

Shipping Greatness
Practical lessons on building
and launching outstanding software,
learned on the job at Google
and Amazon

Chris Vander Mey

Beijing  ·  CamBridge  ·  Farnham  ·  Köln  ·  SeBaStopol  ·  toKyo

D
ow

n
lo

a
d
 f
ro

m
 W

o
w

!
e
B
o
o
k

<
w

w
w

.w
o
w

e
b
o
o
k.

co
m

>

Shipping greatneSS
by Chris Vander Mey

Copyright © 2012 Chris Vander Mey. All rights reserved.
Printed in the United States of America.

Published by O’Reilly Media, Inc., 1005 Gravenstein Highway North, Sebastopol, CA
95472.

O’Reilly books may be purchased for educational, business, or sales promotional use.
Online editions are also available for most titles (safari.oreilly.com). For more information,
contact our corporate/institutional sales department: (800) 998-9938 or corporate@oreilly
.com.

Editor: Andy Oram

Production Editors: Iris Febres and
Holly Bauer

Copyeditor: Rachel Monaghan

Proofreader: Kiel Van Horn

Cover Designer: Mark Paglietti

Interior Designer: Monica Kamsvaag

Illustrator: Rebecca Demarest

Printing History: 
August 2012 First Edition.

Revision History:

2012-08-17 First Release.

See http://oreilly.com/catalog/errata.csp?isbn=0636920026341 for release details.

Nutshell Handbook, the Nutshell Handbook logo, and the O’Reilly logo are registered
trademarks of O’Reilly Media, Inc. Shipping Greatness and related trade dress are trade-
marks of O’Reilly Media, Inc.

Many of the designations used by manufacturers and sellers to distinguish their products
are claimed as trademarks. Where those designations appear in this book, and O’Reilly
Media, Inc., was aware of a trademark claim, the designations have been printed in caps
or initial caps.

While every precaution has been taken in the preparation of this book, the publisher and
author(s) assume no responsibility for errors or omissions, or for damages resulting from
the use of the information contained herein.

ISBN: 978-1-449-33657-8

[LSI]

 iii

Contents

  preface  | v

	 Part	One	 | the Shipping greatness process    1

  1  | How to Build a Great Mission and Strategy 5

  2  | How to Define a Great Product 13

  3  | How to Build a Great User Experience 41

  4  | How to Achieve Project Management
Greatness on a Budget 63

  5  | How to Do a Great Job Testing 71

  6  | How to Measure Greatness 85

  7  | How to Have a Great Launch 93

iv | contentS

	 Part	twO	 | the Shipping greatness Skills    113

  8  | How to Build a Shipping-Ready Team 115

  9  | How to Build Great, Shippable Technology 137

  10  | How to Be a Great Shipping Communicator 149

  11  | How to Make Great Decisions 179

  12  | How to Stay a Great Person While Shipping 195

  13  | That Was Great; Let’s Do It Again 205

	 aPPendix	a	 | 10 Principles of Shipping 209

	 aPPendix	B	 | Essential Artifacts Your Team Needs 211

	 aPPendix	C	 | References and Further Reading 213

    how to Contact Us  | 215

 v

Preface

Shipping Is greatness
Designing, building, and launching the right software is referred to as
shipping in the software industry. Shipping software is not packing boxes
and it’s not only hosting launch parties. Shipping is finding the right prod-
uct, working through a complex and ever-changing process, and doing it
quickly. Shipping is one of the few truly new crafts of our century. It’s
newer than management because managers have been managing people
for a long time. Business execs have been waving their hands at strategy
for just as long, if you count stockpiling mammoth bones as inventory
control. And marketers have been trying to sell another sprocket or cog
since before sprockets and cogs existed. But shipping? Shipping software
didn’t exist when you and I were born. Heck, it barely existed when your
kids were born, and there are no classes you can take in school that will
teach you how to do it.

Shipping software is new, but it’s also incredibly meaningful because
it solves many problems. Shipping solves money problems, because your
investors are always looking for results before they give you more money.
It solves customer problems because the features and fixes your customers
need are tied up in your ability to ship. It solves team problems because
nothing is better for morale than making progress. If fame, fortune, and
the pursuit of happiness are the question, shipping great software is the
answer.

If you can ship, you can make nearly any software business success-
ful, and you can compete with businesses that have deeper pockets be-
cause you can get to market faster. But if you screw it up—by missing
your date, by launching a product nobody cares about, or by building a
beautiful product that nobody hears about—your team will be grumpy,
customers will write to the Big Boss, and best case, you don’t get promoted.
Worst case, the next project on which you and your team work will involve
résumé polishing. Or maybe polishing cars.

vi | preface

So, if you can ship, you’ll be personally and professionally successful.
But it’s damn hard for teams to ship, which is where you come in.

This book is your shortcut to a degree in shipping. Think about it like
this: McKinsey and Company, the world-famous, hyperexpensive, fancy-
pants management consulting company, hires a new crop of science PhDs
each year and puts them in a two-week “mini MBA” program. They then
expect these PhDs to do pretty much what the MBAs do, even though the
PhDs have two weeks of training to the MBAs’ two years. The goal of this
book is to provide you with the same simplified, no-BS approach to doing
your job—or understanding your team lead’s job.

This book exists because I needed it when I started trying to ship soft-
ware, and I see product managers, test leads, engineering managers, and
team leads of all types who are struggling, just as I did. I see them going
through the same special torture that I underwent when I entered this
industry—but I had the good fortune to have great teachers attendant at
my hazing: Dartmouth, Amazon, Google, and my own mistaken ventures.

My first teacher was my own company—I was arrogant enough to
think that since I could write software I could do everything else required
to ship it. You know, define the minimum viable product, manage the
project, iterate, release, market, and so on. I learned many valuable les-
sons, hubris among them. I then joined another startup as the chief tech-
nology officer, and spent years trying to make it big. I learned (mostly)
different lessons there, but repeated the class in hubris. Abashed, I went
to Dartmouth, and studied at the Thayer School of Engineering and the
Tuck School of Business, earning a master’s of engineering management
degree.

I left Dartmouth and joined Amazon, where I was a technical product
program manager and an engineering manager (a.k.a. two-pizza team
leader). On projects like customer reviews, identity, and fraud-fighting in-
frastructure, I saw how Jeff Bezos and his lieutenants worked and learned
to mimic how some of the best in the business did the job.

I eventually went to Google, and as a senior product manager I spent
over five years focusing on scalability, business strategy, and the interper-
sonal dynamics inherent in software teams. I grew Google Pack, shipped
the Google Update service used in dozens of products, and helped build
the Google Apps program through mobile sync services, connectors for
Microsoft Outlook, and data import tools. I launched Google’s innova-
tive multiway video products, now featured as Google Hangouts. I even
worked on Maps for a while. I saw the company grow and change, but

 preface | vii

more important, I saw successes and failures and learned more lessons
about the best ways to ship software.

The best leaders at Amazon and Google have a lot to teach. Remember,
this business is new, so the techniques, processes, and tricks you need to
ship software weren’t developed until after Windows became dominant.
Microsoft’s old approach to shipping software came out of large-scale
hard-goods engineering processes. The Internet made three-year develop-
ment cycles, shrink-wrapped floppy disk distribution, and Microsoft’s old
way obsolete. The rapid iteration, deployment, and adoption afforded by
the Internet enabled engineers to develop rapid application development
frameworks, usability studies, and new process frameworks like scrum.
As a result, most of us are making this stuff up as we go along, and the
guidance you can glean from the relatively few executives who are part of
the success of Amazon and Google is critical.

The lessons I’ve learned and distilled in this book cover the entire soft-
ware life cycle because as you try to ship software you will face challenges
in product, program, project, and engineering management. Shipping is
not just project management and convincing engineers to work faster. If
your job is shipping software, you must have an extremely broad skill set
that ranges from deeply technical to highly creative, and along the way you
must provide cogent business insight. You’ll probably do everything from
managing people to writing test cases to making mocks in Photoshop. If
you’re up for a challenge that’s second to none, this is your gig.

To put this in perspective, shipping is a painful, confusing, and dif-
ficult job that’s generally only rewarding if you’re really good at it. The job
is like playing golf on gravel fairways—if you suck at it, you’ll spend all day
grinding your clubs to bits and wandering around in the pounding sun
trying to find your ball, which will be hopelessly unidentifiable amidst the
rocks. But if you’re a great golfer, you’ll hit those sweet shots that put you
onto the soft green and when you look around, surrounded by sweating,
confused duffers, you’ll know what it’s about. It’s glorious.

This book covers two major things that will help you be great at ship-
ping. Part I describes a process for shipping that many of the best teams
from Amazon and Google use. I work from the beginning—a customer
problem—through the details of user experience design, project manage-
ment, and testing to the end result of launching. Part II contains tech-
niques, best practices, and skills that a team lead who’s been asked to ship
software needs. While Part I is arranged in the order in which you’ll follow
the process, you can read Part II in whatever order you like, and refer to it
when you have a particular challenge.

viii | preface

The tools and tips herein are blunt and directional; it’s up to you to
sharpen them and make them your own, just as Wyatt Earp would remove
the safety and polish the hammer cam of his Colt so he could shoot faster.
If you’re looking for an in-depth analysis of software strategy, this book
is not for you. But if you’re looking for a tried-and-true template that will
carry you through a three-day strategy offsite and align your team for suc-
cess, read on.

acknowledgments
I owe a special thanks to Brian Marsh, one of the best engineering manag-
ers in the world, for sharing an office with me for much of the past eight
years and helping me figure this stuff out. He’s responsible for much of
the good advice you read (and none of the bad jokes). Aaron Abrams was
my best reader and the first to say, “Make it more snarky,” for which I am
very thankful. Thanks to Ali Pasha, Steve Saito, Matt Shobe, and Mike
Smith for reading and providing great feedback on the manuscript. Most
of all, thank you, Tim, for your patience, help with the tone, and endless
support.

 1

 Part	One	 |

The Shipping
Greatness Process

Anyone can ship software that works great and leaves us feeling great,
but few of us actually do. More often than not, our products arrive late,
miss the real customer need, or cause you and I to develop another ulcer.
This is a problem. One of the reasons we have these problems is that we
don’t know how to put all the pieces of the shipping puzzle together in the
right way. We sometimes forget essential steps or get wrapped up in the
wrong details, and we end up charging blindly ahead, depending on luck,
hustle, and good will to drive the product out the door.

This approach is not sustainable or efficient, which is why the best
teams at Amazon don’t work like this. It’s also not fun, which is why the
best teams at Google don’t work like this either. Luckily for you, the path
to shipping greatness is composed of only seven straightforward steps that
any team lead can follow, and generally results in both success and fun.

Step 1 is defining the right product. You won’t achieve greatness if
you do a fantastic job shipping crap. The right product is one that serves
a real customer need that many customers share. Meeting this need in a
unique and meaningful way is your mission, and you’ll organize all your ef-
forts to ship around this mission. For example, your mission will inform your
strategy, which is your unique approach to your market. Once you have
a mission and strategy, your product will be much more clearly defined
and much less likely to be crap, because it will conform to a great strategy.
You’re already done with step one.

Shipping step 2 is to define your product as clearly and with as much
detail as you can handle. There are 10 major ways to do this, including
writing a press release, building a living FAQ, writing the functional spec,
and more. By the time you’ve completed these 10 steps, you’ll have aligned
your engineering team, engaged with your management or investors and
gained their buy-in, and generally excited everyone. You may also be ready
for a break.

2 | part one

Step 3 is designing the user experience. Working from the user out,
you’ll iterate with your design team to build a beautiful, intuitive, and
simple user experience. You’ll ask questions to keep the team focused
on your mission, and you’ll help glue the engineering and design teams
together so you design something that can be built with software.

In step 4, you need to do some basic project management—not too
much and not too little. When your engineering team has mockups and
requirements that they can write code against, you will start to do some
basic project management. You’ll help your team track their deliverables,
you’ll help them say no, and you’ll keep the scope in check.

Step 5 is when you start testing, because code will start coming in and
the product will start getting real. Your velocity as a team will increase,
and your testing organization will start to work in earnest. This is a less
creative but very exciting time. As the team lead, you’ll lead a bug triage
process and make important decisions about what changes you can afford
to take in your initial version and what must be fixed before you ship.

You’re almost ready to launch in step 6, but before you release your
software you need to ensure that you know what success will look like,
and that means establishing metrics by which you’ll measure greatness.
Because you’re following a good process, your team should have some
engineering bandwidth available at this point to help instrument parts of
your user experience that weren’t already instrumented and to help build
dashboards. Your bug count will hit zero and you’ll be ready to measure
your launch. Time to buy the champagne and put it in the fridge.

Finally, Step 7 is when you launch. Launching a great product is not as
simple as just uploading some files to a server. You will need to plan your
marketing and PR, and make sure that you go through a launch checklist.
Invariably, something will go wrong and you’ll need to cope with it; if you
cope with your launch crisis gracefully, most users won’t notice and you’ll
be on a path to greatness, which you can see in your dashboards.

Shipping doesn’t seem too hard at this level of detail, and that’s the
idea behind the process. Each step has concrete tasks and will build on the
prior stages, helping ensure that you build a happy team and a successful
project.

D
ow

n
lo

a
d
 f
ro

m
 W

o
w

!
e
B
o
o
k

<
w

w
w

.w
o
w

e
b
o
o
k.

co
m

>

 the Shipping greatneSS proceSS | 3

Throughout these steps you will find that we’re constantly working to
reduce the scope of the project, simplify the user experience, and move
more quickly from one stage to the next. Moving through this process
quickly will help you iterate, and iterations are great because each iteration
is informed by customer feedback about the previous one. Even though
each version of the product is different, the process will be the same and
you’ll work through the same steps. So now let’s look at them in detail,
starting with defining your mission and strategy.

 5

| 1

How to Build a Great
Mission and Strategy

Shipping is about meeting customer needs well and quickly, in addi-
tion to becoming rich and famous. Your mission, therefore, is to solve a
customer problem. Your strategy is your unique approach to meeting a
need that a group of people—a market segment—shares. It sounds pretty
simple, and it is, in theory. Driving a racecar is pretty simple in theory,
too—just brake at the right point, turn in at the right point, accelerate
at the right point. In practice, figuring out how to drive a racetrack at a
car’s peak performance is very hard, just like discovering exactly what
customers need and aligning your mission and strategy with that need. To
accomplish these tasks, you’ll need some special skills and a very careful
focus on a few important things. So let’s break them down a bit and give
you the tools you’ll need for this special task.

Start by finding a big need that a lot of people share.

how to Find the right need to meet
The “wow, this is really cool; let’s make it!” road to product definition does
not even come close to the wealth, fame, and success road signs. Your
business likely caters to a segment of customers who have many different
problems; how do you identify the critical problem you are going to solve
first? Let’s try driving the road backward, starting with those who are
actually successful, famous, and yes, ridiculously wealthy.

Jeff Bezos, CEO of Amazon, has made a small fortune for his company
and shareholders by constantly emphasizing that teams “focus on custom-
ers, not competition.” The great clarity that this distinction provides is that
your team remains problem focused, rather than reactive. Similarly, Larry
Page, CEO of Google, frequently says, “Start with the customer and work
outward.” His notion is similar, albeit less focused on strategy. From Larry
and Jeff, we can learn that you have to focus on a real customer problem.

6 | the Shipping greatneSS proceSS

Sergey Brin, Google founder and president, brings another critical
bit of wisdom to this picture. He has said repeatedly: “Don’t try to solve
the easy problem. Solve the harder problem.” As the problem definition
gets bigger, you’ll find that more users have a similar problem. As you
increase the number of users you can help, you will increase your product
revenue potential, and wealth, fame, and success will follow. If Larry and
Jeff believe you need to solve a real customer problem, Sergey adds to that:
you need to solve a real customer problem that many people share.

One example of how Google solved a real, harder problem is Google
Pack. Google Pack was a free collection of utility software for your PC.
When I worked on Google Pack in 2007 and 2008, we knew that users
rarely applied software updates, because the experience of applying up-
dates was complicated. And because the users’ computers weren’t updated,
users had slow systems and security vulnerabilities, and were generally
hassling their kids during holiday breaks.

Rather than trying to optimize each complicated user experience
around updates, we built a system, subsequently used by Google Toolbar
and Google Chrome, that enabled us to update all software, including
third-party applications, without bothering users. This was a much harder
problem to solve, especially in light of the myriad installation processes
that third-party software requires. But because we built this software, we
were able to reach and help hundreds of millions of users. The software
was eventually open-sourced as Google Update. Based on its broad usage
and utility as a platform, I think this was a highly successful product. It
was successful because it solved a harder problem than the problem we
first identified.

If you’ve uncovered a big problem that many users share, you’ve com-
pleted the most important step of your product definition process. More
important, you’re on the road to helping a lot of people in a meaningful
way! These criteria—real, big, and shared—probably seem obvious, but
more often than not, teams ignore them. They also form the cornerstone
of your mission. Framing your mission statement around that cornerstone,
so you have something that can be used to build your strategy, is your next
step.

 how to Build a great MiSSion and Strategy | 7

how to Construct a great mission Statement
Every team has to have a mission. If you haven’t articulated it, the team,
your organization, and your investors are probably operating under wildly
different conceptions of the mission, and that will lead to failure. Your
team will fail because each person will likely pull in a different direc-
tion, causing tension, chaos, and pain. I’ve seen this happen many times.
Sometimes teams don’t articulate the mission because they are afraid of
engaging in the argument about what it is, but such a fear just delays the
inevitable confrontation that will arise when you all realize you’ve been
going in different directions. You can prevent this problem, and reduce
conflict on the whole, by writing a great mission statement.

A great mission statement accomplishes three things—and only three
things—beautifully.

Inspires

You want a mission statement that grabs people and brings them into
the fold. Making your mission inspiring is important because it helps
hold your stakeholders’ attention for long enough that you can dig
into the details.

Provides an organizing, directional principle

Your mission should direct you. If your mission statement is simply
“be great!” you have a freshman mission statement, and you need to
send it back to school. By adding direction to your mission statement,
you make it clear what you’re trying to accomplish.

Fits on a t-shirt

You probably won’t print t-shirts with your mission statement on them,
but if you can, then people will remember it. And if you want your team
to make decisions that are aligned with your mission, they have to be
able to remember it. You probably have a team full of hyper intelligent,
uniquely talented gurus, but that doesn’t guarantee that their exper-
tise extends to remembering their mission. So make it easy on yourself,
and your team, by having a mission statement that fits on a t-shirt.

8 | the Shipping greatneSS proceSS

An example of a team with a great mission statement is the personaliza-
tion team at Amazon. These are the folks who built the product suggestion
features that work scarily well. Their mission was to “increase customer
delight.” This wonderful mission statement fits the requirements exactly:

•	 It’s inspirational. Who doesn’t want to go to work trying to delight
customers?

•	 It’s organizing and directional. We need more delight. And it’s organiz-
ing—it speaks to serendipity, discovery, and happiness.

•	 It fits on a t-shirt. Even all these years later, I remember it.

A final note on mission statements: they need not cover everything.
They should be sufficiently broad that many incarnations of your product
or service can fit the description.

how to Build the right Strategy
Strategy is a topic that has been overcomplicated by consultants in an at-
tempt to make money. Engineering leaders have also overcomplicated it
because they frequently have no idea how to approach the problem, and
instead start waving their hands. Most of all, this topic simply feels over-
complicated because strategy is nebulous, and it is hard to tell when you
have a good one. Luckily, because we work in software, we can create a
series of dramatic simplifications that will make your strategy much easier
to develop.

Your strategy is a rough plan to win over your target customers given
the unique assets of your company and the pressure from your competi-
tors. That’s it. It’s not a detailed product description, and it’s not a page of
nuanced plans. It’s a paragraph that states how you’re going to make your
product more attractive than the competition’s product to a group of cus-
tomers over the long term. In short, the three things you need to address
are your customers, company, and competition.

For example, when I worked on Google Talk, I had a mission: “Allow
anyone to communicate with anyone else, anywhere, on any device.” I
looked at the competitive landscape for unified communications, video
conferencing, and VoIP. I looked at Google’s unique assets. One unique
and durable differentiator was that unlike Skype or other video confer-
encing providers, we could use Google’s massive cloud infrastructure to
provide video conferencing through a switching technology, rather than

 how to Build a great MiSSion and Strategy | 9

through the older and much more expensive encode-decode-mix-encode-
decode process. Typically, multiway video systems like that cost tens of
thousands of dollars and worked poorly because the hardware added so
much latency. Google’s technology was unique, and it was durable be-
cause you needed a big datacenter presence to replicate it. Nobody builds
more datacenters than Google.

So from both a company and competition standpoint, it was a great
fit. We could lead with our unique, low-cost offering. When I looked at
our millions of Google Apps customers and industry trends, I saw an
emerging market segment composed of workers who were increasingly
distributed and working from home. On top of that, the conference-calling
space was huge, and we had powerful assets in Google Voice that we could
offer to users.

Given this data, I argued that we should try to lead the market in low-
cost unified communications for businesses. This strategy would enable
us to leapfrog Skype’s older technology and undercut Microsoft’s more
expensive systems in the SMB and Midmarket segments. Ultimately, you
can see that Google didn’t follow this strategy, choosing instead to empha-
size its social efforts and Google+ Hangouts. But you get the point.

As you think about your company, customers, and competition, pay
special attention to how your product will serve your customers better
than the competition’s product in the long term. This is the one time in
the shipping process in which it’s OK to think about competition, so revel
in it! You need to think hard about the long term, because if you want your
product to be a commercial success you need the differences between your
product and the competition’s products to be durable. If they are not,
your competitors will follow along quickly and offer a rebranded version of
your product at a lower price point, and you won’t have achieved greatness.

Now that you know who is going to love your product and why you can
do it better than anyone else over the long term, write it down in fewer
than three paragraphs, and aim to fit the essence of your thoughts into
one paragraph. The shorter you make your strategy, the easier it will be to
achieve and defend.

Here’s another example. Let’s say we’re the Internet Movie Database
(IMDb), a division of Amazon, and we’ve brainstormed the following
mission:

Mission: Enlighten video viewers.

10 | the Shipping greatneSS proceSS

Is the mission inspirational? I think so. Enlightenment seems inspira-
tional to me. Perhaps excessively so for an engineering audience, but look
at how we’ve applied it. We can say enlightening is about providing con-
textual data, driving discovery, even helping you know what your friends
think. So that seems to fit.

Is it organizational and directional? Yes. It speaks to who you’re going
to focus on—viewers. I didn’t restrict “viewers” to “movie viewers” be-
cause I think YouTube applies, as do Hulu and other portals. I don’t think
photographs or other artworks apply, so I used “video viewers” as a way of
restricting our focus. And enlightening speaks to providing intelligence
and data, so the mission tells our team what kind of things we’re going to
do for our users.

Does the mission fit on a t-shirt? Yes, unless you translate it into
German and use a big font.

Now that we have a mission that we think is good, let’s build it into a
strategy:

Strategy: Users are consuming more content every day as more content

is created, but it is very hard for 20- to 40-year-old professionals to find

the content they want to watch. We want to enlighten these users, to

help them discover better things to watch and understand what they’re

watching more deeply.

We chose to focus initially on professionals because while teens and

tweens have time to spend on Facebook and YouTube, professionals have

less time but also have rich networks and strong opinions—not to men-

tion disposable capital to spend on content.

Using IMDb’s unique collection of movie data and Amazon’s ability

to distribute digital content and proven personalization tools, we will

uniquely solve the content discovery problem by integrating these tech-

nologies and building unique suggestion algorithms. Unlike competitors

such as Netflix, who already have a recommendations engine, we’ll inte-

grate across all video sources and use our richer data to provide more

interesting in-viewing experiences and more accurate recommendations.

We will deliver these in-viewing experiences through platforms

that can expose contextually relevant data (e.g., the cast of a YouTube

video), such as a browser plug-in for YouTube and mobile applications

for phones. We can also enlighten viewers by providing rich information

about the content they are consuming, and prompt for feedback—creat-

ing a virtuous cycle in which all users benefit.

D
ow

n
lo

a
d
 f
ro

m
 W

o
w

!
e
B
o
o
k

<
w

w
w

.w
o
w

e
b
o
o
k.

co
m

>

 how to Build a great MiSSion and Strategy | 11

This strategy accomplishes what I need it to accomplish. It speaks
to the type of product IMDb is going to offer and why the company is
uniquely positioned to provide this service. It speaks to competition and
how IMDb will be different, and justifies why IMDb should target a spe-
cific segment. It’s brief and to the point. It’s not excessively specific, but
it is directional, speaking to specific goals of integrating across all video
sources and exposing fun facts about movies.

Note that when I wrote about targeting professionals, I said “initially.”
“Initially” is a bit of a cop-out, but it’s a great way of saying “tweens will
go in Version 2,” which allows us to have a narrower initial focus without
fundamentally rejecting the point of view that tweens are important. See

“How to Handle Randomization” in Chapter 12 for more on the “it will go
in V2” technique.

When you’ve written a basic mission statement and strategy (yours
may be somewhat more fully fleshed out), you should sit down and discuss
both artifacts with your leads. This is the first step of getting everyone
aligned and bought into the direction you’re heading. If you can’t agree
at this level of granularity, you shouldn’t move forward, because the next
steps are more specific versions of your mission statement and strategy.

When you’ve reached a reasonable level of consensus with your team
leads, you can move on to defining the product in detail.

 13

| 2

How to Define a
Great Product

The next step of the shipping process is making your product idea
understandable and specific. If you’ve defined a mission and a strategy,
then you have an understanding of who your customer is and what that
customer needs. You also know what you need to do better and differently
than your competition. With this knowledge and some inventiveness, you
should be able to brainstorm a rough product idea. Or, if you’re like the
vast majority of us, your management said, “Go build X,” and now you
have to use more than one letter to communicate your objective to your
team. In other words, how can you make the product real enough in words
that designers can make mocks, recruiters can hire engineers to build it,
and you can get funding to buy donuts and servers?

As you try to make your product understandable and specific, you will
uncover assumptions that you’ve made about customer problems. These
assumptions were baked into your strategy and your mission, because
both your strategy and your mission followed from customer needs. I hate
to break it to you, but you might be wrong about what customers need. We
all know that Amazon, Google, and others have been wrong many times.
So you’re probably right, but the best way to prove you are is to give custom-
ers a product and see what they say.

Serial software entrepreneur Eric Ries seems to agree with this
approach, and makes a compelling case for building what he calls the
minimum viable product in his book The Lean Startup (Crown Business).
Ries defines the minimum viable product as the smallest fraction of your
product that a sufficient number of customers will use in order to vali-
date an assumption. You may only need a handful of customers to know
you’re on the right track, and you may only need to validate one assump-
tion at a time. Regardless of how big your minimum viable product is,
you can still follow the product definition process. You will want to repeat
it quickly to test assumptions and deliver great incremental progress to

14 | the Shipping greatneSS proceSS

your customers. If your iterations are smaller and faster, you’ll spend less
time guessing about what customers need and more time acting on what
customers tell you—and that will lead to greatness.

There are 10 major steps to the product definition process. Each step
builds on the step before. Ten steps may seem like a lot of process, but
some of these steps are easy, and you can choose to do some of them (like
writing a press release) only once at the beginning of a series of small
iterations, rather than for each small product update. Step 1 of the product
definition process begins after you have figured out your strategy. The
process ends at step 10 with a fully defined and clearly articulated product
that you can start to code up with your engineering team.

1.  Write a press release. An unusual way to start, this is a less-than-
one-page document that drives understanding and clarity and
follows from your strategy. Amazon loves this approach. You can
probably hammer this out in a couple of days.

2.  Create a living Frequently Asked Questions (FAQ) document. This
running document collects objections and details that must be
addressed. You can start this document in an hour and then add
to it in your “spare” time before and after the release. It’s very
inexpensive to build and maintain, particularly if you build it in a
wiki or Google Doc.

3.  Make wireframes or flowcharts. Wireframes and flowcharts de-
scribe your product visually and help make discussions and an-
swers more concrete. You might spend a day or a week on these
drawings. They’re one of the most powerful communication tools
you have, and they’re worth the effort.

4.  Write a one-pager or 10-minute pitch deck. This single-page
document describes your product in enough detail for a senior
executive or most venture capitalists (VCs). This deck will have
the same content as the one-pager, but is used when you’re pre-
senting. A draft one-pager will take a couple of hours to build,
and the same goes for the pitch deck. I find that it takes one to
two weeks to refine the one-pager and pitch deck after I have a
draft because I have to test them out on people and collect a lot of
different opinions. Sifting through this data and figuring out how
to make these documents sing takes some brain time.

5.  Add application programming interfaces (APIs) to your FAQ. APIs
are the first technical tentacles of your product, and you’ll fully

 how to define a great product | 15

integrate them into your requirements in step 6. You can probably
draft a rough cut of your APIs in a few hours and refine them over
time with the help of your engineering team.

6.  Write the functional specifications document. This document is
also known as a product requirements document (PRD, at Google), or
marketing requirements document (MRD, at Microsoft). Regardless
of its name, this is the big document. It’s the bible that describes
in detail how everything will work and why it works like that.
You’ll fill in sections by copying from your press release, FAQ,
wireframes, one-pager, and APIs. To these major ingredients,
you’ll add spices like your capacity plan, nongoals, and clear use
cases that shed light on all the corners exposed in the FAQ.

The functional specifications document can take anywhere from
a couple of days to a couple of weeks to finish, depending on your
product scale and how mature it is. If your product is immature, you
want to make the product as small as possible so you can test your
assumptions. If your product is larger and more mature (e.g., Apple’s
iPhone), you will need a more robust and complete functional specifi-
cations document.

7.  Review the product with design and engineering leadership. The
goal of this step is to get buy-in from the individual contributors
and solicit their advice so you expose all potential edge cases. If
you can pull everyone together into an offsite meeting, you can
get this review done in a day, although you won’t have the more
nuanced feedback you’ll get from people who have had a chance
to scratch their heads for a bit about what you’re proposing. If you
have to nag your team to read and review your document—well,
you know how that goes.

8.  Test the product concept on customers. At this stage, you need to
make sure that you’re solving the problem you set out to solve. You
can get a good cognitive walkthrough done in a day, and you can
get online feedback in a few days.

9.  Name it, price it, and forecast your revenue. While you can some-
times delay these items and operate on faith that you’ll be success-
ful, I find I sleep better when I know that there’s a solid upside
for investors in the product. Also, while some MBAs will spend
two weeks on a pricing or revenue model, I think you can (and
should!) complete this step in less than a few hours. If you spend
more time than that, you’re probably trying to be too fancy.

16 | the Shipping greatneSS proceSS

10.  Pitch your product to the execs. You can now take your product
to your executives or VCs for final approval. You’ll use your 10-
minute pitch, your FAQ, and your wireframes, and leave them
with the functional requirements. If you can sell your product
upstairs, you can start building it downstairs. It should take you
30 minutes to pitch your 10-minute deck (more about this later).

These steps can look overwhelming, but don’t worry, they’re not
super-hard to complete. This detailed product definition process is a very
granular and linear breakdown of an otherwise messy experience. If you
complete the steps one at a time and celebrate each milestone you pass,
you can actually have a pretty good time. Most of these steps, except for
steps 6 and 7, are fast and fun (if you’re a geek like me). So let’s start at step
1 and build a product.

Step 1. Write a press release
An unorthodox but otherwise great way to start defining your product is
by writing a press release. Jeff Bezos and company pioneered the “write
the press release first” approach at Amazon. The concept is that you have
one page in which to make the marketing announcement. A great press
release or blog post communicates critical information that succinctly de-
scribes the product. The benefit of starting with a press release instead of
the FAQ or one-pager is that it is inherently brief, readable, and focused on
what the real product will mean to real users.

A good press release or blog post contains six things:

•	 What your product is named.
•	 When it will ship.
•	 Who it’s for.
•	 What problem it solves.
•	 How it solves that problem. Briefly!
•	 What’s so great about it that the CEO will go on record espousing its

virtues.

Note that a press release or blog post doesn’t go into deep details. It
rarely includes graphics and never includes financials. A press release is
a crisp summary of what, when, and why, from the customer perspective.
If you’re following the earlier advice, you should already be thinking about
your product from the customer perspective, and that will make the press

 how to define a great product | 17

release easy to write. In fact, all of these items follow directly from your
strategy. For example, you should already know what the CEO will rave
about in the press release: it’s your unique approach to the market.

When I worked on Google Apps, I helped write the blog post that
follows. There are a couple of prefatory paragraphs that speak to general
business pain points (in 2009 it was harder to deploy Google Apps), but
in general you’ll see how it conforms to the requirements of a good blog
post. Since it’s a blog post, you’ll see that instead of a quote from the CEO, I
used a testimonial from a major customer. We were extremely happy with
the performance of this post and how well aligned our product was with
customer needs, and that is precisely what you’re trying to accomplish at
this stage of your development.1

Use Microsoft Outlook with Google Apps for email, contacts,

and calendar

TUESDAY, JUNE 9, 2009

Over the last year, we’ve had a razor sharp focus on making it as easy

as possible for businesses to deploy Google Apps. In the last few

months you’ve seen some of the results, from offline Gmail to user

directory synchronization to full BlackBerry® interoperability.

Today we’re excited to remove another key barrier to enterprise

adoption of Google Apps with Google Apps Sync for Microsoft Outlook.

Google Apps Sync for Microsoft Outlook lets you use Microsoft Outlook

seamlessly with Google Apps Premier or Education Editions.

Many business users prefer Gmail’s interface and features to prod-

ucts they’ve used in the past. But sometimes there are people who just

love Outlook. For them, we’ve developed Google Apps Sync for Microsoft

Outlook. It enables Outlook users to connect to Google Apps for business

email, contacts, and calendar. And they can always use Gmail’s web

interface to access their information when they’re not on their work

computer.

1 You can see the whole post online at http://googleenterprise.blogspot .com/2009/06/
use-microsoft-outlook-with-google-apps.html.

http://googleenterprise.blogspot.com/2009/01/announcing-offline-access-in-gmail-labs.html
http://googleenterprise.blogspot.com/2009/04/sync-google-apps-user-accounts-with.html
http://googleenterprise.blogspot.com/2009/04/sync-google-apps-user-accounts-with.html
http://googleenterprise.blogspot.com/2009/05/google-apps-connects-with-blackberry.html
http://googleenterprise.blogspot.com/2009/06/use-microsoft-outlook-with-google-apps.html
http://googleenterprise.blogspot.com/2009/06/use-microsoft-outlook-with-google-apps.html

18 | the Shipping greatneSS proceSS

Key features include:

• Email, calendar, and contacts synchronization. For email, the plug-

in uses the offline Gmail protocol, which is much faster than IMAP

or other methods.

• Free/Busy lookup and Global Address List functionality, which

makes it easy to schedule meetings with your colleagues, regard-

less of whether they use Outlook’s calendar or Google Calendar.

• A simple, two-click data migration tool that allows employees

to easily copy existing data from Exchange or Outlook into

Google Apps.

If you read this post and said, “If I were Eric Schmidt, I’d understand
why these guys invested a couple years in this engineering effort—good
job!” then starting with the blog post is right for you. If you said, “This guy
is a ding-dong. When can we get to the APIs?” then you might want to skip
step 1. But don’t skip any of the other steps, OK?

If you’re going to skip the press release, then complete the next two
steps. You’ll end up building a one-page document that says roughly the
same things that the press release does—it’ll just be harder because you
didn’t start with a customer-facing message. Other situations where you
may skip the press release can include internal systems development, fea-
ture improvements, and corporate environments where something novel
like a predevelopment press release won’t be met with applause.

Step 2. Create a living Frequently asked 
Questions document
As I move forward in the product definition process, I find that I accrete
tons of questions, many of which are extremely important because they
inevitably point to product gaps. I immediately write down these questions
in an internal FAQ document and answer them if I can. I like dumb ques-
tions because when I answer them, I feel like I’ve made progress without
expending much effort. It’s a rare and delightful feeling for me.

If I think a user may ask the same question that I receive, I write the
question in an “External” section of the same document. I also continue to
update the document with new questions as they arrive, so the document
becomes a “living” source of truth for people with questions.

When I get a question I can’t answer, it goes into the FAQ too, along
with the hope that someone else will answer it. Worst case, you can use
the FAQ just like a personal bug list or source of topics for discussion with

 how to define a great product | 19

your team. When the number of open issues approaches zero, you’re ready
to write a quality one-pager or product requirements doc.

There are two major benefits of building an FAQ document. First,
the FAQ is great because it saves you a lot of email and can put out inter-
nal fires. It answers obvious questions without you having to send a long
email. More important, when you get heckled about minor points, simply
pointing folks to the FAQ is enough to indicate that you have done your
homework and will douse most hand-waving complaints.

Second, the FAQ becomes a valuable resource for your support and
tech writing team since they can organize all public content around it. And
because you’ve organized it into Internal/External sections, they already
know what they can say publicly. Building the FAQ is a great idea because
it will save you time during the most time-crunched part of your product
development process—right as you’re getting ready to release and your
team needs to finalize the support content.

Step 3. draw Wireframes and Flowcharts
As you’ve been answering the questions in the FAQ, you’re likely en-
countering questions that are best answered visually, particularly when
it comes to delicate parts of the user experience (UX). It helps immensely
to draw flowcharts for user workflows and system interactions. Similarly,
drawing coarse wireframes that walk through the user experience can
make the product more concrete and will be incredibly valuable in the 10-
minute pitch that we’ll discuss later. Sketches you make on the whiteboard
or on plain paper and then photograph with your mobile phone are also a
wonderful way of communicating your ideas.

I think the process and techniques involved in drawing wireframes
or flowcharts is so important that I’ve dedicated a whole section to it in
Chapter 4, so I won’t dwell on it here.

Step 4. Write the one-pager and/or Build 
a 10-minute pitch
At this point in the product development process, you should have a good
idea of your customer, the problem you’re trying to solve, and how you’re
going to solve it. The next step is generally to get preliminary support
from your engineering team, your executive management, VCs, or other
stakeholders. You want to check the temperature of your investors at this
stage because step 7, the big document, is right around the corner, and
you don’t want to overinvest in that document if you can help it. The other

20 | the Shipping greatneSS proceSS

benefit of building the pitch at this point is that you can state the assump-
tions from which you started more clearly; you’re likely much more erudite
at this juncture.

A one-page summary of your product and/or a 10-minute pitch deck
are all you need. Feel free to include your wireframes or flowcharts and not
count the space they take up in the one-pager.

At Amazon it’s critical to have a one-pager because that’s how the busi-
ness operates—the senior vice presidents (SVPs, a.k.a. the “S-Team”) all
sit around a table and read your document quietly and then when they’re
all done, they discuss it. This is a strange dynamic to experience; it’s kind
of like sitting in an SAT where everyone wants to be the first to put his or
her pencil down. For better or worse, it’s how Amazon’s SVPs have worked
for years now.

Google operates differently than Amazon. At Google you need a pitch
deck, even if you plan to speak without slides, because you will need to
present in person and Google hasn’t established the SAT system that
Amazon has. You can find instructions on how to build a great 10-minute
pitch in Chapter 5.

For VCs, you’ll need both a one-page summary and a pitch because
you’ll need to send something in email (the one-pager) and present some-
thing (the pitch deck). Regardless of where you work, both of these arti-
facts are an extension of the press release and they contain the same basic
content. The five major elements you must include in your summary are:

•	 What it’s called
•	 Who it’s for + how many of these users exist
•	 What problem it solves + how valuable that solution is to a user
•	 How it solves that problem + what that solution looks like, and why

your approach is durably different than the competition
•	 When it will ship + what the major milestones are
•	 For VCs only: team profile

The one-pager and pitch deck extend the press release to explain the
market opportunity (number of users), the revenue opportunity (value of
the solution), and sustainable competitive advantage (durable differentia-
tion). If you can’t make a clear statement about these topics in one page,
keep working on it.

It may seem challenging to fit all these points into a 10-minute presen-
tation or a one-page document. You’re right; it is challenging. Most team
leads fail the first few times they try to create such a concise, powerful

 how to define a great product | 21

document or presentation. I’ve seen hundreds of decks from companies
looking for investment or to be acquired, and very few have built a coher-
ent pitch that can be presented quickly and clearly. Therefore, building a
clear, concise pitch is an essential task for the team lead. It will get you
instant respect and attention, and you’ll get your message across to boot.
There are detailed instructions on how to build the 10-minute pitch in the
section “How to Build and Give a Great Presentation” in Chapter 10.

One final note on this particular 10-minute pitch: most of the people
to whom you’re going to pitch, whether they are inside your company or
outside, or engineering or business focused, are going to be very smart
and knowledgeable about your industry. However, they won’t have any con-
text on your specific business. The best way I’ve seen to present to these
groups is to start with the user and move outward (see the aforementioned
outline). Do this quickly and then allow the smart folks to whom you are
presenting dig into areas that they care about. Your audience needs to do
this level of investigation not because you don’t have the data but because
it’s their way of interviewing you. Embrace the interview!

Step 5. add apis to your FaQ
The goal of adding APIs to your product description is to explain how your
team will interface with other teams. APIs can also explain how external
developers might work with your systems and what kind of data you’ll
store. Another one of the advantages of articulating APIs in advance is
that it helps you build a great platform; service-oriented architectures (see
Chapter 3) hinge on these APIs, so writing them up front helps everyone
a great deal.

Most important, APIs make the boundaries of your system very clear
and concrete. Concrete boundaries help people understand where the
responsibility for various functions or outputs lie. That level of under-
standing between parties enables a good conversation about your prod-
uct requirements because you start from a shared understanding and
vocabulary.

APIs can be very useful but can also backfire because the engineers
you work with may feel that APIs are their territory. Be careful—feel out
the team first. If they understand that the idea behind you writing APIs is
so that high-level management can agree on which teams will own which
data, and which interfaces must be maintained as part of your partner-
ship, they’ll likely acquiesce. If they don’t, don’t fight for it. I like to remind
myself in these times that I serve at the pleasure of my engineering team,
and I find a different way of getting the message across.

D
ow

n
lo

a
d
 f
ro

m
 W

o
w

!
e
B
o
o
k

<
w

w
w

.w
o
w

e
b
o
o
k.

co
m

>

22 | the Shipping greatneSS proceSS

One example of writing APIs up front comes from a project at
Amazon, when my team built the content scoring system for Amazon’s
customer reviews. As part of the product definition process, I needed to
tell the customer reviews team how they’d get scores from our system. So
I wrote this simple API into the FAQ:

float getContentQualityScore(string reviewId,
 string userId){}

This example is simplistic (and is written in some unknown program-
ming language), but it shows a few important things:

•	 We’ll assume that the index is not the ASIN (the Amazon product ID)
but rather the Reviews’ ID system.

•	 We’ll assume that the score will be a noninteger number.
•	 We had the idea that we could support a Netflix-style review ratings

system for people like you, so that we can give you the reviews that are
most relevant. We figured it was best to put that in the API.

