
ptg999

ptg999

HTML5
Developer’s
Cookbook

ptg999

The Developer’s Library Series from Addison-Wesley provides

practicing programmers with unique, high-quality references and

tutorials on the latest programming languages and technologies they

use in their daily work. All books in the Developer’s Library are written by

expert technology practitioners who are exceptionally skilled at organizing

and presenting information in a way that’s useful for other programmers.

Developer’s Library books cover a wide range of topics, from open-

source programming languages and databases, Linux programming,

Microsoft, and Java, to Web development, social networking platforms,

Mac/iPhone programming, and Android programming.

Visit developers-library.com for a complete list of available products

Developer’s Library Series

ptg999

HTML5
Developer’s
Cookbook

Chuck Hudson

Tom Leadbetter

Upper Saddle River, NJ • Boston • Indianapolis • San Francisco
New York • Toronto • Montreal • London • Munich • Paris • Madrid

Capetown • Sydney • Tokyo • Singapore • Mexico City

ptg999

Many of the designations used by manufacturers and sellers to distinguish
their products are claimed as trademarks. Where those designations appear
in this book, and the publisher was aware of a trademark claim, the desig-
nations have been printed with initial capital letters or in all capitals.

The authors and publisher have taken care in the preparation of this book,
but make no expressed or implied warranty of any kind and assume no
responsibility for errors or omissions. No liability is assumed for incidental
or consequential damages in connection with or arising out of the use of the
information or programs contained herein.

The publisher offers excellent discounts on this book when ordered in quan-
tity for bulk purchases or special sales, which may include electronic ver-
sions and/or custom covers and content particular to your business,
training goals, marketing focus, and branding interests. For more informa-
tion, please contact:

U.S. Corporate and Government Sales
(800) 382-3419
corpsales@pearsontechgroup.com

For sales outside the United States, please contact:

International Sales
international@pearson.com

Visit us on the Web: informit.com/aw

Library of Congress Cataloging-in-Publication Data

Hudson, Chuck, 1969–
HTML5 developer’s cookbook / Chuck Hudson, Tom Leadbetter.

 p. cm.
 Includes index.
ISBN 978-0-321-76938-1 (pbk. : alk. paper)

1. HTML (Document markup language) 2. Internet programming. 3. Web
site development. I. Leadbetter, Tom, 1983– II. Title.
 QA76.76.H94H836 2012
 006.7’4—dc23
 2011040007

Copyright © 2012 Pearson Education, Inc.

All rights reserved. Printed in the United States of America. This publication
is protected by copyright, and permission must be obtained from the pub-
lisher prior to any prohibited reproduction, storage in a retrieval system, or
transmission in any form or by any means, electronic, mechanical, photo-
copying, recording, or likewise. To obtain permission to use material from
this work, please submit a written request to Pearson Education, Inc., Per-
missions Department, One Lake Street, Upper Saddle River, New Jersey
07458, or you may fax your request to (201) 236-3290.

ISBN-13: 978-0-321-76938-1
ISBN-10: 0-321-76938-4
Text printed in the United States on recycled paper at RR Donnelley in
Crawfordsville, Indiana.
First printing, December 2011

Editor-in-Chief
Mark Taub

Senior Acquisitions
Editor
Trina MacDonald

Development
Editor
Michael Thurston

Managing Editor
John Fuller

Project Editor
Anna Popick

Copy Editor
Kim Wimpsett

Indexer
Jack Lewis

Proofreader
Lori Newhouse

Technical
Reviewers
Evan Burchard
Siddharth Ram
Tim Wright

Publishing
Coordinator
Olivia Basegio

Cover Designer
Gary Adair

Compositor
Rob Mauhar

ptg999

❖

To Alex, my grandfather, thank you for sharing your love of life and books.

—Chuck

To Lucy, thanks for being you.

—Tom

❖

ptg999

This page intentionally left blank

ptg999

Contents at a Glance

Introduction xix

Acknowledgments xxvii

About the Authors xxix

1 New Structural Elements in HTML5 1

2 Grouping, Text-Level, and Redefined
Semantics 31

3 Browser Handling in HTML5 55

4 New Layout and Style Techniques with CSS3 69

5 HTML5 Web Forms 95

6 Drawing with Canvas 127

7 Embedding Video with HTML5 163

8 Embedding Audio with HTML5 187

9 Changing Browser History 207

10 Location Awareness with the Geolocation API 231

11 Client-Side Storage 259

12 Communication and Threading 297

13 Browser Experience in HTML5 319

14 Working with Local Files 359

15 Integrating Device Data 389

Recipes 411

Index 415

ptg999

This page intentionally left blank

ptg999

Contents

Introduction xix

Acknowledgments xxvii

About the Authors xxix

1 New Structural Elements in HTML5 1

BEGINNER RECIPE:
Building an HTML5 Starter Document 2

doctype 2

Character Encoding 2

JavaScript and CSS Links 3

Syntax Writing Style 3

Where Do All the New Elements Come From? 4

BEGINNER RECIPE:
Using the header Element to Create a Site Header 5

BEGINNER RECIPE:
Using the hgroup Element to Group Headings 7

BEGINNER RECIPE:
Creating Navigation with the nav Element 8

INTERMEDIATE RECIPE:
Using the New article Element 11

INTERMEDIATE RECIPE:
Grouping Content with the section Element 12

Which Should You Use: article or section? 14

BEGINNER RECIPE:
Creating a Sidebar with the aside Element 15

BEGINNER RECIPE:
Using the footer Element 17

INTERMEDIATE RECIPE:
Using the HTML5 Outliner to Ensure the Correct
Structure 19

ADVANCED RECIPE:
Using All the New Elements to Build a News Page 21

ADVANCED RECIPE:
Using All the New Elements to Build a Search Results
Page 25

Summary 30

ptg999

Contentsx

2 Grouping, Text-Level, and Redefined
Semantics 31

BEGINNER RECIPE:
Marking Up Figures and Captions with the figure and
figcaption Elements 31

BEGINNER RECIPE:
Marking Up the Date and Time with the time
Element 34

BEGINNER RECIPE:
Making a Native Toggle Widget with the details
Element 35

BEGINNER RECIPE:
Using the address Element for Contact
Information 37

BEGINNER RECIPE:
Highlighting Text with the mark Element 38

BEGINNER RECIPE:
Using the s Element to Show Inaccurate or Irrelevant
Content 39

Changes to Existing Elements 39

The cite Element 39

The ol Element 40

The dl Element 42

The small Element 44

The b and strong Elements 44

The i and em Elements 45

The abbr Element 46

The hr Element 46

Elements That Are No More 46

BEGINNER RECIPE:
Wrapping Links Around Elements 47

INTERMEDIATE RECIPE:
Adding Semantic Information with Microdata 47

INTERMEDIATE RECIPE:
Using WAI-ARIA with HTML5 49

ADVANCED RECIPE:
Marking Up an Article Page with Comments 51

Summary 54

ptg999

Contents xi

3 Browser Handling in HTML5 55

BEGINNER RECIPE:
Dealing with Internet Explorer 55

Using JavaScript to Make HTML5 Compatible 55

Making CSS Compatible 56

Boilerplates 57

BEGINNER RECIPE:
Testing for HTML5 Features 57

INTERMEDIATE RECIPE:
Leveraging jQuery to Replace a Calendar 59

INTERMEDIATE RECIPE:
Using Modernizr to Detect Features 62

Polyfilling 66

Useful HTML5 Verification Sites 67

Summary 67

4 New Layout and Style Techniques with CSS3 69

INTERMEDIATE RECIPE:
Creating a Responsive Design with CSS3
Media Queries 69

Sensible Usage 76

Targeting the iPhone and Android Devices 76

BEGINNER RECIPE:
Using Custom Fonts with @font-face 77

File Formats and the Cross-Browser Fix 78

Type Services 79

INTERMEDIATE RECIPE:
Making Buttons with CSS Gradients and
Multiple Backgrounds 80

INTERMEDIATE RECIPE:
Enhancing a Site with Transformations and
Transitions 84

ADVANCED RECIPE:
Creating Animations with CSS 89

Summary 94

5 HTML5 Web Forms 95

Validation 95

HTML 4 Input Types 95

ptg999

Contentsxii

BEGINNER RECIPE:
Creating a Form to Collect Contact Information 97

input type="email" 98

input type="tel" 99

input type="url" 100

BEGINNER RECIPE:
Creating a Search Form with input
type="search" 101

BEGINNER RECIPE:
Creating Calendar and Time Controls 102

input type="datetime" 102

input type="datetime-local" 103

input type="date" 103

input type="time" 104

input type="month" 104

input type="week" 104

Placing Restrictions on Dates and Times 104

BEGINNER RECIPE:
Creating a Number Picker 105

BEGINNER RECIPE:
Creating a Slider (Without the Need for JavaScript) 106

BEGINNER RECIPE:
Creating a Color Picker 107

BEGINNER RECIPE:
Displaying Results with the output Element 108

BEGINNER RECIPE:
Using Form Placeholder Text 109

BEGINNER RECIPE:
Creating an Autocomplete Feature with list and
datalist 110

BEGINNER RECIPE:
Tracking the Completion of a Task with the progress
Element 111

BEGINNER RECIPE:
Measuring with the meter Element 112

BEGINNER RECIPE:
Jumping to a form Element When the
Page Loads 114

BEGINNER RECIPE:
Allowing Multiple Entries 115

ptg999

Contents xiii

BEGINNER RECIPE:
Basic Validation with the required Attribute 116

INTERMEDIATE RECIPE:
Writing Your Own Validation Rule 117

BEGINNER RECIPE:
Limiting User Input 118

step 118

min, max 118

formnovalidate, novalidate 119

INTERMEDIATE RECIPE:
Customizing and Styling the Form 119

Error Messages 121

ADVANCED RECIPE:
Putting It All Together to Make a Sign-Up Form 121

Summary 125

6 Drawing with Canvas 127

Canvas Overview 127

Getting Started 128

X and Y Coordinates 129

BEGINNER RECIPE:
Laying a Grid on the Canvas 130

Canvas Tools 134

BEGINNER RECIPE:
Making Simple Shapes and Lines 134

Drawing and Styling a Rectangle or Square 135

Applying Gradients to Shapes 137

Drawing Lines and Paths 138

INTERMEDIATE RECIPE:
Drawing Polygons with a Path 139

INTERMEDIATE RECIPE:
Drawing Arcs and Circles 143

Drawing Curves 143

BEGINNER RECIPE:
Adding Text 144

BEGINNER RECIPE:
Drawing an Image 145

INTERMEDIATE RECIPE:
Cropping an Image 146

ptg999

Contentsxiv

INTERMEDIATE RECIPE:
Animating a Sprite Map 147

Canvas Transformations 150

ADVANCED RECIPE:
Animating an Image 151

ADVANCED RECIPE:
Animating a Vertical Bar Chart 155

Summary 162

7 Embedding Video with HTML5 163

BEGINNER RECIPE:
Including Video with the video Element 163

Browser and Device Support 164

HTML5 and Video Codecs 165

Why Should You Care About Codecs? 165

INTERMEDIATE RECIPE:
Enabling Video for All Browsers 166

Adding Fallback Content for Older Browsers 167

New Video Attributes 170

INTERMEDIATE RECIPE:
Creating a Video with Subtitles and Captions 173

Other Subtitle Styling Options 176

The Media API 177

ADVANCED RECIPE:
Making Your Own Custom Controls 178

Summary 186

8 Embedding Audio with HTML5 187

BEGINNER RECIPE:
Including Audio with the audio Element 187

INTERMEDIATE RECIPE:
Enabling Audio for All Browsers 188

Adding Fallback Content for Older Browsers 189

New Audio Attributes 190

The src Attribute 190

The preload Attribute 190

The loop Attribute 190

The autoplay Attribute 191

The controls Attribute 191

ptg999

Contents xv

The Media API 192

INTERMEDIATE RECIPE:
Creating a Beat Mixer 193

ADVANCED RECIPE:
Adding Streaming Radio 197

Summary 206

9 Changing Browser History 207

History Basics 207

Browser Compatibility 208

BEGINNER RECIPE:
Adding to History with pushState 208

BEGINNER RECIPE:
Creating an Image Viewer 211

INTERMEDIATE RECIPE:
Popping State in the Image Viewer 214

BEGINNER RECIPE:
Changing History with replaceState 216

INTERMEDIATE RECIPE:
Changing the Page History 218

ADVANCED RECIPE:
Using Advanced State Data Objects to Pass Information
Across Pages 221

INTERMEDIATE RECIPE:
Testing History Security 225

Helpful Libraries 228

Summary 228

10 Location Awareness with the Geolocation API 231

Geolocation Overview 231

Browser Compatibility 232

Where in the World: getCurrentPosition 233

BEGINNER RECIPE:
Determining Your Location with a Simple
getCurrentPosition 233

Location Privacy 237

INTERMEDIATE RECIPE:
Mapping a Location with getCurrentPosition 237

INTERMEDIATE RECIPE:
Determining Distance with PositionOptions 243

ptg999

Contentsxvi

ADVANCED RECIPE:
Following a Moving Location with
watchPosition 250

Summary 257

11 Client-Side Storage 259

Client-Side Storage Overview 259

Data Security 260

Keys and Values: sessionStorage and
localStorage 261

BEGINNER RECIPE:
Getting and Setting Session Storage 263

Chrome Developer Tools for Viewing Storage 265

BEGINNER RECIPE:
Styling from Session Storage 266

INTERMEDIATE RECIPE:
Storing Forms with Local Storage 271

ADVANCED RECIPE:
Catching Events in Local Storage 275

Web SQL Database API 283

ADVANCED RECIPE:
Using a Web Database for a Grocery List 286

Summary 295

12 Communication and Threading 297

WebSocket API Overview 297

BEGINNER RECIPE:
Talking Through Web Sockets 299

Threading Through Web Workers 302

BEGINNER RECIPE:
Creating a Web Worker 304

INTERMEDIATE RECIPE:
Adding Two-Way Communication 308

ADVANCED RECIPE:
Leveraging a Shared Web Worker 311

Summary 318

13 Browser Experience in HTML5 319

Drag and Drop API 319

BEGINNER RECIPE:
Dragging and Dropping Across divs 321

ptg999

Contents xvii

ADVANCED RECIPE:
Leveraging Events and dataTransfer 325

Application Cache and API 334

Browser Cache Security 334

Referencing a Manifest File 335

BEGINNER RECIPE:
Creating a Manifest File 335

CACHE 336

FALLBACK 336

NETWORK 337

Updating the Cache via the Manifest 337

BEGINNER RECIPE:
Using Web Pages Offline 337

Application Cache API 340

Notification API 341

Notification Permissions 343

Browser Compatibility 343

BEGINNER RECIPE:
Displaying a Simple Notification 344

ADVANCED RECIPE:
Creating a Tweet Notification Page 348

Summary 357

14 Working with Local Files 359

File API Overview 359

File API Security 360

BEGINNER RECIPE:
Getting File Attributes 360

BEGINNER RECIPE:
Processing Multiple Files with Drag and Drop 362

The FileReader Interface 367

INTERMEDIATE RECIPE:
Previewing Images Through readAsDataURL 368

ADVANCED RECIPE:
Parsing a CSV File with readAsText 373

File API Extended Specifications 381

ADVANCED RECIPE:
Creating a Local File 382

Summary 388

ptg999

Contentsxviii

15 Integrating Device Data 389

Brief Device APIs History 389

Contacts API 391

BEGINNER RECIPE:
Retrieving All Contacts and Mobile Numbers 393

Messaging API 396

Network Information API 397

Battery Status Events 398

HTML Media Capture 398

INTERMEDIATE RECIPE:
Capturing Pictures with File Input 399

Device Orientation and Motion Events 403

INTERMEDIATE RECIPE:
Creating a Bubble Level 404

Summary 409

Recipes 411

Index 415

ptg999

Introduction

Hypertext Markup Language (HTML) is a core language for creating and structur-
ing web pages. For more than 20 years developers have been writing HTML, and for
the first few years the language underwent radical changes, but in the late 1990s things
slowed down a bit. Until now.

A Brief History of HTML
In 1991 Sir Tim Berners-Lee wrote a document called “HTML Tags,” which
described 20 elements that would be used for writing web documents. By mid-1993
the Internet Engineering Task Force (IETF) had published a proposal for the first
HTML specification. The proposal draft expired, and it was not until November 1995
that the first specification was published: not HTML 1.0, but HTML 2.0.

HTML 3.2 was released in 1997, and this was followed up by HTML 4, published
in 1998. HTML 4 had three variations: Strict, Transitional, and Frameset. During
this period, browser vendors, such as Microsoft and Netscape, started implementing
HTML in slightly different ways, and we had our first round of browser wars (http://
en.wikipedia.org/wiki/Browser_wars).

XHTML
After the release of HTML 4, the World Wide Web Consortium (W3C) decided to
stop the evolution and development of HTML and work on Extensible Hypertext
Markup Language (XHTML) 1.0, an XML-based language that was considered the
future of the Internet. There were no new elements in XHTML—in fact, the specifi-
cation was the same as HTML 4—but developers had to conform to new syntax rules:
Tags had to be closed, or self-closed, and attributes had to be quoted. This required
stricter, tighter coding standards and ensured that developers would be using a single
style of writing. Around this time in 2001, Cascading Style Sheets (CSS) started
becoming more prominent and popular, and with the rise of blogging, the increased
awareness of web standards was significant.

Beginning in 2002, the W3C released drafts of XHTML 1.1. While XHTML 1
was essentially HTML with a splash of XML, XHTML 1.1 was essentially XML.
Although it was supposed to be more forward-thinking, it was not backward compat-
ible, so if it was used in website development, the website would not work in current
and older browsers.

http://en.wikipedia.org/wiki/Browser_wars
http://en.wikipedia.org/wiki/Browser_wars

ptg999

Introductionxx

This caused concern among the web community, with browser vendors, and even
within the W3C itself. Not everyone was convinced that XML was the future markup
of the web.

Web Forms, Web Apps, and the WHATWG
In 2004, individuals from Apple, Mozilla, and Opera began working on their own
specification, aiming at creating backward-compatible code that could be used to
create web applications. W3C rejected this proposal, and this led to a group being
formed calling itself the Web Hypertext Application Technology Working Group
(WHATWG).

The WHATWG began working on Web Forms 2.0 and Web Applications 1.0. The
editor for the specifications is Ian “Hixie” Hickson, and issues and ideas are raised via
a public mailing list. Although initially there was work on two specifications, Web
Forms 2.0 and Web Applications 1.0, they have now been merged into one specifica-
tion, called HTML5.

XHTML 2 versus HTML5
So, while WHATWG was developing HTML5, over at the W3C, the XHTML 2
specification was languishing. In 2006, the W3C decided that it had made the wrong
decision in abandoning HTML in the previous years, and although it would still
develop XHTML 2, it would once again look at the development of HTML. The
W3C decided to use the work done so far by WHATWG as the starting point for a
new version of HTML.

Although this was positive news, it also led to a confusing state because there were
now currently three different types of markup being worked on: two by the W3C,
HTML 5 and XHTML 2; and one at the WHATWG, HTML5 (notice there is no
space compared to the W3C “HTML 5”). So, with HTML5/HTML 5, the specifica-
tion was being developed at the same time but by two groups.

WHATWG operates in a very different manner than the W3C, and it is able to
move at a much faster pace. Because of the public mailing list at WHATWG, ideas
were put forward regularly, and web developers were able to question some of the
decisions made. The specification team was, and still is, able to implement good ideas,
reject bad ideas, and change or remove items of the specification based on community
feedback quickly. HTML5 was developing much quicker at WHATWG than at the
W3C.

After a couple of years of this, in 2009, the W3C announced it had stopped work
on XHTML 2. HTML5 had “won.”

So, where does that leave the specification? Well, it is still being developed primar-
ily by the WHATWG, while the W3C then takes the specification and puts it through
review.

The process has not exactly been perfect, but there are exciting outcomes.

ptg999

The Principles of HTML5 xxi

Which Specification Should I Be Looking At?
There is a version of the specification at the W3C (http://dev.w3.org/html5/spec/spec.
html) and one at the WHATWG (http://whatwg.org/specs/web-apps/current-work/
multipage/). Both are huge, heavy documents. In March 2011, Ben Schwarz launched
the “WHATWG HTML5 specification for web developers” (http://developers.
whatwg.org), which we suggest using. You can also keep up-to-date with the speci-
fication via the mailing list if you are interested in the daily discussions: http://lists.
whatwg.org/htdig.cgi/whatwg-whatwg.org.

The base HTML5 specification is just that, a base. A major shift has occurred to
match the speed at which the technology is growing. New add-on specifications are
being worked on all the time by teams in both the WHATWG and the W3C, and
they include features such as network connection information and device camera
information. Browser vendors are working together to help define these features and
fast track the inclusion of the functionality into their browsers. The next couple years
will prove to be very exciting.

The Principles of HTML5
HTML5 has been created in a way that supports existing content or, in other words,
is backward compatible. The major concern over the proposed XHTML2 specifica-
tion was that it would break the majority of websites. HTML5 has been built on the
foundations of HTML 4, so browsers can continue to support HTML, not just new
HTML5 elements but all of the things that are in HTML 4. Sites that work now in
HTML 4, or XHTML, are expected to work fine in HTML5.

Using HTML5 means you can continue to code in the style that you have used
previously. We will cover this more in Chapter 1, but HTML5 has been written with
developers in mind, so you can keep using HTML syntax or XHTML syntax, and
browsers will know what to do.

HTML5 also tells the browsers how it should handle errors caused by incorrect
markup implementation. Previously, browsers would interpret the errors themselves,
and thus each browser would have its own quirks. HTML5 has been written for devel-
opers like us and for browser vendors so that in the not too distant future, we are all
working to and from the same standard.

Perhaps the true power of HTML5 is how it addresses the needs for web applica-
tion developers. Because browsers are so powerful, we can create websites that are
very much like applications: They can provide photo sharing, drawing, file editing,
and other features. Previously, these features required layers of JavaScript and a plug-
in such as Java or Flash. But this meant accessibility issues and relied on the stability
of third-party software. HTML5 gives us new standards for how we can create web
applications, with powerful APIs for things such as canvas for drawing, drag and drop,
off line storage, and native video in the browser. With specified standards, browsers will

http://dev.w3.org/html5/spec/spec.html
http://dev.w3.org/html5/spec/spec.html
http://whatwg.org/specs/web-apps/current-work/multipage/
http://whatwg.org/specs/web-apps/current-work/multipage/
http://developers.whatwg.org
http://developers.whatwg.org
http://lists.whatwg.org/htdig.cgi/whatwg-whatwg.org
http://lists.whatwg.org/htdig.cgi/whatwg-whatwg.org

ptg999

Introductionxxii

handle these things correctly and in a stable fashion over time. The web community
will help develop and grow the standards, continuously pushing and improving them,
and developers will not have to create hacks to get these features to work.

What Exactly Is HTML5?
HTML5 is not just one technology. It is more of an umbrella term that has been
adopted for the inclusion of new and enhanced HTML elements, CSS styles, and
JavaScript APIs and events. The intersection of these technologies provides for a wide
range of new features to enhance the user experience, make websites more like native
applications, and integrate to devices. The following are just some of the new or
enhanced functions available:

n Improved semantics
n Forms
n Canvas drawing
n Drag and drop
n Local storage
n Page-to-page messaging
n Desktop notifications
n Video and audio
n Web sockets
n Geolocation
n History
n Microdata

Although not strictly part of the HTML5 specification, geolocation is a cool, new
technology being developed at the same time, so it gets talked about in the same
breath as HTML5. And yes, we are going to talk about geolocation in this book as
well.

Not everything new in web development is HTML5. CSS3 is not HTML5, but
because it is new and very cool, it gets put in the same category as HTML5. CSS is
a completely different language and technology than HTML. CSS is presentation;
HTML is structure. You can do some pretty awesome things with CSS3, but develop-
ers and the community should be aware that there is a difference.

And although we do not want to get into a debate over whether HTML5 is a Flash
killer (it’s not), the bottom line of HTML5 is that there is now an incredible amount
of functionality built directly into the browser, and it is all standard.

ptg999

The Cookbook Style xxiii

Does HTML5 Have a Logo?
Yes, HTML5 sure does have a logo. In years gone by, web developers and site owners
have put icons on their site showing that they adhere to various W3C guidelines, such
as (X)HTML, CSS, or accessibility. This trend has cooled down a bit recently, but in
early 2011 the W3C released a series of logos, which initially caused quite a stir in the
web community because it grouped many web technologies, including CSS3, under
the HTML5 umbrella. As mentioned, CSS3 is not HTML5, but with the W3C seem-
ingly admitting otherwise, the web community raised its concerns.

Thankfully, the W3C changed its aim and definition of the logos, so the main logo
(Figure I.1) “represents HTML5, the cornerstone for modern web applications,” and
the smaller logos (Figure I.2) “represent aspects of modern web applications and web
sites—style, semantics, graphics, and so forth.”

So, the logos are there for developers who want to show support for the key web
standards. The use of the icons or logo is not required, but they are available if you
would like to use them to show your adoption of the various features. The logos are
available from http://w3.org/html/logo, and there is a logo builder available so you
can select different icons and styles.

The Cookbook Style
This book is designed to be a show-by-example text and follows the cookbook style
of providing a topic explanation and recipes that support the topic. The recipes in
most cases attempt to show how the technology might be applied to real-world coding
problems, rather than showing an example that has no real purpose. Like a recipe used
in the kitchen, it is our hope that you will find these recipes valuable starting points
for your own programming solutions.

Figure I.1 The HTML5 logo
(The HTML5 logo is attributed to the W3C, www.w3.org)

Figure I.2 Smaller icons representing different technologies: (from
left to right) Device Access; 3D, Graphics & Effects; CSS3; Semantics;

Multimedia; Connectivity; Performance & Integration; and Offline
& Storage

www.w3.org
http://w3.org/html/logo

ptg999

Introductionxxiv

In general, the book has been laid out to cover simpler topics in the beginning,
building on these topics to more complex subjects later. We include HTML5 elements
and CSS3 additions in early chapters and migrate to various JavaScript APIs and events
in later chapters. We know that for any one of these topics a whole book could be
written on all the intricacies. This is the case especially with topics such as CSS3, and
there are many good books available.

For each topic covered in a chapter, we have included a table that shows the level of
support for the feature across common browsers. We have included one or more recipes
showing how the technology can be employed. In most cases, the recipes have a series of
instructions, the code listing or listings, and then a walk-through of the recipe. Each rec-
ipe has also been posted on the book website: www.HTML5Developers Cookbook.com.

Note
Various components that make up HTML5, such as JavaScript APIs, are still being defined
through specifications and incorporated into the various browser platforms. We have
focused on those elements that are well specified and supported by one or more of key
browsers. However, it should be understood that HTML5 is constantly growing through
new features and functionality. In Chapter 15, we cover some of these upcoming features
and functions around device integration.

Recipes are divided into three categories: Beginner, Intermediate, and Advanced.
These categories are meant to provide some sense of the difficulty of the topic cov-
ered, while trying to also provide some sense of the amount of effort and time you
may need to allocate to complete the recipe. These are broad categorizations, and the
time and effort required we know will vary greatly by reader.

Third-Party Libraries
If you have been involved in web development for any amount of time, one of the
first things you will notice about the recipes in this cookbook is that very few recipes
leverage third-party libraries of JavaScript such as jQuery and the myriad other librar-
ies available. There are a few minor exceptions to this where we specifically address
support by third-party libraries or integrations to address hurdles that the libraries may
solve. In general, though, we have tried to focus on the core HTML5 technology since
each reader will have their own favorite set of libraries to use and each library will
have its own level of support and integration methods for HTML5 features.

We firmly believe libraries play an important role in the daily web design and
development of sites and applications. We have our own favorite libraries as well. In
many cases, the libraries that have already integrated many of the HTML5 features are
integrating them in a similar manner to how they are defined. So, understanding how
to use the component in generic JavaScript will allow you to more easily leverage the
component in the library of your choice.

www.HTML5DevelopersCookbook.com

ptg999

When Will HTML5 Be Ready for Use? xxv

HTML5DevelopersCookbook.com
By nature, a cookbook of this type is full of code listings that support the recipes.
Because of how fast the HTML5 technology is being expanded, it is essential
that the book have a companion website to keep the material up to date. The
www.HTML5DevelopersCookbook.com website has been set up for this purpose
and has not only electronic versions of the recipes and supporting files available for
execution and download but also additional resources.

When Will HTML5 Be Ready for Use?
There is the common concern that developers cannot or should not start using
HTML5 right now, but that is not the case.

Do I Have to Wait Until 2022?
No, you do not have to wait until 2022! In a 2008 interview, HTML5 editor Ian
Hickson gave a timeline that HTML5 would not be ready until 2022. This was blown
out of proportion in the media and web community. What we believe Hickson meant
was that the final proposed recommendation will not be released until around 2022,
but that does not mean you cannot put to use all the features that have already been
defined and incorporated. As you might have gathered from the discussion of the his-
tory of HTML, specifications take an incredible amount of effort and time, and a
specification has many stages it needs to go through before it is finished.

A popular argument involves the status of CSS 2.1. CSS 2.1 has been in develop-
ment for more than 10 years, and only in the summer of 2011 was it finalized, but in
the years while it was being developed, we all still used CSS, didn’t we? We are now
at CSS3, and who knows when that will be “ready.” This is a prime example of how
the web community is pushing the technology and future of the web ahead of the
specifications.

So, Can I Use HTML5 Now?
Yes, you can use HTML5 now! There will not be a time when you have to stop using
HTML 4 and start using HTML5. Who knows when the W3C will announce that
HTML5 is officially ready; we may all be employing HTML6 features by that point.
But the browser manufacturers are embracing HTML5 features wholeheartedly and
incorporating new features all the time.

Because there are so many different sections and technologies within the specifi-
cation and add-on specifications, you can pick and choose the parts of HTML5 you
want to incorporate; it is not a case of all or nothing. Not all browsers play nice 100
percent of the time, but in Chapter 3, Browser Handling in HTML5, we explain some
methods of browser handling. The latest versions of Firefox, Safari, Opera, Chrome,
and Internet Explorer all support a wide range, albeit slightly different sets, of HTML5

www.HTML5DevelopersCookbook.com

ptg999

Introductionxxvi

features. However, day by day, and even during the writing of this book, we have seen
significant improvements across the browsers, and this will only continue as browsers
remain competitive.

So, grab yourself a text or HTML editor, a handful of browsers, and get plugged in
to some HTML5.

ptg999

Acknowledgments

Acknowledgments from Chuck Hudson
Whenever a challenging project such as this is undertaken, multiple people are
involved in making the project a success. I was fortunate enough to embark on this
book with Tom Leadbetter, my coauthor, who is an extremely talented designer and
developer. Thank you, Tom, for sharing your knowledge, testing mine, and being a
great sounding board for my many crazy ideas.

Thank you to my family: Ma, for your support; Dad, for cutting an entrepreneurial
path; and my grandparents, for your love. To my little one, Sierra, you always succeed
in bringing a smile to my face through your unending questions of why. Never stop
being inquisitive. And especially to Michele, for your endless support of my bleeding-
edge technology addiction and endless “projects.” Your understanding, while I ago-
nized many times over a single line of code, means the world to me.

Tom S., thanks for the many laughs over the years. I look forward to seeing what
adventures are in front of us.

Finally, thanks to all my friends and family for the time to do this project; you have
all taught me that through passion and perseverance anything is possible.

Acknowledgments from Tom Leadbetter
First, let me thank my coauthor, Chuck Hudson, who has helped me throughout the
writing process and provided valuable feedback when it was needed the most, not to
mention him writing some fantastic bits of code!

Thank you to the HTML5 Doctors—Rich Clark, Bruce Lawson, Remy Sharp,
Jack Osborne, Mike Robinson, Oli Studholme, and Brandan Lennox—for their time,
skills, and dedication on the HTML5Doctor.com site, which always provides wonder-
ful knowledge and discussion for the web community.

Finally, to my wife, Lucy: Thank you so much for your support when I was strug-
gling and for your patience when I’ve disappeared for many an evening and weekend.
I’ve done my best with the book, and you’ve helped me all the way.

Joint Acknowledgments
Thanks to Trina MacDonald and Pearson for taking a chance on us and your con-
tinued patience as we tried to constantly improve the text. Thanks to the editors,

ptg999

Acknowledgmentsxxviii

Michael Thurston, Evan Burchard, Tim Wright, Siddharth Ram, and Kim Wimpsett,
for providing advice and detailed, insightful feedback and spotting things we would
never have spotted. Many times you were able to allow us to see the forest for the
trees, and the end result is much better because of it. Thank you for all your time and
effort. We know it does not come without sacrifice, and it provided a good challenge.

Lastly, we would like to thank the entire HTML5 community for sharing your
knowledge and you, the reader, for being trailblazers during a truly exciting time. It is
our hope that you have as much enjoyment with the technologies through this book as
we had in creating it.

ptg999

About the Authors

Chuck Hudson has developed for the web and mobile areas since the 1990s. A suc-
cessful entrepreneur, his passion of solving business problems with technology has led
to consulting companies on various web technologies and speaking at conferences.
Ever a geek-in-training, Hudson is also a certified PHP programmer, PayPal devel-
oper, and teacher of web programming, mobile technology, and entrepreneurship in
the Boston and Atlanta areas. In 2008, he received the eBay Star Developer award for
the first iOS mobile web and native apps.

Tom Leadbetter is a web designer and developer from Liverpool, United Kingdom.
He has been working in the web industry, for various organizations and clients, since
2005 and has been playing about with HTML5 since early 2009. He blogs about it at
HTML5Doctor.com.

ptg999

This page intentionally left blank

ptg999

1
New Structural Elements

in HTML5

HTML5 is not just about interactive voodoo with JavaScript APIs and video
coolness. There are more than 20 new elements you can use to author your web pages,
adding semantics to deliver more accessible, reusable content.

In later chapters, you will learn about new HTML5 form controls and multimedia
elements. In this chapter, you will learn about the new structural elements of header,
hgroup, nav, footer, article, section, and aside, focusing on how, why, and when
to use these new elements, both on their own and when combined. Essentially, you will
be building a basic website template with the new elements, as shown in Figure 1.1.

<header>

<nav>

<article>

<section>

<section>

<aside>

<footer>

Figure 1.1 Basic page structure with new HTML5 elements

ptg999

Chapter 1 New Structural Elements in HTML5 2

BEGINNER RECIPE:
Building an HTML5 Starter Document
You are about to go HTML5, so let’s go to the top of the HTML document. Although
the content in this immediate section does not contain new elements, there is a new
way to write them, so it is best to be aware before we start getting into the body.

doctype
Does this look familiar?

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN"

➥”http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd">

The doctype should be the very first line in an HTML document. Called a Docu-
ment Type Definition (DTD), the doctype is a web standards requirement, and it tells
the browser how to process the document, which is why it must be the first thing in
your HTML document. If you didn’t use a doctype or you put any other code before
the doctype, then the browser would be in quirks mode, and chances are the code
you have written will not work properly in some browsers.

It’s unlikely that you would want to memorize the previous doctype. Why would
you? It’s horrible and clunky. In HTML5, you now have a nice, easy-to-remember
doctype:

<!DOCTYPE html>

Honestly, that’s all it is. This is all you need to tell the browser you are in standards
mode. If a browser does not implement HTML5, the page will still work. If you used
<!doctype html5>, it would trigger quirks mode as well. This doctype has been
chosen so it will always work in browsers, no matter what the latest version of the lan-
guage is.

Note
If you refer to http://infomesh.net/html/history/early/, you can see the earliest HTML
document, from November 13, 1990. The markup is really simple, and its simplicity
reminds us of the HTML5 doctype. In fact, if you added the new doctype to that
page, it would validate!

Character Encoding
The first line you need inside the head is the charset declaration, which tells the
browser how the file should be interpreted; in this case, you want to send it an HTML
document.

In HTML 4, it looks like this:

<meta http-equiv="Content-Type" content="text/html; charset=utf-8">

http://infomesh.net/html/history/early/

ptg999

Beginner Recipe: Building an HTML5 Starter Document 3

But like the doctype, in HTML5 it is now much simpler:

<meta charset="utf-8" />

Easy! Remember, you need this and the doctype on your page.

JavaScript and CSS Links
We can breeze through this little section as well. HTML5 helps you reduce lots of
markup from your page, and you can simplify the calls to JavaScript (and other client-
side scripting file) and CSS. In HTML4, the script and link elements needed a type
attribute, as follows:

<script type="text/javascript" src="my-javascript-file.js"></script>

<link rel="stylesheet" type="text/css" href="my-css-file.css" />

But in HTML5, those lines now look like this:

<script src="my-javascript-file.js"></script>

<link rel="stylesheet" href="my-css-file.css" />

You may be wondering why you can now get away with doing this. Well, one of
the intentions of HTML5 is to make things more sensible when you are coding. So,
if you are linking to a script, the browser assumes it is a JavaScript file, and if you are
using rel=stylesheet, it can only mean you are linking to a CSS file. And don’t
worry, not using the type attribute causes no issues in older browsers.

Syntax Writing Style
In HTML5, using the previous code examples, you can code the page in slightly vari-
ous ways.

You can code in uppercase:

<SCRIPT SRC="MY-JAVASCRIPT-FILE"></SCRIPT>

You can code with no quotation marks:

<script src=my-javascript-file></script>

You can skip a closing slash:

<link rel="stylesheet" type=text/css href=my-css-file.css >

Or you can use a combination!

<LiNK rel="stylesheet" tYPe="text/css" href=my-css-file.css />

All these are fine to use; however, it is strongly encouraged that you pick a style
and stay with it. This is useful not only to yourself but for other developers who may
at some point have to use your code. The syntax style will be consistent. We come
from XHTML backgrounds, so we will close all tags, use lowercase, and use quotation
marks around attributes.

ptg999

Chapter 1 New Structural Elements in HTML5 4

Bringing all the previous together gives you the HTML5 starting page in Listing 1.1.

Listing 1.1 A Simple HTML5 Starting Page

<!DOCTYPE html>

<html lang="en">

<head>

<meta charset="utf-8" />

<title>page title</title>

<script src="my-javascript-file.js"></script>

<link rel="stylesheet" href="my-css-file.css" />

</head>

<body>

<!-- new HTML5 elements are going to go here :) -->

</body>

That is it! Save the page as an .htm (or .html) file, and now you can start filling
the page with great content.

Tip
Validation is a very useful tool for checking why things might be broken, and it is a great
step to have in your development process. However, with HTML5 still developing, there
are no official validator services. The W3C validator, http://validator.w3.org, will check for
HTML5 conformance but does warn that is an experimental feature. Another validator to
test your pages against is http://html5.validator.nu. It is worth testing your pages in both
of these validators.

Where Do All the New Elements Come From?
The new structural elements have been designed to tell the browser what structure the
page has and give the content semantic meaning, but where do their names come from?

In 2005, Google analyzed more than 1 billion web pages to find out what class
names were being used by developers and web authors (http://code.google.com/web-
stats). This enabled Ian Hickson (“Hixie”), the editor of the main HTML5 Specifica-
tion, to start thinking about these new elements. Even though this was five years ago,
which is fairly old in Internet time, it recognizes what content is important and reused
on websites.

The following are the 20 most popular class names used at the time:
footer menu Title

Small Text Content

Header Nav Copyright

Button Main Search

Msonormal Date Smalltext

Body Style1 Top

White link

http://validator.w3.org
http://html5.validator.nu
http://code.google.com/webstats
http://code.google.com/webstats

ptg999

5Beginner Recipe: Using the header Element to Create a Site Header

Although several of these items are presentational (for example, white, style1,
msnormal), others make up the elements included in the HTML5 specification
(footer, nav, header).

So, why use these new elements? Well, HTML5 allows you to give your content
semantic meaning, so, for example, if you have navigation on your page, you can use
the nav element because that element provides meaning to its content.

BEGINNER RECIPE:
Using the header Element to Create a Site
Header
Let’s start at the top of a “typical” web page.

The header element is often the first thing on a web page, and it usually contains
things like a logo, the website name, or the main site navigation. It can be used more
than once on a page, and as will be discussed, it can be used for navigation of a partic-
ular section, not just the overall page. Things like a search form or a table of contents
can be included in a header element. Here is a basic example:

<header>

 <h1>HTML5 Cookbook</h1>

</header>

As the HTML5 specification says, the header element can include navigation aids,
so the element in Figure 1.2 could be marked up with a header that includes the logo,
the main navigation links, and the search form. But depending on the design of the
site, it might mean you have to mark up the nav outside of the header, which is fine.

The following are the possible contents of the header element, several of which are
shown in Figure 1.2:

n Logo
n Site name/title
n Site subtitle
n Search form
n Main navigation

Figure 1.2 A typical header element with a site title, logo,
search, and navigation area

ptg999

Chapter 1 New Structural Elements in HTML5 6

You are not restricted to just one header element per page, and it does not have to
be at the top of a page. As we will explain in further detail later, if you have several
headings on a page, you might consider putting these in a header element. You can
also use more than one h1 tag per page so you may have something like Listing 1.2
(you will learn about the article element later in this chapter).

Listing 1.2 Using Multiple Headers on One Page

<article>

 <header>

 <h1>Chapter 1</h1>

 <p>11.11.2011</p>

 </header>

 <p> Pellentesque habitant morbi tristique senectus et netus et malesuada fames

➥ac turpis egestas. Vestibulum tortor quam, feugiat vitae, ultricies eget,

➥tempor sit amet, ante...</p>

</article>

<article>

 <header>

 <h1>Chapter 2</h1>

 <p>11.12.2011</p>

 </header>

 <p>Pellentesque habitant morbi tristique senectus et netus et malesuada fames

➥ac turpis egestas. Vestibulum tortor quam, feugiat vitae, ultricies eget,

➥tempor sit amet, ante.</p>

</article>

<article>

 <header>

 <h1>Chapter 3</h1>

 <p>11.13.2011</p>

 </header>

<p>Pellentesque habitant morbi tristique senectus et netus et malesuada fames ac

➥turpis egestas. Vestibulum tortor quam, feugiat vitae, ultricies eget,

➥tempor sit amet, ante.</p>

</article>

The code in Listing 1.2 will result in the display shown in Figure 1.3.
You could put an author and date within the header element as well. However, the

HTML5 specification suggests that author information is more suited to the footer
element.

If you have only a single heading (h1-6) in a header element, then there is no need
to use header; the h1-6 on its own will suffice.

ptg999

7Beginner Recipe: Using the hgroup Element to Group Headings

BEGINNER RECIPE:
Using the hgroup Element to Group Headings
Using another new HTML5 element, the hgroup element, you can add further infor-
mation to your header element.

This element is used to group more than one related h1-6 headings. So, if your site
has a subheading, you could use the element shown in Listing 1.3, which generates
the layout in Figure 1.4. Although it is a useful grouping option, hgroup is primarily
intended to tell the document outline (which we will discuss later) which of the head-
ings is most important. In Listing 1.3, the document outline will exclude all headings
except the highest one, in this case, the h1.

Listing 1.3 Excluding All Headings Except h1

<header>

 <hgroup>

 <h1>HTML5 Cookbook</h1>

 <h2>Delicious HTML5 recipes</h2>

 </hgroup>

</header>

Figure 1.3 Multiple header elements on one page (no styling applied)

ptg999

Chapter 1 New Structural Elements in HTML5 8

In Listing 1.3, the h2 is relevant to the content of the h1, so in this instance you can
use an hgroup. If you have just one h1-6 heading, you do not need to use hgroup.

