, 321
Operational level (business

evolutionary model), 131
Operations, 45
Optimization, form, 323–324
Optimization level (business

evolutionary model),
135–136

A Oregon Experiment, 44
Organizational change

defined, 142
trends in, 142–143
widespread, lack of, 146

Organizational control
components, 67

Organizational structure, 123
Organizational/individual-level

analysis, 161–162
Organizational-level analysis,

160–161
Organizations, 117

core ideological values,
118–120

in customer creation, 118
data, 139
design with future in mind,

120–121
don't know what they don't

know, 125–127

efficiency impediments,
150–151

employee assumptions,
162–163

evolutionary changes, 127
forces in, 136–137
functions, 124
future potential directions,

121–123
generalization, 121–123
goal, 137
ideology, 118
information technology

impact on, 147–148
information technology

impediments of, 151
innovation or research

function, 124
locations of internal forces,

132–135t
objectives, 123
operating function, 124
products in development, 123
purpose and mission of,

117–118
structure adjustments, 121
upper management function,

124
whose benefit do they exist

for?, 162
Outsourcing, 164–168

availability of resource
benefit, 166

bad vendors, 167
benefits, 165–166
contract negotiation, 167
to expert consultant, 165
firm selection, 167
hardware maintenance, 164
information technology

functions, 164
lower-risk services, 166
out-of-pocket costs, 167
reliability and, 166
services, 165–166
summary, 167–168
system control benefit, 166
training/ramp-up cost

savings, 166

Overnormalization, 218–219

Parallel relationships, 211–212,
212f

Parameter passing, 375
objects with, 376–377

Parent-child relationships, 273
Participation, 201–202
Partitioned data, 235
Partitioning, 231, 235–236
Pattern analysis, 23
A Pattern Language, 44
Pattern languages

application, 43
common (CPL), 8–9
for specific architectural style,

9
Pattern recognition, 5
Pattern usage

centers, 10
concepts for, 8–11
The Gate, 8–9
patterns and, 7–8
The Quality, 8
structure-preserving

transformations, 10–11
universal recursive properties,

9–10
The Way, 9

Pattern-based frameworks, 48
Patterns

capturing and defining, 43
creating with data, 18
defined, 7–8, 44
evolution with iteration, 20
finding, 231–232
tracking and evaluating, 232
in use, 48–49

Performance
decision support, 317
decreasing, 233
distributed databases, 393
local tuning ability, 393
relational databases, 282

Performance reference model
(PRM), 37

Performance tuning, 231
Persistence, 380
Persistent objects, 45–46

INDEX 413

Peters, Tom, 151
Physical data independence, 271
Physical database

considerations, 267
data independence, 270–271
database languages, 271–272
DBMS classification,

272–274
design factors, 274
event identification, 276
functional decomposition

interpretation, 276
process use identification, 276
queries, 275–276
reporting, 275–276
response time, 278
space utilization, 278
three-level architecture,

267–270
time constraints, 277
transaction throughput,

278–279
transactions, 275–276
unexpected frequency of

insert, delete, update, 277
utilization analysis, 276–277

Physical design
archive/purge and, 260–261
audit and, 260
basic requirements for, 255
concurrency and, 257–258
data access and, 264–265
data amount and, 255
data integrity, 262
database, factors impacting,

274
of history, 229–230
history and development of,

256
implementation of, 230
philosophy, 281
population quantification

and, 256–257
privacy requirements, 265–266
recovery/restart and, 261–262
reorganization/restructuring

and, 262
requirements, 255
security and, 258–260

soft/search requirements and,
262

Physical layer, three-level
architecture, 269–270

Physical modeling tool, 198, 199
Physical models, 215

defined, 215
logical model conversion to,

323–324
placement of, 324

Physical structures, 235–237
clusters, 245–246

Physical-level design, 216
Plant

entities/entity clusters, 109
subject area, 113

Polymorphism, 380
Population quantification,

256–257
Primary identifiers, 209–210
Primary keys, 214–217, 248

as candidate key members,
249–250

defined, 216, 246, 248
history and development,

246–248
implementation of, 217
in nonidentifying

relationships, 216
see also Keys

Principle of end user access, 85
Principle of rigorous analysis, 85
Privacy requirements, 265–266
Problems, 7f

with architects, 16
in architectures, 14–16
business evolution, 95–96
in DDBMSs, 398
decision support, 313
departmental

communication, 98
design, 6–7
dimensional model, 329–330
hybrid ER-dimensional data

warehouses, 333
with information engineering,

88–89
with older organizations,

103–104

performance, 231–232
relational model, 328–329
solutions that cause, 157
with structured architectures,