You may want to provide less detail than I show in this API. But if
you’re building anything developer facing, even if those developers are
other engineers within your business, it’s worth considering digging deep
so that you don’t expose a problem later. For example, if Reviews were
assuming we’d give the content a letter grade, its sort algorithm might be
completely different!

Step 6. Write the Functional Specifications document
You’ve crafted a product idea that solves a real need for a real group of cus-
tomers. You’ve pitched and received buy-in from your essential stakehold-
ers. You’ve worked with your dependencies to define how you’ll interface.
It’s now time to get into the implementation details and build your big
document.

At Microsoft, this document is called a marketing requirements docu-
ment (MRD) because the market research folks put together a list of require-
ments from the customers they interviewed. At Google, it’s referred to as a
product requirements document (PRD) because anyone can make them,
but product managers generally write them. Amazon calls these documents
functional specifications because they describe how the product is supposed
to function for the user. These documents are all effectively the same; they
describe in detail how users are supposed to experience the product. None

 how to define a great product | 23

of these documents includes technical details on how the systems operate
behind the scenes. These details are covered in a technical specification or a
design document that your engineering lead will write.

The audience for a functional specification is your engineering team,
your design team, and occasionally your marketing team. Your functional
spec will have nine sections, which I’ll cover in detail. They are, in order of
the most general information to the most specific information, as follows:

1.  Introduction (Mission and Strategy)
2.  Goals and Nongoals
3.  Use Cases or User Scenarios
4.  Mocks or Wireframes
5.  APIs
6.  Capacity Plan
7.  Dependencies
8.  FAQ and Open Issues
9.  Key Milestones

introduction

Your introduction is your one-pager. You may think it’s unnecessary to in-
clude this information in a detailed functional spec, but your engineering
team will appreciate it. It describes why you’re doing what you’re doing. It
provides necessary context for people new to the project and establishes
terminology that you might have forgotten you are using.

goalS and nongoalS

Your goals are a more detailed description of your objectives from the
introduction. It’s worth calling these out, and the nongoals, so that the
engineering team can organize around them. List your goals in priority
order. Make them clear and brief. Prioritizing your goals will also help the
engineering team make good design decisions.

If a goal is not 100% obvious, you need to take the time to explain why
it is a goal. If you don’t, the goal, and the ensuing specific requirements,
will seem arbitrary. Engineers like arbitrary requirements just as much as
they like arbitrary dates, and pay just as much attention to them.

Nongoals are useful for addressing objections or clearing the air when
your constituents have assumptions. For example, if your design team is
concerned that your device assumes the existence of a keyboard, you can
address their concern by saying, “Mobile and nonkeyboard support are
nongoals.”

24 | the Shipping greatneSS proceSS

uSe caSeS or uSer ScenarioS

Sometimes I see use cases and user scenarios broken out into two sec-
tions. Use cases are succinct statements about actions that users must be
able to perform, while user scenarios are more narrative stories about how
users experience the product.

For example, a use case for Hangouts on Google+ was:

User can share screen.

A more interesting use case, which would be added to the list of use
cases that includes the previous example, is:

User is prompted to take over screen sharing when the user tries to share

his/her screen and another user is already sharing.

You can see how these use cases can get a little challenging to read.
They are nicely specific, though, and make it easy to figure out which
pieces of engineering work are required. Agile development makes good
use of use cases (a.k.a. “stories”) by describing each core task as a use case,
following a framework like:

As a participant in a hangout, I want to be able to [share my screen with

others in the hangout].

This agile model emphasizes the user type and action and works rea-
sonably well. But when the actions become complicated, user scenarios can
become very powerful. For example, if we were to rewrite the Hangouts
use cases as a user scenario, you can see how a developer would end up
with a better sense of the intended user experience.

Jody wants to share her screen. She clicks the “share screen” button.

She is prompted to select the window she wants to share, and she can

also choose to share her whole desktop. Pictures and labels describe

the options she has, and the pictures are updated in real time, like little

videos. When Jody clicks on an option, she starts presenting her screen,

unless someone else is already presenting. If someone else is presenting,

Jody is prompted to take over: “Rick is currently sharing his/her screen.

Do you want to take over and share your screen instead?” If Jody says

No, she returns to her initial state. If Jody says Yes, Rick’s video switches

back to his camera and Jody’s screen is shown.

 how to define a great product | 25

Regardless of whether you write use cases, user scenarios, or both,
prioritizing them is important. Prioritizing your use cases early will help
your engineering team prioritize engineering tasks and optimize designs.
I once heard an Amazon exec say, “Prioritization is failure!” Run, don’t
walk, from these people. Prioritization is a critical tool that enables your
resource-constrained engineering team to trim a feature set to meet a
date. Prioritization at Google and Amazon typically works the same way,
and there are four levels:

P0

Can’t demo without it.

P1

Can’t ship without it.

P2

Nice to have.

P3

Ha ha ha!

P3 is where features go to die, and even P2 features are likely candi-
dates for the culling. Because this priority schema applies to bug triage
as well, your team will develop a common vocabulary and calibration.
Calibrating importance and urgency is hard, so it’s good to establish pri-
orities and start calibrating early. See the section “How to Triage Bugs
Properly” in Chapter 5 for more information on how this works in the later
stages of your shipping process.

In some cases, you might want to help your team by prefacing a use
case with “[V2]” or some other label that lets them know they can deal with
it later. In reality, P3 implies V2, but even so, it’s nice to know that nobody
expects that use case to be supported in V1. It’s still best to articulate the
use case, even if it’s in the next version, because it helps your engineering
and design team envision the system they must build in the long term,
and it will save you from a mind-bending mass of “yeah, but what if…”
type of questions.

MockS or wirefraMeS

Because you’re following a tried-and-true product definition process, you
already have some rough mocks or wireframes. Paste them into your

26 | the Shipping greatneSS proceSS

functional spec, and they’ll reinforce the story articulated in your user
scenarios.

apiS

If you didn’t write these before, and your engineering team will accept
them, write them now.

capacity plan

A capacity plan is a rough estimation of how many users will use your soft-
ware over time, and it’s important for your engineering team. Your team
will use your estimates to figure out where to add caching, what kind of
servers and storage you’ll need to provision, and what licensing concerns
there might be, among other things.

It’s very hard to estimate usage. I once heard one of the principals
on Xbox Live talk about their capacity planning for launch. He said they
picked the biggest number they thought they’d achieve in their first year,
and then they doubled it. Even so, they were so successful that they had to
add capacity in a rush.

The Xbox approach seems excessive, but it isn’t completely wrong.
Amazon and Google generally do capacity planning in a similar way. You
start by building a spreadsheet that plans your capacity by years or quar-
ters. Estimate both storage usage (number of posts, images, image size,
etc.) and traffic usage (visitors, visitor dwell time, number of page views
per user). At Google, you need to go a level deeper and estimate egress
traffic (data leaving the datacenter) and ingress traffic (requests to your
servers). For most applications, such as a website like Amazon, egress traf-
fic dwarfs ingress. However, if you’re building an application that uploads
photos, videos, or other user-generated content, your ingress bandwidth
will be much larger, so plan accordingly.

Build in buffer and communicate that buffer as an assumption. For
example, you might say, “I am assuming 100% buffer for unexpected
growth.”

Assume your daily peak is three to four times the average usage. This
number is a safe assumption because it represents the overlapping peak
of US users across time zones. If your product is significantly different,
like a software update system designed to run when computers start up,
your peak may be even larger than three to four times the average usage,
so adjust accordingly.

 how to define a great product | 27

If you are a global business, you may want to take into account how
you’re going to alleviate latency issues. Will you deploy to multiple data-
centers? Will you use a content delivery network (CDN, also known as an
edge cache) such as Akamai?

Plan for spikes in usage. What happens at launch? Spikes generally
have very different user behaviors, so you can estimate usage differently.
For example, if 60 Minutes runs a story on your product, what happens?
This happened to me at one startup and we got lucky. Latency increased
and we got paged, but we continued to serve traffic. It was a suboptimal
situation, but we lived to code another day.

Plan a fallback strategy for the worst-case scenario. Your worst case
could be a distributed denial-of-service attack or a Wall Street Journal
article, or it could just be a datacenter failure. It doesn’t matter what ca-
tastrophe you imagine. You need to have some kind of draconian crisis
management system in place, such as a throttling system, a “we’re busy”
page, or a static version of the application that you can serve out of a CDN.

The capacity planning part of the document is a great place to spawn
discussions with your engineering team about systems design. You should
understand what happens when you run out of capacity. Will parts of the
system fail completely, or will they slow down? Do your systems scale hori-
zontally (meaning that for each computer you add, you get one computer’s
worth of capacity) or nonlinearly?

Ultimately, you are responsible for making reasonable predictions,
and your engineering lead is responsible for building a system that scales
to this prediction. Like most things that are predictions, you need to be
careful to spend the right amount of time on this analysis. Spend a few
hours working on a draft, run it by a few people on your team, double your
estimates, and move on.

dependencieS

Call out all of your dependencies, and if you have contingency plans, call
them out too. The functional spec is a good place to aggregate owners
for each dependency. When you circulate your functional spec, you can
include your dependency owners so they know they are on the hook to
support you. They may only read your introduction, but that’s OK, since
it’s one page long and very clear!

Your dependencies don’t need to be excessively detailed. I try to pro-
vide a simple description of why we have the dependency and what the

28 | the Shipping greatneSS proceSS

impact on the dependency will be, such as traffic and exceptional condi-
tions. For example, when I worked on Google Pack, I had the following
dependency:

Download Service (owned by dl-eng@, contact m_@) — We need

the download service to host the signed third-party binaries. We

will update through biweekly pushes and signed clients will request

the payloads over HTTP so we don’t need high-volume SSL traffic.

Instead, we’ll just request a manifest over SSL and the manifest will

include the signatures of the binaries. We expect that emergency

binary updates will be rare but likely—we estimate 1–3 per year.

faQ and open iSSueS

Link your FAQ into your functional spec. You could also copy it into the
document, but I prefer to keep it independent so that there is always a
single FAQ and you don’t run into a revision problem where some readers
will see the old version.

Link your open issues document into your functional spec.

key MileStoneS

If you have hard dates you need to meet (e.g., Apple has its World Wide
Developer Conference, you might be running out of funding, etc.), add
those to the doc. While it’s great to call out major milestones for feature
complete, trusted tester release, and other dates, you have to tread care-
fully since you haven’t sized the engineering work yet. Focus instead on
hard dates, not engineering milestones, and link to your project plan (see
Chapter 5).

Step 7. Uncover edge Cases and get Buy-in 
from your team
The hard part is over! You’ve written this big document that nobody will
read completely, but each section is relevant to some stakeholder, and the
act of writing it has brought laser-like clarity to your product vision. Also,
it’s a good career artifact, so pat yourself on the back now that you’re more
employable. Good job.

Your next step is to tear the document apart and find all the problems.
If you’re not prepared for the searing critique and course changing that will
likely ensue, you may end up disheartened. Don’t fret. This next step, in

 how to define a great product | 29

which your engineering, design, and business teams pull at all the edges
of your product, is a tempering phase. Nobody creates a perfect product on
his or her first try. That’s why you have a team. Deep breath now.

Your team is going to find edge cases, or corner cases, which are product
behaviors and scenarios that occur rarely. Don’t be irritated by these de-
tails, because like most edges and corners in the real world, they can hurt
if you’re not looking out for them. As in the real world, the best thing to do
with edges and corners is to cover them just enough so that nobody loses a
finger. But before you can even do that, you need to discover them.

Aaron Abrams, an experienced program manager from Motricity
who’s managed large-scale projects for clients like Motorola, says that the
best way to discover edge cases is by “taking a slow walk through the func-
tionality.” The slow walk is a great way to approach the problem because
you really need to take time to reflect creatively on ways that users will
break your software or use it in a manner other than you intended. As you
take this slow walk, write down all the potential edge cases and address
them either in the FAQ or in the product requirements document.

In addition to making sure you’ve addressed the edge cases, you need
to ensure that your engineering and UX team has bought into the plan.
The best way to do this is by initially circulating your product require-
ments with your development lead, your test lead, and your UX lead. If you
have customer support, legal folks, PR, or other individual-contributor-
level leaders who might be interested in the product, now is a great time to
have them raise a red flag.

Next, since you’re doing the slow walk anyway, include your leads in
the process. Treat the meeting like a design review meeting (more on this
meeting in Chapter 10). The review meeting will give the leads who were
too busy to actually read your document (and there will be more than one)
a chance to comment. Your leads will likely provide some great perspective
that you don’t have and identify further edge cases for which you need to
adjust.

At this stage of the project, you have one more tightrope to walk: you
must acknowledge and incorporate all the edge cases that you and your
team expose, and you must defend the core principles behind the prod-
uct. If the product is deeply flawed, you’ll find that it’s really hard to get
the engineering team onboard. Do you think you can sell the product to
customers if you can’t sell it to your engineering team? Engineers are a
special bunch, all pajama-clad and dismissive of patents, but that doesn’t
mean they are not savvy consumers. Consider their feedback very carefully

30 | the Shipping greatneSS proceSS

and spend as much time as you need to convince the team that this will be
an amazing product.

If your team has now bought into the idea, you’re in good shape. If
they’re not, the solution is simple: repeat step 7 again, starting with your
mission, and figure out where you lost the team. Make adjustments to
your product plan until it sings and the team has bought in. Everyone
on your team doesn’t need to agree that the plan is perfect, but they do
need to agree to go in the same direction and treat this product plan as an
experiment that has a reasonable chance of success. When the team gets
to that point, move on to step 8.

Step 8. test on Customers
“Test on customers” seems like a bad idea, but the reality is that both
Amazon and Google effectively test production software on customers.
True, some of the tests are “experiments” released on a subset of custom-
ers. And true, Amazon does staff some test teams, and Google believes
adamantly in unit testing (but not in functional testing), but the reality is
that lots of bugs make it to production. That said, I’m not actually advocat-
ing that you now go build your software and throw it out there to see if
it sticks. Instead, bring your deck and your mocks to a group of users or
potential users and see what they think about your idea.

The reason you want to perform this level of testing is because you
want to avoid building a product that nobody wants, or shipping a product
with one essential feature missing. As noted by Google SVP Alan Eustace,
teams can easily get wrapped around the axle building a perfect solution
for a customer who doesn’t exist. Previewing your product with customers
will validate your goals, nongoals, and prioritization.

Some people might call these tests “focus groups.” Others would call
them “presales,” or a “roadmap presentation” for existing customers. Your
UX team may think about this process as a cognitive walkthrough, where-
in you walk users through sketches of the user experience to get their
feedback on features and utility (more on that later). How you perform this
level of user tests doesn’t really matter, but doing it does. So organize three
to five meetings per week for three weeks as soon as you have your deck
together and pitch your product to potential customers.

If you don’t have customers yet, you can ask your UX lead to do some
basic user research; the lead will bring in potential customers and inter-
view them to see if your product fits. UX researchers sometimes find vol-
unteers through Craigslist and compensate them with $100 Amazon gift

D
ow

n
lo

a
d
 f
ro

m
 W

o
w

!
e
B
o
o
k

<
w

w
w

.w
o
w

e
b
o
o
k.

co
m

>

 how to define a great product | 31

certificates. If you have a marketer who you can work with, try to leverage
him or her to pull in a few groups of customers. Family and friends work
well too, but be careful not to skew your test customer base too far to the
geek end of the spectrum.

A classic example of why testing your product idea on users is critical
is the Real Names™ project that I managed at Amazon.2 Our goal was
to mitigate the problem of people writing reviews that artificially made
products look good or bad. We wanted to introduce accountability into
the process of writing reviews. The idea was that reviewers would have to
provide their real name and have it verified by entering a credit card. It’s
still running today, so feel free to go write a review on Amazon.com and
check it out.

There was some debate within the company about the right way to
approach the problem. For example, should we allow users to continue
to post with pseudonyms or not? Ultimately, the way that I resolved this
debate was by bringing the idea to a group of our top reviewers, under an
NDA (nondisclosure agreement). They reacted strongly and negatively;
one customer sent a flaming email directly to Jeff Bezos himself. Jeff
is great about responding to customer mail, and that customer missive
drove a rapid change in our approach, allowing users to have real names,
pseudonyms, or a combination of both. It’s clear to me that without that
customer feedback, we would have had a painful product launch on our
hands. That’s not to say that the launch was smooth—it wasn’t—but at
least we avoided the even bigger crisis that would have ensued had we
required everyone to have a credit-card-verified Real Name.

Step 9. Figure out the Basic Business Stuff: name, 
price, and revenue
Your work up until this point has been focused on the customer, the cus-
tomer’s problem, and what you need to do to solve the customer’s problem.
This is exactly the right approach. If you’ve followed the guidelines of solv-
ing a big problem that a lot of people share, your next tasks are a cakewalk.
If, however, you picked a tiny niche problem, these are the steps in which
you’ll finally realize you’ve made a mistake.

2 The product is described in some detail in a 2004 New York Times editorial, “The Review of
Reviews,” http://www.nytimes.com/2004/08/03/opinion/the-review-of-reviews.html.

32 | the Shipping greatneSS proceSS

The basic business stuff you need to know at this point is the name of
your product and how much money you can make from it. You need the
name so that when you pitch to your execs or investors, you can all speak
about the same thing. And you need to know how much money you think
you can make so that they’ll take you seriously. To determine how much
money you could make, you’ll need to figure out a price. Together, these
are the only business elements you need at this point. Don’t worry about
sales training, marketing campaigns, or launch tricks because you’ll have
plenty of time to address those topics later, and they’re not relevant for your
current audiences.

First, you need a name that can pass trademark and copyright review
by your lawyers and that customers like. The reality is that time spent
working on the product name is time you’ll never get back. The only thing
more contentious and less objective than naming is pricing. My sugges-
tion is to pick something descriptive and go with it.

Here’s an example of how naming sometimes works at Google.
Google’s Hangouts is a product of the Google Talk team. That team of
product and engineering leads probably spent a dozen meetings getting
derailed about whether we should call the product “Google Voice” or
“Google Talk” or something new, like “GVC.” In the end, Google’s SVP
of Social, Vic Gundotra, named it Hangouts—he felt very passionately
about the name. And there you have the second way of choosing a name
at this stage: delegate to someone. The name of your product might seem
precious, but a great name will not make or break a product, so spend the
right amount of time on naming—very little.

Pricing is even worse and more painful to establish than naming be-
cause it looks scientific—there are numbers involved, after all—but it ends
up largely being guesswork. So you and your teammates can spend a ton
of time debugging opaque formulas in your Excel model only to find that
customers won’t buy your product at half the price, or that execs want to
give it away and make money on ads. I’m optimistic that if your product is
good, your customer base is large, and the need is real, the initial price of
your product will have little impact on your long-term success.

But you do have to come up with an initial price, and you need to
be able to discuss your rationale. Rather than spend time reading 300
pages of deep economic analysis that would be largely useless for most of
your software products, you should understand the three basic ways that
products are priced: price to cost, price to value, and price to competition.

 how to define a great product | 33

If you write software, pricing to cost is a bad option unless you offer
technical support or a software license agreement (SLA), and even then
pricing to cost is generally a bad idea. A major disadvantage of pricing
to cost is that very few businesses truly understand their costs. It is chal-
lenging to account for your investment, frontline support, engineering
support, future legal support, marketing costs, and more. You can get ac-
curate costs from accounting—but those were yesterday’s costs, and you
don’t know what tomorrow’s costs will be.

If you want to try to price to value, you can survey your customers.
Ask customers at which price points they’d strongly consider your product,
and at which price points they wouldn’t buy it even if they really needed it.
Using this data, you can ask a couple of MBAs or a high school student to
triangulate what the optimal price is. This approach is reasonable but use-
less because your product doesn’t exist yet. Customers don’t really know if
they need it, and therefore your data is invalid. Also, customers are rarely
honest with answers to pricing questions, and they’re not even consis-
tently dishonest in a particular direction. Let’s move on.

Pricing to competition is pretty much the only reasonable approach
but it requires two things: 1) that there’s a reasonable alternative to which
you can compare your product, and 2) an assumption that the market is
elastic. In other words, you must assume that more people will buy if the
price is lower, and fewer people will buy if the price is higher (which is
true of many products). Look at the alternatives in the marketplace. If your
product offers a superset of functionality, charge more. If it’s a simpler
product that offers a subset of functionality, charge less. If there are no
alternatives, see the first point: you must have two alternatives.

Like the first two pricing models, pricing to competition is useless
when you have a substantially new product. So what should you do? Here
are some broad guidelines that work well for modern products:

•	 Analyze your competition. If you can price to competition, you have a
good starting point.

•	 Ask customers what they’d pay even though you don’t believe them.
This data will either reinforce your competitive pricing guesses or give
you a place to start for a completely new price.

•	 After you have a starting place, adjust the price so that it is easy to
understand. Google Apps chose two price points: $50/user/year and
free (for fewer than 10 users). Compare this to Microsoft’s many-tier
Live365 offering, which is deeply confusing. Perhaps that’s part of its
strategy?

34 | the Shipping greatneSS proceSS

•	 Pick a price that is higher than you initially need. It’s always easier to
drop the price for customers than it is to raise it.

•	 Don’t fight for a price. Often someone bigger and badder than you has
a very strong opinion on pricing. I suggest giving in really quickly and
getting on with the business of shipping. Pricing is not shipping—it’s
just one step on the journey. Move on!

Now that you have a price, you can model revenue. I’ve seen many
team leads and senior sales folks end up stuck when it comes to modeling
revenue. After dealing with this for a few years, I’ve come up with a theory
of why: they are afraid to guess, and all revenue models are composed of
at least 50% guesses. The remainder is mostly 25% market research culled
from free Gartner Research executive summaries and 25% instinctual
hand waving. It’s the 25% market research, and the fact that there are
numbers on the page, that turns your forecast from a wild-ass guess into a
scientific wild-ass guess (SWAG). A SWAG is what you’re trying to achieve
at this stage of your product’s development. But if your SWAG is mainly
guesswork, why model revenue at all?

First, VCs and many business unit leads are going to need to have some
sense of whether you’re building a meaningful business. So you’ll need a
model that forecasts revenue by month over a three-year time period.

Second, building a revenue model exposes your assumptions and vali-
dates your opportunity. The 25% market research you blended with your
basic instincts as a consumer can provide a remarkable amount of insight
when you do some basic math. You may be humbled to find that your
billion-dollar idea is only a million-dollar idea in the ideal case—and that’s
precisely what you’re looking for.

Third, your SWAG is iterative guesswork. Your simple revenue model
enables you to understand how the various financial dimensions of pric-
ing, support costs, and marketing will impact your bottom line. Your
model will provide a framework for you to rationalize decisions.

So keep your revenue model very simple, and don’t worry that it’s
mainly guesswork. As you circulate the model, people will question your
assumptions; as they do so, simply adjust your assumptions to meet their
assumptions. At this point, your goal is to get funded and avoid wasting
time building a product that has no legs at all, not to predict the future.

Here’s how to build a very simple revenue model. You can find a copy
of the spreadsheet at http://www.shippinggreatness.com.

 how to define a great product | 35

1.  Figure out the total size of your market in terms of buyers.
a.  For instance, when I worked on Google Talk, I looked at the

total spend on video conferencing, audio conferencing, and
long-distance IP telephony. That gave me a pretty attractive
market size.

b.  Many consumer products go to market with a “freemium”
model, in which most users use the free product and some
users pay to use additional storage, access extra features, or
get an orc-killing sword. You’ll address your conversion rate
later—focus on the total market. For example, if Facebook
has more than 800 million users, the total market is approxi-
mately 800 million.

c.  Analyst reports are useful for this data, and if you’re in a start-
up you can probably make do with the numbers that are pub-
lished in the free summaries or your VC can get you reports.

2.  Make an assumption about growth over time. This will be your
baseline. As the market grows, so will your sales.

3.  Reduce the market to your addressable market:
a.  Reduce your market size to the segments you’ll target—for

example, small businesses, the midmarket, and enterprises.
b.  Reduce your market size to the countries you can reach. You

might start reaching only the US, but there’s a big world out
there—expanding to other countries will likely have a huge
impact.

4.  Make a guess at the number of users you can reach through your
marketing efforts. A simple way to do this is to figure out how
much marketing budget you have and look at keyword CPM (cost
per mille/impression) cost.

5.  Make a guess at how many of those contacts convert to users.
6.  Identify any other channels of user discovery and add those inputs

to the model. For example, if you have an “invite a friend” mecha-
nism in your product, go ahead and assume that x% of users use
this mechanism to generate a successful conversion.

7.  Now you want to calculate your revenue. Multiply the price by
the additional number of users each period. If your product is
a subscription product, then you can assume a renewal rate and
count that profit.

36 | the Shipping greatneSS proceSS

In the following simple model (Figure 2-1), I’ve assumed we’re sell-
ing a goat-tossing game (a classic fast-follower move). It’s not subscrip-
tion based, but it does have in-game sales, which is where the real money
comes from. In my first cut of the model, I’ve assumed we should give the
app away and rely on in-app purchases.

Figure 2-1. A basic revenue forecast

I prefer to make the editable cells yellow (shown in grey in the printed
version of this book) because doing so clearly identifies which aspects of
the model are guesses. In this case, most of the model is guesses. This
model shows that my goat-tossing game is not a particularly profitable
enterprise, even with a situation in which I’ve reached 3.4% of the address-
able market. Note that instead of working from a percentage of market
share to users, I made a guess about users and cross-checked that with
market share. I used this approach because I feel like I have better in-
stincts and more data about specific download rates than I do about how
broad groups of users adopt games.

Before we toss the goat-tossing idea, we should take a step back and
look at our assumptions. The model I built is sensitive to many variables.

 how to define a great product | 37

For example, I’m spending $1 per user that I acquire through Internet
advertising, and I’m getting a total of 1.15 users from that spend (assuming
viral growth). I’m collecting $3 each on average from 20% of those users,
or $0.60 per user overall. So my marketing plan generates a net loss of
$0.40!

The nice part of models like this is that you can easily change them.
It’s much easier to change this model now than it will be to deflate the
budget allocated to the newly hired director of online marketing later.
To get to profitability, I’ll guess that I want to spend less money on more
cost-effective but lower-reach advertising. In other words, I’ll change our
maximum ad bid so we trigger ads only when we can afford them. I’ll also
change to a different pricing model, $0.99 to buy, which will result in
lower adoption (50% lower, I guess) and greater margin. Let’s apply those
changes. Figure 2-2 shows our revised model.

Figure 2-2. A more profitable basic revenue forecast

That’s more like it. We are now growing slowly. We haven’t taken into
account our operational costs, but on a pure product standpoint, we’re
profitable. We should work on driving our support numbers down, since
they’re roughly 20% of our revenue, which is very high for a game. More
important, we need to come up with some low-cost ways of growing usage.
Maybe the viral features could be improved?

38 | the Shipping greatneSS proceSS

It’s clear that this model is highly sensitive to your assumptions. This
is not a problem; it’s a benefit, because it exposes your assumptions and
the importance of certain variables. If you build a reasonable and simple
model, it will help you understand your business and sell your product
upstairs. But you also must be careful of overspending your time on the
model—real users and real data will inform your decisions far more than
guesswork will.

I know there are MBAs out there groaning as they look at these overly
simplistic spreadsheets. I hear you, and I agree: this spreadsheet is a very
blunt tool. It lacks a wealth of detail that could be added. But the practical
reality is that you are a software team lead and you do not need more detail
to make smart decisions about the product at this stage. You just need a
SWAG. This spreadsheet is a good SWAG.

Step 10. Sell your Completed product idea Upstairs
If you’re in a startup, this is the one time you can probably take a break
and go get a cup of coffee, because you can approve yourself. Unless you’re
funded, that is, in which case you’re in the same boat as everyone else be-
cause the board wants to know what you’re doing with their easily earned
money. They’re the 1%, and they feel entitled to know what you’re doing
with it.

If you’ve followed the plan and sold the product to your development
team, you already know what the objections and faults with the product are
and you’ve addressed them. To make the final sales pitch easier, I suggest
you spend time preselling your product. Most successful leads at Google
have learned how to do this because it establishes some context for your
managers before they have a public reaction to your product. In environ-
ments where everyone is overly busy, like Amazon and Google, preselling
is a very powerful technique.

Preselling is a pretty straightforward process of pitching your way up
the food chain until you hit the folks who are going to say yes. You simply
need everyone between you and the exec to whom you are pitching to say
yes, and then get the folks who report directly to that exec to preview the
concept favorably. If you do a lousy job pitching, the lieutenants will take
you out before you ever get to the decision maker. Or worse yet, they’ll
misunderstand and your decision-making exec will have some potentially
insane idea of what you’re going to build. Be careful, because the risk of
the game-of-telephone effect is seldom greater than when you’re half-
reading email messages while trying to pay attention to people desperate
for your attention.

 how to define a great product | 39

Another approach to preselling is to “do a drive-by” with the decision
maker you’re trying to influence. In such a scenario, you’re not trying to
get a decision, you’re just letting the person know that one is coming. You
can do a drive-by in about a minute if you see the decision maker in the
hall or getting coffee. The drive-by at least sets the tone for the conversa-
tion you’ll eventually have and will alert you to any violent allergic reac-
tions that the individual may have.

Once you get to the point where you can pitch the execs directly, you’re
in for a whole new kind of torture. Take Jeff Bezos, for example. When I
was at Amazon, Jeff was a well-established details guy who was also very
smart. If you wanted to build something substantially new, Jeff had to
approve it. I only pitched a couple times to Jeff and I’m sure I was quickly
forgotten, but I do know that I never got past my first couple of slides. Jeff
jumped right ahead, trying to get to the meat of the conversation. Another
executive I worked with at Google used to do the same thing, but over time
he learned to turn his leap-ahead to a leap-backward and ask for context
instead. I had no such luck with Jeff at the time.

This kind of leapfrogging around your pitch will happen to you at
Google, at Amazon, in VC, and basically anywhere you get superintelligent
billionaires hearing presentations all day long. VCs tend to have slightly
better manners, though, and Eric Schmidt will just do email during every
second slide so you don’t notice that he’s skipped ahead.

So first, before you pitch to the one-percenters, make sure you know
everything on the periphery of your product. This is a lost cause, but it’s
still a good idea. There will always be something you forgot or didn’t know
about because it happened yesterday when you were massaging your
slideware. Accept your failure now—it’ll be OK and it’s no reflection on
your own superintelligent status. When you don’t know the answer, you
are much better off saying, “I don’t know; I’ll find out and come back,”
than pretending you know. Remember, these are hyperintelligent billion-
aires—they can smell a lie like a fart in a car. Trying to talk your way out of
such a failure will just prove to them that you are a ding-dong who doesn’t
understand how smart they are.

Second, go where they want to go. The billionaires are asking to be
guided in a weird way, so do what they want and guide them. If they’re
leaping ahead and they haven’t made a wildly incorrect assumption about
your product, just leap ahead with them. Don’t be the jerk with the deck
who insists on walking through the slide that has the background of every
team member on it when all the investor wants is to know how much you

40 | the Shipping greatneSS proceSS

can charge. Just go to the prices. If you absolutely must cover something,
then you can try saying, “We cover that in just a moment in the deck, but
I’d like to touch on a couple of important things first…” But really, just
move forward. Your judgment on importance matters less than what these
folks think is important.

Finally, read the section “How to Build and Give a Great Presentation”
in Chapter 10 and embrace the deck-in-one-slide approach. The billion-
aires like this because it leaves out lots of details but gets to the heart of the
matter and lets them interact with you.

your product is ready to Build—go Build it!
At this point in your product life cycle, you’ve found a critical user need
that many people share, and you’ve proposed a unique way to solve it. You
can talk about the product in one page, a 10-minute presentation, or in
rigorous detail through your functional spec—even to the point where
you can answer all the frequently asked questions and expound on APIs
and dependencies. You’ve also managed to set nearly outlandish revenue
targets that are inspiring and remind you why you got into this business.

Before you start congratulating yourself, take a step back for some per-
spective. If this were a date, you’ve effectively buttoned your shirt, combed
your hair, and planned your first coy response when you find a suitable
match at the bar. That’s it. Now you actually have to go meet someone and
close the deal. Execution is the hard part, isn’t it?

I’m serious about this point. Any reasonably smart team lead can
invent a “strategy” or a reasonable product idea and declare success, be-
cause we measure success at this stage by the words you put on the page
and the promises you made in meetings. It doesn’t matter how good you
look if you keep coming home alone. What’s really hard is driving your
team to build the right software in spite of real-world dilemmas. Did I
mention that you have to do it in the right timeframe? And that you have
to launch with a team that loves you and the product?

 41

The user experience is not just what your product looks like, it’s how
it works, too. Shipping greatness means shipping a great user experi-
ence. If nobody can use your product, or people hate the way it looks, or if
they can’t figure out how to log in, greatness is out of your reach. So even
though you’ve hired or borrowed a talented user experience designer, you
can’t pass the buck down the line and expect to keep shipping. You need to
plan on sharing ownership of the user experience of your product. It’s not
your job to solve all user experience problems; it is your job to ensure that
your product provides the best user experience possible, and that means
getting the best out of your design team.

To get the most out of your design team, seek first to understand
design, then to be understood by your design team. You can start under-
standing design by understanding the varying roles of designers. After
you know what each role does, the second thing you need to understand is
how to evaluate designs so that you can have a meaningful interaction with
your designer. After you know what to say, the third thing to understand
is how to communicate with each design role effectively, which includes
understanding how to review designs and provide feedback to the design-
ers. The fourth and final element of understanding design is learning how
to communicate with pictures, through simple wireframes and mockups
that you can create in Photoshop or a paint program.

Understand design roles: UX, Ui, ia, Visd, UXr . . . 
and personas 
Designers have different titles depending on their area of focus, and even
when they don’t have different titles, you’ll find that designers tend to
specialize in specific areas. Even though designers are flexible, it can be
beneficial to understand where a given designer will thrive, and adjust
expectations accordingly.

How to Build a Great
User Experience

| 3

42 | the Shipping greatneSS proceSS

User experience (UX) focuses on how users work through tasks and
optimizing the presentation of information to those users. Frequently UX
designers will build flowcharts that explain the user experience in addition
to “mocks.” “Mocks” is shorthand for mockups, or pictures of what parts of
the user interface will look like. Sometimes UX designers will build click-

able prototypes, which are a collection of mocks that have embedded click
targets intended to simulate the usage of a product in a narrow scenario.
Clickable prototypes can help you get a better feel for your product.

UX designers care a lot about information architecture (IA). Unlike
engineering architecture, IA means designers are focused on what the
user interface presents to users, regardless of what the underlying data
structure is. For example, all data in a purchase confirmation form may
be keyed off an order number or the customer’s email address. Therefore,
the order number is critical to the system. A designer will probably want to
focus on the primary task the user must complete: approve the purchase.
IA asks the question “what’s the most important data on this page?” In our
example, it’s probably the items, followed by their quantity and price—not
the order number. IA focuses on understanding how users must perceive
information, not how systems must handle it.

There’s generally no absolutely correct answer to IA questions, which
is why team leads get closely involved in the design process. As the product
lead, you might know that your baseball website’s users care more about
news than they do about team standings, so you would work with design-
ers to define an IA that prioritizes news over standings.

User interface (UI) is the old name for user experience and focuses
more on design of individual pages or screens. It’s a subset of UX.

Visual design (VisD) is the discipline of laying out content in an aes-
thetically compelling and clear way. Visual designers tend to have a strong
background in graphic design, typography, and the fine arts. They use
tools like color palettes to enhance or reduce the prominence of informa-
tion in the UI based on the prescribed IA. A good visual designer will help
align buttons, text blocks, and other controls into a “grid” that will add con-
sistency to your product. By drawing imaginary lines through the inter-
face, the designer creates an organized framework with clear whitespace
and content areas that make it easier for your users to know where to look
and make the UI consistent from one view to the next.

User experience research (UXR) is a specialized subset of design fo-
cused on learning what users think about your product. User experience
researchers are great at running studies that bring statistically significant

D
ow

n
lo

a
d
 f
ro

m
 W

o
w

!
e
B
o
o
k

<
w

w
w

.w
o
w

e
b
o
o
k.

co
m

>

 how to Build a great uSer experience | 43

and conceptually relevant data about failures and successes in your prod-
uct to your engineering team. UXRs know how to select participants, con-
struct studies that are organized and unbiased, and coach users through a
study without biasing their feedback. Even better, a great UXR will create
a report that provides meaningful guidance about what works and doesn’t
work in your UX. Unfortunately, the job of a UXR is not to provide solu-
tions to your problems. That’s for you and your UX designer to figure out,
but if your researcher has ideas, you’d better listen!

“But wait,” you’re thinking, “how can I have statistically significant
data from a group of 5–10 UXR participants?” The answer is that you can
establish significance by comparing all the questions that were asked. For
example, if all five participants have the same experience in 15 tasks, but
diverge on one task, you don’t have just one set of five divergent data points:
you have 5×16 data points, and you can establish significance. If you feel a
little dubious about this logic, it’s OK—you and your UXR’s assessment of
individual participants in studies is critical, since participant selection can
introduce a high degree of bias into studies. In our Seattle-based studies,
for example, everyone is jittery and sad, on account of the coffee and rain.
We correct for that.

Personas are a tool popularized by Jacob Nielsen and are intended
to give you, your design team, and your engineering team a framework
you can use to evaluate your designs. Your design and business teams
will create a small group of imaginary people who represent your target
customers. These personas will have names, salaries, and objectives. You
can assign them any attributes that you might know about the customer
that each represents. You will then use your personas to evaluate the ef-
fectiveness of a design. For example, in a vacation planning application
you might find yourself saying, “Paul Planner is a power user; he’s been
using this tool every month, so he doesn’t want to re-enter his departure
address…perhaps we can save that for him? And then give him the ability
to override?”

Understand how to evaluate designs
Many people who work in software, particularly those who come from a
purely engineering or business background, are initially stymied when it
comes to understanding UX design. Most team leads are not trained to
be designers, nor do they want to be designers. And yet, the team lead is
somehow responsible for ensuring that the user experience is “beautiful!”

44 | the Shipping greatneSS proceSS

Or “intuitive.” Or, heaven forbid, “as good as the Apple iPhone launch.”
Yes, I’ve been in this latter category.

If you are responsible for shipping a great user experience, you must
ask the Six UX Questions. You will also need to be reasonably thoughtful
in your answers and make sure they make sense. If you do, you’ll end
up with a well-designed product. Remember to ask these questions every
single time you review a set of mocks or designs.

the Six ux QueStionS

•	 What’s the most important task the UI asks the user to accomplish?
•	 Is this the simplest solution?
•	 Is the information arranged logically?
•	 Is the design usable and discoverable?
•	 Are the standards consistent?
•	 Can you reduce the number of clicks or taps?

what’s	the	most	important	task	the	Ui	asks	your	primary	
persona	to	accomplish?
When you approach a new user interface, you should start by asking your-
self “what’s the primary task our primary persona must accomplish?” and
“what’s the most important task the UI asks that persona to accomplish?”
Focusing on your primary persona, instead of all your users, will help you
prioritize better. If the answers to these questions are the same, you’re in
good shape. If they’re not, you’ll need to do some work. In some UIs, such
as in a checkout workflow, these questions are simply answered. In other
UIs, such as a home page for a baseball site, the question is much harder to
answer. You can make the problem more manageable by talking through
how your personas will experience the UI.

In the baseball example, you might say that both Paul the Power
User and Chuck the Casual User want to know the latest scores. So let’s
organize the IA such that this information is most prominent. A third
persona, Ellen the Emerging User, may want to focus on a favorite team.
But since we know that Ellen is somewhat more motivated to customize
her experience, our primary task is not to make the customization easy
to perform from the home page. Instead, it’s to make it easy for Ellen to
discover the ability to customize. Similarly, since Paul the Power User has
already specified a favorite team, we must give him a very quick way to log
in or precustomize the UI since we recognize him.

 how to Build a great uSer experience | 45

In this example, it’s important to clearly balance your goals and com-
municate them to your design team. If you’re building an application
for fantasy baseball players—whom you know from market research are
pretty technical and want power tools—you’ll tell your design team that
the most important persona on which to focus is Paul the Power User,
followed by Ellen the Emerging User, and lastly Chuck the Casual User,
since he’s probably getting his baseball information from ESPN anyway.
However, if you’re the New York Times, the vast majority of your users will
likely be casual users like Chuck, and some substantial population will
be from New York! Therefore, your priorities might be New York Casual
Users, Other Casual Users, Emerging Users, and then Power Users.

It’s important not to say, “Make the login button less prominent.” We
also didn’t say, “Move the ‘What’s your favorite team?’ promo up to the
top.” Rather, we empowered the design team to make a collection of opti-
mizations based on our prioritized business objectives, which we clearly
stated.

Another way to approach this is to ask direct questions, such as “Why
is the login button in the middle of the screen?” If the designer says, “I
wanted to make it really obvious!” you can say, “Mission accomplished! But
our goal is to cater first to New York Casual Users—is that the right choice,
given our prioritization of personas?” A good designer will be able to take
this feedback and adjust the UI accordingly.

The design, business, and engineering teams must work closely to-
gether to define the priority of each persona. If you waffle or fail to com-
municate clear priorities, then the design team will grow frustrated and do
your job for you, and you’ll end up with a compromised user experience.
Therefore, when you see a design for the first time, ask yourself these
three questions:

•	 Who is the most important user?
•	 What is the most important task that the most important user must

accomplish?
•	 Is the important user’s important task the most important and simplest

element in the UI?

The answers to the first two questions are business questions that set
the context for the last question, which is a design question. If you find
that your user has to go through a series of convoluted steps to accomplish
the task, or has a hard time discovering how to start the task, then you

46 | the Shipping greatneSS proceSS

want to stop where you are and redesign the UI. If your design team seems
frustrated at this point, it’s probably because you’re asking them to juggle
too many competing priorities, and you need to go back and answer ques-
tions one and two again.

is	this	the	simplest	solution?
A user’s ability to complete a task is a nonlinear function of its complexity.
To restate for the less geeky reader: as you ask more from a user, the user’s
ability and willingness to do what you ask decreases. A lot. Ask yourself if
your solution is the simplest possible solution to a user’s problem. If the
user wants to email an article about a baseball player to a friend, must the
user create an account? Or can you enable the user to send the article as
a courtesy and then upsell him or her to create an account? This latter ap-
proach is far more satisfying for users and saves a few substantial steps.
It may also increase your abuse problems, so you need to make a smart
product decision here. In this case, a good rule of thumb is to optimize for
usability and solve the abuse problems when they become real. I’ve rarely
seen this approach fail, and I have seen products stumble by trying to solve
abuse problems that might never occur.

John Maeda proposes a framework for thinking about simplification
in his book The Laws of Simplicity (MIT Press). He calls the framework
SHE—simplify, hide, and embody. Similar to my previous suggestions,
Maeda advocates “simplifying” features so they do only what they abso-
lutely must. For advanced features that are used occasionally or by users of
secondary importance, “hide” those more complicated features. One way
to hide complexity is to put power-user features into an “advanced options”
dialog or collapse them with a “zippy” arrow or +/– box, but remember that
they must remain discoverable.