BEGINNER RECIPE:
Creating Navigation with the nav Element
The nav element, as you might expect from its name, is for navigational content. It is
used to link to other pages within the site or to other parts of the page (a table of con-
tents, for example).

The most common use of a nav is for the main navigation on a website. It is com-
mon practice to use an unordered list to code navigation, as shown in Listing 1.4.

Listing 1.4 Traditional Way of Marking Up Navigation

<ul id="nav">

 Home

 About

 Meet the team

 News

 Contact

This code does not change too much when creating nav elements in HTML5. The
code for Figure 1.5 would be something like that shown in Listing 1.5.

Listing 1.5 Navigation Markup in HTML5

<nav>

 Home

 About

 Meet the team

 News

 Contact

</nav>

Figure 1.4 Website with a main logo and a subheader. These would be
inside an hgroup element.

ptg999

9Beginner Recipe: Creating Navigation with the nav Element

You can put nav in the header as well, as shown in Listing 1.6, because the
header allows for introductory and navigational content. However, it does not have
to be in the header, and sometimes its placement might depend on styling issues. It is
also quite common to see a navigation menu in the footer of a page, sometimes dupli-
cating the main site navigation.

Listing 1.6 The nav Element Inside a header Element

<header>

 <h1>My super HTML5 site</h1>

 <nav>

 Home

 About

 News

 Contact us

 </nav>

</header>

It is not necessary to put all links on a page in a nav element. The HTML5 specifi-
cation warns that only blocks of “major navigation” are considered appropriate for the
nav element.

On news or blog sites, it is common to see a sidebar with links to articles and other
pages. The markup in Listing 1.7 is used to produce the element shown in Figure 1.6.

Listing 1.7 Multiple Navigation Groups in a Single nav Element

<nav>

 <h2>Shared</h2>

 Pellentesque habitant

 Morbi tristique senectus

Figure 1.5 Sitewide navigation that would be inside a nav element

ptg999

Chapter 1 New Structural Elements in HTML5 10

 Aenean ultricies mi vitae est

 <h2>Read</h2>

 Pellentesque habitant

 Morbi tristique senectus

 Aenean ultricies mi vitae est

 <h2>Watched/Listened</h2>

 Pellentesque habitant

 Morbi tristique senectus

 Aenean ultricies mi vitae est

</nav>

Notice that there is an h2 to separate groups of links in the nav. In Figure 1.6, the
h2 tags can be used as tab headings, so when a heading is selected by the user, the con-
tent switches (this effect can be achieved with JavaScript). A heading element is not
always necessary but should be used to break up and structure navigation groups when
possible. For styling reasons, you may need to separate the previous example into two
nav structures, which is also fine.

There is a big accessibility win when using the nav element. Assistive technology,
such as screen readers, will be able to search and immediately use groups of navigation
rather than waiting for them to appear on-screen. Traditionally, developers have used
“skip” or “jump” links as the very first things in an HTML document, and they are
usually links to the main navigation or main content. However, using the nav element
means you will soon be able to drop such “skip” menus. The only problem is that cur-
rently assistive technologies have limited support for HTML5 elements. However, they
will soon catch up.

Figure 1.6 Example of grouped navigation in a sidebar. “Shared,”
“Read,” and “Watched/Listened” would each be in a nav.

ptg999

11Intermediate Recipe: Using the New article Element

INTERMEDIATE RECIPE:
Using the New article Element
The article element and the section element (discussed in the next section) are
arguably the two most important new HTML5 structural elements, but they are also
two of the most confusing.

The article element is an independent block of content; it is content that could
exist in its own right and content that is reusable. Consider content you see in an RSS
feed; the content is nearly always individual articles. You could take them out of the
feed, and they make sense on their own.

The HTML5 specification suggests some examples of how an article element can
be used, such as a forum post, a magazine or newspaper article, a blog entry, or a user-
submitted comment.

Listing 1.8 uses the article element to mark up a news item, as displayed in Fig-
ure 1.7.

Listing 1.8 Marking Up a News Item in an article Element

<article>

 <header>

 <h1>HTML5 saves millions!</h1>

 <p>32nd October 2010</p>

 </header>

 <p>Pellentesque habitant morbi tristique senectus et netus et

➥malesuada fames ac turpis egestas. Vestibulum tortor quam, feugiat vitae,

➥ultricies eget…</p>

 <h2>Another heading</h2>

 Lorem ipsum dolor sit amet, consectetuer adipiscing elit.

 Aliquam tincidunt mauris eu risus.

 <blockquote><p>Lorem ipsum dolor sit amet, consectetur adipiscing elit. Vivamus

➥magna. Cras in mi at felis aliquet congue. Ut a est eget ligula molestie

➥gravida. …p></blockquote>

 <h3>And another heading</h3>

 Lorem ipsum dolor sit amet, consectetuer adipiscing elit.

 Aliquam tincidunt mauris eu risus.

 <p>This article was published in the HTML5 Times on Sunday 32nd October, 2010,

➥and was written by Tom Leadbetter</p>

</article>

ptg999

Chapter 1 New Structural Elements in HTML5 12

This blog/news entry is an article because it is a separate piece of content. Would
it appear in syndication (that is, an RSS feed)? Yes! Does it make sense on its own?
Yes! It is an article then.

As you will discover in later chapters, you can nest a section within an article,
and you can nest an article inside a section.

The HTML5 specification says an article is an “independent item of content,” and
it even says that blog comments can be articles.

INTERMEDIATE RECIPE:
Grouping Content with the section Element
The section element is an area of content or an area of a page that nearly always
requires a heading. It can be used to group a whole, well, section of content, and it
can be broken down into further sections if required. It is not to be used as a generic
wrapper for styling purposes. A section can contain article elements, and article
elements can have their content split into sections. So, as you saw with the article
element, you need to think about when to use either article or section. Listing 1.9
is an example of when to use section, as shown in Figure 1.8.

Figure 1.7 Basic article element with content (no styling applied)

ptg999

13Intermediate Recipe: Grouping Content with the section Element

Listing 1.9 Creating a Basic News Page with Sections for Different Types of News

<h1>Loads News</h1>

 <section>

 <h1>Sports News</h1>

 <p>We'll put sports news here.</p>

 </section>

 <section>

 <h1>Entertainment News</h1>

 <p>Entertainment news will go here.</p>

 </section>

 <section>

 <h1>Nerdy News</h1>

 <p>News for nerds will go in this section of the page.</p>

 </section>

In Figure 1.8, each section has its own header, and each section is completely
separate from the other. If there were other content on the page, you could wrap it all
together in one section and give that a heading of “Types of news we do”:

<section>

 <h1>Types of news we do</h2>

 <section>

 <h1>Entertainment News</h1>

 <p>Entertainment news will go here.</p>

 </section>

</section>

Figure 1.8 Basic news page with sections highlighted
(no styling applied)

ptg999

Chapter 1 New Structural Elements in HTML5 14

Additionally, you could split the “Nerdy News” section up into further sections:

<section>

 <h1>Types of news we do</h2>

 <section>

 <h1> Nerdy News </h1>

 <p>News for nerds will go in this section of the page.</p>

 <section>

 <h2>Gaming news</h2>

 ...

 </section>

 <section>

 <h2>Gadget news</h2>

 ...

 </section>

 </section>

</section>

Which Should You Use: article or section?
The section element is used similarly to how you use the div tag now. But unlike
div, section has semantic meaning; it is the grouping of related content.

A section can have articles within it. Think of a news page; it might have a
news section and, then within that, different news categories.

You might have a heading of “News” and then all the different types of news, like
a newspaper. In HTML4, you would wrap this in a div, but you can wrap this all in
a section now. Each type of news would then be in its own section, with its own
heading.

If you think the content would make sense on its own, then it is an article. The
HTML5 f lowchart is a handy tool that will help you decide what element to use:
http://html5doctor.com/happy-1st-birthday-us.

Tip
As you'll see later when we talk about the HTML5 outliner, it is important that you check
you have used the correct markup.

A common mistake in early HTML5 uptake is using a section to wrap entire sites, such
as <section class=”container”> or <section class=”wrap”>. This is
not the correct way to use section.

As the HTML5 specification says:

“Authors are strongly encouraged to view the div element as an element of last resort,
for when no other element is suitable. Use of the div element instead of more appropri-
ate elements leads to poor accessibility for readers and poor maintainability for authors.”

The div element “has no special meaning at all,” so you use this to group content that
does not belong in one of the new HTML5 elements. Often a div is needed to style
something where CSS cannot target the content by any other means. If you use a

http://html5doctor.com/happy-1st-birthday-us

ptg999

15Beginner Recipe: Creating a Sidebar with the aside Element

section, it will be added to the document outline because it is considered important to
the document, whereas a div will not be added. So, if you are using a section for styl-
ing reasons, you should use a div instead.

BEGINNER RECIPE:
Creating a Sidebar with the aside Element
The aside element is for a group of content that is “tangentially” related to its sur-
rounding content, such as a list of most popular posts, blog categories, or recent com-
ments. This type of content is related to the main page content, but it is also separate
from it.

In current web development, it is common for there to be a “sidebar” on the page.
This does not necessarily mean it is physically on the side of the page, but it often con-
tains things such as related links or a list of categories. The correct use of the aside
depends on where you put it: If it is inside an article, the aside content should
tangentially relate to the article content, such as a glossary. Or if the aside is out-
side an article or a section, its contents must be related to the page, such as related
links, the site owner’s Twitter feed, or ads relating to the site. Listing 1.10 shows how
to create a “related links” section, as displayed in Figure 1.9.

Figure 1.9 Basic layout of a page with a “sidebar”

ptg999

Chapter 1 New Structural Elements in HTML5 16

Listing 1.10 Using aside to Mark Up a “Related Links” Section

<!DOCTYPE html>

<html lang="en">

<head>

<meta charset="utf-8">

<title>This has a nice outline</title>

<style>

article, aside, nav {display: block;}

article, aside {float: left;}

article {width: 500px;}

nav {width: 250px;}

</style>

</head>

<body>

<article>

<header>

<h1>10 things about HTML5</h1>

</header>

<p>Pellentesque habitant morbi tristique …</p>

...

</article>

<aside>

 <h2>Related links</h2>

 <nav>

 10 things about HTML4

 10 things about CSS3

 10 things about JavaScript

</nav>

</aside>

</body>

</html>

You can also nest the aside inside other elements, including the article element.
Extending the previous example, you could provide the user with a glossary covering
various phrases or content used in the main content that might not be known to the
user:

<article>

 <header>

 <h1>10 things about HTML5</h1>

 <p>Pellentesque habitant morbi tristique senectus et netus et malesuada fames

➥ac turpis egestas. Vestibulum tortor quam, feugiat vitae, ultricies eget,

➥tempor sit amet, ante. Donec eu libero sit amet quam egestas semper. Aenean

➥ultricies mi vitae est. Mauris placerat eleifend leo.</p>

ptg999

17Beginner Recipe: Using the footer Element

 </header>

 <aside>

 <h2>Glossary</ h2>

 <p>We have probably used lots of acronyms and abbreviations on this page, so

➥here is the glossary</h2>

 </aside>

</article>

BEGINNER RECIPE:
Using the footer Element
The footer element, as its name suggests, is typically at the bottom of the page.
However, that is not always the case, although the footer will often be at the bottom
of a section or a page. The footer element is intended for content about its section,
including information about the author or site owner, copyright data, and site terms
and conditions. If it is inside an article or section, it could contain the date the article
was published, tags, categories, and other metadata.

The HTML5 specification suggests a solution to a very common web element: the
copyright notice on a page:

<footer >

<small>© Copyright HTML5 Cookbook 2011</small>

</footer>

The previous example would likely be just before the closing </body> tag. (Also
notice how the copyright message is in a small tag. We will come to that in the next
chapter.)

Like the header element, you can use footer more than once on a page. You can
put a footer inside an article. Listing 1.11 details a page with a sitewide footer and
also uses nested footer elements with an article, as shown in Figure 1.10.

Listing 1.11 Page with a Sitewide footer and an article > footer Combination

<article>

 <h1>10 things about HTML5</h1>

 <footer>

 <p>This news article was published on <time>1st April 2011</time> by <a

➥href="#">Tom Leadbetter</p>

 </footer>

 <p>Pellentesque habitant morbi tristique...</p>

 <!-- general content -->

ptg999

Chapter 1 New Structural Elements in HTML5 18

 <footer>

 <p>This news article was published on <time>1st April 2011</time> by <a

➥href="#">Tom Leadbetter</p>

Read Tom's next article

 </footer>

</article>

<footer>

 <small>© Copyright HTML5 Cookbook 2011</small>

</footer>

This example shows two footer elements within an article. It is common to see
the author or date displayed at the top and bottom of a news item or blog post, and
you can use footer as many times as you want.

In the previous example, we introduced the time element, which we will be cover-
ing in the next chapter.

You can include other pieces of content in the footer, such as navigation (yes,
using a nav element), partner logos, and license agreements, and you might often see
text such as “This site is powered by <cms name>.”

Figure 1.10 Page layout with multiple footer elements
(no styling applied)

ptg999

Intermediate Recipe: Using the HTML5 Outliner to Ensure the Correct Structure 19

The HTML5 specification says the footer element can include links to related
documents, and although previously you used a combination of aside and nav for
that, you can also use the footer element for that content, if it is inside an article. It
can contain other links, such as links to previous and next articles, which would look
something like this:

<article>

... all the content for this article...

<footer >

Previous article | Next article article

</footer>

</article>

INTERMEDIATE RECIPE:
Using the HTML5 Outliner to Ensure the Correct
Structure
With these new elements, you have the opportunity to make your content f low in a
logical manner and to allow people to navigate through the content using the hierar-
chy (using screen readers, for example), rather like a table of contents. Testing against
the outline allows you to check that you are using headings and sections correctly.
There are various browser extensions and websites at your disposal, but here we will
be using a Google Chrome extension: http://code.google.com/p/h5o/.

Download the Chrome extension, and once it is installed, you get an icon in the
address bar, as shown in Figure 1.11.

When you select this tool, you will see displayed data that looks like a table of con-
tents, usually with the content indented.

If you have organized the content properly, you should have a structured and logical
table of contents. You want to avoid “Untitled section/article.” If that message is dis-
played, chances are that you have used the wrong markup, so you need to reexamine your
markup. Note, however, that nav and aside are allowed to have “Untitled section.”

Figure 1.11 Website in Google Chrome with the HTML5 Outliner
extension icon

http://code.google.com/p/h5o/

ptg999

Chapter 1 New Structural Elements in HTML5 20

A correct outline might look something like this:

 1. Website name

 a. Blog

 i. Article title

 ii. Article title

 b. About me

 i. My name

 ii. My likes

 iii. My dislikes

 c. Contact me

Figure 1.12 shows an example document outline. The indents are correct, and there
are no untitled sections (apart from the nav, but that is fine).

The outline you will create in this recipe is as follows:

1. Loads of News

a. Bringing you all kinds of news!

 b. Untitled NAV

 c. Sports News

 d. Entertainment News!

 e. Nerdy News

Figure 1.12 Basic HTML5 page in Google Chrome showing the results of
the document outline

ptg999

Advanced Recipe: Using All the New Elements to Build a News Page 21

Listing 1.12 shows the source code for this page.

Listing 1.12 Making a Basic Document Outline

<header>

 <hgroup>

 <h1>Loads of News</h1>

 <h2>Bringing you all kinds of news</h2>

 </hgroup>

</header>

<nav>

 Home

 About

 Contact

 Home

</nav>

<section>

 <h1>Sports News</h1>

</section>

<section>

 <h1>Entertainment News</h1>

</section>

<section>

 <h1>Nerdy News</h1>

</section>

This has a header at the top of the page, which is used as the first node in the out-
line (not the page title) and then sections that also have headings. There is an hgroup
element used in the header element with the text “Bringing you all kinds of news!”
but you do not see the h2 in the outline because the outline reads the first heading
(h1, h2, h3, h4, h5, or h6) in the element.

The section, article, nav, and aside elements begin the indents (sections) in the
outline. The sections have an h1, which is displayed in the outline. You could use an
h2 or h3 if you wanted; it does not matter. If you had a section with content but no
heading, the outline would say “untitled section,” and you want to avoid that scenario.

ADVANCED RECIPE:
Using All the New Elements to Build a News Page
Figure 1.13 and the code in Listing 1.13 show how to use all the new HTML5 ele-
ments to build a layout for a news page. It includes some basic CSS to position the

ptg999

Chapter 1 New Structural Elements in HTML5 22

Figure 1.13 A news page layout using new HTML5 elements

ptg999

Advanced Recipe: Using All the New Elements to Build a News Page 23

elements, but you are not doing anything too jazzy just yet; we will save all that for a
later chapter.

Listing 1.13 Creating a News Home Page

<!DOCTYPE html>

<html lang="en">

<head>

<meta charset="utf-8">

<title>Loads of News - the best news site there ever was</title>

<style>

header, nav, section, article, footer {display: block;}

header, nav {border-bottom: 1px dotted #000; clear: both; width: 100%;}

nav li {display: inline;}

section#headline {clear: both; border: 5px solid #000; padding: 1%; width: 97%;}

section#sports, section#entertainment, section#nerdy {float: left; margin: 0 5px;
padding: 1%; width: 30%;}aside, footer {clear: both;}

aside img {border: 1px solid #ccc; margin: 0 10px 0 0;}

</style>

</head>

<body>

<header>

 <hgroup>

 <h1>Loads of News</h1>

 <h2>Bringing you all kinds of news!</h2>

 </hgroup>

</header>

<nav>

 Home

 Sports news

 Entertainment news

 Nerdy news

 About

 Contact

</nav>

<section id="headline">

 <h1>Headline article</h1>

 <article>

 <header>

 <h2>This is our most important article</h2>

 <p>10th November 2010</p>

 </header>

 <p>Pellentesque habitant morbi tristique senectus et netus et malesuada fames

➥ac turpis egestas.</p>

ptg999

Chapter 1 New Structural Elements in HTML5 24

 </article>

</section>

<section id="sports">

 <h1>Sports news</h1>

 <article> <!-- (x3) -->

 <header>

 <h2>Sports headline 1</h2>

 <p>10th November 2010</p>

 </header>

 <p>Pellentesque habitant morbi tristique senectus et netus et malesuada fames

➥ac turpis egestas.</p>

 </article>

</section>

<section id="entertainment">

 <h1>Entertainment news</h1>

 <article> <!-- (x3) -->

 <header>

 <h2>Entertainment headline 1</h2>

 <p>10th November 2010</p>

 </header>

 <p>Pellentesque habitant morbi tristique senectus et netus et malesuada fames

➥ac turpis egestas.</p>

 </article>

</section>

<section id="nerdy">

<h1>Nerdy news</h1>

 <article><!-- (x3) -->

 <header>

 <h2>Nerdy headline 1</h2>

 <p>10th November 2010</p>

 </header>

 <p>Pellentesque habitant morbi tristique senectus et netus et malesuada fames

➥ac turpis egestas.</p>

 </article>

</section>

<aside>

 <img alt="Snazzy advert" src="snazzy-advert.gif" height="128"

➥width="128" /><!-- (x4) -->

</aside>

<footer>

 Site powered by a CMS With No Name

 Site hosted by a Host With No Name

 The photos on this site are all owned by the photographer

 <small>© Copyright NoBody 2011</small>

ptg999

Advanced Recipe: Using All the New Elements to Build a Search Results Page 25

</footer>

</body>

</html>

Now that you have the basic layout and the code sorted, you need to check the docu-
ments outline. The previous code will give you the following outline:

1. Loads of News

 a. Untitled NAV

 2. Headline article

a. This is our most important article

 3. Sports news

a. Sports headline 1

b. Sports headline 2

c. Sports headline 3

 4. Entertainment news

a. Entertainment headline 1

b. Entertainment headline 2

c. Entertainment headline 3

 5. Nerdy news

a. Nerdy headline 1

b. Nerdy headline 2

c. Nerdy headline 3

 6. Untitled ASIDE

This looks lovely! footer is not sectioning content, unlike section, article, nav,
and aside, so it does not show up in the outline. nav and aside are untitled, but that
is fine. You could possibly give the aside a title if you wanted, though does an exter-
nal product advertisement warrant a heading?

ADVANCED RECIPE:
Using All the New Elements to Build a Search
Results Page
In Listing 1.14 you will put together several new HTML5 elements to create the struc-
ture of a search results page (Figure 1.14). Bear in mind that there is no CSS for this
recipe, just HTML.

ptg999

Chapter 1 New Structural Elements in HTML5 26

Listing 1.14 Elements Combined to Make a Search Results Page

<!DOCTYPE html>

<html lang="en">

<head>

<meta charset="utf-8">

<title>Search</title>

</head>

<body>

<nav>

 Web

 Images

 Videos

 Maps

 <!-- etc -->

Figure 1.14 A search results page

ptg999

Advanced Recipe: Using All the New Elements to Build a Search Results Page 27

</nav>

<header>

 <h1>Search company name</h1>

</header>

<form>

 <fieldset>

 <legend>Search</legend>

 <label for="searchinput">Search</label>

 <input type="search" id="searchinput" name="searchinput" />

 <input type="submit" value="Search" />

 Advanced search

 </fieldset>

</form>

<nav>

 <h2>Refine search</h2>

 Everything

 News

 More

 <h3>The web</h3>

 Pages from the UK

 Pages from your area

<h3>Any time</h3>

 Latest

 Past 2 days

 More search tools

</nav>

<section>

 <header>

 <h1>Results for "test"</h1>

 <p>About 1,410,000,000 results (0.21 seconds)</p>

 </header>

 <article>

 <header>

 <h1>First result</h1>

 </header>

ptg999

Chapter 1 New Structural Elements in HTML5 28

 <p>Pellentesque habitant morbi tristique senectus et netus et malesuada fames

➥ac turpis egestas.</p>

 <footer>

 <p>www.pretendwebsite.com - Cached</p>

 News

 Shopping

 Images

 Sport

 Business

 Entertainment

 More results from pretendwebsite.com

 </footer>

 </article>

 <article>

 <header>

 <h1>Second result</h1>

 </header>

 <p>Pellentesque habitant morbi tristique senectus et netus et malesuada fames

➥ac turpis egestas.</p>

 <footer>

 <p>www.pretendwebsite2.com - Cached</p>

 </footer>

 </article>

 <article>

 <header>

 <h1>Third result</h1>

 </header>

 <p>Pellentesque habitant morbi tristique senectus et netus et malesuada fames

➥ac turpis egestas.</p>

 <footer>

 <p>www.pretendwebsite3.com - Cached</p>

 </footer>

 </article> <!-- and so on... -->

 <aside>

 <nav>

 <h2>Searches related to "Test"</h2>

 Another site

 Another site

 Another site

 Another site

 <!-- etc -->

ptg999

Advanced Recipe: Using All the New Elements to Build a Search Results Page 29

 </nav>

 </aside>

</section>

<nav>

 <li class="currentpage">1

 2

 3

 4

 5

 6

 <!-- and so on... -->

</nav>

<form>

 <fieldset>

 <legend>Search</legend>

 <label for="searchinput2">Search</label>

 <input type="search" id="searchinput2" name="searchinput2" />

 <input type="submit" />

 Advanced search

 </fieldset>

</form>

<footer>

 Terms and conditions

 Privacy policy

 <!-- etc -->

</footer>

</body>

</html>

You might have other ideas about which markup to use, which is great; you should
be thinking about making beautiful HTML.

The results are all within a section that has the heading <h1>Results for
"test"</h1>. After that, each result is within its own article, each with a
header and footer. The search results could go even further and be split into sections or
articles again, depending on their content.

There is paging toward the bottom of the code that could be considered to be
“major navigation” (remember what the HTML5 specification says), because the pag-
ing functionality is crucial to how a user navigates through their search results.

ptg999

Chapter 1 New Structural Elements in HTML5 30

Summary
In this chapter, you learned about the new elements available in HTML5 that you can
use when creating the main structure of a web page. Starting with a new docytpe and
changes to how you call JavaScript and CSS files, you then used header, hgroup, nav,
footer, article, section, and aside to create a page layout. Then, by examining
the document outline, you checked that your structure made sense and that you used
the correct elements.

ptg999

2
Grouping, Text-Level, and

Redefined Semantics

In the previous chapter, you learned about several new HTML5 elements. Those ele-
ments enable you to create the main structure of the page. In this chapter, you will
learn about more new HTML5 elements (namely, figure, time, details, and mark),
as well as some elements that have been redefined (address, s, cite, ol, dl, small,
b, strong, i, em, abbr, and hr). You will also look at new block-level links and
WAI-ARIA. These elements are known as grouping or text-level elements and deal with
the content of the page.

BEGINNER RECIPE:
Marking Up Figures and Captions with the
figure and figcaption Elements
The figure element allows you to wrap an image and give it a description. Previously,
you would have had to use a div or something similar and then add the text to the
page, and doing this meant there was no link between the image and the caption. But
now with figure, you can associate images with a caption, using figcaption.

Also, figure does not always have to include an image; it could be sections of code,
tabular data, audio, or video. Typically, however, figure would be used for an image;
Figure 2.1 shows an example. The code used to create Figure 2.1 is provided in Listing 2.1.

Listing 2.1 Image with Caption

<figure>

 <figcaption>

 Website analytics for October 2010

 </figcaption>

</figure>

ptg999

Chapter 2 Grouping, Text-Level, and Redefined Semantics 32

There has been confusion over whether alt text (a text alternative for browsers that
do not support graphics) is still needed in a figure element. Outside of figure, an
img always needs an alt. If the image is purely presentational and it does not need to
be identified by assistive technology, then an empty alt attribute can be applied. With
figure, if the caption is a suitable description, then no alt is needed. However, because
of lack of browser and assistive technology support, this currently hinders accessibility.

We suggest erring on the side of caution here and provide an alt anyway. In List-
ing 2.1, the caption is straightforward enough, but to someone using a screen reader,
it is unknown how the analytics will be represented, so the alt text supplies this
information.

Also, even though the example uses an image of a graph, there is no reason why
you could not use a graph created through Canvas or SVG.

Note
Originally, the specification stated to use the (already existing) legend element rather
than a new element (figcaption), but because of cross-browser styling problems,
legend was scrapped in favor of figcaption.

Figure 2.1 figure element used to display a graph and a caption

ptg999

33Beginner Recipe: Marking Up Figures and Captions with the figure and figcaption Elements

As Figure 2.2 shows, you are not limited to just one image with figure; you can
use the figure element to display multiple images. The code for Figure 2.2 is in List-
ing 2.2.

Listing 2.2 Multiple Images Within figure

<figure>

 <img alt="October 2010 data in bar chart format"

➥src="analytics-october.jpg" />

 <img alt="November 2010 data in bar chart format"

➥src="analytics-november.jpg" />

 <img alt="December 2010 data in bar chart format"

➥src="analytics-december.jpg" />

 <figcaption>

 Comparative website analytics for Winter 2010

 (October, November, December)

 </figcaption>

</figure>

Figure 2.2 figure element used to display three images, which share
the one caption

ptg999

Chapter 2 Grouping, Text-Level, and Redefined Semantics 34

Should you always use figcaption when displaying such content? If the image (or
chart, table, and so on) is for purely presentational reasons, then just use a normal
img tag. However, if it has additional information and is beneficial to the content,
then it will likely require a description to go with it, so in this case, use figure and
figcaption. Finally, figure can have only one figcaption.

BEGINNER RECIPE:
Marking Up the Date and Time with the time
Element
The time element allows you to code dates and times that are readable by machines
but are displayed to users in a readable fashion. So, with this you can timestamp things
such as publishing dates or events that can populate other technologies (a calendar
being the obvious example). The time element has two optional attributes:

n datetime: The end user will see the content inside the time tag, but a machine
will be able to read the datetime value: datetime="2011-04-01T16:00Z". The
time part of this value (T16:00) is optional. You can also add a time zone offset:
T16:00+04:00. The Z represents Universal Coordinated Time (UTC), which is
the same as adding a time zone offset of +00:00.

n pubdate: pubdate is a Boolean attribute. It indicates the date, and possibly
time, of the publication of its nearest parent article element. If there is no
parent article element, then the pubdate refers to the whole document. Each
article element must have only one time element with a pubdate.

The time element is intended to show precise dates, such “22nd January 2011,” not
vague dates such as “Some point in 2011.” The datetime attribute must be in the for-
mat of the Gregorian calendar: YYYY-MM-DD, with the time coded as T00:00.

The following are some examples:

<article>....

 <footer>

 <p>This news article was published on <time pubdate datetime="2011-04-

➥01T16:00">1st April 2011 at 4pm</time> by Tom

➥Leadbetter</p>

 </footer>

</article>

<article>

 <h1>Christmas day family photo</h1>

 <p>It was lovely to have the family here for <time pubdate datetime="2010-12-

➥25">Christmas Day 2010</time></p>

 <figure>

ptg999

35Beginner Recipe: Making a Native Toggle Widget with the details Element

 <figcaption>The Leadbetter family on Christmas morning</figcaption>

 </figure>

</article>

<p>HTML6 release date is due on <time datetime="2040-01-04">April 1st

➥2040</time></p>

BEGINNER RECIPE:
Making a Native Toggle Widget with the
details Element
At the time of writing, only Chrome 13+ supports the new details element. We
hope other browsers will support it sooner rather than later.

The details element creates an interactive open/close toggle effect, without the
need for JavaScript and/or CSS. The summary element can be used within details to
represent the summary of the content.

details has an optional attribute: open. If this is true, it will show the details
element open by default; otherwise, the details element will be shut, and the
summary will be displayed. The summary is the clickable part that will open/close the
details.

Figure 2.3 shows what a brief author bio looks like, with the top one open by
default. Listing 2.3 shows the code.

Figure 2.3 The details element with one section open
viewed in Chrome

ptg999

Chapter 2 Grouping, Text-Level, and Redefined Semantics 36

Listing 2.3 Example of the details Element

<details open>

 <summary>Tom Leadbetter</summary>

 <figure>

 <figcaption>Tom and Lucy Leadbetter</figcaption>

 </figure>

 <p>Pellentesque habitant morbi tristique senectus et netus et malesuada fames

➥ac turpis egestas.</p>

 <p>Pellentesque habitant morbi tristique senectus et netus et malesuada fames

➥ac turpis egestas.</p>

 <p>Pellentesque habitant morbi tristique senectus et netus et malesuada fames

➥ac turpis egestas.</p>

 <p>Pellentesque habitant morbi tristique senectus et netus et malesuada fames

➥ac turpis egestas.</p>

</details>

<details>

 <summary>Chuck Hudson</summary>

 <figure>

 <figcaption>Chuck Hudson</figcaption>

 </figure>

 <p>Pellentesque habitant morbi tristique senectus et netus et malesuada fames

➥ac turpis egestas.</p>

</details>

Another example is using the details element to show/hide a table of contents.
Depending on the styling of the page and the amount of content, it could be useful to
have the table of contents always in the top corner, and the user can click to expand it
and navigate to a different section of the page. Listing 2.4 has the code for this, with
the details element closed by default.

Listing 2.4 Creating a Collapsible Table of Contents

<article>

 <h1>A massive document with lots of juicy content</h1>

 <details>

 <summary>Table of contents<summary>

 <nav>

 Chapter 1

 Chapter 2

 </nav>

 </details>

 <section>

ptg999

37Beginner Recipe: Using the address Element for Contact Information

 <h1 id="chapter1">Chapter 1</h1>

 </section>

 <section>

 <h1 id="chapter2">Chapter 2</h1>

 </section>

....

</article>

BEGINNER RECIPE:
Using the address Element for Contact
Information
The specification defines the address element as a “sectioning” element, like nav or
article. However, we have put it in this chapter because we think it is more appropri-
ate as a “text-level” semantic because its use concerns text content, rather than layout.

For many years, the address element has been used incorrectly by web developers.
It is not supposed to be used as a generic postal address (often on a “Contact us” page).
So, this code is incorrect:

<address>

Tom Leadbetter

1 My Street

United Kingdom

</address>

HTML5 attempts to clear the confusion by intending the address element be used
for contract information for its nearest article or body element.

So, what does that mean? It means you should use the address element for con-
tact information for the author of the current article or of the web page as a whole.
Because you can use address inside an article, it means address can potentially be
used several times on a site. The content of an address element can be an email address,
website, phone number, postal address, or any other sort of contact information.

Because it is for contact information, it is common to use address within a
footer. Listing 2.5 uses the address element two times: one for the author of the
main page content and the other for the authors of the whole site.

Listing 2.5 Multiple Uses of the address Element

<article>

 <header>

 <h1>My amazing blog entry</h1>

 <p>12.12.2011</p>

 </header>

 <p>Pellentesque habitant morbi tristique senectus et netus et malesuada fames

➥ac turpis egestas...</p>

ptg999

Chapter 2 Grouping, Text-Level, and Redefined Semantics 38

 <footer>

 This blog entry was written by

 <address>Tom Leadbetter</address>

 </footer>

</article>

<footer>

 This site is owned by

 <address>

 Tom Leadbetter and

 Chuck Hudson.

 </address>

</footer>

BEGINNER RECIPE:
Highlighting Text with the mark Element
The mark element gives the document author a chance to highlight, or bring attention
to, some text in the document.

If a user searches a site and is taken to a separate page, the term they searched for
might be highlighted for their reference. We would use a mark here, rather than a
strong or em because we are not giving the term any importance or emphasis, simply
highlighting it for the user. Figure 2.4 shows how you can use it. Listing 2.6 shows the
HTML and CSS.

Listing 2.6 The mark Element with Additional CSS

<style>

mark {background-color: #0F0; font-weight:bold;}

</style>

<article> <header>

 <h1>Something in Latin</h1>

 </header>

 <p>Pellentesque habitant morbi tristique senectus et netus et malesuada fames ac

➥turpis egestas. <mark>Vestibulum tortor quam</mark>, feugiat vitae,

➥ultricies eget, tempor sit amet, ante. Donec eu libero sit amet quam

➥egestas semper. Aenean ultricies mi vitae est. Mauris placerat eleifend

➥leo.</p>

</article>

Figure 2.4 The mark element used to highlight text for a user

ptg999

Changes to Existing Elements 39

BEGINNER RECIPE:
Using the s Element to Show Inaccurate or
Irrelevant Content
Previously the s element was specifically for strikethrough text. In HTML5, it has
been redefined and is now used to represent content that is no longer correct or
relevant.

What does this mean exactly? You could use the s element to represent the origi-
nal retail price of a product that now has a different price, as shown in Figure 2.5.
Depending on the context, it may not always be correct to display out-of-date infor-
mation. However, in this case, it can come in handy to a user. Listing 2.7 shows where
to use the element.

Listing 2.7 The s Element

<h1>Tom Leadbetter's Autobiography</h1>

<p><s>Recommended retail price: £45.99</s></p>

<p>Now selling for just £5.99!</p>

In HTML 4, the s element defined strikethrough text, so by default browsers will
style the s element with a strikethrough.

If document text has been edited or removed, do not use the s element; use the
del element instead.

Changes to Existing Elements
In the first chapter, you learned about new elements that can be used to create the
layout of the page and add content. Previously in this chapter, you saw more new
HTML5 elements, but they were concerned with the content itself, such as images.
Just because there has been a lot of focus on new elements does not mean existing ele-
ments have been neglected. In fact, several have had their roles changed.

The cite Element
The cite element has been tweaked in HTML5. In HTML4, the cite allowed con-
tent developers to mark up the name of a speaker/author of a quote:

<cite>Julies Caesar</cite> once said, <q>I came, I saw, I conquered.</q>

Figure 2.5 The s element used to display an old price

ptg999

Chapter 2 Grouping, Text-Level, and Redefined Semantics 40

It was also used inside blockquote, which was technically incorrect in HTML 4
but nonetheless was commonly used:

<blockquote>

<p>Pellentesque habitant morbi tristique senectus et netus et malesuada fames ac

➥turpis egestas. Vestibulum tortor quam, feugiat vitae, ultricies eget,

➥tempor sit amet, ante.</p>

<cite>A Person who spoke Latin</cite>

</blockquote>

However, in HTML5, cite represents the title of a work, such as a book or a song.
The HTML5 specification specifically says that a person’s name is not the title of a
work. So, you could use something like the following:

<p>One of my favourite books is <cite>The Day of the Jackal</cite> by Frederick

➥Forsyth</p>

(The HTML5 specification suggests using the b element for author names.)
This change in HTML5 to disallow cite from author names has caused a bit of

a stir. Well worth a read is http://24ways.org/2009/incite-a-riot by Jeremy Keith; it
goes into great depth about the issue. To sum it up, the cite element in HTML5 is no
longer backward compatible and instead the HTML5 specification suggests using the b
element for names, though this tag has no semantic meaning even though the content
is meaningful.

So, you have a decision to make: Do what the specification says or, as many con-
tinue to do, use cite for names. It is worth keeping an eye on the cite element to see
whether its definition changes.

Note
In July 2011, there was discussion that might allow the use of footer in blockquote,
which would create the perfect opportunity to add information about the quote, such as
the author. So, keep an eye on this development.

The ol Element
The ol element, used to create an ordered list, has been redefined, so it now has three
acceptable attributes:

n start

n reversed

n type

Used in Listing 2.8, the reversed attribute is new to HTML5 and will, when
at least one browser chooses to implement it, enable you to reverse a list that counts
down to one.

http://24ways.org/2009/incite-a-riot

ptg999

Changes to Existing Elements 41

Listing 2.8 Reversed Ordered List

<h1>My favorite colors</h1>

<ol reversed>

 Red

 Green

 Blue

Currently, no browser supports this, but if supported, it would render like this:

My favorite colors

 3. Blue

 2. Green

 1. Red

The start attribute was deprecated in HTML 4 and so the page would fail valida-
tion if start was used. This proved an annoyance, but thankfully it is now back and
perfectly acceptable in HTML5. So, if you are required to start an ordered list at the
second item, use the following:

<ol start="2">

here we go

....

Also back from the dead is the type attribute. Previously, if you wanted to change the
display of the list types, say to Roman numerals (for example, I, IV, X), you had to use
CSS. But you can do this again in HTML5. The Listing 2.9 markup shows an example.

Listing 2.9 Nested Ordered Lists

 Lorem ipsum dolor sit amet, consectetuer adipiscing elit.

 Lorem ipsum dolor sit amet, consectetuer adipiscing elit.

 Aliquam tincidunt mauris eu risus.

 Lorem ipsum dolor sit amet, consectetuer adipiscing elit.

 Aliquam tincidunt mauris eu risus.

 Vestibulum auctor dapibus neque.

 Vestibulum auctor dapibus neque.

 Aliquam tincidunt mauris eu risus.

 Vestibulum auctor dapibus neque.

ptg999

Chapter 2 Grouping, Text-Level, and Redefined Semantics 42

The previous code would create this:

1. Lorem ipsum dolor sit amet, consectetuer adipiscing elit.

1. Lorem ipsum dolor sit amet, consectetuer adipiscing elit.

2. Aliquam tincidunt mauris eu risus.

3. Lorem ipsum dolor sit amet, consectetuer adipiscing elit.

1. Aliquam tincidunt mauris eu risus.

2. Vestibulum auctor dapibus neque.

4. Vestibulum auctor dapibus neque.

2. Aliquam tincidunt mauris eu risus.

3. Vestibulum auctor dapibus neque.

Using the type attribute, you can change the type of numbering you get on the lists,
without the need for CSS. You can choose from five types:

type="1" = 1, 2, 3,4, 5

type="a" = a, b, c, d, e

type="A" = A, B, C, D, E

type="i" = i, ii, iii, iv, v

type="I" = I, II, III, IV, V

If you change the ol type to any of these, then the bullet points will render as follows:

1. Lorem ipsum dolor sit amet, consectetuer adipiscing elit.

a. Lorem ipsum dolor sit amet, consectetuer adipiscing elit.

b. Aliquam tincidunt mauris eu risus.

c. Lorem ipsum dolor sit amet, consectetuer adipiscing elit.

i. Aliquam tincidunt mauris eu risus.

ii. Vestibulum auctor dapibus neque.

d. Vestibulum auctor dapibus neque.

2. Aliquam tincidunt mauris eu risus.

3. Vestibulum auctor dapibus neque.

Using the different types, in the content you could refer to item 1.b.ii, rather than
1.3.2. Browsers will correctly implement the type attribute, but at the time of writ-
ing, it causes a validation error.

The dl Element
In HTML4, dl was a definition list, which should have contained a term and then a
definition, but its own definition and use was never very clear and so was misused or
ditched in favor of another element.

ptg999

Changes to Existing Elements 43

In HTML5, it has been repurposed as a description or association list. It is easier to
get an understanding of this element by diving into some examples. Listing 2.10 uses
dl to create a glossary. We have put the glossary in an aside because we can assume
here that it is inside an article, likely about web development.

Listing 2.10 Creating a Glossary

<aside>

<h2>Glossary</h2>

<dl>

<dt>HTML</dt>

<dd>HTML, which stands for HyperText Markup Language, is the predominant markup

➥language for web pages.</dd>

<dt>PHP</dt>

<dd>PHP: Hypertext Preprocessor is a widely used, general-purpose scripting

➥language that was originally designed for web development to produce

➥dynamic web pages.</dd>

</dl>

</aside>

Listing 2.11 uses a dl to mark up movie credits.

Listing 2.11 Adding Movie Credits

<h1>The Shawshank Redemption</h1>

<dl>

<dt>Director:</dt>

<dd>Frank Darabont</dd>

<dt>Writers:</dt>

<dd>Stephen King</dd>

<dd>Frank Darabong </dd>

<dt>Cast</dt>

<dd>Tim Robbins</dd>

<dd>Morgan Freeman</dd>

<dd>Bob Gunton</dd>

...

</dl>

The previous code uses multiple values (dd) to the one key (dt). It might be argued
that each section of credits (director, writers, and so on) could be in a section of its
own, as shown here:

<article>

<header>

<h1>The Shawshank Redemption</h1>

<time>1994</time>

</header>

<section>

ptg999

Chapter 2 Grouping, Text-Level, and Redefined Semantics 44

<h1>Director</h1>

<h2> Frank Darabont</h2>

<p>(bio)</p>

</section>

<section>

<h1>Writers</h1>

<h2>Stephen King</p>

<p>(bio)</p>

<h2> Frank Darabont</h2>

<p>(bio)</p>

</section>

</article>

It really depends on your content and how you want your content to be structured.