81–82
Process dependency

diagrams, 288f
scope, 287–288

Process logic diagrams, 290
access path mapping and, 302
compilation of, 302f

Process models
introduction, 194–195
reasons for, 195

Process use identification, 276
Process use mapping, 182,

276–277
Processes

as application development
driver, 127

architectural, 25
defined, 180
dependency analysis, 181
development control,

202–203
following progress of, 311
integration, 181–182
I/O, 312
logic analysis, 289f
maintenance control, 184
mapping against data, 90
model management, 202t
planning, 99–100
project manager

understanding of, 195
structured methods, 78–79
subprocesses, 181
triggers, 289f
use identification, 181

Production efficiency gains, 143
Production temporary fixes

(PTFs), 204
generation of, 204–205
implementation for share

objects, 205
as permanent, 204

Productivity, 143
IT potential to increase, 145
premise, 143

414 INDEX

Productivity anomaly
business evolution, 143–145
businesses are still evolving,

144–146
evolutionary change, 144,

146–147
explanations, 143–147

Products
entities/entity clusters, 110
subject area, 113–114

Programming
object frameworks, 47–48
structured, 79

Project plans, 178
Project structure development,

177
Properties, 45
Purging, 260–261

Quality assurance metrics, 184
The Quality, 8
Queries, 275–276

analysis of, 275
time constraints, 277

Query engines, 314

Rapid application development,
168–170

criticisms, 169
disciplining, 169
failure risks, 168–169
prototypes, 169–170
system development, 170

Recovery
defined, 261
physical design and, 261–262

Recursive properties
centers, 10
universal, 9–10

Recursive relationships,
211–212, 212f

representations, 292–293
resolution of, 292–293

Redundancy, 300–301, 300f
Reference data, 220
Referential groups, 303, 304f
Referential integrity, 236

in individual programs, 263
level of commitment and, 264

physical design, 262
reasons for implementing,

263–264
Regulation

entities/entity clusters, 109
subject area, 111–112

Relational clustering, 243
Relational data warehouses,

321
best use of, 330–331
conceptual architecture, 328f

Relational databases, 273
design alternatives, 281
design objectives, 281–282
flexibility, 282
integrity, 281–282
nature of, 282
objectives manipulation, 282
performance, 282

Relational DBMS, 274
Relational models, 327–329

advantages, 327
basis, 326
problems associated with,

328–329
Relations, 274
Relationships

1:1, 211–212, 212f, 291
1:M, 211–212, 212f
cardinality, 209
circular, 295–296
defined, 46, 209
entities, 209
in ERDs, 211
identifying, 248, 296
illustrated, 212f
M:M, 211–212, 212f, 291–292
multiple, 294–295
naming, 209
nonidentifying, 248
optionality, 209
parallel, 211–212, 212f
parent-child, 273
recursive, 211–212, 212f,

292–293
super type-subtype, 293–294
types of, 211–212
working, basic assumptions,

162

“Release-release” based
methodology, 199

Releases
model-driven, 199
multiple, migration of, 203
stacking, 203–204
stacking schedule, 204
supporting, 200–201
test environments, 203

Reliability
distributed DBMSs, 392
outsourcing and, 166

Reorganization, 151
physical design and, 262

Repeating groups
implementation of, 299–300
introduction of, 299–300, 300f

Replication, 388
Report writers, 314
Reporting databases

specificity, 315–316
warehouses versus, 314–315

Reports, 275–276
analysis of, 275

Repository management areas,
72–73

Representations, 45
Requirements

definitions, 81
risk, 168
segmented/partitioned, 313
strategic planning, 178
summary, 313

Response time, 278
Restart, 261
Restructuring, physical design

and, 262
Rewards, as force in

organization, 136
Risk, 323–324
Runtime patterns, 52

Sales and marketing
entities/entity clusters, 109
subject area, 112

Sarbanes-Oxley Act, 130
Scope

bottom-up approach, 365
containment, 178

INDEX 415

definition, 177–178
process dependency, 287–288
top-down approach, 363–364

Scott-Morton, Michael, 154,
310–311

Second normal form, 218
Security, 259

concerns, 259
database, 265
envelopes, 259–260
exposure, 260
framework, 259
gating levels, 259
at granularity level, 258–259
implementation of, 258–259
layers, implementation of,