For features that can be transformed into something simpler,
“embody” them with a parallel structure. For example, if you’re trying to
provide a color picker for shirts, you might be able to more simply embody
the choice by showing pictures of each colored shirt, thereby eliminating
the confusion a user would see in a text box drop-down that says “Color:
Salmon.” Is salmon pink or silver-blue? I guess it depends on whether
you’re a vegetarian.

is	the	information	organized	logically?
In some cases, you need to balance the information you want to present
with a call to action. The classic example is Amazon’s product detail page.
There’s a tremendous amount of information on Amazon’s pages, and the

 how to Build a great uSer experience | 47

great beauty of them is that nearly every element is measured and sorted
by how much money it makes. It is hard to measure the direct impact of
some features, like customer reviews, and as a result, those features are at
the bottom of the page! Other features are measured easily, such as the
“What other items do customers buy after viewing this item,” which is fea-
tured near the top of the product detail page.

In your case, you’re unlikely to have such a simple-to-design (and
hard-to-engineer) feature. You must think through the arrangement of
your data and features logically. To arrange your data and features logi-
cally, you want to ensure that the following conditions are true:

•	 The most important information, for the most important customer
type, is the most prominent.

•	 The information moves from headline to summary, just like a news-
paper article.

•	 Wherever possible, information is personalized and real time. It’s also
good to provide as much detail as is reasonable. Why report “Sales
rank: in the top 1000” when you can report “Sales rank: 1327”? Users
appreciate precision, within limits.

•	 The most frequently used controls are the easiest to access.

is	the	design	usable	and	discoverable?
After you’ve identified the core tasks that users want to perform, you
should ask yourself if those tasks are discoverable and understandable.
Discoverability speaks to the ability of a user to find the call to action, such
as “Add to Cart.” If your users have a hard time discovering the “Add to
Cart” button, your career will be short-lived. Similarly, what if the “Add to
Cart” button is actually a plus sign in a button and you were at the helm?
That design fails the understandability test, so you’re probably fired.

There are many ways to solve discovery problems. Here are three
common solutions you can try:

Positioning

The priority of information starts at the top left and descends to the
lower right in Western cultures. If you want to place your call to action
in the most obvious place, you probably want to put it on the top left
of your content.

There are key exceptions to this rule, however. One exception is
“banner blindness,” wherein users have become so used to “punch
the monkey” ads in the top center of their browser that they ignore

48 | the Shipping greatneSS proceSS

any content located there. Similarly, many websites use a left-justified
navigation scheme, and any context-based call to action placed there
will likely be lost.

You may hear designers say that a visual element is “below the
fold.” This is an old print expression that means some story is on the
bottom half of the newspaper page, or “below the fold” and therefore
not visible on the newsstand. In web browser terms, the “fold” is lo-
cated where the browser ends on a common screen, about 600 px from
the top. iPads, Androids, and other devices have different folds based
on their screen resolution. If an item is below the fold, its discoverability
drops dramatically.

Visual design

Making your call to action prominent by adjusting size, using color
strategically, or breaking the grid can go a long way toward solving dis-
covery problems. Unfortunately, visual design can also create major
problems. One of the best ways to make things pretty is to simplify
and streamline them, like shaving the door handles off a car. The car
looks pretty, but you can’t open the door. Beware of very slick visual
affordances that cripple usability and discoverability.

Conventions

Applications, sites, and businesses all rely on a design language to
make tasks understandable. For example, the streets on Google Maps
are white and yellow, just as they are in cartography. If your designer
were to make lakes white, chaos would ensue. Similarly, if you were
to reverse the positions of the OK and Cancel buttons in your dialogs
willy-nilly, users would constantly click the wrong button. You can
make your software much better by asking the design team to ar-
ticulate conventions and then checking to make sure they follow the
conventions.

If you have questions about the discoverability or usability of a feature,
one of the best ways to test is on real users. Usability tests can expose
whether users see your call to action. In addition, placing metrics on click
targets through tools like Google Analytics can measure conversion, and
running A/B comparison experiments will help you understand which
designs work best.

 how to Build a great uSer experience | 49

are	the	standards	consistent?
Leveraging conventions gives you design shorthand that enables users
to almost skip ahead in your UI. For example, on Mac interfaces, the OK
button is always on the lower-right side of a UI, so users can click the button
without having to read the copy above the button or read the name of the
button. Sadly, PCs are different, and the OK button appears to the left of the
Cancel button on the bottom-right side. If you’re building a web applica-
tion, this convention doesn’t help. But you’d best make sure that within
your application the buttons are in a consistent place, especially if you’re
working in iOS or Android.

Here are some other conventions you can leverage to make your UI
more understandable:

•	 Make all primary buttons large and the same color.
•	 Have only one primary button in a UI.
•	 Use multiple buttons for choices like yes or no.
•	 Use a different style for primary, secondary, and tertiary calls to

action. For example, on Amazon.com there’s a “Buy Now” button (the
primary action, we can only hope) and lots of little “Learn more” links
(the secondary action). Amazon’s system works well because buttons
are more obvious than links and because Amazon maintains this con-
vention throughout the site, all the way to the “Your Account” section.

•	 For three or more pages in a workflow, show what step the user is in
and the total number of steps.

•	 Use underlines or a color that strongly diverges from the text in your
application for links.

•	 Follow Internet standards for CSS (e.g., mouseover on a link should
change the pointer to a hand).

Can	you	reduce	the	number	of	clicks?
Now that you’ve addressed the general workflow a user experiences, try
to reduce the number of clicks. You might ask yourself if you can combine
a form that’s two pages into one page, for example. The number of clicks
a user must make has such a strong impact on the user’s ability to com-
plete a task that Amazon holds a patent on “1-Click” buying (US PAT NO.
5960411).

You should also carefully consider the default settings for user op-
tions. If your defaults are correct, users will click fewer times and ex-
perience fewer unexpected consequences. Designers typically refer to

50 | the Shipping greatneSS proceSS

checkboxes that are checked by default as “opt-out” and checkboxes that
are unchecked as “opt-in.”

Another important aspect of reducing clicks is reducing the number
of times that a user switches from the keyboard to the mouse and vice
versa. There is a substantial cost to users each time they must reacquire the
mouse and its pointer. Do your best to eliminate these switching events.

Understand how to Communicate with designers
Designers have a hard job because everyone has an opinion about design.
As a result, designers are rarely treated like experts. If you treat them like
the experts they are, however, and focus on asking the right questions,
you can drive very high-quality design and help designers own their work.
That said, people work in different ways, and designers are people. Some
designers are more sensitive than others and some are more tolerant than
others. Some designers may want to hear “it feels crowded,” while others
may want to slug you if you say that. Adopt and modify the following com-
munication tips for your unique designer:

Use the user’s voice

Start feedback with the words, “As a [user type] I want to…” This ap-
proach works so well that the Scrum approach to project management
uses this format to create “user stories” to which developers code.

Ask questions to drive understanding

For example, you might ask, “What is the convention for a back button
on iOS? Is this consistent?” Your goal should not be to dictate a spe-
cific experience, but rather to get to an agreement on design rationale
that will inform specific designs that your team will create.

Reiterate business goals and relative priority of conflicting goals

Help your designer understand the problem that he or she must solve.
Designers make a thousand judgment calls per day, and they use ex-
tensive experience to make great optimizations. You can help guide
their decision making by ensuring that they understand your goals.
Make your goals concrete. For example: “Most users should not need
to scroll. Therefore, we should try to keep input fields above the fold,
right?”

You can also help your team by not setting subjective goals. Goals
like “Users must feel at home in the app” or “It needs to feel friend-
lier” make me cringe. How do you know you’ve achieved these goals?

 how to Build a great uSer experience | 51

When a usability participant shows up and takes a nap? Instead, look
for the root cause of your design problem. For example: “We’re asking
users to pay $10 on the home page before they see any value. Let’s
come up with an experience that lets users understand what we have
to offer before we ask for their credit card!”

Be quantitative

You can count clicks, screens, and page load time to make conver-
sations concrete. Embrace usability testing. Similarly, avoid saying
things that are subjective, like sentences that start with “This feels…”
or “I like…”

Provide examples from competitors or similar experiences that work well

Dissecting competitive experiences with your designer will help you
create a collective design language. You can also ask your user ex-
perience researcher to review competitive products and analyze the
industry’s best practices.

learn how to Communicate with pictures
Mockups come in a few different flavors. One of the most simple and pow-
erful tools is a whiteboard drawing. When you find your designer staring
blankly at you like you’re speaking Klingon, turn to the whiteboard and
draw a picture. You can go one step further and clean the picture up a
bit and take a picture with your cell phone. These cell phone and white-
board drawings are remarkably powerful as a communication tool and are
simple to make. I’ve seen teams like the style of these drawings so much
that they build animated videos out of collections of photos.

The simplest form of formal mockups are grayscale wireframes that
show the structure of your app and emphasize the text and layout but not
the visual design. Comps, or more refined visual mocks, are useful for
understanding the visual weight of elements and provide a great specifica-
tion for your team, especially when they are turned into redlines. Redlines
are just detailed mocks with red callouts that specify the size and color of
elements. The final major type of mock is the clickable prototype, which
is an extension of the wireframe and the most expensive mock to build.
Clickable prototypes are incredibly useful because you can give them
to users in usability studies and see how users actually experience your
product.

52 | the Shipping greatneSS proceSS

When I need to use mocks to communicate an idea in a document or
presentation, I start with wireframes because they’re the simplest form
of mocks. If you add too much detail, such as colors, images, and other
flourishes, you’ll find that some of the people who review your mocks will
get lost in the details. When making wireframes, focus on these basics:

•	 Mock up only the relevant parts of the UI.
•	 Always use the full, properly edited text.
•	 Limit the amount of time you spend on visual design.
•	 Use grayscale, not color.
•	 Assume that your wireframes will change a lot.
•	 Watch out for cheats.

Mock up only the relevant parts of the UI

For example, you can start with a full web page and then show just
a dialog box and a snippet of an email confirmation. The advantage
of this approach is that it saves you time, avoids creating details that
are inconsistent, and eliminates duplication that you’ll have to adjust
many times later.

Always use the full, properly edited text

Text, or “copy,” is incredibly useful for explaining what the intent of
the interface is. You can use the Latin Lorem ipsum filler that designers
use if you have blocks of placeholder text, but for any forms, buttons,
dialogs, or other meaningful controls, you really must use ship-quality
copy. This copy will help your team understand precisely what various
elements of the UI are supposed to do. Copy is also your canary in a
coal mine; if you find that you have to write a paragraph to explain how
a feature works, you should redesign the feature because users don’t
read paragraphs of instructions.

Limit the time you spend on visual design

Visual design, branding, naming, and other elements are subjective.
They are also rarely focused on enabling the user to complete a task.
Unlike copy, these fancy elements don’t help you understand the user
experience, and if you do add them they will likely create style-focused
discussions that are unrelated to the problem you’re trying to solve.
Instead, put clearly labeled placeholder boxes where these visual ele-
ments will go, and then move on.

 how to Build a great uSer experience | 53

Use grayscale, not color

For the most part, color will overcomplicate your wireframes and
raise questions of visual design and branding. See the preceding
wireframe tip.

Assume that your wireframes will change a lot

Wireframes are great for quickly communicating an idea and promot-
ing discussion. When you reach consensus, your design team will
build high-fidelity mocks, but until then your wireframes will change
a lot. Therefore, wireframes should be made in such a way that you
can modify them quickly. Don’t worry when people tear your wire-
frames apart, because that means you’re doing a good job driving the
conversation forward.

Watch out for cheats!

It’s easy to cheat when you’re pushing pixels, not code. For example,
rounding corners or adding transparency tends to make things look
slick. It’s easy to forget to include opt-out checkboxes and legal copy
that the lawyers say you have to show. And it’s easy to pretend that the
user has tons of personal information that make pages or interfaces
look rich and full. Be wary of these traps. Consider both the new user
and the experienced user when you build these mocks, and make sure
that what you’re building isn’t using visual tricks that you can’t actu-
ally deliver.

If you’re lucky enough to have a designer build mocks with you, then
you might not need to know how to make them. Knowing the basics of
wireframes will help you have empathy, and that’s probably good enough.
But most leaders in the software industry need to draw a picture at some
point, and designers have developed some nice ways of making simple
pictures quickly that you might benefit from. There are two simple pro-
cesses that most designers use. The first is using a flowcharting program
like Visio or Omnigraffle to make wireframes, and the second is using
Fireworks, Photoshop, or Paint to make small, near-pixel-perfect changes
to existing UIs. Both of these techniques are great to know, so we’ll cover
them next.

D
ow

n
lo

a
d
 f
ro

m
 W

o
w

!
e
B
o
o
k

<
w

w
w

.w
o
w

e
b
o
o
k.

co
m

>

54 | the Shipping greatneSS proceSS

create SiMple wirefraMeS in oMnigraffle

I make wireframes in Omnigraffle. It is a fantastic program, and you will
learn a lot about design just by working in it since its creators made so
many good decisions about how to use the software. You can perform sim-
ilar operations in Visio, but it lacks some of Omnigraffle’s nice features.

If you’re going to build a series of slides for a linear walkthrough of
the user experience, you probably want to use layers. Layers are like pieces
of tracing paper that can be displayed, hidden, or overlaid any which way.
They enable you to create the common elements, like an image of an
empty browser, as a layer that you can put on the bottom of your stack. By
doing so, that empty browser will show through all the other layers and
make your wireframes look like they’re in a web browser. You’ll want to
“lock” that layer so you don’t accidentally edit it while you’re working on
another layer. In Figure 3-1, I’ve created a browser template with my title
and locked it.

Figure 3-1. Creating layers in Omnigraffle

 how to Build a great uSer experience | 55

Next, create layers for each slide you’re going to show. In other words,
create a layer for each click or step in the UX.

At this point, you have a basic wireframe template that you can easily
modify. Now, say you want to extend this template to make it more easily
modifiable, such as by adding a common header. To do so, just make a new
layer, and position it at the top of all the other layers so it overlays the other
steps (Figure 3-2). Then, lock it to make subsequent edits easier.

Figure 3-2. Making a common header in Omnigraffle

Now you’re ready to make your individual pages. One of the things
that makes Omnigraffle great for making wireframes is the stencil feature.
(Visio has a similar feature.) Stencils, shown in Figure 3-3, are editable
stamps that allow you to drag and drop UI elements into your wireframes.
I use a wonderful library of wireframe stencils from Konigi; the library
contains just about everything you’d ever need. You can find it here: http://

konigi.com/tools/omnigraffle-wireframe-stencils.

56 | the Shipping greatneSS proceSS

Figure 3-3. Omnigraffle stencils, showing buttons

Turn off the visibility of all unlocked layers and then click on the
layer that represents the step you want to edit. Drag in buttons, text boxes,
labels, and other elements from your stencil to make your wireframe.

If you need to add notes, you can use red callouts—or redlines, as
mentioned earlier—to point to the things you want to annotate. This fea-
ture works well, doesn’t it?

Up to this point we’ve focused on linear workflows, and you’ve been
able to create slides for a presentation. But users frequently have different
ways to approach a given task, and there are error states that you need to
account for. In cases like these, you can build your wireframes more like
a flowchart.

To make a wireframe-based flowchart, draw the first wireframe, just
as you did previously, but don’t worry about layers. See Figure 3-4 for a
simple example of a Hello World application.

Next, add the second step, connect the two images with lines, and put
the step number on it (Figure 3-5). You’ll probably want to add comments
to explain what happens.

 how to Build a great uSer experience | 57

Figure 3-4. Flowchart wireframes, step 1: drawing the first wireframe

Figure 3-5. Flowchart wireframes, step 2: connecting the images

58 | the Shipping greatneSS proceSS

Here’s a nice optimization: for the third step, you can make a dialog
instead of building the whole UI again (see Figure 3-6).

Figure 3-6. Flowchart wireframes, step 3: making a dialog and completing

the flowchart

Omnigraffle is a powerful tool, and using boxes and simple text ele-
ments makes absorbing design changes easy. If you want to build even
more sophisticated mocks, you can create referenced components as ob-
jects to make changes even quicker to apply. You can set properties and
scripts on objects to create clickable mockups for tests. You can do many
of the same operations in Visio or in Fireworks—and Fireworks will even
export production-ready art for you. But your goal is to communicate re-
quirements clearly and quickly. You will be best served leaving the ad-
vanced tools to the designers and keeping your mocks simple.

 how to Build a great uSer experience | 59

Make production-Quality MockS Quickly

Sometimes wireframes won’t cut it, though. Perhaps the change is so small
that making wireframes seems too complicated. Or perhaps you really do
need to be extremely clear about a focused change to some feature. For
these kinds of changes, I prefer to use Photoshop, Fireworks, or another
image editor because I get a higher-fidelity representation with less work
than I would in Omnigraffle. Luckily, you don’t need to be a Photoshop or
Fireworks wizard to build simple, high-fidelity mocks quickly.

Let’s say we want to list our Hello World application underneath the
Kindle heading on Amazon’s home page. You would start by taking a
screenshot of the UI you need to change. Open it in your program (in
these examples, Fireworks) and resize the canvas to give you space to work.

Using the marquee tool, cut out the part you need to change or make
space for your addition. I cut and moved the part down the page because
I intend to insert a new option (Option-Shift-drag on the marquee); see
Figure 3-7.

Figure 3-7. Cut the page apart

60 | the Shipping greatneSS proceSS

Copy the basic element you need using the marquee and Command-
Option-dragging. In this case, I’ll use the Kindle entry. Paste it in, then
delete and fill in the Kindle-specific space and other areas with the appro-
priate background. (See Figure 3-8.) One trick you can use is to keep using
the marquee tool to copy and paste the background color from another
area to do the filling, rather than trying to use the paint bucket and eraser.

Figure 3-8. Copy and paste the basic element

Add your element. As shown in Figure 3-9, I’m adding my Hello World
with a green “NEW!” prompt. You won’t do anything quite so stupid. (Jeff
would never approve.) I guessed at the font, but you’ll probably know what
your production fonts are. Or you can inspect the CSS!

 how to Build a great uSer experience | 61

Figure 3-9. Add your specific details

Clean up the bottom and crop the image back down to the basic size.
Done! (See Figure 3-10.)

Figure 3-10. Finished mock in Fireworks

62 | the Shipping greatneSS proceSS

This example is trivial, but you’ll find that you can generate a remark-
able number of high-quality mocks in a short period of time using this
technique.

 63

| 4

How to Achieve Project
Management Greatness
on a Budget
As your product development continues, you’ll need to stay on top of
your project so that you can coordinate with other teams, plan the launch,
and ensure that your dependencies are met. You need to handle this level
of project management while also doing everything else. Unfortunately for
your team, but fortunately for your paycheck, your time is at a premium.
A team lead can rarely afford to build and maintain a sophisticated project
model in Microsoft Project, and you will probably not be able to bring in
part-time talent to work the night shift and “crash” the project (meaning,
complete it in less time). If you want to be great at shipping software, you
need bargain-basement project management.

I think understanding project management is sufficiently important
that I ask about it during phone screen interviews for product managers.
I ask, “How do you know if your product is going to ship on time?” To be
fair, this is a trick question since nobody ever really knows if the product
will ship on time. But you can estimate. A great answer to my question
involves three low-cost tasks:

1.  Build and maintain a simple schedule.
2.  Track your bugs, watch your burndown, and calculate your zero

bug bounce (ZBB) date.
3.  Manage your dependencies carefully.

These three cheap tasks apply to waterfall or agile development pro-
cesses. Each team you work with will want to manage their project differ-
ently, but these three tasks are generally applicable. If you learn how to do
them well and quickly, you’ll be in great shape. Worst case, you’ll know
that you need to change something!

D
ow

n
lo

a
d
 f
ro

m
 W

o
w

!
e
B
o
o
k

<
w

w
w

.w
o
w

e
b
o
o
k.

co
m

>

64 | the Shipping greatneSS proceSS

Build and maintain a Simple Schedule
You need to have a schedule, because if you don’t, you’ll have no idea if you
can ship. A simple schedule doesn’t need much more than a list of tasks
and engineering estimates of how much time an engineer or designer
needs to complete each task. All you need to do is sort these tasks ac-
cording to the priority of the features they support and allocate the tasks
across your team, and you’ve got a schedule. It doesn’t need to be any more
complicated than that.

It is easy to do more project management than you need. You can
go crazy with feature backlogs in an agile process, or you can use soft-
ware like Microsoft Project. After years of fussing with these systems, I’ve
learned that my teams and I prefer to use a simple Google spreadsheet that
accumulates these tasks and estimates. The spreadsheet I’ve developed
does everything that you really need. And, in addition to being free, your
whole team can edit it in real time! You can find a working example at
www.shippinggreatness.com. Figure 4-1 shows what it looks like.

Figure 4-1. Sample project management spreadsheet

Here’s how this spreadsheet works. You can download it from
www.shippinggreatness.com and follow along if you want. In partnership
with your development lead, start by entering the tasks into the Task

 how to achieve project ManageMent greatneSS on a Budget | 65

Breakdown section. Enter planned vacations as tasks (they’re not account-
ed for in the buffer). Next, for each task, estimate the time remaining in
unbuffered developer days and make a guess about which engineer can do
the work. Assign each task a target version of the product. You may know
these versions as “iterations,” but they’re the same thing—your releases.
The remaining data you must enter are your assumptions about buffer
and approximately how much testing you need (e.g., for each three days of
development, you need one day of your test team to test). The testing con-
stant is a function of the size of your test team. In the spreadsheet shown
in Figure 4-1, I’ve added some calculations to ensure that tasks don’t end
on the weekends.

Because this model uses “ideal” developer days for estimates, it is criti-
cal to build a buffer into your dates, but not the engineering task estimates.
A buffer is a “fudge factor” that accommodates unforeseen problems and
general productivity losses. Some teams estimate that approximately three
out of five days are productive. Anything could be happening in those
two days, but it’s likely some combination of meetings, broken builds,
marriage problems, and false starts. It’s pretty hard to eliminate those
distractions, and as a result I find that 60% productivity is a good estimate.
If you have systems in production, however, you may be even less efficient
since you have to maintain them and serve existing customers. Early-stage
projects are more efficient because there aren’t bugs to fix yet. An impor-
tant thing to note is that the 60% buffer assumes bug fixing time and
unplanned personal days, but not vacations.

I also added a “Push assumption” field to this spreadsheet because
it’s good advice not to push new software to your servers on a Friday. You
don’t want to be the guy desperately trying to extract your inebriated en-
gineering team from a bar at midnight so you can patch a privacy breach!
In other cases, teams want regular release days because they have kindly
operations folks who help with pushes. In this case, I assumed the team
would push only on Tuesdays and Thursdays.

Now your data entry is complete, and you’re almost done. Next, you
and your development lead must balance the tasks and adjust the versions
to fit your dates. Look at the task allocation section and find the engineer
with the most work remaining. This engineer is sometimes referred to as
“the long pole” or “on the critical path.” Try to assign some of his or her tasks
for the V1 release to another engineer who is not fully allocated. If you do
this right, you will have balanced the tasks across your engineering team,
and each engineer will have nearly the same amount of work to do.

66 | the Shipping greatneSS proceSS

Now that you have a balanced plan, you may want to look at your re-
lease dates. If V1 seems like it’s too far out and you want to push for a faster
initial release, or if you want to ensure that you have a release every two
weeks, you can move some tasks from V1 to V2. Move the least important
tasks in V1 into V2 by changing the values in the Task Breakdown section,
and rebalance the task allocation across the team. Check your release dates
for holidays and against critical team outages; if everything looks good,
you’re done.

I like this spreadsheet for a lot of reasons:

•	 I created it. Never discount pride of authorship…
•	 Your team can easily update their time remaining and see how the

project is going. They can also add tasks as they discover them, be-
cause it’s a collaborative spreadsheet in Google Docs.

•	 It’s easy to see the long pole.
•	 It’s easy to configure or customize.
•	 It’s easy to track vacations because you add vacations as tasks.
•	 It’s easy to push tasks into further versions if you aren’t making your

date by changing the “target version” to which a task is targeted. You
can also use this model for tracking milestones.

•	 It works just fine for 30-day sprints.
•	 It’s easy to balance tasks across the team. If you don’t want Chris on

the critical path for V1, reassign his tasks to Viki.
•	 It forecasts your dates well, including code complete, test complete,

and push complete. Now your test team knows when they should plan
to start a new test pass, and your marketing team knows when cus-
tomers will see the product.

•	 It communicates your assumptions up front for the team.
•	 A day is the right unit of measurement for tracking tasks. You can

always use “0.2” days for really small tasks, but I find that extra-small
tasks are best tracked in bugs.

While this spreadsheet doesn’t have neat features like integrating with
a bug tracking system or a source repository, its only major drawback is
that it doesn’t track dependencies. I’ve learned to handle that problem
through comments beside the line-item tasks and through discussions
with the team during our daily standup meetings.

When all the major work on a project is done and the team is almost
exclusively fixing bugs, I stop using the schedule. Instead, I use the bug

 how to achieve project ManageMent greatneSS on a Budget | 67

list and a bug burndown chart. We’ll cover how to build and use a bug
burndown shortly.

how to get eStiMateS

Some managers find asking engineers for estimates uncomfortable.
What’s more, some engineers underestimate and others overestimate. You
won’t know who errs in which direction until you’ve worked with the team
for a while. To make estimates easier to get and less costly for the engineer-
ing team to produce, try the following techniques:

If you’re not an engineering manager, ask your engineering manager to get

the estimates

’Nuff said.

Accept the estimates at face value

If an estimate is very large (greater than a week), ask the engineer to
break that down into smaller tasks. Beyond that, complain to your
engineering manager.

Feel entitled

If you are an engineering manager, estimates are something to which
you are entitled. You made a commitment to support your team, and
they need to make a similar commitment to support the project. It’s
only fair. Feel free to remind your team that you made this commit-
ment to them, as long as you stand by it.

Track only time remaining

I track only the time that remains on a task, not the percentage of
the task that is completed or the estimated amount of time a task will
take versus the actual amount of time it took. The estimated-time-
versus-actual-time metric provides no real insight beyond identifying
who is a good estimator, and you’re going to learn that anyway. You’ll
also find that less experienced engineers almost always underestimate
while more experienced engineers overestimate, so you can use that
rule of thumb instead of tracking the estimated and actual times.

Tracking only the time remaining to complete a task is an agile
tenet that I like because it emphasizes the reality of the project and
makes it easy to see when you’re going to hit the code complete date.

68 | the Shipping greatneSS proceSS

Ask for nonbuffered estimates

You can build in buffer in your spreadsheet and make it visible so that
the team knows you are compensating for problems that might (will!)
arise. I see lots of religious arguments around this topic, but this ap-
proach is the cleanest I’ve seen.

Update the time remaining estimates in a team meeting once per week

Updating your estimates as a team on a weekly basis prevents you
from harassing your team and allows teammates to provide context on
why things are moving quicker or slower than expected. This process
also helps identify if someone is going to be blocked.

track your Bugs and Build a Bug Burndown
A bug burndown chart displays your bug count versus time as a graph.
You’ll use it to predict when you can ship. To make one, plot curves for
each level of bug severity versus time. You will also want to plot a curve for
the total number of bugs versus time. You can see a sample bug burndown
chart in Figure 4-2.

Figure 4-2. Sample bug burndown

You should expect that your bug count will go up and to the right as
you get nearer to code complete, and then down and to the right as you
get closer to launch. The rate at which these bugs decline, or the slope of
that line, is called the find/fix ratio. You can’t accurately predict your date
without sizing individual bugs until you are fixing more bugs than you are
finding, which means your find/fix ratio will be less than 1.

 how to achieve project ManageMent greatneSS on a Budget | 69

When your find/fix drops below 1, you can forecast when you’ll ship
at a given quality level by projecting the date at which the bug count hits
zero. In Figure 4-2, you’ll see that we can reasonably say we’ll have fixed
all super-critical bugs for our “dogfood” release by October 31 and that we
could ship around November 15. If you don’t like the date you calculate,
you have only two options. You can change your quality bar, or you can add
engineering talent to fix more bugs more quickly.

managing dependencies
There’s no secret recipe for managing dependencies. All you can do is
minimize your risk. There are a few key tools you can use to minimize the
risk that your dependencies introduce. I call them the “Five Ifs.”

If you can live without it, live without it

It should be self-evident that if you need to accomplish less, you will
have less risk. Removing features will always reduce your risk. In early
versions of your product, you can cut risk by replacing features with
manual labor. For example, instead of making a customer support
request form, add a customer support email address as a mailto: link.
Sure, it’ll take more work to resolve contacts, but you probably don’t
know how many contacts you’ll have yet, so postpone that investment
and cut the risk.

If you can build it in-house, build it in-house

Some of the most effective teams at Google—Android and Chrome
in particular—are emphatic about following the “build everything in-
house” approach. They allow virtually nothing to be built outside their
teams, and while this can frustrate others and slow down develop-
ment in some areas, it has created an environment that enables them
to ship frequently. It’s hard to argue with shipping!

If you must take a dependency, take it early

By tackling your riskiest problems first, you’ll be able to take the ap-
propriate corrective action sooner and increase your confidence in
your final ship date.

70 | the Shipping greatneSS proceSS

If you must take dependencies, depend on the previous version that’s

already built

It’s always tempting to say, “Version 2 of the Foo service will be so
much easier for us to work with—and the Foo Version 2 team is
making good progress! Let’s plan on using V2, since V1 is really ugly.”
This approach is almost always a false economy. Risk is the enemy of
shipping.

If you ship early, you are less likely to be damaged by your dependencies

This principle is counterintuitive but useful. Systems and products
that you plan to work with change underneath you all the time. For
example, a beneficial business relationship you were depending on
could be invalidated when the partner hires a new CEO—and your
ability to predict such an event is nil. Therefore, shipping early and
often helps reduce risk.

 71

If your software doesn’t work, you won’t sell it. Worse, you’ll be em-
barrassed by it. This is why I apply the High School Embarrassment
Test (HSET™) to any product I want to ship. The HSET works because
high school did deep psychological damage to most of us and left behind
hormone-based scars that industries like Hollywood have mined to great
effect. You can leverage these scars as well. All you need to do is ask your-
self: am I sure I won’t be embarrassed when an old high school friend sees
my product? That’s all there is to the HSET.

The HSET helps ensure that your team is happy. Tom DeMarco and
Timothy Lister point out in their book Peopleware: Productive Projects and

Teams (Dorset House) that one of the best ways to destroy your team is
to ask them to ship something they aren’t proud of. Remember, your en-
gineering team members have old high school buddies too. You need to
ensure that your team isn’t embarrassed.

So, how do you ensure that the software you ship does not embarrass
you? There are eight major steps you can take that will have a substantial
impact on the quality of your shipping product:

1.  Insist on test-driven development.
2.  Build a testing team around a great test lead.
3.  Review your test plan and test cases personally.
4.  Automate testing.
5.  Dogfood religiously.
6.  Have a big bug bash.
7.  Triage your bugs diligently.
8.  Establish trusted testers as a last line of defense.

How to Do a Great
Job Testing

| 5

72 | the Shipping greatneSS proceSS

If you do these eight things, you’ll be well on your way to shipping a
great product. Let’s dig into how to do them.

insist on test-driven development
There’s an expression routinely vouchsafed in advertisements posted on
Google’s restroom walls that reads “Debugging sucks. Testing rocks.”
This mantra is powerful. Debugging requires you to deconstruct and
disassemble your software until you get to the point where you find the
problem. That’s effectively moving backward. Moving backward is the
opposite of shipping. In addition to helping you feel confident that you’re
doing the right thing, test-driven development helps your team survive in
complicated systems environments, because as soon as another engineer
or team breaks an interface you depend on, the tests will fail.

Test-driven development is covered extensively in other references
(see Appendix C), but here’s an overview of the process:

1.  Eddie Engineer breaks the work down into pieces that perform
simple operations. These are called units. For example,
countToTen() is a software unit.

2.  Before Eddie writes the countToTen method, he writes a test—
known as a unit test. This basically says, “If countToTen() is equal
to 10, then pass; else, fail.”

3.  Now that Eddie has the unit test written, he can write the
countToTen method. If Eddie’s index is off on the loop and
countToTen() actually outputs 9, the test will fail.

4.  When the software builds, all the unit tests are run automatically.

Pretty straightforward, right? It is. It takes some discipline, though.
What’s extra-great about test-driven development is that regressions are
easier to spot because each build runs tests automatically. Look into soft-
ware like JUnit (for Java-based unit testing) to automate your build and
verification procedures.

Build a test team around a test lead
No matter how good your engineering team is and regardless of how many
unit tests they have written, you will have bugs. Your best plan of action
to find these bugs is to hire or appoint someone to be the test guru. This
test lead will be the primary owner of release quality and a critical partner
to product management, engineering, and marketing leads. Test leads are

 how to do a great joB teSting | 73

responsible for making sure that the test cases are well written, cover the
right areas, and are well executed. A great test lead will continuously train
less experienced testers and help design great test automation architecture.
If you have a really strong test lead, that individual will be sharp enough to
push the engineering team to build more and better unit tests.

Another key reason why you want to start with a great test lead is that
the test team culture is frequently unlike the engineering team culture.
Your test team is trying to discover problems all day long. In a typical but
poorly run engineering team, the test team generates complaints daily,
and that can be hard to take. The processes, disciplines, and standards are
a bit different than typical engineering teams, so having a solid test lead
who can help manage the test team will help you immensely, even if you’ve
done a great job of embedding testing with engineering.

Your test lead will also help you solve the unique problem of hiring
testers. Brilliant test engineers are hard to come by because most folks
who can write great software want to write their own software, not test the
software your engineering team wrote. There are two ways to extract your-
self from this dilemma: maintain a lower hiring bar and hire managers,
or maintain a high hiring bar and hire contractors. As I’ll describe next,
there are advantages to both approaches, but I favor hiring contractors.

option 1: Maintain a lower hiring Bar, and

hire ManagerS

I’m not a fan of hiring managers to hire test engineers who are not rock
stars. I believe the practice establishes the wrong incentives. It builds in
hierarchy, and your talented test manager has to spend a substantial por-
tion of his or her time managing nonstellar performers. However, the
opportunity to manage people is a strong incentive for some individuals.

What’s even worse about maintaining a lower hiring bar is that even-
tually you’re going to have to promote some of these folks. After five years,
they’re going to feel entitled to a promotion and you’ll be in a situation
where you’ve got B-level people in management. Unfortunately, the ex-
pression “As hire As, Bs hire Cs” is definitely true in the software industry.
When you hit this stage of corporate maturity, your productivity and qual-
ity will sharply decline as a result of your C-grade players.

74 | the Shipping greatneSS proceSS

option 2: Maintain a high hiring Bar, and work with

vendor teSterS

There are some disadvantages to working with contracted testers. These
disadvantages include:

•	 You need a development lead to own the relationship with the testers.
For this reason, embedding contractors within a team adds overhead
to your engineering team.

•	 Training costs are sunk and irretrievable.
•	 Your ramped-up test talents’ contracts can expire, and they might take

their knowledge elsewhere.

In my opinion, the advantages of contracted testers outweigh the dis-
advantages. Some of the advantages include:

•	 Contractors cost the organization less in terms of people management
than full-time hires do.

•	 It is easier to engage with an agency than it is to hire, so you can ramp
up faster. And you can maintain a consistent quality bar.

•	 You don’t promote the C-grade players.

option 3: Maintain a high hiring Bar, and don’t

uSe contractorS

This is not an option. Google tried this. It just doesn’t work, and one of two
things happened every time: bugs shipped, or engineers did the testing.
And more often than not, folks ended up embarrassed. Use this approach
at your peril.

review your test plan and test Cases
Regardless of how you build your test team, you still need someone to
write a test plan and you need to ensure the quality of the test cases, which
means you need to review and approve the test plan.

A test plan is composed of many test cases and is derived from your
product requirements document. It is therefore reasonable to expect that
if your product requirements document stinks, your testing team is set up
for failure. But if you did your job well, then your test lead can do a great
job too.

 how to do a great joB teSting | 75

The test plan is generally created in a spreadsheet so you can organize
the test cases well. Check to see that your test cases have the following
descriptive elements:

Area of focus

This column describes what part of the user experience will be tested,
so you can group similar tests together.

Severity

The severity defines what level of bug you should file if this test fails,
generally on a scale of 1–4.

Preconditions

Preconditions establish what the tester must do before starting the
test. For example, if you were writing a test for a shopping cart credit
card verification process, the preconditions might require that the
user be logged in, have added an item to the cart, and have entered a
zip code. Now the test can start.

Tasks to perform

The tasks are the meat of the test, described as a series of steps. If any
step fails, the test will fail.

Post-conditions

The post-conditions describe the final state of the application. To con-
tinue the example, the post-conditions might be that the user sees a
confirmation page with a confirmation number, and the credit card is
charged the correct amount in less than 10 seconds.

Figure 5-1 shows an example test case.

Figure 5-1. Test case spreadsheet

Because you’ve included the “severity” of each test, you can create
quicker but less complete test passes by running only the high-priority
tests. Test passes like these are good for verifying small changes. You can
test only the small change and the high-severity tests in much less time

76 | the Shipping greatneSS proceSS

than running all the tests. It’s important to still run the high-severity tests,
even if you think the small change is well isolated from other features.
You want to make sure that some fundamental feature wasn’t accidentally
turned off. In a complicated software system with weak unit testing, it is
easy to break major features—and the HSET preaches a “better safe than
very sorry” approach.

The output of a full test pass is bugs and sometimes a sense of sur-
prise. This is a great moment for you, as the team lead, to reinforce a
“bad news is good news” mantra and greet the number of bugs found by
the test team with loud applause. Think about it: you need the test team
motivated to find failures. If your team ends up demoralized each time
there’s a test pass, or if the relationship between test and development
becomes acrimonious, you’re going to end up with fewer bugs and—wait
for it—embarrassment!

Reviewing test cases can be incredibly boring. You need to do it never-
theless, if only to empathize with your test team. Here’s a trick: instead of
slogging through all of your test cases, which is ideal and will get you a
round of applause from anyone who notices, focus on the following three
things:

User experience

Make sure that there are cases that cover vital parts of the user experi-
ence, especially the “getting started” workflows and error cases.

Security and privacy

Tests should try to break your website.

Dependencies

If you rely on a database, third-party service, or software you didn’t
build in-house, make sure those dependencies are tested rigorously.
They’re likely to break or change without notice.

If your test plan covers these major areas, you’re starting from a good
place.

automate testing
Remember how hard it is to hire a great test lead? One of the best work-
arounds for this challenge is to find a test lead who’s willing to write test
automation. If your test lead is able to craft testing systems that work

D
ow

n
lo

a
d
 f
ro

m
 W

o
w

!
e
B
o
o
k

<
w

w
w

.w
o
w

e
b
o
o
k.

co
m

>

 how to do a great joB teSting | 77

independently from your production code, you’ve created a great project
for a test engineer. What’s more, that software can run constantly and do
the work of dozens of people.

You may be thinking, “Wait—that’s a lot of extra software to write!”
Luckily, most test automation can be written in scripting languages,
doesn’t need to scale particularly well, and can use established, pre-
existing frameworks. Test development can therefore be more efficient.

As a team lead you probably don’t need to own test automation, but
you do need to make sure that it’s being built, because while you’ll never
be able to afford enough testers, you will be able to afford enough comput-
ers on which to run the automation.

dogfood
Microsoft pioneered the notion of “eating your own dogfood,” which means
you should use the software you intend to ship within your company. Put
another way, don’t feed your team peoplefood but give your customers
dogfood. Forcing you and your team to suffer through customer pain is a
great way to instill a sense of urgency, understand customer problems, and
find defects. Amazon and Google dogfood religiously.

Dogfooding can be challenging when there’s a good alternative, such
as the prior, less buggy version of your software. For example, Google
wanted employees to dogfood Google Docs, and the best way to force that
issue was to stop installing Microsoft Office on corporate computers by
default. In addition to driving dogfood of Google Docs, the practice saved
money!

In some cases, making it easier to taste the dogfood also works. For
example, Amazon wanted employees to dogfood Amazon Prime, so they
made it available to employees at a discount. I’ve seen teams offer awards
(from t-shirts to iPads) for the most unique bugs reported. I even saw one
engineering director offer a $5,000 bounty for a successful series of steps
to reproduce a “heisenbug.” A heisenbug is a bug that spuriously appears
and disappears, following the Heisenberg uncertainty principle;1 they’re
a pain in the ass. However you do it, make dogfooding a key part of your
team culture even if the other teams you work with don’t do it.

1 http://en.wikipedia.org/wiki/Uncertainty_principle

78 | the Shipping greatneSS proceSS

One fun part of the dogfood experience is that you’ll find your CEO
always has some kind of awful experience that nobody else has seen. The
first time this happens to you, you’ll be chagrined. This was precisely
the person you wanted to impress, and you botched it! Forgive yourself
now, because soon you’ll understand that every team lead has the same
experience. Jeff Bezos always finds bizarre bugs. Things always break on
Larry Page’s computer. There are many examples of these failures, and
one pretty common reason for them: these execs are awesome dogfooders.

In Larry’s case, he has more alpha software on his computer and more
experiments running on his account than you could possibly imagine,
because team leads like you are desperate to convince Larry that they are
making progress. It’s no surprise that there are bizarre interactions. Your
best defense in Larry’s case is to figure out what else could interact with
your product and plan for it.

In Jeff’s case, he brings a completely fresh perspective to your product
because he’s never seen it before and has no idea what he’s supposed to do,
so he breaks it. The best thing you can do in Jeff’s case is to try to think
like Jeff. Put on your giant-alien-brain mask, get some coffee, clear your
browser cache, reformat your hard drive, and try to forget everything you
ever knew about your product. Then use it.

If you’ve decided to dogfood religiously, you’ll want to follow some
best practices to get the most mileage from your dogfood experience:

Plan a “dogfood release”

The dogfood release is when you give your software to your colleagues
within the company. It’s a key milestone immediately after feature
complete and before code complete. The dogfood release gives you a
milestone where you show real progress. Also, soliciting your team’s
peers for kudos and feedback helps build the team’s morale and ensure
your product is on track.

Make it easy for others to send you bug reports

Establishing a mailing list for dogfood bugs is a great way to monitor
incoming defect volume. If you don’t have a fast way for all of your
dogfooders to enter bugs in your bug tracking system, you can easily
create an online form in Google Docs that will organize and report on
bugs. You can ask your test lead to write bugs based on these incom-
ing email messages.

 how to do a great joB teSting | 79

Continue to dogfood after you ship

Amazon and Google both maintain experimental frameworks that
enable dogfooders to see specific features. These frameworks allow
the software to run on production infrastructure but only be seen
by internal users. It’s a wise investment to build similar systems for
your teams, because making your systems production ready can take
significant time, and bugs take a while to emerge in dogfood. Having
a framework that enables internal users to run on production sys-
tems allows you to collect feedback and complete production work in
parallel.