Tip
The dl element has been used in the past to mark up dialogue, but the spec now tells us
that using a dl is inappropriate. Originally, in HTML5 there was a dialog element, but
that was axed in late 2009. Instead, you should use p elements for this requirement, and
if you wanted to style the name of the speaker, you should use either a span or a b. The
following is an example:

<p>John: Can you use HTML5 yet?</p>

<p> Jane: Yes, you definitely can! </p>

The small Element
In HTML4, the small element was used to reduce the size of text. However, this was
and is a presentational issue, so CSS is used for this purpose. Now, in HTML5, the
small element is used for displaying small print, such as copyright information, terms
and conditions, or license/legal information:

<p><small>This site is licensed under a <a

➥href="http://creativecommons.org/licenses/by-nc/2.0/uk/">Creative Commons

➥Attribution-Non-Commercial 2.0 share alike license. Feel free to

➥change, reuse modify and extend it.</small></p>

Because small is inline content, you can embed it within another element if neces-
sary, such as strong, which would give importance to this small print:

<p><small>This content belongs to me! Don’t steal it, otherwise

➥there will be serious, serious trouble.</small></p>

The b and strong Elements
In HTML 4, the b element was for bold, but that has changed. Now it is purely pre-
sentational; it should be used to style a section of text that does not convey any par-
ticular importance.

ptg999

Changes to Existing Elements 45

You will often see the first paragraph of a blog entry is styled differently, often in
bold text:

<h2>Dark energy and flat Universe exposed by simple method</h2>

 <p><b class="lead">Researchers have developed a simple technique that adds

➥evidence to the theory that the Universe is flat.</p>

<p>Moreover, the method - developed by revisiting a 30-year-old idea - confirms

➥that "dark energy" makes up nearly three-quarters of the

➥Universe.</p>

You would not use a strong element because you do not want to add importance
to the first paragraph; you are just styling it differently. However, you could also use
some CSS (p:first-of-type or h2+p) to style this instead of using b. Listing 2.12
uses b to add color styles to some of the text.

Listing 2.12 The b Element

<style>

b.red {color: red;}

b.green {color: green;}

b.blue {color: blue;}

</style>

<h1>My favourite colours</h1>

<ol reversed>

 <b class="red">Red

 <b class="green">Green

 <b class="blue">Blue

The strong element shows text with strong importance, so you now normally use
this to generate the bold effect, and you can nest strong to increase the importance of
the content:

<p>Do not eat my cookies and do not drink

my milk</p>

The i and em Elements
The i element was, in HTML 4, for styling text in italics. Now, though, it represents
text that is in an alternative voice or mood. The HTML5 specification gives some
examples of its use, which include a dream, a technical term, a thought, or a ship name:

<p>I'm having fish tonight <i>(and then I think I'll have cookies, I haven't had

➥cookies for ages)</i>.</p>

In contrast, the em element represents emphasis that changes the meaning of a sen-
tence. Depending on what word (or words) should be emphasized, wrap it in the em
element, but moving the em element would cause the sentence to change its meaning:

ptg999

Chapter 2 Grouping, Text-Level, and Redefined Semantics 46

<p>I thought I was meeting friends at 8pm but my wife says it's 9pm</p>

<p>I thought I was meeting friends at 8pm but my wife says it's

➥9pm</p>

The abbr Element
The abbr element is not new in HTML5, and it has not been redefined. So, why
bother mentioning it? Well, abbr has been merged with acronym. Now, the abbr
element represents an abbreviation or an acronym. You can use the title attribute to
expand the abbreviation, which normally means a tooltip for the user:

<p><abbr title="HyperText Markup Language">HTML</abbr> is the best thing since

➥sliced web</p>

An abbreviation is different from an acronym; NATO is an acronym, while BBC
is an abbreviation. In HTML 4, both tags were available, but because of confusion by
content authors over which to use, acronym has been scrapped, so now use abbr for
both.

The hr Element
The hr element was used to create a horizontal line in a document. Its definition
has been tweaked slightly, so it now represents a break, after a paragraph, such as a
scene change in a book. Usually this will be styled to display a line or a fancy graphic
between sections. It is not used very often these days because CSS can be used to add
space/a graphic/a line/decoration at the bottom or top of necessary sections, such as a
p, div, article, or section.

Elements That Are No More
HTML5 has gotten rid of several elements, so say bye-bye to the following elements:

n acronym (use abbr; see earlier)
n applet (use object)
n basefont (use CSS for presentation)
n big (use CSS for presentation)
n center (use CSS for presentation)
n frame (though iframe still exists)
n frameset

n noframes

n font (use CSS for presentation)
n strike (depending on the content, use s or del)
n tt (use CSS for presentation)
n u (use CSS for presentation)

ptg999

Intermediate Recipe: Adding Semantic Information with Microdata 47

That is all there is to say, really. We will not be mourning those elements, and if
you are using them now, please stop straightaway!

BEGINNER RECIPE:
Wrapping Links Around Elements
A handy new feature of HTML5 is the ability to group several elements into one link.
This gives you a much wider click area, something that you may have in the past used
JavaScript or a combination of tags to do the job.

In HTML 4, if you were marking up a news or blog home page, with several arti-
cles to link to, you may have previously used something like the code in Listing 2.13
to make each item clickable.

Listing 2.13 Wrapping Links in HTML 4

<div class="article">

 <h2><img alt="article thumbnail" src="thumb.jpg"

➥height="100" width="100" /> My article title</h2>

 <p>Pellentesque habitant morbi tristique senectus et

➥netus et malesuada fames ac turpis egestas.</p>

</div>

Listing 2.14 shows that in HTML5 you can wrap all of that in one a.

Listing 2.14 Wrapping Links with HTML5

<article>

 <h2>

➥My article title</h2>

 <p>Pellentesque habitant morbi tristique senectus et netus et malesuada fames

➥ac turpis egestas.</p>

</article>

You are able to wrap the article in an the a element as well; however, this has
been known to cause a couple of browser issues, so we advise against that approach.

INTERMEDIATE RECIPE:
Adding Semantic Information with Microdata
The Microdata specification allows authors to add labels to pieces of content to make
it machine-readable. Using the Microdata formatting in theory helps “machines” like
Google return more accurate information about pages.

ptg999

Chapter 2 Grouping, Text-Level, and Redefined Semantics 48

You can treat Microdata as a custom element, so you can use it to label things such
as a business, a person, products, or an event. Because there is no book element, you
can apply Microdata attributes to your existing elements.

Microdata has five attributes: itemid, itemprop, itemref, itemscope, and
itemtype. Listing 2.15 shows a basic example, which describes a person.

Listing 2.15 Microdata Example

<article itemscope itemtype="http://data-vocabulary.org/Person">

 <h1 itemprop="name">Tom Leadbetter</h1>

 <p><span itemprop="address" itemscope itemtype="http://data-

➥vocabulary.org/Address">I live in <span item

➥prop="region">Liverpool, <span itemprop="country-

➥name">UK.</p>

 <p>I am a Space Cowboy at <span

➥itemprop="affiliation">Space Cowboy Inc.. I also have a website:

➥<a href="http://www.tomleadbetter.co.uk"

➥itemprop="url">tomleadbetter.co.uk</p>

</article>

Listing 2.14 says that you have a person whose name is Tom Leadbetter, who lives
in the United Kingdom and is a Space Cowboy working for Space Cowboy Inc.

When itemscope is used on an element, the element becomes a Microdata item.
itemprop is a property of this Microdata item, and it describes what the content
is. The example has two itemscope attributes: one for the overall piece of content
(Person) and another for the address itemtype within.

The itemprop values in the example come from http://data-vocabulary.org, which
suggests the names for various data types (events, products, and so on). You can make
your own values, but for consistent results you should use standard, recognized names.
Google also has examples and suggestions at http://google.com/support/webmasters/
bin/answer.py?answer=99170. Using the Google webmaster Rich Snippets Testing
Tool, you can check your Microdata to see how Google might render it in a search
results page, as shown in Figure 2.6.

Figure 2.7 shows the other information that Google now has about the content.
This was only a small Microdata example, but there are lots of useful options. Check

out the Google pages mentioned earlier for more examples of what can be created.
Along with Google, there are a couple of tools that might help when you are creating
Mircodata: http://foolip.org/microdatajs/live and http://microdata.freebaseapps.com.

Figure 2.6 Google search preview

http://data-vocabulary.org
http://google.com/support/webmasters/bin/answer.py?answer=99170
http://google.com/support/webmasters/bin/answer.py?answer=99170
http://foolip.org/microdatajs/live
http://microdata.freebaseapps.com

ptg999

Intermediate Recipe: Using WAI-ARIA with HTML5 49

In June 2011, http://schema.org was launched, a collaboration of shared schemas
from Bing, Google, and Yahoo! Schema.org has several examples and a huge selection
of example data. In Listing 2.15, we are linking to http://data-vocabularly.org because
this is currently supported in the Rich Snippets Testing Tool, but shortly you will be
able to use http://schema.org in your Microdata, and it will likely be the destination
for developers looking to learn what markup to use.

Note
Microformats and RDFa are two other ways of extending your HTML to describe specific infor-
mation. There are a bit of politics with these options that we will not go into, but both have
their strengths and weaknesses. You can actually combine Microdata with Microformats, and
although Microdata is the emerging standard, Microformats is currently more popular.

INTERMEDIATE RECIPE:
Using WAI-ARIA with HTML5
Web Accessibility Initiatives Accessible Rich Internet Applications (WAI-ARIA),
also known just as ARIA, is a draft specification (http://w3.org/TR/wai-aria) that
improves the accessibility of web applications and web pages. ARIA enables develop-
ers and content authors to develop rich Internet applications and content that can be
recognized and used by assistive technology. More often than not, assistive technol-
ogy does not know what a widget is and rarely are widgets accessible with a keyboard.
Also consider when content is updated with an Ajax call, assistive technology does not
know that the content has been updated, and so it cannot inform the user. Although
we will not be talking about all the possible solutions that ARIA offers, we will be
covering the Landmark Roles section of ARIA and how you can add these new roles
to your HTML5 document.

Landmark Roles are regions of the page used as navigational landmarks. There
are more than 50 of them listed in the specification (http://w3.org/TR/wai-aria/
roles#landmark_roles), but here are the more commonly used landmark roles:

n role="article"

n role="banner"

Figure 2.7 Additional information Google knows

http://schema.org
http://data-vocabularly.org
http://schema.org
http://w3.org/TR/wai-aria
http://w3.org/TR/wai-aria/roles#landmark_roles
http://w3.org/TR/wai-aria/roles#landmark_roles

ptg999

Chapter 2 Grouping, Text-Level, and Redefined Semantics 50

n role="complementary"

n role="contentinfo"

n role="form"

n role="heading"

n role="main"

n role="navigation"

n role="search"

You can add these to your markup easily like this:

<form role="search">

....

</form>

This signifies that this particular form (there might be several forms on the page) is
used for searching.

Looking through the previous list, you can see that some have obvious pairings
with new HTML5 elements, and when you add them to the main page structure from
the previous chapter, you get a layout similar to that in Figure 2.8.

Because you are using a logical structure to this markup, along with ARIA roles,
one day assistive technology will be able to navigate easily to certain areas of the page

<header role="banner">

<nav role="navigation">

<article role="main">

<section>

<section>

<
a
s
i
d
e

r
o
l
e
=
"
c
o
m
p
l
e
m
e
n
t
a
r
y
"
>

<footer role="contentinfo">

Figure 2.8 Basic website layout with ARIA roles

ptg999

Advanced Recipe: Marking Up an Article Page with Comments 51

content. However, at the moment, there is limited screen reader support not only for
HTML5 but also for ARIA elements.

You are encouraged to use skip links at the top of a document, very often hidden
with CSS, which allow people navigating with a screen reader, keyboard, or another
assistive technology to quickly “skip” or “jump” to important areas, usually the main
navigation or the main content. The code would look similar to this:

 Skip to navigation

 Skip to content

But with ARIA, the landmarks will be highlighted to a user so they can cycle
through the options.

HTML5 validation accepts ARIA roles, and you can use the ARIA roles in HTML 4.
They will cause a validation error.

These roles also provide you with a nifty CSS hook that adds to your arsenal of
selectors. You may have several headers or footers on a page, but you want to style the
main page header and footer differently, and you can target them in CSS like this:

 /* to style all headers */

header {background: red; border: 5px dotted black;}

/* to style our main header, which likely has the site logo */

header[role=banner] {background: black; border: 5px solid red;}

/* to style all footers */

footer {background: blue; border: 5px dotted green;}

/* to style our site footer, which likely has copyright info */

footer[role=contentinfo] {background: green; border: 5px solid blue;}

You do not necessarily have to use CSS this way, but it is a nice option to have.
There is so much more to the WAI-ARIA spec and HTML5 accessibility, so we

encourage you to do some further reading at the following sites:
n http://w3.org/TR/wai-aria
n http://html5accessibility.com
n http://paciellogroup.com/blog

ADVANCED RECIPE:
Marking Up an Article Page with Comments
Listing 2.16 has the code needed to create an article page with comments (Figure 2.9).
It uses several of the new techniques covered in this chapter.

http://w3.org/TR/wai-aria
http://html5accessibility.com
http://paciellogroup.com/blog

ptg999

Chapter 2 Grouping, Text-Level, and Redefined Semantics 52

Listing 2.16 Article with Comments

<!DOCTYPE html>

<html lang="en">

<head>

<meta charset="utf-8">

<title>Blog comments</title>

<style>

[role=banner] h1 {background: #333; color: #fff; padding: 5px;}

[role=main] h1 {border-bottom: 2px dotted #333; color: #333;}

b {float: left; font-family:"Palatino Linotype", Palatino, serif; font-size:

➥2.5em; font-style: italic; font-weight: bold; line-height: 1; margin: 0

➥5px 5px 0;}

</style>

</head>

<body>

<h1 role="banner">>Tom's blog</h1><article role="main">

 <header>

 <h1>Title of my article</h1>

 <time pubdate datetime="2010-12-12">Sunday, 12th December 2010</time>

Figure 2.9 Website article with comments

ptg999

Advanced Recipe: Marking Up an Article Page with Comments 53

 <p>Pellentesque habitant morbi tristique senectus et netus et

➥malesuada fames ac turpis egestas. Vestibulum tortor …p>

 </header>

 <section>

 <h2>Comments</h2>

 <ol reversed>

 <article>

 <h3><time datetime="2010-12-13T11:15Z">13/12/2010 11:15</time></h3>

 <footer>Comment by<address>Tom

➥Leadbetter</address></footer>

 <p>What a splendid article!</p>

 </article>

 <article>

 <h3><time datetime="2010-12-16T11:15Z">16/12/2010 11:15</time></h3>

 <footer>Comment by anonymous</footer>

 <p>That was rubbish.</p>

 </article>

 </section>

</article>

</body>

</html>

Listing 2.15 uses some of the ARIA landmark roles, and we have used these to help
style the h1 tags. We also use the b element to style the first letter of the article, to
make it a bit fancier. When styling the h1 and b elements, you do not necessarily have
to use the previous CSS, because there are other ways to target those elements, but it is
nice to have options.

The new time element is used several times, once for the main article, with a
pubdate, and then within each comment. In the previous chapter, you read that a user
comment is an article, so we have used that here, and in this instance we have used
the time and date as its heading. We could have used the author of the comment, but
we do not want duplicate headings in the outline, and using the date and time gives it
a unique identifier. This is a personal preference; there is nothing stopping you from
using, for example, the comment author as the heading.

Also used is an ordered list so that each comment has a number that not only gives
us an order of the comments but gives us a style option as well. We used the reversed
attribute on the ol because in this case we want the latest comment to be at the top.
We could potentially then have an “order by date” toggle switch and, using JavaScript,
add or remove the reversed attribute. Again, you do not have to do this way, there

ptg999

Chapter 2 Grouping, Text-Level, and Redefined Semantics 54

are loads of alternatives, and the design of the comments might mean you have to con-
sider other options.

Summary
In this chapter, you learned about a wide range of new elements and other elements
that have been tweaked slightly in HTML5. New elements such as figure and
details are sure to make developers’ lives easier in the future, and along with new
ARIA roles, you can structure your documents with greater semantics and greater
accessibility. And you can add even further information to your HTML using Micro-
data so that search engines can provide richer, more accurate data.

ptg999

3
Browser Handling in HTML5

Even though the HTML5 and accompanying specifications are not complete and the
details are somewhat in f lux, you can use many of the features right away. HTML5 is
a developing language and incorporates a growing JavaScript API. Browser manufac-
turers are working hard to keep up with the growth of the new specifications. With
these moving targets of new functionality and browser versions, we as developers can
often run into browser support issues.

In this chapter, you will learn how to handle the differences between browsers and
how you can plug the gaps using available tricks, tips, and scripts.

BEGINNER RECIPE:
Dealing with Internet Explorer
If you have been trying the code in the previous chapters in Internet Explorer (IE) 7,
8, or even 6 (we really hope you are not being forced to support IE6), then you may
have noticed a slight problem—the pages you created in the recipes might not look
as expected. That is because the code we have provided so far works natively only in
the following major browsers: Firefox, Chrome, Safari, Opera, and Internet Explorer
9 (IE9). That is not to say that IE7 and IE8 do not support HTML5 entirely; there
are various HTML5 APIs that do work in those browsers, such as drag and drop and
ContentEditable.

Using JavaScript to Make HTML5 Compatible
IE6, 7, and 8, by default, do not recognize the new HTML5 elements, such as
article or section, and therefore will not style these tags. If you do not do any-
thing, the page will probably not look like you would hope. To have IE recognize
the elements, you can programmatically create them through JavaScript as part of the
DOM and then style them accordingly, as in this example:

ptg999

Chapter 3 Browser Handling in HTML556

<script>

document.createElement('article');

document.createElement('section');

//and so on

</script>

Of course, doing that for every single new HTML5 element would be a little
tedious, and chances are that you would miss something. Luckily, you can use some-
thing called HTML5Shiv (http://code.google.com/p/html5shiv), written by Remy
Sharp, which includes all the new elements and another bit of JavaScript called IE
Print Protector (http://iecss.com/print-protector), which helps IE display HTML5 ele-
ments correctly. The “shiv” is designed to allow versions prior to IE9 to recognize the
HTML5 elements and allow them to be styled using CSS.

Even though the script has conditional code within, so it runs only in IE, you
might as well wrap it in a conditional comment of your own so only IE 8 and older
download and run the code. This script must go in the head tag and before style
sheet calls, as shown in Listing 3.1. It is up to you if you prefer to serve the html5shiv
file locally or link directly to the http://googlecode.com-hosted file. Having the file
locally will prevent both “resource not found” from any remote access issues and
breakages due to future modifications to the JavaScript file.

Listing 3.1 Using the HTML5 Shiv

<!DOCTYPE html>

<html lang="en">

<head>

<meta charset="utf-8">

<!--[if lt IE 9]>

<script src="http://html5shiv.googlecode.com/svn/trunk/html5.js"></script>

<![endif]-->

<!-- put CSS after the shiv -->

</head>

Making CSS Compatible
Now that you can make IE support new HTML5 elements, you need to make it play
nice with CSS. Most modern browsers know how to handle the new elements by
default and without any styling; however, to make sure IE plays nice, you need to set
your new elements to display: block, as shown in Listing 3.2.

Listing 3.2 Setting Up New Elements in CSS

article, aside, details, figcaption, figure, footer, header, hgroup, nav, section
{

display: block;

}

http://code.google.com/p/html5shiv
http://iecss.com/print-protector
http://googlecode.com-hosted

ptg999

Beginner Recipe: Testing for HTML5 Features 57

If you use a CSS reset, you could include the code in Listing 3.2, or there are vari-
ous CSS resets currently available that include the HTML5 fixes:

n http://meyerweb.com/eric/thoughts/2011/01/03/reset-revisited
n Modernizr (which we will cover later in this chapter)
n http://html5doctor.com/html-5-reset-stylesheet

Boilerplates
Whether you are a newcomer or a veteran in the web development industry, you will
have gathered various bits of best practices and code snippets that you reuse on almost
every project. Depending how much time you have dedicated to organizing these
components, you may already have your own boilerplate, which is a series of folders and
files that allow you to start your project quickly. A couple of popular boilerplates are
being advocated in the web community at the moment: http://html5boilerplate.com
and http://html5reset.org. In addition, these boilerplates have already been extended
to generate templates for your specific website or application through sites such as
http://initializr.com, which uses the HTML5 Boilerplate.

These sites, HTML5 Boilerplate in particular, come with a wealth of documenta-
tion, instructions, and tips and tricks for your web project, which include markup,
scripts, CSS, and optimization techniques.

The point of the boilerplates is not to just take it and start using it, but to under-
stand what is in there and to add to or take things away that you either do not need or
maybe disagree with, which is fine. The boilerplates are simply a place for you to start
and gain the benefit of the work of many minds to provide HTML5 cross-browser
support and performance structure. You may even end up with your own custom boil-
erplate based on the features you decide are important.

Tip
The HTML5 Boilerplate has a long list of features and benefits to leverage at the start of
your project. Included in the boilerplate are browser compatibility models, older browser
support options for HTML5, handling of mobile device design, and even an optimization
build script. We recommend you check out the full feature set at http://html5boilerplate.
com. And if you need an even more finished template to start with, check out http://
initializr.com, which uses the HTML5 Boilerplate to create templates for you.

BEGINNER RECIPE:
Testing for HTML5 Features
Earlier you learned how to make browsers recognize the new HTML5 elements and
how to use CSS to get them to display properly. But not all browsers support all the
new HTML5 features such as canvas or geolocation. Although you still sometimes

http://meyerweb.com/eric/thoughts/2011/01/03/reset-revisited
http://html5doctor.com/html-5-reset-stylesheet
http://html5boilerplate.com
http://html5reset.org
http://initializr.com
http://html5boilerplate.com
http://html5boilerplate.com
http://initializr.com
http://initializr.com

ptg999

Chapter 3 Browser Handling in HTML558

have to do some “browser sniffing” to get a browser to behave a certain way, this is
not a recommended approach, and with the scope of HTML5 and the speed at which
browsers are developing, you can instead use feature detection methods. Feature detec-
tion requires JavaScript, so you need to make sure your markup is good enough so it
“degrades gracefully” and that users with older browsers and JavaScript turned off can
still use the site.

In general, the features of HTML5 such as canvas and geolocation, which are
part of the HTML5 elements and JavaScript APIs, can be determined to exist or not
exist by checking for their presence with JavaScript. In Listing 3.3, you perform a
simple check on the browser to determine whether the Geolocation API is available in
the browser.

Listing 3.3 Testing for Geolocation HTML5 Support

<!DOCTYPE html>

<html>

<head>

<meta charset="UTF-8" />

<title>3 Geolocation Check</title><script>

if (navigator.geolocation) {

 alert('Geolocation is supported.');

} else {

 alert('Geolocation is not supported.');

}

</script>

</head>

<body>

</body>

</html>

With JavaScript APIs, it is quite easy to check for the presence of the API, and we
will show this throughout the book. However, if you are trying to check for the avail-
ability of an HTML5 element such as the canvas element, the process is a little bit
more involved. The recognized approach for checking for an element is to create the
element and then attempt to retrieve a default method or attribute of the element. If
the value returned is null or undefined, then the element is not supported by the
browser. Listing 3.4 shows an example of how to do this with the canvas element.

Listing 3.4 Checking for canvas Support

<!DOCTYPE html>

<html>

<head>

<meta charset="UTF-8" />

ptg999

Intermediate Recipe: Leveraging jQuery to Replace a Calendar 59

<title>3 Canvas Check</title>

<script>

if (document.createElement('canvas').getContext) {

 alert('Canvas is supported.');

} else {

 alert('Canvas is not supported.');

}

</script>

</head>

<body>

</body>

</html>

You first created a new element of type canvas and immediately after checked
to see whether the element provides a getContext method. You will see the
canvas methods later in the book, but it is enough to know at this point that the
getContext method is an essential and default method of any canvas object. So, if
the getContext method does not exist on this element, then the element itself does
not exist and canvas is not supported by this browser.

INTERMEDIATE RECIPE:
Leveraging jQuery to Replace a Calendar
In Chapter 5, you will learn about all the new form features available in HTML5, but
right now we will brief ly introduce one of those new features, the date input type.
The date input type displays a calendar widget to the user, as shown in Figure 3.1.
Currently this works only in the Opera browser, and although it degrades nicely in
other browsers by just showing a normal input element that the user can type a date
into, here you want a calendar widget to appear in all browsers.

Figure 3.1 The <input type”date” /> element displayed
in Opera 10.63

ptg999

Chapter 3 Browser Handling in HTML560

Here is the HTML code you need to get the input working in Opera:

<form>

 <label for="date">What date do you leave?</label>

 <input required type="date" id="date" name="date" />

 <input type="submit" value="Submit" />

</form>

With JavaScript, you will create an element in the DOM, add the date type attri-
bute to it, and then test whether the browser supports it. If the browser does support it,
then you celebrate by doing nothing. But if the browser does not support it, then you
provide a calendar widget. Figure 3.2 shows a calendar in Internet Explorer. Listing
3.5 shows the code for creating this. In this example, we have used jQuery to provide
the calendar functionality, so we have linked directly to the necessary jQuery files for
ease.

Listing 3.5 Using jQuery Calendar as a Fallback

<!DOCTYPE html>

<html lang="en">

<head>

<meta charset="utf-8">

<title>Detect the date input type</title>

<script

➥src="http://ajax.googleapis.com/ajax/libs/jquery/1.4.4/jquery.min.js"></script>

<script src="http://ajax.googleapis.com/ajax/libs/jqueryui/1.8.7/jquery-

➥ui.min.js"></script>

<link rel="stylesheet" href="http://ajax.googleapis.com/ajax/libs/jqueryui/1.8.7/
themes/base/jquery-

➥ui.css" media="screen" /><script>

Figure 3.2 Internet Explorer with the fallback jQuery calendar

ptg999

Intermediate Recipe: Leveraging jQuery to Replace a Calendar 61

$(function(){

function inputSupport() {

 var input = document.createElement("input");

 input.setAttribute("type", "date");

 var val = (input.type !== "text");

 delete input;

 return val;

 }

 if (!inputSupport() || ($.browser.webkit)) {

 //alert("the date input type is not supported");

 $('input[type=date]').datepicker({

 dateFormat: 'yy-mm-dd' // this format is the same format as in the HTML5

➥Specification

 });

 }

});

</script>

</head>

<body>

<form>

<label for="date">What date do you leave?</label> <input required type="date"

➥id="date" name="date" />

<input type="submit" value="Submit" />

</form>

</body>

</html>

The eagle-eyed among you will have noticed the following bit of JavaScript:
($.browser.webkit). We have included this in Listing 3.5 because, frustratingly,
WebKit browsers do detect <input type="date">, but at the moment, they do not
do anything with it. The same thing happens with the input types email, number,
tel, and url. So, that little bit of JavaScript makes sure the jQuery calendar widget
works in Safari and Chrome. We hope soon these WebKit-based browsers will do
something awesome with these input types by default so we can do away with the
browser detection code.

The JavaScript code in Listing 3.5 deals only with detecting date type support. If
you have other types to detect, you may want to tweak the previous code so you can
test several input types. For example, see Listing 3.6.

Listing 3.6 Detecting Different Input Types

$(function(){

 function inputSupport(inputType) {

 var input = document.createElement("input");

 input.setAttribute("type", inputType);

ptg999

Chapter 3 Browser Handling in HTML562

 var val = (input.type !== "text");

 delete input;

 return val;

 }

 if (!inputSupport("date")) {

 alert("the date input type is not supported");

 //do something else instead

 }

 if (!inputSupport("email")) {

 alert("the email input type is not supported");

 //do something else instead

 }

});

If you have a small site, maybe with just a few new HTML5 elements that you want
to make available in all browsers, then the previous approach may be suitable because
it is a fairly quick fix. However, if you perform a lot of functional support detection,
it is likely to become tedious, so you might consider using a JavaScript library such as
Modernizr.

INTERMEDIATE RECIPE:
Using Modernizr to Detect Features
Modernizr is a JavaScript library (found at http://modernizr.com) that detects what
HTML5 and CSS3 features the browser supports and makes it simple for developers
to test and code for the browsers that do not support some of the new technologies. In
the previous examples, we used standard JavaScript to test for features, but with Mod-
ernizr it is incredibly easy.

Although Modernizr does the detection part for you, it does not, however, fill in
the gaps and add the missing functionality for you. Regardless, it is an incredibly pow-
erful bit of script that developers should be aware of and have ready in their arsenal.
Now on version 2, the Modernizr library focuses on CSS3 detection, HTML5 tag
support, and JavaScript API support. For each of these areas, the Modernizr library has
particular properties that can be accessed after initialization and used to dynamically
change the source and thus support multiple experiences and browsers. Some of the
property f lags include the following:

n Geolocation API
n localStorage
n sessionStorage
n Drag and Drop
n History Management
n applicationCache

http://modernizr.com

ptg999

Intermediate Recipe: Using Modernizr to Detect Features 63

n Canvas
n Web Sockets
n Web Workers
n Web SQL Database
n Input Types
n Input Attributes

The Modernizr library, or in its terms micro-library, is simple to use and has been
integrated into major and minor sites around the world. Until all browsers support all
features uniformly of HTML5, CSS3, and the JavaScript APIs, there will be a need for
tools such as Modernizr.

So, how do you use it? To generate your file, you have to select the features you
want to test for. Selecting only a few features is useful because it keeps the file size
down and it makes you think more specifically about the features your website will
have. So first, you generate a file from the site and, as shown in Listing 3.7, include the
link in the head tag and add a class of no-js to the html tag.

Listing 3.7 Setting Up with Modernizr

<!DOCTYPE html>

<html class="no-js" lang="en">

<head>

<meta charset="utf-8">

<title>Let's go Modernizr</title>

<script src="modernizr.js"></script>

</head>

<body>

</body>

</html>

The Modernizr script will run automatically when included and will replace the
no-js class attribute added to the html element. The script will dynamically attach
CSS classes of what functionality the browser supports and also what functionality the
browser does not support. The following code shows the html tag after the Modernizr
script has run and replaced the class attribute in Chrome version 8. As you can see,
the Chrome 8 browser supports many CSS3 and HTML5 goodies but does not sup-
port, for example, WebGL, so it adds a class of no-webgl.

<html lang="en" class=" js flexbox canvas canvastext no-webgl no-touch geolocation

➥postmessage websqldatabase no-indexeddb hashchange history draganddrop

➥websockets rgba hsla multiplebgs backgroundsize borderimage borderradius

➥boxshadow textshadow opacity cssanimations csscolumns cssgradients

➥cssreflections csstransforms no-csstransforms3d csstransitions fontface

➥video audio localstorage sessionstorage webworkers applicationcache svg

➥inlinesvg smil svgclippaths">

ptg999

Chapter 3 Browser Handling in HTML564

Listing 3.8 shows a simple use of how Modernizr exposes different feature support
in the CSS tags by checking for Session Storage API support. If session storage is avail-
able, then the .sessionstorage class style will be used, and if session storage is not
supported, then the .no-sessionstorage class style will be used.

Listing 3.8 CSS Options with Modernizr

<!DOCTYPE html>

<html class="no-js" lang="en">

<head>

<meta charset="UTF-8" />

<title>3 Modernizr CSS</title>

<style>

 div.storageNo, div.storageYes { display: none }

.no-sessionstorage div.storageNo { display: block }

.sessionstorage div.storageYes { display: block }

</style>

<script src="modernizr.js" type="text/javascript"></script>

</head>

<body>

 <div class="storageNo">SessionStorage is not supported.</div>

 <div class="storageYes">SessionStorage is supported.</div>

</body>

</html>

So, in the previous example, the corresponding div will be displayed based on the
support. But you could use this for any of the JavaScript API usage. A listing of all the
properties exposed on the Modernizr object is available on the http://modernizr.com
website in the documentation section.

Although this is useful for CSS development, Modernizr has a wealth of JavaScript
properties that can be used for feature detection. In Listing 3.9, you programmatically
alert the user whether session storage is available depending on a property of the Mod-
ernizr object.

Listing 3.9 Feature Detection with Modernizr and JavaScript

<!DOCTYPE html>

<html class="no-js">

<head>

<meta charset="UTF-8" />

<title>3 Modernizr JS</title>

<script src="modernizr.js" type="text/javascript"></script>

<script>

if (Modernizr.sessionstorage) {

 alert('SessionStorage is supported.');

} else {

 alert('SessionStorage is not supported.');

}

http://modernizr.com

ptg999

Intermediate Recipe: Using Modernizr to Detect Features 65

</script>

</head>

<body>

</body>

</html>

You can also use Modernizr in conjunction with jQuery and other libraries. List-
ing 3.5 uses a JavaScript solution to provide a calendar widget to browsers that do not
support the HTML5 date input type. In Listing 3.10, we have re-created this example
using Modernizr as our detection tool.

Listing 3.10 jQuery Calendar Fallback with Modernizr

<!DOCTYPE html>

<html class="no-js" lang="en">

<head>

<meta charset="utf-8">

<title>Let's go Modernizr</title>

<script src="modernizr2.js"></script>

<script

➥src="http://ajax.googleapis.com/ajax/libs/jquery/1.4.4/jquery.min.js"></script>

<script src="http://ajax.googleapis.com/ajax/libs/jqueryui/1.8.7/jquery-

➥ui.min.js"></script>

<link rel="stylesheet"

➥href="http://ajax.googleapis.com/ajax/libs/jqueryui/1.8.7/themes/base/

➥jquery-ui.css" media="screen" />

<script>

$(function(){

 //check to see browser does not support input type

 if (!Modernizr.inputtypes.date){

 $('input[type=date]').datepicker({

 dateFormat: 'yy-mm-dd' // same format as in the HTML5 specification

 });

 }

});

</script>

</head>

<body>

<form>

<label for="date">What date do you leave?</label>

<input required type="date" id="date" name="date" />

<input type="submit" value="Submit" />

</form>

</body>

</html>

ptg999

Chapter 3 Browser Handling in HTML566

You do not typically have to use the opening bit of the JavaScript $(function(){})
as we did in Listing 3.10, but in this example we are using a jQuery calendar so it is
needed. And that is all there is to it. It is really easy, and there are dozens of options in
the Modernizr documentation at http://modernizr.com/docs, including the f lexibility
to extend the library with new tests.

Polyfilling
Being able to detect what HTML5 features are supported, either with your own code
or using Modernizr, is only half the battle. Ultimately the goal is to be able to support
the HTML5 functionality in the various browsers and versions of browsers that your
users use to visit the web applications and sites you create. To allow for browsers that
do not support a specific HTML5 functionality, you would need to use a third-party
library that includes code for the various browsers to have the same functionality. The
code or library of code that allows the feature to be supported on browsers is called a
polyfill or polyfiller. An example of a polyfiller could be a library that provides canvas
support for Internet Explorer since Internet Explorer does not support the canvas ele-
ment directly but has its own drawing functionality such as Silverlight. You want to be
able to develop with the new APIs and still offer the same experience to browsers that
do not support them natively. We have seen examples of using a JavaScript library such
as jQuery to plug some of the gaps, but there is no one library that will fix everything.

It is not just the older browsers that have holes in HTML5 features; new browsers
do not universally cover HTML5 yet either. So, either with your own detection code
or by using Modernizr, you will need to load an appropriate polyfill library to pro-
vide the same level of support for HTML5 features across multiple browsers. In fact,
Modernizr provides a utility for loading scripts directly through its Modernizr.load
method, which is based on a test for a specific feature, and the results can dynamically
load a polyfill, which you provide as shown here:

 Modernizr.load({

 test: Modernizr.canvas,

 yep: 'myCanvas.js',

 nope: 'myCanvasPolyfiller.js'

 });

Tip
The Modernizer.load method is actually an aliased command to an included third-
party JavaScript library titled yepnope.js, which you can find at http://yepnopejs.com. The
library is dedicated to being a fast conditional resource loader with a small footprint. The
library can be used separately or via the Modernizr load alias method. The yepnope Java-
Script library is beneficial for conditionally loading either CSS or JavaScript through the
testing of various types of data objects from strings to arrays.

There is a wide array of polyfills already developed for multiple components in var-
ious browsers; you can find a broad list at http://github.com/Modernizr/ Modernizr/

http://modernizr.com/docs
http://yepnopejs.com
http://github.com/Modernizr/Modernizr/wiki/HTML5-Cross-browser-Polyfills

ptg999

Summary 67

wiki/HTML5-Cross-browser-Polyfills. This useful list is maintained by Paul Irish,
lead developer of Modernizr, and has fallbacks for all kinds of things, including canvas,
video, geolocation, forms, and much more.

Note
Having various polyfills, shims, and libraries available to support HTML5 features that
may not currently be supported in one or more browsers is a powerful way to provide a
uniform experience across multiple browsers for users. However, there can be a negative
performance impact if you have to load multiple polyfills. The negative load time versus
the functionality and support gained will need to be balanced in your development.

Useful HTML5 Verification Sites
We have been through various techniques and scripts to find out how to handle differ-
ent browser behaviors, so here is a quick list of sites that will tell you which browsers
support which features. As browsers update or if you are not sure about a particular
feature, you can try visiting one of these sites:

n http://findmebyIP.com: Provides details on the browser in which you launch the
page for CSS3, HTML5, Forms 2.0, CSS3 Selector Tests, script support, and IP
details. In fact, it employs Modernizr to provide much of the information.

n http://caniuse.com: Provides tables of compatibility with various browsers for
HTML5, JS API, and CSS3 and can be filtered as needed.

n http://html5test.com: Tests a set of various HTML5 features and scores your
browser on what is supported. This can compare one browser to other browsers.

n http://html5readiness.com: Visualization of the state of various browsers in relation
to HTML5 features.

Summary
In this chapter, you learned about some of the methods for dealing with old versions
of browsers and deficiencies in versions of browsers in regard to HTML5. The case
with HTML5 is that there is a wide range of support for the various CSS, HTML, and
JavaScript additions that make up HTML5, but it is still maturing. You also learned
about CSS resets and boilerplates, which contain modern up-to-date tools, tips, and
techniques for web development.

You learned about the use of Modernizr, a powerful bit of script for feature detect-
ing that enables you to offer fallbacks for browsers that do not yet support some of the
new HTML5 features. We will not be showing how to employ Modernizr in the book
since you may or may not choose to use it in your own site and because we are try-
ing to show the base methods of performing functions. However, we recommend and
fully expect that using Modernizr or one of the other tools mentioned in this chapter
will provide you benefit in your HTML5 coding.

http://github.com/Modernizr/Modernizr/wiki/HTML5-Cross-browser-Polyfills
http://findmebyIP.com
http://caniuse.com
http://html5test.com
http://html5readiness.com

ptg999

This page intentionally left blank

ptg999

4
New Layout and Style
Techniques with CSS3

CSS level 3 (CSS3) is the latest iteration of the CSS specification. Building on
previous variations, CSS3 brings new features that you can implement in the latest
browsers to improve the look, usability, accessibility, and performance of your web
pages. CSS is not HTML5, we know this, and you need to know this, but we have
included this chapter because they often go hand in hand and we are showing you just
some of the possibilities available with CSS3 so you can make your new HTML5 web-
sites look fantastic. In this chapter, you will learn about responsive web design with
media queries, custom fonts, gradients, transitions, transformations, and, finally, ani-
mations. We are not covering all the new features of CSS3; we are simply scratching
the surface of what is available.

INTERMEDIATE RECIPE:
Creating a Responsive Design with CSS3
Media Queries
Mobile browsing is ever on the rise, and some estimate it will take over desktop
browsing within five years. CSS3 Media Queries gives you the ability to target spe-
cific screen widths, heights, and even orientation, so you can target smartphones like
the iPhone or Android phone, as well as new tablet devices like the iPad, all with CSS.
Table 4.1 shows the version of each browser that supports CSS3 Media Queries.

In the past, you may have used JavaScript to detect a mobile phone and deliver a
separate style sheet or redirect the user to a specific mobile site. Or you might have
used JavaScript to detect when a browser has been resized and then change some of the
styles to adapt the layout. We have always had the basics of media queries, because we
have always been able to target for screen or print:

ptg999

Chapter 4 New Layout and Style Techniques with CSS3 70

<link rel="stylesheet" href="screen.css" media="screen" />

<link rel="stylesheet" href="print.css" media="print" />

But now you can be more sophisticated using CSS3 Media Queries. Listing 4.1
shows a quick example.

Listing 4.1 Simple Media Query Example

<link rel="stylesheet" media="screen and

(max-device-width: 480px)" href="smartphone.css" />

<link rel="stylesheet" media="screen and

(min-width: 480px)" href="screen.css" />

Listing 4.1 asks the device whether its horizontal resolution is 480 pixels wide or
less. If so, then here you presume it is a smartphone and load smartphone.css. You
then ask to see whether the resolution is at least 480 pixels wide; if it is, then you can
use a different style sheet. Potentially, you could have several different media queries as
you attempt to target all different types of devices, resolutions, and screen orientation.
You might have style sheets for smartphones, smartphones with a landscape orienta-
tion, Android screen sizes, the iPad, the iPad with portrait orientation, browsers with
resolutions of less than 800 pixels wide, or browsers with wide-screen resolutions.
There is really no limit on how precise you can be.

So, you need a good way of organizing all your separate queries. Bear in mind you
will already have all your main style sheets as well. Using the approach in Listing 4.1
would mean there are a lot of HTTP requests in the head tag.

Alternatively, you can include the media queries inside a CSS file, as shown in List-
ing 4.2, using @media.

Table 4.1 CSS3 Media Queries Device
and Browser Support

Android 2.3+

Chrome 13.0+

Firefox 4.0+

Internet Explorer 9.0+

iOS Safari 4.0+

Opera 11.0+

Safari 5.0+

ptg999

Intermediate Recipe: Creating a Responsive Design with CSS3 Media Queries 71

Listing 4.2 Media Queries Inside a CSS File

body {background: black; color: #fff; font: normal 62.5%/1.5 tahoma, verdana,

➥sans-serif;}

h1 {font-size: 2em;}

p {font-size: 1.4em;}

/* styles for smartphones and very small screen resolution */

@media only screen and (min-width: 320px) and (max-width: 400px)

{

body {background: blue;}

}

/* styles for screen resolutions bigger than smartphones but smaller or equal to

➥1024px */

@media only screen and (min-width: 401px) and (max-width: 1024px)

{

body {background: red;}

}

/* styles for screen resolutions for a very wide resolution */

@media only screen and (min-width: 2000px)

{

body {background: green;}

}

In Listing 4.2 we have changed the background color depending on the screen
resolution. All the media queries are part of the same CSS document, so it is impor-
tant to make sure you keep the CSS document organized; it is likely you will have
hundreds of line of code for your default design and then additional CSS for the media
queries. Depending on your site setup, it might be easier to edit a media query type,
for example adjusting min-width: 2000px to min-width: 2500px, inside a CSS file
rather than inside the HTML of all your pages.

Using the and syntax, you can combine different queries. You can target several fea-
tures: width, height, device-width, device-height, orientation, aspect-ratio,
device-aspect-ratio, color, color-index, monochrome, resolution, scan,
and grid. Along with the recognized media types of all, braille, embossed,
handheld, print, projection, screen, and speech, you can combine these to tar-
get several different types of devices and sizes simultaneously. It is worth noting that
max-device-width is the screen size of the device (like an iPhone), whereas max-width
is the width of the viewing area only (such as a browser window); see the differences in
the following code:

/* devices smaller than 480px; mobiles, iPhone and normal screens */

@media handheld and (max-width: 480px), screen and (max-device-width: 480px),

➥screen and (max-width: 480px) {

ptg999

Chapter 4 New Layout and Style Techniques with CSS3 72

/* styles go here */

}

/* layout for iPad in landscape mode */

@media only screen and (min-device-width: 768px) and (max-device-width: 1024px) and

➥ (orientation: landscape) {

/* styles go here */

}

Tip
In the following code listings, we have used some different types of CSS selectors. The
first is an attribute selector, used on header[role=banner], and the second is the
pseudoclass selector, nth-xx(), used in several cases, such as section:nth-of-
type(1). Attribute selectors are not new in CSS3, but with new ARIA-Roles, they give
you more selector flexibility with CSS. There are plenty of new CSS3 selectors, including
nth-child() and nth-of-type(). Using these new selectors means you can do
away with using classes on many elements. For example, using nth-of-type(), you
can select every other table row or list item. For more information on this, we recommend
reading http://quirksmode.org/css/nthchild.html.