265–266
open shop, 259
operating system, 265
in physical design process,

258–260
Segmented requirements,

313
Segments, FEA, 34
Semistructured decisions, 310
Separation and regrouping, 84
Service delivery

entities/entity clusters, 109
subject area, 112–113

Sets, 382
Shared repository objects, 197f,

198–199
Simple history, 225, 226
Simplicity, economy

relationship, 7
Skeletal structures, 191
Skills

as force in organization, 136
sharing, 5

Snowflake schemas, 352
defined, 352
from entity relationship

models, 352
Soft/search requirements, 262
Software development

developing code option, 141
vendor, 141

Software development methods,
184–185

Solutions, that cause problems,
157

Space utilization, 278
Special restrictions,

implementation of, 217
Specialization, 379

defined, 379
management embrace of, 122
overstaffing and, 122

Spiral model, 186–187, 187f
Staffing risk, 168
Stages of growth

contagion stage, 100–101
control stage, 101
data administration stage, 101
defined, 100
initiation stage, 100
integration stage, 101
list of, 100
maturity stage, 102
using, 102–103
as valuable representation,

102
viewing, 103

Staging models, 200
Star schema clusters, 352–355

defined, 353–354
from entity relationship

models, 354
illustrated, 353f

Star schemas, 341–342, 348–352
design approach, 342–343
dimensions, 341–342
formation, 348–350
illustrated, 342f, 350f, 351f
problems, 342–343
produced from kernel tables,

351–352
Stepped table schema, 348

defined, 348
illustrated, 349f

“Stovepipe” development,
99–100

Strassman, Paul, 153
Strategic business subject areas,

110
Strategic data, 321
Strategic planning, 107

data, 85

innovation and research
departments, 122–123

Structured analysis, 80
Structured approaches

problems with, 81–82
as step-by-step process, 83

Structured concepts, 79–80
Structured decisions, 310
Structured design, 79–80
Structured methods, 77–79
Structured programming, 79
Structure-preserving

transformations, 10–11
Structures

design for what will be, 19
as extensible and flexible, 19
importance of, 12–14
naming, 63
organizational control

components, 123
physical, 235–237, 245–246
poorly architected, 12
project, developing, 177
skeletal, 191
standing the test of time, 20
target, 15–16
unbiased, 19
visualization, 191

Subclasses, 378
specialization, 379

Subject area drivers, 62–63
Subject areas

entities from, 200
focus of, 62–63
strategic business, 110–114

Subject matter experts (SMEs),
72–73

Summary data, 298–299, 299f
Summary requirements, 313
Super type-subtype

relationships
actions on, 293–294
converting to hierarchical

structure, 355
implementation as separate

entities, 293–294
lateral collapse and, 293
representation, 293
resolution of, 294f

416 INDEX

Superclasses, 378
subclass definition of, 379

Supply
entities/entity clusters,

109–110
subject area, 113

Surrogate keys, 250–251
defined, 250
denormalization, 301f
identity, 251
introduction of, 301
types of, 251
see also Keys

Synthetic keys, 301, 301f
System architectures, 57, 58
Systems planning, 85

Tables
clusters as, 246
dimension, 325, 340
fact, 325, 340
kernel, 351–352
OLTP, 316–317

Tactical data, 321
Target enterprise architectures,

333
Target structures, 15–16
Technical architecture, 29
Technical reference model

(TRM), 36
Technology architectures

enterprise, 58–59
function of, 57

Technology risk, 168
Telecommunications, 148–149
Templates, application

development, 183
Terminal entities, 345
Test environments

migration path through, 203
models and, 202–203
platform limitation, 203
releases, 203

the open group architecture
framework (TOGAF), 24,
29–33

ADM, 29, 30, 31f, 32
application architecture, 29

architecture categories, 29
architecture change phase, 33
business architecture, 29
business architecture vision

phase, 32
data architecture, 29
enterprise architecture

illustration, 29f
enterprise continuum, 30f
implementation governance

phase, 33
information systems

architecture phase, 32
migration planning phase, 33
process results, 33
standards information base,