Make dogfooding a core corporate value

It’s pretty common to find that your colleagues don’t dogfood. Or, if
they do dogfood, they’re too busy to file bugs. Shame on them! But
whining won’t get them to be better dogfooders. The best you can do
is follow the previous suggestions and remind your colleagues to dog-
food. If dogfooding isn’t working, work to understand why and fix it.
In the meantime, you can rely on trusted testers (more on them later).

how to run a Bug Bash
A bug bash is an event where your team, or your whole company, takes
a dedicated period of time—typically an hour—to find as many bugs in
your dogfood product as possible. A good bug bash will almost certainly
find a bunch of bugs that you’ll want to fix. You’ll want to do four things to
encourage a good bug bash:

•	 Incentivize people to bug bash. Offer an award. T-shirts are shock-
ingly effective.

•	 Make the bug bash a key milestone in your project plan. Schedule the
bug bash so your entire extended team knows when it will happen and
can get involved.

•	 Build bug bashes into your development and testing schedule.
•	 Say thank you for every bug. Remember, bad news is good news. Every

bad bug is good news.

triage Bugs properly
I frequently ask product management candidates, “How do you triage
bugs?” when I perform phone screens. I’m always amazed at how incom-
plete the answers are! I think bugs are as simple to triage as 1, 2, 3!

80 | the Shipping greatneSS proceSS

1.  Grade bugs based on frequency, severity, and cost to fix.
2.  Meet daily to review your new bugs with your dev lead and test

lead.
3.  Continually make it harder to accept new bugs as launch blockers.

If you don’t, you’ll never hit zero bug bounce (ZBB), which means
no launch blocking bugs are reintroduced. If you never hit ZBB,
you’ll never ship.

The first of these three steps is bug grading. Your goal is to figure out
which bugs you should fix, and that’s not as simple as fixing only the really
bad ones, because some bugs are ugly and very easy to fix. So you need to
look at three dimensions when you grade a bug:

Frequency

Frequency is your measure of how often the bug occurs. One time out
of 10? Does it appear only when servers restart? Or maybe it happens
every time a user logs in? The more frequently a bug occurs, the more
important it is that you fix it.

Severity

You want to assess how damaging to the user experience the bug is.
If the bug is a big security or privacy hole, it’s a high-severity bug. If
there’s a spelling mistake, that’s a low-severity bug, even if it is mod-
erately embarrassing.

Cost to fix

That spelling mistake is really cheap to fix. A bug where you can’t
shard a user session across multiple servers, on the other hand, is
going to be very expensive to fix, and you’ll likely have to trade some
features for that change.

After you and the team understand how you’re going to grade the bugs,
you enter step 2, in which you have a daily bug triage meeting to decide
which bugs you will fix. The PM, the dev lead, and the test lead should get
together and go through the bugs. The gotcha in this process is that it can
take forever if the three of you try to figure out what is going on in each
bug. And bug triage can be really boring. You want to try to move through
your triage meeting as fast as possible. In triage, try to do the following:

 how to do a great joB teSting | 81

Establish a general bug bar

For me, this bar starts at: “Would I be embarrassed if my high school
buddies encountered this? And how many of them would encounter
it? And would it do them any lasting damage if they hit the bug?” You,
your dev lead, and your test lead may all have a different point of view
on these dimensions, but you’ll converge pretty quickly.

Move through the bugs from most severe to least severe

Your test team will provide an initial rating for bugs so that you get the
worst bugs addressed quickly.

Allocate a specific amount of time for your triage

If you run out of time, continue the next day. This process will help
you manage your energy.

Only talk about frequency, severity, and cost

One of the reasons you have a test lead in the triage meeting is so that
he or she can comment on the cost of fixing a bug and also identify in-
nocuous bugs that expose deeper, scarier flaws. Be vigilant and avoid
deep dives into finding the root cause of every issue at this stage! If
you find a bug that may be more severe than you thought, boost the
severity rating and move on.

Spend less than one minute per bug

If you don’t know what’s going on with a bug, reassign to the reporter
for clarification. If you need to investigate the bug further before
you can triage, add that to a special list of “investigation bugs.” The
one-minute rule helps eliminate excessively detailed discussions. I’ve
found that once you’ve conditioned the team to this pace, everyone
wants to keep it going, because nobody likes bug triage.

After some time, you’ll find that even though your bug count is going
down nicely, new bugs keep popping up. This is the third step of triage:
you have to keep moving the bug bar up, making it harder to declare that
a bug is a launch blocker. As general guidance, this principle may seem
counterintuitive. After all, you don’t want to be embarrassed, right? The
reality is that you’re constantly writing new software, and that means
you’re introducing new bugs. If you want to hit ZBB, you have to stop
adding bugs to the list of launch blockers. Progressively, and carefully,
raise the bug bar as you get closer to launch.

82 | the Shipping greatneSS proceSS

Use trusted testers
Trusted testers are users under NDA (nondisclosure agreement) who use
the dogfood version of your product before it ships. They are using differ-
ent computers than your team, have different expectations, and are gener-
ally much less technical than you. As a result, their feedback is immensely
valuable.

At Amazon, I had a group of trusted Customer Reviews writers who
could give us great feedback. I gave them my direct email address—they
frequently found production issues faster than my engineering team.
They also didn’t hesitate to email Jeff Bezos, and when they did, I got Jeff
Mail. When you’re a team lead and you get Jeff Mail, you drop everything
and address it!

At Google, we had hundreds of businesses in the trusted tester pro-
gram for Google Talk. We turned on the same experiments we used in-
ternally and asked them to send us bugs. They gave us great feedback and
helped us pinpoint quality issues.

To make the trusted tester system work—which in the case of Talk
meant we had ~15% active participation—I followed these best practices:

Have the businesses sign an NDA and provide the correct contact information

The NDA for a trusted tester may need to be different than your hiring
or business development NDAs because you want to protect your
right to use any improvements that your customers suggest. Ask your
lawyer for advice on what your NDA should include.

Create rough “getting started” documentation, including a list of known issues

A Google Site is a nice way to aggregate these artifacts, because it’s
easy to share with arbitrary email accounts and can be updated very
quickly and easily.

Create an email alias that delivers to the whole engineering team and from

which you can email

If you configure your email this way, replies will go to the whole team,
not just to you. I’m a firm believer in bringing customers as close to
the engineering team as possible. It helps make the software real, and
that’s motivating for an engineering team. It also may reduce your
workload because your engineering team can help answer questions
from their users.

 how to do a great joB teSting | 83

Add these customers to the same dog food experience that the engineering

team uses

In some situations you may have a daily build that your engineer-
ing team uses, and you don’t want your trusted testers on that. Daily
builds are too unstable because they are not tested and change too
quickly.

Survey your trusted testers

You can use Google Spreadsheets forms, or SurveyMonkey, to get a
general impression of product quality. This survey is also a nice op-
portunity to get a sense of price sensitivity, since the users are actually
experiencing the product.

Update your trusted testers on changes

With each email update you send, you’ll find a little bounce in usage.
Ideally, you can time your updates with software updates so you get
some external test coverage.

parting thought: Use the entire product 
as a new User
It seems to me that it’s always the little things that get you. If you’re doing
a good job dogfooding, you’re not going to be embarrassed by the majority
of your product. But some of the most complicated parts of your prod-
uct form the out-of-the-box experience (meaning, “I just opened the box;
what’s inside?” not “Hmm, let’s think outside the box now!”). Specific
things to look for are how you create an account and populate that account
with data. As a dogfooder, you probably performed those tasks only once,
and that was four months ago!

Pinterest.com is a great example of how to create a brilliant out-of-
the-box experience. It’s incredibly easy to sign up—you use your Facebook
account—and your landing page is great because Pinterest suggests people
for you to follow and fills your page with lovely images that you care about.

Here’s a tip to help ensure you experience what new users experience:
when you hit feature complete and again when you hit code complete,
make sure you delete all your data and accounts and start from scratch.

 85

| 6

How to Measure Greatness

You can frequently assess the quality of a team by the quality of their
metrics. Metrics are the lifeblood of a team lead because everything in
your job is a negotiation, and metrics provide a rational foundation for
discussion. If you don’t back up your statements with metrics, you’ll sound
like Animal the Muppet. You also need metrics because you are constantly
making judgment calls, and good data creates good (or at least defensible)
judgment. Great leads live by their metrics because metrics point out prob-
lems, track progress, and celebrate success.

how to Collect the right metrics and only 
the right metrics
There’s a story, possibly apocryphal, that tells how Frito-Lay came up
with one metric by which it could run its business. Frito-Lay stocks store
shelves, taking up critical inventory space. Ideally, it will take up exactly
the amount of space on a shelf that it needs—too much, and its products
get returned. Too little, and it misses out on sales.

You can imagine multiple ways of figuring out how to create a metric
for this business. You could sample the number of products on shelves
every day and then forecast a trend, but that would be very time-consuming,
especially if products are typically stocked every two weeks. You could
measure store profitability and then look at stock levels, but that would
deliver data that’s confounded by store effectiveness and size.

Frito-Lay solved this problem by measuring “stales,” the count of prod-
ucts that are returned at each restock event because the product is out of
date. Frito-Lay wants the number of stales to equal precisely one. Taking a
single bag of potato chips as a chargeback may seem a crime to you, but as
a measurement cost it is very small. If the stales count is greater than one,
the suppliers decrease the stock levels. If there are no stales, they increase

86 | the Shipping greatneSS proceSS

the stock levels. It’s a fabulously simple metric that the field can measure
and to which the company can react.

From Frito-Lay’s example, we can learn five key aspects of a great
metric:

The metric is inexpensive to measure

Stales are a wonderful measure because the data already exists as
chargebacks.

The metric can be measured reliably and repeatedly

Reliability and repeatability enable testing, which helps you ensure
that your metric works. For example, if you were to swap out the chip
stocker and you found that your stales count went up, you could inves-
tigate and determine that there was some different pattern of behav-
ior. Perhaps the chips were stacked backward—certainly, displaying
the nutrition information on Fritos is not going to help sales.

The metric is measured frequently, ideally in real time

One of the most remarkable systems I’ve seen implemented is
Amazon’s order tracking system. Amazon has enough orders and data
that it creates a live, statistical process control model with orders. If
your feature launches and damages order flow, you can rest assured
that your pager will go off nearly instantly!

The metric enables your team to make smart changes

Like the Frito-Lay chip stocker who can react in real time to changing
inventory conditions, your team needs to understand what to do when
a metric changes. For example, even though Amazon’s order mea-
surement system is clearly brilliant, it’s only a health metric. When an
alarm goes off because orders are low or high relative to predictions,
you know there is a problem, but you don’t know where the problem is.
Furthermore, it’s great for a team to drive orders up, but the Amazon
product is far too large for any team to measure their impact through
the global ordering pipeline. But if your team is responsible for the
shopping cart, and you measure the conversion ratio of users entering
the checkout process to those who get a “Thanks for buying!” page,
you will have a single number that reflects user experience and sys-
tems performance, and gives you a goal to target.

 how to MeaSure greatneSS | 87

The metric focuses on the customer

Another reason I like the ordering conversion metric is that it’s
a number that reflects the customer experience. If your systems
become too slow, or you add a lot of steps into the process for users, the
metric will decline. But if you measured the 99.9% mean latency of
the Oracle database at the backend and reported that metric, it might
well have had no impact on the customer experience at all until it hit
two or three seconds. Your goal should be to collect your data as close
to the customer as possible. Metrics that are close to customers are
meaningful and understandable.

Another aspect of focusing on the customer is measuring as late
in the customer’s experience as possible. For example, if you make
downloadable iPhone software, which metric is more meaningful,
downloads or application starts? I’d argue it’s application starts, be-
cause downloads tell you only about marketing, whereas application
starts tell you about user engagement and growth.

Your goal, therefore, is to identify the “stales” of your product. Before
you go off creating a sophisticated algorithm by which to run your busi-
ness, remember the fourth point, which says that you and your team need
to be able to take action on a metric. Some businesses have a very hard
time being run on a single number, and an attempt to do so renders the
output meaningless; this was the case with many of the single-number
“fitness functions” that Amazon tried to implement for its teams. While
the Ordering team was able to generate a brilliant fitness function that
they could live to, other teams had a far more difficult time and had to
apply complex mathematical transformations to their data. Worse yet, they
spent tons of engineering time coming up with the metrics! Down this
path lies danger.

the three Classes of metrics you Should Collect
W. Edwards Deming once wrote “That which cannot be measured cannot
be improved,” and boy, was he right. What’s more, if you work for a year on
a brilliant product to improve some customer’s life, but you can’t measure
its impact, how are you going to get promoted? And after you realize that
you can’t get promoted, how are you going to get a new job when you have
no improvement to demonstrate?

88 | the Shipping greatneSS proceSS

If you’re going to demonstrate improvement, you need a baseline.
Therefore, you must establish metrics early and keep them updated
throughout the development of your product. It’s not hard to establish
basic metrics. Consider, for example, your engineering team’s ability to
execute.

One measure of execution might be whether you can make your
launch date. Your launch date is frequently a function of the number of
bugs left to fix. Many bug tracking systems can generate find/fix ratios
and bug counts as charts. Therefore, if you combine the find/fix ratio with
a bug count, you can create a forecasted “zero bugs” date. For more on how
to generate this metric and why it’s important, see the section “Track Your
Bugs and Build a Bug Burndown” in Chapter 4.

The zero bugs date is a great metric for your development process be-
cause it is nearly free with most bug tracking systems, it can be measured
reliably and repeatedly, it can be reported in real time, and it provides di-
rection to your team. In this latter case, if you are distracting your team
with more of your “great ideas,” your find/fix ratio will go up and push
your ship date out. And since one of your goals is to minimize your ship
date, you should quit it with the great ideas already!

Your metrics will probably change after you launch because you re-
cently introduced a major new source of input: customers and customer
usage. You’ll use metrics based on customers and their actions to report to
your investors or management, inform your product decisions, and guide
your team. There are three critical classes of post-launch metrics: progress
toward goals, business performance, and systems performance.

progreSS toward goalS

Goal metrics report your progress toward achieving an objective. One
goal metric that is a staple at Google is the “seven-day active user count.”
It represents the number of unique users who used the product during
the trailing seven days. This metric is much better than the typical “daily
unique user count” you get out of cheap web metrics packages, because
it measures current behavior and you can compare week-to-week perfor-
mance easily. It’s also much more reasonable than daily users, since you
will rarely build a product that you expect people to use every day.

If you are building a product that you do expect customers to use
every day, then the delta between one-day and seven-day active users is
very meaningful. For example, when I worked on Google’s plug-in for

 how to MeaSure greatneSS | 89

Microsoft Outlook—Google Apps Sync for Microsoft Outlook™—we
expected that people who were using Outlook would probably check their
mail daily unless our software wasn’t working well. Therefore, we paid
close attention to the ratio of seven-day active users to one-day active users.
If you have an infrequently used service, such as photo printing, you might
care more about 30-day active users.

Other goals you might want to track include revenue, signups, down-
loads, or installs.

At this point you may be thinking, “I know all about goals. I know to
make them S.M.A.R.T.” What’s S.M.A.R.T? Some rocket surgeon a while
back came up with the notion that goals should be specific, measurable,
attainable, reasonable, and time-based. This is a good, but not sufficiently
specific, framework. I prefer the Great Delta Convention (described in
Chapter 10). If you apply the Great Delta Convention to your goals, nobody
will question them—they will almost be S.M.A.R.T. by definition (lacking
only the “reasonable” part).

BuSineSS perforMance

Business performance metrics tell you where your problems are and how
you can improve your user’s experience. These metrics are frequently
measured as ratios, such as conversion from when a user clicks the Buy
button to when the checkout process is complete. Like goal metrics, it’s
critical to measure the right aspects of your business. For example, if you
want to build a great social product, you don’t need to measure friends—
different segments of users have different numbers of friends. But you
do want to measure user engagement so you can answer questions like
“Are users spending time on the site?” and “Are they posting?” A relevant
collection of metrics for these behaviors might be posts in seven days per
seven-day-active-user and minutes spent on-site per seven-day active user.

Eric Ries isn’t a big fan of these growth metrics in his book The Lean

Startup (Crown Business). He calls them vanity metrics because you can
puff up your chest, point to a chart that goes up and to the right, and say,
“Look, we’re awesome! We’re growing!” even as your product is failing
90% of the incoming new users. It’s a fair point. This is why you need to
look at metrics like conversion and engagement, among others. Nearly all
web analytics packages will provide conversion metrics out of the box, and
they will also tell you which features are used, which buttons are clicked,
and by which groups of users.

90 | the Shipping greatneSS proceSS

Another way to avoid “vanity” in your metrics is by measuring chang-
es to your application. It’s always best to test in real time, rather than
longitudinally, because longitudinal analysis is fraught with confound-
ing problems and you can easily say, “See, we’re still going up!” Google
Analytics provides A/B comparison tools that are incredibly powerful, but
they’re just one kind of many tools you can use. Most major websites have
testing frameworks that they use to roll out features incrementally and
ensure that a new feature or experience has the intended effect. If it’s even
remotely possible, try to build an experimentation framework in from the
beginning (see Chapter 7’s discussion of launching for other benefits of
experiments).

SySteMS perforMance

Systems performance metrics measure the health of your product in real
time. Metrics like these include 99.9% mean latency, total requests per
second, simultaneous users, orders per second, and other time-based
metrics. When these metrics go down substantially, something has gone
wrong. A pager should go off.

If you’re a very fancy person, you’ll want to look at your metrics
through the lens of statistical process control (SPC). W. Edwards Deming
was one of the first to popularize SPC as a mathematical way of measuring
how much a metric can decline before you should page your tech lead.
He learned from Walter Shewart in the ’20s. Deming assumes there is
noise in your system, and within this noise there’s an envelope of accept-
able performance. This is considered common cause variation, or Type I
error—noise, as it were.

Then there are spikes of badness over a smaller period of time.
Deming calls this special cause variation, or Type II error. A bad push or a
server falling out of a virtual IP (VIP) might cause such a spike.

You can ignore common cause error—your noise—if it falls within
two standard errors of the mean. The standard error is defined as the stan-
dard deviation/√N for the mean of your data. If a single data point falls
outside of two standard errors of the mean, ring the pager.

 how to MeaSure greatneSS | 91

Focus on the goal, not the minutiae
It is generally true that any metric can be gamed. To continue with our pre-
vious launch date example, we could categorize more bugs as not launch
blockers, or we could simply stop testing (which seems like a win-win on
its face!). In reality, you and your team are unlikely to game the system
because the metric is only an indicator—not the boss—so don’t worry if
your core metrics can be gamed. When the metric becomes the boss and
you spend days and weeks trying to justify the number, it’s time to change
the metric. Or go work somewhere else.

D
ow

n
lo

a
d
 f
ro

m
 W

o
w

!
e
B
o
o
k

<
w

w
w

.w
o
w

e
b
o
o
k.

co
m

>

 93

Congratulations! You have (almost) no more bugs to fix, you’ve built
a product that your trusted testers love, and your team is proud of what
they built. You have the system instrumented so you’ll know when you’re
doing well. You even have a rough cut of a blog post from way back when
you first defined the product.

It’s time to launch, and launching is more complicated than upload-
ing files to a server. There are several major launch steps you can follow to
ensure a quality launch:

1.  Just say no.
2.  Start a war room.
3.  Instill a sense of urgency in the team.
4.  Complete the launch checklist.
5.  Write the blog post.
6.  Roll the software out.
7.  Verify the software yourself.
8.  Respond to the positive and negative effects of your launch.

just Say no
When you’re driving to launch, you must say no as often as possible to fea-
tures, to bugs, and to changes in the user experience. If you don’t say no,
you’ll never finish your software and you’ll never ship. There’s an industry
aphorism that goes, “You launch the software you have, not the software
you want.” This aphorism is sticky within the software industry because
it’s true—sometimes you just have to ship your product, even when it’s
not perfect, because shipping something good is better than not shipping
something perfect. Most of us can agree that this statement is true, but it’s
hard to enforce because the definition of “good” is arbitrary.

How to Have a Great Launch

| 7

94 | the Shipping greatneSS proceSS

To remove some of the arbitrariness from this stage of the project, I
check to ensure that the team feels proud. Your team must be proud of
the software they build, and the bugs you have in the product shouldn’t
embarrass you. Beyond those caveats, you have to be willing to live with
the decisions that you made months and weeks ago. One way to enable
the team to say no is to create a list of things to change “immediately
post-launch” (IPL). By enabling the team to understand that some changes
shouldn’t block the launch but are the first things to change after you ship,
you’ll help the team feel better about the product because they know their
concerns will be addressed soon.

Another major reason you should say no to late-breaking changes is
that almost any change to your code—aptly termed code motion—risks
introducing new bugs or reintroducing old bugs. Reopening old bugs or
having functionality that used to work fail is considered a regression. Teams
frequently cope with avoiding regressions and continuing to move forward
by creating a release branch. The release branch is a version of your soft-
ware that you intend to ship, and you add code to this branch only if that
code fixes critical problems. Development of new features can continue on
a development branch. This process works well but adds overhead, because
the engineering team must make changes to both the release branch and
the development branch. While the engineering effort to maintain these
branches is not double, it is a significant additional cost, so defer to your
development lead when it comes to defining your branches.

I push very hard to maintain a release branch, for the simple reason
that it gives my teams a way to cope with crisis. Because a release branch
isn’t supposed to change after release, if you discover a major failure, such
as a security, privacy, or major performance problem, you can apply that
single “hotfix” to the release branch. The tests you need to perform on the
release branch are therefore small and quick, because the change is iso-
lated and nothing else has changed. Since your change and your tests were
completed quickly, you can release the hotfix very soon after you discover
the problem.

run a War room
As you get close to launch, your meetings must change. Your weekly meet-
ings are now unnecessary because everyone is aligned with the mission
and moving quickly. At this point, you can rely on standup meetings and
relax the rule that participants must take all issues offline. Moving quickly
is critical if you’re going to make the launch, and some issues are best

 how to have a great launch | 95

resolved quickly even if resolving them means that half the team is stand-
ing around idly. Standup meetings help you make rapid decisions and help
communicate a sense of urgency to the team.

Because these standups are a bit more involved, they become more
like a war room, in which people huddle together in a closet to work out
emerging issues. The reality of your software release is that systems are so
complicated and prone to fussy little failures that sometimes a war room is
a great way to force coordination and eliminate downtime between hand-
offs. If the people who need to hand off are sitting next to each other, the
hand-off time is effectively zero.

instill a Sense of Urgency
One could argue that you’ve failed to manage your project well if you’re
in the late stages of a project and there is a heightened sense of urgency.
It does seem to follow that a well-organized and planned project should
come in right on time. Real software projects don’t follow theory, though,
and all projects seem to expand to fit the time allotted and end in a sprint.
I’ve never seen it work otherwise, so embrace it, and remember that the
time to maintain your cool is when others are losing theirs!

I believe that a single sprint to the finish is not bad. A sprint that lasts
less than a month is tolerable by most teams and families, particularly
since you’ll give the team time to rest on the other side. A death march is
when the sprint starts long before the release and continues after it. Death
marches are evil. They destroy teams, they create bad software, and they’re
no fun. Do not ask your team to sprint for more than a month, or maybe
two at the outside. If your date is unrealistic and you need to push it, it’s
your job to grit your teeth and take the message upstairs, even though you
know you are coming back down the stairs with a s#!@ sandwich (see
Chapter 12). Send the message now, before your team starts to sprint.

If you know this sprint is the real deal, the best thing you can do
during your final sprint is ensure that your dependencies and supporting
teams share your sense of urgency. Less experienced engineers are gener-
ally hesitant to escalate to other teams or ask for help. They are afraid of
having people find out what they don’t know. This reticence makes psycho-
logical sense, because admitting you don’t know what to do requires some
maturity; generally, the people who know the most are the first to admit
they don’t know how to fix a problem. Make sure your development lead is
paying attention to your less experienced engineers.

96 | the Shipping greatneSS proceSS

One way of instilling a sense of urgency in your dependencies is by
calling them on the phone and brokering discussions between your team
and their team. The conversation is likely to be a negotiation, so agree
on goals first, and then work to come up with a creative solution (see
Chapter 11 for tips on how to negotiate). Also remember that your job is not
to solve the problem, but rather to facilitate the development of a solution
to the problem. When you do get people on the phone together, make sure
they’re speaking the same language and communicate your own sense of
urgency to your dependencies.

Complete the launch Checklist
A great launch needs a launch checklist. The goal of the checklist is to
ensure that all of the moving pieces of your software launch are aligned
and scripted. The launch checklist also facilitates communication across
the different functions of your team. Checklists are incredibly powerful
when used properly; every single commercial pilot goes through a check-
list on every single commercial airplane flight—that’s how powerful and
important checklists are.

Each of your leads, from design to test, will have items in the check-
list. There’s no perfect checklist for every project (each plane has its own,
after all) and each subteam—such as legal, test, or marketing—may have
its own subchecklists. But do your best and add items you know you need
to track. A simple example checklist is shown in Figure 7-1 and is available
for download at http://www.shippinggreatness.com.

Figure 7-1. Launch checklist

http://www.shippinggreatness.com

 how to have a great launch | 97

Write the Blog post
If you’ve followed the detailed product development process, you’ve already
written your blog post—or at least written the press release, which has the
same objective. Your goal for the blog post is to state your mission, the
customer to whom you’re speaking, and what problem you are solving.
This is your “lede” in the classic journalism sense. For example, here is a
great example from the beginning of the Google+ launch blog post:

Among the most basic of human needs is the need to connect with

others. With a smile, a laugh, a whisper or a cheer, we connect with

others every single day.

Today, the connections between people increasingly happen online.

Yet the subtlety and substance of real-world interactions are lost in the

rigidness of our online tools.

In this basic, human way, online sharing is awkward. Even broken. And

we aim to fix it.

Google targets a clear group of people: those who want to share online.
It has identified a problem: online sharing is “rigid” and “awkward.” And
in the subsequent paragraphs, it drills into the four unique ways in which
it will solve this awkwardness. If Google can do this with the launch of a
product that was not all that different from one that already existed, imag-
ine what you can do!

Your goal is to build the same quality blog post. Leverage your draft
press release, veer away from the details while still using specific exam-
ples, and work with marketing to make it great. This is your chance to add
sizzle, but do it in keeping with your corporate tone.

The blog post is your script for your demo. Plan to include a one-and-a-
half to three-minute video following the post, so that users who don’t have
access to your product or the patience to try it can still experience the great
software you built.

roll the Software out
The best way to roll out a feature is through an experimental framework.
Experiments are great because both the old code and the new code live on
your production servers at the same time, which enables you to flip back
and forth between version 1 and version 2 extremely quickly and without
having to restart servers. The investment to build an experimental frame-
work almost always pays off longer term.

98 | the Shipping greatneSS proceSS

If you’ve watched major sites like Google and Amazon change, you
may have noticed that some users get a different experience than others,
because both are using experiments to deploy and test features. Amazon
calls these releases Weblabs, because they measure how the new software
impacts users, compared to the group of users who don’t have the new
software. Yes, some of your users will have a different experience than the
majority of your users, but that’s OK. It turns out that users don’t mind.
And if they do mind, roll back and thank your lucky stars you planned to
roll back!

Google has free systems in Google Analytics you can use to build your
own Weblab-like releases. I’ve used them and they’re great. One team I led
ran a series of experiments through Google Analytics and we increased
conversion by 65%—Google Analytics provided us with that data.

There can be challenges to implementing this experimental approach,
though. When your service has underlying data model changes, you may
be unable to roll back, or you may have disjointed data sets. These are tricky
problems, and it’s always best if you can avoid them entirely by making
your data models backward compatible. Easier said than done, I know, but
the benefit of being able to roll back without losing user data is a big win.

No matter how hard you try, it’s very challenging to get a launch right
the first time. Building in a mechanism that enables you to ensure that
you got everything connected and configured before millions of users see
your product is incredibly valuable.

A word on timing: don’t launch on Friday or right before the holidays.
Not only do you miss the press cycle, but also the last thing you want to
do is roll out a bunch of software and then desperately page people all
weekend. I once foolishly agreed to roll out some software on December
18 to take advantage of holiday PC buyers, only to find that my pager went
off when our service started to fail and I had to call engineers around the
country at dinnertime on Christmas Eve. No joke.

Verify the Software yourself
After you’ve pushed all your services to production, you want to verify the
push in two ways. First, your test lead should orchestrate a verification
pass, also known as a build verification test (BVT), which is typically run
after doing a build of your software. By doing this, your test lead ensures
that the right version of software was pushed to your production servers
and that all the configuration was also pushed and set up correctly. It’s
easy to miss little details, even if they’re simple, like making sure http://

domain.com can handle traffic, not just http://www.domain.com!

 how to have a great launch | 99

Second, you need to personally go through the experience as a new
user and ensure that all the major functions are working. Things that
typically fail are signup processes, any form of data upload (like images),
searching, and form submissions. These items tend to fail because they
rely on subsystems and are sometimes configured to point to the wrong
servers. These types of failures happen all the time. Your team should wait
to roll out to a larger percentage of users until you, your test lead, and your
development lead all sign off. This may seem like a lot of process, but it’s
really just three people connected on IM, so it’s not bad.

respond to the positive and negative effects 
of your launch
If you’ve signed off on your verification pass, then congratulations—you’ve
done a great job and your software has launched! But there are a few things
remaining before you can consider your great software to have shipped.
You need to deal with any crises that emerge, announce the product to the
world, and celebrate with your team. Here are the five post-launch tasks
you’ll need to complete:

1.  Handle any rollbacks.
2.  Cope with production crises.
3.  Demo the product.
4.  Handle the press.
5.  Celebrate your launch.

in the caSe of proBleMS, roll the Software Back

Successful rollback is not failure. This bears repeating: successful rollback

is not failure. A rollback is when you revert your software to its prelaunch
state. Rollbacks are more common than you might think. I’ve seen re-
leases take five attempts or more at both Amazon and Google. Large
software systems have so many complicated interfaces and dependencies
that it’s nearly impossible to test and validate every possible permutation
before you launch. If you roll back and there was no significant customer
damage, you haven’t been successful, but you haven’t failed yet. Therefore,
in the end, the best defense is a well-planned retreat.

There are times when you can’t roll back or when rollbacks are so
expensive that doing so isn’t justifiable. In situations where you can’t roll
back, your best bet is to make sure that you have the team capacity to
keep moving forward very quickly for a couple of days, because it may take

100 | the Shipping greatneSS proceSS

you that long to find and fix your problems—and as you’re fixing them,
customers are having a bad day. On the other hand, if rollback is possible,
you can turn off the changes, fix things at a leisurely pace, and try again.

handle any production criSeS

Sometimes the world explodes. Maybe you got slashdotted. Or maybe
there was a security hole, privacy violation, or pricing mishap. Or maybe
an intern redirected the production website to his or her desktop instead
of the datacenter (true story!). In cases like these, there’s a good script you
can follow. And like all good reactive measures, it’s inspired by the Boy
Scouts: you start by being prepared.

Part of being prepared means having an on-call rotation and pagers. I
still haven’t seen cell phones work as reliably as pagers, but I also haven’t
found a reliable way of forcing engineers outside of Amazon to carry
pagers. Have the cell phone numbers of every engineer in your team on
your phone or in your pocket.

A well-prepared product has software switches that can easily turn
off or rate-limit your service. Remember to launch experimentally or with
flags to disable your feature if at all possible. Remember, successful roll-
back is not failure!

You can prepare for disaster well ahead of time by having great design
review meetings. In your reviews, you want to ensure that the engineer-
ing team designs for failure. You can do this by building logic that limits
requests to overloaded servers. You’ll want this backoff to escalate expo-
nentially, and always have a random modifier in the amount you back off
so that the act of backing off doesn’t create further mayhem. The random
modifier is no joke—I’ve seen the backoff mechanism take down more
systems than the original problem did. Make sure that the backoff mecha-
nism exists before you ship.

You’ll be better prepared if you know how to get in touch with a server
genius even if you don’t have one on your team. Even better, maintain,
publish, and know your emergency contacts. Create an internal wiki with
your PR, legal, and cross-functional team contacts. There’s little more
frustrating than trying to figure out whom in PR you need to talk to when
your feature is suddenly behaving badly to a specific ethnic group for no
apparent reason. And yes, this happened to me.

Establishing good communication paths in advance works the other
way too: build a <service>-escalation@yourcompany.com alias so the right
people can get involved. This alias should probably include PR, customer

 how to have a great launch | 101

support, you, your engineering and production leads, and essential cross-
functional owners. Also subscribe your team alias to this list, because
escalations are a great teaching device!

If there’s an ongoing risk (e.g., a launch), make sure all relevant par-
ties know that there could be a problem. You must be willing to bother
people to ask for help, but if the crisis is large you probably won’t have a
hard time admitting that your pants are on fire.

The final thing you need to do to be prepared is print out the next two
sections, tape them to your wall, and work through them like a playbook
for when s#!@ hits the fan.

Crisis	playbook:	Minutes	0–5

 ❏ Don’t panic.
This is harder than it looks. If your boss is on the phone, the odds are
good that he or she is panicking. It doesn’t seem to matter how much
the bosses are paid or how experienced they are. Get them off the
phone as fast as possible so you can go back to not panicking.

 ❏ Verify that there’s an emergency and assess the extent of the damage.
You want to assess the percentage of your user base that’s affected
and how severely. If you’re lucky, it’s not that big of a deal. Since you’re
reading this book, and you work in software, it’s unlikely that you’re
lucky, so read on.

 ❏ Make sure it’s not just you.
Sometimes your computer or your account can end up in a strange
state. The last thing you want to do is run around with your pants on
fire when the only problem was that you cleared your cookies. You also
want to make sure the problem is not specific to internal users within
your company or a “dogfood” artifact. In addition to verifying with
external accounts, you probably want to check for external customer
reports in discussion forums, Twitter, eHarmony—whatever you use.
You’re looking for a corroborating customer.

If the problem is a big deal, treat it like it’s a big deal. Don’t work
too hard to convince yourself it’s not a big deal and that not that many
customers are affected. Convincing yourself that it’s all going to be
fine when really the situation is a disaster is not going to help. You
can understand that you’re going to get fired and still not panic. Sure,
that’s counterintuitive, but if you haven’t been there, you will be.

102 | the Shipping greatneSS proceSS

 ❏ Set up a conference call.
If you are running the concall, do not try to solve the problem. I empha-
sized this advice on purpose. It is very hard not to solve the problem
when you know a lot about your systems and care passionately about
your customers. However, your job on the concall is to facilitate the
conversation, not solve the problem. If you try to solve the problem,
you’ll only add confusion. I know this sounds counterintuitive, but
many managers have learned this. If you want to try to learn it your-
self, go ahead…

 ❏ Open a bug.
You’ll use this bug to record changes that you make to your systems.
When engineers get log snippets, they can add them to the bug. People
can add themselves to the bug if they want to listen in on the technical
conversation. This bug will be very useful when you write the post-
mortem because it will have timestamps and good documentation on
what you did right and what you did wrong.

 ❏ Notify your escalation alias.
Send email to the email list you set up in advance and engage the
first person on the escalation path, whether that’s PR, engineering,
or someone at the network operations center. Make sure you get a
positive acknowledgment, either by the phone, pager, or email. It’s not
enough to leave a voicemail.

Crisis	playbook:	Minutes	5–30	

 ❏ Ask, “Can we roll it back?”
The best way to fix any substantial crisis is to undo the change that
caused it. “Rolling forward” requires more code, more testing, and
therefore more time. It’s best to avoid writing code under extreme
pressure, so try to roll back first.

 ❏ Postpone any planned PR.
Frequently, but not always, you’ll encounter a problem when you
launch. If you have marketing, PR, or other plans that would draw
additional traffic to your now-defunct product, make sure you put
those operations on hold.

 how to have a great launch | 103

 ❏ Let your dependent services know you are having a problem.
Don’t assume that you’re the only one having a problem—make sure
that your outage isn’t hurting someone else. If you’re hurting others,
tell them so that they can work through the checklist themselves.
They might have marketing plans too! Similarly, you want to make
sure that you aren’t being hurt by some other service. Occasionally, a
major shared subsystem, like your backend storage, will go down and
wreak havoc. In situations like these, the good news is that there’s
nothing you can do. The bad news is that there’s nothing you can do,
so add yourself to their bug (assuming they are following our process!)
and watch it closely.

 ❏ Notify your community.
If you have a community forum or any way you typically communicate
with your customers, you may want to let your customers know that
“There seems to be a problem with X. We’re actively investigating and
will have more information/solution by time T.” Google’s Apps Status
dashboard (http://www.google.com/appsstatus) is a great example of
how to do this well. Use your PR/customer support team to help draft
this note, so that you don’t reveal something sensitive or overly fright-
ening. It is, however, OK to admit that you had a problem. Customers
appreciate honesty.

 ❏ Keep your bug updated.
Remember, people from other teams are looking for updates, and en-
gineers are watching the bug to get additional background informa-
tion. It’s hard to tell when a small update will have substantial impact
on your ability to make progress; be generous with your updates to
the bug.

 ❏ Find and introduce experts to consult with the team.
Some problems are difficult to solve. Your team will probably solve
any issue with enough time, but if your problem is directly impacting
customers on an ongoing basis, you may not be willing to wait for your
team to figure out the problem. Consider bringing in an expert from
another team to help. You’ll want to be careful as you do this, since you
don’t want to undermine or randomize your engineering team, but a
very experienced engineer will generally know how to work well with
your beleaguered team.

http://www.google.com/appsstatus

104 | the Shipping greatneSS proceSS

 ❏ Inform your management.
At this point your team knows what’s going on, since you sent a note
to your escalation alias. But your bosses don’t know, and they need to
know because they don’t want their bosses to send a nastygram for
which they are unprepared. So put your manager’s email on the To:
line, fill out the following MadLib, and hit Send.

Team,

We are actively working on a problem with . This means

.

We estimate that have been affected since .

We estimate the impact is .

 and are the solution owners. Their next steps

are .

We estimate we’ll have a fix at . Barring that, we’ll have an

update in .

This is the tracking bug: . Please watch the bug for more

information. In addition, we’re running a concall that you can join at

 ,

Crisis	playbook:	Minutes	31–n
Sometimes a crisis is going to last longer than a few hours. This is when
you turn to your second in command and repeat what my first boss at
Amazon told me: “This is going to suck for a while, but then it’s going to
be OK.” After you’ve made this proud, bold, managerial statement, you
need to move into long-term mode and start fixing things again. At this
point, there are no quick and easy checklists. Rather, there are things you
must do every day, including:

noun

2 sentences describing
the user pain

number of users event start

how much data or revenue
is lost, etc.

engineer concall lead

verbs

time

time less than
2 hours

bug number

IRC or concall number

term of endearment

your formal title and name

D
ow

n
lo

a
d
 f
ro

m
 W

o
w

!
e
B
o
o
k

<
w

w
w

.w
o
w

e
b
o
o
k.

co
m

>

 how to have a great launch | 105

•	 Send status updates regularly and when you said you will. If people are
asking for updates, you’re not sending them often enough. Delivering
status reports on time will help reassure your bosses that the problem
is being solved well.

•	 Don’t keep customers hanging. Set expectations about the problem
and keep them informed. Try to underpromise and overproduce, be-
cause you get relatively few chances to make good with customers.

•	 Keep working the issue. People naturally get tired of working on just
one thing, particularly when it’s a firefighting project. Without your
sense of urgency, your team could lose focus.

•	 Make sure that the people who are working on it have what they
need—get them food, servers, support from other teams, etc.

•	 Set up a shift so that you don’t have one developer working 24 hours.
During one crisis at Amazon, I had an engineer say to me, “It’s 3 a.m.
and I don’t think I can write any bug-free code right now.” I appreciate
that kind of honesty.

•	 Start building workarounds and contingency plans. Specifically, find
ways to replace the failing systems with something else temporarily.
For example, at Google we hit a capacity problem with our download
servers at one point. We fixed this problem temporarily by shunting
download traffic to Akamai’s content delivery network.

Crisis	playbook:	Coping	with	the	aftermath	and	
writing	a	postmortem
Pat yourself on the back—you’ve fixed the problem, and the bosses are
probably not going to fire you until tomorrow morning when they start
reading their email. So get out your thumb drive, start copying your music,
and follow the next steps:

1.  Monitor your fix. Be double-sure that you fixed the problem; it’s
never good to be in a place where your team’s judgment is ques-
tioned and you say, “We’re 100% sure we fixed the problem,” only
to find out that you should have said “99% sure.” Just like when
you verify software yourself before you launch it, verify the fixes
personally.

2.  Prepare a blog post if you or your PR team thinks outward com-
munication is warranted.

106 | the Shipping greatneSS proceSS

3.  Build the action items into your team roadmap and update your
business’s stakeholders with their progress.

4.  Write a postmortem.

A postmortem is a data-based apology for your management. A good
postmortem is pretty easy to write, because you can structure it like you
structured your third grade papers: What, Who, When, Why, and How.
These questions are in this order to make it easier for your execs to get the
answers they want in the order in which they tend to ask questions. Your
bosses are likely to ask these questions as follows:

What happened?

To answer this question, lay out the condensed timetable that describes
when the issue first occurred, when it was discovered, when your team
engaged, when it was fixed, and any other relevant milestones.

Whom did this affect?

You want to be as specific as possible when talking about your custom-
ers. You want to say how many of them were affected, which subset of
customers was affected, and anything else you know about them that
might be relevant.

When did it start; when did it end?

You should provide a basic timeline for the crisis.

Why did this happen?

The “Why” section is where you explain the root cause. If you don’t
have a root cause, keep asking “why?” until you do (see Chapter 10’s
discussion of fishbone diagrams for some tips on this). You don’t nec-
essarily need to build out the discussion, as I do in the upcoming
sidebar, but it may help explain why you reached the conclusions in
the postmortem.

How will you prevent this type of problem in the future?

If you have one great fix, that’s fantastic (albeit unlikely). But if you’re
writing a postmortem, you probably have many things your team
could do differently, so call them all out. To make sure that one or
more of these changes happen, ensure that a single individual takes
ownership for the change.

 how to have a great launch | 107

A hypothetical postmortem, also known as a “Cause Of Error” (COE)
report, appears in the sidebar “Sample COE Report.”

Sample Coe report

COE #1 – SQL injection hack causes humiliation.
03/07/12 — DRAFT — Chris Vander Mey (cvandermey@)

TRACKING BUG:
http://bugzilla/b=1234

WHAT was the problem?
The Ads Optimizations team released an update to the frontend
of our optimizer that didn’t correctly clean search statements. In
parallel, the Database Operations team had updated our databases
and rewritten some stored procedures that didn’t correctly protect
against SQL injection either. An intern discovered this problem
while working on a starter project.