Many of these new selectors do not work in older versions of Internet Explorer, so we
recommend using Selectivizr (http://selectivizr.com), an easy-to-use JavaScript utility that
makes Internet Explorer understand the new CSS selectors.

Figure 4.1 uses the example HTML markup from Chapter 2 for a news site. Listing
4.3 provides the condensed HTML. The CSS code in Listing 4.4 is for the default lay-
out, as shown in Figure 4.1.

Listing 4.3 Condensed HTML for the News Site

<body>

<header role="banner">

 <hgroup></hgroup>

</header>

<nav></nav>

<section> <!-- this section is repeated three more times -->

 <article>

 <header></header>

 <p></p>

 </article>

</section>

<aside></aside>

</body>

http://quirksmode.org/css/nthchild.html
http://selectivizr.com

ptg999

Intermediate Recipe: Creating a Responsive Design with CSS3 Media Queries 73

Listing 4.4 CSS for Default Screen Layout

<style>

* {margin: 0; padding: 0;}

body {background: #fff; color: #000; font: normal 62.5%/1.5 "Palatino Linotype",

➥"Book Antiqua", Palatino, serif; margin: 0 auto; width: 1260px}

header, nav, section, article, footer, aside {display: block;}

header[role=banner] {margin: 10px 0 20px; text-align: center;}

header[role=banner] h1 {background: url(logo.gif) top center no-repeat;font-size:

➥5em; padding: 100px 0 0; text-transform: uppercase;}

header[role=banner] h2 {font-style: italic;}

header, nav {clear: both; width: 100%;}

nav {border-bottom: 1px dotted #ccc; padding-bottom: 20px; text-align: center;}

nav li {display: inline;}

nav li a {font-size: 1.4em; padding: .5em;}

section {float: left; margin: 0 0 0 10px; padding: 10px; width: 345px;}

section h1 {margin: 0 0 10px;}

section article {margin: 0 0 10px;}

section article header p {font-size: 1em; font-weight: bold; margin: 0 0 10px;}

section article img {float: left; margin: 0 5px 5px 0;}

section:nth-of-type(1) {clear: both; margin: 0 0 10px; min-height: 200px;

➥padding: 1% 1% 1% 30%; position: relative; width: 69%;}

Figure 4.1 The news site with default CSS

ptg999

Chapter 4 New Layout and Style Techniques with CSS3 74

section:nth-of-type(1) article {margin: 0;}

section:nth-of-type(1) article img {float: none; height: 200px; left: 0;

➥position: absolute; top: 10px; width: 360px}

section:nth-of-type(2) {margin-left: 0;}

aside {float: right; margin-left: 10px; width: 130px;}

aside img {border: 1px solid #ccc; display: block; margin: 0 auto 10px;}

footer {clear: both;}

h1 {font-size: 2em;}

p {font-size: 1.4em;}

</style>

Figure 4.2 shows the layout on a smaller screen size, using the media query from
Listing 4.5.

Figure 4.2 The news site at a reduced screen size

ptg999

Intermediate Recipe: Creating a Responsive Design with CSS3 Media Queries 75

Listing 4.5 CSS for a Reduced Screen Size

/* styles for screen resolutions bigger than smartphones but smaller or equal to

➥1280px */

@media only screen and (min-width: 481px) and (max-width: 1259px)

{

body {width: 800px;}

section {margin: 0 0 0 10px;}

section:nth-of-type(1), section {clear: none; float: left; padding: 10px; width:

➥375px;}

section:nth-of-type(1) article img {float: left; height: auto; position:

➥relative; width: auto;}

section:nth-of-type(2) {margin-left: 10px;}

section:nth-of-type(3) {clear: both; margin-left: 0;}

aside {clear: both; float: left; width: 100%;}

aside img {float: left; margin: 0 10px 0 0;}

}

Finally, Listing 4.6 has the necessary CSS media query for a display on a smart-
phone or if the browser has been reduced dramatically, as shown in Figure 4.3. Essen-
tially, all we have done with just a few lines of additional CSS is to hide and resize a
few elements from the screen at smaller sizes.

Figure 4.3 The news site on a smartphone

Listing 4.6 CSS for a Smartphone

/* styles for smartphones and very small screen resolution */

@media only screen and (max-width: 480px), only screen and (max-device-width:

➥480px) {

ptg999

Chapter 4 New Layout and Style Techniques with CSS3 76

body {width: 100%;}

header[role=banner] h1 {background-image: url(logo-small.gif); font-size: 3em;

➥padding: 50px 0 0;}

section:nth-of-type(1), section {margin: 0 0 10px; min-height: inherit; padding:

➥0 1%; width: 98%;}

header[role=banner] h2, img, section article p, aside {display: none;}

section h2 a {border-bottom: 1px dotted #999; display: block; text-decoration:

➥none;}

nav, section article:last-of-type h2 a {border: none;}

}

Sensible Usage
Although you can create separate styles for different devices and screen sizes, the ques-
tion is, should you always use media queries? They can no doubt be useful on desktop
computers and laptops, but the mobile landscape has been changing for some time.
More modern smartphones like the iPhone and Android devices come with browsers
that are almost identical to desktop-powered browsers, so they can handle most things,
and the interactivity of the device allows the user to pinch and zoom their way around
a website with relative ease.

Using media queries generally means you show/hide content depending on the
screen size. Many websites such as http://youtube.com, http://facebook.com, http://
cnn.com, and http://nf l.com all detect that the user is using a handheld device and
redirect the user to mobile-specific versions of their sites. The reason they do this
is because their sites are content heavy with lots of data, pictures, videos, ads, Flash,
and all sorts of things. If these sites just used media queries on smartphones, then the
smartphone would still have to download all of this data even if the user could not see
it. So, whether you need just new styles or a completely separate mobile site depends
on your content, but if you just need to change the layout and add a few niceties, then
you should probably use CSS3 Media Queries. For some excellent uses of CSS3 Media
Queries, have a look at http://mediaqueri.es.

Targeting the iPhone and Android Devices
If you have used media queries to target the iPhone or Android devices, you may
notice that they do not pick up the CSS changes for small screens. This is because
modern smartphone browsers are powerful, and by default they display a web page the
same as the page would be displayed on a desktop browser. Then the browser scales
down the website to fit the small screen, which can often result in small text and
images, so the user has to zoom in to read and browse. You can force the browser to
use the width of the device as the width of the viewing area, also known as the view-
port. The following code goes in the head tag:

<meta name="viewport" content="width=device-width; initial-scale=1.0; " />

http://youtube.com
http://facebook.com
http://cnn.com
http://cnn.com
http://nfl.com
http://mediaqueri.es

ptg999

77Beginner Recipe: Using Custom Fonts with @font-face

BEGINNER RECIPE:
Using Custom Fonts with @font-face
Although not exactly new to CSS3, @font-face has had a resurgence under the CSS3
banner, and there are now plenty of options for the web designer and developer when
it comes to choosing and implementing fonts on websites. Table 4.2 shows the version
of each browser that supports @font-face.

Table 4.2 @font-face Device and
Browser Support

Android 2.3+

Chrome 13.0+

Firefox 4.0+

Internet Explorer 6.0+

iOS Safari 4.0+

Opera 11.0+

Safari 5.0+

Note
@font-face was included in the CSS2 specification in 1998; however, it was pretty
much unused because of poor browser implementation, font file type confusion, and a
concern about the legalities and licensing issues of using fonts. Internet Explorer version
4 even supported custom fonts albeit only in EOT format.

Using @font-face, you can embed your own font with just a few lines of CSS.
Figure 4.4 is using a font called Anagram (more on where to get fonts from later) for
the h1, though it can be used for any element.

Figure 4.4 Custom font displayed using @font-face

ptg999

Chapter 4 New Layout and Style Techniques with CSS3 78

Listing 4.7 shows the necessary code for Figure 4.4 and provides an example of
@font-face in its simplest use. You name the font Anagram in font-family, though
you can call it whatever you want, and you will be referencing it again later; see the
h1 font values. In the @font-face declaration, the src for the font is in the same
directory as the HTML page; you can put it in a different directory if you wanted.

Listing 4.7 @font-face in Its Simplest Form

<style>

@font-face {

font-family: Anagram;

src: url('anagram.ttf');

}

h1 {

font-family: Anagram, Tahoma, Verdana, sans-serif;

font-size: 9em;

}

</style>

<header role="banner">

<hgroup>

<h1>Loads of News</h1>

<h2>Bringing you all kinds of news!</h2>

</hgroup>

</header>

File Formats and the Cross-Browser Fix
Listing 4.7 uses only a .ttf (TrueType/OpenType) font file. Unsurprisingly, there are
cross-browser implementation issues. There are several different font file formats:

n Embedded OpenType (.eot)
n OpenType PS (.otf)
n TrueType/OpenType (.ttf)
n SVG (.svg)
n WOFF (.woff)

WOFF is the new web standard for typefaces. Internet Explorer versions 8 and
older need an .eot font, but Internet Explorer 9 will support the new WOFF format.
And although Safari has supported .ttf for some time, only recently has the iPhone and
iPad started supporting the .ttf format; previously, they needed a .svg font. So, what
you need to do is deliver the same font but in different formats. To do that, you either
need to convert the fonts yourself or use a tool like Font Squirrel at http://fontsquirrel.
com. The @font-face Generator allows you to upload fonts and then convert them
to different formats. It also generates the necessary CSS that enables the font to work
across the different browsers, as shown in Listing 4.8.

http://fontsquirrel.com
http://fontsquirrel.com

ptg999

79Beginner Recipe: Using Custom Fonts with @font-face

Listing 4.8 Cross-Browser @font-face

@font-face {

font-family: 'AnagramRegular';

 src: url('type/Anagram-webfont.eot');

 src: url('type/Anagram-webfont.eot?#iefix') format('embedded-opentype'),

 url('type/Anagram-webfont.woff') format('woff'),

 url('type/Anagram-webfont.ttf') format('truetype'),

 url('type/Anagram-webfont.svg#webfontCiw7vqzS') format('svg');

}

In Listing 4.8, you reference four different formats of the same font. It might be
worth organizing your fonts in a separate folder like you do for images. The previous
code order is used to make Internet Explorer behave and also fixes a bug in Android.
There have been several iterations of the previous code, but as browsers develop, more
issues have been found. The previous code is currently supplied by Font Squirrel when
you generate a fonts package, but of course it is subject to change in the future.

Type Services
Finding the right typeface can be difficult. Finding one that can be used legally on
the web can be even more so. Font Squirrel allows you to convert fonts to the various
necessary formats. To do so, you must tick a box that says “Yes, the fonts I am upload-
ing are legally eligible for web embedding.” If you tick this and are not completely
sure, then you could open yourself up to some legal issues.

If you need a free font, then we suggest looking through the type library on Font
Squirrel because not only does the site offer a font generator, but its main focus is pro-
viding fonts that are completely free for commercial use. Also, they do not just put any
free font on there; they make sure the fonts are of high quality. Font Squirrel is not
the only place to get free web fonts, but when searching elsewhere, be aware of the
legalities.

Another alternative for free fonts is the Google Font Directory (http://code.google.
com/webfonts). Using the API available, it is incredibly easy to use the fonts they
offer. Because the fonts are hosted by Google, the loading times will be minimal. All
you need to do with the Google fonts is find a font and choose “Use this font.” It
gives you the HTML and CSS you need, additionally offering extra font weights if the
font has them. The HTML code provided to put in the head tag is similar to this:

<link href='http://fonts.googleapis.com/css?family=Yanone+Kaffeesatz'

➥rel='stylesheet' >

And Google gives you the font name to put in your CSS font stack:

h1 {font-family: 'Yanone Kaffeesatz', arial, serif;}

It is that easy.

http://code.google.com/webfonts
http://code.google.com/webfonts

ptg999

Chapter 4 New Layout and Style Techniques with CSS3 80

Tip
You will have noticed in the previous examples that after declaring the custom font,
we list some web-safe fonts such as font-family 'Yanone Kaffeesatz', arial,
serif. We provide a fallback font in case anything goes wrong in retrieving the custom
font. There could be a problem with a server, and the browser might be unable to retrieve
the custom font we want, so using font stacks, we provide a fallback to a font we know is
available. Font stacks should always be provided when using CSS font-family.

If Font Squirrel or the Google Font Directory cannot provide the font you are
looking for, then other services are available. Because licensing has been an issue for
years, many of the major font foundries have started to either create their own frame-
work to allow you to legally and securely use their fonts or have partnered with a third
party that helps deliver these fonts.

Services such as FontDeck and TypeKit enable you to register and choose from a
range of fonts, all of which have been tweaked for improved legibility on the screen.
FontDeck and TypeKit deliver the fonts in slightly different ways, but setting up,
choosing, and activating fonts is a breeze on both services. Both services have free
accounts with some limitations, and both offer various pricing packages.

INTERMEDIATE RECIPE:
Making Buttons with CSS Gradients and
Multiple Backgrounds
You can use CSS3 gradients to make nice subtle gradients or some wacky, hideous
ones. You do not have to create images, and the gradients are scalable, so once you
get the hang of them, it is much less hassle than having to create, edit, and re-create
images, because you can do it all with code. Table 4.3 shows the version of each
browser that supports CSS3 gradients.

Table 4.3 Gradient Device and
Browser Support

Android 2.3+

Chrome 13.0+

Firefox 4.0+

Internet Explorer -

iOS Safari 4.0+

Opera 11.0+

Safari 5.0+

ptg999

Intermediate Recipe: Making Buttons with CSS Gradients and Multiple Backgrounds 81

Listing 4.9 has the code for a basic white-to-black gradient, as shown in Figure 4.5.

Listing 4.9 Simple CSS Linear Gradient

div {

height: 200px;

width: 200px;

background: url(gradient.gif); /* for browsers that can't do gradients */

background: -moz-linear-gradient(white, black);

background: -webkit-linear-gradient(white, black);

background: -linear-gradient(white, black);

}

First, the gradient type (linear or radial) is set, followed by brackets that contain
the start and stop colors of the gradient. You will notice that the code has four different
declarations. The first is the fallback color if the browser does not support CSS3 gradi-
ents; -moz-linear-gradient is for Mozilla (Firefox) browsers; -webkit-gradient is
for WebKit (Safari and Chrome) browsers; and the final background declaration is the
official CSS3 gradient syntax, but no browser currently supports it.

Note
In 2008, WebKit was the first engine to start using gradients, and it used its own syntax
style. As CSS gradients became more popular, Mozilla implemented syntax much closer to
that of the official specification. However, in January 2011, it was announced that WebKit
will change its gradient syntax and start using the same style as Mozilla and the official
specification, which is great news for everyone, because the original WebKit syntax was
more complicated and not standards-based. This book uses the new WebKit syntax.

Listing 4.10 uses input buttons with a combination of attribute selectors, box
shadow, border-radius, multiple backgrounds, and CSS gradients to achieve the effects
in Figure 4.6. In the background property, you separate multiple background styles
using a comma. So, first you have the image you want to use, and then you set the
gradient styles. If the gradient styles were used first, it would overlap the image.

Figure 4.5 A simple CSS3 linear gradient

ptg999

Chapter 4 New Layout and Style Techniques with CSS3 82

Listing 4.10 Gradient Effects for Buttons

input {

border: none;

-webkit-box-shadow: 0 1px 5px rgba(0, 0, 0, .4);

box-shadow: 0 1px 5px rgba(0, 0, 0, .4);

-webkit-border-radius: 10px;

border-radius: 10px;

cursor: pointer;

color: #fff;

font: bold 1.2em Arial, Helvetica, sans-serif;

margin: 0 10px 0 0;

padding: 10px 10px 10px 30px;

text-shadow: 0 2px 2px rgba(0, 0, 0, 0.25);

}

input[type="submit"] {

background: url(accept.png) 8px 55% no-repeat #91BD09;

background: url(accept.png) 8px 55% no-repeat, -webkit-linear-gradient(#91BD09,

➥#578730);

background: url(accept.png) 8px 55% no-repeat, -moz-linear-gradient(#91BD09,

➥#578730);

background: url(accept.png) 8px 55% no-repeat, -linear-gradient(#91BD09,

➥#578730);

}

input[value="Cancel"] {

background: url(cross.png) 8px 55% no-repeat #b53109;

background: url(cross.png) 8px 55% no-repeat, -webkit-linear-gradient(#b53109,

➥#540303);

background: url(cross.png) 8px 55% no-repeat, -moz-linear-gradient(#b53109,

➥#540303);

background: url(cross.png) 8px 55% no-repeat, -linear-gradient(#b53109, #540303);

}

input[type="reset"] {

background: url(error.png) 8px 55% no-repeat #f0bb18;

background: url(error.png) 8px 55% no-repeat, -webkit-linear-gradient(#f0bb18,

➥#a46b07);

background: url(error.png) 8px 55% no-repeat, -moz-linear-gradient(#f0bb18,

➥#a46b07);

background: url(error.png) 8px 55% no-repeat, -linear-gradient(#f0bb18, #a46b07);
}

Figure 4.6 CSS3 button gradients

ptg999

Intermediate Recipe: Making Buttons with CSS Gradients and Multiple Backgrounds 83

You can do much more than a single fade between two colors. Using a stop, you
can add multiple colors to your gradient, as shown in Figure 4.7. Stops are added after
each comma and can have a position at which they start, as shown in Listing 4.11.

Listing 4.11 shows the code used to make the left image in Figure 4.7. The gradient
is becoming more complicated, but essentially each comma starts a new gradient sec-
tion, and you pass it the values of a color and then a percentage at where to start it.

And you can angle the gradient by changing declarations such as left and left top, as
shown in Listing 4.11, which gives the right image in Figure 4.7.

Listing 4.11 Gradients with Multiple Stops

div {

height: 200px;

width: 200px;

background-color: #000;

background: -moz-linear-gradient(45deg, #000000 0%, #FFFFFF 25%, #000000 50%,

➥#FFFFFF 75%, #000000 100%);

background: -webkit-linear-gradient(45deg, #000000 0%, #FFFFFF 25%, #000000 50%,

➥#FFFFFF 75%, #000000 100%);

background: -linear-gradient(45deg, #000000 0%, #FFFFFF 25%, #000000 50%, #FFFFFF

➥75%, #000000 100%);

}

There are lots of options with CSS3 gradients, including creating radial gradients,
so we recommend trying some of the gradient generators to get your creative juices
f lowing:

n http://colorzilla.com/gradient-editor
n http://westciv.com/tools/radialgradients/index-moz.html
n http://display-inline.fr/projects/css-gradient/

Figure 4.7 CSS3 gradients with multiple stops

http://colorzilla.com/gradient-editor
http://westciv.com/tools/radialgradients/index-moz.html
http://display-inline.fr/projects/css-gradient/

ptg999

Chapter 4 New Layout and Style Techniques with CSS3 84

INTERMEDIATE RECIPE:
Enhancing a Site with Transformations and
Transitions
Previously, web developers needed to use JavaScript or a plug-in such as Flash to
achieve effects and animations on a web page. But now you can do things like rotate
and resize HTML elements using just CSS. Because no browser has yet to take up the
official CSS syntax, you need to add CSS for each vendor. This means you will have
duplicate CSS, but it needs to be done for the time being, and it is not really too much
extra work. Table 4.4 shows the version of each browser that supports transformations
and transitions.

Table 4.4 CSS Transformation and Transition
Device and Browser Support

Android 2.3+

Chrome 13.0+

Firefox 4.0+

Internet Explorer 9.0+

iOS Safari 4.0+

Opera 11.0+

Safari 5.0+

Figure 4.8 shows a rotation transform applied to a figure.
To create the effect in Figure 4.8, you apply the transform property with a

rotate value to the figure and the h1. As shown in Listing 4.12, you have to use
several vendor CSS prefixes to get the effect working in WebKit, Mozilla, and Opera.
There is a -ms- prefix, even though at the moment the IE9 beta does not support
transform effects; we hope by the time you are reading this book, it will.

Listing 4.12 CSS Transforms

* {

margin: 0;

padding: 0;

}

body {

font: normal .9em Arial, Helvetica, sans-serif;

position: relative;

padding: 30px 10px 10px 75px;

width: 600px;

ptg999

Intermediate Recipe: Enhancing a Site with Transformations and Transitions 85

}

h1 {

left: -100px;

position: absolute;

top: 160px;

text-align: left;

-webkit-transform: rotate(270deg);

-moz-transform: rotate(270deg);

-o-transform: rotate(270deg);

-ms-transform: rotate(270deg);

transform: rotate(270deg);

}

figure {

background: #fff;

border: 1px solid #BFBFBF;

-webkit-box-shadow: 2px 2px 4px rgba(0,0, 0, 0.3);

-moz-box-shadow: 2px 2px 4px rgba(0,0, 0, 0.3);

box-shadow: 2px 2px 4px rgba(0,0, 0, 0.3);

display: block;

float: right;

margin: 20px 20px 50px 50px;

padding: 5px;

text-align: center;

-webkit-transform: rotate(10deg);

-moz-transform: rotate(10deg);

-o-transform: rotate(10deg);

-ms-transform: rotate(10deg);

transform: rotate(10deg);

}

figcaption {

clear: both;

display: block;

font-weight: bold;

padding: .5em 0;

}

p {

margin: 0 0 1em;

}

<h1>This is the page title</h1>

<p>Pellentesque habitant morbi tristique sen……</p>

<figure>

<figcaption>

The view from our hotel room

</figcaption>

</figure>

<p>Pellentesque habitant morbi tristique sen……</p>

ptg999

Chapter 4 New Layout and Style Techniques with CSS3 86

Figure 4.8 uses the rotate function of CSS transform property, but there are
several others you can use: translate, scale, and skew. Listing 4.13 shows example
code needed to implement these effects (do not forget to add the browser-specific pre-
fixes). The code shows transform effects in use on text, but they can be applied to any
element, including body.

Listing 4.13 More CSS Transform Options

h1 {transform: translate(100px, 200px)}
h1 {transform: skew(40deg);}
h1 {transform: scale(2);}
/* You can also chain them together in a single declaration: */

h1{transform: translate(100px, 200px) skew(40deg) skew(2) rotate(40deg);}

You can also do transitions and animations. There is a difference between CSS
transitions and CSS animations. A transition is the transitioning between two states
fired by a mouseover (:hover) or mouseclick (:active). CSS animations are timeline
animations that can run on their own.

Transitions have been available for quite some time in WebKit, and Mozilla and
Opera now implement CSS transitions; sadly, at the moment, IE does not. Transitions
use the transform property shown earlier and can be applied on :hover or :active.
Instead of instantly changing the values of an element when you hover on it, you can
animate to those new values using the CSS transition property. Figure 4.9 shows a
basic example of a normal text link.

Figure 4.8 An image and text rotated using CSS

ptg999

Intermediate Recipe: Enhancing a Site with Transformations and Transitions 87

Figure 4.10 shows the mid-transition effect and the final effect of the link back-
ground fading to blank and the text fading to white on a mouse hover. It is hard to
get this effect across in a printed black-and-white book, so we urge you to try this in a
browser.

Listing 4.14 shows the code for this mouse hover effect. The color change you want
to animate to is on the :hover. Without any transition, it would immediately change
colors on :hover, but to get a fade effect, you use the transition property (and the
vendor prefixes for WebKit, Mozilla, and Opera). Here is the key piece of CSS you
need: transition: all 1s ease-in. Here you are telling the browser to animate
all the properties (background and color), to use the ease-in timing function, and
that the total duration of the transition is one second (1s). You can optionally include
a delay value such as transition: all 1s ease-in, which delays the start of the
transition and delays the element reverting to its default state.

Listing 4.14 Animated Color Change on Mouse Hover

a {

background: #fff;

border-radius: 5px;

display: block;

float: left;

padding: 5px;

text-align: center;

width: 125px;

-webkit-transition: all 1s ease-in;

-moz-transition: all 1s ease-in;

-o-transition: all 1s ease-in;

transition: all 1s ease-in;

}

a:hover {

background: #000;

color: #fff;

}

Figure 4.9 Text link with hover effect

Figure 4.10 Transition effects

ptg999

Chapter 4 New Layout and Style Techniques with CSS3 88

So, you can achieve small, subtle effects with transitions, but you can also use them
to enhance the user experience of a page. Take the thumbnail photo gallery in Figure
4.11 as an example. Using the code in Listing 4.15, with a combination of rotate and
scale, you create a nice hover effect to show the image at its full size, without the
need of JavaScript, as shown in Figure 4.12.

Listing 4.15 Animated Image Zoom on Mouse Hover

img {

background: #fff;

border: 1px solid #BFBFBF;

display: block;

float: left;

height: 125px;

margin: 0 10px 0 0;

padding: 5px;

width: 125px;

-webkit-box-shadow: 2px 2px 4px rgba(0,0, 0, 0.3);

-moz-box-shadow: 2px 2px 4px rgba(0,0, 0, 0.3);

box-shadow: 2px 2px 4px rgba(0,0, 0, 0.3);

-webkit-transition: all 1s ease-in-out;

-moz-transition: all 1s ease-in-out;

-o-transition: all 1s ease-in-out;

}

Figure 4.11 Photo gallery before transitions

Figure 4.12 Photo gallery image on mouse hover

ptg999

Advanced Recipe: Creating Animations with CSS 89

img:hover {

-webkit-transform: rotate(10deg) scale(2);

-moz-transform: rotate(10deg) scale(2);

-o-transform: rotate(10deg) scale(2);

-ms-transform: rotate(10deg) scale(2);

transform: rotate(10deg) scale(2);

}

With a bit more CSS, using the :after pseudoelement and the CSS content prop-
erty, you can show the alt tag of the image when the image is zoomed in. The code
is in Listing 4.16 and extends the code in Listing 4.15. This CSS shows the alt of the
img on :hover, adding further information to the photo gallery. You could achieve
this effect in other browsers using JavaScript, and even though we have very brief ly
mentioned the :after pseudoelement, we encourage you to read more about it (and
the :before pseudoelement), which can be used in many creative ways in web devel-
opment. Currently, this effect works only on images in Opera, so if you have Opera,
give the code a whirl.

Listing 4.16 Display alt Text on Image Hover

img {

position: relative;

}

img:hover {

z-index: 2;

}

img:hover:after {

content: attr(alt);

display: block;

position: absolute;

bottom: -45px;

left: 0;

z-index: 2;

text-align: center;

}

ADVANCED RECIPE:
Creating Animations with CSS
Unlike transitions, animations do not require activation from a mouseover or mouse-
click effect. Currently, animations are available only in the WebKit browser and the
latest version of Firefox, but using various JavaScript techniques, you can achieve

ptg999

Chapter 4 New Layout and Style Techniques with CSS3 90

animations in other browsers. Table 4.5 shows the version of each browser that sup-
ports CSS animation.

Table 4.5 CSS Animation Device and
Browser Support

Android 2.3+

Chrome 13.0+

Firefox 5.0+

Internet Explorer -

iOS Safari 4.0+

Opera -

Safari 5.0+

For a basic example, you will move an image from the left side of the screen to the
right and rotate it as it is moving. It’s a bit pointless showing a screenshot of this, so
open Chrome, Firefox, or Safari and give the code in Listing 4.17 a go.

Listing 4.17 CSS Animation

/* CSS */

div {

float: left;

height: 100%;

position: relative;

width: 100%;

}

img {

position: absolute;

-webkit-animation-name: moveIt;

-webkit-animation-duration: 5s;

-webkit-animation-iteration-count: infinite;

-webkit-animation-timing-function: linear;

-moz-animation-name: moveIt;

-moz-animation-duration: 5s;

-moz-animation-iteration-count: infinite;

-moz-animation-timing-function: linear;

animation-name: moveIt;

animation-duration: 5s;

animation-iteration-count: infinite;

animation-timing-function: linear;

}

ptg999

Advanced Recipe: Creating Animations with CSS 91

@-webkit-keyframes moveIt {

from {

left: 0;

-webkit-transform:rotate(0deg);

}

to {

left: 100%;

-webkit-transform:rotate(360deg);

}

}

@-moz-keyframes moveIt {

from {

left: 0;

-moz-transform:rotate(0deg);

}

to {

left: 100%;

-moz-transform:rotate(360deg);

}

}

keyframes moveIt {

from {

left: 0;

transform:rotate(0deg);

}

to {

left: 100%;

transform:rotate(360deg);

}

}/* HTML */

<div>

</div>

On the img selector are four animation CSS properties. They are duplicated because
they have to explicitly target -webkit-, -moz-. And finally, you include the non-
browser-specific property names for the day that all browsers support CSS animations:

n -webkit/moz-animation-name: The name of the animation you want to use
n -webkit/moz-animation-duration: How long the animation will last
n -webkit/moz-animation-iteration-count: How many times the animation

will repeat
n -webkit/moz-animation-timing-function: The type of animation; choose from
ease, linear, ease-in, ease-out, ease-in-out, and a custom cubic-bezier

ptg999

Chapter 4 New Layout and Style Techniques with CSS3 92

Next, you define the animation @-webkit/moz-keyframes MoveIt. This is a
simple animation so you start with a from property and end with a to value. In these
properties, you are using normal CSS to move the image and also rotate it. You can
change nearly any CSS property in these animations so there is a lot of potential here.

You can do more than simply using from and to properties; you can also set key-
frames using percentages, which gives you greater f lexibility. Figure 4.13 shows a
banner that sits in the top-right corner of a page. Using the code in Listing 4.18, the
background color fades smoothly between colors, with the keyframes set every 25 per-
cent of the animation timeline.

Listing 4.18 Animated Banner

p {

background: #000;

color: #fff;

font: bold 20px Tahoma, Geneva, sans-serif;

padding: 10px;

position: absolute;

right: -65px;

text-align: center;

top: 75px;

width: 300px;

-webkit-transform: rotate(45deg);

-moz-transform: rotate(45deg);

-o-transform: rotate(45deg);

-ms-transform: rotate(45deg);

transform: rotate(45deg);

-webkit-animation-name: glow;

-webkit-animation-duration: 5s;

-webkit-animation-iteration-count: infinite;

-webkit-animation-timing-function: ease-in;

-webkit-backface-visibility: hidden;

-moz-animation-name: glow;

-moz-animation-duration: 5s;

-moz-animation-iteration-count: infinite;

Figure 4.13 Background color being animated

ptg999

Advanced Recipe: Creating Animations with CSS 93

-moz-animation-timing-function: ease-in;

animation-name: glow;

animation-duration: 5s;

animation-iteration-count: infinite;

animation-timing-function: ease-in;

}

@-webkit-keyframes glow {

0% {

background: #F00;

}

25% {

background: #06C;

}

50% {

background: #000;

}

75% {

background: #06C;

}

100% {

background: #F00;

}

}

@-moz-keyframes glow {

0% {

background: #F00;

}

25% {

background: #06C;

}

50% {

background: #000;

}

75% {

background: #06C;

}

100% {

background: #F00;

}

}

keyframes glow {

0% {

background: #F00;

}

ptg999

Chapter 4 New Layout and Style Techniques with CSS3 94

25% {

background: #06C;

}

50% {

background: #000;

}

75% {

background: #06C;

}

100% {

background: #F00;

}

Tip
Transitions and animations have numerous uses. They not only add nice effects to web
pages but also help designers and developers, who can create and tweak them quickly.
We have shown only basic examples in this chapter to whet your appetite, so it is up to
you to get creative. However, with great power comes great responsibility, so try not to
go overboard with all the different effects because they can quickly turn a nice site into a
tacky site. Too many transitions and animations may also affect the performance of the
browser. We suggest spending time searching the Internet for examples and examining
the way other designers and developers have used CSS3 to improve websites.

Summary
You have learned about a few of the new CSS features in this chapter: Media Queries,
fonts, gradients, transformations, transitions, and animations. There are many more
features than the features we have described; we have really only scratched the surface.
There are countless possibilities for what you can achieve with these new features. If
you are interested in CSS, then we suggest you do further research and study because
there many other techniques and suggested practices when using some of these new
features. Go exploring, and have fun playing with CSS.

ptg999

5
HTML5 Web Forms

In this chapter, you will learn about HTML5 web forms and the new functionality
now available to web developers. Of course, not all these new features are fully sup-
ported by all browsers, but as you will see in the recipes throughout this chapter, the
new features degrade nicely. There are more than ten new input types and several new
attributes to choose from, along with some new CSS tricks you can use to create forms.

Validation
Even though there are several new input types, without a doubt the biggest new fea-
ture is the built-in form validation HTML5 offers. Previously, you had to use server-
side code like PHP or C# to check the contents of the submitted form and then return
the page and display the errors to the user. Or you had to use some fancy JavaScript to
check the contents of the data entered on the f ly and tell the user whether there were
any errors.

With HTML5, form validation is easy; you can provide inline validation and
feedback for the users when they try to submit the form, which leads to forms being
easier to complete and increases the chances of correct information being submitted.
Of course, you will need some server-side code to actually process the form to its
destination.

In the recipes throughout this chapter, we are adding a required attribute to most
of the form elements; this is so when you test them, you can see what, if any, valida-
tion messages the browsers show. This attribute tells the browsers that the form cannot
be sent without the element being completed.

HTML 4 Input Types
Very brief ly we will mention the form elements that have been used for years in web
development. These are still fundamental and perfectly valid form elements and are
not being replaced. They will still be used widely in HTML5 and form development.

ptg999

Chapter 5 HTML5 Web Forms96

Essentially, you have the form element, a fieldset (fieldset is an element for
grouping related fields in a form), and common form elements, which give you the
form controls shown in Figure 5.1.

Listing 5.1 provides the HTML for Figure 5.1. Note that an unordered list (ul) and
list items (li) have been used to format this form. This is not the only way to organize
a form, but it means you do not have to use the unnecessary
 in this code.

Listing 5.1 Page with Different form Elements

<form>

 <fieldset>

 <legend>Fieldset legend - a caption/title for this set of fields</legend>

 <label for="normal">Normal input box</label> <input id="normal"

➥type="text" value="a 'normal' input box" />

 <input id="checkbox" type="checkbox" /> <label for="checkbox">I'm a

➥checkbox</label>

 <input id="radio" type="radio" /> <label for="radio">I'm a radio

➥button</label>

 <label for="file">Upload</label> <input id="file" type="file" />

 <label for="password">Password</label> <input id="password"

➥type="password" value="mypassword" />

 <label for="textarea">Textarea</label> <textarea id="textarea" rows="5"

➥cols="40">This is a textarea</textarea>

Figure 5.1 Pre–HTML5 form controls

ptg999

Beginner Recipe: Creating a Form to Collect Contact Information 97

 <label for="select">Select</label>

 <select id="select">

 <option>Option 1</option>

 <option>Option 2</option>

 <option>Option 3</option>

 <option>Option 4</option>

 </select>

 <input type="submit" value="Submit" />

 <input type="reset" value="Reset" />

 </fieldset>

</form>

There are several new input types in HTML5 that are useful for creating forms or
updating old forms. They will make your job as a developer easier but will also help
the user enter correct data.

BEGINNER RECIPE:
Creating a Form to Collect Contact Information
Listing 5.2 uses three of the new input types to gather user contact information:
email, tel, and url. Take a look at the code; the input types are highlighted in bold
and are discussed further in the sections that follow.

Listing 5.2 Contact Form with New HTML5 form Elements

<form>

<fieldset>

<legend>Contact information</legend>

 <label for="email">Email</label>

 <input required type="email" id="email" name="email" />

 <label for="tel">Telephone number</label>

 <input required type="tel" id="tel" name="tel" />

 <label for="url">Website</label>

 <input required type="url" id="url" name="url" />

<input type="submit" value"Submit this" />

</fieldset>

</form>

ptg999

Chapter 5 HTML5 Web Forms98

input type="email"
The email input type tells the browser that the content of this field should look like
an email address. In Listing 5.3, we have put a required attribute on the email input.
This will tell compatible browsers to examine the contents of this field before submit-
ting the form. It does not check to see whether the email address actually exists.

Listing 5.3 email Input Type

<form>

<label for="email">Email</label>

<input required type="email" id="email" name="email" />

<input type="submit" />

</form>

Table 5.1 email Input Type Device
and Browser Support

Android 2.3+*

Chrome 10.0+

Firefox 4.0+

Internet Explorer 9.0+*

iOS Safari 4.0+*

Opera 10.0+

Safari 5.0+*

* No validation

With browsers developing faster and faster, trying to stay ahead of the curve and of
each other, there are differences in how each handles validation. The tests in Table 5.2
highlight the differences in how browsers handle forms, form validation, and feedback.
Earlier, the validation messages are different from what is shown in the tests. Also
notice that "test@test" is valid in Firefox but not Opera, which is the most striking
difference between the two browsers.

At the time of writing, using the previous example in Chrome or Safari, there is no
browser validation.

Note
You may be wondering whether you can style the form feedback. Well, the answer is, sort
of. We will discuss CSS later in this chapter.

ptg999

Beginner Recipe: Creating a Form to Collect Contact Information 99

input type="tel"
Like the new search input type, the tel input type renders as a normal text field (see
Figure 5.2). It accepts any character in this field, not just numbers, because phone
numbers can have non-numeric characters such as + or (. If you wanted to force the
field to accept only numbers, then you can use pattern, which is described later in
this chapter.

Table 5.3 tel Input Type Device and
Browser Support

Android 2.3+*

Chrome 10.0+

Firefox 4.0+

Internet Explorer 9.0+*

iOS Safari 4.0+*

Opera 10.0+

Safari 5.0+*

* No validation

Table 5.2 email Input Type Validation Tests

Data Submitted
Firefox 4
Response

Firefox 4:
Did the Form
Submit?

Opera 11
Response

Opera 11:
Did the Form
Submit?

No data entered “Please fill in
this field”

No “This is a
required field”

No

test “Please enter
an e-mail
address”

No “Please enter
a valid e-mail
address”

No

test@test.com No error Yes No error Yes

test@test “Please enter
an e-mail
address”

No No error Yes

Figure 5.2 The input type=”tel” element in Opera. It looks like a
normal input text field.

ptg999

Chapter 5 HTML5 Web Forms100

input type="url"
A common requirement on a web form, such as a comments form on a blog, is to ask
the user for the URL of their own website. Asking for a URL is now nice and easy in
HTML5, as Listing 5.4 shows.

Listing 5.4 url Input Type

<label for="url">Website</label><input required type="url" id="url" name="url"
➥/>

Table 5.4 url Input Type Device and
Browser Support

Android 2.3+*

Chrome 10.0+

Firefox 4.0+

Internet Explorer 9.0+*

iOS Safari 4.0+*

Opera 10.0+

Safari 5.0+*

* No validation

This input type expects the content to be a valid URL. Again, like the email type,
it does not check whether it actually exists (you could do this with some additional
script). A traditional URL would be a web address, such as http://mysite.com. Firefox
4.0b7 does not allow mysite.com or www.mysite.com; it requires the address to
include the http://. Opera 11, however, converts mysite.com automatically into http://
mysite.com, which is valid and allows the form to be submitted.

Most of the time, the content of this field will be http://mysite.com; however, it
will also accept other types of URLs:

n ftp://user:password@server

n javascript:window.alert (be careful of this; you might want to write your
own validation to not allow any JavaScript to be submitted)

n file://server/path

n tel:12345

Because of these additional URL types, at the moment the form would validate
with hello:world. This is because most browsers have their own URL types, such as
Firefox, which has about:config. So, at the moment, anything with a colon in the

www.mysite.com
http://mysite.com
http://mysite.com
http://mysite.com
http://mysite.com

ptg999

101Beginner Recipe: Creating a Search Form with input type=”search”

URL will validate. This may change down the line as browsers refine their validation
methods.

BEGINNER RECIPE:
Creating a Search Form with input
type="search"
input type="search" expects a search term. It looks like a normal text field because
essentially it is just a normal text field. There is nothing special about it really, but it
helps browsers know it is a search field. Listing 5.5 shows how you would use it in a
search control.

Listing 5.5 The search Input Type

<form role="search">

 <label for="search">Search term</label>

 <input required type="search" id="search" name="search" />

 <input type="submit" value="Go" />

</form>

Table 5.5 search Input Type Device and
Browser Support

Android 2.3+

Chrome 10.0+

Firefox 4.0+

Internet Explorer 9.0+

iOS Safari 4.0+

Opera 10.0+

Safari 5.0+

An interesting addition for WebKit browsers (such as Safari and Chrome) is that
you can add the results attribute, which gives a little extra functionality:

<label for="search">Search term</label>

<input required type="search" results="5" id="search" name="search" />

This code results in the search item shown in Figure 5.3. Notice the magnifying
glass icon being added to the input, which would, if there were any, display previous
search terms. Unfortunately, you cannot yet style such results using CSS or JavaScript.

ptg999

Chapter 5 HTML5 Web Forms102

Safari currently hijacks the design of the search input, but you can override that with
–webkit-appearance: none in your CSS.

BEGINNER RECIPE:
Creating Calendar and Time Controls
A common issue web developers have to deal with is how to create calendar widgets
that allow the users to pick a date from a calendar so they do not have to enter the
date themselves. Creating a widget has always required JavaScript, but that is going to
change. In this recipe, you will look at the various new input types that create differ-
ent calendar controls, and for browsers that do not provide a calendar widget, refer to
Chapter 3, where we offer a couple of fallback solutions.

Table 5.6 datetime Input Type Device
and Browser Support

Android *

Chrome *

Firefox *

Internet Explorer *

iOS Safari 5.0+

Opera 10.0+

Safari *

* No calendar widget but text input fallback
provided

input type="datetime"
What will surely become a fan favorite is the new datetime input type. It remains
to be seen what some of the major browser vendors will decide to do with this input
type, but Opera natively generates a superb calendar/date picker widget, as shown in
Figure 5.4.

Previously, you would have used JavaScript to provide such a complex control.
Because browsers can now handle this, it could allow for integration with other ser-
vices, such as connecting to your Facebook events calendar or your Outlook calendar.

Figure 5.3 The input type=”search” element with WebKit
browser–specific detail and information

ptg999

Beginner Recipe: Creating Calendar and Time Controls 103

Also, because the browser is handling the calendar, if your system is set up in another
language, it will display that language (Novembre in Italian, for example), unlike, for
instance, the jQuery datepicker (http://docs.jquery.com/UI/Datepicker).

input type="datetime-local"
Almost identical to the previous datetime input, datetime-local generates a calen-
dar with the subtle difference that there is no “UTC” label on the right side, so there
is no time zone attached to it (see Figure 5.5).

input type="date"
Figure 5.6 shows that the date input type is similar to the datetime input type
shown in Figure 5.4, but here the control does not display a time option.

Figure 5.4 The input type=”datetime” element in Opera 11
provides the user with a calendar date picker.

Figure 5.5 The input type=”time” element displayed in Opera 11

Figure 5.6 The input type=”date” element displayed in
Opera 10.63

http://docs.jquery.com/UI/Datepicker

ptg999

Chapter 5 HTML5 Web Forms104

input type="time"
The time input type allows the user to enter a time in 24-hour format. Currently,
only Opera has browser support for this element. Figure 5.7 shows how this input
looks in Opera.