30–31
technical architecture, 29
technical reference model,

30–31
technology architecture

phase, 33
Third normal form, 218
Three-level architecture,

267–270
conceptual layer, 269
illustrated, 267f
layer combination, 268
physical layer, 269–270
purpose, 267–268
user view layer, 269

Time, as database dimension,
223

Time constraints, 277
The Timeless Way of Building,

7–8, 44
Time-sensitive, 224
TOGAF. see The open group

architecture framework
Tools, age of, 82–83
Top-down approach

benefits of, 53
business issues, 363
defined, 53
drawbacks of, 53
enterprise data architectures,

363–364
governance, 364

scope, 363–364
Transactions, 275–276

analysis of, 275
throughput, 278–279
time constraints, 277

Transformations, 10–11
Transient objects, 45–46
Transition, 189
Translation

data sharing rules, 65
as domain constraint, 220

Type constructors, 382
Type “generators”, 382
Type hierarchies, 380–381

Unified method, 189
Unit of work constraints,

303–305, 304f
Universal models, 188
Universal recursive properties,

9–10
Unstructured decisions, 310
Updates

analysis of expected
frequency, 277

cluster member, 245
Upper management

function, 124
identification, 124
information needs, 125
information plan, 126

U.S. Treasury Architecture
Development Guidance,
49

architectural design, 50
architecture patterns, 50
defined, 48
pattern content, 49–50

User access, as force in
organization, 136

User view layer, 269
Utilities, 70
Utilization analysis, via process

use mapping, 182,
276–277

V method, 187–188
Valid table ranges, 220

INDEX 417

Valid value sets, 220
Vendor software development,

141
Vertical fragmentation, 388
Vertical segmentation, 301–302

Wall parable, 20
Waterfall method, 185

development project based
on, 185

iterative, 186
model illustration, 186f
shortcomings, 185

The Way, 9
Whitney, Eli, 78
Workforce quality, 153

Zachman framework, 24, 26–29
architects, 26–27
architectural artifacts, 28

artifact organization, 27
cells in a column, 28
complete architecture, 28
defined, 26
functional focuses, 28
history of, 26
illustrated, 27f
template, 26
see also Enterprise

architectures

	Dedications
	Preface
	Understanding architectural principles
	Defining Architecture
	Design Problems
	Patterns and Pattern Usage
	Concepts for Pattern Usage
	The Quality
	The Gate
	The Way
	Universal Recursive Properties
	Centers
	Structure-Preserving Transformations

	Information Architecture
	Structure Works!
	Problems in Architecture
	Architectural Solutions
	The “Form Follows Function” Concept
	Guideline: Composition and Environment
	Guideline: Evolution
	Guideline: Current and Future
	A Parable

	Data Policies (Governance), the Foundation Building Codes
	Data Policy Principles
	References

	Enterprise architecture frameworks and methodologies
	Architecture Frameworks
	Brief History of Enterprise Architecture
	The Zachman Framework for Enterprise Architecture
	The Open Group Architecture Framework
	The Federal Enterprise Architecture
	The FEA View on Enterprise Architecture
	The FEA Process
	The Gartner Process

	Conclusions
	Enterprise Data Architectures
	Enterprise Models
	The Enterprise Data Model
	The Importance of the Enterprise Data Model
	Object Concepts: Types and Structures Within Databases
	Inheritance
	Object Life Cycles
	Relationships and Collections
	Object Frameworks
	Object Framework Programming
	Pattern-Based Frameworks
	Architecture Patterns in Use
	U.S. Treasury Architecture Development Guidance
	TADG Pattern Content
	TADG Architecture Patterns
	IBM Patterns for e-Business
	Enterprise Data Model Implementation Methods
	Benefits of Top-Down Approach
	Drawbacks of the Top-Down Approach
	Benefits of the Bottom-Up Approach
	Drawbacks of the Bottom-Up Approach
	Preliminary Conclusion
	Hybrid Approach

	References
	Other Suggested Reading

	Enterprise-Level Data Architecture Practices
	Enterprise-Level Architectures
	System Architectures
	Enterprise Data Architectures
	Enterprise Technology Architectures
	Enterprise Architecture Terminology—Business Terms
	The Enterprise Model
	The Enterprise Data Architecture from a Development Perspective
	Planning
	Analysis and Design
	Transformation
	Implementation