WHO did this impact?
Customers who were broken by this exposure experienced no
customer-facing change. We performed an analysis of all SQL trans-
action logs and did not find any nonconforming INSERT/UPDATE/
DELETE/SELECT…INTO statements, so we believe there was no customer-
facing exploit. There were no customer reports of problems related
to the outage.

The potential exposure, given where this break was featured,
was ~10% of our user base, and required that the user have an ac-
count, which mitigated impact.

WHEN did this occur?
Issue started: 5/1/08 14:00
Issue discovered: 5/5/08 15:00
Rolled back to last-known-good server: 5/5/08 16:43
Issue resolved by pushing a new frontend: 5/6/08 16:00

http://bugzilla/b=1234

108 | the Shipping greatneSS proceSS

Sample Coe report (continued)

WHY did this happen?
We don’t have unit tests for SQL injection.

Why? We can’t run builds against SQL servers effectively.
•	 Why? We aren’t mocking the SQL servers.

•	 Why? We had a hole in our essential test matrix.

We didn’t coordinate with DB Ops.

Why? DB Ops is intentionally separate from our frontend teams, to
add autonomy.

•	 Why? Things got really slow when we had teams discussing.
•	 Why? Everyone had different opinions and we couldn’t

make decisions.
•	 Why? There was no clear ownership and account-

ability around who is responsible for query security.

HOW will we avoid this problem in the future?
cvandermey@: Write unit tests to ensure that SQL injection fails.
harry_the_db_lead@: Write predeployment checklist and get sign off
from product leads on each team that relies on DB Ops. Run afore-
mentioned tests against all DB release candidates.
All TLs: Reinforce importance of code reviews. Charlie_tl@, in par-
ticular, write a checklist for things to look for in code reviews.

deMo your product

We’re back to the fun stuff, where your launch is going smoothly and now
you need to show it off with a demo. Your demo should be straightforward;
the goal of the demo is to tell the story from the blog post and reinforce
your message at every step. It must be brief, probably less than 10 minutes,
in order to hold the audience’s attention. Your video on the blog post can’t
be a 10-minute video, however; videos need to be 90 seconds or less to hold
someone’s attention.

In the same way you wrote your blog post, the demo must be on-
message. Start your demo with the problem statement and your message.
Continually stating your message may feel repetitive, but it works. Start
your demo by explaining why people should care about it.

 how to have a great launch | 109

Next, use your demo to tell a customer story. Great presentations use
stories to draw listeners in and make the ideas real (more in Chapter 10 on
presentations). Start your demo with a customer story and use that story to
walk through your demo. Statements like “Imagine if…” and “People have
a problem…” will help you tell the story and hook the audience. As you go
through your demo, don’t worry about the details of what you are trying to
show. If some small thing goes wrong, skip over it and use the distraction
as an opportunity to reiterate your core message.

While you can certainly skip over small defects in your presentation,
the best cure for problems is to not have them. The best demos take weeks
of preparation. Steve Jobs was notorious for demanding in-depth rehears-
als, and it shows in the output of Apple’s keynotes. In addition, Apple
always thinks about how it can reduce the points of failure in a demo.

Microsoft product managers think the same way and routinely have
three laptops: their personal laptop, their demo laptop, and their backup
demo laptop. This approach gives them multiple backup strategies and
ensures a stable demo environment. Personally, when I need to show
something online, I bring hotspots from two different wireless providers
and always try to use a wired connection when I can.

Despite all these warnings, if you’re doing a demo at a live event, no
amount of backup is sufficient. You must have screenshots or video for
every part of your demo, because you can never fully predict what will go
wrong. The launch of GoogleTV was riddled with technical problems and
was painful to watch. In contrast, Apple’s launch of the iPad 2 had similar
problems but cut away to screenshots while the team forcibly disabled all
WiFi access for attendees to the event, thereby remedying the problem.
You want to be as prepared as Apple was, not as prepared as Google was.

handle preSS and cuStoMerS

If you have the good fortune to be contacted by the press or bloggers (it’s
good to remember that bloggers prefer to be thought of as press), you can
make the most of it by engaging deeply. Take the calls and do demos.
Respond quickly because most of the writers are on a deadline. If a writer
posts something that is factually incorrect, reach out with a courteous
correction—reporters may publish a correction. However, by the time the
content is published it’s usually too late for the reporter to do anything
about it.

110 | the Shipping greatneSS proceSS

It is not too late, however, to respond online. First, you can respond di-
rectly to articles that are published online through their existing comment
systems. Be clear and factual, and attribute the comments directly to you
so that you’re transparent and others can reach out to you. In the past I’ve
published my email address directly in these forums in order to respond to
contentious issues, and I’ve rarely been disappointed by the reaction I’ve
encountered.

Second, you can respond to comments that others make, particularly
if you have a user group. One of the most valuable ways you can spend
your time immediately after launch is handling support requests and con-
versing with users in groups online. Users will tell you what you’ve done
wrong, what’s not working (even if you think it is), and what you need to
add. If you listen closely in the weeks immediately after you launch, you’ll
be able to adjust your roadmap based on real customer input, and that will
lead you to a very successful second version of your product.

celeBrate your launch!

Every significant product release is enabled by many small (or sometimes
large) sacrifices, and it’s critical that you acknowledge what your team
gave. Post-launch high-fives of any kind are basically free and can help
readjust your team’s point of view. For example, after working on Google’s
“Google Apps Sync for Microsoft Outlook” project for two years, I put to-
gether some basic metrics on early adoption that I shared with the team.
I was able to use those metrics to pat the team on the back and get them
some exposure to the senior leadership, and in turn the team was able to
use those numbers to make their promotion cases. Your team will like you
more if you get them promoted.

With teams at Amazon I brought in champagne for each launch, and
the team signed the bottle. We put each bottle on a shelf in the office,
creating a memento that stood as a reminder for the office of how great it
is to ship.

Ideally, you want to celebrate your launch as close as possible to the
time you launch. Keeping the timing of the celebration close to the sacri-
fices helps tie rewards and thanks to the actual sacrifices and accomplish-
ments. But please, don’t have a party during the launch. This guidance may
be counterintuitive, but I once saw a program manager at Amazon have a
launch party with food, beer, and paper plates (high-end for Amazon!) as
his product rolled out. I asked him, “How’s it going?” and he said, “Good!”
thinking I meant the party. I was actually asking about the launch.

 how to have a great launch | 111

I went down the hall and most of his engineering team was sitting
in their cubes, watching server health. It’s really demoralizing when your
team members can’t go to their own party. The other dimension of this
is that you don’t want to celebrate too early. Frequently, you’ll need to roll
back a launch or sprint for another couple of days to fix emergent produc-
tion problems. Ideally, you want your team to get past that panic and then
celebrate and thank them for their effort.

Individual accolades are critical as well, but it can be both dangerous
and helpful to compliment specific members of the team very publicly.
Before you do so, have a good reason for why you want to make a public
statement. Because everything is a teaching opportunity, I sometimes use
stellar successes as a way of pointing out to the team what greatness looks
like, so they know what to shoot for.

Be careful with public accolades. A Google VP once defended a gener-
ous perk he gave his team by saying, “They’ve worked really hard and I
wanted to do something nice for them.” This was broadly interpreted by
Googlers-at-large as, “My team works harder than you, blah blah blah.”
Foot, meet bullet. He would have been much better served to associate
that perk with a specific accomplishment. Also, when a single person does
something truly unique and is OK with being singled out, go for it. But if
there’s any question, take that person to lunch and thank him or her one-
on-one. You don’t want to embarrass your teammates.

 113

 Part	two	 |

The Shipping
Greatness Skills

You are probably already pretty good at shipping software. But I’ll
wager you can be better. You can always be more efficient, for example.
You could probably communicate more clearly. You could be less stressed
out. You could have a bigger engineering team, more leverage with your
senior management, or a better understanding of systems design. Or
maybe none of these things applies to you and you can skip Part II entirely
and send me your résumé.

If you are like most of us, you struggled to build one or more of these
skills as you tried to ship software. Shipping software is unlike most other
kinds of jobs because it requires precision technical communication, deep
knowledge across a host of disciplines, and fortitude. The skills I empha-
size in these chapters are tried-and-true methods for increasing your
effectiveness and happiness—which in turn will help you ship.

Because you can’t ship without a team, Chapter 8 covers how to hire
or build a team, how to acquire a business when that is an option, how to
work with offshore resources when you can’t build a team locally, and how
to join a team when there’s one in place.

Chapter 9 describes what you need to know to be sufficiently tech-
nical so that you can work effectively with the engineers you hired in
Chapter 8. This chapter is not a computer science course; rather, it’s a
fast-paced overview of the kinds of systems-oriented knowledge you need
to be able to understand in order to guide your engineering team to the
right decisions. If you hold a master’s degree in computer science from
Carnegie Mellon, please don’t write me letters, just remember that I’ve
seen very smart graduates with master’s degrees in computer science
create unfortunate architectures, which is why I added this section.

114 | part two

Because I can’t teach you how to come up with great ideas that your
team can build, Chapter 10 focuses on explaining how to communicate
your already great ideas in the most efficient way possible. This chapter
describes how to write an ideal email message, how to build a great pre-
sentation that accomplishes your goals, and how to run the five types of
meetings successfully.

Of course, as you communicate your product and progress to others,
they are going to provide feedback. Some of that feedback will be good,
and some of it will be mind-bogglingly inane. Chapter 11 provides some
techniques for dealing with the bad advice. It also discusses what feedback
you should take, and how to make the right decisions as a team.

If you know how to build a good team, understand your technology,
and can communicate well, you are in a great position to be successful.
However, every day you’re going to deal with some shipping-specific chal-
lenges, like feature requests and senior-management BS. Handling these
challenges gracefully will reduce your cortisol levels and prolong your life.
Chapter 12 discusses how to be great in the day-to-day of shipping.

If you’ve made it this far, you’ve learned that shipping is great and
you’re ready to do it again. Chapter 13 explains how to start the process all
over again.

If you grow strong in these skills, you’ll be one of the most capable
team leads in the universe. I fully believe this. I also believe that the chal-
lenge is not understanding these skills, but actually acting on them in a
consistent way. Good luck!

 115

| 8

How to Build a Shipping-
Ready Team

After you define a great product idea and generate strong organization
support, you need to pull together a team that can build and ship that
product. Building the right team is the most important thing you can do,
after choosing the right user problem to solve. A brilliant team can also
end up being a durable competitive advantage. Most important, a great
team helps eliminate problems in all the remaining steps of your software
development.

Think about it: if you have a terrible designer, you’ll end up reworking
the same feature three times as you get randomized by user feedback.
Bad systems design from a second-rate development lead will cause bi-
zarre outages that will negatively impact users and cause your developers
to stay up late, cursing each other and their pagers. And a bad product
manager—they’re the worst—will constantly randomize your team with a
poorly thought-out set of bad ideas.

On the other hand, a great team is fun, makes you feel like you can
accomplish anything, and will lead to lifetime friendships and profit. You
must have a great team, and you can play an essential role in team building
regardless of your explicit title. Here’s how to do it.

how to Start a team
To start a team effectively, you must find engineering, product, and design
leads with whom you can work well. When you find these individuals,
treasure them. Write them poems, buy them candy, and offer to wash
their cars. You are only as effective as your engineering team, so finding a
leader who can run a well-oiled engineering machine will radically offload
work from you and substantially accelerate your other efforts. Throughout
the industry, you’ll find that the same people work together across busi-
nesses and projects for precisely this reason.

116 | the Shipping greatneSS SkillS

It is impossible to care too much about your team, its quality, and the
happiness of your team members. Read Beverly Kaye and Sharon Jordan-
Evans’s book Love ’Em or Lose ’Em (Berrett-Koehler) and practice what it
preaches, even if you’re not a people manager. It talks about how to retain
your best people and get the most out of them. Leads can have a substantial
impact on the careers and happiness of their teammates by doing things
like directing the right projects, problems, or recognition to people who
need it. Love ’Em or Lose ’Em will give you great ideas for actions you can
take and techniques for figuring out what actions will work.

Frequently, the job of a team lead is too much work for a single person
to accomplish. The job is nearly always too much for any one person to do
it well. You are going to need to hire an engineering manager, a product
manager, a program manager, a project manager, or some combination of
all four. For brevity, let’s call this person a PM.

PM hires are the most critical hires you can make. Hiring the wrong
person to be a PM on your team more than sucks—it’s like jabbing a salted
knife into the collective kidney of your engineering team on a daily basis.
The wrong person can change the product direction for the worse, hide
information from you, delay tasks that would otherwise be done poorly but
quickly, and will cause great angst within an engineering team. Needless
to say, hire carefully, and err on the side of not hiring a PM.

If you need to hire a PM, you should start by defining the role you’re
hiring someone to perform. Generally in the software industry, there are
program managers, product managers, project managers, and engineer-
ing managers. The actual definition of each role varies based on the com-
pany, but the following sections give some guidelines on how the roles
differ.

prograM ManagerS

I once interviewed for a program manager role at Microsoft that I ulti-
mately declined. During my interview I was asked, “What does a PM do?”
That this would even be an interview question speaks to the difficulty of
the job! My answer? “A PM ships software.”

More specifically, a program manager focuses on integrating different
teams and job functions. Josh Herst, the CEO of Walk Score and a former
venture partner at Madrona Venture Group, once said, “Program manage-
ment is a glue-and-grease role. You pull disparate functions together so
that the machine can work and then grease the machine to make it work
better.”

 how to Build a Shipping-ready teaM | 117

Another way to look at program management is that it is a technical
role with less business focus than product management and less project
focus than project management. The deliverables a program manager
will produce are therefore more ambiguous than some other roles and the
focus on “glue and grease” is manifest.

product ManagerS

Product managers traditionally focus more on the business side of soft-
ware. There are even product managers who don’t work on software.
These product managers are typically MBAs who focus on brand manage-
ment, pricing, go-to-market strategies, and so on. Your software product
manager will do these jobs and will help prioritize feature development by
attempting to speak with the voice of the customer.

Product managers at Google do pretty much everything but write
code. That said, I know of more than one product manager (including
myself) who wrote code while at Google. Product managers at Facebook
and the newer Bay Area startups tend to have the same responsibilities,
mainly because the startups and Facebook seem to be largely staffed by
ex-Googlers.

project ManagerS

Project managers, or technical program managers as they’re known at
Google, focus primarily on the schedule and coordinating team efforts.
They ask for estimates, they identify dependencies, and they figure out
how to get more done in less time. Want to know if having great proj-
ect management chops is worthwhile? In 2007, a truck carrying 8,600
gallons of gasoline crashed on the ramp connecting I-80 to I-580 in
California, destroying a major artery and sending local traffic into a state
of intense disarray.1 Initial estimates to repair the damage exceeded $10
million, but gutsy C. C. Myers, Inc., came in with a bid of just less than
$900,000—and a clause that said they’d be paid a $200,000 per-day
bonus for every day they came in ahead of schedule. Given that the state
was estimating an economic loss of $6 million per day, this seemed like a
good deal to California. The C. C. Myers crew, through a combination of
brilliant project management and good old hard work, beat the target date
by a full month, earning a 500% ($5 million) bonus.

1 http://en.wikipedia.org/wiki/MacArthur_Maze

D
ow

n
lo

a
d
 f
ro

m
 W

o
w

!
e
B
o
o
k

<
w

w
w

.w
o
w

e
b
o
o
k.

co
m

>

118 | the Shipping greatneSS SkillS

engineering ManagerS

Engineering managers are frequently coders grown older. The best “eng
managers” are those who have been promoted into the role because they
love their teams, understand people, know how to ship, and want to build
brilliant products. The worst are those frustrated engineers who only
wanted more control and more money. You know who you are. Cut it out.

Engineering managers may or may not have product managers, pro-
gram managers, project managers, or even technical program managers
working for or with them. Some engineering managers see their primary
role as maintaining the happiness of the engineering team. Others see it
as maintaining engineering quality through hiring, process, and other
tools. Still others see their role as similar to a product manager, but with
access to the engineering resources to build the stuff they want to build.

Every engineering team will have an engineering manager, but not
every team will have a product, program, or project manager. Therefore,
if you have one of these other titles you must partner well with your engi-
neering manager, because if your engineering team is unhappy, unskilled,
or lacks a quality process, you’ll have a very hard time shipping. Similarly,
if you’re an engineering manager, finding people who can support your
weaknesses and enable you to ship faster and better is very important.

how to hire a product, prograM, or engineering

Manager

Hiring leads for a team is very hard. I believe that Google, Amazon,
Microsoft, and similar companies are terrible at finding great leads
through the interview process; you can see this in how candidates are
evaluated. For example, at Google some of the strongest inputs into hiring
decisions are the candidate’s GPA, the schools he or she attended, and
internal referrals. None of these factors is part of the interview process,
which should tell you something. At Amazon, candidates must be very
technical, but the questions they’re asked are trivial to answer with a little
studying (more on this in Chapter 9). I think that the process of hiring
leads is largely broken, but it’s a major part of your job as a lead, so you
need to know how to do it. There are five major rules for hiring leads:

•	 Hire people who are smarter than you.
•	 Hire people who understand they are not the boss.
•	 Hire people with clear, data-driven communications practices.
•	 Hire people who are quantitative.
•	 Hire people with gumption.

 how to Build a Shipping-ready teaM | 119

Hire	people	who	are	smarter	than	you
First, you should hire people who are smarter than you. However, Mike
Smith, a former Google GPM who used to coordinate product manage-
ment hiring in the Seattle/Kirkland Google offices, says, “This statement
ignores basic human instincts…[you want] to exert control.” Therefore, you
must hire only people who are smarter than you if you are willing to em-
power them and trust them to be team leads in their own right. I honestly
believe Eric Schmidt both espoused and lived to this principle. I heard him
say, “Thank you for ignoring me; that’s why we hired you.” Sadly, he said
this about someone else—I didn’t have the guts to ignore Eric because he
was really much, much smarter than I. Someone else hired me; that’s how
I got hired. If you can hire people who are smarter than you and empower
them to ignore you, read on. Otherwise, don’t hire anyone. Just do the job
yourself.

Since you’ve decided to hire team leads who are smarter than you,
you’re going to want to know how to assess brains. I triple-dislike the
Microsoft approach to asking “brain teaser”–type questions because I
think they don’t actually test smarts. For example, here’s a real question I
was asked during an interview at Microsoft:

Q: You’re in a boat, and you’re holding a big rock. You throw the rock into

the lake. What happens to the level of the lake?

A: It goes down because the rock in the water displaces only the volume

of the rock, rather than the volume of water equivalent to the mass of the

rock, which is what happens in the boat.

Q: <long pause> Wait, had you heard this before?

A: No, but I studied engineering…?

The only interesting part of candidates’ responses to a question of this
nature is what happens to them if they get stuck. It is a good sign if the
candidate can get unstuck without help. Beyond that, people’s ability to
think their way through a brain teaser has little to do with their ability to
get to root cause, measure their business well, or think about competitive
markets. Please don’t ask these kinds of questions.

To those of you saying, “Yes, but what if the stone was pumice and
could, in fact, float?” I say, you’re missing the point.

The best way to test raw smarts is by checking references. Ram
Charan, coauthor of Execution: The Discipline of Getting Things Done
(Crown Business), makes it a point to check his candidate’s references

120 | the Shipping greatneSS SkillS

personally. Great PM managers I know do the same thing. If it’s too early
in the process to check references, the candidate’s résumé is a good enough
proxy. A strong GPA at great schools is an additional predictor of success in
the role, but it is not the only indicator.

Substantial launches with real deliverables is a key indicator of suc-
cess; after all, if we’re trying to achieve shipping greatness, a history of
shipping should count for a lot. A leadership candidate who has a long,
wishy-washy résumé is almost certainly a no-hire, but a lead with a single-
page résumé that highlights product releases and their monetary or user
impact is a “must interview” candidate.

OK, so you’re not yet convinced. You’re ready to present the classic
heavy-marble problem (find the heavy marble out of 23 otherwise equally
weighted marbles with just a balance) or some variant of it. Let me help
you out. Potential candidates listen up: the answer to this and all questions
in this class is a binary search. It is LogN K fast, where N is 2 for splitting
the marbles in half and 3 if you use three piles.

Now go ask for the candidate’s GPA, check references, and don’t ask
any more silly questions.

Look	for	candidates	who	understand	that	they	
are	not	the	boss
You should hire people who can be Not-The-Boss even if you are hiring an
engineering people manager. You want your engineering team to do what
they think is right and lean on the engineering manager for support, not
orders. The only way to know that a PM understands the Not-The-Boss
requirement is by meeting with the candidate face-to-face.

When I interview a candidate face-to-face, I pose a question I borrowed
from McKinsey and Company: “Tell me about a time when you changed
someone’s mind, and what techniques you used.” I listen for informa-
tion about how the candidate responded to not being in charge. I look
for evidence of collaborative decision making (see Chapter 11). I look for
data-based arguments (see Chapter 6) and smart escalation (see Chapter 11
again). If the candidate says, “Well, I just convinced the tech lead to try it,”
that’s a good indicator that this lead is used to being the boss.

Look	for	clear,	data-driven,	and	specific	communications
Here’s an example of what happens when you hire a bad communicator:

Me: Is <redacted> done?

<redacted also>@amazon.com: Yeah.

 how to Build a Shipping-ready teaM | 121

Me: Like, tested and running?

<redacted also>@amazon.com: Oh, no, but it looks mostly like Java.

True story! I need real, concrete answers from leads, so when I ask a
specific follow-up question, such as “How did you convince Larry to ap-
prove your launch?” a bad answer is “We talked about it, and he kind of
came around.” A great answer is:

First, I scheduled a meeting with the stakeholders to get them onboard.

Next, I had my SVP send a note. After Larry was presold with that note, I

had a 10-slide deck that I presented to Larry and we listened to his feed-

back. We were able to address his concerns in that meeting and moved

forward.

Note that this latter answer is brief. It is specific. It has a beginning
and an end. It speaks to what the individual did and also to how the indi-
vidual worked as part of a team.

Hire	quantitatively	inclined	candidates
A good technical leader should be able to do math on his or her feet.
Candidates who use numbers, even when referring to the number of
slides they had, get good marks from me. I occasionally ask candidates
market-sizing questions, but my goal is not to assess if they can segment
a market, but rather to see if they can make good approximations and do
math on their feet. A typical market-sizing question might be “What’s
the market for a new smartphone in the US?” Most MBAs can answer
this type of question in their sleep, as they practice them before they go
out for consulting interviews. Here’s how I’d answer the new smartphone
market-size question (I doubt the answer is right, but you can see how it
demonstrates that I’m not afraid of numbers):

There are 350 million people in the US. I estimate that of those 350

million people, folks between 12 and 75 have need for a mobile phone.

That’s probably a total US mobile market of about 300 million users, give

or take.

Now, the market for smartphones is different. Let’s segment the

market into callers, social media users, and business users.

Social media is most dominant from 12–30, so that’s about 30% of

the market: 90 million. Add to that estimate the business users, who are,

say, 50% of the 30–60 market, and you get 50% of an additional 30%.

122 | the Shipping greatneSS SkillS

Half of 90 million is 45 million, so that’s an additional 45 million users, for

a total of 135 million users. Let’s put the remainder of those 300 million

users into callers—we don’t care about them right now.

So 135 million might want a smartphone. I think Apple is planning on

shipping 20 million iPhone 5s out of the gate, and Android will be double

that, so it checks out roughly right.

If we are introducing a new phone, we probably are selling to two

major groups: new smartphone users and upgraders. So, if you assume

that there are probably 40 million iPhones and 80 million Android

phones, that’s 120 million smartphones deployed, leaving 15 million

as new users. Of the 120 million phones, figure a three-year upgrade

cycle—that’s conservative. So, one-third of those 120 million will upgrade

in a year. That’s 40 million.

In other words, I think you have a potential market of 55 million

phones in your first year—40 million upgraders and 15 million new users.

Now, how many phones you sell is a very different story! Isn’t this mobile

business fascinating, how fast it is growing?

That is how you answer a market-sizing question. Start by making a
numerical assumption. Check your assumptions with other data as you go
along. Use round numbers and whittle down your estimate using rational
market segmentation. Arrive at a real number. Finally, show your enthusi-
asm, even though you probably don’t want to work at a company that asks
this type of question.

Hire	people	with	gumption
Leaders are frequently the driving force behind your team, and if they
don’t bring energy with them your cause is lost. If one goal of your mission
statement is to inspire (see Chapter 1), the person who delivers the mission
best would be inspirational, and inspiration comes from energy. One sign
of good energy that you might be able to see in an interview is a novel
idea, because candidates who are willing to invest a lot of energy thinking
beyond your specific question are likely to do so with their own team. I
also look for excitement around problem solving. The design problems I
ask are all very interesting to me; great candidates get excited about the
problem with me and can explore the problem space.

 how to Build a Shipping-ready teaM | 123

how to acquire a Company
It’s not unusual for larger companies to acquire a smaller company at the
initial phase of the project. It’s a prebaked team, isn’t it? It’s also not un-
usual for a software project leader to seek out potential acquisitions in
order to solve a problem or get to market faster. Acquisitions are rarely
easy, so it’s important to know how to handle them properly.

There are generally four reasons why you might consider acquiring a
company.

Intellectual property

You can use the technology, content, or patents that the company built.

Talent

You can use the people the company hired.

Customers

You can use the company’s customers to accelerate the growth of your
business.

Defense

You’re buying the company so somebody else can’t.

Of these four reasons, Mike Smith, a VP of engineering at Disney who
has experience with acquisitions at Disney and Microsoft, says, “Hope to
get two out of the four. Expect one. If you’re being sold on more than two,
nine times out of ten you’re going to be disappointed.”

intellectual property acQuiSitionS

Before you even consider acquiring technology or content, you need to do
the basic math of build versus buy. The math is truly basic: how many
engineers for how many months will it take to build, test, and ship similar
software? Multiply this number of engineering months by the cost of a
fully loaded engineer for a month. Subtract the cost—measured again
in units of engineering person months—of integrating the company’s
intellectual property. The result is how much you should be willing to pay,
assuming time to market is not critical.

124 | the Shipping greatneSS SkillS

However, time to market is always critical, so do some more rough
math to figure out what the value of potential sales is if you are selling
your software after the acquisition and integration is complete and before
you would otherwise ship your own software. Or, pick six months’ sales
because that’s probably equivalent to the revenue you may gain. Add this
figure to your first estimate, and you’ll have the full value of the deal.

If you think that you can get to a deal for a number less than what you
just computed, then it’s reasonable to move forward.

Next, you need to look carefully at the software you will acquire. You
can’t trust that the company’s code is good. Well, maybe you can trust that
it’s good, but you need to verify that it is. You need to get a senior engineer
from your team who will not work with the business in the future to review
the code. Startups get very twitchy about exposing their secret sauce, and
your lawyers are going to get worried about “tainting” your team if the
deal doesn’t go through. But there’s no help for it. You must have someone
whom you and your team trust review the code and architecture. If you
don’t, you’re buying a rental car without taking it to a mechanic first.

If you’ve reviewed the code and it looks OK, make sure you can put
together a plan to integrate the team and the technology. Like most proj-
ects, the integration project will take longer than you expect. Unlike most
projects, however, it will take much longer than you expect because you
have new people, foreign servers, different software licenses, and all sorts
of undocumented details to deal with.

talent acQuiSitionS

Talent acquisitions are the trickiest of all acquisitions. This is not sur-
prising, since they’re all about people and people can be tricky. You must
evaluate people like you normally do: interview them. The more people
you interview, the lower your acquisition risk will be, because you have
more complete information. Conversely, the more people you interview,
the more you disrupt both businesses. You must conduct your interviews
carefully.

A caveat here: don’t interview people without them knowing that
it’s an interview. I know of at least one case in which this happened, and
it backfired. The deal team ended up redoing all of the interviews, and it
soured the deal.

Interviews will also help you understand where the employees fit into
your organization. I use three core buckets for talent:

 how to Build a Shipping-ready teaM | 125

Key individuals

These are the people who keep the lights on, and without them, you’d
have to backfill immediately. They might be hard to backfill because
their domain knowledge is so deep.

Good hires

These are people you’d happily hire into your current business. They
are A-class candidates, but you could also spend a few months hiring
on your own and land a similar candidate.

Surplus talent

These are employees who don’t meet your hiring bar, so you’re going to
do one of two things with them: a) put them on contract for a period so
you can transition them out, or b) terminate their employment. This
may seem like a hard transition, but this is the reality of acquisitions.

Talent acquisitions of more than a few people are very hard because
of the process, the interviewing, and the subjectivity of the deal valuation.
They can also be very difficult to integrate. Mike Smith shares a frighten-
ing anecdote from his time at Microsoft:

I drove the acquisition of a company called Conversagent (to be

Microsoft Windows Live agents). In evaluating the talent, it was clear that

there was a good need to hire between 20–30 additional engineers to

get the scale that met the business needs. The acquisition was approved

with that constraint, but then finance decided that it would sit on releas-

ing the headcount to be hired against. For 9 months. Core talent left at

12 months, with no backfill. The acquisition failed and is now worth less

than a tenth of its purchase value.

This story shows how important it is to get all parties, including HR,
legal, and finance, bought into your talent acquisition before you close
the deal.

cuStoMer BaSe acQuiSitionS

If you make $2 per user over the lifetime of that user and you’re going to
acquire a company with 10 million users, you should be able to make $20
million bucks, right? Wrong. You’re only going to make a fraction of that.
What fraction you make depends on what you do with the business.

126 | the Shipping greatneSS SkillS

If the business you intend to acquire is self-sustaining, you can keep
it running largely as is and attempt to upsell those customers to your new
product. However, you’ll probably have a pretty low take rate. If your take
rate on those 10 million users is about 20%, the deal is worth less than $4
million.

If you plan to shut down the business and convert its users into your
own, you will likely pay substantial costs to shutter the business and you’ll
lose customers along the way. You might estimate that a deal done this
way is worth about 50% of the potential value, or approximately $5 million.

Because these numbers are so low, you’re most likely to look at a cus-
tomer acquisition deal as a sales accelerator for situations in which there’s
a highly competitive market and getting big fast matters. If you’re in one
of those businesses, you might want to get out now before the stress kills
you. Or at least switch to Tylenol, because your stomach will thank you.
Assuming you don’t get out, you’re going to value this deal by estimating
your sales increases, which is highly speculative math.

No matter how you value this deal, make sure that you’re using the
right baseline data. That means looking at logs. Look at not just impres-
sions and signed-up users, but “seven-day active” user counts. You’re after
repeat customers, so you want to measure returning users and engage-
ment (time spent on the site or using the app). Have your team review the
log data, or at least understand the systems that are generating the reports,
whether those are Webtrends or Google Analytics.

defenSive acQuiSitionS

I have not led a defensive deal. In my opinion, they’re not very nice and
smell of fear-based decision making. If you have the pockets to do a defen-
sive deal, please don’t be evil when you do one.

If you’re even considering doing a defensive deal, you probably need to
think about what monopolistic practices are. “I’m not a lawyer” is the first
thing you should get used to saying because at least your comments will be
in context. I’m not a lawyer, so I won’t tell you what not to do.

gotchaS and BeSt practiceS with acQuiSitionS

Here are some final tips and warnings to keep in mind when you’re con-
sidering acquiring another company.

 how to Build a Shipping-ready teaM | 127

Plan	to	embed	part	of	your	team	into	their	team
Embedding some of your senior staff into the acquired team works great
because it brings the culture, practices, and policies of your business into
the new team. In addition, a good, scrappy development lead will unblock
the new team and help them be much more efficient more quickly. Your
new team will be more likely to be happy as a result, because they will
be productive, and productivity breeds happiness. You should budget ap-
proximately 1 senior engineer for every 10 acquired engineers. If you don’t
have anyone you can spare, then you need to look for ways to pull talent off
of the new team and use them to backfill this dev lead so he or she can join
the new team. It’s that important.

Don’t underestimate the importance of culture fit and the time it takes
new people to figure out how to operate under your unique brand of insan-
ity. To do so is to create an unruly group of engineers who are biding their
time until the one-year mark is up and they can cash out their options.
That’s a miserable way for those people to work, and it’s bad for the rest
of your business. Make sure you get the new company well integrated into
your old company. Embedding your best engineers into the new team is a
great way to help this.

Plan	to	integrate	the	product
You need to know not only how you’re going to stick their servers behind
your virtual IP, but also what you’re going to do with their brand and how
their billing systems will work with your billing systems. Many acquisi-
tions are less successful than they could be because the acquirer ends up
paying a multiyear engineering cost to integrate the business. A clear plan
makes transitions easier for teams, too.

Understand	all	the	prior	deals	and	liabilities
It’s always a bummer to discover late in the game that the founder owes
someone a million bucks. It’s not your problem, but for some reason,
founders always want you to take care of them, so it becomes your prob-
lem. Having a good conversation about debts, liabilities, and any deals the
company might have signed before you reach a number is very important.
A good attorney will help you with this, but it’s best to do your own home-
work, too.

128 | the Shipping greatneSS SkillS

how to Work with offshore or remote teams
It’s pretty hard to work with a good engineering team in the best of times.
It’s very difficult to work with a team that’s in another office. It’s approach-
ing impossible if you add a 12-hour time difference to the equation. The
situation is basically hilarious when you try to coordinate across mutually
exclusive time zones like Sydney, Stockholm, India, and the West Coast of
the US. I’ve led these kinds of distributed projects, and I’m giggling still.

Remote—or “distributed” in Google vernacular—teams are a neces-
sary evil at this stage of software development. One reason you will use
remote teams is that areas are known for their specialties and acquire
like-minded geniuses. For example, Tel Aviv and Stockholm have video
gurus. Romania has security geeks. Big distributed-systems brains tend
to come from college towns like Pittsburgh and Seattle. More than 50%
of Google’s employees work outside the home office of Mountain View.
Facebook, Google, Ticketmaster, and an increasingly large number of Bay
Area companies have all opened offices in Seattle, just as one example. US
Immigration has made it difficult for some of the world’s top engineering
talent to work from the US—but not for the US.

Given these industry trends, and your near-infinite need for brilliant
engineering talent, you’re going to encounter a time when you think about
working with engineers outside your hometown. It will be challenging,
but there are some things you can do to make your life easier. Nine things,
in fact:

•	 Don’t rent an engineer—build an engineering team.
•	 Overcommunicate.
•	 Do not outsource design or PM roles.
•	 Adapt to cultural differences.
•	 Build clear requirements.
•	 Suck up the time difference and meet anyway.
•	 Establish great leads.
•	 Travel a lot or barely at all.
•	 Drink with the remote team.

don’t rent an engineer—Build an engineering teaM

Engineering projects are long term and complex, and benefit substantially
from peer collaboration. The best way to embrace and leverage these dy-
namics is by building a team of at least three engineers who all share a
charter. Three engineers amounts to what I call “critical mass,” meaning

 how to Build a Shipping-ready teaM | 129

there are enough people that the team can power itself. The charter gives
the team a sense of direction. It also helps the team make decisions autono-
mously, which is something you need when you have less direct oversight.
For example, when a developer finishes one project or gets stuck, the char-
ter helps inform what he or she works on next. Defining a clear charter for
the team also helps them feel less anxious about their future.

overcoMMunicate

There’s a truism I’ve noticed working with remote teams: the farther the
team is from you, the more anxious they are. If you’re based in California,
for example, New York will only assume something was miscommuni-
cated, get on a plane, fly to California, and complain loudly. Even the best
engineering teams in Sydney and India, on the other hand, straight-up
panic. They’re so far away from the States that they assume they’re misun-
derstood, underappreciated, and kept out of the loop. The best thing you
can do to ameliorate these feelings is to overcommunicate.

Use Skype, Google+ Hangouts, WebEx, and generally anything you
can get your hands on to increase the quality of your communication with
your remote teams. Because developers hate using telephones, reducing
initiation friction is really important. One team I had at Google was split
between Seattle and Mountain View. We bought small, dedicated video-
conference units for each team so that we could quickly call the other team
in for daily standups or random design discussions. This worked really
well. You can do the same thing through Google+’s Hangouts With Extras.

try very hard not to outSource deSign

or pM roleS

It’s possible to make outsourced design work well, but you are leaving
huge value behind on the table. A great designer will fix a multitude of
problems you didn’t even know you had, and can do this best when he
or she has full visibility into everything you’re doing. You can find more
information on how to work with designers in Chapter 3. Do everything
you can to hire someone internally and outsource only visual design.

Similar to designers, product, program, and project managers benefit
hugely from being immersed in the team. For example, they may overhear
snippets of conversations that expose miscommunication. They discover
areas where engineering teams are blocked. They repeat your mission
and strategy so that the team stays aligned. They build personal relation-
ships with the engineering team that enable engineers to feel comfortable

130 | the Shipping greatneSS SkillS

making task-size estimates. For these reasons and many more, I can’t
imagine outsourcing a product, program, or project manager role.

appreciate cultural differenceS

I went through an eye-opening personal performance review cycle once.
I worked closely with a female engineer who did fantastic work. We’ll call
her Sarah so you can’t track her down. Sarah showed strong leadership
and wrote great code, and I thought she had wonderful ideas and we made
great product progress. I was a huge supporter of her promotion case. You
know how this is going to end, right?

Sarah’s engineering director and I sat down one day, and he told me I
had a problem. Sarah didn’t feel like I was listening to her. I was stunned.
And this very smart Chinese-American engineering director explained
something to me. He said, to paraphrase, “You should take into account
two things: Sarah’s a woman, and she’s a Chinese-American woman. She
has a lot of experience not being heard and not being able to speak up. And
you’re a 6'4" white guy who talks really loud.”

Cultural differences are fascinating. I certainly shouldn’t treat or eval-
uate Sarah any differently because of her race or gender—that would be
dumb, evil, and illegal. But in a parallel situation, where I’m working with
a big white guy from Romania who has a weaker grasp of English than he
has of C++, I might well choose not to use all my Ivy League words. That’s
just good sense, and it might make sense to adjust the way I communicate
for the unique audience that Sarah represents.

This is only one example of a cultural difference. I could go on and on.
For example, I’ve seen teams in Zurich be far more concerned, compared
to US teams, about getting to a “right” solution than getting a prototype
built. My local team in Seattle found this infuriating. But when the Seattle
team understood that this was the Zurich team’s approach and it would
be OK in the long run, it helped us give the Swiss the space they needed.

You do not need to understand how each and every culture uniquely
works, but rather to recognize that teams on the East Coast of the US are
going to behave differently than teams on the West Coast, and teams on
the West Coast are going to behave differently than teams in the UK. You
must actively work to understand where you may have differences and
then compensate. You can start understanding these differences by over-
communicating and looking for patterns in reactions.

D
ow

n
lo

a
d
 f
ro

m
 W

o
w

!
e
B
o
o
k

<
w

w
w

.w
o
w

e
b
o
o
k.

co
m

>

 how to Build a Shipping-ready teaM | 131

Build clear reQuireMentS

New teams have some similarities regardless of where they are located.
One such similarity is that they don’t really know what they’re supposed to
do or why they’re supposed to do it. Remote teams are the worst, though,
because they don’t have you sitting in the middle of their office answering
offhand questions, repeating your mission to investors on the phone 10
times per day, and harassing your development lead about how critical
your next deadline is. Since you’re not there, you need to provide a “virtual
you” in the form of bulletproof requirements. If you do a good job with the
product requirements document described in Chapter 2, you’ll be in good
shape. While great requirements are critical for all teams, they are even
more necessary for remote teams.

Suck up the tiMe difference

A 12-hour time difference stinks, but there’s nothing you can do about it.
You have to absorb it in some way, because you need to have status meet-
ings and one-on-ones, and sometimes you just need to take a half-hour of
your life to listen to someone talk about his or her life. That half-hour isn’t
for you, it’s for the other person, and it can be a bummer when you’d rather
be watching The Daily Show.

I’ve only come up with two ways to cope with this problem:

•	 Get a TiVo.
•	 Work early mornings or late evenings, but don’t work both. Whichever

works better for you, set up your meetings to always happen at the
beginning or end of your day.

That’s all I have. You just have to suck it up. Communication and face
time are important, and it’s easy to skip them when the timing is hard, so
pay attention to how you spend your time and invest in your remote teams.

eStaBliSh great leadS

You may try to be everywhere at once, but you are only going to end up
being at a few places, and you’ll probably be there late. Being a little ball of
stress doesn’t help anyone, and the scotch you’re drinking to mellow out
isn’t good for your liver. You need lieutenants in your remote locations. If
you can, ship one of your best leads from your home office over to the new
team for a month or so. Sending a great technical leader to embed with the
team is a great way of transplanting culture and process, which is why I
recommend it for acquired teams.

132 | the Shipping greatneSS SkillS

Establishing a local lead will eliminate at least a couple of late-night
meetings for you, because that local lead will meet one-on-one with your
home office engineering lead. Not only do these meetings help reduce the
volume of technical conversations you participate in and increase space
for cultural conversation, but they can also help reduce the time required
to discover a crisis. For example, if you meet with the remote office on
Monday, and your home office engineering lead meets on Thursday, your
home office engineering lead may discover the crisis two whole developer
days faster than you would have, because your meeting wasn’t scheduled
until Monday.

travel a lot or not at all

If you talk to frequent travelers, you’ll learn that if you travel every other
week, it gets easier. Traveling is still rotten, but it’s better, because you fly
better classes, your bags stay packed, and your mileage status gets you
through security faster. You stay at the same hotel consistently, and as a
result you lose things less frequently. You learn how to eat well on the road
and have a harder time avoiding the gym in the hotel.

The other simple travel trick is the one-day turnaround. I know it
sounds crazy—go out and come back the same day—but it has great
benefits for flights shorter than three hours. You sleep in your own bed.
You don’t change clothes. You catch up on email on the plane. Ultimately,
you’ll find something that works, but if you can convince yourself to get up
crazy-early, you may find you like it more than you like hotel room coffee.

Traveling a significant distance every month or two just stinks. You
would think that it’s less frequent and therefore better, but in many ways
it’s worse.

drink with the reMote teaM

I once spent some time in Korea pitching a major consumer electronics
company on an opportunity to build some service-specific hardware. My
business development colleague, Jake, and I went out to dinner with their
biz guy and their engineering guy, who told us a fascinating story.

Many Koreans drink this vodka-like alcohol called soju. I did my best
to like it, and anyway, I was sufficiently jet-lagged that I lacked the judg-
ment to not drink it. The engineering guy proceeded to tell us that in
Korea, many engineers have strong feelings but feel that they can’t express
them in the workplace. In fact, the reason why the Korean engineers enjoy

 how to Build a Shipping-ready teaM | 133

the soju so much is that they can go out with their coworkers after work,
drink this stuff, and say what’s really on their minds.

The lesson here is that, in addition to respecting cultural differences,
you should understand that different environments can expose different
truths. Bars and restaurants are two of them (two of the best, if you ask
me) and are enabled by alcohol.