In this input, the user can either type in the number themselves, such as 22:11, or
they can use the buttons supplied by Opera to scroll through the times.

input type="month"
The month input type displays the calendar shown in Figure 5.4 but allows only for
months to be selected. The value of the input is then YYYY-MM. In Figure 5.8, the
month of December is selectable. You can also select the previous or next month.

input type="week"
Very similar to the date and month input types, week allows the user to select only
a week of a year. The value of the input is YYYY-W00. In Figure 5.9, the week is
selectable, and it provides the week number in the left column.

Placing Restrictions on Dates and Times
There are two new attributes, min and max, which we will mention again later in this
chapter; they can be used to control and restrict the dates or times of the widgets. For
a date, if you wanted to make sure the user could not pick a date in the past, you could
add a min attribute value in the following format: YYYY-MM-DD. It would be the
same for the max attribute value to stop users selecting a date too far in the future. For
the time input type, the format would be HH:MM.

Figure 5.7 The input type=”time” element displayed in
Opera 10.63

Figure 5.8 The input type=”month” element displayed in
Opera 10.63

ptg999

Beginner Recipe: Creating a Number Picker 105

BEGINNER RECIPE:
Creating a Number Picker
The number input type is used to enter a number. It accepts only numbers; otherwise,
it will return a validation error. It allows the min, max, and step attributes so you can
limit the number range to suit your information needs. The step attribute allows you
to specify the increment values that can be entered.

Table 5.7 Number Picker Device and
Browser Support

Android *

Chrome 11.0+

Firefox *

Internet Explorer *

iOS Safari *

Opera 10.0+

Safari 5.1

* No number picker but text input fallback
provided

Using the code in Listing 5.6, Opera creates a control that allows the user to cycle
through numbers (see Figure 5.10). The number can be negative, and unless you specify
a minimum or maximum, the number can be infinitely high. Using the step attribute,
you can be more precise with the numbers. Figure 5.10 allows the user to step through
the numbers, 0 to 10 (the min and max) in steps of 0.5. So, they can choose 0, 0.5, 1, 1.5,
and so on. The user can either use the controls provided or type in a number.

Figure 5.9 The input type=”week” element displayed in
Opera 10.63

ptg999

Chapter 5 HTML5 Web Forms106

Listing 5.6 number Input Type with Steps

<input min="0" max="10" step="0.5" required type="number" id="number"
➥name="number" />

Because you specified the step range, anything outside of that will cause validation
errors. So, entering 9.99 in Figure 5.11 is not allowed.

BEGINNER RECIPE:
Creating a Slider (Without the Need for JavaScript)
The range input type generates a slider control. It has no text area for the user to type
into, and like the number input type, it can use the min, max, and step attributes.

Table 5.8 Slider Device and Browser Support

Android *

Chrome 10+

Firefox *

Internet Explorer *

iOS Safari 5.0+

Opera 10.0+

Safari 5.0+

* No slider but text input fallback provided

Some possible uses of the range input type could be a “rate my whatever” section of
a page or a form, or it could be used to control volume on a video or audio player.

Figure 5.10 The input type=”number” element displayed in
Opera 11

Figure 5.11 The input type=”number” element with a invalid
number (only 0.5 or full numbers are allowed in this example)

ptg999

Beginner Recipe: Creating a Color Picker 107

In Listing 5.7, you will just look at the HTML needed to produce a basic range input,
though in a later chapter you will learn how to make it a functioning volume control.

Listing 5.7 The range Input Type

<label for="range">Volume</label>

<input min="0" max="10" step="0.5" required type="range" id="range" name="range"
➥/>

We have limited control over how this slider looks because at the moment the con-
trols are browser-specific. However, you can apply a height and width to the range
control. If you specify a height that is larger than the width, the volume control will
render vertically instead of its default horizontal layout.

At the time of writing, Opera, Chrome, and Safari support this input type, as shown
in Figure 5.12. The main difference is that Opera by default shows the increments.

BEGINNER RECIPE:
Creating a Color Picker
As Figure 5.13 shows, <input type="color"> provides the user a choice of some
basic colors with the options of entering a hex value (#12ff00) or using a color picker,
similar to what is used in many software packages. The only desktop browser that
currently supports this useful input type is Opera 11 (although the new BlackBerry
browsers support the color picker as well).

Table 5.9 Color Picker Device and
Browser Support

Android *

Chrome *

Firefox *

Internet Explorer *

iOS Safari *

Opera 10.0+

Safari *

* No color picker but text input fallback
provided

Figure 5.12 The input type=”range” in Opera 11 (left) and
Chrome 7 (right)

ptg999

Chapter 5 HTML5 Web Forms108

BEGINNER RECIPE:
Displaying Results with the output Element
The output element uses JavaScript to display results, usually from a calculation or
from a script. It could be calculator or, using the code in Listing 5.6, to add a little
extra functionality to a page such as displaying the first name of the user. It can be a
self-closing tag if you don’t need any additional content to appear inside it, so you have
the option of <output/> or <output></output>.

Table 5.10 output Element Device and
Browser Support

Android -

Chrome 10.0

Firefox 4.0

Internet Explorer -

iOS Safari 4.0

Opera 10.0+

Safari 5.0

Figure 5.13 The input type=”color” in Opera 11

ptg999

Beginner Recipe: Using Form Placeholder Text 109

An example, as shown in Figure 5.14, would be to give the value of the range
input type as the slider is being dragged. The default value is blank, but when the user
moves the slider, the output value is changed and displayed to the user in real time.
Listing 5.8 has the code for this job.

Listing 5.8 The output Element

<label for="range">Volume</label><input min="0" max="10" step="0.5" value="2"

➥required type="range" id="range" name="range" />

<output onforminput="value=range.value"></output>

BEGINNER RECIPE:
Using Form Placeholder Text
As you saw earlier, there are lots of new input types for you to play with, but you also
have plenty of new attributes you can use alongside the new input types to improve
your forms.

Placeholder text is the text displayed inside a text field when the form loads. When
a user clicks or tabs into the field, it disappears. Usually, it provides a hint about
what to type in the field, or it suggests the type of format that should be entered. An
example would be a search form that says “Search this site” or, as you saw with the
url input type, a hint that suggests the user start their URL with http://. Figure 5.15
shows an example.

Previously, this required JavaScript to achieve this effect, but now you can sit back
and let the browser do it for you.

There are accessibility issues with placeholder text because currently the color of
the text is by default a light gray, which is not of sufficient contrast with the default
background color. You can override the text color in Mozilla and WebKit browsers by
using the following CSS:

input::-webkit-input-placeholder {color: red;}

input:-moz-placeholder {color: red;}

Figure 5.14 The output element used to display the value of the
range input type in Opera 11.

Figure 5.15 The placeholder attribute in Chrome, before and after
the field is activated

ptg999

Chapter 5 HTML5 Web Forms110

Table 5.11 placeholder Attribute Device
and Browser Support

Android 2.2

Chrome 9.0+

Firefox 4.0+

Internet Explorer -

iOS Safari 4.0+

Opera 10.0+

Safari 4.0+

BEGINNER RECIPE:
Creating an Autocomplete Feature with list
and datalist
datalist is a new element in HTML5. Combined with the list attribute, it is used
to provide a predefined list of options (see Figure 5.16), making the process of creating
a list seem like an autocomplete form. Users don’t necessarily have to choose from the
predefined options; they can type their own answer if they wanted.

Table 5.12 datalist Element Device and
Browser Support

Android *

Chrome *

Firefox 4.0+

Internet Explorer *

iOS Safari *

Opera 10.0+

Safari *

* No drop-down list but text input fallback
provided

The code for a datalist (displayed in Listing 5.9) is similar to a select element.
However, with a select element, the user cannot type their own option if they need
to do so. There is no such issue with datalist. Using the list attribute, you associ-
ate a normal input (it could be a url, email, search, or tel type as well).

ptg999

111Beginner Recipe: Tracking the Completion of a Task with the progress Element

Listing 5.9 datalist Example

<label for="sport">What's your favourite sport?</label>
<input list="sportlist" type="text" id="sport" name="sport" />

<datalist id="sportlist">

 <option label="Baseball" value="Baseball" />

 <option label="Football (Soccer)" value="Soccer" />

 <option label="Football" value="Football" />

 <option label="Ice Hockey" value="Ice Hockey" />

</datalist>

In the previous example are four autocomplete options. Only Firefox and Opera
currently show the autocomplete options, and they do it slightly differently: Firefox
shows only options that are similar to what has been typed, while Opera shows the
whole list when the field is active.

The datalist could be generated from a database or an Ajax call (similar to
Google search engine autocomplete feature), providing the user with, say, the top 10
common answers to the question. The beauty of this new element and attribute is that
if the user is using a browser that does not render this HTML5 element, doesn’t have
JavaScript, or there is a Ajax connection issue, the form controls render like a normal
text box, and the user can type away as normal.

BEGINNER RECIPE:
Tracking the Completion of a Task with the
progress Element
The new progress element is for tracking the status and completion of a task. It could
be used to display the progress of a download, such as downloading a file or loading
data from an Ajax call, for example.

The progress element has two optional attributes:
n value: The value attribute represents how much of the task (in percent) has

been completed.
n max: The max attribute represents the total amount required to complete the

task. Both the value and max content should be displayed inside the progress
element so the user has feedback on the completion state.

Figure 5.16 The datalist element used to provide autocomplete
options in Firefox 4

ptg999

Chapter 5 HTML5 Web Forms112

In Chrome, the following code gives you the progress element shown in Figure
5.17. The progress bar also glows, which is a nice touch.

<p>You are downloading a very important file, please wait.</p>

<progress value="45" max="100">45% complete</progress>

In browsers that do not support the progress element, you get the result shown in
Figure 5.18 (screenshot from Firefox 3.6).

The idea behind this is that the green (or blue, depending on the OS and browser
version) bar, or the text visual, would update live so the user knows how much time
has elapsed and how much time still remains.

Table 5.13 progress Element Device
and Browser Support

Android *

Chrome 13+

Firefox *

Internet Explorer *

iOS Safari *

Opera 11.0+

Safari *

* No styled bar but provides text fallback

BEGINNER RECIPE:
Measuring with the meter Element
The meter element is used to display a measurement, such as a temperature, or to dis-
play a fractional value.

Figure 5.17 The progress element in Chrome

Figure 5.18 The fallback display for browsers that do not support the
progress element

ptg999

113Beginner Recipe: Measuring with the meter Element

It has six possible attributes:
n min: The minimum allowed value. If there is no min attribute, then the value is

given as zero. You can use negative numbers if you want.
n max: The maximum allowed value.
n value: This is the actual value and must be present when using meter.
n low: This is the low part of the value.
n high: This is the high part of the value range.
n optimum: This is the optimum value. Its value must be between the min and
max. However, its value can be greater than the value of the high attribute.

The following are some basic examples:

<p>Your score is: <meter value="2">2 out of 10</meter></p>

<p>Your score is: <meter value="91" min="0" max="100" low="40" high="90"

➥optimum="100">A+</meter></p>

The meter element (shown in Figure 5.19) can be used to describe the current status
of hard drive space:

<meter min="0" value="512" max="1024">You are using exactly 50% of your hard drive

➥space</meter>

Table 5.14 meter Element Device
and Browser Support

Android *

Chrome 13+

Firefox *

Internet Explorer *

iOS Safari *

Opera 11.0+

Safari *

* No styled bar but provides text fallback

Figure 5.19 The meter element in Chrome

ptg999

Chapter 5 HTML5 Web Forms114

BEGINNER RECIPE:
Jumping to a form Element When the
Page Loads
The autofocus attribute gives you the chance to focus a form control when the page
loads. If it was focused on an input or a textarea, the user could start typing as soon
as the page loads. If the field you are automatically focusing on has placeholder text,
then it will be emptied because the text cursor is in the field. Previously, you would
have had to use JavaScript to perform an autofocus task. The autofocus attribute is a
Boolean attribute, so it is either on or off. Figure 5.20 shows an example.

Table 5.15 autofocus Attribute Device
and Browser Support

Android -

Chrome 9.0+

Firefox 4.0+

Internet Explorer -

iOS Safari -

Opera 10.0+

Safari 5.0+

The autofocus attribute should be used with caution. Automatically making the
page jump/scroll down to content isn’t the best usability practice because users with
a mobile device, with a screen reader, or with low screen resolution will miss the,
perhaps relevant, content above it. It is recommended that autofocus be used on
pages where the form element is the main content such as a contact page or, as shown
in Figure 5.17, a search site (like the form on Google.com, which does in fact have
autofocus but delivered via JavaScript). Listing 5.10 shows the code used to produce
Figure 5.17.

Listing 5.10 autofocus on a search Input Type

<label for="autofocus">Search the site</label>

<input autofocus required type="search" id="autofocus" name="autofocus" />

Figure 5.20 The autofocus attribute used on a text field in Safari

ptg999

Beginner Recipe: Allowing Multiple Entries 115

Note
autofocus should be used only once per page. Interestingly, if you have several fields
on a page, all with autofocus, Opera, Chrome, and Safari put the autofocus in the last
field, while Firefox uses the first.

BEGINNER RECIPE:
Allowing Multiple Entries
The multiple attribute allows users to enter more than one value in a particular field.
It can be used on any input type, so it could be used to create a “Send to friend”
form or an email app, allowing the user to enter multiple email addresses in the To,
Cc, and Bcc fields.

Table 5.16 multiple Attribute Device
and Browser Support

Android -

Chrome 10.0+

Firefox 4.0+

Internet Explorer -

iOS Safari -

Opera 11.0+

Safari 5.0+

Uploading multiple files is another example. Previously, this would have needed
JavaScript or server-side code to detect when a file has been chosen and then dis-
play another upload option. But using the code in Listing 5.11, now you can do it in
HTML5.

Listing 5.11 Allowing Multiple File Uploads

<label for="upload">Upload some files</label>

<input multiple type="file" id="upload" name="upload" />

Currently, only Firefox 4, Safari, and Chrome support this new attribute. Safari
and Chrome display the number of files chosen. In the example shown in Figure 5.21,
three files have been chosen. Firefox 4 does not automatically display how many files
have been chosen; instead, it lists the full file paths inside a text box, separated by a
comma, something like “C:\fileone.doc, C:\filetwo.pdf.”

ptg999

Chapter 5 HTML5 Web Forms116

BEGINNER RECIPE:
Basic Validation with the required Attribute
The required attribute has been used in many examples in this chapter. If the attri-
bute has been used, the browser will not attempt to submit the form if the required
fields are empty. In browsers that support this attribute, if required fields are empty, an
error will be shown, as shown in Figure 5.22.

Table 5.17 required Attribute Device
and Browser Support

Android -

Chrome 10.0+

Firefox 4.0+

Internet Explorer -

iOS Safari -

Opera 11.0+

Safari 5.0+

Tip
Alongside the required attribute, you can also add aria-required="true", as fol-
lows, which will improve accessibility on form elements. You may be interested to know
that WordPress uses this by default for its comment form.

<input aria-required="true" required type="text" id="name" name="name" />

Figure 5.21 The multiple attribute used on a file input in Safari

Figure 5.22 Error message for an incomplete required field in Opera 11

ptg999

Intermediate Recipe: Writing Your Own Validation Rule 117

INTERMEDIATE RECIPE:
Writing Your Own Validation Rule
Even though HTML5 has built-in validation, you can set your own rules using the
pattern attribute and regular expressions.

Table 5.18 pattern Attribute Device
and Browser Support

Android -

Chrome 10.0+

Firefox 4.0+

Internet Explorer -

iOS Safari -

Opera 11.0+

Safari -

As an example, you have seen that the url input type accepts various types of
URLs. You may want to stop that and force the user to start with http://. You can do
this with a custom regular expression.

The regular expression used in Listing 5.12 validates only URLs that start with
either http:// or https://. It also accepts subdomains and querystrings, so http://you.
site.com/search.aspx?=test is valid content, but a mailto: address is not.

Listing 5.12 pattern Attribute with Regular Expression

<input required pattern="(http|https)://([\w-]+\.)+[\w-]+(/[\w- ./?%&=]*)?"
➥type="text" id="url" name="url" />

Regular expressions can be tricky and can quickly get complicated, so depending
on how confident you are, it may be best to keep them as simple as possible. And if
you get stuck, there are countless answers on the Internet.

http://you.site.com/search.aspx?=test
http://you.site.com/search.aspx?=test

ptg999

Chapter 5 HTML5 Web Forms118

BEGINNER RECIPE:
Limiting User Input
Form entries in HTML5 can now be limited if applicable through various attributes.

step
The step attribute can be used on number, range, and time input types. It specifies
the incremental steps in the numbers the input can take. See Listing 5.10 earlier in
this chapter (with number input type) for an example.

Table 5.19 step Attribute Device
and Browser Support

Android -

Chrome 10.0+

Firefox -

Internet Explorer -

iOS Safari -

Opera 11.0+

Safari 5.1

min, max
Seen on the meter element and on input types number and range, the min and max
attributes set the allowed range of values on the element. These are not required attri-
butes, and you can use either min or max, or both. These set validation rules, and the
form will not submit if the min or max value is not within the range. These can be
used on date and time input types to constrict the user from picking a certain value,
such as on an events calendar or for searching between dates.

Table 5.20 min, max Attributes Device
and Browser Support

Android -

Chrome 10.0+

Firefox -

Internet Explorer -

iOS Safari -

Opera 11.0+

Safari 5.1

ptg999

Intermediate Recipe: Customizing and Styling the Form 119

formnovalidate, novalidate
If you have a form but you do not want to use the browser validation, then you can
use the attribute formnovalidate or novalidate. Using one of these might be par-
ticularly useful if you want to save the current state of the form rather than submit,
for example, if the site has a large form or if at the current stage of the process you are
not concerned with validating the data because the user has other stages to complete
before final submission.

Table 5.21 formnovalidate, novalidate
Attribute Device and Browser Support

Android -

Chrome 10.0+

Firefox 5.0+

Internet Explorer -

iOS Safari -

Opera 11.0+

Safari -

You can put a novalidate on the form element, and when the form is submitted,
the form will ignore any incorrect formats or empty fields:

<form novalidate>

You can also put a formnovalidate attribute on any individual form element. For
example, you could put it on a url input type, and the browser would ignore valida-
tion on this element (although why you would go to the effort of using a url input
type and then ignoring validation is questionable).

INTERMEDIATE RECIPE:
Customizing and Styling the Form
One of the first thing designers ask is, “Can I style the new elements?” Well, sort of.
Although you can’t change how the date picker looks because it is generated by the
browser (this might change in the future), you can style how the input boxes look,
such as border, font, and background color, because there are CSS3 tricks you can use
to style the different states of your HTML5 fields.

The code in Listing 5.13 generates what you see in Figure 5.23; notice the different
field states. The fields start off orange with an asterisk image since they are required.

ptg999

Chapter 5 HTML5 Web Forms120

When the field is active but is empty or contains invalid content, the box is red with
an error image displayed. If the content is good, then the field changes to green with a
tick image. All this without JavaScript!

Listing 5.13 New CSS3 Options for form Elements

<style>

* {margin: 0; font: 13px tahoma, verdana, sans-serif; padding: 0;}

form {padding-top: 10px; width: 310px;}

li {clear: both; list-style-type: none; margin: 0 0 10px;}

label {display: block; float: left; margin: 0 10px 0 0; padding: 5px; text-align:

➥right; width: 100px}

input {background-position: 3px 5px; background-repeat: no-repeat; border-radius:

➥5px; padding: 5px 5px 5px 25px; width: 155px;}

input:focus {outline: none;}

input:invalid:required {background-image: url(asterisk.png); box-shadow: 0px 0px

➥5px #f0bb18; border: 2px solid #f0bb18;}

input:focus:invalid {background-image: url(invalid.png); box-shadow: 0px 0px 5px

➥#b01212; border: 2px solid #b01212;}

input:valid {background-image: url(accept.png); border: 2px solid #7ab526;}

input[type=submit] {background: #7ab526; border: none; box-shadow: 0px 0px 5px

➥#7ab526; color: #fff; cursor: pointer; float: right; font-weight: bold;

➥padding-left: 5px; width: auto;}

</style>

 <label for="tel">Tel:</label><input placeholder="eg: 012345" required

➥type="tel" id="tel" name="tel" />

 <label for="website">Website:</label><input required type="url"

➥id="website" name="website" />

 <label for="email">Email:</label><input required type="email" id="email"

➥name="email" />

 <input type="submit" value="Send the form" />

We will not cover all the new CSS options, but in Figure 5.20 we have used the
following psuedoclasses from the CSS3 Basic User Interface Module (www.w3.org/
TR/css3-ui):

Figure 5.23 CSS3 used to target different states of form fields

www.w3.org/TR/css3-ui
www.w3.org/TR/css3-ui

ptg999

Advanced Recipe: Putting It All Together to Make a Sign-Up Form 121

n :valid: A form element receives this class when its contents are valid according
to the element type and the validation.

n :invalid: If the form element has incorrect content, then the invalid class is
applied.

n :required: Any form element that has this attribute will be assigned this class.

Error Messages
We hope you have been following along with the previous examples and have noticed
that error messages are displayed differently in Opera and Firefox. Opera displays a
wobbly red error message, while Firefox shows a calmer yellowish error message. At
the moment, you are unable to change how these errors are displayed because they are
generated by the browser. This might change in the future because it is currently under
discussion whether to make them editable with CSS. So, although you might bemoan
that the error messages look horrible or do not meet your lovely brand guidelines, the
error messages will be consistent in a browser, so it is arguably a usability win because
users will come to expect these error styles when using their browser of choice.

Although you cannot yet change the style of the errors, you can change the error
message text using JavaScript and the setCustomValidity() method. Listing 5.14 has
an example that overrides the default error message when incorrect content has been
added.

Listing 5.14 An HTML5 Sign-Up Form

<form>

<label for="email">Email</label><input oninput="check()" type="email" id="email"

➥name="email" />

<input type="submit"/>

</form>

<script>

function check() {

 var emailInput = document.getElementById("email");

 emailInput.setCustomValidity("This is not valid. Please fix it.");

}

</script>

ADVANCED RECIPE:
Putting It All Together to Make a Sign-Up Form
Now that you have learned about all the new HTML5 form features, let’s put a few of
them together, along with some CSS, to see how the new features can create a sign-up
form. The HTML and CSS in Listing 5.15 provides the result in Figure 5.24.

ptg999

Chapter 5 HTML5 Web Forms122

So, in Figure 5.24, we have used the tel, date, url, number, text, email, color,
and range input types. Also used on a couple of occasions is the datalist element,
though we could have alternatively used select, but on this form we want people to
type in their job titles or countries. Toward the end of the form, the range input type
has been used and along with it the output element. All the elements that have data
we need to capture have the required attribute, which will trigger built-in browser
validation. And to make it look a bit nicer, we have added some new CSS3 selectors to
target the required, valid, and invalid states of the elements.

Listing 5.15 A Robust Sign-Up Form

<!DOCTYPE html>

<html lang="en">

<head>

<meta charset="utf-8">

<title>Big signup form</title>

Figure 5.24 A sign-up form in Opera 11 created with some HTML 4
elements, new HTML5 form elements, and CSS

ptg999

Advanced Recipe: Putting It All Together to Make a Sign-Up Form 123

<style>

* {margin: 0; padding: 0;}

body {background: #fff; color: #000; font: normal 62.5%/1.5 tahoma, verdana,

➥sans-serif;}

h1 {font-size: 2.9em; font-weight: bold; margin: 1em 0 1em 10px;}

form {padding: 0 10px; width: 700px;}

legend {left: -9999px; position: absolute;}

fieldset {border: 1px solid #ccc; border-radius: 5px; float: left; padding: 10px;

➥width: 320px;}

fieldset:nth-of-type(1) {margin-right: 10px;}

li {clear: both; list-style-type: none; margin: 0 0 10px;}

label, input {font-size: 1.3em;}

label {display: block; padding: 0 0 5px; width: 200px}

input {background-position: 295px 5px; background-repeat: no-repeat; border: 2px

➥solid #ccc; border-radius: 5px; padding: 5px 25px 5px 5px; width:

➥285px;}

input:focus {outline: none;}

input:invalid:required {background-image: url(asterisk.png); box-shadow: none;}

input:focus:invalid {background-image: url(invalid.png); box-shadow: 0px 0px 5px

➥#b01212; border: 2px solid #b01212;}

input:valid:required {background-image: url(accept.png); border: 2px solid

➥#7ab526;}

input[type=date], input[type=number] {background-position: 275px 5px; text-align:

➥left;}

input[type=color], input[type=range] {padding-right: 5px;}

input[type=range]:before{content: "1";}

input[type=range]:after{content: "10";}

div#range label {font-weight: bold;}

output {font-size: 1.3em; font-weight: bold; display: block; text-align: center;}

div {clear: both; float: left; margin: 10px 0; text-align: center; width: 100%;}

div label {width: 100%;}

input[type=submit] {background: #7ab526; border: none; box-shadow: 0px 0px 5px

➥#7ab526; color: #fff; cursor: pointer; font-size: 3em; font-weight: bold;

➥margin: 20px auto; padding: 15px; width: auto;}

input[type=submit]:hover {box-shadow: 0px 0px 25px #7ab526; }

</style>

</head>

<body>

<h1>Sign up for our amazing product. It's amazing.</h1>

<form>

 <fieldset>

 <legend>Personal info</legend>

 <label for="name">Name</label><input autofocus required type="tel"

➥id="name" name="name" />

 <label for="birthday">Birthday</label><input required type="date"

➥id="birthday" name="birthday" />

ptg999

Chapter 5 HTML5 Web Forms124

 <label for="website">Website</label><input

➥placeholder="http://mysite.com" pattern="(http|https)://([\w-]+\.)+[\w-

➥]+(/[\w- ./?%&=]*)?" type="url" id="website" name="website" />

 <label for="job">Job</label><input list="joblist" required type="text"

➥id="job" name="job" />

 <datalist id="joblist">

 <option label="Space Cowboy" value="Space Cowboy">

 <option label="International Playboy" value="International Playboy">

 <option label="Web developer" value="Web developer">

 <option label="Web designer" value="Web designer">

 <option label="Jack of all trades" value="Jack of all trades">

 </datalist>

 <label for="salary">Approx. annual salary</label><input

➥placeholder="$" required min="0" step="1000" type="number"

➥id="salary" name="salary" />

 </fieldset>

 <fieldset>

 <legend>Contact info</legend>

 <label for="address1">Address line 1</label><input required

➥type="text" id="address1" name="address1" />

 <label for="address2">Address line 2</label><input required type="text"

➥id="address2" name="address2" />

 <label for="country">Country</label><input list="countrylist" required

➥type="text" id="country" name="country" />

 <datalist id="countrylist">

 <option label="Canada" value="Canada">

 <option label="United Kingdom" value="United Kingdom" >

 <option label="USA" value="USA">

 </datalist>

 <label for="tel">Tel</label><input placeholder="eg: 012345" type="tel"

➥id="tel" name="tel" />

 <label for="email">Email</label><input required type="email" id="email"

➥name="email" />

 </fieldset>

 <div id="personalise">

 <h2>Personalise your profile</h2>

 <label for="color">Choose a page color</label>

 <input type="color" id="color" name="color" />

 </div>

 <div id="range">

 <label for="excited">Finally, on a scale of 1 to 10, how excited are you

➥about HTML5 forms?</label>

ptg999

Summary 125

 <input min="1" max="10" step="0.5" type="range" id="excited" name="excited"

➥/>

 <output onforminput="value=excited.value + ' / 10'"></output>

 <input type="submit" value="Sign up" />

 </div>

</form>

</body>

</html>

Summary
In this chapter, you learned about all the new input types and, if they are fully sup-
ported, how they work in the browsers. These new input types, along with the new
built-in native validation and new CSS features in good browsers, makes creating
forms and providing feedback to the user much easier. Though there is a long way to
go before all the browsers catch up, one day—ideally soon—you will not have to rely
on JavaScript to create useful features such as date pickers, sliders, and validation. All
the new input types, such as email, tel, and date, all “work” in browsers by, at the
very least, showing a text field, so there is no excuse to not start using them.

ptg999

This page intentionally left blank

ptg999

6
Drawing with Canvas

In 2004, Apple developed a pixel-based drawing element named canvas for the Mac
OS X dashboard that was later employed in the Safari Browser. The HTML5 specifi-
cation has adopted this element and its associated set of APIs to provide basic drawing
functionality. Before the canvas element, browsers required a third-party plug-in to
render these basic drawings. Since this is a pixel-based drawing mechanism rather than
a vector and layer-based system, the underlying functionality is rudimentary; however,
as you will learn in this chapter, it can still provide a means to provide rich displays.

Canvas Overview
At the heart of implementing the canvas are two components: the canvas element
in the HTML and the JavaScript to perform operations on the canvas. As with a
painter, the canvas is blank until the painter uses brushes, tools, and medium to create
the resulting work of art. In the same manner, you program into your JavaScript the
motions using canvas shape tools, effects, and transformations. These are then drawn
on the canvas, resulting in an updated view of new pixels.

The canvas element gives you a blank surface (thus the name canvas), which you
can use to render graphics, images, and text dynamically. The canvas functionality is
massive, so we will cover some basics such as drawing shapes and then cover some more
complex effects and transformations. However, if you like this type of thing, then we
encourage to do further research because we are really only scratching the surface here.
We will quickly run through the basics before getting into heavy canvas usage.

Table 6.1 shows the version of each browser that supports the canvas element.

Note
For Internet Explorer 8 and older, you will need some third-party help, and that is where
explorercanvas (http://code.google.com/p/explorercanvas) comes in. Because you need
it for IE8 only, you can put it in conditional statements:

<!--[if lte IE 8]><script src="excanvas.js"></script><![endif]-->

http://code.google.com/p/explorercanvas

ptg999

Chapter 6 Drawing with Canvas128

Table 6.1 Canvas Browser Availability

Android 2.1+

Chrome 10.0+

Firefox 3.6+

Internet Explorer 9.0+

iOS Safari 3.2+

Opera 10.6+

Safari 3.2+

Getting Started
Listing 6.1 has the code needed to get started with the canvas element. If you try this
code in a browser, you will not see anything since no JavaScript has been added to
actually draw on the canvas. A quick way to verify that the canvas has been rendered
by the browser is to add a border to the element using CSS.

Listing 6.1 Setting Up the canvas Element

<!DOCTYPE html>

<html>

<head>

<style>

canvas {

 border: 1px solid #000;

}

</style>

</head>

<body>

<canvas id="myCanvas" width="640" height="480"></canvas>

</body>

</html>

The canvas element has the standard attributes of an HTML element. Minimally,
you will need the id, width, and height attributes to be able to reference the canvas
from your JavaScript and set the size of the canvas. In addition, the canvas element
can be styled like any other element through CSS. In Listing 6.1, a border was applied
to allow you to quickly verify that the canvas has been placed on the page and is sized
correctly. You could also add a background color or other styles. These styles will
appear by default in the canvas because by default the canvas is transparent and will
render whatever is below the canvas element. This can be beneficial for overlaying
the canvas on other HTML elements so that you can then draw on them.

ptg999

Canvas Overview 129

You will notice in Listing 6.1 that we have included the end tag </canvas> in the
HTML. The reason for including the end tag is to provide a fallback container and
to be fully compliant with Mozilla because that browser expects fallback content.
By having a fallback container, it can then display content between the tags should
the canvas element not be supported by the browser. Like with other elements, you
could provide an alt attribute to display text content, but if the canvas tag is not
supported, then any content held within the opening and closing element tags will be
displayed. This can be convenient to display anything from text to images since the
canvas drawing will not be displayed.

To draw on the canvas from JavaScript, you first must grab the context of the can-
vas id you want to draw on. To do this, your script will get the canvas element by
id and then use getContext to grab a reference to the canvas element’s two-dimen-
sional context. This context reference provides the link for then changing pixels in the
canvas, as shown here:

<canvas id="mycanvas" width="640" height="480"></canvas>

<script>

 var canvas = document.getElementById('mycanvas').getContext('2d');

</script>

The getContext method can also be used to verify your JavaScript and determine
whether the current browser supports the canvas drawing. A simple check using the
canvas element will provide a true value if supported or a false value if not:

var canvas = document.getElementById('mycanvas');

if (mycanvas.getContext) {

 // canvas is supported

 …

The JavaScript could then take an appropriate path of programming based on
whether the browser supports the canvas functionality.

X and Y Coordinates
The last area we need to discuss before jumping into the basic canvas drawing tools is
the coordinate system used for drawing on a canvas. Since the canvas is pixel based,
an (X,Y) coordinate system is used to determine the particular location or pixel that
is being updated. These coordinates are also used with the various tools to reference
starting points, end points, and other locations. If you have used tools such as Adobe
Photoshop, then using a coordinate-based drawing system will not be anything new
to you. The key to the coordinate system is that the (0,0) point is located in the top-
left corner of the canvas by default, with the X value increasing as you move left and
the Y value increasing as you move down. As an introduction to some of the drawing
tools and the canvas grid system, the first recipe in this chapter will lay this grid out
for you to see on a canvas.

ptg999

Chapter 6 Drawing with Canvas130

BEGINNER RECIPE:
Laying a Grid on the Canvas
The basis of all drawing using the canvas element is the grid system. However, for all
intents and purposes, this grid system is invisible. The canvas element uses the grid
system for the basic shape-drawing tools, effects, and transformations. In this recipe,
you will use two of the basic shape methods, line and arc, to create a grid on the
canvas with small points at the intersection of the vertical and horizontal lines. You
will see how important the grid system is in using these basic drawing tools.

The canvas will be defined as being 600 pixels wide and 400 pixels high. At every
100 pixels, a vertical and horizontal line will be drawn creating the grid. To show the
coordinates of the intersections, the recipe will use a canvas effect, fillText, that
allows the JavaScript to apply text to the canvas element. In the end, you should have
the result shown in Figure 6.1.

Let’s make the grid visible now by following these steps and using Listing 6.2:

1. Create a blank HTML page with the html body tags as shown in Listing 6.2,
including the canvas opening and closing tags, and fallback text in between.

 2. Add the style section with the canvas id style.

Figure 6.1 The canvas grid coordinate system drawn by using the line,
arc, and fillText methods

ptg999

Beginner Recipe: Laying a Grid on the Canvas 131

 3. Add window.addEventListener to launch the showGrid function when the
page loads and the canvas and context variable declarations.

 4. Add the showGrid function to draw the lines, points, and text on the canvas.

Listing 6.2 Drawing the Canvas Grid

<!DOCTYPE html>

<html>

<head>

<meta charset="UTF-8" />

<title>6.2 Canvas Grid System</title>

<style>

#canvas {

border:1px solid #03F;

 background:#CFC;

}

</style>

<script>

// Declare our canvas and context reference variables

var canvas;

var context;

// Lay the grid on to the canvas

function showGrid() {

 // Get references to the canvas and then the drawing context

canvas = document.getElementById('canvas');

 context = canvas.getContext('2d');

 // Set line width and color for the grid lines

 context.lineWidth = 1;

 context.strokeStyle = '#999';

 // Set the line spacing for the grid lines

 lineSpacing = 100;

 // Initialize the x and y positions

 var xPos = 0;

 var yPos = 0;

 // determine the number of horizontal and vertical lines on the grid

 var numHorizontalLines = parseInt(canvas.height/lineSpacing);

 var numVerticalLines = parseInt(canvas.width/lineSpacing);

 // Draw the horizontal lines

 for (var i=1; i<=numHorizontalLines;i++) {

ptg999

Chapter 6 Drawing with Canvas132

 yPos = i*lineSpacing;

 context.moveTo(0,yPos);

 context.lineTo(canvas.width,yPos);

 context.stroke();

 }

 // Draw the vertical lines

 for (var i=1; i<=numVerticalLines;i++) {

 xPos = i*lineSpacing;

 context.moveTo(xPos,0);

 context.lineTo(xPos,canvas.height);

 context.stroke();

 }

 // Add circles and coordinates to the grid intersections

 for (var y=0; y<=numHorizontalLines; y++) {

 for (var x=0; x<=numVerticalLines; x++) {

 // calculate the x and y position

 xPos = x*lineSpacing;

 yPos = y*lineSpacing;

 // if at (0,0) then change color

 if (x==0 && y==0) {

 context.fillStyle='#f00';

 } else {

 context.fillStyle='#000';

 }

 // draw circle at point

 context.beginPath();

 // Draws a circle of radius 5 at the x and y position

 context.arc(xPos,yPos,5,0,Math.PI*2,true);

 context.closePath();

 context.fill();

 // Display the text for the coordinate

 // Check if on last vertical and place text on left

 if (x==numVerticalLines) {

 context.textAlign = 'right';

 xPos -= 5;

 } else {

 context.textAlign = 'left';

 xPos += 5;

 }

 // Check if on bottom horizontal and place text above

 if (y==numHorizontalLines) {

 yPos -= 8;

ptg999

Beginner Recipe: Laying a Grid on the Canvas 133

 } else {

 yPos += 12;

 }

 // Add the text to the canvas

 context.fillText('('+x*lineSpacing+','+y*lineSpacing+')',xPos,yPos);

 }

 }

}

// on page load initialize the bar chart

window.addEventListener('load',showGrid,false);

</script>

</head>

<body>

 <h1>Canvas Grid System</h1>

<canvas id="canvas" width="600" height="400">

 The Canvas HTML5 element is not supported by your browser.

 Please run this page in a different browser.

 </canvas>

</body>

</html>

We will not go into too much detail here about the actual line, point, or text draw-
ing because these shape-drawing methods and effects will be described later in the
chapter. The key here is to understand the process that occurs when you want to draw
on a canvas. In this recipe, you have created a canvas element in the HTML, which
is 600 pixels wide by 400 pixels high. In addition, the canvas element has been styled
to have a border and background color set. When the code is run in your browser,
you will see this border and the background color. Since the canvas is transparent by
default and the code draws lines, points, and text only on the canvas, the background
style color will show through.

When the page loads, the showGrid function will be triggered. The first thing you
need to do in the recipe is to get a reference to the canvas element and then get the
canvas’s context to be used to draw on. Once you have the context, you can set some
basic settings such as the line width with context.lineWidth and the color to be
used with context.strokeStyle. Then you set the spacing for your grid lines to 100,
set the initial starting coordinate of 0,0, and determine the number of horizontal and
vertical lines that will need to be drawn. Using this information, the code then draws
all the horizontal lines by moving the position down the canvas every 100 pixels and
drawing a line across the canvas. After completing the horizontal lines, the code draws
the vertical lines from left to right, drawing each line from the top of the canvas to the
bottom of the canvas. Remember that for the y orientation, the top is 0 and increases
as you go down.

ptg999

Chapter 6 Drawing with Canvas134

Once the lines are drawn for the grid, you then want to add the intersection points
and their coordinates. To draw the points, you will draw a circle at each point with
the arc tool, which you will look at in further detail later in the chapter. At each point,
you also display the text of the coordinate with the fillText method. By default, the
text will be left and top aligned, which is fine for all the points of the grid, except
the right-most column and bottom-most row. If you displayed these points without
changing the text alignment, then the text would not be visible because it would be
drawn on the context but out of the canvas viewing area. Instead, the code will deter-
mine whether the point is in either the last column or the bottom row and modify the
alignment for that position.

Note
Since the canvas is based on pixel manipulation, in a two-dimensional world the order
in which you draw on the canvas is very important. There is no concept of layers in the
Canvas API, so the order in which you build a drawing up will better determine the final
product. For example, if you add the text for a signpost to the canvas prior to drawing the
sign with a solid background, then your text will be covered up. Instead, you would draw
your sign background and then draw your text on top.

You have just drawn your first canvas drawing and at the same time learned how
the grid system works with the canvas context. Now let’s look at the basic drawing
shapes or methods of the canvas functionality, along with some of the effects that are
available.

Canvas Tools
The canvas provides a basic set of tools, as shown next, from which you can create a
wide range of simple and complex shapes on the canvas. In this recipe, you will learn
brief ly about each of these tools and see some quick samples of each tool.

n Rectangle: Draws a rectangle at a specific location with a specific width and
height

n Line: Creates a line from point A to point B
n Path: Creates a path using one or more lines or curves
n Arc: Creates an arc given particular dimensions and employed to also create circles
n Curve: Creates one of two types of curves: Bezier or Quadratic

BEGINNER RECIPE:
Making Simple Shapes and Lines
In this recipe, you will draw simple shapes such as a square and triangle and learn how
to draw lines and paths.

ptg999

Beginner Recipe: Making Simple Shapes and Lines 135

Drawing and Styling a Rectangle or Square
Using fillRect(pos-x, pos-y, width, height), you can draw a rectangle or
square:

canvas.fillRect(0, 0, 100, 100);

This will create a 100 pixel by 100 pixel square and place it in the top-left corner
(0,0) of the canvas, as shown in Figure 6.2. By default, the square will be black in
color, which is pretty boring, so let’s work on adding some color.

On top of the basic toolset provided by canvas, there are a handful of effects that
can be used in conjunction with the tools:

n Fill: Controls the fill parameters of a shape
n Stroke: Controls the stroke of lines used in shapes
n Gradient: Allows for the use of either linear or radial fill patterns in shapes
n Transparency: Defines the opacity level to either all shapes on the canvas or

through fill RGBa values to specific shapes
n Shadow: Provides an easy-to-use shadow for applying to individual shapes
n Compositing: Masks or clips off areas of the canvas and controls the overall order

of the building of shapes on the canvas

You have already brief ly seen some of the methods for these effects in this chapter.
The following are some of the more common effect methods that are available for
shapes:

n strokeStyle: Specifies the color or style for lines around shapes
n fillStyle: Specifies the color or style used inside shapes
n shadowOffsetX/shadowOffsetY: Specifies the distance of the shadow
n shadowBlur: Specifies the level of the blurring effect
n shadowColor: Specifies the color of the shadow
n createLinearGradient: Creates a linear gradient inside the shape
n createRadialGradient: Creates a radial gradient inside the shape

Figure 6.2 A square drawn with canvas

ptg999

Chapter 6 Drawing with Canvas136

So, if you use several of the effects available on the square you drew earlier with
fillRect, you can get a rather fetching purple square with a purple shadow (see List-
ing 6.3). For any of the effects that employ color, such as strokeStyle, fillStyle,
and shadowColor, you do not have to use an RGBa format for your colors but can
use hex values or HSLa as well. It is important to note, though, that all the styles and
effects must be done before using the fillRect method, since the fillRect method
is what then tells the canvas context to render the shape, and once rendered, the shape
is complete. Since the shape is displayed on the canvas through individual pixels, there
is no way to change the shape after drawing it. Instead, you would need to redraw the
shape to modify it, as you will learn later in the chapter.

Listing 6.3 Styling the Square

<canvas id="canvas" width="640" height="480"></canvas>

<script>

 var canvas = document.getElementById('canvas').getContext('2d');

 canvas.shadowOffsetX = 10;

 canvas.shadowOffsetY = 10;

 canvas.shadowBlur = 10;

 canvas.shadowColor = 'rgba(200, 0, 200, .3)';

 canvas.fillStyle = 'rgba(200, 0, 200, 1)';

 canvas.fillRect(0, 0, 100, 100);

</script>

With the color code choices available, colors can include the opacity setting, which
can be extremely handy for creating the looks of layered images. Listing 6.3 used a
semi-transparent shadow RGBa value to get the most desirable shadow effect.