	Subject Area Drivers
	Naming and Object Standards
	Data Sharing
	Data Sharing Requirements

	Data Dictionary–Metadata Repository
	Domain Constraints in Corporate and Non-Corporate Data
	Organizational Control Components
	Data Administration
	Database Administration
	Setting Up a Database Administration Group
	Repository Management Areas and Model Management
	References

	Understanding Development Methodologies
	Design Methods
	Why Do We Need Development Methodologies?
	The Beginnings
	Structured Methods
	Structured Programming
	Structured Design
	Structured Analysis
	Still Having Problems
	Requirements Definitions
	Problems with Structured Approaches
	Personal Computers and the Age of Tools
	Engineering Concepts Applied
	Other Principles Utilized
	The Birth of Information Engineering
	Information Engineering as a Design Methodology
	The Synergy of Tools and Information Engineering
	Problems with Information Engineering
	Implementing the Best of IE while Minimizing Expense
	References

	Business Evolution
	The Problem of Business Evolution
	Expansion and Function Separation
	Separate Function Communication
	Manual Data Redundancy
	Management Organization and Data

	Data Planning and Process Planning
	Corporate Architecture
	Using Nolan’s Stages of Growth
	Problems with Older Organizations
	Business Today
	When Will It End?
	What Can We Do about It?
	Generic Subject Areas for Corporate Architectures
	Corporate Information Groupings or Functional Areas
	External Organization
	Customer
	Finance
	Regulation
	Sales and Marketing
	Business Strategy and Plan
	Location

	Service Delivery
	Equipment
	Plant
	Supply
	Human Resources
	Product
	Business Strategies

	Corporate Knowledge
	References
	Other Suggested Reading

	Business Organizations
	Purpose and Mission of the Organization
	Ideology, Mission, and Purpose
	Design with the Future of the Organization in Mind
	Generalize for Future Potential Directions
	Organizational Structure
	What Are the Basic Functions in an Organization?
	The Information Needs of Management
	Organizations Don’t Know What They Don’t Know
	Information Strategy for Modern Business
	Maximizing the Value of Information
	Forces in the Organization
	References

	Productivity inside the Data Organization
	Information Technology
	What Is Information Technology?
	Trends in Information Technology
	Vendor Software Development
	The Other Option
	Trends in Organizational Change
	Productivity
	Explanations for the Anomaly in Productivity
	Information Technology and Its Impact on Organizations
	Why Invest in Information Technology?
	Ineffective Use of Information Technology
	Other Impediments to Organizational Efficiency
	Organizational Impediments to Information Technology
	Technological Solutions for Information Technology
	Human Resource Issues in Information Technology
	Quality of the Workforce
	Summary
	Maximizing the Use of Information Technology
	References

	Solutions That Cause Problems
	Downsizing and Organizational Culture
	Downsizing Defined
	Culture Change
	Organizational-Level Analysis
	Organizational/Individual-Level Analysis
	Downsizing’s Impact on Culture
	A Different Approach to Culture Change and Downsizing
	Summary
	Outsourcing
	Rapid Application Development
	Rapidly Developed Prototypes

	References

	Data Organization Practices
	Fundamentals of All Data Organization Practices
	Corporate Data Architecture
	Corporate Data Policy
	Architecture Team
	Design Team
	Develop the Project Structure
	Scope Definition
	Project Plan
	Data Architecture and Strategic Requirements Planning
	Data Gathering and Classification
	Business Area Data Modeling
	Current Data Inventory Analysis
	Data and Function Integration
	Event Identification
	Procedure Definition via Functional Decomposition
	Process Use Identification
	New Function Creation
	Utilization Analysis via Process Use Mapping
	Access Path Mapping
	Entity Cluster Development and Logical Residence Planning
	Application Development Templates
	Quality Assurance Metrics
	Maintenance Control Process
	The Software Development Methods
	Architectural Development Methods
	Atomic Process Models
	Entity Process Models
	The Unified Method
	References
	Additional Reading