It’s important to note that you don’t need to be a big drinker to have
beer help you. While there may be some international protocol around
business drinking, your engineering team is probably happy to drink
around a teetotaler. They really want you to let them drink and tell you
want they want. Oh, and they want you to pick up the tab, too.

how to join a new team
Regardless of whether you have built a new team or were dropped from a
high altitude into a train wreck to sort things out, you’re going to need to
do two critical things: figure out what role you should play, and make the
right first moves.

It’s critical that you figure out what your ideal role on this specific
team should be. Some engineering teams don’t want any project manage-
ment—in which case, you need to figure out how to do as little as possible
but still track your project. Some engineering teams want you to focus on
marketing, while others will invite you into technical discussions and will
welcome your input if you’re sufficiently deep technically.

To figure out what your role on the team should be, you must be sensi-
tive to what the team needs. You can check the pulse of the team through
one-on-one weekly meetings with the team’s other leaders. Build relation-
ships by meeting monthly one-on-one with each engineer on your team
just to touch base. It’s also important to drive transparency into all your
processes so you build trust. These actions will enable you to focus on
doing things that only you can do and being a great servant to your team.
They are also investments that will pay off during the challenging sprint
to the finish.

There is one unique hiccup you might encounter at this point. It’s
happened to me only once, but it was painful. You may figure out what
the team needs and wants, but find that you’re not empowered to do what
you need to in order to ship greatness. This could be because you’re being
micromanaged, or because you’ve tried and there’s strong resistance to
change, or a host of other reasons. Some of these problems are solvable,

134 | the Shipping greatneSS SkillS

like teams being resistant to change. Others, like having leaders marginal-
ize the job you believe needs to be done, are less solvable. When you hit a
situation like this, you might consider joining a different team.

If you plan to stay on the team now that you have a sense of what
to focus on, and you’ve gathered a little information about the team, its
project, and its problems, you’ve probably discovered that the product,
program, or project is a mess. Half of the time, all three look like zombie
leftovers. It doesn’t matter how good the engineering team is, most proj-
ects look like a disaster when you show up.

If, for some bizarre reason, you show up and everything looks clean
and happy, check again, and then start saving your pennies so you can buy
your options. But you’re probably like most of us. You’ve got a mess on your
hands, and you need to do two important things right away.

First, don’t tell the team that the product is a mess! They probably
don’t think the situation is a mess and won’t take kindly to you calling it
out. Trust me on this—you don’t want to learn this lesson the hard way.
Remember that they’ve been working on this longer than you, and that
there are many reasons why the product is a mess. The odds are pretty
good that the engineers on the team are reasonably smart, so there’s a
good chance that there’s a leadership problem. More often than not, the
leadership problem is a lack of leadership, which is why it’s good that you
joined the team. When there is a leadership problem, escalate.

I’m a pretty straightforward guy, so early in my career I embraced the
notion of “speaking truth to power.” This led me to cheerfully and directly
point out the problems I saw in some teams. Even when I did this pointing
as delicately as I could (which is not very delicately, unfortunately), it was
not well received. I was an outsider and I clearly didn’t understand that
“we do things differently on <foo>; you need to spend more time ramping
up.” In some circumstances, like when I drilled into the work of a group
of designers on Google Maps, I caused real turmoil and pain. I’ve learned
that in most circumstances it’s best to work from the inside out whenever
possible, so don’t tell the team that the product is a mess.

The second thing you must do upon discovering a mess is make a
choice: you can slip your date and fix the mess, or you can suck it up and
ship. The best time to slip your ship date is right when you join the team.
Because you are new, you’re not responsible for the slip; you’re just point-
ing out that the team’s not going to make the date. If you make your case
with objective data like bug counts, engineering estimates, and vacation
schedules, you can have a dispassionate conversation about the ship date.

 how to Build a Shipping-ready teaM | 135

On the other hand, sometimes you’ve been brought in to ship at all
costs, and that’s what you must do. Freshness and improvements matter
to users, so this makes some sense. Make sure that you don’t have massive
privacy or security bugs, and then force the software out the door. Fix the
team and process problems when you can build on the success of having
shipped. Sack the lame-o’s later when you have the time to work them
through a reasonable PIP (performance improvement plan) process and
give them a chance.

In my experience, there are five major types of teams you will join.
In each situation there’s a best way to react. Table 8-1 shows how you can
identify the teams by what they say and suggests good responses you can
give.

Table 8-1. Team types and reactions

what they say what you say

Shiny Ball! Let’s build 100
features!

How about V2? Let’s focus on a single story
for V1.

We’ve been screwed 100
times, you’re 101.

I know things are rough. Let’s craft a really
short-term plan that we all believe in and sell it,
and go from there.

We know what we’re doing.
Why are you here?

I’m here to do some business stuff and help you
manage up. We’ll figure out other things over
time (and then work through the leads to drive
change).

Well, our boss didn’t tell us
about this.

Let’s all get together with the boss and get on
the same page.

We’re having a good time.
We made these fun demos!

Sounds good. (…and go talk to senior manage-
ment. There’s no point in asking a team that’s
happily playing catch to win the World Series
unless that’s actually the stated goal.)

Thank God you’re here. You’re welcome. What did the last person do
that helped you so much?

 137

| 9

How to Build Great,
Shippable Technology

If you want to ship a great product quickly, you must be able to ask in-
sightful questions, provide good directional guidance, and make smart
technical decisions about what you must build now and what you can build
later. You must also be able to evaluate and hire engineering managers.
Therefore, you must understand your technology at least as well as you
understand the oil in your car. You know the oil doesn’t make the car go,
but you also know that you had better keep it filled up or your Dodge Dart
will become an oversized doorstop. That’s all you really need to know to
get home.

While you need to be technical enough to address these issues, I be-
lieve you don’t need a computer science degree to achieve shipping great-
ness. You can achieve shipping greatness if you understand the systems
approach I take in this chapter. In fact, I’m convinced that if you under-
stand these things, you can coast gracefully through the technical part
of a lead-level interview at Google, Amazon, or Microsoft. If you want to
ace an interview or gracefully handle a product development process, you
need to know the four S’s: servers, services, speed, and scaling. Once you
understand these four basic elements, you’ll be able to ask your team the
right questions.

the First S: Servers
Don’t buy servers if you can help it. First, you’ll have to learn a lot about
servers, and anything you learn will be obsolete in six months, which is
frustrating and inefficient. Second, you’ll have to do tons of maintenance,
like applying service packs, installing upgrades, and performing other
tedious chores. What’s even more frustrating about specifying and main-
taining your own servers is that your engineering team will frequently
have to do the work. It’s not what they’re best at, because they’ve learned
the same lesson I just gave you: anything they learn about servers is

138 | the Shipping greatneSS SkillS

obsolete in six months, so the good engineers try to learn how to avoid
maintenance chores.

Save yourself a headache and the bottle of scotch you’ll inevitably
have to buy a surly dev to make up for the late-night trip to the network
operations center—use a hosted solution. Use Amazon’s EC2 or Google’s
AppEngine or a similar service. You’ll give up a lot of control you didn’t
want anyway, and you’ll save yourself a lot of pain.

If you must have your own systems for some strange reason, then
lease them through a provider. Don’t worry about where the provider is
located. Instead, worry about whether you can get someone technical on
the phone when the virtual IP goes haywire. How will you know if the vir-
tual IP has gone haywire, since you didn’t complete that PhD in CS? The
properly selected provider will have a proper engineer on staff. If it doesn’t,
it’s your fault—you picked the wrong vendor. Always check references (see
Chapter 8 on how to build a team for more on this).

Your systems will typically have a three-tier architecture, as shown
in Figure 9-1. This architecture may sound complicated, but it is actually
dirt simple.

Figure 9-1. A simple, three-tier architecture

The data layer is typically a database where your data lives—things
like customer records and so forth. You’ll retrieve the data using some
kind of syntax that is similar to SQL (Structured Query Language). If
you’ve ever used Microsoft Access at a moderately advanced level, you’ve
encountered SQL.

The business logic is the brains of your operation. It’s where all the
tricky calculations happen and where the IF {Charlie said no;} THEN
{kill Charlie;} type statements go. Your engineers will build this in
Java or C++ or something similar.

 how to Build great, ShippaBle technology | 139

The presentation layer is generally HTML and JavaScript. It formats
the output of your business logic so the data looks pretty. JavaScript allows
users to interact in real time.

AJAX (Asynchronous JavaScript and XML) is nothing more than al-
lowing JavaScript to submit mini-page requests to your business logic,
rather than requiring the user to submit a whole form. Instead of the
server returning HTML and JavaScript, it returns just a tiny bit of data in
the form of XML. So AJAX has nothing to do with a three-tier architecture.

It is possible to flatten this three-tier architecture into two tiers and
allow your engineering team to write one file that contains both business
logic and presentation logic. Shudder to think. Some frameworks will even
hook up with databases in such a way that the database can return XML
that can be used directly by frontend JavaScript! These and other great
time savers are lovely initially but will haunt you for years after, just like
that bad job you did on the grout in the shower. They’re great for internal
projects but will probably not survive the sale of your business.

the Second S: Services
A service-oriented architecture (SOA) doesn’t have much to do with a three-
tier architecture—but you had better believe you want one! An SOA breaks
down the middle tier that contains your business logic into a collection of
independent services. These services may run on the same server, but they
are built, versioned, and run independently. Figure 9-2 shows an example
SOA.

Figure 9-2. A system architecture organized around services

140 | the Shipping greatneSS SkillS

In the SOA shown in Figure 9-2, your engineering team will put the
system that figures out Charlie’s response into the answer service. The
logic for deciding what to do with Charlie’s answer lives in the decider
service.

These services are connected through application programming inter-

faces (APIs). While not identical, for your purposes these are the same as
remote procedure calls (RPCs). So don’t let anyone fool you: APIs and RPCs
enable a service to talk to another service. The decider asks the answer
service, “What’s Charlie’s answer?” though an API. That API might look
like this:

whatIsTheAnswer(Charlie)

The answer service returns an answer to the decider, which can
choose what to do with Charlie. These are the kinds of APIs you want to
write into your product requirements document. The boundaries of which
bits of your system should be in which service aren’t particularly impor-
tant. In fact, you can even use services outside your company, like a credit
card processor to clear transactions or Amazon’s S3 to store data. What is
important is that your system is fast and scalable.

If you want a fast system, avoid service chaining at all costs. I know
you’d just convinced yourself that services were going to save the world
(Amazon certainly did when I was there!), but look at the SOA in Figure 9-3.

Figure 9-3. An SOA with service chaining

In Figure 9-3, we’ve decided to outsource some of our answers, the
ones we really care about, to a new Magic 8 Ball service. Since you’re
so passionate about speed and believe that users will leave if you don’t

 how to Build great, ShippaBle technology | 141

provide a response to the user in two seconds or less, you’ve convinced
the engineering team to meet a two-second 99.9% service-level agreement
(SLA). Your SLA means that only one out of a thousand responses takes
more than two seconds. That’s pretty good, right?

It would be fine if performance were dependent only on the Magic 8
Ball service. Unfortunately, the decider depends on the answer service,
which also has a two-second SLA. Therefore, some users are going to have
to wait up to six seconds to get a response, because they have to wait for
each service in the chain to return a result. What’s worse, most of these
systems deliver responses in a normal distribution, meaning you’re prob-
ably looking at an average response time of nearly two seconds to the
user—on average, not at the peak. Never chain services if you can help it.
Look for alternatives.

drawBackS to Service-oriented architectureS (Soas)

Steve Yegge, a staff software engineer at Google and a former senior engi-
neer at Amazon, wrote a terrific rant about why Amazon’s internal SOA is
profoundly better than Google’s collection of more disorganized systems.
He points out a few things to pay attention to:

•	 When you have a lot of services and the customer sees a problem, you
may have to trace the customer-facing problem through many services
before you find the one service that’s responsible. Good monitoring
can help mitigate this problem.

•	 Interteam dependencies become more of an issue, and if a team fails
to tell you that they’re changing their API, they can easily break your
system. Each team must therefore maintain backward compatibility
and communicate to consumers proactively, which is hard.

•	 It’s hard to build a great sandbox, or testing environment, because
every one of your systems must exist in that sandbox so that you don’t
pollute production systems with garbage data. Even if you do have
every one of your systems in a sandbox, establishing data consistency
(e.g., order and shipping information are consistent between the or-
dering service and shipping service) is hard when sandboxed systems
continually delete their data.

In spite of this, Steve and I believe that a service-oriented approach
is the right approach to follow if you want scalability, extensibility, and
general goodness.

142 | the Shipping greatneSS SkillS

the third S: Speed
We have established that service chaining decreases speed and that service-
oriented architectures are nice. So why not just have your two services
connect at the presentation layer, the top tier of a three-tier architecture, as
shown in Figure 9-4?

Figure 9-4. Connecting services in the presentation layer

You can do this, but it’s not generally a good idea. Asking JavaScript
to perform multiple requests is what AJAX is good at, and the worst-case
latency in this scenario is two seconds 99.9% of the time. Unfortunately,
APIs that are expected in JavaScript tend to be weak in the real world.
What’s more, you end up with a lot of different dependencies all reflected in
a myriad of JavaScript files, and such a system can be difficult to manage.

One way to work around these complexity-management challenges is
to load independent parts of your application separately. Put another way,
if you have two disjoint features, you can make them completely separate
parts of the software, such that the JavaScript files are independent, they
can load in parallel, and they can be revised in parallel. The independence
of the files and services will help you scale and modify your services
quickly. The difference between this approach and the approach where
your JavaScript loads everything all at once is encapsulation. You want to
encapsulate whole functions together so they can work independently.

Caching is another way to solve the service-chaining speed problem.
A cache is a copy of a data source. You can have a cache of web pages,
a cache of XML, or a cache of a hard disk. You can have a cache of just
about anything. Content delivery networks like Akamai are simply caches.

 how to Build great, ShippaBle technology | 143

Caches have some interesting and valuable properties that you can exploit
to increase your system’s speed.

A cache may or may not have a copy of all of the data from its back-
ing store. A system that has all of its data in a cache is considered “cache
complete” and has wonderful resiliency properties, because if that backing
data store (i.e., a relational database) fails, you can still read your data from
the cache.

Cache completeness is nice, but sometimes you want a partial cache.
For example, if 90% of your requests are for 10% of your data, you can
deploy 100 tiny caches with only that 10% of your data, and you’ll get
performance comparable to having 100 servers 90% of the time. You’ll
get this performance increase at a tiny fraction of the cost of full servers
because caches have very tiny brains. When your service needs something
that’s not in the cache, it’s called a “cache miss”; a good caching scheme
will “read through” to the backing store and deliver a value, albeit more
slowly than a cache hit will. A bad caching scheme will give you nothing.
That’s why it’s bad.

A smart caching strategy not only reads through to the backing store,
but also stores the retrieved value in the cache. This method will either
help keep the cache complete or at least keep a count of requests so that the
correct 10% of your data lives in the cache. An even simpler approach is to
enable the read-through cache to store the value that it retrieved and eject
the least recently used cache entry to make space for the new value. Caches
designed in this way perform well for content sites like blogs, where new
content gets the majority of hits and older content gets less and less traffic
over time.

Caches take time to update. When a value in your data store changes,
it must be written to the backing store and then the backing store must
update all of the caches. In some badly designed environments, this can
lead to cache inconsistency, in which a user sees two different values for
the same thing. If you can establish stickiness between a user and a cache,
then you can implement a write-through cache, in which the value is writ-
ten first to the cache and then to the backing store.

Caches are either filled up by reading through or by “warming” them.
Empty read-through caches produce very bad performance the first time
a given value is requested; if you don’t want to tolerate this, you need to
prefill the cache with your data, which is sometimes called “warming” the
cache. You’ll have to write additional software to do this.

D
ow

n
lo

a
d
 f
ro

m
 W

o
w

!
e
B
o
o
k

<
w

w
w

.w
o
w

e
b
o
o
k.

co
m

>

144 | the Shipping greatneSS SkillS

This is just a cursory explanation of caching, and the good news is
that you don’t need to know everything about caching to know that it is
very important. You now know enough to ask your engineering team intel-
ligent questions about your caching scheme. Or at least you know enough
to be suspicious when you find out that you don’t have one.

the Fourth S: Scaling
Sometimes caches are not sufficient, however. Sometimes you acquire
more users and need your systems to do more than just retrieve additional
data—they need to do more thinking. That means you need to provision
more servers. One of the great things about third-party hosted services
like Amazon’s S3 or Google’s AppEngine is that they solve many of these
problems for you. If you aren’t building on these systems, read on.

Before you can scale by adding more servers, you need to understand
that your servers look like one server to the user because they’ll be behind
a virtual IP, or VIP. A VIP allows you to present a single Internet address
for all the servers you own. VIP addresses are managed by a tricky piece
of hardware that allocates each user to a free server and keeps them stuck
there. You can buy or lease VIP hardware. They’re really, really expen-
sive—you just have to pay. Or, you could follow my previous advice and
use a fully hosted stack and avoid this complexity entirely. Now that you
can scale by adding more servers, you’re going to eventually hear about
systems that scale “linearly” or “horizontally.” Really geeky dudes may say
“constant time” or “N.” These all mean the same thing (save for “constant
time,” which means “I’m smarter than you”): you can add more capacity by
adding more servers, and each additional server gives you nearly one full
server of additional capacity. In many systems you’ll still hit bottlenecks,
such as at the VIP—it will only be able to handle so many connections
before you have to add a second VIP. One of the nice aspects of service-
oriented architectures is that you can scale each service independently, so
if the decider service takes more horsepower and the answerer takes more
disk space, you can allocate the correct types of hardware and scale them
appropriately.

For such a design to work properly, data must be stored so that you
can easily spread it across an increasing number of servers. Creating an
algorithm to do this can be tricky. Take people’s names, for example. You
could arrange people’s names across 26 servers, one for each letter of the
alphabet. This scheme fails because users looking up “Smith” will con-
stantly hammer the S server, and the X, Y, and Z servers will be sitting

 how to Build great, ShippaBle technology | 145

around wasting space. Luckily, there are less naïve approaches, and you
need to make sure that your engineering team is following one of them.
One slightly less painful approach is to create a monotonically increasing
customer ID for each user and store the data according to customer ID.
This allows you to add servers as you add customers.

There are, of course, many ways of storing data on multiple servers
so that you scale better. Take your database, for example. Systems that are
backed by a single database don’t scale horizontally, because they assume
that all data exists in a single place, rather than being distributed across
multiple servers. Therefore, if you need to scale, you need to buy a bigger
server to replace your previous server, which means writing a big check
to Oracle and raising your credit limit with Dell. If you have systems like
this, you may reach the point where you have more data than you have
memory, and results can no longer be cached. Things slow down quickly
at this point. Such a system could be said to scale exponentially, or “badly”
if it happens to you.

If you’re in this pickle, you might want to look at a database technology
like NoSQL, which refers to a class of database systems where the data is
inherently well distributed across servers. However, because you didn’t
design the whole storage infrastructure, you can’t really define where the
data will live or where queries will go. This means that when the data in
the database changes, the changes must propagate through the servers,
and if you make two queries during this propagation interval you might
get inconsistent results. Or, put another way, if you update your system
to say I owe you five bucks, you might see that I owe you five bucks and I
might see that I owe you nothing. This is not good, but what is good is that
the results came back quickly and eventually the propagation phase will
end. We call this eventual consistency. Eventual consistency is probably just
fine for things like changes to your résumé, but it’s probably not OK for
recording bets in a poker game.

You can also work around some kinds of performance bottlenecks
by building indexes. Indexes help you find the data you need quickly by
representing your data in a way that differs from the way it is stored. For
example, let’s say a user wants to search for “Roger Smith” quickly, but
your data is organized on your servers according to customer ID. Without
an index, you have to inspect each and every record, which is wildly inef-
ficient. This is referred to as a table scan, and if you have these you should
start looking to hire a new engineering lead. With an index, you have a list
of users sorted by their names, and you can skip right to “Roger Smith”

146 | the Shipping greatneSS SkillS

and find his information. Indexes are not free because you must store
them and you must update them, but they’re worth the cost for common
operations.

how to ask the right technical Questions
A few pages on architectures does not a CS degree make. Do not attempt
to design a system with only the explanations in this book because you will
hurt yourself and others. However, you now know enough to ask your en-
gineering team some important questions and understand most of their
answers. The parts you didn’t understand were probably Star Wars refer-
ences. You have to ask some of these questions because they will expose
potential problems and help your team think through their design. You
might believe that your team already thought through the design, consid-
ering that they refer to it as a “design.” You’d be surprised. Here are some
questions you can ask:

Can you please draw me a systems diagram?

Your goal is to understand what all the boxes in this systems diagram
do. Start with the box closest to the customer and ask what data lives
on it, what it does, and what data is sent to and from it. Work your way
through all the boxes until you understand what they do. Look for
the things we discussed in this chapter, like service isolation, service
chaining, indexes, and scaling.

What’s the latency for results to be delivered from this box to that box?

You should be able to go through the diagram and identify instances
of service chaining, question the necessity for that design, and un-
derstand what the total response time will be, worst case. If you find
a place in the diagram where the latency of a response is really slow,
ask how you can improve that by caching, scaling that service horizon-
tally, or separating out some of its logic into other services.

Will this scale for N?

Since you’re reading this book, it’s safe to assume that you’ll be wildly
successful and therefore the N to which you must scale is a Very Large
Number. Ask about what happens when you make this number very
large. By “very large,” I mean 10,000 requests per second, or 100

 how to Build great, ShippaBle technology | 147

million customer records, or 1 million orders per day. What will your
engineering team need to do? Can they just add more of box A, or will
they need to call Oracle and have the bosses write a painful check?

What happens if I remove box B?

Part of understanding your system is understanding how it will fail
and (hopefully) recover. Make sure you understand which parts of
the system can create catastrophic failures, and help the engineering
team prioritize investments in the stability of those parts.

Are we architected around organizational boundaries or systems boundaries?

Sometimes you’ll find that your SOA reflects the way your company is
run, rather than the way your data or application is structured. Since
your company’s organizational structure was not designed to respect
Moore’s Law, avoid such designs.1 Some teams have a hard time work-
ing together and build redundant or dysfunctional systems; check for
this and work against it.

What can we cache to improve performance?

We spent a lot of time on caches because they are important. They
increase performance, increase robustness, and decrease operational
costs. Identify static data and common lookups and discuss caching
them. Don’t forget to ask about cache completeness.

What can be loaded independently to improve performance?

Just as we discussed having the answer service and the decider service
return results independently, you too should ask if there are parts of
the system that can be decoupled. For example, if you can load the
advertising separately, such that those systems can function fully in-
dependently, you’ll have a much more resilient system, and users will
be able to complete their primary task even if the advertising system
is broken.

1 http://en.wikipedia.org/wiki/Moore%27s_law

 149

| 10

How to Be a Great
Shipping Communicator

If you are trying to ship software, you almost certainly have a ton of
information to disseminate, statuses to gather, checkups to perform,
and other details to sweat. You’re going to need to send a lot of email and
run a lot of meetings. That’s the bad news, but it’s why they pay you. The
good news is that it’s not hard to be great at either one, if you have a little
technique.

One key technique is to take as few meetings as possible but no fewer.
In many cases, you can avoid the meeting entirely by writing great email.
So let’s start there, because it’s constantly amazing to me how the VPs at
Google and Amazon are great at email, while their less experienced team
leads are terrible at it. At the very least, you can consider yourself prepared
to be a VP at the end of this chapter.

how to Write great email
Einstein said, “If you can’t say something simply, you don’t really under-
stand it.” The first thing I do when I get a page-long email to a simple
question is archive it, because I’ve learned that the sender doesn’t under-
stand the answer he or she is delivering or has not yet found the right
question to ask. The long email syndrome is so pervasive that engineers
have developed shorthand for it, replying to these messages: “tl;dr,” mean-
ing “too long; didn’t read.” And if you think anyone can send good email,
think again. Kim Rachmeler, the first program manager Amazon hired
and former Amazon VP, once singled out a program manager to her team
saying, “Her emails were the very embodiment of crispness.” This was
high praise from one of Amazon’s greats. Amazon now requires all people-
manager candidates to submit a writing sample as part of the interview
process. It’s that important.

150 | the Shipping greatneSS SkillS

If the search for praise from your betters or the promise of a gen-
erous salary weren’t enough, consider that as a great leader you need to
constantly deliver clear, specific messages to your team so that they know
where they’re going and stay aligned with your mission. You must also
manage up, which means communicating nuanced details about deci-
sions or progress to people who are even busier and have more email than
you do. Writing great email is critical to your success.

Your primary goal in email should be to deliver a single message
clearly and succinctly. Within Amazon, people use the word “crisp” a lot
to define what a clear and succinct message is. See, Amazon is trying
to optimize from two words (clear, succinct) down into one—talk about
practicing what you preach! Within Google, however, crisp messages don’t
play quite so well with individual contributors because the culture is a bit
more passive aggressive. More on adjusting to your audience in a moment.
You should initially craft email so that it is short, specific, backed up, and
delivers a single message clearly. I try to achieve these goals by writing
email like a journalist.

write eMail like a journaliSt

Good journalists start their articles with the most important thing they
have to say. A Wall Street Journal reporter might write, “The economy still
stinks,” but you are more likely to start your email with “We’re not going
to make our date.” Follow with the “why” of your statement in the clearest
way possible. For example, “because two of our dependencies didn’t come
in on time.” Poorly written email is organized the other way, with excuses
and defense up front so the poor reader has no idea for what you’re apolo-
gizing. For example, the Bad Writer writes:

It turns out that the name lookup service isn’t going to be ready until the

14th. On top of that, two members of our team (Charlie & Sasha) both

came down with the flu, so we lost two weeks of productivity. Given these

setbacks, which were not our fault, it’s unlikely we can make our date.

On the other hand, the Great Writer writes:

Tom and Jerry,

We must increase the launch date by two weeks, from 8/7 to 8/21. We

have to do this because:

 how to Be a great Shipping coMMunicator | 151

• We’re behind on development due to illness on the engineering

team.

• The Name Lookup Service that we depend on won’t be ready until

8/14.

Best,

Chris

In the Bad Writer’s email, the writer “buried the lede,” which is
so common that there’s a journalistic nickname for it. A good journal-
ist would never do this without being horribly embarrassed. In the Bad
Writer’s case, it would be easy for the reader to read that first line and say,
“Oh, the date is moved to the 14th.” But the date did not move to the 14th;
rather, the date is actually two weeks out, since the team lost two weeks.

The Great Writer didn’t commit these crimes. The Great Writer also
took an additional 20 seconds to add a greeting and a salutation, which
helps direct the message to the correct audience (especially when there are
people on the cc line), and the salutation may help reduce potential venom.
I don’t have any evidence that supports my theory about the salutation, but
it can’t hurt, right? The salutation also saves readers from having to scroll
their iPhones back up to the top of the message to figure out who sent it.

Best of all, the Great Writer used the Great Delta Convention. I love
this writer!

uSe the great delta convention

The Great Delta Convention is a technique you can use to make numbers
more easily understandable to people who are reading too quickly. If you
want to use the Great Delta Convention, simply format your numbers as
follows:

{increase/decrease} Foo by {amount} from {start value} to {end value}

This format lets readers know what’s happening—Foo is going to
be increased or decreased. And by how much? The amount. But what was
it before? You’ve got that in the start value. And if the reader really just
cares about what the final ship date is? It’s easy to skip ahead to the end

value. Notice that the Good Writer’s update is formatted by the Great Delta
Convention:

We must increase the launch date by two weeks, from 8/7 to 8/21.

152 | the Shipping greatneSS SkillS

If you want to try for bonus points, make these changes time based
by adding the start time, end time, and overall duration to your goal. Your
new formula is therefore:

{increase/decrease} Foo by {amount} from {start value} to {end value}

over {period} starting {start time} and ending by {end time}

When you use this format, anyone can quickly see what you’re doing,
how much impact you’re going to have, how long it’s going to take, when
you’re going to start, and when to check back in with you to see if you’re
done. You accomplished all of these things in just one sentence with no
ambiguity. The Great Delta Convention is a powerful tool that can greatly
increase clarity. It is also strangely difficult to adopt, so don’t feel bad if it
seems uncomfortable at first. It’s a powerful and simple technique, so it’s
worth the effort.

punctuate your eMail with BulletS aS reaSonS

The Great Writer made this email much easier to scan by visually encap-
sulating his or her rationale into a single block of bullets. Your team might
want to read all the bullets, but if your VP trusts you, she’ll skip them and
read only the first line of your email. Luckily, you are now a Great Writer,
and you wrote a good first line that delivered the most important informa-
tion first.

If you can’t write your rationale as bullets because you don’t know
the reasons behind your key message, you have a deeper problem. Your
best bet is not to send the email, as there’s no surer way of looking like
an idiot than slipping your date and not knowing why you have to do so.
If you must provide an update of some kind, then get out in front of your
unfortunate lack of knowledge and don’t make guesses. Fall on your sword
and promise a date by which you will have the reasons.

By the way: the line spacing of the bullets in the Great Writer’s email
is meaningful. The proper use of whitespace can help you clearly identify
the important, or different, parts of your email.

Stop writing now, BecauSe you’re done

Your email is done at this point. Maybe you could add a bit more data
about your reasons. Maybe you want to add in a link to a dashboard or
project plan to show off how really with it you are. You really don’t need to
do so, because a busy exec can consume this simple email on his or her

 how to Be a great Shipping coMMunicator | 153

BlackBerry and move on. That was your goal, so stop writing now and
move on to your next task.

try SuggeStionS inStead of QueStionS

When you’re new on the job, a lot of the email you send will be full of ques-
tions, such as: “Why is the Save button red?”, “Why have we established a
launch date before establishing estimates?”, and “Why are we investing in
chewing gum?”

These are not actually questions, although the punctuation would
have you think so. Rather, they are messages that are heard as “You guys
are design idiots,” “Do you know anything at all about project manage-
ment?”, and “Chewing gum?!??”, respectively. What’s worse is that in most
places as you start asking these questions, you’ll get mixed signals from
your team. You’ll hear things like, “These are great questions, just ask
them differently…” and “People are getting confused by these questions
you’re asking.”

Asking, “Why have we established a launch date before establishing
estimates?” is a biased, or leading, question. It asserts the point of view
that to establish a launch date before figuring out how much work you
have to do is crazy. Of course it is! But for all you know, there might be
a contractual deadline or another forcing function driving that date, so
at the very least try to prune the bias out of your questions. There’s only
upside for you if you do.

What’s bizarre about this human dynamic around questions is that
sometimes (but not always), suggestions are more acceptable than ques-
tions. Suggestions allow the other party to be critical of you, whereas ques-
tions are directed at the other party and can exacerbate a defensive posture.
Perhaps this is evident in the analysis, but it was not obvious to me and it
won’t be obvious from the feedback you get. So as an experiment, try these
Question Suggestions™!

•	 Can we make the Save button blue?
•	 Is the launch date negotiable?
•	 Can I try the chewing gum?

These suggestions might irritate you or me more than the initial set
of direct questions, but you’ll probably find that they are easier for you to
ask a new team.

154 | the Shipping greatneSS SkillS

reMeMBer your audience

Sensitivity is painful but necessary in some situations. And when you’re
a senior leader writing to troops on the front lines, you’re going to need
to use more of your words. Personally, I care so much about writing crisp
email that I frequently deliver blunt decisions and rationale to the indi-
vidual contributors on the team, and sometimes they don’t take it kindly.
You know the kind of employee who reacts this way.

I chalk these communication failures up to forgetting my audience.
With sensitive groups—such as those who’ve spent a year working on the
product you’re about to kill—it’s best not to say things like:

Underling,

You’re fired. This decision was part of our goal to decrease staffing by

10% from 100 to 90 employees. We selected you because:

• We hate that shirt you wear—you know, the one with the dancing

tofu blobs.

• Your engineering manager didn’t stand up for you.

• Someone had to get the axe.

Have a nice day,

Your Boss

Such an email is not likely to be well received, even though it pretty
much follows the best practices of which I am so fond. Personally, I wish
more people would write these blunt, well-organized email messages,
because changing one’s wardrobe is much easier than tussling with the
existential angst that passive-aggressive email generates. However, you
catch more flies with honey…

Team,

We have an amazing team of 100 top-notch employees. Over the past

year, many of you—a really important 10% of you, in fact—have worked

really hard on a system we thought would be really important. Like most

things in software, changes happen quickly, and we’ve recently come to

understand that the need for the Wolfgang system has evolved, and we

need to pivot the business to better leverage our strengths. This means

that we’ll stop working on the project today. This change will mean differ-

ent things to different people, but the gist is that the team working on the

Wolfgang project will have to find other opportunities. You should reach

out to your engineering manager to discuss this 1:1 as soon as possible.

 how to Be a great Shipping coMMunicator | 155

Please feel free to email me, or your manager, directly if you have any

questions.

Chris

OK, I exaggerate—execs never pay attention to what you wear. But in
general we see this type of email all the time, regardless of company size.
I have a “really” hard time reading this soothing email and figuring out
what it actually says. But many readers prefer the long, sensitive email be-
cause it rationalizes the change, compliments folks, and puts the change
in the context of everyone. Also, it uses important buzzwords like “pivot,”
“evolved,” “quickly,” and so on.

I would like to dismiss this second, sensitive email entirely, but I can’t.
Context truly matters. If you’re a VP writing for a VP, you can send good
email. If you’re a line-level product manager or tech lead writing for your
managers, you must send good email. If you’re a senior manager or VP
writing for your troops, you must send sensitive email. If you don’t adjust
your email style to your audience, you’ll upset a lot of people at both the VP
and the individual contributor levels.

how to handle the Five types of meetings
If your email kung-fu has failed you, it’s probably time for a meeting.
Meetings can be painful, or they can be productive and even fun (yes,
you can make meetings fun!). The best way to optimize your meetings
and ensure that they have the potential to be fun is to understand the
structure, purpose, and output of each meeting. There are five types of
meetings you need to hold. They are, in no particular order:

The team meeting

This meeting collects status and discusses specific issues in depth
with the goal of resolving those issues as a team. While most of what’s
accomplished in a team meeting could theoretically be resolved over
email, it never is, so you need this meeting to do that work.

The standup

The standup is a super-brief meeting that communicates only status
and provides visibility and accountability for the team. Everyone in the
meeting stands, which helps keep the meeting brief.

156 | the Shipping greatneSS SkillS

The one-on-one (1:1)

One-on-ones are meetings between you and one other person. These
meetings are probably the most rewarding because they enable you
to have frank conversations. They also provide a focused time to ac-
complish collaborative tasks.

The product/engineering/UX review

This is a big meeting, generally with some big bosses, that provides
visibility to executives and gathers input from the most experienced
people in your organization. Teams carefully prepare for these meet-
ings because they are the most expensive in terms of coping with the
inevitable project reset if you do a bad job.

The brainstorming meeting

The most enjoyable of all meetings, the brainstorming meeting is fun
because it’s free-form, generates ideas, and also enables the team to
actively engage in a problem.

the teaM Meeting

The team meeting is a 30- to 60-minute weekly meeting with you and
your engineering team. You’ll likely run it. If you have a tech lead or senior
engineer on your team who would be willing to run the meeting, however,
by all means, go for it! The goal of this meeting is to keep the team aligned
with the mission and reach consensus on currently open issues. Publish
an agenda of topics for discussion in advance. Aligning the mission and
achieving broad consensus typically become less important as you reach
the end of the development process, which means you might be able to
cancel the meeting; a good time to think about cancelling the team meet-
ing and moving to relying exclusively on the standup is when you start
tracking your bug burndown.

When starting the team meeting, it’s always nice to review your met-
rics. You want to know how the product or development process is going.
Were there any outages or significant changes? For example, did Bob
spend all week at home with his cat, or did Sally discover a privacy problem
that had to be fixed ASAP? Aside from that, how are you doing against
your milestones? Generally, this is the point where everyone goes to his or
her laptop and updates the columns in the project tracking spreadsheet.

The first time you experience a meeting in which someone walks
through a spreadsheet and edits it out loud, you might think, “This is crazy.

 how to Be a great Shipping coMMunicator | 157

We should have done this in advance.” You’re right—that’s the optimal ap-
proach, but it’s not a realistic approach. Given the ability to do absolutely
anything else—like code reviews, writing tests, or reading xkcd.com—an
engineer will do that before updating the team spreadsheet. In the team
meeting, that same engineer is captive and can do nothing else, and the
spreadsheet gets updated. In addition, when talking through the details,
the engineer may offer commentary on why some task took more or less
time than expected. This commentary is useful to the other team mem-
bers who may not have known that your build system is twitchy and case-
sensitive. For example. Not like that would ever happen in real life.

You can also use the team meeting to check in on higher-level goals.
At the beginning of the quarter, I review the team’s quarterly goals. We
adjust the goals until everyone approves. A mid-quarter check-in helps
ensure that the team’s status goes from green to yellow to red, rather than
going from green to red, which is a good sign that you were asleep at the
wheel. At the end of the quarter, we use the team meeting to evaluate our
progress against our goals. If you follow this process, your team will stay
in control of their future, aligned with project goals, and focused on the
right things.

When you’re done with the schedule-update part of your meeting, you
may want to discuss any developments that the team needs to know about.
Important developments may include industry changes, business updates,
or other items that are relevant to your mission. Remember, it’s your job to
keep the team aligned with your mission.

The final part of the team meeting is dedicated to working through
open issues. Collect the list of issues that the team needs to discuss at the
beginning of the meeting and then work through them one by one after
the progress update part of the meeting. Take good notes, assign action
items, and follow up. After you’ve finished dealing with these issues, ask
the team if there is anything else they want to discuss. Wait seven seconds
for an answer. Seven seconds feels like a very long time to wait, but that
slightly uncomfortable silence is just enough to ensure that the most intro-
verted person on your team speaks up.

Generally, I find that even a short team meeting is better than none,
since it gives the whole team an opportunity to get together in a different
way, and it can also serve as a break. I try to hold a brief meeting to check
in with the team even if I don’t think there is anything to discuss. I am
frequently surprised by what I discover during the quiet seven seconds I
spend staring at various teammates!

D
ow

n
lo

a
d
 f
ro

m
 W

o
w

!
e
B
o
o
k

<
w

w
w

.w
o
w

e
b
o
o
k.

co
m

>

158 | the Shipping greatneSS SkillS

the Standup Meeting

Scrum and agile development advocates swear by the daily standup. The
best standups actually have everyone stand. The thinking behind a true
“standing” meeting is that it gets folks away from their computers and on
their feet, where they are less comfortable, so the meetings are forced to be
shorter. I like to use these meetings on a daily basis because they drive ac-
countability and transparency across the team. Each person should report
the following:

•	 What I did yesterday
•	 What I’m doing today
•	 If I am blocked

If you do this, the entire team will have visibility into individual perfor-
mance and the status of the project. Blocking issues will emerge quickly.
Best yet, challenges are frequently met with offers of help. For example,
when Jenny says, “I’ve been fighting with this build, I can’t get test X to
pass,” it’s not uncommon to see her fellow engineer Sean say, “Yep, that
happened to me last week. Let’s talk after the meeting; maybe I can help.”
This kind of visibility saves a lot of time in the long run.

My teams at Google and Amazon liked to hold standup meetings
for less than 15 minutes at 11:30 or 12 p.m. These times occur just before
lunch, so the team was already at a breaking point and probably not in a
state of “flow.” It’s also critical to have someone, like the program manager
or development lead, watch out for discussions that become too detailed.
For example, if Sean and Jenny end up in a conversation about why test X
isn’t passing, someone needs to say, “Hey, can you guys take that offline?”
This approach enables the standup to keep going and stay short.

You can get in and get out of a 10-person standup meeting in less
than 10 minutes. I’ve seen 50-person standup meetings at Google take
less than 20 minutes, but they were mainly useful for reiterating goals,
not collecting status.

I’m not an advocate of the Scrum Chicken approach, which says that
only developers should speak. I’m a fan of transparency, and I love having
product management, engineering management, design, user experience
researchers, and even interns contribute to the standup when they can. My
engineering teams love to hear the 30-second snippet of what’s going on
with business development, because it helps reinforce that the project is
bigger than just them.

 how to Be a great Shipping coMMunicator | 159

I also like having the development lead provide a 30-second brief on
the status of the project. It’s a nice way to set the context of the meeting
and remind the team of critical things. Here’s an example of a develop-
ment lead update you can copy:

Today we have 30 bugs, our find/fix ratio is finally going down, and we’re

still planning on a dogfood release by the end of next week, so get your

changes in by Tuesday, end of day. Remember, Tuesday, EOD. And I’m on

call, so my productivity will probably be down this week.

the 1:1 Meeting

One-on-ones are incredibly useful meetings for leads to have together
because they allow for frank conversations and expose new issues. They
are also a great forum for getting work done because they are small and
focused. You can easily take two minutes in your 1:1 to send the email that
you and your coworker agreed to send, rather than taking an action item to
do it after the meeting. This approach saves you time you would otherwise
spend context switching and reduces the chance that a task won’t get done.
Similarly, you and your marketing lead might take the last 15 minutes
of your 30-minute 1:1 to rework the first paragraph of your blog post col-
laboratively. Doing work during meetings is one of the best uses of them.

Schedule weekly or biweekly 1:1s with all your leads, even if you don’t
think you’ll need them. The duration of your 1:1 will be a function of how
much you need to cover or do; 30 minutes is a good starting point, but a
50-minute 1:1 is not out of the question. You might discover things in these
meetings that you didn’t know you needed to discuss. If the meeting is not
productive after a few weeks, you can cancel it or reschedule it so it occurs
once per month.

the product, ux, and engineering deSign reviewS

“Reviews” of any kind are generally big meetings with the big bosses.
The goal of the first of these reviews, the product review, is to get leaders
bought into your product direction, solicit feedback, or update your leader-
ship on your status. All of the suggestions from the “How to Build and
Give a Great Presentation” section later in this chapter apply to the review.
Figure out what your precise message is and then deliver it as clearly and
concisely as you can. Because the audience for these meetings tends to be
very busy, it’s best to keep reviews short—30 minutes or less.

160 | the Shipping greatneSS SkillS

The only materials you need for a UX review are your mocks. It’s best
for designers to present their own mocks. If your designer is going to pres-
ent, take a moment at the beginning of the meeting and set the stage by
reminding everyone why you’re there, who the user is, and what your busi-
ness goal is. You’ll want to run the presentation only if your designer is a
down-in-the-weeds type of person and past experience has taught you that
you’ll be more successful presenting a higher-level walkthrough.