There are two other methods for drawing rectangles: clearRect(pos-x, pos-y,
width, height) and strokeRect(pos-x, pos-y, width, height. The clearRect
method will clear the pixels in the given rectangle area. This will remove any pixel
changes in the area, setting the area back to the default transparent state. As you will
learn later in this chapter, using the clearRect method will be extremely helpful in
animation and can be used to clear the entire canvas by using the canvas dimensions
for the width and height or to clear just a particular area. strokeRect, in combination
with lineWidth, will draw a stroke at the coordinates and the width and height you
set it. Using a combination of these shapes and effects, as in Listing 6.4, will create an
even more unique image.

Listing 6.4 More Styling Options

var canvas = document.getElementById('canvas').getContext('2d');

canvas.shadowOffsetX = 10;

canvas.shadowOffsetY = 10;

canvas.shadowBlur = 10;

canvas.shadowColor = 'rgba(200, 0, 200, .3)';

ptg999

Beginner Recipe: Making Simple Shapes and Lines 137

canvas.fillStyle = 'rgba(200, 0, 200, 1)';

canvas.strokeStyle = '#09c';

canvas.lineWidth = 5;

canvas.fillRect(0, 0, 100, 100);

canvas.clearRect(25, 25, 50, 50);

canvas.strokeRect(25, 25, 50, 50);

Applying Gradients to Shapes
Another effect you can use with canvas shapes is a gradient. Gradient fills in
the canvas can be created either through a linear (createLinearGradient) or
radial (createRadialGradient) gradient. To add colors to the gradient, use the
addColorStop property. Listing 6.5 creates two rectangles with the two gradient
types.

Listing 6.5 Creating Gradients

<canvas id="canvas" width="640" height="480"></canvas>

<script>

 var canvas = document.getElementById('canvas').getContext('2d');

 var grd = canvas.createLinearGradient(0, 200, 200, 0);

 grd.addColorStop(0, '#000');

 grd.addColorStop(.5, '#ccc');

 grd.addColorStop(1, '#000');

 canvas.fillStyle = grd;

 canvas.strokeStyle = '#09c';

 canvas.lineWidth = 5;

 canvas.fillRect(0, 0, 200, 200);

 canvas.closePath();

 var grd = canvas.createRadialGradient(300, 250, 2, 200, 200, 250);

 grd.addColorStop(0, '#000'); // light blue

 grd.addColorStop(1, '#ccc'); // dark blue

 canvas.fillStyle = grd;

 canvas.fillRect(200, 200, 200, 200);

 canvas.closePath();

</script>

Listing 6.5 creates an upper-left rectangle with a linear gradient and a lower-right
rectangle with a radial gradient. Both gradient methods employ different parameters to
control the behavior of the gradient, as shown here:

createLinearGradient(startX, startY, endX, endY)

createRadialGradient(startX, startY, startRadius, endX, endY, endRadius)

The radial gradient method can get a little complicated, so it is worth playing
around with this; try adding various addColorStop to see what happens.

ptg999

Chapter 6 Drawing with Canvas138

Drawing Lines and Paths
To draw a line using canvas, three methods make up the process:

n moveTo(x,y): Moves the current location on the canvas grid to the first point of
the line; the line will be drawn from here.

n lineTo(x,y): Tells the canvas where the end point will be on the line.
n stroke(): Called to have the canvas draw the line. If the stroke style has not

been set with the strokeStyle method, then the default color of the line will
be black.

In Listing 6.6, you start the line 10 pixels from the top left and, using lineTo, set
the end of the line to 10 pixels from the bottom-right corner of the canvas, as shown
in Figure 6.3.

Listing 6.6 Drawing a Line

<canvas id="canvas" width="640" height="480"></canvas>

<script>

 var canvas = document.getElementById('canvas').getContext('2d');

 canvas.moveTo(10,10);

 canvas.lineTo(630, 470);

 canvas.stroke();

</script>

Remember that the options for the line, such as width and color, must be set prior
to calling the stroke method so that the style is rendered properly.

You can use lineTo as many times as you want to draw a variety of shapes by cre-
ating a “path” that the line takes. Let’s look at drawing a triangle in Listing 6.7, which
uses lineTo three times to draw the three sides of the triangle.

Figure 6.3 A line drawn with canvas

ptg999

Intermediate Recipe: Drawing Polygons with a Path 139

Listing 6.7 Drawing a Triangle

<canvas id="canvas" width="640" height="480"></canvas>

<script>

 var canvas = document.getElementById('canvas').getContext('2d');

 canvas.beginPath();

 canvas.moveTo(10,10);

 canvas.lineTo(630, 470); //diagonal line

 canvas.lineTo(10, 470); //bottom line

 canvas.lineTo(10, 10); //left line

 canvas.closePath();

 canvas.strokeStyle = '#000';

 canvas.lineWidth = 3;

 canvas.fillStyle = '#ccc';

 canvas.fill();

 canvas.stroke();

</script>

To have the lines create one path, you will use two new methods: beginPath
and closePath. beginPath tells the canvas that the lines, or curves that come after,
belong to one path object that is “closed” when the closePath method is executed.
The path of lines or curves can then be treated as one object, similar to a rectangle,
and then can be styled similarly.

Previewing the shape using the code in Listing 6.7, you will notice that where the
line ends (top-left corner), it is a little rough, because the lines don’t meet smoothly.
Well, there is a method for that, lineCap, which accepts a value of butt, round, or
square. This will cap the end of the line, but what about the other points of the tri-
angle? You can use the lineJoin method for that, which accepts a value of bevel,
miter, or round:

canvas.lineCap = 'round';

canvas.lineJoin = 'round';

Paths can include segments that are created not only from lines but also from
curves, as you will see later.

INTERMEDIATE RECIPE:
Drawing Polygons with a Path
In this recipe, you will use the line drawing and path functionality of the Canvas API
to draw a regular polygon based on a number of sides and radius provided by the user.
Because the polygon is created by employing the path feature, you can then fill in the

ptg999

Chapter 6 Drawing with Canvas140

shape with color. To create the polygon, JavaScript will create a line from and to each
vertex of the polygon based on mathematical formulas to determine the coordinates of the
vertices. The recipe can be created by following the steps and using the code in Listing 6.8:

1. Create the page in Listing 6.8 with the style and body tags for the canvas.

2. Add the input fields for the number of sides and radius along with the button to
trigger the drawing of the polygon.

 3. Add the init function, global variables, and load event handler to set the global
references to the canvas and context.

 4. Add the drawPolygon function, which is the worker function for drawing the
actual regular polygon.

Listing 6.8 Drawing Polygons with Paths

<!DOCTYPE html>

<html>

<head>

<meta charset="UTF-8" />

<title>6.8 Drawing Polygons with Paths</title>

<style>

#canvas {

 border:1px solid #03F;

}

</style>

<script>

// Global variables for the canvas and context

var canvas;

var context;

// initialization function when the page loads

function init() {

 // set the button handler

 var btnDrawPolygon = document.getElementById('drawPolygon');

 btnDrawPolygon.addEventListener('click',drawPolygon,false);

 // set references to the canvas and context

 canvas = document.getElementById('canvas');

 context = canvas.getContext('2d');

}

// function to draw the polygon on the canvas

function drawPolygon() {

 // Retrieve the user input for the polygon

 var numSides = document.getElementById('numSides').value;

 var radius = document.getElementById('radius').value;

ptg999

Intermediate Recipe: Drawing Polygons with a Path 141

 // Get our canvas center point to center the polygon

 var xCenter = parseInt(canvas.width/2);

 var yCenter = parseInt(canvas.height/2);

 // Clear the canvas

 context.clearRect(0,0,canvas.width,canvas.height);

 // Begin our path

context.beginPath();

 // Map the first vertice to start with

 var xPos = xCenter + radius * Math.cos(2 * Math.PI * 0 / numSides);

 var yPos = yCenter + radius * Math.sin(2 * Math.PI * 0 / numSides);

 context.moveTo(xPos,yPos);

 // Loop through the vertices and map the lines

 for (i = 1; i <= numSides; i++) {

 // Determine the coordinates of the next vertex

 xPos = xCenter + radius * Math.cos(2 * Math.PI * i / numSides);

 yPos = yCenter + radius * Math.sin(2 * Math.PI * i / numSides);

 // Set line to the next vertex

 context.lineTo(xPos,yPos);

 }

 // Close our path of lines

context.closePath();

 // Set the line properties and draw the lines

 context.lineWidth = 30;

 context.lineJoin = 'round';

 context.stroke();

 // Fill our new polygon

 context.fillStyle = '#00F';

 context.fill();

}

// call the init function on page load

window.addEventListener('load',init,false);

</script>

</head>

<body>

 <h1>Canvas Path Usage:</h1>

 <canvas id="canvas" width="400" height="400">

ptg999

Chapter 6 Drawing with Canvas142

 The canvas element is not supported in your browser.

 </canvas>

 Number of Sides: <input type="number" id="numSides" min="3" step="1" value="7"

➥/>

 Radius: <input type="number" id="radius" min="10" step="1" value="150" />

 <button id="drawPolygon">Draw Polygon</button>

</body>

</html>

Upon clicking the Create Polygon button, the drawPolygon function will be called.
First, the function retrieves the user inputs for the number of sides and radius for the
polygon. Next, the function finds the center point for the canvas to place the polygon
in the center of the canvas. Then, you clear the canvas, using the clearRect function,
so that you start with a blank canvas each time the user creates a new polygon.

Now that the canvas is set, you begin the path with the beginPath method. Then
with some fancy algorithms, you calculate the beginning X,Y coordinate and loop
through each vertex using lineTo to create the segments. Once all the line segments
have been built, the path is closed with the closePath method. The closePath method
joins all the line segments into one path, which you then use to set the line and fill of
the polygon, resulting in the polygon being drawn on the canvas, as shown in Figure 6.4.

Figure 6.4 Polygon created with five sides and a radius of 150 via the
path functionality

ptg999

Intermediate Recipe: Drawing Arcs and Circles 143

INTERMEDIATE RECIPE:
Drawing Arcs and Circles
You are not limited to just straight lines with canvas; you can add curves, too. You
start with the arc method, which accepts the following values:

canvas.arc(x, y, radius, startAngle, endAngle, antiClockwise(Boolean));

Let’s look at an example in Listing 6.9, which results in Figure 6.5.

Listing 6.9 Drawing an Arc

<canvas id="canvas" width="640" height="480"></canvas>

<script>

 var canvas = document.getElementById('canvas').getContext('2d');

 canvas.arc(100, 100, 40, 5, 1, true);

 canvas.strokeStyle = '#000';

 canvas.lineWidth = 5;

 canvas.stroke();

</script>

In Listing 6.9, you set the antiClockwise value to true. Try setting it to false and
see what is drawn.

To draw a circle, use the arc() method, start the angle with 0, and end it with
2*Math.PI:

canvas.arc(100, 150, 60, 0, 2 * Math.PI, false);

canvas.fillStyle = '#000';

canvas.fill();

canvas.strokeStyle = '#000';

canvas.lineWidth = 2;

Drawing Curves
Two types of curves are available in canvas: quadraticCurveTo and bezierCurveTo.
The difference between the two is that quadraticCurveTo has one control point,
whereas bezierCurveTo has two. The control points enable you to add curves to lines
so you can create more complex shapes:

canvas.quadraticCurveTo(cX, cY, endX, endY);

canvas.bezierCurveTo(c1X, c1Y, c2X, c2Y, endX, endY);

Figure 6.5 An arc drawn with canvas

ptg999

Chapter 6 Drawing with Canvas144

BEGINNER RECIPE:
Adding Text
The Canvas API provides two methods for adding text to the canvas: fillText and
strokeText. fillText takes a string to display along with the X,Y coordinate to
display the text at and creates the text string as filled letters, while the strokeText
method takes the same parameters but creates an outline of the text characters:

fillText(text, x, y);

In both cases, the font type, weight, and size can be modified through the font prop-
erty, and the fill stroke style can be controlled via the fillStyle and strokeStyle can-
vas properties, as shown in Listing 6.10.

Listing 6.10 Adding Text to the Canvas

<script>

 var canvas = document.getElementById('canvas').getContext('2d');

 canvas.font = 'bold 80px Tahoma';

 canvas.fillStyle = '#000';

 canvas.fillText('HTML5 Canvas', 10, 100);

 canvas.strokeStyle = '#000';

 canvas.lineWidth = 3;

 canvas.fillStyle = '#ccc';

 canvas.textAlign = 'center';

 canvas.fillText('HTML5 Canvas', 320, 200);

 canvas.strokeText('HTML5 Canvas', 320, 200);

</script>

Listing 6.10 results in Figure 6.6. Notice that in fillText and strokeText, after
the string value, are the X and Y coordinates where the text will be drawn. Also,
for the second example, the text is aligned to the center, and both fillText and
strokeText are used, so if you just wanted a text outline, then remove fillText.

Figure 6.6 Text drawn on the canvas

ptg999

Beginner Recipe: Drawing an Image 145

BEGINNER RECIPE:
Drawing an Image
One of the more interesting areas of the Canvas API is the inclusion of images. With
the drawImage method, you can include an image of your choosing and manipulate
the image in multiple ways. The simple example shown in Listing 6.11 loads a PNG
image file and results in the display in Figure 6.7.

Listing 6.11 Drawing an Image

<canvas id="canvas" width="640" height="480"></canvas>

<script>

 var canvas = document.getElementById('canvas').getContext('2d');

 var canvasImage = new Image();

 function drawCanvasImage(){

 canvas.drawImage(canvasImage, 155, 0);

 };

 canvasImage.addEventListener('load',drawCanvasImage,false);

 canvasImage.src = 'images/html5-logo.png';

</script>

The drawImage function has three different formats:
n drawImage(image, dx, dy): Displays an image provided in the image URL at

the location x and y
n drawImage(image, dx, dy, dw, dh): Scales the image based on the display

width (dw) and display height (dh)
n drawImage(image, sx, sy, sw, sh, dx, dy, dw, dh): Crops a section of

the image based on the X,Y coordinate and width and height provided by (sx,
sy, sw, and sh)

Figure 6.7 An image drawn onto a canvas
(the HTML5 logo is attributed to the W3C, www.w3.org)

www.w3.org

ptg999

Chapter 6 Drawing with Canvas146

The basic drawImage method takes the URL of the image and then the x and y
position to display the image at. The image is not scaled or cropped in any way. In
Listing 6.11, the load event is used to verify that the image has loaded prior to try-
ing to display the image on the canvas. If you pass the image URL directly into the
variables, then nothing will display because the image will not have loaded in to the
page. So, to confirm that the image has loaded prior to asking the canvas to display
the image, you listen for the load image event.

In Figure 6.4, you can see the image just barely fits inside our canvas frame; you
can resize the image by using the drawImage method with scaling width and height
options:

drawImage(image, x, y, width, height);

In this manner, the script passes in the additional width and height values, such
as canvas.drawImage(canvasImage, 50, 50, 150, 211);, which will resize the
image to 150 pixels wide by 211 pixels tall and position it 50 pixels from the top
and left.

INTERMEDIATE RECIPE:
Cropping an Image
You can also crop the image, by using the third method signature, which includes
cropping properties. The cropping properties are the start X and Y positions in the
image and the width and height of the cropping frame. It gets a little complicated, so
Listing 6.12 has comments next to each value.

Listing 6.12 Cropping an Image

function cropImage(){

 canvas.drawImage(canvasImage,

 0, // position X inside the crop

 0, // position Y inside the crop

 168, // source image width

 236, // source image height

 110, //crop position X

 110, //crop position Y

 250, //crop width

 250 //crop width

);

);

canvasImage.addEventListener('load',cropImage,false);

In addition to simply drawing the image on the canvas, the API provides a means
to use the image to also fill a given shape. Using the createPattern method, you can

ptg999

Intermediate Recipe: Animating a Sprite Map 147

use an image to fill the background of a shape. First, the image is passed that you want
displayed; then a pattern variable is created with the image. Then a shape is drawn,
using coordinates and a size. The fill style of the shape is then assigned to the pattern
that was created, as shown here:

var canvasImage = new Image();

function createImagePattern(){

 var pattern = canvas.createPattern(canvasImage, 'repeat');

 canvas.rect(0, 0, 640, 480);

 canvas.fillStyle = pattern;

 canvas.fill();

);

canvasImage.addEventListener('load',createImagePattern,false);

canvasImage.src = 'images/html5-logo.png';

The repeat parameter can have the following values:
n repeat: Repeats the pattern horizontally and vertically
n repeat-x: Repeats the pattern horizontally
n repeat-y: Repeats the pattern vertically
n no-repeat: Does not repeat the pattern

INTERMEDIATE RECIPE:
Animating a Sprite Map
Since the drawImage method can be used to crop a source image and draw the result-
ing subimage onto the canvas, you can use the same effect to animate sprite maps
by cycling through the frames of the sprite image. On a set interval, the drawImage
method is called to render a new frame of the source image each time, thus creating an
animation. In this recipe, you will use a simple sprite map of three frames to animate
a recycle icon. Each time the drawImage is called, the frame moves to the next frame.
After reaching the last frame, the frame is moved back to the first frame of the source
image. To create this example, use the following steps and Listing 6.13:

1. Create the page in Listing 6.13 with the style and body tags for the canvas and
including the buttons to start and stop the animation.

2. Add the global variable definitions, init function, and
window.addEventHandler event handler.

 3. Add the animateSprite function, which draws the cropped image.

 4. Add the startAnimation and stopAnimation functions, which are tied to the
start and stop animation buttons.

ptg999

Chapter 6 Drawing with Canvas148

Listing 6.13 Using Image Cropping with Sprite Maps

<!DOCTYPE html>

<html>

<head>

<meta charset="UTF-8" />

<title>6.13 Sprint Slice Animation</title>

<style>

#canvas {

 /* Place border on our canvas */

 border:1px solid #03F;

}

</style>

<script>

// canvas and context variables for drawing

var canvas;

var context;

// Image holder for our animation

var spriteRecycle = new Image();

// Sprite image frame variables

var sliceX = 0;

var sliceY = 0;

var sliceWidth = 100;

var sliceHeight = 100;

// animation variable

var intervalRef;

// initialize the canvas

function init() {

 // Set the button handlers

 var btnStart = document.getElementById('start');

 var btnStop = document.getElementById('stop');

 btnStart.addEventListener('click',startAnimation,false);

 btnStop.addEventListener('click',stopAnimation,false);

 // Retrieve reference to the canvas and context

 canvas = document.getElementById('canvas');

 context = canvas.getContext('2d');

 // Assign the source of our image

 spriteRecycle.src = 'recycle_sprite.png';

}

// Animate image based on slice

function animateSprite() {

ptg999

Intermediate Recipe: Animating a Sprite Map 149

 // Draw the image based on the current sprite slice

context.drawImage(spriteRecycle, sliceX, sliceY, sliceWidth, sliceHeight, 0, 0,

➥100, 100);

 // Increment the slice of the sprite

 sliceX+=100;

 // Reset the slice to the first frame if needed

 if (sliceX>=spriteRecycle.width) {

 sliceX = 0;

 }

}

// Start the animation by setting an interval

function startAnimation() {

intervalRef = setInterval('animateSprite()',100);

}

// Stop the animation by clearing the interval set

function stopAnimation() {

 clearInterval(intervalRef);

 // erase the canvas with clearRect

 context.clearRect(0,0,100,100);

}

// call the init function on page load

window.addEventListener('load',init,false);

</script>

</head>

<body>

 <h1>Sprite Map Animation with Canvas</h1>

 <canvas id="canvas" width="100" height="100">

 The Canvas element is not supported in this browser.

 </canvas>

 <button id="start">Start</button>

 <button id="stop">Stop</button>

</body>

</html>

After the startAnimation function is called when the user clicks the start but-
ton, the function sets an interval for 100 milliseconds to launch the animateSprite
function. This is the heart of the animation timing. Each 100 milliseconds, the
animateSprite function will be called until the stopAnimation function is called
and clears the interval. Each time the animateSprite function is run, a slice of the
recycle image will be displayed. The recycle image is 300 pixels wide and contains

ptg999

Chapter 6 Drawing with Canvas150

three slices that are 100 by 100 pixels. After each drawing of the slice, the slice hori-
zontal position is moved 100 pixels to the right, as shown in Figure 6.8. If the slice is
already on the last 100 pixels, then the slice is moved back to 0.

Note that you do not have to clear the canvas before each drawImage because the
sprite image has an opaque background and you are drawing over the entire 100 by
100 pixel canvas each time.

Note
Even though the canvas element does not support layers in the canvas itself, there is
a way you can imitate the functionality of layers. Since the canvas is an element on the
page that can be styled and has a transparent background by default, there is nothing
preventing developers from having multiple canvas elements defined that are positioned
on top of each other. To control the layer position on the page, the z-index style attri-
bute on the element would be used. It would not be too far-fetched to imagine a game
that has a background canvas while a character sprite is loaded in a smaller canvas that
is positioned on top of the other canvas. If you implement a multiple-canvas page, be
cautious of performance issues since references must be kept to the individual canvas
elements to use them.

Canvas Transformations
In addition to the canvas tools and effects that are available, a handful of transfor-
mation tools are available for use. The following are the three transformation tools
available:

n rotate(angle): Rotates the underlying context grid of the canvas so that any-
thing added to the rotated context appears rotated to the user. The angle is in
radians and is measured clockwise.

Figure 6.8 Slice frames of the sprite image as they are displayed with
each cycle

ptg999

Advanced Recipe: Animating an Image 151

n scale(x, y): Allows the developer to control the scale for the x and y units.
The scale method takes the x unit scale and y unit scale as parameters.

n transform: This transformation provides the developer with access directly into
the transformation matrix.

Three methods are associated with the canvas that assist in performing a transfor-
mation. The translate(x, y) canvas method allows you to move the point of origin
of the canvas to a new location. So, if you called translate(100,100), the new origin
point would be shifted 100 pixels down and 100 pixels to the right and become your
new point of origin. This is extremely important with transformations such as rota-
tion, because the point of origin is the point around which the rotation is performed.
There are two ways to return the point of origin to the original location. The first
is to simply use the translate method again to return the location in the opposite
directions. The second and preferred method is to use the save and restore canvas
methods.

The save and restore methods allow you to save the current context prior to any
transformation and then restore the context to the saved version at a later time. We
will use this pattern along with the rotate method in various recipes to demonstrate
transformations with canvas. The rotate method takes a number of radians to rotate
the canvas orientation. To convert angle degrees to radians, use the following formula:

Angle in Radians = angle in degrees * Pi / 180

Through the use of transformations such as the rotate and scale methods, you
can use the canvas to create interesting animations, as shown in the next recipe.

Note
As with any base set of API calls that lend themselves to enlarged and repetitive function-
ality, such as drawing squares, circles, and so on, from the base components, extended
libraries of calls have been created by various developers. In turn, many of these libraries
have been productized and can provide a basis for enveloping the canvas functionality in
simpler calls. In addition, the libraries have typically extended the functionality, making
more complex features easier to employ. Some libraries that you may want to check out
include netron, canvas toolkit, EaselJS, jCanvaScript, and gury. As the HTML5 canvas
gains in popularity, we are sure that the number and breadth of libraries will continue to
increase.

ADVANCED RECIPE:
Animating an Image
In this recipe, you will use two steps to “roll” a gear across the canvas from left to
right. The first step will be to move the image by redrawing the image on a given
interval to the right. The second step will be to rotate the image a certain number of

ptg999

Chapter 6 Drawing with Canvas152

degrees each time you move the image. As shown earlier, the rotate effect is used to
rotate the context of the drawing. In this example, you will save the default canvas
context and then rotate the context, draw the image, and finally restore the context.
In this manner and with the combination of these methods, the code in Listing 6.14
will create the illusion that the gear image is rolling across the screen.

1. Create the page in Listing 6.14 with the style and body tags for the canvas.

2. Add the global variable definitions, init function, and
window.addEventListener event handler.

 3. Add the moveGear function, which rotates, moves, and draws the gear image.

Listing 6.14 Moving and Rotating an Image

<!DOCTYPE html>

<html>

<head>

<meta charset="UTF-8" />

<title>6.14 Moving Gear</title>

<style>

#canvas {

 /* apply a simple border to the canvas */

 border:1px solid #03F;

}

</style>

<script>

// canvas and context reference variables for drawing

var canvas;

var context;

// the gear image reference

var gear = new Image();

// the current x position of the image

var xpos;

// The animation variables

var stepCounter; // counter for the current step

var stepDegrees; // how much to rotate each step

var stepDistance; // how far to move image each step

var stepSpeed; // how fast to rotate and move the image

var stepsFullRevolution; // how many steps in a full rotation

// initialize the board width and height

function init() {

 canvas = document.getElementById('canvas');

 context = canvas.getContext('2d');

ptg999

Advanced Recipe: Animating an Image 153

 // Initialize our step counter for the rotation

 stepCounter = 0;

 stepDegrees = 2;

 stepDistance = 2;

 stepSpeed = 5;

 stepsFullRevolution = parseInt(360 / stepDegrees);

 // Add the image load event listener

 gear.addEventListener('load',initGear,false);

 // Set the gear source image

 gear.src = 'gear.png';

}

// When the image is loaded then start the animation

function initGear(){

 // set the initial X position to just off left of canvas

 xpos = -(gear.width/2);

 // call the animation function

 moveGear();

};

// Function to remove old cog image and draw new image

function moveGear() {

 // Clear the old cog off the canvas

 context.clearRect(0, 0, canvas.width, canvas.height);

// Save the present canvas context so we can return

 context.save();

 // Increment the position

 xpos += stepDistance;

 // Move our 0,0 point to the new position of the cog

 context.translate(xpos,canvas.height-(gear.width/2));

 // Rotate the context and thus our cog

 context.rotate(Math.PI * stepDegrees * stepCounter / 180);

 // Draw the newly rotated image

 context.drawImage(gear, -(gear.width/2), -(gear.height/2), gear.width,

➥gear.height);

 // Restore the context to the original orientation

 context.restore();

ptg999

Chapter 6 Drawing with Canvas154

 // Check if the cog has left the canvas on the right

 if ((xpos-(gear.width/2)) < canvas.width) {

 // Increment the stepCounter and check if completed full revolution

 stepCounter++;

 if (stepCounter>=(stepsFullRevolution-1)) {

 stepCounter=0;

 }

 // cog is still showing - keep moving

setTimeout('moveGear()',stepSpeed);

 }

}

// call the init function on page load

window.addEventListener('load',init,false);

</script>

</head>

<body>

 <h1>The Rolling Cog</h1>

 <canvas id="canvas" width="600" height="100">

 The Canvas element is not supported in this browser.

 </canvas>

</body>

</html>

When the moveGear function is called after the image is loaded, the first action
performed by the code is to clear the canvas by calling clearRect. You need to do
this or else “remnants” of the prior image drawn will remain on the canvas. Next,
the script saves the current context, increments the horizontal position, and then posi-
tions the origin to the new position with the translate function. Then the script
rotates the image based on the new origin by the stepDegrees set previously with
the rotate method. Next the image is drawn, and you restore the context orientation
thereafter for the next drawing function.

After drawing the gear image at the new position and angle, you check to see
whether the image has moved past the right edge of the canvas by comparing the hori-
zontal position and the canvas width. If it has moved past the edge, then you stop the
animation. However, if the image is still in view on the canvas, then the script incre-
ments the step counter and sets the next timeout to kick off the moveGear function
again.

Any of the animation settings can be adjusted by changing the animation variables
in the top of the script. Figure 6.9 shows different stages of the image in the canvas.

ptg999

Advanced Recipe: Animating a Vertical Bar Chart 155

Note
You can interact with the canvas, whether to play a game or move a shape, by catch-
ing mouse events such as mouseover and click. The coordinates provided by the event
can be mapped through the offset X and Y coordinates to the location of the canvas on
the page. For example, if the X,Y from the mouse click event is 150,200 and the canvas
offset is 100 for the x and 100 for the y, then the coordinate for the mouse click in the
canvas is 50,100. Knowing this coordinate in the canvas grid, you can then determine
whether it occurred on a particular shape that was drawn on the canvas.

ADVANCED RECIPE:
Animating a Vertical Bar Chart
In this last recipe of the chapter, you will take the tools of canvas along with some
effects and transformations to create a vertical bar chart from a set of sample JSON data.
When the chart loads, the vertical bars will grow to their defined values based on some
animation settings that have been defined such as the speed and distance to grow each
column. Figure 6.10 shows the output with sample data after the animation of the bars
has completed. To create this recipe, follow these steps and the code in Listing 6.15:

1. Create the page in Listing 6.15 with the style and body tags for the canvas,
which has the id of graph.

2. Add the global variable definitions including the chartData JSON object,
initGraph function, and window.addEventListener event handler.

 3. Add the initSettings function, which sets all the properties of the graph
including the number of bars and size of the bars.

 4. Add the drawAxis function, which will add the x- and y-axis lines, the data
marks on the axis, and the titles.

 5. Add the growBars function, which is the function to animate the growth of the
vertical bars to their proper height.

 6. Add the drawBar helper function, which performs the actual drawing of the bar
on the canvas.

Figure 6.9 Slice frames of the sprite image as they are displayed with
each cycle

ptg999

Chapter 6 Drawing with Canvas156

Listing 6.16 Creating an Animated Vertical Bar Chart

<!DOCTYPE html>

<html>

<head>

<meta charset="UTF-8" />

<title>6.16 Growing Bar Chart</title>

<style>

#graph {

 /* outline our canvas */

 border:1px solid #03F;

}

</style>

<script>

// Canvas and drawing context variables

var canvas;

var context;

// Chart settings

var chartMargin;

var chartAxisSpace;

var chartWidth;

var chartHeight;

// bar variables

var numBars = 0; // total number of bars

var barMargin = 20; // margin between bars

Figure 6.10 The completed vertical bar chart with sample data

ptg999

Advanced Recipe: Animating a Vertical Bar Chart 157

var barWidth = 0; // bar width

var maxValue = 0; // maximum data value for the bars

// number of y-axis labels

var numYLabels;

// bar animation variables

var idxStep;

var numSteps;

var growSpeed;

// Chart JSON sample data

var chartData = {'bars':[

 {'title':'Year 1','value':'7'},

 {'title':'Year 2','value':'12'},

 {'title':'Year 3','value':'20'},

 {'title':'Year 4','value':'33'},

 {'title':'Year 5','value':'55'},

 {'title':'Year 6','value':'93'},

 {'title':'Year 7','value':'156'}

]}

// initialize the board width and height

function initGraph() {

 // get reference to canvas and drawing context

 canvas = document.getElementById('graph');

 context = canvas.getContext('2d');

 initSettings(); // initialize the chart settings

 drawAxis(); // draw the chart axis and labels

 growBars(); // animate the bars into the chart

}

function initSettings() {

 // set our chart settings

 chartMargin = 20; // margin around entire canvas

 chartAxisSpace = 50; // area for the x- and y-axes

 // set the chart drawing area

 chartHeight = canvas.height-chartAxisSpace-2*chartMargin;

 chartWidth = canvas.width-chartAxisSpace-2*chartMargin;

 // set the number of labels to use for the y-axis

 numYLabels = 8;

 // set the number of bars based on the chartData

 numBars = chartData.bars.length;

ptg999

Chapter 6 Drawing with Canvas158

 // find our max data value to scale the graph

 for (var i=0; i < numBars; i++) {

 if (chartData.bars[i].value > maxValue) {

 maxValue = parseInt(chartData.bars[i].value);

 }

 }

 // determine the width of each bar

 barWidth = (chartWidth / numBars)-barMargin;

 // initialize animation variables

 idxStep = 0;

 numSteps = 100;

 growSpeed = 6;

}

function drawAxis() {

 // Set line width for the axis lines

 context.lineWidth = 2;

 // draw y-axis - from lower left to upper left

 context.moveTo(chartMargin+chartAxisSpace,chartHeight+chartMargin);

 context.lineTo(chartMargin+chartAxisSpace, chartMargin);

 context.stroke();

 // draw X axis - from lower left to lower right

 context.moveTo(chartMargin+chartAxisSpace, chartMargin+chartHeight);

 context.lineTo(chartMargin+chartAxisSpace+chartWidth, chartMargin+chartHeight);

 context.stroke();

 // Set the line width back to 1 pixel

 context.lineWidth = 1;

 // Add data marks to the y-axis

 var markerAmount = parseInt(maxValue / numYLabels);

 context.textAlign = 'right';

 context.fillStyle = '#000';

 // Loop through and add the markers to the y-axis

 for (var i=0; i <= numYLabels; i++) {

 // Determine the label and X and Y points

 markerLabel = i*markerAmount;

 markerXPos = chartMargin + chartAxisSpace - 5;

 markerYPos = chartMargin + (chartHeight –

➥ ((i*markerAmount*chartHeight)/maxValue));

 // Add the text marker at the positions determined

 context.fillText(markerLabel, markerXPos, markerYPos, chartAxisSpace);

 }

ptg999

Advanced Recipe: Animating a Vertical Bar Chart 159

 // Add labels for each bar based on the chart data

 context.textAlign = 'center';

 // loop through each bar and add the title

 for (var i=0; i<numBars; i++) {

 // determine the X and Y positions for the marker

 markerXPos = chartMargin+chartAxisSpace + barMargin + (i *

➥ (barWidth+barMargin)) + (.5*barWidth);

 markerYPos = chartMargin+chartHeight + 10;

 // Add the text under the bottom of the bar

 context.fillText(chartData.bars[i].title, markerXPos, markerYPos, barWidth);

 }

// Add y-axis title

 // Save the present context

 context.save();

 // Move the 0,0 point to the y-axis title point

 context.translate(chartMargin+10,chartHeight/2);

 // Rotate the current drawing context counter-clockwise 90 degrees

 context.rotate(Math.PI*-90 / 180);

 // Add our text title

 context.fillText('Sales (in 000s)',0,0);

 // Restore the context drawing orientation

 context.restore();

 // Add X Axis Title

 context.fillText('Year

➥Out',chartMargin+chartAxisSpace+(chartWidth/2),chartMargin+chartHeight

➥+40);

}

// Animation function to grow the bars vertically

// Called on a timeout based on number of steps

function growBars() {

 // Declare our bar x,y, and h

 // barWidth is predetermined above

 var barStartX = 0;

 var barStartY = 0;

 var barHeight = 0;

 // bar value variable from the data set

 var barValue = 0;

 // Loop through the bars and draw each based on step

 for (var i=0; i < numBars; i++) {

ptg999

Chapter 6 Drawing with Canvas160

 // get the bar value

 barValue = parseInt(chartData.bars[i].value);

 // calculate the bar height, starting x and y points

 barHeight = (barValue * chartHeight / maxValue) / numSteps * idxStep;

 barStartX = chartMargin + chartAxisSpace + (i * (barWidth + barMargin)) +

➥barMargin;

 barStartY = chartMargin + (chartHeight-barHeight);

 // call the helper function to draw the bar

 drawBar(barStartX, barStartY, barWidth, barHeight);

 }

 // Grow the bars more if they have not finished growing

 if (idxStep<numSteps) {

 idxStep++;

setTimeout('growBars()',growSpeed);

 }

}

// helper function to draw a bar based on dimensions passed

//could pass in context along with other params to customize

function drawBar(barX, barY, barW, barH) {

 // Create rectangle with fill

 context.fillStyle = '#00c';

 context.fillRect(barX, barY, barW, barH);

 // Add shadow to bar

 context.shadowOffsetX = 3;

 context.shadowOffsetY = -3;

 context.shadowBlur = 3;

 context.shadowColor = 'rgba(200, 200, 200, .3)';

 // Add line border on the bar

 context.strokeStyle = '#000';

 context.lineWidth = 1;

 context.strokeRect(barX, barY, barW, barH);

}

// on page load initialize the bar chart

window.addEventListener('load',initGraph,false);

</script>

</head>

<body>

 <h1>Growing Bar Chart</h1>

 <canvas id="graph" width="600" height="400">

ptg999

Advanced Recipe: Animating a Vertical Bar Chart 161

 This browser does not support the canvas element.

 </canvas>

</body>

</html>

When the page is loaded, the initGraph function will be called, which will in
turn call the initSettings function, which will set all the settings of the graph.
Next, the initGraph will call the drawAxis method. The drawAxis function will
draw two lines for the x-axis and y-axis. Then the function will add the data marks to
the y-axis based on the number of marking you set in the initialization. For the x-axis,
you use the title property of the JSON chart data for each bar. Notice that you align
the text for each bar on the center of the bar. Lastly, the function adds the y-axis title,
which is rotated 90 degrees counterclockwise, and the x-axis.

Next, the initGraph function calls the growBars function. The growBars func-
tion is the heart of the simple animation and increments the animation step to deter-
mine on a percentage level how much to grow each bar based on the end bar value
from the chartData. In this manner, the function grows each bar proportionally each
time the growBars function executes. After calculating the new dimensions for each
bar, the growBars function will call the helper function drawBar with the bar dimen-
sions to actually draw the bar on the canvas. Once the growBars function has looped
through all the bars of the graph, the function then checks to see whether this step was
the last step in the animation. If there are more steps, then the function sets a timeout
to call the growBars function again after incrementing the step index. Figure 6.11
shows how the bar chart grows through this animation.

To change the speed or growth rate of the bars, all you need to do is change the
numSteps and growSpeed variables in the initSettings function.

Tip
Creating animated and even interactive charts with the HTML5 canvas is quite simple, as
you saw in this last recipe. If you want to see the endless possibilities of using the HTML5
canvas for creating charts ranging from basic line graphs to complicated rose charts, you
will want to check out the RGraph JavaScript and HTML5 canvas chart library at www.
rgraph.net. The developers of the library have performed the heavy lifting, and as long as
you follow the license agreement, you can incorporate it into your own projects if desired.
In either case, the library demonstrates the potential of using the canvas with JavaScript.

Figure 6.11 Growth of the bar chart columns

www.rgraph.net
www.rgraph.net

ptg999

Chapter 6 Drawing with Canvas162

Summary
In this chapter, you learned about the Canvas API. The Canvas API has a tremendous
amount to offer for drawing capabilities above and beyond what has been described.
However, with these basics, you now have the tools to explore more advanced meth-
ods and topics of the Canvas API. We encourage you to push its limits and let your
artistic creativity f low.

ptg999

7
Embedding Video with

HTML5

Unless you have been living under a rock for the past five years or so, we are sure
you have used sites like YouTube and Vimeo, in other words, sites with video embed-
ded on the page. Although those sites are the primary ones for video sharing, we have
been putting videos online in some way or another for the best part of ten years. The
problem has been that there is no standard for video presentation, so we have had to
use plug-ins such as Flash or use the object element to play QuickTime files.

You may think there is no problem because these work most of the time. The
issue is that you should not have to rely on third-party plug-ins to deliver video. In
HTML5, you now have a new and standard way to natively render video in a web
page. You can use the video element.

In this chapter, you will learn about the basics of the video element, before looking
at some codecs and, as usual, some cross-browser issues. You will also learn about how
you can improve video accessibility with subtitles and captions, and finally you will
use the new HTML5 media API to create your own video player and controls.

BEGINNER RECIPE:
Including Video with the video Element
For a very basic example of how to put a video on a page using the new video ele-
ment, take a look at the code in Listing 7.1.

Listing 7.1 Basic Use of the video Element

<!DOCTYPE html>

<html lang="en">

<head>

<meta charset="utf-8">

ptg999

Chapter 7 Embedding Video with HTML5164

<title>7_1 Basic Use of the Video Element</title>

</head>

<body>

 <video src="mymovie.mp4"></video>

 <!--

 video is a self-closing element so can also be used as:

 <video src="mymovie.mp4" />

 -->

</body>

</html>

Easy, isn’t it? At its basic level, that is all you need to get the video element work-
ing with HTML5. Sadly, though, in reality it is not quite as straightforward as that.
But now that we have whetted your appetite, there are a few issues you need to know
about before you start using video.

Browser and Device Support
Table 7.1 lists browser compatibility with the video element. It assumes the latest ver-
sion of the browser at the time of writing and every release of the browser since then.

Table 7.1 Support for the video Element

Android 2.1+

Chrome 10.0+

Firefox 3.6+

Internet Explorer 9.0+

iOS Safari 3.2+

Opera 10.6+

Safari 4.0+

So, on one hand, there is very good support for the video element across current
browsers, but on the other hand, Internet Explorer versions 6, 7, and 8 do not support
the video element natively, and they have a massive market share between them. Later
in the chapter, we will show how to provide fallback content for browsers and devices
that do not support the video element yet. But before we get to that, you need get
your head around the different video types and codecs.

ptg999

165Beginner Recipe: Including Video with the video Element

HTML5 and Video Codecs
HTML5 video has met with great success, particularly with big video sites such
as YouTube and Vimeo, in beginning to create HTML5 video content. However,
HTML5 video has a big challenge to overcome: the issue of codecs.

If you have ever uploaded videos to YouTube, you might not have taken notice
what file format you uploaded because YouTube accepts pretty much any video file
format and converts the video for you. But in HTML5, you have, at the moment,
three main codecs and video formats to consider (see Table 7.2).

In the early days of the HTML5 specification, it was intended that all browsers
should support the Ogg Theora codec (Ogg Theora is the video codec; Ogg Vorbis is
the audio codec). However, Apple and Nokia had issues with this, and so the codecs
were removed from the specification, never to return and with no other codec sugges-
tion in place.

Currently, Chrome and Firefox support Ogg Theora natively in the browser. Safari
has native support for the H.264 codec only at the moment. The H.264 codec is also
supported in Chrome and on the iPhone, the iPad, and Android (2.3) devices.

In May 2010, Google announced the development of another multimedia format,
the webM (also known as VP8) project. This is an open source codec and was quickly
supported by the Chrome, Firefox, and Opera browsers.

Internet Explorer 9 supports the H.264 codec natively and will support webM only
via a separately installed codec, which is not ideal.

Why Should You Care About Codecs?
The codec issues are going to be hanging around for some time to come. The biggest
issue is with the H.264 codec. H.264, also known as MPEG-4, requires that vendors
and users of the product, which is you if you host it on your site, are required to pay
patent licensing royalties. In August 2010, it was announced that users would not be
charged for using H.264 videos, but this has been disputed, and it is fair to say that
things are not crystal clear when it comes to the licensing of this codec.

Ogg and webM, however, are both royalty-free, open sourced codecs and are con-
sidered to be the formats of the “open web.” Prior to January 2011, Chrome did have
support for H.264, but in January 2011 Google turned the video battle up a notch and

Table 7.2 Codecs and Browser Support

Codec Android Chrome Firefox
Internet
Explorer

iOS
Safari Opera Safari

H.264 2.3 13+ - 9+ 4+ - 5+

Ogg Theora - 13+ 5+ - - 11+ -

WebM - 13+ 5+ * - 11+ -

* Via a plug-in: http://webmproject.org/ie/

http://webmproject.org/ie/

ptg999

Chapter 7 Embedding Video with HTML5166

announced that support for the H.264 codec would be dropped and instead Google
would support the webM video codec. This book will not get into all the details of
this decision, but there are various theories about why Google made this decision. It is
worth mentioning that YouTube (owned by Google) will continue to convert videos
to H.264 format, but it might convert all videos to webM, and at this stage there is
no word what Android (also owned by Google) devices will do regarding the H.264
format. Mobile video is large and is only going to get bigger, so we strongly suggest
keeping an eye on this topic.