	Models and model repositories
	What Are Models and How Did They Come About?
	Data Models Introduction
	What Does Modeling Do for Us?
	Process Models Introduction
	Process Models—Why?
	How Are Automated Models Developed?
	How Are Models Retained?
	Model Repository Policy and Approach
	Shared Repository Objects
	Model-Driven Releases
	Supporting an Application Release
	Version Type: Participation
	Seamless Development Control Process
	Test Environments, Releases, and Databases
	Release Stacking
	Emergency Corrections
	Emergency Correction Procedures
	PTF Implementation for Shared Batch and Online Objects
	References

	Model constructs and model types
	Data Model Constructs
	Application Audience and Services
	Entities
	Attributes
	Relationships
	Primary Identifiers
	Entity Types
	Entity Relationship Diagrams
	Types of Relationships
	Model Types
	Conceptual Business Model
	Logical Model
	Physical Model
	Dimensional Model

	Physical-Level Design
	Primary Keys
	Normalization
	Denormalization
	Overnormalization
	Domains
	Domain Constraints
	Reference Data
	Generic Domain Constraint Constructs
	Reference
	Suggested Reading

	Time as a dimension of the database
	What Is to Be Done with Historical Data?
	Application History
	Classes and Characteristics
	Current Occurrence
	Simple History
	Bounded Simple History
	Complex History
	Logically Modeling History
	Physical Design of History
	Physical Implementation of History
	Performance Tuning
	Finding Patterns
	Tips and Techniques for Implementing History
	Types of Systems
	Physical Structure
	Dimensional History
	Reference
	Other Suggested Reading

	Concepts of clustering, indexing, and structures
	Cluster Analysis
	What Is a Cluster?
	Cluster Properties
	Cluster Theory Applied
	Inserts
	Updates
	Deletes
	Physical Structure
	Key History and Development
	Primary Keys
	Foreign Keys
	Foreign Key Propagation
	Candidate Keys
	Natural Keys
	Engineered Keys
	Surrogate Keys
	High Water Keys
	One of a Kind Keys
	Other Specialized Keys
	References
	Suggested Reading

	Basic Requirements for Physical Design
	Requirements for Physical Design
	How Much Data?
	History
	Population Quantification of Application Data
	Concurrency
	Security/Audit
	Audit
	Archive/Purge
	Recovery/Restart
	Sort/Search Requirements
	Reorganization and Restructuring
	Data Integrity
	Referential Integrity
	Data Access
	Privacy Requirements
	Suggested Reading

	Physical database considerations
	Three-Level Architecture
	The User View Layer
	The Conceptual Layer
	The Physical Layer

	Data Independence
	Logical Data Independence
	Physical Data Independence

	Database Languages
	Classification of Database Management Systems
	Factors Impacting Physical Database Design
	Analysis of Queries, Reporting, and Transactions
	Queries, Reports, and Transactions
	Interpreting the Functional Decomposition
	Event Identification
	Process Use Identification Reviewed
	Utilization Analysis via Process Use Mapping
	Time Constraints of Queries and Transactions
	Analysis of Expected Frequency of Insert, Delete, Update
	Other Physical Database Design Considerations
	Population on the Database
	References

	Interpreting models
	Physical Design Philosophy
	Objectives
	The Entity Relationship Model
	Interaction Analysis
	The CRUD Matrix
	Entity Life Cycle Analysis/Entity State Transition Diagrams
	Process Dependency Scope and Process Dependency Diagram
	Event Analysis
	Process Logic Diagrams
	Interaction Analysis Summary
	Changes to ER Models
	ERD Denormalization
	The Collapse of 1:1 Relationships
	Resolution of Many-to-Many Relationships
	Resolution of Recursive Relationships

	Actions on Super Type–Subtype Constructs
	Actions on Multiple Relationships
	Resolution of Circular References
	Resolution of Duplicate Propagated Keys
	Access-Level Denormalization
	Movement of Attributes
	Consolidation of Entities
	Derived Attributes and Summary Data
	Implement Repeating Groups
	Introduce Redundancy
	Introduce Surrogate or Synthetic Keys
	Vertical or Horizontal Segmentation
	Access Path Mapping
	Conclusion

	Data warehouses I
	Early Analysis in this Area
	Keen and Scott-Morton
	Decision Discussion
	Components of Decisions
	Responsibility
	Report Writers and Query Engines
	Warehouses versus Reporting Databases
	Higher Level of Abstraction
	Based on Perceived Business Use
	Structure Evolution
	Warehouse Components
	Why Can’t OLTP Data Stores Be Used?
	DSS Requirements
	Warehouse Characteristics
	Warehouse Modeling
	Warehouse Modeling Depends on Architectures
	Enterprise-Level Data Architecture
	References
	Suggested Reading