The goal of an engineering review is to empower your development
lead, collect technical feedback from the most experienced engineers
around, and spend as little time as possible on the presentation. Review
the materials in advance to ensure that the development team isn’t propos-
ing something outside your mission or divergent with your strategy. If
you’ve done a good job communicating these two things to your team, you
won’t have problems. If you’re not the engineering lead who’s presenting,
then your goal in the engineering review is to handle curveballs from
senior management when they ask, “Wait, why are we building feature
X?” It’s always best to have the engineering lead answer questions like
this, because answering these questions will empower him or her, which
was one of your goals. You’ll frequently find such questions catch your
engineering lead flat-footed. When this happens, chime in. The last mes-
sage you want delivered is the one that says your team doesn’t know what’s
going on.

the BrainStorMing Meeting

The final and most fun type of meeting is the brainstorming meeting.
The goal of a brainstorming meeting is to collect as many ideas as pos-
sible, regardless of whether the ideas are names for your product, solu-
tions to your scaling problem, or possible root causes for a system failure.
Brainstorming meetings can be any length at all, but do your best to take
a break after an hour and a half!

Brainstorming meetings can be fun free-for-alls, but if you want them
to work well you have to establish some ground rules. I have four ground
rules that I follow, and I’m confident that they increase the creative output
of the brainstorming meeting. The rules are:

•	 Don’t criticize when you’re brainstorming.
•	 Say, “Yes, and…”
•	 Prompt discussion with structure.
•	 Be clear when the brainstorming is over.

 how to Be a great Shipping coMMunicator | 161

don’t	criticize	when	you’re	brainstorming
The surest way to stomp on creative ideas is to critique them. Critique
is a fancy way of saying “criticize.” All it takes is one Negative Nellie in
the conference room, and you’ll lose one of your valuable idea-generating
teammates. Start your meeting by articulating this rule. One way you can
help avoid criticism and encourage people to volunteer ideas is by writing
everything on the whiteboard. Those giant, easel-sized Post-it notes work
great too. Big Post-its are nice because you can take them with you when
you’re done.

Say,	“Yes,	and…”
There’s a rule in improvisational theater that actors developed (or perhaps
evolved, in the face of lots of booing) to prevent scenes from stalling. It’s
the “Yes, and…” rule, which says that regardless of whatever your acting
partner says, you respond with “Yes, and…” Even if your partner says, “Oh,
now your pants are on fire!” you have to respond, “Yes, and…it’s because I
farted into my lighter! Why do I keep that in my back pocket?!?”

You might be surprised how well this trick works in a business con-
text. It takes ideas to the next level. Encourage your teams to use it.

Prompt	discussion	with	structure
W. Edwards Deming is a legend in the business community because of the
innovative processes he brought to industry. Old stodgy guy that he was, he
still believed in brainstorming. He used fishbone diagrams (more about
those in a bit) to record and direct these meetings. Each spine in the dia-
gram was a question he would pose and then his teams would brainstorm
possible answers to that question. When they ran out of ideas, they would
brainstorm possible causes for each answer that was just brainstormed,
and so on, until they reached the root cause of the problem. Or got bored.

Adding structure can encourage and organize creativity. You need
not use fishbone diagrams. Sometimes even setting an agenda of three
problems to solve and working through them can help the more technical,
highly organized members of your team engage in your process.

Be	clear	when	the	brainstorming	is	over
It’s fun to brainstorm, but you can’t do it all day long. At some point, you’ll
have to end the brainstorming and go through a critical analysis phase. It’s
important to articulate to the team that you’re switching modes, because if
you don’t, you might bounce back randomly into pure creative mode, and

162 | the Shipping greatneSS SkillS

some people with new ideas might feel rejected when you try to put the
meeting back on track.

Edward De Bono wrote about changing your thinking mode in his
book Six Thinking Hats (Back Bay Books). He argued that we should take
off the “green” creative hat and put on the “black” critical hat to analyze
these options. The hats are his way of saying that you need to make a
strong transition from one way of thinking to the other way of thinking,
and be explicit about the transition. There are four other hats he describes
if you’d like to expand your mental wardrobe further.

how to run a good meeting
Every leader will run his or her meetings somewhat differently. Meetings
are frequently a manifestation of your personal style, which means that
there’s no best way to run all meetings. However, there are some best
practices that can make every meeting you run better, regardless of your
personal style or the type of meeting you’re holding. In addition to the
advice in Chapter 11 on how to deal with conflict, which applies to conflict
in meetings, the four best practices I follow are:

•	 Send headline notes immediately.
•	 Allow your meeting’s objective to change.
•	 Stamp out negativity in team meetings; embrace it in 1:1s.
•	 Use tools like fishbone diagrams to facilitate problem solving.

Send headline noteS iMMediately

Peter Drucker was an executive performance guru and author of The

Effective Executive (HarperBusiness). He was a proponent of sending notes
to everyone concerned after a meeting. Jonathan Rosenberg, former SVP
of all product managers at Google, was such an ardent advocate of sending
meeting notes that he asked to be cc’d, personally, on all meeting notes
from meetings with more than five attendees. None of the product manag-
ers working for him was ever able to figure out how he handled the volume
of email he received.

You’ll want to send notes immediately after your meeting ends in
order to maximize the impact they have and so that your team will feel
included. Don’t worry excessively about the accuracy of your notes; if you
make a mistake, people will correct you. Lead your notes with the conclu-
sions and next steps. Include the nitty-gritty details later in the notes so
that readers who disagree with the conclusions can understand why the

 how to Be a great Shipping coMMunicator | 163

team reached them. This note-taking technique should be self-evident,
but at Google I saw notes from PMs all the time that were unreadable be-
cause they contained only details. Write a crisp, two- to five-line summary,
stick it at the top of your notes, and people will thank you. It’s nice to be
thanked, don’t you think?

allow your Meeting’S oBjective to change

Meetings exist to serve one or more of three key purposes: to solve a prob-
lem, to collect information, or to disseminate information. A weekly team
meeting can sometimes accomplish all three things, if you are able to help
it evolve.

The most important thing to remember when running a large review-
scale meeting is that even though your goal was to disseminate informa-
tion (“This is our plan…” you’ll say), you may have to pivot quickly and
start collecting information. This might happen if one of your underlying
assumptions changed. Follow the advice later in this chapter in the section
“How to Build and Give a Great Presentation,” which talks about how to
pivot, listen carefully, and collect this information.

When you’re in a team meeting and you discover a problem—whether
it’s team dynamics or a systems design problem or a new requirement—
embrace it. Remember from Chapter 5 that “bad news is good news.”
Embrace the bad news head-on and address it. I believe you should put the
bad news in your meeting notes right away. You can add that “the team
is investigating this issue actively,” if you want to reassure execs who are
prone to panic. Most are, of course.

In a meeting where bad news emerges, you’ll need to play a facilita-
tion role. You must first recognize that your information dissemination
meeting is now focused on problem solving; help the team pivot to that
objective by stating that the meeting’s focus has changed. You might say,
“Let’s pause for a moment and try to solve this, OK?” Alternatively, you
can acknowledge the problem, identify an owner and next steps, and take
the issue offline to be resolved in the right context. Your team will tell
you which approach they prefer, and since you are a servant of your team,
follow their guidance. For the most part. Some teams will avoid conflict
at all costs, and you’ll need to create a safe space for them to work it out;
that’s facilitation.

164 | the Shipping greatneSS SkillS

StaMp out negativity in teaM MeetingS;

eMBrace it in 1:1S

I firmly believe that nearly all crises are teaching opportunities. One such
opportunity is when members of your team start to whine. Unlike team
meetings, 1:1 meetings are a great place for individuals to vent. In this
smaller arena, you can be a sounding board and help your teammates
process their feelings by using basic active listening techniques, such as
saying, “I hear you saying X.” But when one person in a team meeting is
being strongly negative and dismissing people or the product, you need to
stomp on that attitude. Persistent negativity is poison to a team, so use the
crisis to teach the team how to respond constructively, instead of whining.
One example of how you can do this is by pointing out where the whiner
has the power to make changes. You can also reiterate your mission and
identify what’s going well. I don’t advocate arguing the specific point that
your teammate raises. Rather, offer to meet 1:1 with him or her to work
through the specific issue, rather than arguing in front of the team.

uSe toolS like fiShBone diagraMS to

Solve proBleMS

In team meetings, where you’re trying to solve a problem, one of the most
effective things you can do is ask the “Five Whys.” This is an approach em-
braced by Deming that suggests you should keep asking “why?” until you
get to the root cause, which will generally take you five tries. Some teams
start by brainstorming and trying to throw out general solutions, but I
don’t find that this is the most effective approach, and neither did Deming.
He liked to use fishbone diagrams as a way of building out answers to the
Five Whys.

For example, let’s pretend you have a problem with sales; your sales
problem is the spine of your fish (see Figure 10-1).

Figure 10-1. Spine of the fishbone diagram

Next, the team should brainstorm answers to the question “Why
aren’t we selling enough?” Instead of writing your team’s ideas on the
whiteboard as a list, put each idea on a line extending from the spine, as
shown in Figure 10-2.

 how to Be a great Shipping coMMunicator | 165

Figure 10-2. Fishbone diagram—the first why

When you’ve added this first layer of bones, go through each bone and
ask “why?” The product guru on your team should know that marketing
hasn’t changed and neither have your prices or product selection. Now it’s
time to ask why users aren’t converting in the cart. Add the answers to this
question to their respective bones (Figure 10-3).

Too complicated

Figure 10-3. Fishbone diagram—the second why

166 | the Shipping greatneSS SkillS

With your team, you’ve brainstormed some reasons. You know that
you haven’t changed the process, but there could be a bug. Your test team
agrees to run a test pass against production. But you’ve also noticed that
page load latency is much higher than it should be—five seconds 99% of
the time! Why is page latency too high? (See Figure 10-4.)

Too complicated

Figure 10-4. Fishbone diagram—the third why

Let’s apply data to this example. Your systems are running at 30%
CPU, and your designer comments that your graphics are minimal and
sprited (these are answers to the possible causes in Figure 10-4). So the
cause must have something to do with request-response latency, which
is actually 4.5 seconds 99% of the time! Why is latency so high? (See
Figure 10-5.)

 how to Be a great Shipping coMMunicator | 167

Too complicated

Network lookups
slow

Service chained
to session server

Backing database too slow

Figure 10-5. Fishbone diagram—the fourth why

This is getting interesting, and the diagram is getting complicated,
but we aren’t at root cause yet. Based on the information in Chapter 9, we
should ask someone to look into the service-chaining problem, but the ses-
sion server isn’t causing anyone else problems. We’re left with the backing
database, which is slower than we expect. Why? (See Figure 10-6.)

168 | the Shipping greatneSS SkillS

Figure 10-6. Fishbone diagram—the fifth why

Aha! Let’s pretend that your team doesn’t have enough expertise to
understand why the backing database is too slow. A reasonable next step
would be to take that investigation offline and consult a database architect
(DBA). This DBA looks at the database, and it turns out you have a very
high rate of cache misses, causing lots of disk reads (see the section “The
Third S: Speed,” in Chapter 9, for more on caching). This is your root
cause. Luckily, when your DBA adjusts the amount of memory allocated
to the cache, sales increase by 10% and you are duly promoted. Nice work!

Even if you don’t use a specific fishbone diagram, you can still use the
Five Whys technique. First write down each potential problem, then drill
into the problems, and finally write down the discussion in your notes.
This process will help your team understand that they’ve thought through
the problem well, and you’ll also feel confident that you solved the right

 how to Be a great Shipping coMMunicator | 169

problem. You may need to spend multiple meetings or weeks working
through this process, but that’s OK as long as you reach a root cause.

Throughout this discussion, it is important to understand what your
role is. We arrived at a pretty technical answer to this problem. Your role
during this conversation, however, was not to find the problem, but rather
to facilitate the discussion. You kept asking “why?” You went to experts
who knew things you might not know, like your engineering team, your
designer, and eventually a DBA. You didn’t have the answers at the start of
the investigation, but you kept asking why. Good work—that’s how you’ll
ship a great product.

how to Build and give a great presentation
If you are trying to ship great software, you will deliver a lot of presenta-
tions. For example, you may deliver a presentation to get funding. You may
build decks to provide product updates. You might even pitch to convince
people to work with your team. Clearly, building great decks and deliver-
ing a great presentation is a critical skill, but it is one that can take years
to master. Steve Jobs–level presentations are the gold standard, but they
are incredibly time-consuming to build, probably have more compelling
content than you do, and are generally beyond the reach of most of us.

The good news is, if you spend a lot of time going to presentation
classes, studying speaking, getting coaching, and so on, you’ll find that
there are some basic things you can do to help ensure that your presenta-
tion is great, and then you can continue the business of shipping. The
great news is, I’ve written down the basic rules and techniques. The bad
news? You still have to do the presentation. Here are the tips in a nutshell:

•	 Limit your presentation to 15 minutes.
•	 Always have one, and only one, message.
•	 Tell a story.
•	 Build the “deck in one slide.”
•	 Lead with the user experience.
•	 Listen like crazy.

liMit your preSentation to 15 MinuteS

Your goal should be to deliver a 10- to 15-minute presentation. Many leaders
routinely break the rule of maximum presentation length because they are
so deep into the details, have so much data to share, and believe that the
problem they are addressing is very complicated. These are valid reasons,

170 | the Shipping greatneSS SkillS

but they ignore the reality of the situation. The reality is that you typically
have only 30 minutes in which you must deliver your message, discuss it
to ensure comprehension, and get approval. Even if you are lucky enough
to be scheduled for an hour or longer, it’s important to remember that 15
minutes of content is all that a typically overworked group of executives
can handle in one sitting.

The 15-minute presentation in a 30-minute period typically follows
this timeline:

00:00 – 00:05 (5 minutes)

Waiting. Every meeting seems to start five minutes late.

00:05 – 00:15 (10 minutes)

Deliver your presentation.

00:15 – 00:25 (10 minutes)

Discussion and questions about your presentation. If this happens
during your presentation, that’s OK; some presentations will take
longer but generate fewer questions. Remember that you have a total
of 20 minutes to cover both the presentation and the questions.

00:25 – 00:30 (5 minutes)

Restate the conclusions and key feedback, and agree on the next steps.
If you listened very carefully, you might be able to restate the conclu-
sions and key feedback in less than five minutes, in which case you’ll
be done early and your audience will treat you to admiring nods.

It should be clear from this timeline that you need to aim to create a
presentation that is shorter than 10 minutes, and force the length of your
presentation to less than 15 minutes. If you work at a company where your
meetings always start and end on time, maybe you can stretch your pre-
sentation by five minutes, but I’d encourage you not to push it. You never
know when a key stakeholder will get caught in the hall or have to take a
call from daycare. It’s best to assume that you lose at least five minutes in
every meeting. It may seem impossible to compress your content into five
minutes, but you can do it if you have only one message and you stay on it,
which brings us to the next tip.

 how to Be a great Shipping coMMunicator | 171

alwayS have one, and only one, MeSSage

Whether your message is “We have a killer idea that needs funding,” “We
must make a decision to target consumers or businesses,” or “We’re on
track with 90% probability of making our date,” you need to have a key
message. Cancel the presentation if you don’t know what your message is.

You may believe that you have two messages that are critical to deliver.
You’ll be served best if you deliver only one message and schedule a second
meeting. There are three good reasons why you should deliver only one
message per meeting:

•	 First, trying to deliver two messages runs the risk of conflating the
two messages. Your audience is probably very bright, but they came
from a very different meeting just before yours, and are going into a
different meeting after your meeting, so they will have a difficult time
switching context an additional time. If you make life easy on your
audience, they will love you.

•	 Second, you will have two ideas competing for primary importance
in the discussion. You will implicitly ask your audience to prioritize
the topics you brought to the meeting, and you want them to focus on
your content—not on prioritizing it. Managing two messages will also
make the meeting harder for you to guide.

•	 Third, and perhaps most important, you forced your presentation
to be less than 15 minutes, and because you’re a great presenter you
culled the presentation down to 10 minutes. The probability that you
can deliver two messages in 10 minutes is between 0 and –1. You
simply won’t have the time to deliver two messages.

Once you have your one message prepared, stay on message. Eliminate
data or topics that don’t speak to your message. If it helps you feel better,
put supporting items like charts and customer quotes into an appendix.
You can then jump to the eliminated topic if it comes up in the discussion.
Each slide title should build on the message. For example, if you’re giving
your status report presentation, and your message is “We’re on track,”
the title for your bug burndown slide might be “Find/fix trending at 2/5.”
You can complete that sentence by adding, “which proves that…” and your
message. Ergo, “Find/fix trending at 2/5—we’re on track.” If each slide in
your presentation stays on message, you’ll ensure that your message is
delivered, even if the audience is checking their email.

D
ow

n
lo

a
d
 f
ro

m
 W

o
w

!
e
B
o
o
k

<
w

w
w

.w
o
w

e
b
o
o
k.

co
m

>

172 | the Shipping greatneSS SkillS

Don’t forget to double-check your deck after you’re done with it to
ensure that it’s still on message; frequently you’ll find that you recast your
message as a result of the thinking that went into the presentation. That’s
great; that kind of thinking is precisely what’s supposed to happen during
the development phase of your deck, but go back through it and ensure
that it remains focused on one, and only one, message.

tell a Story

Humans love stories. Stories are engaging and connect messages to our
real lives. You’ll be much more effective if you try to tell a story with your
presentation wherever you are presenting to humans.

Let’s prove this tip with an example. Say you have a killer idea that
needs funding. In your pitch, you could be like most of us and start with
the details of your idea, like:

By recontexualizing social sharing into a mobile environment, using

autogenerated metadata and UGC, we’ve created an application that will

radically increase participation and virally grow adoption.

Yup, that’s a terrible, horrible, no good, very bad pitch. It has acronyms
and buzzwords, and is unclear. What if you used twice as many words and
pitched it through a story?

Imagine you’re at a restaurant and not only have you just had the best

lobster of your life, but it’s also the first lobster your wife ever had. It’s

an amazing experience, and by the time you get home to type all this into

Facebook, you’re exhausted, you won’t bother, and you won’t capture it

well. What if you could, with one button push on your smartphone, share

this experience? We can do that—and with that one button click, we’ll

attach the name of the restaurant, your name, your wife’s name, and a

picture.

I bet you can see the slide right now. You would show a picture of your
happy wife eating lobster and tell the story over it. You might even be able
to expense your lobster dinner. You’ve created a story worthy of Steve Jobs,
and you told it in less time than your audience would take processing the
first sentence of the original pitch.

In addition to eliminating buzzwords and acronyms, you accom-
plished five other things with this story:

 how to Be a great Shipping coMMunicator | 173

•	 You made it personal and engaged with your audience. Dining at a
restaurant is something most of us can understand.

•	 You asked the audience to come with you. By saying “Imagine…”
and “What if?”, you invited the audience to respond by making an
implicit commitment to listen for a short time. And you’ve piqued
their interest!

•	 You provided a concrete example that we can understand. New
ideas are complicated, and audiences need a frame of reference so
they can catch up to where you are. In your case, being out at dinner
and wanting to share with a smartphone is something we understand.
In the film industry, people say things like “It’s like Die Hard meets
Forrest Gump meets Hackers, but with heart,” because these concrete
examples give busy executives a shortcut to understand the new
concept.

•	 You described the problem you will solve. And you captured it
clearly.

•	 You described how the solution improves the life of the user. From
the beginning of Chapter 1, you’ll remember that both Larry Page at
Google and Jeff Bezos at Amazon believe adamantly in putting the
user first. You need to communicate how you’re going to improve the
life of a user in your story, and you did it in this one.

I frequently see technically biased presenters dive into features rather
than describing user scenarios. Effective executives frequently stop pre-
senters who do this in the middle of their presentation and force the
presenter to articulate a scenario by saying something like “Hold on—I
need an example. Let’s take my sister Sharon. She uses a smartphone and
we’re out at dinner. What happens next?” By the time this happens, you’re
already in a risky place because you must work within the executive’s story
framework, which is hard to do on your feet. You’re much better off start-
ing with a story.

Unfortunately, some presentations don’t lend themselves well to sto-
ries. Saying something like “Let me tell you a story of a bold team. A noble
team. A team that needs to slip their date…” is a bad idea, so let’s not go
that far. In a status update, you simply have to deliver evidence that backs
up your message. Other presentations, such as user experience reviews or
pitches, lend themselves to stories because you can organize your content
around the user.

174 | the Shipping greatneSS SkillS

Build the “deck in one Slide”

Peter Wilson, a former Google engineering director, invented the “deck in
one slide” approach. Peter might not be the Steve Jobs speaker type (who
is?), but he was incredibly effective at delivering a message and cutting
to the chase with overly distracted executives. That he sold his startup to
Facebook as a “talent acquisition” should speak to his ability to spin a yarn!

Peter’s “deck in one slide” approach says that the first slide of your
presentation, after the title slide, must contain the essence of your presen-
tation. Use this slide when you have skeptical management who are likely
to jump to conclusions. By distilling your entire presentation down into
one slide, you can short-circuit preconceived notions they have.

Another benefit of the “deck in one slide” is that it gives you a visual
element to dwell on if (or when) your presentation goes awry. It’s not un-
common for investors or executives to obsess about something you think
is irrelevant. It’s not just you, it happens to all of us from time to time. If
you have built this special slide, you can flip to it and use it to steer the
conversation back on track.

Unfortunately, the “deck in one slide” approach doesn’t play well with
the “tell a story” technique, so use it carefully and particularly when you
have execs who want to jump ahead.

The “deck in one slide” should have the following four items:

What you’re there to discuss

Avoid acronyms or new names. You will almost certainly want to use
acronyms in order to save space. Don’t—your audience may or may
not know the acronym, and you should err on the side of not requiring
your audience to think. Code names are also likely to distract and con-
fuse your audience since your management or investors are unlikely
to have heard your latest code name. The less you have to teach your
executives, the better. A nice crisp example of a great first bullet is
“The checkout experience is broken.”

The opportunity

Put another way, why are you and the execs spending time discussing
this topic? For example, “80% of users abandon the purchase process,
representing an opportunity cost of $10M.” Note that I put my two
essential data points in here. You can probably distill the core data in
your presentation down into one or two important data points. Adding
these points to your “deck in one slide” adds legitimacy to it and ad-
dresses doubt out of the gate. If a major hiring criteria for team leads

 how to Be a great Shipping coMMunicator | 175

is “must be quantitative” (see Chapter 8), using numbers in this slide
will help reassure your bosses that they made a good hiring decision.

The proposed solution

To continue our previous example, you’ll want to be concrete, but it’s
hard to use pictures in the “deck in one slide.” State your solution
crisply: “Add no-login purchasing. Reduce the buy steps from 5 to 2.”
Provide a link to the mocks so you can pull them up quickly if you
need to.

The cost and timeframe to implement

In some cases, this might also be the “Ask” bullet, because it’s what
you want your management to give you. It might be “2 engineers for
2 months,” or “Approval to launch.” You can’t stop there, however. If
your management is going to commit to you, they expect a similar
commitment to them. You need to provide a timeline to which you
can be held accountable. For example, you might write “Dogfood in
February, ship in March.”

Figure 10-7 shows what the completed “deck in one slide” looks like.
It lacks visual design (intentionally—I don’t want people to think I wear
a suit to work!), and you can see how easy it is to understand what we’re
going to talk about, what we need, and when we’re going to deliver if the
presentation goes well. Which it will.

Figure 10-7. The “deck in one slide”

176 | the Shipping greatneSS SkillS

Once you’ve written this slide, you can build the remainder of the
deck, which will be about four slides plus one conclusion slide that focuses
on your tasks. A five-slide deck is all you can comfortably fit into a 15-
minute presentation.

lead with the uSer experience

One of the best ways to break past preconceived assumptions and create a
concrete picture is to use pictures. Specifically, lead with mockups of the
user experience. Start with the user and move through screenshots. In the
slide following our “deck in one slide” shown in Figure 10-7, we’d likely
show screenshots of how awful the current five-step checkout pipeline is.
These images would help cement the problem in the minds of the audi-
ence. Also, when you show the audience the beautiful no-login purchasing
process, they’ll be ecstatic at the contrast.

You will still need to state the message when you lead with the UX.
It’s a good idea to use the “deck in one slide” approach to state the message
and set the context of the meeting. Alternatively, you can be very simple
and just state it on the title slide, like: “Product Review for: Approval of the
iPhone App User Experience.” As you’re waiting for the meeting to start,
the audience will see the title and clearly understand what they will be
asked to do. In this example, it’s product review and they need to approve
the iPhone app user experience.

To work from the user outward in your mocks, state the primary user
goal, rather than describing features. You can then point to how the user
experience addresses the goal. If you’ve done a great job designing your
product’s UX, the primary user goal will be the most discoverable, sim-
plest part of the UI. You can move to the next slide just as a user would tap
or click through the UI. This approach enables the audience to continue
thinking through the visuals as if they are users. This technique helps
build a strong narrative.

liSten like crazy

If you’ve followed the plan so far, you have only one more essential thing
to do: listen. It’s incredibly hard to listen and present at the same time, but
it’s imperative that you do so. Your ability to pick up on nuanced objections
and understand which ones are deal breakers and which ones are just com-
plaints is critical. The difference between suggestions and requirements is
the difference between shipping greatness and not shipping at all.

 how to Be a great Shipping coMMunicator | 177

One technique that works well for capturing nuanced comments is to
bring a trusted associate who will take verbatim notes. By capturing the
exact words that were said, you allow much less room for subjective debate.
You’ll still debate what the words mean, but not what was said.

If you don’t have someone to take verbatim notes, bring a pad
with you and write down the feedback from the essential stakeholders.
Understanding who the key stakeholders are in advance will enable you
to focus on the right feedback and use your note-taking time efficiently.
For example, when presenting at Google, I knew to always pay attention
to what Eric, Larry, and Sergey said (in that order), but take the guidance
from other members of the executive group as good advice. Frequently
the best advice would come from these other members, but they were not
going to block the product launch, so their input was less critical regard-
less of how good it was. The same approach was true for Jeff Bezos and
his senior management team (a.k.a. the “S-Team”); it was critical to write
down what Jeff said word-for-word and take the management team’s guid-
ance as good advice.

At the end of the presentation, it’s vital that you clarify any statements
from key stakeholders that you don’t understand. If Jeff said, “It might
be a good idea…” then you probably want to revisit that topic. “Jeff, just to
close on this—do you think we should delay the launch to do X?” Do this
sparingly and only when you must. Don’t oversell. I once had Eric Schmidt
stop me, saying, “You can stop talking; you’re approved. Let’s move on.” If
you can get in and out in half the time you had planned for your meeting,
great!

BonuS preSentation tipS

•	 If you can’t have one picture and one sentence per slide, put the main
message in the title. The Apple crew is genius at this, but it’s really
best for pitching to people outside or bigger groups.

•	 If you can’t follow the preceding tip, put the main message in the title.
•	 If you have no template, use basic, business-school blue background

with yellow and white fonts. They show up great on any projector.
•	 Read and follow the basic visual design principles in The Non-

Designer’s Design Book by Robin Williams (Peachpit Press).
•	 Read and follow the information presentation principles in Edward

Tufte’s book The Visual Display of Quantitative Information, Second
Edition (Graphics Press).

178 | the Shipping greatneSS SkillS

•	 Don’t be afraid of whitespace. Sparse slides are good.
•	 Don’t use builds, unless you want your audience to think you wear

a suit.
•	 Don’t use the color red to mean anything other than danger or bad.

 179

| 11

How to Make Great Decisions

The thing that’s different between software and English is not the
language. C++ and Dickens share many of the same words. What’s dif-
ferent is that software is the physical embodiment of decisions. Because
you can do anything in software (don’t let anyone tell you otherwise), the
decisions your team makes about what your software will do, and how it
will do it, are skeletons of your product.

Unfortunately, making decisions is not as simple as you saying “yes”
or “no” to your team. Unlike most other compilations of English words,
the complexity of software mandates that it is the creation of a group, and
therefore it is a reflection of the decisions that the group makes. In some
cases a Big Boss can dictate decisions. Unluckily, you are not the Big Boss,
and you must enable your team to find ways to say no to the things they
love. Here’s how to get the job done. If it bears any similarity to convincing
a small child to go to bed instead of finishing watching Thomas & Friends,
I’m sorry.

You will start by trying to defer the request. “We’ll finish it tomorrow,”
you’ll say to little Johnny, who is the world’s biggest Thomas the Tank
Engine fan. If Johnny starts to cry terribly, and you’re a sucker, you’ll try
the next technique, which is negotiating. “OK, OK, sssssshhhh…10 more
minutes, OK? 10?” The negotiation process can be complicated—certainly
Johnny will argue for 15—but if you study this chapter, you’ll probably reach
a good middle ground with both you and Johnny happy about Thomas. Of
course, there’s always a risk that Johnny is simply overtired and confron-
tational. When this happens, you need to bring all of your conflict man-
agement skills to bear, like understanding that most conflict is the result
of miscommunication, understanding what triggered Johnny’s response,
and using personas to depersonalize conversations. I doubt personas will

180 | the Shipping greatneSS SkillS

help you with Johnny, but they will help you depersonalize conflict in
your business negotiations. Let’s look at each of these approaches in more
detail.

postponing: “We’ll Finish it tomorrow” 
“Featuritis” is a common affliction because we humans are afraid of con-
flict, and many software team leads are afraid to say no. Sometimes the
fear isn’t of conflict, but rather of not being good enough; software team
leads are frequently afraid that the software won’t do everything it could
and acutely aware of how much it could do. This attitude leads to fear-
based design and in turn generates overly complicated products that never
ship. There’s a simple solution to this problem.

Any feature that isn’t part of the absolute minimum viable feature
set can go into V2. The test for any feature is, “Can the user complete the
basic task for which this software was invented?” If the user can complete
the task without the feature, even if the accomplishment of that task was
particularly painful and ugly, then the feature can go into V2. You must be
diligent about this test, because every line of code (except for unit tests!)
decreases the probability of shipping, and without shipping there is no
greatness.

If you suggest that a feature go into V2 and you hit resistance, it’s time
to negotiate.

negotiation: “oK, 10 more minutes”
Nearly every feature or user experience debate ends up as some form of
hostage negotiation. You have their baby, or they have yours, and unless
someone’s way is gotten…the baby gets it. Whether you’re debating if a
bug is a blocker or the icons should be green or blue, this conversation is
a negotiation—and the baby in jeopardy is your product. If you were the
Big Boss, you could take the baby and run, but you’re not. Instead, you
probably have little or no legitimate authority, so negotiating to a great
consensus quickly is critical to your success.

The first step in negotiating properly is to understand that even though
you are a product owner, you’re not the boss. Your team is working with
you because they like you or they like the product. They’re not working
on your product because they have to. It’s a given in the software industry
that anyone you’d want to work with could easily work somewhere else.
Therefore, it’s critical to bring your team along in the decision-making
process and enable them to own the product with you.

 how to Make great deciSionS | 181

Team leads commonly make the mistake of conducting decision-
making meetings in small groups. Having a small meeting seems ef-
ficient on its face, but isolating the meeting from your engineering team
can isolate the team from the decision-making process. If you isolate the
team from decisions, they will disengage from the product development
process and leave you. If you want to be great at shipping, you need a team
that feels engaged and empowered to participate and voice their concerns.

A better process for team decision making is to engage with all the
members of the team at an early stage, before your plans are finalized. In
my experience, this approach is more efficient in the long term because
you have the opportunity to explain the business objectives and team
goals to the entire team at the beginning of the project. If you instead have
many small meetings with senior stakeholders and then deliver a fully
baked plan, you will probably need many more small meetings to deal
with concerns that arise late in the game. Even worse, one or more of those
concerns might be legitimate and cause some substantial change in your
plans. Good project management technique says that you want to take all
changes as early as possible in the development process.

Management guru Peter Drucker has a slightly different take in his
book The Effective Executive, arguing that you want to have brief meet-
ings with clear goals and relatively few attendees. His advice differs a bit
from mine, but he also says that the effective executive should publish
the agenda for the meeting to all concerned parties and plan to send clear
notes afterward. This enables concerned parties to join the meeting and
marginally concerned parties to understand the outcome. The details in
his approach align well with what I suggest, so feel free to follow Peter’s
advice, even though it is somewhat less collaborative.

If there’s a guiding principle that you should embrace when think-
ing about whom to involve in decisions, it’s transparency. Be transparent
about why decisions are made. Be transparent about when decisions will
be made. Be transparent about how your team can engage in the product
process.

Once you’ve brought the right people together, you need to negotiate
to consensus, not to a victory for yourself. Many software leaders can be a
bit macho, and this leads to a victory-first approach. In a classic example, a
young, tough, macho Google product manager went into a naming review
at Google to decide the public name for his product. He was remembered
by the marketing team later as saying, “Let’s call it Google Turbo!” and
was, unfortunately, laughed at. Macho tends to be bossy, confrontational,
and occasionally comic.

182 | the Shipping greatneSS SkillS

It is therefore unsurprising to me that many of the best software leads
are women, even though men primarily populate the profession. Anita
Woolley and Thomas Malone conducted some studies that offer insight
into why this might be the case.1 By comparing the IQ of individuals to the
IQ of groups composed of the same individuals, the researchers discov-
ered a remarkable and strong correlation: the higher the ratio of women
to men in a group, the higher the collective IQ of the group. Their theory
of causation is not the lack of a Y chromosome. Instead, they believe that
the women in their study brought more collaborative skills to the exercise,
whereas the “macho” types tended to act like a boss and dictate an answer.

Woolley and Malone’s conclusion makes complete sense to me. Brian
Marsh, an engineering manager at Google responsible for a substantial
part of Google Apps’ and Google+’s success, says that a team lead “needs
to learn to move at the speed of N, where N is the size of the team.” The
women in the study were able to reach a consensus that was smarter than
they were individually, and the men weren’t. In other words, their col-
laborative approach generates a product name that’s better than “Google
Turbo.”

Put another way, in an old-style compromise between you and a team-
mate, both of you win 50%, but both of you also you lose 50%. Alternatively,
if you and your teammate can work together to reach a creative consensus
that achieves your collective goals, 100% of you win and you have achieved
what the women-influenced groups in the study achieved—a smarter out-
come than either of the individual solutions.

Your goal, therefore, is to facilitate a creative solution that meets the
needs of all parties. The Harvard Negotiation Project, popularized by
Roger Fisher and William Ury in their book Getting to Yes (Penguin), iden-
tified the first key step in this process, which is to agree on the objectives.

Let’s pretend that I want to use your address book service in my Hello
World application. I ask nicely, and you say no initially, because you’re
already underprovisioned and you don’t have additional capacity in your
servers. I bet this is feeling familiar, right?

You and I can state and agree upon the objectives that we have in
this conflict:

1 http://hbr.org/2011/06/defend-your-research-what-makes-a-team-smarter-more-
women/ar/1

D
ow

n
lo

a
d
 f
ro

m
 W

o
w

!
e
B
o
o
k

<
w

w
w

.w
o
w

e
b
o
o
k.

co
m

>

 how to Make great deciSionS | 183

•	 You don’t want your servers to fail because of my requests.
•	 Your existing clients can’t have a decrease of service quality as a result

of my usage.
•	 I need to use your address book service and get good service quality.
•	 Neither of us wants to be a jerk.

These objectives seem pretty reasonable, and because we agreed that
they were reasonable, we started from a point of consensus. Now we can
work through each objective to invent a number of solutions that meet
all the criteria, such as locally caching address book data on my servers,
adding more capacity to your fleet, or building in support for HTTP 503
messages with a response field that points to a read-only version of the
database, etc. Inventing a win-win solution that meets the needs of all par-
ties is one of the most important and satisfying parts of being in a leader-
ship role, and should inspire you to embrace negotiations as opportunities
for invention.

Sometimes you’ll get stuck in your negotiation before you can even
discuss the objectives. When this happens, there are three techniques that
I’ve seen help get the negotiation back on track:

•	 Focus on facilitation. Don’t start by trying to solve the problem. If
you start trying to solve the problem, you take on a point of view and
become an interested party, which can make the discussion more
complicated. Instead, start by making sure that everyone gets heard.
Pay attention to the extroverts, who tend to speak a lot, and the intro-
verts, who are less willing to speak in a group but must be heard when
they do speak.

•	 “Seek first to understand, then to be understood.” Personal growth
guru Stephen Covey authored this principle in his book The Seven

Habits of Highly Effective People (Free Press), and it’s profoundly true.
I’ve found that some of the most influential people in an organization
are also some of the worst communicators and are under more pres-
sure (time and otherwise) than is reasonable. Therefore, you have to
work incredibly hard to figure out what the other party is really saying.
Ask yourself, what does he or she really care about? Then confirm
your assumption with questions.

Frank Patterson, dean of the Florida State University College of
Motion Picture Arts, once taught me a nice model for working with
actors that applies here. Before trying to offer direction to an actor,

184 | the Shipping greatneSS SkillS

articulate what you see by saying, “What I hear you saying is…” By
reflecting the message back to the messenger, you give that person
the ability to correct you and you minimize communication failures.
This is a great technique that emphasizes your desire to seek first to
understand, then to be understood.

•	 If you already have a bias, go ahead and put it out there and then
let others speak. I think that when the other party is already aware of
your beliefs, it makes sense to start by stating your objectives and then
pass the baton to the other party so that you can listen. This approach
is genuine and efficient.

Up to now, we’ve focused on negotiation and collaboration in general,
but there’s a common scenario that requires a slightly more specific set
of skills: financial negotiations. Sooner or later, you’re going to do a deal
for real money, not your Monopoly money stock. Your first deal, or even
your 1,000th deal, can be intimidating, particularly if you own the com-
pany and it’s your money you’re going to spend. However, nearly all deals
are pretty straightforward even though they feel fraught with craziness.
I’ve done quite a few of these deals, including two corporate acquisitions
at Google, and I’ve learned that negotiating financial transactions is like
grieving: there are stages, and if you understand them you can better cope
with your life and the outcome of the deal.

Stage 1: it’S not aBout you

Financial negotiations are nearly always guaranteed to be frustrating be-
cause the corporate media elite built up high-powered negotiations as a
way of establishing self-worth in the business world. If you believe that
your value as a human is a function of your ability to get a fractionally
lower recurring service fee from your bandwidth provider, then I’m sorry
for your family. Please seek counseling before reading further.

If you see this syndrome in the party you’re negotiating with…once
again, I’m sorry. Quit now or accept that if there’s a perfect middle of the
deal, you’re not going to end up there. You’re going to have to give this
macho a-hole his or her pound of flesh if you want to move forward. Accept
it and get on with your life. I find it helpful to remind myself that his or her
marriage probably stinks.

If you don’t believe me that financial deals are excessively macho and
media-based, look at the typical phrases used in deal making:

 how to Make great deciSionS | 185

•	 “It’s time to open up the kimono some more.”
•	 “We showed you ours, now let’s see yours.”
•	 “Are we going to go to the dance together?”
•	 “Eventually we have to stop dancing and get down to business.”

Yuck! Do yourself a favor and avoid warning-level offenses: don’t use
these icky aphorisms. If you find someone using them, let such phrases
be a reminder to you that he or she is in stage 1. Ask the individual to stop
and move on to stage 2.

Stage 2: Being fair and uSing data

Now that you’ve put away the “I have to get the lowest possible price be-
cause that’s what Gordon Gekko would do” attitude, you can go about ne-
gotiating reasonably. The most reasonable way to negotiate a number is by
trading data. For example, you volunteer some data: “I can get bandwidth
from AT&T for $1/Gb.” Then the other party will volunteer additional data:
“Our costs are $0.95 per Gb.”

Hopefully things end nicely at this point, settling at $0.98 or $0.97
per gigabit (depending on who’s more of an a-hole), and both parties win.
Your provider gets a tiny margin and you get a tiny discount.

If only most negotiations were this way! Unfortunately, you’re prob-
ably saying, “I’m willing to pay $0.75,” and they are probably saying, “We
need to charge you $1.25.” You’re not done yet. You’re only entering stage 3.

Stage 3: that data didn’t cloSe the deal…

let’S Make up new data!

The reality is that financial negotiations can take a very long time because
you or your counterpart are constantly disclosing and inventing new infor-
mation. It’s the inventing information bit that’s particularly challenging.
You may invent your build costs: “It’ll cost me five engineers for a year to
build this, so I shouldn’t pay more than $1 million.”

Once you cross this line, and you will, the other party will then like-
wise invent information: “Yes, but your time to market will be accelerated
by six months, and that’s worth at least $5 million, so you should be will-
ing to pay at least $4 million.”

This phase will eventually pass, but in the meantime it’s a hand-
waving arms race, trying to figure out on which side of the middle you will
land. Accept that you have to go through this phase and try to get through
it quickly.

186 | the Shipping greatneSS SkillS

Stage 4: Searching for thingS that are free to give

Eventually, both parties are sick to death of arguing over how many en-
gineers for how many months it will take to integrate, or how much each
customer is really worth, or how long it will take Microsoft, Google, or
Apple to build competing technology. In stage 4, each party tries to throw
worthless crap that costs little to give into the deal. “We have major launch
plans,” you say, “we’ll put you on the stage at Moscone Center.” The other
side won’t even bother to put a value on this marketing ploy, and the reality
is that you shouldn’t expect them to do so; you’re just hoping that if you
“sweeten the deal” enough, they’ll take the last number you offered in
stage 3.

In many ways, this “deal sweetening” phase is time that each party
spends trying to get comfortable with The Reality Of The Situation, which
is that neither of you is going to make out like a bandit. It’s too bad, but
we always feel disappointed at this point, even though bandits are the bad
guys—except in movies, where “corporate raider” sounds glamorous (see
stage 1).

Stage 5: walking away and thinking

It’s possible that after throwing in a few pot sweeteners and a few months
of negotiation, everyone is so tired that you’re ready to do a deal. So you
just do it. If this is you, proceed to stage 6 and light a candle at the chapel
on the way home. Also, some money to the Salvation Army Santa might
be in order.

Most of us are not so lucky because fatigue makes everything worse
(or so my new-mother friends tell me). It’s possible that stage 1 (in which
you wanted to be Gordon Gekko, master of the universe) may rear its ugly
head again. Posturing may ensue: “OK, we’re too far apart; I guess we’ll
have to build it ourselves.” Threats may be made: “We’re going to put
you out of business anyway…” Phones may be put on mute and warning-
offense quality curses uttered.

It’s at this point that a necessary cooling-off period is introduced or-
ganically. One party walks away from the deal, or gets upset and stops
returning calls, or whatever. This is a good thing for the process because
both parties get distance from the negotiation and return to being close
to their products. This newly created distance allows you to consider again
The Reality Of The Situation.

The products are where the deal started. You want them and they want
you. If you really can’t live with the other party’s terms from a business

 how to Make great deciSionS | 187

standpoint, then yes, walk away. If you can live with the terms, then you’re
going to have to take them. Give the discussion a couple of weeks to cool
off and start over at stage 2, in which you share data. Stage 2 will play out
differently this time because you’ll be willing to share more data and pay
more money. The other party will also share more and be willing to take
less, and you will all be somewhat more motivated to reach a number that
is acceptable.

Stage 6: agreeMent, paperwork, and

recriMinationS

Just when you thought you were done, you’ll discover that any reasonably
valuable deal is going to require a lot of paperwork. It’s not the paperwork
that’s the problem. The problem is that there are tiny details inside the
paperwork that can bring you right back to stage 5 and have you plotting
scorched-earth solutions to this deal. These details exist because any con-
tract that’s going to be effective needs to be extremely clear. To add clarity
you must define every detail, and it is at this point that you discover
miscommunication—and miscommunication leads to conflict.