As you can tell, with so many browsers and devices and with such politics going
on, codecs are a big challenge. The effects of Google’s decision could be far-reaching,
but we do not really know how far yet. And we do not know how Internet Explorer 9
is going to handle all this, so there is a lot for you to think about and keep up-to-date
with.

Do not let these codec issues put you off, though, because there is still plenty you
can do with HTML5 video.

Tip
OK, so you have heard about the different formats, but how do you create them? Well, the
popular video software packages currently do not export to either Ogg or webM but will
export a H.264 file. The iPhone exports a .mov file, and most digital cameras will export
to .mov or .avi files. There is various software available to convert your videos, including
Firefogg, a Firefox extension that encodes Ogg video, or Handbrake for encoding H.264
video. But we suggest using MiroVideoConverter (http://mirovideoconverter.com), an
easy-to-use, and free, bit of software that converts to several different video types.

INTERMEDIATE RECIPE:
Enabling Video for All Browsers
As we mentioned in the first recipe of this chapter, the simplest use of the video ele-
ment is with the following markup:

<video src="mymovie.mp4"></video>

Because of browser and codec issues, you have to provide different formats of video
within the one video element, which is done using multiple source elements.

To get your video working in the latest versions of the key browsers, you need
to specify a file in .mp4 format and in .webm or .ogv format, which is what you are
doing in Listing 7.2.

Listing 7.2 Using the Source Element to Display Different Video Formats

<video width="640" height="480" controls>

 <source src="video.mp4" type="video/mp4" />

 <source src="video.webm" type="video/webm" />

 <source src="video.ogv" type="video/ogg" />

</video>

http://mirovideoconverter.com

ptg999

Intermediate Recipe: Enabling Video for All Browsers 167

Note
In an ideal world, browsers and devices would just pick the first file they could play. While
this typically works on the main desktop and laptop browsers, there is a bug on the iPad
browser that stops the browser from loading anything but the first source video. There-
fore, the .mp4 file must be first, as in Listing 7.2.

The video element has a height and width value, though you can use CSS to set
a height and width. The element also has a controls attribute that displays the default
video controls. In Listing 7.2, inside the video element are three source elements,
and each source element links to a single video. There is a type attribute for each
source because this attribute tells the browser what type of file is being provided. If
the browser does not recognize the type, then it will not download the file, which is
important because it will save bandwidth, and the page will load faster. The browser
will pick the first file it is able to play.

Listing 7.2 provides video in Chrome, Firefox, Internet Explorer 9, and Safari and
on an iPad, an iPhone, and the latest Android (2.3) devices, all without the need for a
third-party component, which is awesome. But what can you give to users using Inter-
net Explorer 6, 7, and 8, which do not support at this time the video tag?

Adding Fallback Content for Older Browsers
After the source elements, you can put in content that alerts users when their browsers
cannot handle the video element. You put that content inside the video element, and
you have various options as to what message you provide. You could offer some plain
message, as shown here:

<p>Sorry, your browser is really old. Please upgrade.</p>

Or you could be more helpful and offer a direct download of the video:

Download our movie in MP4 format
Download our movie in WebM format
Download our movie in Ogg format

Providing a direct download option is a good idea anyway and something you
should probably offer to all users, regardless of their devices, so we will put that code
in our final code solution.

Mainly, we are aiming this fallback content at users who are surfing with old ver-
sions of Internet Explorer. Because Flash has a massive market share and is installed
on a very high percentage of machines, you can relatively safely offer Flash content as
a fallback. There are a couple of possible options for this: You can upload the video
to YouTube, or you can use your own Flash Player. Going with the YouTube option
makes things very easy while it sorts out the hosting issues. YouTube also provides
you with the HTML code you need to embed the movie in your page, as shown in
Listing 7.3.

ptg999

Chapter 7 Embedding Video with HTML5168

Listing 7.3 YouTube Video Embed Code

<object width="480" height="385">

 <param name="movie" value="http://www.youtube.com/v/VIDEO_ID"></param>

 <param name="allowFullScreen" value="true"></param>

 <param name="allowscriptaccess" value="always"></param>

 <embed src="http://www.youtube.com/v/VIDEO_ID" type="application/x-shockwave-

➥flash" allowscriptaccess="always" allowfullscreen="true" width="480"

➥height="385">

 </embed>

</object>

So, putting all this together gives you the code in Listing 7.4, which provides video
in all current main browsers, either via the native video element or using a Flash
fallback.

Listing 7.4 Cross-Browser Video Including Fallback

<!DOCTYPE html>

<html lang="en">

<head>

<meta charset="utf-8">

<title>7_4 Cross-Browser Video Including Fallback</title>

</head>

<body>

<video width="640" height="480" controls>

 <!-- video for Safari and IE9. MP4 must be first for iPad -->

 <source src="cablecar.mp4" type='video/mp4; codecs="avc1.42E01E, mp4a.40.2"' />

 <!-- video for Chrome, Firefox and Opera -->

 <source src="cablecar.webm" type="video/webm" />

 <source src="cablecar.ogv" type='video/ogg; codecs="theora, vorbis"' />

<!-- fallback for older, less-capable browsers -->

 <object width="480" height="385">

 <param name="movie" value="http://www.youtube.com/v/ZR-H-FQDenw"></param>

 <param name="allowFullScreen" value="true"></param>

 <param name="allowscriptaccess" value="always"></param>

 <embed src="http://www.youtube.com/v/ZR-H-FQDenw" type="application/x-

➥shockwave-flash" allowscriptaccess="always" allowfullscreen="true"

➥width="480" height="385">

 </embed>

 </object>

</video>

</body>

</html>

ptg999

Intermediate Recipe: Enabling Video for All Browsers 169

You do not have to choose YouTube as a video host; you can host the file yourself
and use your own Flash movie to play the video. You could make one yourself or use
one of the many available on the Internet, such as the popular and customizable JW
Player, as shown in Listing 7.5.

Listing 7.5 Non-YouTube Fallback Video

<video width="640" height="480" controls> <!-- video for Safari and IE9. MP4

➥must be first for iPad -->

 <source src="video.mp4" type="video/mp4" />

 <!-- video for Chrome, Firefox and Opera -->

 <source src="video.webm" type="video/webm" />

 <source src="video.ogv" type="video/ogg" />

 <!-- JW Player fallback for older, less-capable browsers -->

<script type='text/javascript' src='swfobject.js'></script>

 <div id='mediaplayer'></div>

 <script type="text/javascript">

 var so = new SWFObject('player.swf','playerID','480','270','9');

 so.addParam('allowfullscreen','true');

 so.addParam('allowscriptaccess','always');

 so.addVariable('file', 'video.mp4');

 so.write('mediaplayer');

 </script>

</video>

Tip
One issue that may crop up in your HTML5 video development is the issue of MIME
types. When developing examples for this book, we ran into an issue getting the .ogv and
.webm files to play in Firefox when uploaded to a web server. These videos played fine
on our local machine, and when put on a web server (Apache), they ran fine in Opera and
Chrome; however, the .ogv and .webm files did not play in Firefox. This is because Firefox
needs to know the server supports the specific MIME type. Not all servers support these
new video types yet, and to support them, you must make the appropriate configuration
changes such as adding the following lines to your .htaccess or httpd.conf file, depending
on your server platform:

AddType video/mp4 .mp4

AddType video/ogg .ogv

AddType video/webm .webm

So, now you have the full code for offering video to all the main browsers and
devices, but several additional new attributes are available.

ptg999

Chapter 7 Embedding Video with HTML5170

New Video Attributes
Several new attributes are available for the video element. In the earlier examples, you
used the width and height attributes, which are not required, but we recommend set-
ting these values because it helps with loading time. Setting these will stretch or skew
your video because the video element puts the video in the middle of the box, so if
you set the height and width to be 200 by 1000, then the browser will shrink down
the video accordingly but keep it in proportion.

The src Attribute
Listing 7.1 at the start of the chapter shows a very basic example of the video element,
and it contains a src attribute. But using src means you are limited to one video file,
and because of the codec and browser issues, this makes it pretty useless for the time
being. Instead of using src, consider choosing the source element within video, as
used in Listing 7.4, so you can then make the video work across the browsers.

The poster Attribute
The poster attribute is used to display a single image in place of the video while the
video is downloading or just waiting to be started. The poster image is intended to
give the viewer an idea of what the video is like or what it is about. The image can be
a .gif, .jpg, or .png file (although transparent PNGs will not overlay the video).

If there is no poster, then the browser just shows the first frame of the video,
which may be suitable for your needs. If not, here is how to set the poster image, and
Figure 7.1 shows you how it looks on page load:

<video width="640" height="480" poster="poster.gif">

Figure 7.1 A poster image displayed in Google Chrome

ptg999

Intermediate Recipe: Enabling Video for All Browsers 171

A possible development to keep an eye on is whether you should provide alt text
for the poster image. Nothing is set in stone yet, but there are some accessibility con-
cerns, so there may be changes ahead for the poster attribute.

The preload Attribute
If you have a relatively large video on the page or you are confident the user is going
to want to watch the video you have embedded (such as a YouTube page), then you
can get the browser to start downloading the video when the page loads. There are
three possible values for the preload attribute:

preload="auto"

auto, or you can just put preload, tells the browser to download the video when
the page loads.

preload="none"

preload="none" tells the browsers not to download the video. Only when the
user starts the video will it start to download. At the moment, though, only Firefox 4
seems to support this.

preload="metadata"

The metadata attribute retrieves information (metadata) about the video, including
video duration, first frame, video dimensions, and track list. The browser should not
download the video itself until the user starts it.

The audio Attribute (Not Currently Supported)
Although browsers do not currently support it, the audio attribute exists so you can
control the default volume of the video. Currently, it has only one specified value:
muted. When used, it looks like this:

<video height="300" width="300" audio="muted">

…

 </video>

The idea is that if this attribute was used, then the video would be muted by
default, and the user would have to turn the volume up. There is a possibility in
the future that you will be able to put other values there, such as audio="2" or
audio="low", to control the default audio volume. In a later recipe, you will see how
you can change the volume through JavaScript.

ptg999

Chapter 7 Embedding Video with HTML5172

The loop Attribute
If the video has a loop attribute, then when the video finishes playing, it will loop
back to the start and play again. It is a Boolean attribute, so it is either on or off. All
the main browsers support this, except, strangely, the current beta versions of Firefox 4.

The autoplay Attribute
A Boolean attribute, autoplay will force the browser to start downloading and
playing the video when the page loads. For example, YouTube does this, and video
advertisements often start playing automatically. There are accessibility and usability
concerns about videos playing automatically, not to mention how annoying it can be,
but the reason this is in the specification is because you now have a standard way of
doing it if you really needed. You do not have to resort to various JavaScript hacks to
achieve the effect. Note that there are already various browser extensions available to
download that disable autoplay.

Note
The autoplay and preload attributes have been deliberately disabled in the iOS. This
is because of potential costs and loading speed issues to the user. No data is down-
loaded until the user manually chooses to start the video. There are some techniques,
well, hacks, to get around this. But because they are unofficial methods, they should not
be used and are not covered in this book.

The controls Attribute
The controls attribute adds default browser-specific controls to your video, which
include a Play/Pause button, seek bar, duration/time-played information, and volume
controls.

The attribute is a Boolean attribute, so you either include the attribute or not. The
following is an example:

<video height="300" width="300" controls>

…

 </video>

If it is not included, then the first frame of the video or the poster will display.
The user will have to right-click the video and choose from the list of options. So, it
is better to provide controls with the controls attribute. You can use your own con-
trols if you want, and we will talk about that later in this chapter. Figure 7.2 shows the
default controls in the major browsers.

Note
Strangely, in Firefox, if you do not have JavaScript enabled, then the controls do not
appear. Other browsers, correctly, have the controls without JavaScript.

ptg999

Intermediate Recipe: Creating a Video with Subtitles and Captions 173

INTERMEDIATE RECIPE:
Creating a Video with Subtitles and Captions
You can do some things to increase the accessibility of the video. For example, you can
enable subtitles, captions, and descriptions to help those who are deaf or hard of hearing.

There is a track element available with which you can use different types of files.
Here it is in its basic use:

<track src="subtitles.vtt" kind="subtitles" srclang="en" label="English">

There are different values you can use with the kind attribute:
n subtitles: The transcription or translation of the dialogue
n captions: Similar to subtitles, but also include sound effects and other audio

information
n descriptions: Intended to be a separate audio file that describes the video
n chapters: Intended to help the user navigate through the video
n metadata: Information and content about the video, which isn’t intended to be

displayed to the viewer

The track element is a very recent addition to the HTML5 specification, and the
standard for the subtitles/captions was originally WebSRT but is now Web Video
Text Track (WebVTT). Because this technology is new and it is such a massive field
of work, there are no working examples or browser implementations of this yet. How-
ever, you can display subtitles with JavaScript and using a WebVTT (.vtt) file. Listing
7.6 is a basic example with some sample data from a WebVTT file (based on the cur-
rent specification). You can create and edit .vtt files with a basic text editor such as
Notepad. The .vtt file contains a step, then a time period for it to be displayed, and
then the content that should be displayed.

Listing 7.6 Sample .vtt File Contents

0

00:00:0,000 --> 00:00:2,000

This is the first bit of the subtitles

Figure 7.2 Default controls in Chrome (top), Firefox, Internet Explorer 9,
Opera, and Safari

ptg999

Chapter 7 Embedding Video with HTML5174

1

00:00:3,000 --> 00:00:5,000

This is the second bit

2

00:00:7,000 --> 00:00:15,000

And as you might have guessed, this is the third bit of the subtitles

Because no browser natively supports the track element yet, you need a JavaScript
plug-in to do the work for you. In Listing 7.7, you are using a jQuery plug-in called
VideoSub, available from http://github.com/icelab/jquery-videosub, which is based
on an original MooTools script by Thomas Sturm (http://storiesinf light.com/js_vid-
eosub). The plug-in wraps the video in a div and then adds an additional div that
contains the subtitles. In this example, you hide the subtitles by default and add a link
to toggle the subtitle display. Figure 7.3 shows an example of subtitles in action. The
complete code is in Listing 7.7.

Figure 7.3 Subtitles displayed on a video

Listing 7.7 Video Subtitles

<!DOCTYPE html>

<html lang="en">

<head>

<meta charset="utf-8">

<title>7_7 Video Subtitles</title>

<script

➥src="http://ajax.googleapis.com/ajax/libs/jquery/1.4.4/jquery.min.js">

➥</script>

<script src="jquery.videosub.js"></script>

<script>

$(function(){

 $('video').videoSub({

 containerClass : 'videosub-container',

 barClass : 'videosub-bar',

http://github.com/icelab/jquery-videosub
http://storiesinflight.com/js_videosub
http://storiesinflight.com/js_videosub

ptg999

Intermediate Recipe: Creating a Video with Subtitles and Captions 175

 useBarDefaultStyle : false

 });

 $('.videosub-container').append('<a title="show/hide video subtitles"

➥id="subtitlestoggle" href="#">Show subtitles');

 $('.videosub-bar').hide();

 $('#subtitlestoggle').click(function() {

 $(this).text($(this).text() == 'Show subtitles' ? 'Hide subtitles' : 'Show

➥subtitles');

 $('.videosub-bar').toggle();

 });

});

</script>

<style>

body {

 font-family: arial, Arial, Helvetica, sans-serif;

}

.videosub-container {

 width: 640px;

}

.videosub-bar {

 background: black;

 bottom: 40px;

 color: yellow;

 font-size: 1.3em;

 font-weight: bold;

 padding: 10px 20px;

 position: absolute;

 text-align: center;

 width: 560px;

}

a#subtitlestoggle {

 background: black;

 color: yellow;

 display: block;

 font-weight: bold;

 padding: 10px;

 position: absolute;

 right: 0;

 text-decoration: none;

 top: 0;

}

a#subtitlestoggle:hover {

 text-decoration: underline;

}

</style>

ptg999

Chapter 7 Embedding Video with HTML5176

</head>

<body>

<video width="640" height="480" controls>

 <!-- video for Safari and IE9. MP4 must be first for iPad -->

 <source src="video.mp4" type="video/mp4" />

 <!-- video for Chrome, Firefox and Opera -->

 <source src="video.webm" type="video/webm" />

 <source src="video.ogv" type="video/ogg" />

 <track src="subtitles.vtt" kind="subtitles" srclang="en" label="English">

 <!-- fallback for rubbish browsers (youTube, etc -->

</video>

<p>Download the video: MP4 file, 3MB; <a

➥href="video.webm">webM file, 3MB; Ogg file,

➥3MB</p>

<p>Download the subtitles: VTT file, 1 KB; <a

➥href="subtitles.txt">plain-text file, 1 KB</p>

</body>

</html>

Other Subtitle Styling Options
Listings 7.6 and 7.7 showed a basic example of WebVTT, the jQuery plug-in, and
some basic CSS to display and style the subtitles. There are some alternatives that will
one day be supported in browsers. First, you can add bold, italic, or underlined styles
to subtitles using inline b, i, and u tags:

1

00:00:0,000 --> 00:00:2,000

This is the <i>first bit</i> of the <u>subtitles</u>

You can also apply a CSS class if you wanted to do something other than bold,
italic, or underline. For example, you could use a custom font. To do this, you add an
inline c tag with a CSS class:

1

00:00:0,000 --> 00:00:2,000

<c.myclassname>This is</c> the first bit of the subtitles

There are more options such as text position and text size. For more information on
this developing standard, check out http://delphiki.com/webvtt.

http://delphiki.com/webvtt

ptg999

The Media API 177

The Media API
HTML5 provides a vast and exciting API for multimedia. Using the API and Java-
Script, you can manipulate the video in your web pages. The following is a list of the
available API events:

abort loadstart

canplay pause

canplaythrough play

canshowcurrentframe playing

dataunavailable progress

durationchange ratechange

emptied seeked

empty seeking

ended suspend

error timeupdate

loadeddata volumechange

loadedmetadata waiting

Many media properties are also available:
audioTracks muted

autoplay networkState

buffered paused

controls preload

controller played

currentSrc playbackRate

currentTime readyState

defaultMuted seekable

defaultPlaybackRate seeking

duration startOffsetTime

ended src

error textTracks

initialTime videoTracks

loop volume

Not all of these events and properties are available for use yet, but most of them
are, including the important ones that allow you to create your own video player con-
trols. We will not explain all the API options, just the ones needed to create your own
player, but if you are interested in learning more about the API, we recommend the
API demonstration at http://w3.org/2010/05/video/mediaevents.html and the very
detailed specification at http://w3.org/TR/html5/video.html#mediaevents.

http://w3.org/2010/05/video/mediaevents.html
http://w3.org/TR/html5/video.html#mediaevents

ptg999

Chapter 7 Embedding Video with HTML5178

ADVANCED RECIPE:
Making Your Own Custom Controls
HTML5 provides a JavaScript media API for the video and audio elements. There
are lots of methods and events, as shown in the previous section, for you to plug in so
you can create our own video player and custom controls.

This recipe takes the video code from Listing 7.4 and adds a Play/Pause button, a
seek bar, volume controls, time display, and fast-forward and rewind buttons. As we
will explain later, there are some browser quirks, so the example created in this recipe
is best viewed in Opera or Chrome, as shown in Figure 7.4.

The essential features you need for your own controls are the Play button, but you
can create much more than that with JavaScript and the media API, as you can do
using the code from Listing 7.8.

 1. Wrap a <div id="video-wrapper"> around the video element, and add
<div id="controls">, which contains the buttons, sliders, and other things
you need for the controls display. We have included this HTML from the start in
this recipe so it is easier to read, but really you should avoid having such controls
in the main markup and create them on-the-f ly with JavaScript, so only users
with JavaScript get these controls.

 2. Declare the video element as an object so it can be referenced, and then remove
the default browser controls by deleting the controls attribute that has been
specified for non-JavaScript users. The Play button is disabled until the video is
ready to be played.

3. For better performance and cross-browser friendliness, you wait until the video
is ready and then can collect information such as its duration. And when the
video is ready to play, the Play button is enabled.

 4. Add functions and listeners for the buttons, other controls, and displays.

Figure 7.4 Video with custom controls, viewed in Opera 11

ptg999

Advanced Recipe: Making Your Own Custom Controls 179

Listing 7.8 Custom Video Controls

<!DOCTYPE html>

<html lang="en">

<head>

<meta charset="utf-8">

<title>7_8 Custom Video Controls</title>

<style>

body {

 font: bold .8em Arial, Helvetica, sans-serif;

}

video {

 display: block;

}

#video-wrapper {

 -moz-box-shadow: 0 0 20px rgba(0, 0, 0, .8);

 -webkit-box-shadow: 0 0 20px rgba(0, 0, 0, .8);

 box-shadow: 0 0 20px rgba(0, 0, 0, .8);

 display: block;

 margin: 20px auto;

 overflow: hidden;

 position: relative;

 width: 568px;

}

#controls {

 background: rgba(0, 0, 0, .3);

 bottom: 0;

 height: 30px;

 left: 0;

 padding: 35px 10px 10px;

 position: absolute;

 width: 548px;

 z-index: 1;

}

button {

 background: rgba(255, 255, 255, .7);

 border: none; -moz-border-radius: 15px;

 -webkit-border-radius: 15px;

 border-radius: 15px;

 cursor: pointer;

 padding: 5px

}

#play {

 width: 70px;

}

#time, #duration {

 color: #fff;

 position: absolute;

ptg999

Chapter 7 Embedding Video with HTML5180

 top: 0;

}

#time {

 left: 10px;

}

#duration {

 right: 10px;

 text-align: right

}

input[type="range"] {

 position: absolute;

}

#seekbar {

 top: 8px;

 width: 465px;

 left: 50px;

}

#volume {

 width: 50px;

}

#mute {

 float: right;

 width: 60px;

}

label[for="volume"] {

 color: #fff;

 float: right;

 margin: 5px 55px 0 15px;

}

button.speed {

 font-size: .8em

}

</style>

<script>

var video = null;

var seekbar = null;

var playBtn = null;

// initialize the page

function init() {

 // get video container

 video = document.getElementsByTagName('video')[0];

 // reference the range inputs

 seekbar = document.getElementById('seekbar');

 volume = document.getElementById('volume');

ptg999

Advanced Recipe: Making Your Own Custom Controls 181

 // set bar range change handlers

 seekbar.addEventListener('change',seek,false);

 volume.addEventListener('change',changeVolume,false);

 // reference the buttons

 playBtn = document.getElementById('play');

 muteBtn = document.getElementById('mute');

 rewindBtn = document.getElementById('rewind');

 ffBtn = document.getElementById('ff');

 fullscreenBtn = document.getElementById('fullscreen');

 // set button click handlers

 playBtn.addEventListener('click',playPause,false);

 muteBtn.addEventListener('click',mute,false);

 rewindBtn.addEventListener('click',rewind,false);

 ffBtn.addEventListener('click',fastforward,false);

 fullscreenBtn.addEventListener('click',fullscreen,false);

 // remove default browser controls

 video.removeAttribute('controls');

 // initialize the video player information

 if (video.readyState > 0) {

 var durationText = document.getElementById('duration');

 durationText.innerHTML = (formatTime(video.duration));

 var durationRounded = Math.round(video.duration);

 seekbar.setAttribute('max', durationRounded);

 playBtn.disabled = false;

 seekbar.value = 0;

 }

 // listener event while the video is playing

 video.addEventListener('timeupdate', function() {

 var currentTime = document.getElementById('time');

 currentTime.innerHTML = formatTime(video.currentTime);

seekbar.value = video.currentTime;

 }, false);

 video.addEventListener('ratechange', function() {

 //you could alternatively display the current playback speed

 //console.log(video.playbackRate);

 }, false);

 video.addEventListener('play', function() {

 playBtn.innerHTML = 'Pause';

 }, false);

ptg999

Chapter 7 Embedding Video with HTML5182

 video.addEventListener('pause', function() {

 playBtn.innerHTML = 'Play';

 }, false);

 //detects when the video has finished

 video.addEventListener('ended', function(){

 playBtn.innerHTML = 'Play again';

 }, false);

}

function playPause() {

 if (ifPlaying()) {

 video.pause();

 playBtn.innerHTML = 'Play';

 } else {

 video.play();

 playBtn.innerHTML = 'Pause';

 }

};

//toggle the mute status of the video

function mute(){

 var muteBtn = document.getElementById('mute');

 if (!video.muted){

 video.muted = true;

 muteBtn.innerHTML = 'Un-mute';

 }

 else {

 video.muted = false;

 muteBtn.innerHTML = 'Mute';

 }

}

//change the volume

function changeVolume() {

video.volume = volume.value;

}

//seekbar controls

function seek(){

video.currentTime = seekbar.value;

}

//fast-forward the video

function fastforward() {

 video.playbackRate = video.playbackRate + 2;

}

ptg999

Advanced Recipe: Making Your Own Custom Controls 183

//rewind the video

function rewind() {

video.playbackRate = video.playbackRate - 2;

}

//go fullscreen (webkit only)

function fullscreen() {

 video.webkitEnterFullscreen()

}

//check if video is playing or not

function ifPlaying() {

 if(video.paused || video.ended) {

 return false;

 } else {

 return true;

 }

};

//format the time to something nice and readable

function formatTime(seconds) {

 seconds = Math.round(seconds);

 minutes = Math.floor(seconds / 60);

 minutes = (minutes >= 10) ? minutes : '0' + minutes;

 seconds = Math.floor(seconds % 60);

 seconds = (seconds >= 10) ? seconds : '0' + seconds;

 return minutes + ':' + seconds;

}

// initialize the page when loaded

window.addEventListener('load',init,false);

</script>

</head>

<body>

<div id="video-wrapper">

 <div id="controls">

 <button id="play">Play</button>

 <p id="time">0:00</p>

 <p id="duration">0:00</p>

 <label for="volume"> Vol:<input id="volume" name="volume" type="range"

➥min="0" max="1" step="0.1" required /></label>

 <button id="mute">Mute</button>

 <input id="seekbar" name="seekbar" type="range" min="0" max="1" step="0.1"

➥required />

 <button id="rewind" class="speed">Rewind</button>

 <button id="ff" class="speed">Fast-forward</button>

ptg999

Chapter 7 Embedding Video with HTML5184

 <button id="fullscreen">Fullscreen</button>

 </div>

 <video width="568" height="320" controls>

 <!-- video for Safari and IE9. MP4 must be first for iPad -->

 <source src="cablecar.mp4" type="video/mp4" />

 <!-- video for Chrome, Firefox and Opera -->

 <source src="cablecar.webm" type="video/webm" />

 <source src="cablecar.ogv" type="video/ogg" />

 </video>

</div>

</body>

</html>

First in the code is some CSS for some basic styles and the positioning of the but-
tons. We haven’t gone overboard with CSS here, but with CSS and the JavaScript API
you could create pretty much any video player layout you want.

Now, on to the JavaScript. First you need to associate variables to some of the ele-
ments: the video itself, the seek bar, and the Play button. For non-JavaScript users,
we have included the controls attribute on the video, so you remove that with your
JavaScript because you do not want the default controls to show.

After that comes an important detection. You need to wait for the browser to get
enough information about the video before you can start playing it. If you try to get
the video duration, some browsers will fail because they are still downloading parts of
the video. So, if you have a large video file, then you could be waiting a while before
the browser is ready to play it. In this recipe, you are detecting the readyState value.
readyState has five possible values:

n have_nothing (0)
n have_metadata (1)
n have_current_data (2)
n have_future_data (3)
n have_enough_data (4)

The value have_nothing means that the browser has no information about the
video, and the other values mean that the browser has various information about the
video including the duration, height and width, current position, and next frame.
So, in this recipe, you are looking for when the value of readyState is greater than
0, and when it is, you then detect the duration and update the duration value on the
screen. You also enable the Play button so the user can start the video. In this recipe,
you are only doing a couple of things when the video is ready, but this could be the

ptg999

Advanced Recipe: Making Your Own Custom Controls 185

point at which you create the controls on the video or show/hide a loading graphic or
maybe even show the video at all.

Alternatively, you could use the loadeddata event listener, which will fire when
the browser has enough information about the video to allow playback to start:

video.addEventListener("loadeddata", function(){//do stuff}, false);

Now you know the duration, so using video.duration, you get the total length of
the video clip, which you can then assign to the input[type="range"] seek bar, so it
has an endpoint. Then you put the start point of the slider to the start (zero seconds).

You use some addEventListener events to detect when the play time of the video
has updated (timeupdate), and when it has, you update the playback display and the
seek bar.

Even though you have removed the default video controls and you have your own
control buttons including Play and Mute, if the user right-clicks the video, depending
on the browser, they may have options there to play/pause, show controls, mute, save
the video, and more. You can’t remove or change these browser defaults, but you can
hook into these events as well. In this recipe, you have code that listens for a play or
pause, and when these happen, the button text is changed.

You also want to know when the video has ended so you can change the text of the
Play button. This event is useful because you could do several things when a video has
finished, such as start another video from a playlist. You detect the video has ended by
detecting the ended event using an event listener:

video.addEventListener("ended", function(){//do stuff}, false);

After the addEventListeners, you have various functions that you use for other
video functions, such as checking whether the video is playing; setting the vol-
ume (video.volume = volume.value); making the video play in full-screen mode
(video.webkitEnterFullscreen()), which works only in a WebKit browser); and
checking the playback rate (playbackRate). You also add playback functionality so
the user can control the position and direction of the video: There is a seek bar so the
user can jump to a place on the timeline (video.currentTime = seekbar.value), as
well as fast-forward and rewind buttons.

As you will have discovered, browsers have various quirks when dealing with cus-
tom controls:

n Currently, the only way to make the video full-screen is to use the
webkitEnterFullscreen function, and this currently works only in Safari. As
you can tell from the name, this is not yet a standard way of making videos full-
screen; in fact, there may not ever be one in the specification. However, browser
vendors know that this is something users want, so it is likely that there will be
nonstandard, browser-specific ways of doing this in the future. There are other
ways of making a video full-screen with a combination of JavaScript and CSS.
However, several browsers have a full-screen mode when you right-click the
video itself anyway.

ptg999

Chapter 7 Embedding Video with HTML5186

n Only Safari, Chrome, and Opera currently support <input type="range">,
and only Opera allows this element to have a transparent background, so it looks
a little ugly in Chrome, and in Safari it just is not visible. Firefox and IE9 default
to a text box, which shows the time updating within it.

n The fast-forward button does not work in Firefox, and it is very jerky in IE9.
The rewind button doesn’t work in any browser yet.

Because of such browser inconsistencies both in the display of controls and in how
they work with the API, you might want to consider using other controls. For exam-
ple, in Figure 7.5, the video controls are created with a jQuery slider. Several other
video players are available to download, such as those available from http://sublime-
video.net and http://videojs.com.

Summary
In this chapter, you learned about the various issues of the video elements such as
browser support, but the biggest issue is that of codec support, so it worth keeping an
eye on the development of the codec wars.

But aside from the codecs, you learned about ways to get videos natively playing
in all the current major browsers, without the need for a third-party plug-in such as
Flash. For older browsers that do not support the video element, you can fall back to a
link or to an embedded Flash file. You also created a video player with subtitles using
the latest standard of WebVTT files, though this is an emerging standard, so be sure to
keep abreast of any changes and practices.

Finally, we covered several components of the media API available for creating cus-
tom controls, which you can style with CSS.

Figure 7.5 Video with custom jQuery controls, viewed in Firefox 4

http://sublime-video.net
http://sublime-video.net
http://videojs.com

ptg999

8
Embedding Audio with

HTML5

Like the new video element, the new audio element allows you to embed an audio
file into the page without the need for an additional plug-in like Flash. No longer
having to rely on these third-party plug-ins, audio plays natively in modern web
browsers, including browsers on many mobile devices.

In this chapter, you will learn the basics of the audio element and then look at
ways to solve cross-browser issues. Then you will learn about the API available to see
how you can create your own audio player.

BEGINNER RECIPE:
Including Audio with the audio Element
For a basic example of how to put audio on a page using the new audio element, take
a look at the code in Listing 8.1. The controls attribute has been added; otherwise,
nothing would display on the user interface.

Listing 8.1 Basic Example of the audio Element

<!DOCTYPE html>

<html lang="en">

<head>

<meta charset="utf-8">

<title>8_1 Basic Audio Example</title>

</head>

<body>

 <audio src="music.mp3" controls />

</body>

</html>

ptg999

Chapter 8 Embedding Audio with HTML5188

The code is pretty straightforward, but like the video element, there are some
issues with the audio element. If you are trying the code in Listing 8.1 with an .mp3
file and the audio is not playing, this might be because you have ran into some codec
issues.

We covered the codec woes in more detail in Chapter 7, and while the informa-
tion there relates specifically to video file types, it is a similar situation with audio file
types.

There are two main audio codecs: Ogg Vorbis (.ogg) and MP3 (.mp3). You can
also consider WAV (.wav), but we will be concentrating mostly on Ogg Vorbis and
MP3 because WAV files are usually large and so not suitable for loading on the web;
WAV files also do not support metadata such as artist and title. Although the MP3 for-
mat can be considered almost a standard file type, MP3 is part of the MPEG4/H.2.64
group and, therefore, a closed, royalty-pending file type. Ogg, on the other hand, is
considered “free” and “open.” There are doubtless many arguments to be had over
which file type delivers better-quality audio, but the main issue is that browser support
is split. In short, Table 8.1 shows the current browser playback compatibility.

INTERMEDIATE RECIPE:
Enabling Audio for All Browsers
As you did for video in Chapter 7, you want to achieve audio playback and support in
all modern browsers. You can use the source element nested in the audio element to
stack different audio files, and the browser will choose which one it can play. Listing
8.2 has the code needed to provide modern browsers with an audio file they can play.

Listing 8.2 Audio Files Stack

<audio controls>

 <source src="music.mp3" type="audio/mp3" />

 <source src="music.ogg" type="audio/ogg" />

</audio>

The audio element does not need height or width attributes, because by default each
browser has its own audio player, but you can apply a height and width using CSS:

audio {display: block; width: 90px; height: 28px;}

Table 8.1 File Type and Browser Support

Codec Android Chrome Firefox
Internet
Explorer iPhone Opera Safari

Ogg Vorbis - 13+ 4+ - - 11+ -

MP3 2.3 13+ - 9+ 4+ - 5+

WAV - - - - - - -

ptg999

Intermediate Recipe: Enabling Audio for All Browsers 189

Adding Fallback Content for Older Browsers
After the source elements, you can write additional code for browsers that cannot
play audio natively; primarily, we are talking about Internet Explorer 6, 7, and 8.
Like video, there are a couple of options. You can host the audio file on a site such
as http://soundcloud.com and use its embed code to serve the audio, or you can use
Flash Player to deliver the audio content to less capable browsers. In Listing 8.3, we
are using JW Player, a very popular and customizable multimedia player, but there are
many more available to choose from, or you could make one yourself.

Listing 8.3 Using JW Player

<script type="text/javascript" src="swfobject.js"></script>

<div id="mediaplayer"></div>

<script>

 var so = new SWFObject('player.swf','playerID','480','24','9');

 so.addParam('allowfullscreen','true');

 so.addParam('allowscriptaccess','always');

 so.addVariable('file', 'music.mp3');

 so.write('mediaplayer');

</script>

Only older browsers download the swfobject.swf and player.swf files and play the
audio file in Flash Player.

Listing 8.4 puts it all together. This code provides audio in all the main browsers,
either using the native audio element or, when necessary, using a Flash Player fallback.

Listing 8.4 Cross-Browser Audio

<!DOCTYPE html>

<html lang="en">

<head>

<meta charset="utf-8">

<title>8_4 Cross-Browser Audio</title>

</head>

<body>

<audio controls>

 <source src="music.mp3" type="audio/mp3" />

 <source src="music.ogg" type="audio/ogg" />

 <script type="text/javascript" src="swfobject.js"></script>

 <div id="mediaplayer"></div>

 <script>

 var so = new SWFObject('player.swf','playerID','480','24','9');

 so.addParam('allowfullscreen','true');

 so.addParam('allowscriptaccess','always');

 so.addVariable('file', 'music.mp3');

 so.write('mediaplayer');

 </script>

http://soundcloud.com

ptg999

Chapter 8 Embedding Audio with HTML5190

</audio>

<p>Download the audio file: MP3 file, 3MB; <a

➥href="music.ogg">Ogg file, 3MB</p>

</body>

</html>

New Audio Attributes
Several new attributes are available for the audio element, which you will learn about
now.

The src Attribute
Listing 8.1 earlier in the start of the chapter shows a basic example of the audio ele-
ment, and it contains a src attribute. But using src means you are limited to one
audio file, and because of the codec and browser issues, it makes it pretty useless for
the time being. But ideally one day it will be all you need. Instead of using src, con-
sider choosing the source element within audio, as used in Listing 8.4, so you can
then make the audio work across the browsers.

The preload Attribute
If you have a relatively large audio file on the page or you are confident the user is
going to want to listen to the audio you have embedded, then you can get the browser
to start downloading the file when the page loads. The preload attribute has three
possible values:

preload="auto"

auto, or you can just put preload, tells the browser to download the audio file
when the page loads.

preload="none"

preload="none" tells the browsers not to download the audio. Only when the
user starts the audio will it start to download. At the moment, though, only Firefox 4
seems to support this.

preload="metadata"

The metadata attribute retrieves information (metadata) about the audio track,
including audio duration, the first frame, and the track list. It should not download the
audio itself until the user starts it.

The loop Attribute
If audio has a loop attribute, then when the audio finishes playing, it will loop back
to the start and play again. It is a boolean attribute, so it is either on or off. All the
main browsers support this, except, strangely, Firefox 4.

ptg999

New Audio Attributes 191

The autoplay Attribute
A Boolean attribute, autoplay will force the browser to start downloading and play-
ing the audio when the page loads. Advertisements often start playing automatically.
There are accessibility and usability concerns about audio playing automatically, not to
mention how annoying it can be, but the reason this is in the specification is because
you now have a standard way of doing it if you really needed to, and you do not have
to resort to various JavaScript hacks to achieve the effect. There are already various
browser extensions available to download that disable autoplay.

Note
The autoplay and preload attributes have been deliberately disabled on the iOS. This
is because of potential costs and loading speed issues to the user. No data is downloaded
until the user starts the audio. There are some techniques, well, hacks, to get around this.
But because it’s a hack, we do not really want to tell you such bad habits in this book.

The controls Attribute
The controls attribute adds browser-specific controls to your audio file, which
include a Play/Pause button, a seek bar, duration/time-played information, and volume
controls. The following is an example:

<audio controls>

...

 </audio>

It is a Boolean attribute, so either you include it or you do not. However, if you
do not include controls, then nothing is displayed and so obviously the user can-
not control the audio. So, we cannot tell you how important it is that you do not use
autoplay without also using controls.

You can use your own controls if you wanted to by using the API to create stop
and start controls, which we will come to later in this chapter. Figure 8.1 shows the
default controls in the major browsers.

Note
Strangely, in Firefox, if you do not have JavaScript enabled, then the controls do not
appear. Other browsers, correctly, have the controls without JavaScript.

Figure 8.1 Default controls in Chrome (top), Firefox, Internet Explorer 9, Opera, and Safari

ptg999

Chapter 8 Embedding Audio with HTML5192

Free Audio Files for Testing
For testing purposes, you will probably want some free audio files. There are dozens of
options, but we have used some from sites including http://beatstorm.com, http://free-
soundtrackmusic.com, http://vocaldownloads.com, and http://freesound.org.

They come in various formats, and as you have read, you will need to convert them to play
in different browsers. We suggest trying the following tools: http://media.io or Free MP3/
WMA/OGG Converter, available from http://download.cnet.com/Free-MP3-WMA-OGG-
Converter/3000-2140_4-10793572.html.

The Media API
HTML5 provides a vast and exiting API for multimedia. Using the API and JavaScript,
you can manipulate audio files in your web pages. The following are the available API
events:

abort loadstart

canplay pause

canplaythrough play

canshowcurrentframe playing

dataunavailable progress

durationchange ratechange

emptied seeked

empty seeking

ended suspend

error timeupdate

loadeddata volumechange

loadedmetadata waiting

The following are the media properties available:
audioTracks muted

autoplay networkState

buffered paused

controls preload

controller played

currentSrc playbackRate

currentTime readyState

defaultMuted seekable

defaultPlaybackRate seeking

duration startOffsetTime

ended src

error textTracks

initialTime videoTracks

loop volume

mediaGroup

http://beatstorm.com
http://free-soundtrackmusic.com
http://free-soundtrackmusic.com
http://vocaldownloads.com
http://freesound.org
http://download.cnet.com/Free-MP3-WMA-OGG-Converter/3000-2140_4-10793572.html
http://download.cnet.com/Free-MP3-WMA-OGG-Converter/3000-2140_4-10793572.html
http://media.io

ptg999

Intermediate Recipe: Creating a Beat Mixer 193

Not all of these events and properties are available to use yet, but most of them are,
including the important ones that allow you to create your own audio player controls.
We will not explain all the API options, just the ones needed to create the follow-
ing recipes. If you are interested in learning more about the API, we recommend the
API demonstration at http://w3.org/2010/05/video/mediaevents.html; although it is
a video demonstration, the API is applicable to audio as well. There is also the very
detailed API specification at http://w3.org/TR/html5/video.html#mediaevents.

INTERMEDIATE RECIPE:
Creating a Beat Mixer
So far, you know how to get audio to play natively in the modern browsers. In this
recipe, you will create a beat mixer so you can test how the browser handles multiple
audio elements playing at the same time. There are some browser quirks, so we sug-
gest using Chrome and Opera for this recipe.

This recipe uses .mp3 files for Safari and Internet Explorer and .ogg files for
Chrome, Firefox, and Opera. We are not concerned with older versions of Internet
Explorer in this recipe. This is a simple recipe to get started with audio and the API.

You will start with six audio elements in a list, though potentially you could load
audio files in on the f ly. There is minor CSS used for basic layout and styling, and
there is a class for when the audio is not playing. For each audio element, there is
an onclick event for toggling the play state of the file. You can see the page in Figure
8.2, and the code is in Listing 8.5.