	Data warehouses II
	Reprise
	Background
	The Many Types and Levels of Data
	Data Modeling: Definitions
	Logical to Physical Transformation
	Entity Relational Models
	Placement of Models
	Dimensional Modeling: Definitions
	Denormalization and the Dimensional Model
	Dimensional Model Evaluation
	Data Evolution
	What Are the Choices?
	Applicability of the Dimensional and Relational and Hybrid Models
	Relational

	Dimensional Architecture
	Where Is the Relational Data Warehouse Best Suited?
	Where Is the Dimensional Best Suited?
	Hybrid ER-Dimensional
	Problems Associated with the Hybrid Approach
	Target Enterprise Architecture
	Building an Enterprise Data Model
	Current Data Inventory
	Standard or Corporate Business Language
	Conclusion of Hybrid Approach
	References
	Suggested Reading

	Dimensional warehouses from enterprise models
	Dimensional Databases from Enterprise Data Models
	Warehouse Architecture
	Dimensional Modeling

	Dimensional Model Concepts
	Review of Basic Components of Dimensional Models
	Differences between Dimension and Fact Tables
	Star Schemas
	Star Schema Design Approach
	Enterprise Data Warehouse Design
	Structure Design
	Categorize the Entities
	Identify Dependency Chains
	Produce Dimensional Models
	Options for Dimensional Design
	The Flat Table Schema
	The Stepped Table Schema
	Simple Star Schemas
	Snowflake Schemas
	Star Schema Clusters
	Iterate to Refine the Design
	Review of the Process

	Review of Design Options
	References
	Suggested Reading

	The enterprise data warehouse
	Enterprise Data Warehouses
	Why Would You Want an Enterprise Data Warehouse?
	Enterprise Data Warehouse Defined
	What Are the Important EDW Driving Forces?
	Case Study: An Enterprise Data Warehouse Practical Parable
	Solution

	The Best Practices for EDW Implementation
	Enterprise Data Architecture Implementation Methods
	The Top-Down Approach
	The Bottom-Up Approach
	Your Choices
	Preliminary Conclusion
	The Hybrid Approach
	Implementation Summary
	References

	Object and object/relational databases
	Object Oriented Data Architecture
	Sample Object Oriented Design Concept: Wiring Money
	Concept 1: Everything is an object
	Concept 2: Messages
	How Information Hiding Facilitates Messages

	Examples of Different Actions
	Behavior and Interpretation
	Concept 3: Recursive Design
	Concept 4: Classes
	Concept 5: Classes
	How Hierarchies of Categories Affect Classes
	Concept 6: Inheritance

	Elements of Object Oriented Design: Overriding
	Analogy and Problem Solving
	Coping with Complexity
	Interconnections: The Perpetrator of Complexity
	Assembler Languages
	Procedures and Functions
	Modules
	Parameter Passing
	Abstract Data Types
	Objects with Parameter Passing
	Object Oriented Architectures Summary
	Enhanced Entity Relationship Concepts
	Subclasses and Superclasses
	Attribute Inheritance
	Specialization
	Generalization
	Generalization Hierarchies
	Multiple Inheritance

	Physical Data Design Considerations
	Messaging
	Object Identity
	Type “Generators” and Type Constructors
	Summary
	References

	Distributed databases
	Some Distributed Concepts
	The Distributed Model
	How Does It Work?
	Distributed Data Design Concepts
	Fragmentation
	Replication
	Homogeneous Distributed Model
	Federated or Heterogeneous Distributed Model
	Distributed DBMSs
	Reliability and Availability
	Controlled Data Sharing
	Performance
	Qualities Required in a DDBMS
	Other Factors
	An Overview of Client Server
	Functionality within Client Server
	A Typical DDBMS
	Distribution Transparency
	Types of DDBMSs
	Problems in DDBMSs

	Individual Site Failure’s Effect on Data Integrity
	Individual Site Failure’s Effect on Traffic Flow
	Communication Failure
	Distributed Commitment
	Distributed Deadlocks
	Summary
	Reference

	Index