If both parties are exhausted and macho, the deal will go off the rails
at this point, in the same way that a mythical quarter can derail Amtrak.
Remind yourself that this is merely a quarter, not the whole $10 million
stack of bills, and let it go if at all possible. Employ the techniques for deal-
ing with conflict that are described later in this chapter, and work hard
to get the train back on the rails. You have, after all, “agreed to go to the
dance” with these people, so be the bigger person and eat at the restaurant
at which they want to eat.

Months later, you and your deal team probably won’t care about how
much you paid. Over a beer, all you’ll remember is how long it took to
do the deal. You may look back and say, “Why the heck did that take so
long?!?” The answer is that most of the time was spent on stages 1, 3, 4,
5, and 6. Yep, these are the steps that were not based on hard data. So, if
there’s a moral to the story, it’s don’t be macho.

dealing with Conflict
The third and final tool you need to reach a great consensus is conflict
management. We can assert from the start that there are a lot of a-holes
out there, and they breed conflict. You may even think you work with a
unique nexus of a-holes, idiots, and self-absorbed twits. But because you’re
in the software industry, the odds are really quite small that this is the

188 | the Shipping greatneSS SkillS

case. The odds are much better that the people you work with have subnor-
mal communication skills and supernormal technical skills.

“But wait,” you may be saying, “I work with product managers and
engineering VPs and designers—they certainly can’t have bad communi-
cation skills!” Ergo, they must be a-holes. You might be right. More likely,
these people are so used to dealing with engineers and folks like you that
they’re desperately insecure and afraid that you’re going to randomize
their efforts. These people also care about shipping. Perhaps they care less
about shipping than you do, but they care enough to be afraid that you’re
going to alter their designs, objectives, or question their decisions in such
a way that you’ll spark a reset.

Tony Schwartz is a management guru who wrote that in situations
like this, you need to tell yourself a different story.2 The story he’s talking
about is the explanation you create for yourself to explain someone’s bi-
zarre behavior. But it’s just that: a story, and it’s created from assumptions.
Instead of assuming that the other person in this conflict is an a-hole,
consider telling yourself a different story.

I’ll give you an example. When I joined the Maps team at Google, I
was really frustrated by the design team. They seemed sharp and nice,
but I was constantly butting heads with them when I asked normal ques-
tions like “What is the user problem you are trying to solve?” They would
respond with, “Our design goal is ‘the map is the UI.’ You really need to
spend more time with the other product managers.”

I was inclined to believe the Maps designers were idiots because “the
map is the UI” is not a design goal and it doesn’t help users. But late into
a whining rant over a bottle of white Côtes du Rhône, a designer friend
of mine suggested a different story. “They’ve had no business goal,” she
said. “Instead, they’ve been getting random complaints for years and since
they’ve had no business goals, they’ve had to try to do your job on their
own. They invented an organizing principle that could absorb all these
tiny complaints from random VPs. And they may see you as just another
one of those VPs.”

It’s not every day that your friends will give you brilliant insight, I
know. But you can effect the same outcome, and save some bank on the
vino, by saying, “OK, I’m telling myself the story that they’re idiots. I don’t
actually have the IQ scores to back that up. Perhaps the story is that the

2 http://hbr.org/2007/10/manage-your-energy-not-your-time/ar/1

 how to Make great deciSionS | 189

former VP gave them a horrible objective, and they’re trying to live to it—
in which case, it makes sense that they’re defending it.”

If you change the story you’re telling yourself about the other party,
you can internally position yourself to have a more positive response to a
conflict.

Now that you’ve convinced yourself that the guy you’re dealing with
might not be an a-hole, you can get to the root of the problem. About 90%
of the time, the root cause for your conflict is miscommunication. The
other 10% of the time is divided between 1% genuine a-holes and 9% mis-
aligned objectives.

All you really need to understand is that 90% of the time, you and your
counterpart are “talking past each other.” In other words, you agree about
the important things and are getting hung up on some detail or language
problem. I find that engineers and engineering managers frequently
focus on details when they really care about something much bigger, like
not writing duplicate code, because it’s easier to be specific about a detail.
By understanding that you’re most likely talking past each other, you can
take a step back and ask yourself what the other party is really trying to say.
This is the first major step.

Once you’ve established that you’re talking past each other, you can
use that opportunity to establish a common vocabulary for the discussion
so you can avoid miscommunication that results from language problems.
To do this, you need to understand that engineers and teams frequently
imbue certain words with special meaning. On one team a “hack” might
be a horrible, dangerous thing, while on another team a “hack” might be
a nice shortcut. Or, as I learned on the Maps team at Google, a common
word like “landmark” might represent a whole class of things (restaurants,
hotels, and the Eiffel Tower), rather than just the Eiffel Tower, which was
referred to as an “attraction.” Such generalizations and naming conven-
tions are de rigueur in software because that’s how software works—it
operates on abstract objects and applies properties to make them specific.
Therefore, it’s extremely common and entirely reasonable for teams to
develop their own language.

Luckily, it’s simple to get past taxonomy problems. Say, “I’m sorry—so
we’re on the same page, what are you referring to when you say ‘land-
mark’?” Engineering teams will be happy to explain because they love
defining things. It’s one of the reasons why they write code.

190 | the Shipping greatneSS SkillS

If you are both using the same words with the same meaning, you
may be “talking past each other” because one of you doesn’t understand
the context of the conversation fully. Most of the nonengineers you work
with are spread very thin across many projects. They do not necessarily
know why you’re discussing a topic, and you don’t necessarily know why
they are being a jerk. Take a step back and say, “I think we might be talk-
ing past each other.” Then get, or give, the context. For example:

Just for context, and so we’re all on the same page, maybe I can give a

little background? We’re trying to build an application that does text-to-

speech for blind users. Unfortunately, we want to ship at the Consumer

Electronics Show, and that means we have a hard deadline. And, because

our target user is blind, we have to make some tough decisions and opti-

mizations. Does that make sense so far?

This example reveals two critical and common contextual elements.
First, time is always a challenge, and clearly articulating the time con-
straints will help the other person understand what is possible. Don’t
believe me that time is a problem? Have a friend tie two moderately com-
plicated knots. Then, you and another friend untie the knots while blind-
folded and not speaking. Repeat this task but with a one-minute limit. The
difference between the two experiences is remarkable, and you probably
encountered some frustrating, nonverbal conflict because although it’s
initially challenging to communicate while blindfolded and mute, every-
thing gets worse under time pressure.

The second dimension that the example shows is that there are fre-
quently assumptions that other people make or don’t know about. In this
example, the design target is a blind user, and that user has different needs
than a typical text-to-speech user. When you provide context to teammates,
be sure to tease out these assumptions because they frequently lead to
miscommunication.

On a related note, try to keep your project name the same throughout
the life of the product, because if you change it, you’ll confuse the people
who didn’t hear about the name change. If you’re in a tiny company, chang-
ing the name doesn’t matter, but it does in a big company. Renaming a
project rarely delivers enough benefit to make dealing with the resulting
miscommunication worthwhile. And it will increase your Excedrin bill.

 how to Make great deciSionS | 191

When words are failing you, and your attempts to clarify them through
taxonomy and context are also met with hostility and dismay, turn to the
whiteboard. I always have a big whiteboard by my desk for this reason. I’ve
found that pictures and lists drive clarity. By writing down what you’re
talking about, the other party can focus on the pictures or the words on
the board, rather than words in the air. This is a simple technique, but it’s
remarkably powerful.

There are times, however, when conflict is not the result of explicit
miscommunication or fundamentally divergent viewpoints. Sometimes
conflict occurs when someone pokes you in a place you don’t like being
poked. You’ll know when you get poked because you either want to slug the
bastard or run away. You had a classic fight-or-flight response.

When someone pokes you in a way that triggers you, take a full minute
to understand what just happened. Stall. Say, “Huh.” It takes 60 seconds
for the initial bolus of adrenaline to be absorbed into your system after
you’ve been poked, and 20 minutes for that adrenaline to be completely
absorbed. Therefore, doing absolutely nothing but stalling for 60 seconds
gives you time to avoid running from the room or from poking that person
right back.

If you want to get better at coping with the strong emotional responses
we all have, you need to identify what triggers such a response. Maybe
people who use your childhood nickname upset you, or maybe engineers
who question your technical judgment really get your goat. Regardless of
what the specific trigger is, being aware that you were poked in a sensitive
place will give you the handle you need to wrestle your reactions back into
shape, and over time your sensitivity will decrease.

Even if you can manage your triggers, it’s clear that working on soft-
ware is an intense business that will occasionally cause tempers to flare.
Most people work longer-than-average days and care passionately about the
work they produce. It’s not surprising that emotions are strong, and you’d
best accept right now that you’re going to piss someone off, especially if
you’re trying to ship. But you may be able to minimize the frequency with
which you piss people off if you can depersonalize your conversations.

Depersonalizing conversations means making the discussion about
the software, the user, or the problem—not about the humans involved
in the conversation. There are some powerful techniques you can employ
every day to help ensure that you depersonalize your discussions and
increase the probability of a stressless outcome. My top three favorite de-
personalization techniques are:

D
ow

n
lo

a
d
 f
ro

m
 W

o
w

!
e
B
o
o
k

<
w

w
w

.w
o
w

e
b
o
o
k.

co
m

>

192 | the Shipping greatneSS SkillS

•	 Don’t say “You” or “I.”
•	 Focus on the persona, not the people.
•	 Use objective measures.

don’t uSe “you” or “i”

Try removing all instances of the words “You” and “I” from email. This
technique depersonalizes the correspondence and focuses statements on
the product rather than on what “you” think or what “I” contributed. If
you can bring yourself to remove “you” and “I” from verbal communica-
tions, do that as well. You may find that you write in the passive voice
more often, but it is a small price to pay to reduce your team’s stress levels
and increase their happiness. Google is such a strong supporter of this
approach that members of promotion committees are not allowed to say,
“I think…” Instead, the committee member is supposed to say, “The pro-
motion packet indicates…” Similarly, parliamentary protocol doesn’t allow
politicians to speak directly to one another, which adds a layer of buffer
and helps make the arguments less personal.

focuS on the perSonaS, not the people

Another powerful way of talking about problems is to use personas like
you might use sock puppets. Sock puppets have stood the test of time
because they depersonalize challenging conversations, and personas can
do the same thing. For example, instead of saying, “You don’t really want
to sign in first, what you want to do is find out if the product is in stock…”
you might say, “Sarah Shopper is a shopper. She wants to look around and
evaluate her options. What does she want to do?”

Talking through Sarah Shopper depersonalized the conversation sub-
stantially. What’s more, personas are effective when it comes to making
hard decisions, because the person who will get the short end of the stick
when you cut that special feature is the persona, not the person who in-
vented it. To continue our example, you might say something like, “We’ve
said that Sarah is more important than Stanley. So we will need to opti-
mize for Sarah here.”

uSe oBjective MeaSureS

When I interview product managers and ask them to tell me about a time
when they had to change someone’s mind, they almost always talk about
how they used facts to turn someone around. They rarely get hired because

 how to Make great deciSionS | 193

their stories inevitably end badly. It’s sad, but the real world doesn’t care
much about facts. You can see evidence for this trend in the Fox News “I
don’t have the facts to back this up” approach to reporting. If you’re going
to live in a world where facts play second fiddle to opinions, you’re going
to need a way to deal with opinions as if they are facts. Luckily, we have
usability tests and decision matrices.

Usability tests are great for establishing whether a subjective experi-
ence—user interface—succeeds or fails. You can read more about usabil-
ity tests in Chapter 3.

A decision matrix is a simple chart that you build to help you decide
between options. Table 11-1 demonstrates a decision matrix that will help
me choose a pet.

Table 11-1. Pet decision matrix

criteria/animal cat dog rabbit

Doesn’t shed 0 2 1

Cuddly 1 0 2

Friendly 1 2 0

Total 2 4 3

Clearly I should get a dog. When you establish a set of criteria by
which the team will evaluate options and then evaluate those options as a
team, you will craft a transparent picture of what your goals and priorities
are. In addition, because the team can weigh in on each dimension, the
discussion can focus on much more granular elements so no one is losing
everything. Put another way, if I think “dogs are definitely a 1 on the cuddly
scale,” and you think “nothing that drools like a dog can ever be cuddly, it’s
a 0,” you and I are much more likely to be able to reach a consensus than
we would if we were debating whether cats or dogs are better, because the
worst case for both of us is that dogs are overappreciated or underappreci-
ated by one point. That’s very different than an argument about whether
dogs are better than cats.

It’s good to go a step further in your decision matrices if you have
time. If you add a “weight” or “priority” column, as shown in Table 11-2,
the team will have to discuss and agree upon the relative importance of
various decision criteria. This process is immensely valuable for getting
your team on the same page. In your case, you might have to compare
reduced development time, increased scalability, and increased testability,

194 | the Shipping greatneSS SkillS

all of which are good and important things, but you can’t get scalability
and testability without spending more development time! In my case, I
really don’t want an animal that sheds.

Table 11-2. Decision matrix with weights

criteria/animal weight cat dog rabbit

Doesn’t shed 2 0 2 1

Cuddly 1 1 0 2

Friendly 1.5 1 2 0

Total 2.5 7 4

Good. Snoopy can stay.

 195

| 12

How to Stay a Great
Person While Shipping

I tried hard to come up with a way to sugarcoat this but I couldn’t, so
here’s the bombshell: shipping great software is damn hard and crazy
stressful. It’s also incredibly rewarding. The energy you spend is worth
it. But the stresses placed on those called upon to ship can be extreme.
Sometimes you’ll be asked to balance multiple competing priorities with-
out guidance. You may be asked to do the job of three people in half the
time it would take one. And throughout the project you’ll probably have
to deal with feature requests, changing corporate priorities, politics, and
general unfairness. But wait—there’s more! There’s hope!

There are tricks that can help you cope with these shipping life chal-
lenges. I’ve spent many years working with colleagues who were all trying
to ship, and there’s a small kernel of battle-hardened advice that I’ve gath-
ered and held on to. I think it helps, and it’s broken down into these five
categories:

•	 How to balance shipping, quality and impact, and your team, so you
deliver great software.

•	 How to handle randomization, so you can continue to ship a great
product in a timely way. Randomization is what happens when your
management throws you a curveball, or your team wanders off into
the weeds. Randomization is one of those words that everyone at
Google and Amazon understands because it’s the opposite of helping
a team stay focused on shipping.

•	 How to manage your energy deliberately, so you can do the job of
three people.

•	 How and when to escalate, so the right work gets done by the right
people.

•	 How to eat the s#!@ sandwich, because sometimes, you’re just gonna
have to.

196 | the Shipping greatneSS SkillS

how to Balance Shipping, Quality and impact, 
and your team
Let’s pretend you’re the CEO for a moment. (If you are the CEO, please
buy copies of this book for everyone at your company.) If your team lead
happily announces to the world that your new product is ready, and it’s
actually a steaming pile, you wouldn’t consider that team or that team lead
successful. Neither would I. That lead is fired.

If your lead, through charisma or knowledge of dark secrets, manages
to ship something pretty good quickly but leaves behind a burned-out,
disheartened team, you would also consider that a failure and sack that
person. If you don’t, the board is going to fire you.

If your lead, in a fit of aggressive cost cutting and schedule pressure,
reduces the feature so much that you have no bugs and the team can ship
early, but users don’t care about the product, the lead is fired.

A successful team lead must balance team, quality and impact, and
a desire to always be shipping. As you work through the different phases
of your shipping process and the details in this book, remember this bal-
ance (shown in Figure 12-1). Maintain it, and you will remain employed.
Understanding that you can’t have perfection in all dimensions, but that
you can have balance, will help you manage your shipping life. You also
now have tools you can employ to see if you are out of balance, like the vibe
in your weekly team meeting, the High School Embarrassment Test, and
your product requirements document: are you still solving a big problem
that lots of people share?

Shipping

TeamQuality
& Impact

You

Figure 12-1. The shipping balance triangle

 how to Stay a great perSon while Shipping | 197

how to handle randomization
Since you’re not the boss, and life isn’t fair, your product will probably
suffer from a constant stream of well-intentioned but nonetheless disrup-
tive suggestions. Unfortunately, as your product becomes more important
and your deadline grows closer, the volume of suggestions will increase,
because your software will get more visibility through the dogfood pro-
cess. You can’t eliminate these suggestions, but you can stop them from
distracting or “randomizing” the team. Randomization feels like you were
on stage 2 when someone rolled an 18-sided die and said, “Go do stage 13
instead.”

It’s generally not your fault when this happens. There are many
sources of randomization. Feature requests are common. Corporate pri-
orities may shift. And you may even be forced to accept some substantial
infrastructure change. You have to take this randomization in stride and
try to continue with business as usual.

To deal with feature requests, create a simple, shared document into
which you’ll aggregate them. Make this document public to everyone
because transparency will reduce fear-based concerns and the volume of
incoming questions. When someone suggests a new feature, say, “Thank
you sooooo much! I added your idea to our feature requests; here is a link.”
This technique works like the technique you apply in meetings, where
you write everything your team says on the whiteboard; writing down the
feedback is an explicit form of acknowledgment (but not commitment).

When randomizing suggestions come from management or inves-
tors, you can help defuse the suggestions with the Version 1 test. Ask,
“Would you block the Version 1 launch on it?” In some cases, you’ll hear an
unequivocal “yes,” and you’ll be scared right to the marrow of your bones.
Don’t freak out yet—there’s still hope.

When the founder or the board says, “Yes, it must be in V1,” your
next step is to pull your development lead aside to share what’s going on.
Ask the lead to figure out what the engineering impact of the change will
be. You want to assess the cost in terms of engineering weeks, systems
design, capacity, and any other functions on which you depend, like legal.
If the estimate is small, don’t worry about it and add the feature. The ex-
ception to this rule is when you’re very close to launch and the “just say no”
protocol is in effect (see Chapter 7). If the cost estimate generated by your
development lead is large, go back to your senior management with the es-
timate and ask, “Are you willing to block the launch for six weeks and buy
100 more computers for this feature, or can we add it to the immediately

198 | the Shipping greatneSS SkillS

post-launch list?” At this point, you can have a real, rational conversation
about cost and benefit. There is no point in pushing back on a requirement
until you have an estimate of costs, unless the requirement is evil.

If the suggestion is really wacky, and also must be in V1, sometimes
the best thing to do is not fight the suggestion. If it’s a terrible idea, your
trusted testers will tell you, and your senior management will have a very
hard time arguing with vocal customers and user data. In situations like
these, you can work with your team to invest a minimum of engineering
effort, deploy the feature as quickly as possible to your trusted testers, and
then wait and see. You might be wrong, but if you’re not, bring the data
back to your management and go from there.

Listening well in your review meetings can help you avoid some ran-
domization. Remember, if the Big Boss says you should do something,
you probably need to do it. If you fail to either tackle this head-on with
that manager or fail to deliver on expectations, you’ll be randomized. It
is a mistake to assume that your bosses will forget the requirement they
communicated; if you’ve taken verbatim notes in your meetings, you’ll
know precisely what expectations are and you can manage to them. Doing
so will substantially decrease your odds of being randomized.

There are, of course, sources of randomization you can’t control, like
changing corporate priorities. Diving deep into the tricks and tips for deal-
ing with corporate politics is beyond the scope of this book. It seems to
me that some people are innately good at dealing with politics, and others
don’t have a political bone in their body. I fall into the latter group, so I can
only offer four basic coping strategies, in sequential order, for dealing with
shifting corporate priorities. Remember, your goal is to ship, so you want
the engineering team to carry on as if nothing has changed:

1.  Find out if the priority change is real. Sometimes leaders state that
priorities are shifting, but the company has no intention of fol-
lowing through or lacks the ability to do so. The people who will
know if the changes are real are generally only one level removed
from the people who initiated the change. Talk to these one-level-
removed individuals and get their honest assessment, one-on-one,
and not in writing. You may hear something different than the
party line, and find out that the senior leadership is trying to ap-
pease some external group. You may even hear that the decision
isn’t final yet. If this is the case, you can carry on as usual, and
you’re done coping. For now.

D
ow

n
lo

a
d
 f
ro

m
 W

o
w

!
e
B
o
o
k

<
w

w
w

.w
o
w

e
b
o
o
k.

co
m

>

 how to Stay a great perSon while Shipping | 199

2.  Recast your product to align. In some cases, you can easily recast
your product so it aligns with the new priorities without actually
changing your engineering work. Rework your short presenta-
tion and see if acknowledging that you understand the new world
order gives you and your team room to breathe. If it does, you can
carry on as usual.

3.  Change as little as possible. If you want to carry on as usual and
ship, and you must take a change, you need to make the smallest
change you can possibly make. The bigger the change you take,
the greater the randomization you will experience and the greater
the risk to your launch. Work with your engineering team to find
a low-cost quick win. Generally doing something small and quick
proves that your team is paying attention and buys you enough
time to ship. In fact, if you can be the first to show reasonable
progress conforming to the new priorities, you may buy your
team disproportionate leeway to proceed at your own pace, since
you’ve made it clear that you will get the job done. Make the small
change, and you’re back to business as usual.

4.  Ask for an exception. Sometimes asking for an exception can be
the best way to move forward. Getting a wholesale exception is
particularly important if the only way to move forward involves
major ship-stopping changes. A variant of asking for an exception
is asking to respond to the new corporate priorities in Version 2.
Explain the cost of responding to the new priorities in the same
way you would when the Big Boss asks for a change. If you get an
exception and can push the changes into V2, you’re done. Once
again, carry on as usual.

5.  Suck it up. If you try all of these techniques and make no headway,
I’m sorry. You’re in a tough situation, and this is one of those
s#!@ sandwich–eating times, which we will cover soon. Eat the
sandwich and write a new product requirements document.
Remember to reset your milestones—it would be deeply unfair to
your team to forget to do so.

All of these coping strategies apply to big infrastructure changes, too.
There’s one additional rule of thumb for working with infrastructure on
which you depend: you want to be in the middle of the train. Infrastructure
projects steam into town like a big, screeching train. It takes a long time
to start these kinds of projects, and they’re loud, pushy, and obnoxious

200 | the Shipping greatneSS SkillS

for the most part. If you’re right at the front of the train, an early adopter
of the infrastructure, you’re going to run into bugs, cows, and the occa-
sional Karmann Ghia—none of which is fun. You don’t want to be an early
adopter of a major infrastructure project.

On the flipside, if you’re the caboose you’ll likely get whiplashed. Your
management will ask, “Why aren’t you done with porting to X yet?” Your
systems will likely start to break in funny ways. Support for your old infra-
structure will become obsolete, and you’ll generally be in an uncomfort-
able place. You don’t want to be at the tail end of the train.

You want to be in the middle of the train—right near the club car
where they keep the cocktails and pretzels. Find two to three other teams
whose progress you can monitor. When you see a team go through the
process of switching to the new infrastructure relatively painlessly, it is
time to start switching to the new infrastructure. The documentation for
the new infrastructure is probably decent at this point, but you can also ask
that successful team to guide you through the switch. The guidance you
get from users is almost always better than the guidance you’ll get from
the infrastructure developers.

how to manage your energy While Shipping
One Amazon engineering manager I know once spent only 20 minutes
building an important presentation for an executive review. This was
unlike him, but he’d been fighting production fires all week. I turned in
my chair and said, “Really, that’s it?” And he shrugged. “Time to go,” he
said.

A half-hour later, he came back from the meeting, sat down, and said,
“Well, I spent the right amount of time on that deck.” This was a seminal
moment in my career because it taught me that I must learn how much
time was the right amount of time to spend on each task. In this case, he
was pretty sure that the execs had already made up their minds, so why
bother spending a lot of time on a presentation when he’d only get to the
first slide? There are many things you need to do if you’re going to ship,
most of which are described in detail in this book, but you won’t be able
to do all of them.

Kim Rachmeler, the former VP of Worldwide Discovery at Amazon,
once said to me, “When I hired the first program manager into Amazon,
I sat her next to me and every day I would get up from my desk and say,
‘That’s another day where I didn’t get everything done,’ because I wanted

 how to Stay a great perSon while Shipping | 201

her to understand that the work of a program manager is never done—
what’s important is doing what had to be done today.”

Since you can’t do everything that the team needs, you need to do the
right stuff, and be OK with not getting everything done. Peter Drucker
echoes this sentiment in The Effective Executive. He says that the things
you should do first are the things that you, and only you, can do. Working
in this way will help you maximize your effectiveness and prevent you
from becoming a blocker.

One small example of how this works well at Google is that there’s
a culture of very fast expense report approvals. Good managers under-
stand that they are the critical blocker on that one task, so they deal with
it immediately.

I used to worry more about my energy. So I asked Eric Schmidt how
we planned to help product managers who were burning the candle at
both ends stay at the company. Eric said, “I think many product managers
are initially inefficient in their time management.” I was chagrined—I
thought I was doing a pretty good job, and I was definitely feeling stretched
pretty thin! In hindsight, when I look at the volume of work that Eric
completed, and contrast that with how I’ve learned to prioritize doing the
things that only I can do first, spend the right amount of time on any given
task, and be OK with not getting everything done, I think he was right.

If you’re having a tough time learning to be efficient with your time
and your energy, or recognize that this is a skill you are completely miss-
ing, consider learning from Tony Schwartz’s Energy Project.1 Schwartz
wrote a great Harvard Business Review article entitled “Managing Your
Energy, Not Your Time” and subsequently developed a book and a whole
business around the notion of optimizing your personal energy.2 He’s a
major advocate of understanding where you spend energy, how to opti-
mize where you spend it, and how to establish greater reserves of it. Many
effective executives are beginning to adopt his approach because it really
works. It’s a bit crazy, what with some CEOs keeping pillows in their of-
fices, but it seems effective.

A final trick you can employ to help manage your energy is schedul-
ing time to work. Because you’re trying to ship, most, if not all, of your
time is consumed with meetings. This means that you have little time

1 http://www.theenergyproject.com/

2 http://hbr.org/2007/10/manage-your-energy-not-your-time/ar/1

http://www.theenergyproject.com/
http://hbr.org/2007/10/manage-your-energy-not-your-time/ar/1

202 | the Shipping greatneSS SkillS

to write a product requirements document, review the user experience,
and talk with your engineering team about your systems design. And for
some strange and wonderful reason, people who would otherwise book
your calendar solid until late at night are unlikely to book over your “work
time.” Tony Schwartz would suggest that you schedule the first hour and a
half in the morning to make progress against your hardest task. An hour
and a half is a nice amount of time to work intently before taking a break,
and the morning is when most of us have our best energy. Generally, your
hardest task is also your least reactive and the task you’re most likely to
postpone, so if you’re a procrastinator, using this scheduled time is a nice
way of pushing through. It’s worth trying, right?

how to Use escalation as a tool, not an excuse
We’ve established that you’re not the boss—but somebody, somewhere, is.
That bossypants can be a valuable asset! Knowing when to escalate is a key
skill, just like “over” is a key part of “over, under, and through,” which you
should have learned in kindergarten.

You probably want to escalate when any of the following conditions
is met:

•	 You’re trying to defend an otherwise silly executive mandate. You
shouldn’t have to stand up for bad ideas. You might have to in the long
run, but do your best to make the bosses defend their bad ideas.

•	 You honestly don’t understand why you should do something. In
situations like this, it’s best to get an explanation one-on-one because
the Big Boss will likely be more transparent. If you ask for an explana-
tion over email, don’t cc the team.

•	 It’s not your responsibility to solve the problem. One of the classic
times when you need to escalate is when your engineering team is
making a decision you think has dubious technical merit. Most lead-
ers with an engineering background have good enough instincts that
they know when the train is going off the rails. Rather than trying to
go head-to-head with your tech lead, let the engineering manager with
the legitimate authority, and the responsibility, deal with the engi-
neering team. In addition, taking the engineering team’s side in this
manager-staff crisis can help you build equity with the team.

I think it’s important to point out that I’m not advocating that
you eschew all responsibility for things that aren’t purely in your job
function. If there’s something you can fix, and your team is willing

 how to Stay a great perSon while Shipping | 203

to have you fix it, fix it! Be proactive and assertive in your fixes, and
don’t let your title or job description limit you. But when you get into
a situation where there’s a problem that is someone else’s responsi-
bility to fix—and that person would be unhappy with you fixing it
instead—escalate.

•	 You’re dealing with senior managers who don’t want to listen.
They may not be listening to you because you don’t rank high enough
or, more likely, because they don’t know you. However, your man-
agement or investors probably have an existing relationship with the
troublesome senior managers. They’re in meetings (read: golf) to-
gether frequently and have developed trust. Leveraging the trust and
understanding that your management has built rapport with other
executives is an efficient way to lead.

how to eat the S#!@ Sandwich and Survive
There’s no way around it: you are going to need to eat a certain number of
s#!@ sandwiches as you try to ship your product. Some of these sandwich-
es come from partners. Some come from your bosses or investors. Some
come from whiny engineers or competition. You need to accept right now
that there are times when your life as a team lead is going to really suck.

I once worked on a project at Amazon and had a crisis in which my
senior management freaked out. It was painful. Customers were sending
email to Jeff, and you never hear about the thank-you notes they send, only
the rants.

The thing that helped me survive this near-career-apocalypse was
what the guy sitting next to me said as I waited for the VP to come down
the elevator and deliver my special sandwich. My colleague said, “This
is going to suck for a while, but then it’ll be over.” That stuck with me,
and I’ve said it to others many times—probably more times than I care to
remember.

You can think of these sandwiches like high school. Surviving them is
the point. Your goal, when offered a sandwich, is to keep smiling, eat the
sandwich, and move on. Matt Glotzbach, a product management director
at Google and one of the coolest cucumbers in the patch, once said to me,
“The time to keep your cool is when everyone else is losing theirs.” So eat
the sandwich, keep smiling, and remember what it felt like so that you’re
less inclined to prepare those sandwiches and hand them to your team.

204 | the Shipping greatneSS SkillS

There is one small caveat in my deli advice. In some bad environments,
you may find that you’re eating these sandwiches all day, every day. This
is a bad sign. William Gibson, author of the cyberpunk pioneering book
Neuromancer (Ace) and understander of tech culture extraordinaire, once
said, “Before you diagnose yourself with depression or low self-esteem,
first make sure that you are not, in fact, just surrounding yourself with
assholes.” Sometimes the volume and quality of the sandwiches you are
required to eat is a direct product of the assholes you’re working with.
When this is the case, it’s time to go ship something else, somewhere else.

 205

| 13

That Was Great;
Let’s Do It Again

When you’ve been through the drama, pain, and rigor of a major prod-
uct development cycle, it’s easy to see only your software’s deficiencies. But
if pilots can say, “The best landing is the one you walk away from,” you can
say the same thing about your software. The software that ships is the best
software. Shipping is the point. So what happens after you ship?

Aaron Abrams, a program manager at REI.com, says, “There are two
great days for a program manager: the day you get your project and the
day you ship it.” Hopefully you celebrated the day after you shipped your
project (see Chapter 7). You’re now ready for the other great day—the day
you get your next project.

Before you start your next project, take a step back and look at the envi-
ronment around you. Software is never complete. You need to ask yourself
if you should start work on V2 or start something new. At some point, you
will start to experience a law of diminishing returns on your investment
in a product. The investment I’m talking about is your time. Your capital,
the venture capital of time, is one of the most leveraged assets you have.

If you’re any good at all—and if you can execute according to the
guidance in this book, you will be—you will always have options for your
next project. Consider what the options mean to your business and to you
personally. It may be time to work with a new team or on a new product.
Maybe you need to rebuild the product you just shipped, because you mis-
understood what customers needed. Or maybe you simply love working
with that engineering manager pal of yours. There are dozens of dimen-
sions to evaluate, and it will take you some time to process them.

All of the skills you brought to bear to define your last product are
meaningful at this introspective stage. You can think about the cus-
tomer problems, your business’s unique advantages, and your personal
strengths. The right investment for you will likely be personal, and even if
your next project is something that’s assigned directly to you by someone

206 | the Shipping greatneSS SkillS

else, you still have a choice about how you approach it and on what you’re
going to focus.

A great leader ships the right software, not just anything that comes
across his or her desk. If you want to see great personal and professional
returns, you must be deliberate about how you invest your time.

After you make a decision about what you will do next, you have to
transition to your next project. Aaron Abrams also competes in Ironman
triathlons. (An Ironman is one of the few things I’d consider harder than
remaining employed while attempting to ship.) He says that “transitions—
you know, from the swim to the bike, or the bike to the run—are the hard
part.” I think any part of an Ironman is hard, but he makes a good point.
In software, the transition into a new project is always challenging.

Project transitions are challenging because, just as in Ironman races,
you have to stop doing things one way (i.e., operating in detail-focused,
prelaunch mode) and start doing things another way (i.e., engaging in
brainstorming and strategery). Transitions are also challenging because
you’re trying to do two jobs. The first job is maintaining the software that’s
in production and is almost certainly experiencing some kind of growing
pains. The second job is spinning up the new project, and if it’s like most
projects, it requires a huge amount of activation energy to kick-start and
substantial mental toughness to survive the inevitable shin bashing as
that kick-starter smacks you.

Being in transition is a tough place to be, so make the transition short.
Make it shorter than you think it should be. If you’ve ever noticed that
things at the office go better than you’d expect when you take a long vaca-
tion, you’ll find that the same is true when you walk away from your old
project. The team will probably slow down for a bit. They’ll probably do
things that make you slap your forehead or make decisions that cause
you to groan horribly as you pour your coffee—but it’s not your problem
anymore. Worse than that, you may see your product, under its new lead-
ers, in a Superbowl ad. This happened to me, and boy, did I second-guess
my decision to leave!

http://en.wikipedia.org/wiki/Strategery

 that waS great; let’S do it again | 207

All of this drama will eventually disappear because you’re shipping
something new. You shipped V1 of their software, and it’s not yours any-
more. Wish your former team good luck and get back to work. Check in on
your mission and your strategy, and start writing your next press release.

Good luck!

chriS vander Mey

Seattle, Washington
2012

D
ow

n
lo

a
d
 f
ro

m
 W

o
w

!
e
B
o
o
k

<
w

w
w

.w
o
w

e
b
o
o
k.

co
m

>

 209

	 appendix	a	 |

10 Principles of Shipping

1.  You are not the boss—team leads are servants and exist to serve
the engineering team.

2.  Start with the user and work outward.
3.  Solve a hard problem that lots of people share, in a unique way.
4.  Bad news is good news (via Jack Welch).
5.  Seek first to understand, then to be understood (via Stephen

Covey).
6.  Build the simplest thing that can possibly work.
7.  You ship the software you have, not the software you want.
8.  If you cannot measure it, you cannot improve it (via Lord Kelvin).
9.  You’ll never do the whole job, so first do that which only you can do.

10.  Always Be Shipping.

 211

	 appendix	B	 |

Essential Artifacts
Your Team Needs

As you manage your product development, you’ll produce many docu-
ments, guides, checklists, and other artifacts. This list is a summary of
the artifacts you should expect to produce throughout your product life
cycle. You will probably need them all, so they’re presented in no particu-
lar order. You can find templates for some of these artifacts available for
download from www.shippinggreatness.com.

•	 An on-call rotation—copied into a wallet-sized list of pagers and cell
phone numbers.

•	 A wiki on “Who to contact” in the case of problems, emergencies, or
questions. This should include owners and contact information for
legal, PR, marketing, the product team, engineering, and network
operations (or whatever your production infrastructure equivalent is).

•	 A mission statement.
•	 A clear strategy for the next two years.
•	 A one-page document that summarizes the who/what/why/when/

how of your product.
•	 A product requirements document, also known as a functional spec.
•	 A press release.
•	 Wireframe mocks or napkin sketches.
•	 An internal FAQ with a subset of questions tagged for an external

FAQ as preliminary support content.
•	 A communications document that covers your key message, potential

dangerous questions, and responses to those questions.
•	 T-shirts for when you launch.
•	 A development schedule that includes testing time.
•	 A two-year roadmap.
•	 For infrastructure projects, an internal customer list and schedule of

adoption.

http://www.shippinggreatness.com

212 | appendiceS

•	 For externally facing products, a trusted tester list.
•	 A feature request list, with the top three features requested by custom-

ers highlighted (internal and external).
•	 An open issues list with the status of those open issues clearly marked.
•	 Ongoing meeting notes. It’s nice to have a document that contains all

the historical meeting notes for the project.
•	 A release plan/protocol.
•	 A production change list of what features were released and when.

Very useful when troubleshooting customer problems.
•	 A production design document that forecasts growth projections and

hardware allocation requirements.
•	 Patent filings, trademark filings, and copyright filings.
•	 A privacy statement.
•	 Great metrics—including internal dashboards and a few sanitized

metrics for external consumption.
•	 Screenshots for slides/presentations/reviews/launches.
•	 Quarterly objectives for your team and previous quarterly objectives

with status marked clearly.
•	 A bug dashboard and list of bugs that block each release.
•	 Cause of error reports or postmortems.
•	 Meeting notes and schedules for: your team’s weekly meeting, UI

review, product review, engineering review, bug triage, legal re-
views, weekly business development, and weekly customer support
check-ins.

D
ow

n
lo

a
d
 f
ro

m
 W

o
w

!
e
B
o
o
k

<
w

w
w

.w
o
w

e
b
o
o
k.

co
m

>

 213

	 appendix	C	 |

References and
Further Reading

product definition

Kawasaki, Guy. The Art of the Start: The Time-Tested, Battle-Hardened

Guide for Anyone Starting Anything. New York: Portfolio Hardcover,
2004.

Ries, Eric. The Lean Startup: How Today’s Entrepreneurs Use Continuous

Innovation to Create Radically Successful Businesses. New York: Crown
Business, 2011.

managing management

Bossidy, Larry, and Ram Charan. Execution: The Discipline of Getting

Things Done. New York: Crown Business, 2002.
Drucker, Peter F. The Effective Executive: The Definitive Guide to Getting

the Right Things Done, Revised Edition. New York: HarperBusiness,
2006.

Fisher, Robert, William L. Ury, and Bruce Patton. Getting to Yes:

Negotiating Without Giving In, Second Edition. New York: Penguin
Books, 1991.

Kotter, John P. Leading Change. Boston: Harvard Business School Press,
1996.

214 | appendiceS

engineering management

DeMarco, Tom, and Timothy Lister. Peopleware: Productive People and

Teams, Second Edition. New York: Dorset House, 1999.

UX

Pruitt, John, and Tamara Adlin. The Persona Lifecycle: Keeping People in

Mind Throughout Product Design. San Francisco: Morgan Kaufmann,
2006.

Tufte, Edward R. The Visual Display of Quantitative Information, Second
Edition. Cheshire, Connecticut: Graphics Press, 2001.

Williams, Robin. The Non-Designer’s Design Book, Third Edition.
Berkeley, California: Peachpit Press, 2008.

metrics

Goldratt, Eliyahu M., and Jeff Cox. The Goal: A Process of Ongoing

Improvement, Third Revised Edition. Great Barrington, Massachusetts:
North River Press, 2004.

Communications

De Bono, Edward. Six Thinking Hats. Boston: Back Bay Books, 1999.

Schwartz, Tony, and Catherine McCarthy. “Manage Your Energy, Not
Your Time.” Harvard Business Review, October 2007, 63–72. http://

hbr.org/2007/10/manage-your-energy-not-your-time/ar/1.

 215

How to Contact Us

We’d like to hear from you
Please address comments and questions concerning this book to the
publisher:

O’Reilly Media, Inc.
1005 Gravenstein Highway North
Sebastopol, CA 95472
(800) 998-9938 (in the United States or Canada)
(707) 829-0515 (international or local)
(707) 829-0104 (fax)

We have a web page for this book, where we list errata, examples, and any
additional information. You can access this page at:

http://oreil.ly/shipping_greatness

The author also maintains a website for this book at:

http://www.shippinggreatness.com

To comment or ask technical questions about this book, send email to:

bookquestions@oreilly.com

For more information about our books, courses, conferences, and news,
see our website at http://www.oreilly.com.

Find us on Facebook: http://facebook.com/oreilly

Follow us on Twitter: http://twitter.com/oreillymedia

Watch us on YouTube: http://www.youtube.com/oreillymedia

http://www.shippinggreatness.com
mailto:bookquestions@oreilly.com
http://www.oreilly.com
http://facebook.com/oreilly
http://twitter.com/oreillymedia
http://www.youtube.com/oreillymedia

216 | errata and eBook inforMation

Safari® Books online
Safari Books Online (www.safaribooksonline.com) is an on-
demand digital library that delivers expert content in both
book and video form from the world’s leading authors in

technology and business.
Technology professionals, software developers, web designers, and

business and creative professionals use Safari Books Online as their pri-
mary resource for research, problem solving, learning, and certification
training.

Safari Books Online offers a range of product mixes and pricing
programs for organizations, government agencies, and individuals.
Subscribers have access to thousands of books, training videos, and
prepublication manuscripts in one fully searchable database from pub-
lishers like O’Reilly Media, Prentice Hall Professional, Addison-Wesley
Professional, Microsoft Press, Sams, Que, Peachpit Press, Focal Press,
Cisco Press, John Wiley & Sons, Syngress, Morgan Kaufmann, IBM
Redbooks, Packt, Adobe Press, FT Press, Apress, Manning, New Riders,
McGraw-Hill, Jones & Bartlett, Course Technology, and dozens more. For
more information about Safari Books Online, please visit us online.

D
ow

n
lo

a
d
 f
ro

m
 W

o
w

!
e
B
o
o
k

<
w

w
w

.w
o
w

e
b
o
o
k.

co
m

>

http://www.safaribooksonline.com/content
http://www.safaribooksonline.com/subscriptions
http://www.safaribooksonline.com/organizations-teams
http://www.safaribooksonline.com/government
http://www.safaribooksonline.com/individuals
http://www.safaribooksonline.com/publishers
http://www.safaribooksonline.com

	Preface
	Part One: The Shipping Greatness Process
	Chapter 1: How to Build a Great Mission and Strategy
	Chapter 2: How to Define a Great Product
	Chapter 3: How to Build a Great User Experience
	Chapter 4: How to Achieve Project Management Greatness on a Budget
	Chapter 5: How to Do a Great Job Testing
	Chapter 6: How to Measure Greatness
	Chapter 7: How to Have a Great Launch

	Part Two: The Shipping Greatness Skills
	Chapter 8: How to Build a Shipping-Ready Team
	Chapter 9: How to Build Great, Shippable Technology
	Chapter 10: How to Be a Great Shipping Communicator
	Chapter 11: How to Make Great Decisions
	Chapter 12: How to Stay a Great Person While Shipping
	Chapter 13: That Was Great; Let’s Do It Again

	Appendix A: 10 Principles of Shipping
	Appendix B: Essential Artifacts Your Team Needs
	Appendix C: References and Further Reading
	How to Contact Us