Figure 8.2 The beat mixer in action, viewed in Firefox

http://w3.org/2010/05/video/mediaevents.html
http://w3.org/TR/html5/video.html#mediaevents

ptg999

Chapter 8 Embedding Audio with HTML5194

Listing 8.5 Creating a Beat Mixer

<!DOCTYPE html>

<html lang="en">

<head>

<meta charset="utf-8">

<title>8_5 Beat Mixer</title>

<script

➥src="http://ajax.googleapis.com/ajax/libs/jquery/1.6.1/jquery.min.js">

➥</script>

<script>

 $(function(){

 $('audio').each(function(index){

 $(this).removeAttr("controls");

 $(this).addClass('stopped');

 var currentTime = $(this).next('div');

 currentTime.html("")

 $(this).click(function() {

 if (this.paused == false) {

 this.pause();

 $(this).addClass('stopped');

 this.currentTime = 0;

 } else {

 this.play();

 $(this).removeClass('stopped');

 }

 });

 this.addEventListener('timeupdate', function() {

 currentTime.html(formatTime(this.currentTime));

 }, false);

 });

 });

 function formatTime(seconds) {

 seconds = Math.round(seconds);

 minutes = Math.floor(seconds / 60);

 minutes = (minutes >= 10) ? minutes : '0' + minutes;

 seconds = Math.floor(seconds % 60);

 seconds = (seconds >= 10) ? seconds : '0' + seconds;

 return minutes + ':' + seconds;

 }

</script>

<style>

* {

 padding: 0;

 margin: 0;

}

ptg999

Intermediate Recipe: Creating a Beat Mixer 195

ul {

 list-style-type: none;

 margin: 50px auto;

 width: 205px;

}

li {

 float: left;

 margin: 0 0 5px 5px;

}

li:nth-child(odd) {

 clear: both;

 margin-left: 0;

}

p {

 clear: both;

}

audio {

 background: url(images/stop.png) center center no-repeat #ccc;

 -webkit-border-radius: 50px;

 -moz-border-radius: 50px;

 border-radius: 50px;

 -moz-box-shadow: 0px 0px 5px rgba(0, 0, 0, 0.5);

 -webkit-box-shadow: 0px 0px 5px rgba(0, 0, 0, 0.5);

 box-shadow: 0px 0px 5px rgba(0, 0, 0, 0.5);

 cursor: pointer;

 display: block;

 height: 100px;

 margin: 0 0 5px;

 width: 100px;

}

audio.stopped {

 background: url(images/play.png) center center no-repeat #fff;

}

li div {

 clear: both;

 text-align: center;

}

</style>

</head>

<body>

ptg999

Chapter 8 Embedding Audio with HTML5196

 <audio controls loop>

 <source src="guitar.mp3" type="audio/mp3" />

 <source src="guitar.ogg" type="audio/ogg" />

 </audio>

 <div></div>

 <audio controls loop>

 <source src="beat.mp3" type="audio/mp3" />

 <source src="beat.ogg" type="audio/ogg" />

 </audio>

 <div></div>

 <audio controls loop>

 <source src="turntable.mp3" type="audio/mp3" />

 <source src="turntable.ogg" type="audio/ogg" />

 </audio>

 <div></div>

 <audio controls loop>

 <source src="clap.mp3" type="audio/mp3" />

 <source src="clap.ogg" type="audio/ogg" />

 </audio>

 <div></div>

 <audio controls loop>

 <source src="boxingball.mp3" type="audio/mp3" />

 <source src="boxingball.ogg" type="audio/ogg" />

 </audio>

 <div></div>

 <audio controls loop>

 <source src="synth6.mp3" type="audio/mp3" />

 <source src="synth6.ogg" type="audio/ogg" />

 </audio>

 <div></div>

ptg999

Advanced Recipe: Adding Streaming Radio 197

<p>Audio from beatstorm.com; <a

➥href="http://www.vocaldownloads.com">vocaldownloads.com; <a

➥href="http://www.freesound.org">freesound.org</p>

</body>

</html>

First, you hide the default controls and use CSS to show a Play button. When a
user clicks an audio element, you check to see whether the file is paused. If it is not
paused, then you use the play method to start the audio. If the file is playing, then
you pause the file using the pause method. When playing or pausing, you toggle a
class to show different button actions. When you pause the audio, you actually stop it
as you set its currentTime back to 0. And while the tracks are playing, you are using
the timeupdate listener event to show how long a track has been playing.

Browser Quirks with the Beat Mixer
This recipe has some browser quirks. First, Firefox 4 does not support the loop attribute,
so the audio track will not automatically repeat itself, though you could do this yourself
with JavaScript by detecting when the track has ended and then play it again. And sec-
ond, though the JavaScript will work in IE9 and Safari, this recipe will not work in those
browsers because those browsers do not, yet, support the styling of the audio element.
If you remove the line of code that hides the controls attribute, then it works OK in
those browsers. Alternatively, you style the li to hold the play/stop icons.

ADVANCED RECIPE:
Adding Streaming Radio
In this chapter so far, you have looked at playing “physical” files (.mp3 and .ogg), but
what about streaming content? Traditionally we have always needed Flash to stream
audio, but now you can do it natively. In this recipe, you will use a JSON list of pub-
licly available radio streams. Using API events, including onerror, play, and volume,
a user can select a stream from a drop-down list, and it will begin playing. How cool
is that? It is Internet radio in the browser, without any plug-ins. You can see a preview
of the player in Figure 8.3, and the code for this recipe is in Listing 8.6.

The streams are in either OGG or MP3 format, and the OGG streams will work in
Firefox, Opera, and Chrome. The MP3 streams will work in Chrome, IE9, and Safari.
If the format is not supported in that browser, then an error message will display.

1. Use HTML and CSS to create the layout and controls for the player.

2. Create a JSON-based list of radio stations and their URLs.

3. If there is an error, then use the API to detect what type of error.

4. Add each station as an option to the station list.

5. When a station is chosen, fire the function setStation, which changes the src
of the audio element and plays straightaway.

ptg999

Chapter 8 Embedding Audio with HTML5198

Listing 8.6 Streaming Radio Player

<!DOCTYPE html>

<html>

<head>

<meta charset="UTF-8" />

<title>8.6 Streaming Radio Player</title>

<script>

// local variables for elements

var radioPlayer;

var radioStatus;

var radioControls;

var volumeControl;

var buttonPlayPause;

// Define our JSON list of stations

var stations = { "entries":[

 {"name":"Absolute Radio Classic Rock",

➥"url":"http://ogg2.as34763.net/vc160.ogg",

➥"type":"ogg"},

 {"name":"Absolute Radio DAB",

➥"url":"http://ogg2.as34763.net/vr160.ogg",

➥"type":"ogg"},

 {"name":"Absolute Radio 80s",

➥"url":"http://ogg2.as34763.net/a8160.ogg",

➥"type":"ogg"},

Figure 8.3 HTML5 Audio Stream Player, viewed in Chrome

ptg999

Advanced Recipe: Adding Streaming Radio 199

 {"name":"Absolute Radio 90s",

➥"url":"http://ogg2.as34763.net/a9160.ogg",

➥"type":"ogg"},

 {"name":"BBC World Service",

➥"url":"http://vprbbc.streamguys.net:80/vprbbc24.mp3",

➥"type":"mp3"},

 {"name":"Classic FM London",

➥"url":"http://media-ice.musicradio.com:80/ClassicFMMP3",

➥"type":"mp3"},

 {"name":"Rainwave",

➥"url":"http://stream.gameowls.com:8000/rainwave.ogg",

➥"type":"ogg"},

 {"name":"SomaFM",

➥"url":"http://streamer-ntc-aa06.somafm.com:80/stream/1018",

➥"type":"mp3"},

 {"name":"VoxNoctem",

➥"url":"http://voxnoctem.de:9113/high.ogg",

➥"type":"ogg"},

 {"name":"WBUR-Boston",

➥"url":"http://wbur-ogg.streamguys.com:80/wburlive.ogg",

➥"type":"ogg"},

 {"name":"WCLV",

➥"url":"http://auggie.wclv.com:80/hi.ogg",

➥"type":"ogg"},

 {"name":"WCPE-Classical",

➥"url":"http://audio-ogg.ibiblio.org:8000/wcpe.ogg",

➥"type":"ogg"}

]}

// Initialization function

function init() {

 // set reference to the audio element

 radioPlayer = document.getElementById('audioPlayer');

 // set error handler

 radioPlayer.onerror = function(evt) {

 switch (radioPlayer.error.code) {

 case radioPlayer.error.MEDIA_ERR_ABORTED:

 alert('Play has been aborted.');

 break;

 case radioPlayer.error.MEDIA_ERR_NETWORK:

 alert('Network error occurred.');

 break;

 case radioPlayer.error.MEDIA_ERR_DECODE:

 alert('Error occurred while decoding stream.');

 break;

ptg999

Chapter 8 Embedding Audio with HTML5200

 case radioPlayer.error.MEDIA_ERR_SRC_NOT_SUPPORTED:

 alert('Media resource provided is not suitable.');

 break;

 default:

 alert('Unknown error occurred: '+radioPlayer.error.code+'.');

 break;

 }

 }

 // set listener for durationchange event

 radioPlayer.addEventListener('durationchange', streamPlaying, false);

 // set references to elements

 radioStatus = document.getElementById('radioStatus');

 radioControls = document.getElementById('radioControls');

 volumeControl = document.getElementById('volumeControl');

 buttonPlayPause = document.getElementById('buttonPlayPause');

 // set the default volume

 setVolume(0.7);

 // load the station list

 loadStations();

}

// Load the stations from JSON variable

function loadStations() {

 // reference the station list select element

 var stationList = document.getElementById('stationList');

 // loop through JSON stations and create list

 for(i=0;i<stations.entries.length;i++) {

 // create option with text and value

 var newOption = document.createElement('option');

 newOption.text = stations.entries[i].name + '

➥ ('+stations.entries[i].type+')';

 newOption.value = i;

 // add the new option to the list

 try {

 stationList.add(newOption, null);

 } catch(ex) {

 // IE only

 stationList.add(newOption);

 }

 }

}

ptg999

Advanced Recipe: Adding Streaming Radio 201

// Set the station selected

function setStation() {

 // update status

 radioStatus.innerHTML = 'Buffering...';

 // set the source and type for the audio element

 var selStationList = document.getElementById('stationList');

 radioPlayer.src = stations.entries[selStationList.selectedIndex].url;

 radioPlayer.type = 'audio/'

➥+stations.entries[selStationList.selectedIndex].type;

 // display selected to user

 var currentStation = document.getElementById('currentStation');

 currentStation.innerHTML = stations.entries[selStationList.selectedIndex].name;

 // tell audio element to play

 radioPlayer.play();

}

// Stream now playing

function streamPlaying() {

 // update display and show player controls

 radioStatus.innerHTML = 'Now playing...';

 buttonPlayPause.innerHTML = 'Pause';

 radioControls.style.visibility = 'visible';

}

// play / pause functions

// play / pause button click handler

function playPauseClicked() {

 // check if playing or paused

 if (radioPlayer.ended || radioPlayer.paused) {

 // player is paused, now play

 playerPlay();

 } else {

 // player is playing, now pause

 playerPause();

 }

}

// restart play of player

function playerPlay() {

 // update status

 buttonPlayPause.innerHTML = 'Pause';

 radioStatus.innerHTML = 'Now playing...';

ptg999

Chapter 8 Embedding Audio with HTML5202

 // restart play of player

 radioPlayer.play();

}

// pause player

function playerPause() {

 // update status

 buttonPlayPause.innerHTML = 'Play';

 radioStatus.innerHTML = 'Paused';

 // pause player

 radioPlayer.pause();

}

// volume control functions

// set the volume

function setVolume(newVolume)

{

 // set the volume

 radioPlayer.volume = newVolume;

 // update volume bar size

 wrapper = document.getElementById('volume_background');

 wrapper_width = wrapper.offsetWidth;

 newWidth = wrapper_width*newVolume;

 volume_bar = document.getElementById('volume_bar');

 volume_bar.innerHTML = parseInt(newVolume*100) + '%';

 volume_bar.style.width=newWidth+'px';

}

// handler for clicking of volume bar

function volumeChangeClicked(event)

{

 //get the position of the event

 var clientX = event.clientX;

 var offset = clientX - event.currentTarget.offsetLeft;

 var newVolume = offset/event.currentTarget.offsetWidth;

 setVolume(newVolume);

}

// initialize on load

window.addEventListener('load',init,false);

</script>

<style>

ptg999

Advanced Recipe: Adding Streaming Radio 203

* {

 color: #000;

 font-family: "Lucida Sans Unicode", "Lucida Grande", sans-serif;

 margin: 0;

 padding: 0;

}

#radioContainer {

 background-color: #ccc;

 border: 15px solid rgba(0,0,0,.5);

 -moz-border-radius: 25px;

 -webkit-border-radius: 25px;

 border-radius: 25px;

 -moz-box-shadow: 0px 0px 4px #000;

 -webkit-box-shadow: 0px 0px 4px #000;

 box-shadow: 0px 0 35px rgba(1, 1, 1, 0.7), inset 0px 0 35px rgba(1, 1, 1, 0.7);

 padding: 20px;

 margin: 40px auto;

 overflow: hidden;

 width: 420px;

}

h1 {

 font-size: 1.8em;

 margin: 0 0 10px;

 text-align: center;

 }

h2 {

 margin: 10px 0 5px;

}

label {

 left: -9999px;

 position: absolute;

}

#stationList {

 background-color:#fff;

 border: 1px solid #000;

 -moz-border-radius: 5px;

 -webkit-border-radius: 5px;

 border-radius: 5px;

 color:#333;

 cursor: pointer;

 padding: 5px;

 text-align: center;

 width: 100%;

}

ptg999

Chapter 8 Embedding Audio with HTML5204

#radioPlayer {

 float: left;

 width: 100%;

}

#currentStation {

 color:#333;

 text-shadow:#999;

}

#radioControls {

 text-align:left;

 visibility:hidden;

 margin-top:10px;

}

#radioControls * {

 float: left;

}

#volumeControl {

 border: 1px solid #fff;

 cursor: pointer;

 float:left;

 height: 25px;

 margin: 0 5px;

 position:relative;

 width:60px;

}

#volume_background {

 background-color:#ccc;

 height:25px;

 width:60px;

}

#volume_bar {

 background:#fff;

 color:#333;

 height:25px;

 position:absolute;

 text-align:center;

 width:0px;

}

button {

 background: #fff;

 border: none;

ptg999

Advanced Recipe: Adding Streaming Radio 205

 -moz-border-radius: 12px;

 -webkit-border-radius: 12px;

 border-radius: 12px;

 cursor: pointer;

 height: 27px;

 padding: 0 5px;

}

</style>

</head>

<body>

<div id="radioContainer">

 <h1>HTML5 Audio Stream Player</h1>

 <audio id="audioPlayer">

 <p>Your browser does not support the HTML5 audio element. </p>

 </audio>

 <div id="stations">

 <label for="stationList">Stations</label>

 <select id="stationList" size="5" onChange="setStation();"></select>

 </div>

 <div id="radioPlayer">

 <h2 id="radioStatus"></h2>

 <p id="currentStation"></p>

 <div id="radioControls">

 <div id="volumeTitle">Volume</div>

 <div id="volumeControl" onClick="volumeChangeClicked(event);">

 <div id="volume_background">

 <div id="volume_bar"></div>

 </div>

 </div>

 <button id="buttonPlayPause" onClick="playPauseClicked();"></button>

 </div>

 </div>

</div>

</body>

</html>

When the page loads, the function init is ran. This starts the process by setting
up the audio player so you can reference and manipulate it, and it also sets up other
controls such as Play and the volume control. It then loads the stations using the
loadStations function. This loops through the JSON list of radio stations and creates
the list for the user to choose from. The select element has an onChange event of
setStation, which takes the selected radio station and assigns that URL as the src of
the audio and also changes the type attribute (to MP3 or OGG) of the audio so that it
plays correctly. If the audio type cannot be played in the browser (such as BBC World
Service, which cannot be played in Firefox or Opera because it is MP3 format), then it
alerts an error, with the text of the error depending on the error type.

ptg999

Chapter 8 Embedding Audio with HTML5206

Even though you set the source of the player, it will not play unless you tell it to,
which you do with radioPlayer.play(). While a stream is playing, you have a lis-
tener event called durationchange. When this event is happening, it launches a func-
tion called streamPlaying, which updates the text on the screen of what station is
playing; changes the Play button to Pause; and also shows the rest of the controls.

The final controls are concerned with the Play/Pause button and the volume con-
trol. When the Play/Pause button is clicked, it runs a function to check the current
status: If audio is paused or ended, then .play() fires; otherwise, .pause(). In the
previous chapter on video, you used a new HTML5 range input element for a vol-
ume control. Here you create a cross-browser-friendly version that detects at what
point the volume bar has been clicked and updates the volume of the audio with
.volume.

Summary
In this chapter, you learned how to play an audio file in the browser without the need
for a third-party plug-in, typically Flash. Of course, because this is a new browser fea-
ture, there are various quirks across the browser set. Like the video element, you have
to deal with codec issues, but you can provide older browsers with fallback options.

You also learned about various elements of the new API with which you can
manipulate how an audio file behaves in the browser, controlling how to play and
pause, controlling the volume, and changing which file is played.

ptg999

9
Changing Browser History

This chapter discusses updates to the history interface in HTML5, specifically with
two new methods in the History API (pushState and replaceState), and includes
several recipes for incorporating them into your session navigation. In addition, you
will learn about the state event, using the History API to store more than just page
navigation, and advanced topics such as security and extended libraries.

History Basics
The History API, a JavaScript API, has been used in sites since JavaScript 1.0 and has
not been updated significantly until HTML5. With the advent of Ajax and pageless
navigation, the use of the history object to go forward, to go backward, or to go to a
specific session entry became problematic. In fact, several frameworks including YUI
incorporated their own browser session management techniques.

Previously, to add a page into the history of a browser without actually changing
pages, you needed to change the URL by adding a hash to the URL with the # sym-
bol. With the history.pushState and history.replaceState methods, you can
now add and modify history, respectively, and when you combine them with the win-
dow popstate event, you can provide improved navigation for the user. By exposing
the ability to add and modify page history for a site, the History API provides bet-
ter back-button support in rich applications that use Ajax technologies. You can now
change the “view state” of the application by simply pushing a virtual page, or con-
text, into the history.

You can think of the browser session history, or pages to which the viewer has
navigated in your site, as a stack, where pages are pushed onto the top of the pile
when viewed. When the user clicks or taps the browser’s back button, the pages are
“popped” off the stack one by one. Using just JavaScript, you can move forward,
backward, or a particular number of pages forward or backward using these present
commands:

ptg999

Chapter 9 Changing Browser History 208

n window.history.forward

n window.history.back

n window.history.go([delta])

These methods remain available in the History API, but in addition, you can now
add to the history dynamically, catch navigation events, and even control the context
of pages through the HTML5 History API.

Browser Compatibility
The History API extensions are supported currently in the browser platforms listed in
Table 9.1.

Table 9.1 History API Browser Compatibility

Android 2.2+

Chrome 5.0+

Firefox 4.0+

Internet Explorer -

iOS Safari 3.0+

Opera 11.0+

Safari 5.0+

BEGINNER RECIPE:
Adding to History with pushState
You use the pushState method of the History API to add a new entry into the
browser session stack by the current page in the browser. The method takes two
parameters, data and title, with an optional third parameter of url:

history.pushState(data, title [,url])

The parameters of the pushState method are as follows:
n data: A string or object passed to represent the state of the page
n title: A string for the page displayed in the browser heading
n url: (Optional) The new URL to add to the history stack

The data parameter represents the state of the page and is automatically associated
with the new entry. This can be retrieved through a window popstate event, as you
will see later. By state, we mean the current context of the display of the page. For
example, this could be the recipe that the person is currently viewing from a database
call made by Ajax or the like.

ptg999

209Beginner Recipe: Adding to History with pushState

Some browsers impose limits on the size of the data parameter since a state object
is stored by the browser locally on the user’s disk. In Firefox, this limit is 640,000
characters of the serialized representation of the state object. If you plan on, or
could have the potential of, reaching this limit, you should use sessionStorage or
localStorage instead (see Chapter 11, Client-Side Storage).

Note
Some browsers, such as Firefox, ignore the title parameter and will not display the
value in the history session list for the user. This is browser-specific, and we hope it will
be rectified in future updates.

If the url parameter is provided, this will replace the URL in the address bar of
the browser but will not cause the browser to request the page from the website. This
allows users to bookmark the URL and return to it later. You will, of course, need
logic on your server-side pages to handle bookmarked addresses that do not represent
real pages. The URL passed may be a relative or absolute path; however, the path
must be in the same domain as the current URL. If a relative path is used, then the
path will be based on the current document location. The default path for not includ-
ing a url parameter or supplying only a querystring (such as "?page=5") is the current
URL of the document.

The pushState method is similar to the use of a hash for controlling the context of
a page, which is common in dynamic, Ajax-based applications:

window.location = "#foo";

However, the pushState method provides more f lexibility than the hash access:
n pushState allows you to remain on the same page or change the URL. With

the hash method, the browser remains on the same URL.
n pushState allows you to keep contextual information in the state of the history.

This can be quite helpful, as you will see later in the chapter.

This last point is important to emphasize, because it is a major improvement over
the hash addition method to URLs. With each entry in the history, pushState allows
you to store an object of data that can hold contextual information about the state
of the page. The data can be as simple as a string value or as complex as a serialized
JSON object. For example, say you have a page that shows the slides of a presentation.
Each slide may have particulars about how it is to be displayed, such as a subtitle, a
frame, credits, and so on. The state object can hold this information, making it easy to
change the style of the page based on the slide you are on. You will see a recipe later
in this chapter on leveraging this state object.

Let’s use the history pushState method to add a new entry into the history ses-
sion. The page checks, upon loading, for the availability of the History API in the
browser by calling typeof on the history.pushState method. If the method results
in “undefined,” then the browser does not support the History API. You can use this

ptg999

Chapter 9 Changing Browser History 210

check to employ a different method to implement the history or limit functionality for
the user based on their current browser:

1. Create a blank HTML page with a div to show the current exhibit (exhibit).

2. Add a button that, when clicked, launches the JavaScript function nextExhibit.

 3. Insert the nextExhibit function to execute the pushState method.

 4. Add the pushState method call to add the context of the meerkat exhibit into
the history:
history.pushState('Meerkat','Meerkat Exhibit','meerkats.html');

 5. Update the exhibit div to show the user they are at the meerkat exhibit:

document.getElementById("exhibit").innerHTML = "At the Meerkats.";

Listing 9.1 contains the entire page.

Listing 9.1 pushState to Add Pages to History

<!DOCTYPE html>

<html>

<head>

<meta charset="UTF-8" />

<title>9_1 At the Zoo</title>

</head>

<body>

<script>

// initialize the button handler

function init() {

 // attach the click button handler

 var btnNextExhibit = document.getElementById('btnNextExhibit');

 btnNextExhibit.addEventListener('click',nextExhibit,false);

}

function nextExhibit() {

 // Check to see if the history pushState API is available

if (typeof history.pushState !== "undefined") {

 // Execute the pushState method

 history.pushState('Meerkat','Meerkat Exhibit','meerkats.html');

 document.getElementById("exhibit").innerHTML = "At the Meerkats.";

 } else {

 // the History API is not available

 alert('The History API is not available in this browser.');

 }

}

ptg999

Beginner Recipe: Creating an Image Viewer 211

// Add the listener to initialize the page

window.addEventListener('load',init,false);

</script>

Welcome to the zoo.

<div id="exhibit">You are at the Zoo entrance.</div>

<button id="btnNextExhibit">Visit the Meerkats</button>

</body>

</html>

When you load the page in your browser, you will see that you are at the zoo
entrance based on the title of the page and the message displayed on the page. If you
click the Visit the Meerkats button, the page will push into the history the current
page and then change the title and URL of your browser window without physically
navigating to a new page. The JavaScript will change the message, informing the user
of the meerkat exhibit. For all purposes, it will appear to the user that a new page has
been loaded from the server. However, this is simply a new context you have added to
history via the pushState.

Tip
In some cases, providing a url parameter in the pushState that has a value of an
invalid page will cause a security exception in specific browsers such as Firefox. To rectify
this, either provide a valid URL or employ the optional state parameter, which removes the
exception.

If you view your browser history list, you will see the At the Zoo page as the last
page, and if you click the back button, you will be taken back to the page. The mes-
sage on the page will not have changed to the “At the zoo entrance,” but you will
learn later how to fix that.

Remember that the URL is optional but can be extremely advantageous for return-
ing users. You will, of course, need logic on your server to handle bookmarked entries
that have no true page on the server.

BEGINNER RECIPE:
Creating an Image Viewer
In the previous recipe, which walked you through your very first pushState call, you
pushed into the history session one simple entry. This recipe will take this a step fur-
ther by giving the user an option of multiple choices and storing each into a growing
history session.

Numerous sites are available that allow users to browse a series of photos, videos, or
other content by providing thumbnail links and dynamically replacing a selection. In
this recipe, you will show the user a series of image thumbnails, allow them to select

ptg999

Chapter 9 Changing Browser History 212

an image to view, and add a new history entry to track what has been viewed and
allow the user to return to those images. Listing 9.2 shows the full code of the page to
create the image viewer using history entries. The images and other assets referenced
in the code listings are available from the book’s website for your use. Place the images
in an images folder so they can be referenced in the showImage function of the code
properly.

Listing 9.2 Image Viewer: Creating Several History Entries

<!DOCTYPE html>

<html>

<head>

<meta charset="UTF-8" />

<title>Image 1</title>

<style>

div.imgView { height: 300px; }

div.imgView img { height: 300px; }

div.imgRow img { height: 100px; }

a { cursor: pointer }

</style>

</head>

<body>

<script>

// variable to keep track of the current image

var currentImg = 1;

// navigate to the next slide

function showImage(imgNum) {

 // check if the History API is available

 if (typeof history.pushState !== "undefined") {

 // verify the image selected is not the current one

 if (currentImg != imgNum) {

 // set the image title

 var imgTitle = 'Image ' + imgNum;

// set next slide in history entries with state object and defaults

 history.pushState(imgNum, imgTitle, '?img=' + imgNum);

 document.getElementById('imgSlide').src = 'images/slide' + imgNum + '.jpg';

 document.getElementById('imageInfo').innerHTML = imgTitle;

 // set the current page title

 document.title = 'Image ' + imgNum;

 var stateInfo = document.getElementById('stateInfo')

 stateInfo.innerHTML = imgTitle + "
" + stateInfo.innerHTML;

ptg999

Beginner Recipe: Creating an Image Viewer 213

 // set the current image to the image selected

 currentImg = imgNum;

 }

 } else {

 // History API is not available

 alert('The History API is not available in this browser.');

 }

}

</script>

<!-- image view and title - set to first image -->

<div id='imgView' class='imgView'><img id='imgSlide' src="images/slide1.jpg"

➥style='height:300px'></div>

<div id='imageInfo'>Image 1</div>

<!-- thumbnail image row -->

<div id='imgRow' class='imgRow'></div>

<script>

 // create row of img links

 var newImg;

 var imgRow = document.getElementById('imgRow');

 for (var i=1; i<=5; i++) {

 document.getElementById('imgRow').add

 newImg = '<img class="thumbnail"

➥src="images/slide'+i+'.jpg">';

 imgRow.innerHTML += newImg;

}

</script>

<!-- history state display area - set to first image (page when loaded)-->

<div id='stateInfo'>Image 1</div>

</body>

</html>

If you run the previous recipe and select thumbnails to view, you will see the
entries pushed into the history of the browser, as if the browser were loading individ-
ual pages. In Figure 9.1, we have selected images 3, 5, 4, and 2. On the left, the figure
shows the drop-down menu of the browser’s back button; on the right, it shows what
is displayed on the page for user-selected images after selecting the images. Notice
how “Image 1” is at the bottom of the list, since that is the original title of the HTML
page. After the first image, the title you create dynamically gets added to the history
list. The last image selected and currently shown (Image 2) is not listed in the history
because this is the current context.

ptg999

Chapter 9 Changing Browser History 214

Note
In the previous listing, we used inline scripting to create the thumbnail buttons upon load-
ing of the page. Normally, this would be handled by a domReady event through a frame-
work such as jQuery. To save space and keep the code agnostic, we have scripted inline.

When you run this recipe, you will notice that if you click the back button in your
browser, the page listing in the pageInfo div remains the same. Wouldn’t it be nice if
you could catch an event when the user clicks the back button to update the page dis-
played? HTML5 provides you with the pop state event for exactly this purpose, which
is covered in the next recipe.

INTERMEDIATE RECIPE:
Popping State in the Image Viewer
To work in conjunction with the new methods of the History API, HTML5 defines a
new window event called popstate. This event is triggered when the browser win-
dow’s active history session entry changes. The history entry could change based on
the browser’s back or forward button being clicked by the user or JavaScript history
object methods such as back and go being called. In either case, you can perform logic
based on an event handler to catch this event. The syntax for the event handler takes
the following format in JavaScript:

window.addEventListener('popstate',funcRef,false);

The pop state event is triggered on the JavaScript window object through the
popstate event and is associated to a handler function, referenced in the previous line
as funcRef. Thus, when a user navigates their history by using the back button, you
can perform any necessary logic to load the correct context in the page HTML.

You will remember from the pushState call that with each entry pushed you
can store data, or state, for that entry. The popstate event passes the state you stored
to the event handler and allows for the state object to be accessed by the script. You
can use this state data by accessing the read-only attribute of the event through
event.state.

Figure 9.1 Back button’s drop-down list of history matching our
selections

ptg999

Intermediate Recipe: Popping State in the Image Viewer 215

In Listing 9.2, you created a simple image viewer that allows the user to select a
thumbnail image. When selected, the image is loaded into the viewing area, and a
new page entry is pushed into the history. However, having the page in the history is
not beneficial unless you can show the correct image when the user navigates with the
back button in the browser or the script calls history.back or history.go. In this
recipe, you will add the pop state event handler to catch the navigation event and load
the right image and detail.

Add the highlighted section of code in Listing 9.3 to Listing 9.2 between the exist-
ing script lines as shown.

Listing 9.3 Image Viewer with Pops: Catching the Pop State Event

…

<script>

// Set up the popstate page handler

window.addEventListener('popstate',popPage,false);

// variable to keep track of the current image

var currentImg = 1;

// history pop state event handler function

function popPage(event) {

 // get the state from the history

 currentImg = event.state;

 // set the image and title

 var imgTitle = 'Image ' + currentImg;

 document.getElementById('imgSlide').src = 'images/slide' + currentImg +

➥'.jpg';

 document.getElementById('imageInfo').innerHTML = imgTitle;

 document.title = imgTitle;

 // show we popped a history event and the popped state

 var stateInfo = document.getElementById('stateInfo')

 stateInfo.innerHTML = 'History popped : ' + imgTitle + ' : state: ' +

➥JSON.stringify(event.state) + "
" + stateInfo.innerHTML;

}

// navigate to the next slide

function showImage(imgNum) {

…

ptg999

Chapter 9 Changing Browser History 216

After incorporating the event handler function in Listing 9.3, run the code. When
the page is loaded, select the second thumbnail and then select the third thumbnail.
This performs a pushState for each, adding them to the history entry list. By adding
the previous popstate event handler, whenever the user clicks the back or forward
button in the browser, you catch the event and can then load the right image for the
user based on the stored state on the event.

Now click the back button in the browser. The popstate event handler will be
called. You will first retrieve the state by assigning the event state to the current image
and then use this to display the correct image and set the title. For verification, you
will then update the stateInfo div so you can see what was popped in the history
(see Figure 9.2).

Note that the event is triggered even by selecting one of the entries from the
history drop-down in your browser. Play around with the code to see how the
pushState and popstate events handle the history traversal.

Tip
A user can navigate back in the history of the browser any number of steps via the history
menu or the history API commands such as go and back in scripting. It is best to tie in
the data element of the history entry to a key that lets you know exactly what the context
of the entry is. For example, this could be a unique number to an item, a slide number, or
some other unique index. In this way, when the popstate event is handled, the code will
know exactly which element to work with instead of just the last one visited.

BEGINNER RECIPE:
Changing History with replaceState
The replaceState method of the History API is used to replace the current entry
in the browser history with a new entry. The parameters are the same as pushState:
data, title, and an optional URL field. The replaceState method is beneficial for
updating the state of a history entry as the context changes or setting the initial state
of a page. The replaceState method takes the following form:

history.replaceState(data, title [,url])

When a page is loaded fresh in a browser, the title and URL are stored in the his-
tory entry. However, no context data is stored along with this information. To store

Figure 9.2 The pushing and popping of the history state

ptg999

217Beginner Recipe: Changing History with replaceState

data along with the title and URL, you can call the replaceState when the page
loads with the same title, URL, and your additional state data for storage in the his-
tory entry. This will in essence overwrite the current entry with the same page infor-
mation and your additional data. Once a page has been loaded, a user could refine
search results as an example, and after each refinement, you could replace the settings
stored with the replaceState method.

This recipe uses replaceState to demonstrate how the page does not reload but
changes the state of the current history entry. After the page loads, the user is able
to click a button that replaces the current state, which is the key “page” and value
idxCounter with an updated counter. The counter simply increments each time the
state is replaced. To construct the page in Listing 9.4, follow these steps:

1. Create a blank HTML page with an empty div for stateInfo. This will be
used to see what you are setting each time.

2. Add a button that, when clicked, launches a JavaScript function called
nextState.

 3. Insert the nextState function with a history replaceState:

history.replaceState({page: idxCounter}, "page "+idxCounter,
"?page="+idxCounter);

 4. Update the stateInfo div, in the nextState showing you that replaceState
has been performed, and increment the idxCounter count.

Listing 9.4 Replacing the Current State

<!DOCTYPE html>

<html>

<head>

<meta charset="UTF-8" />

<title>Page</title>

<script>

var idxCounter = 1; // counter to keep track of page state

// initialize the button handler

function init() {

 // attach the click button handler

 var btnNextState = document.getElementById('btnNextState');

 btnNextState.addEventListener('click',nextState,false);

}

// our replaceState wrapper function

function nextState() {

// replace the current page with the next one

 history.replaceState({page: idxCounter}, 'page '+idxCounter, '?page=' +

 idxCounter);

ptg999

Chapter 9 Changing Browser History 218

 // update our page state div

 var strStateInfo = document.getElementById('stateInfo').innerHTML;

 document.getElementById('stateInfo').innerHTML = strStateInfo +

 '
Replaced state ' + idxCounter;

 // increment our counter

 idxCounter++;

}

// Add the listener to initialize the page

window.addEventListener('load',init,false);

</script>

</head>

<body>

<button id="btnNextState">Replace State</button>

<div id="stateInfo"></div>

</body>

</html>

Each time you click the Replace State button, you will notice that you can verify
that the state is being replaced because the URL will show the querystring you have
added: page=<idxCounter>. If you look at the history drop-down menu of the
browser back button, you will also notice that each time replaceState is called, a
new history entry is not added to the stack. Note that you have used a different style
of data for the state in replaceState. You are using a JSON-style serialized object
with the key, page, and a value of the idxCounter. You are not limited to just strings
for the data element of the push or replace but can have complex objects stored.

INTERMEDIATE RECIPE:
Changing the Page History
This next recipe performs several actions on the browser history when the page loads,
employing pushState, replaceState, and back and forward methods. The popstate
event is used to show when the event is fired with history methods. Listing 9.5 shows
the code for this recipe.

Listing 9.5 Pushing and Popping

<!DOCTYPE html>

<html>

<head>

<meta charset="UTF-8" />

<title>Page</title>

<script>

ptg999

Intermediate Recipe: Changing the Page History 219

// popstate event handler function

function popPage(event) {

 var strState = 'POP - location: ' + document.location + ', state: ' +

➥JSON.stringify(event.state);

 document.getElementById('stateInfo').innerHTML += strState + '
';

};

function loadPages() {

 logAction('pushing page 1');

 history.pushState({page: 1}, 'page 1', '?page=1');

 logAction('pushing page 2');

 history.pushState({page: 2}, 'page 2', '?page=2');

 logAction('replacing page 2 with page 3');

 history.replaceState({page: 3}, 'page 3', '?page=3');

 logAction('taking one step back');

 history.back();

 logAction('taking one step back again');

 history.back();

 logAction('taking two steps forward');

 history.go(2);

}

function logAction(strAction) {

 document.getElementById('stateInfo').innerHTML += strAction + '
';

 alert(strAction);

}

// Add our window event listeners

window.addEventListener('popstate',popPage,false);

window.addEventListener('load',loadPages,false);

</script>

</head>

<body>

<div id="stateInfo"></div>

</body>

</html>

Upon loading, the script calls the loadPages function, which pushes two subse-
quent pages, performs a replaceState, executes two history back commands, and

ptg999

Chapter 9 Changing Browser History 220

then moves forward in the history two steps. The following is the output for the recipe
from a Firefox browser window:

pushing page 1

pushing page 2

replacing page 2 with page 3

taking one step back

POP - location: 9_4_page_flow.html?page=1, state: {"page":1}

taking one step back again

POP - location: 9_4_page_flow.html, state: null

taking two steps forward

POP - location: 9_4_page_flow.html?page=3, state: {"page":3}

With replaceState occurring after pushing page 1 and page 2, you end up with
page 1 and page 3 in the browser history, with page 3 being the current state. Now
that you have some entries in the history stack, you go back in history by calling
history.back. Calling history.back fires the popstate event and puts you back
to page 1. History.back is called once more, which takes you back to the original
page with no state. Notice that the state is null since the page was loaded through the
browser and not via a pushState or replaceState.

Finally, you perform a history.go and move forward in the browser stack by two
pages. This brings you back to page 3 by jumping from the original page to page 1
and then to page 3 (since page 2 was replaced earlier with page 3). This can be con-
fusing, and you may find it easier to draw this on a piece of paper as the alerts are
popped. The easiest way we have found is to create a drawing of a tower of blocks
with each being a pushed entry. Replacing an entry replaces a block, while moving
through history just moves the current pointer to a block in the stack (see Figure 9.3).

It is important to note that the popstate event will not fire until after the window
onload event. If methods are called prior to the window’s onload event that normally
would trigger the popstate event, then typically only the last popstate event will be
triggered in the browser.

Tip
This recipe demonstrates how the replaceState method can replace the state of
a page after a pushState has been performed. The state of the original page as
you have seen is null since the original page was loaded through the browser and
not a pushState. If you need to associate a state with the original page, perform a
replaceState when the page loads to associate your state data.

1

2

1

3

1

3

1

3

1

3

1

Figure 9.3 History stack entry and current pointer during recipe

ptg999

Advanced Recipe: Using Advanced State Data Objects to Pass Information Across Pages 221

ADVANCED RECIPE:
Using Advanced State Data Objects to Pass
Information Across Pages
Based on the syntax of the pushState and replaceState methods, the first param-
eter can take either a string or an object for the data that represents the state of the
page. So far, you have passed only strings or a small key and value object for the data
parameter. In many cases, there is much more information about a page’s context that
would be nice to keep with the history entry so that when the user returns to the
page, you can render the content without making calls for the information outside the
browser.

Objects can be passed to the methods through JSON representation, as shown in
the following example with one variable in a JSON format:

var stateObj = { page: 1 };

history.pushState(stateObj, 'Title 1', 'page1.html');

The following code shows how more complex objects can be passed:

var stateObj = { page: 1, title: "My Slide #1", author: "Savel"};

history.pushState(stateObj, 'Slide 1', 'slide1.html');

The state data object is a great way to store user selections, actions, or preferences
performed on a page that is then entered into the history. Note, though, that these
state data objects are lost if the user purges the browser history and can have limita-
tions set by each browser on the length of data, but for most usages this should not be
an issue.

In this recipe, you will learn how to store data with history entries in a JSON for-
mat and then pull the data back through the window.onpopstate event. Listing 9.6
creates a simple slide show using slide images and user preferences. The user prefer-
ences are stored with each history entry so that when the user navigates with the back
button to a prior slide, the preferences are restored. The restoration of the preferences
happens in the popstate event handler.

Listing 9.6 Slide Presentation: Pushing Pages with Data

<!DOCTYPE html>

<html>

<head>

<meta charset="UTF-8" />

<title>Slide 1</title>

</head>

<body>

<script>

// set first and last slide numbers

var minSlide = 1;

var maxSlide = 5;

ptg999

Chapter 9 Changing Browser History 222

// initialize fields used

var currentSlide = 1;

var currentTitle = "My Slide 1";

var borderOn = 0; // 0 is off, 1 is on

var slideNote = "";

// initialize our first slide state by replacing current state

var stateObj = { slide: currentSlide, border: borderOn, note: slideNote };

history.replaceState(stateObj, currentTitle, '?slide=' + currentSlide);

// history pop state handler

window.onpopstate = function(event) {

 // show the location URL and string display of the event.state

 document.getElementById('stateInfo').innerHTML = "location: " +

➥document.location + "
state: " + JSON.stringify(event.state);

 // retrieve state object data

 currentSlide = event.state.slide;

 borderOn = event.state.border;

 slideNote = event.state.note;

 // show the current slide

 showSlide();

}

// navigate to the next slide

function nextSlide() {

 // check if the History API is available

 if (typeof history.pushState !== "undefined") {

 // validate that we are not at the end of the presentation

 if (currentSlide < maxSlide) {

 // retrieve any notes that have been entered

 slideNote = document.getElementById('txtNote').value;

 // set the state object with the current options

 var currentStateObj = { slide: currentSlide, border: borderOn, note:

➥slideNote };

 // replace the current slide properties in the current history entry

 history.replaceState(currentStateObj, 'Slide ' + currentSlide + ' ' +

➥slideNote, "?slide=" + currentSlide);

 // increment the current slide index

 currentSlide++;

ptg999

Advanced Recipe: Using Advanced State Data Objects to Pass Information Across Pages 223

 // set global variables to next slide and reset to defaults

 borderOn = 0;

 slideNote = "";

 document.getElementById('stateInfo').innerHTML = "";

// set next slide in history entries with state object and defaults

 var nextStateObj = { slide: currentSlide, border: borderOn, note: slideNote

➥};

 history.pushState(nextStateObj, 'Slide ' + currentSlide, "?slide=" +

➥currentSlide);

 // show the now current slide

 showSlide();

 }

 } else {

 // History API is not available

 alert('The History API is not available in this browser.');

 }

}

// navigate to previous slide

function prevSlide() {

 // validate that we are not at the beginning already

 if (currentSlide>minSlide) {

 // move back one step in history

 history.back();

 }

}

// show the current slide, title, and options

function showSlide() {

 // set the current slide and title

 document.getElementById('imgSlide').src = "images/slide" + currentSlide +

➥".jpg";

 document.getElementById('slideInfo').innerHTML = "Slide " + currenSlide;

 // set the current page title

 document.title = "Slide " + currentSlide;

 // set the current slide options

 if (borderOn == 1) {

 document.getElementById('imgSlide').style.border = "5px solid #000000";

 document.getElementById('chkBorder').checked = 1;

 } else {

 document.getElementById('imgSlide').style.border = "";

ptg999

Chapter 9 Changing Browser History 224

 document.getElementById('chkBorder').checked = 0;

 }

 document.getElementById('txtNote').value = slideNote;

}

// handle the change of the image border option

function setImgBorder() {

 // set border based on checkbox and global property

 if (document.getElementById('chkBorder').checked == 1) {

 document.getElementById('imgSlide').style.border = "5px solid #000000";

 borderOn = 1;

 } else {

 document.getElementById('imgSlide').style.border = "";

 borderOn = 0;

 }

}

</script>

<!-- slide image and title -->

<div id='slide' style='height:100px;'><img id='imgSlide'

➥src="images/slide1.jpg"></div>

<div id='slideInfo'>Slide 1</div>

<!-- slide options -->

<input type="checkbox" id="chkBorder" onChange="setImgBorder();">Border

➥Note: <input type="text" id="txtNote" value="">

<!-- slide navigation buttons -->

<input type="button" onclick="prevSlide();" value="Previous Slide" />

<input type="button" onclick="nextSlide();" value="Next Slide" />

<!-- history state display area -->

<div id='stateInfo'></div>

</body>

</html>

This code allows the user to set an image border and a note on each slide. You
could provide any number of options. A debug div, titled stateInfo, shows the
context of the data as history entries are popped. You are able to display the JSON
state object with the JSON.stringify method. To reference each stored state object
value, you simply reference it by the key. To get the border state value, you would call
event.state.border.

When the user clicks for the next slide, you create an object with the current set-
tings and slide number. This is then passed to the replaceState call so that you store
the state prior to pushing the next slide. You then reset the settings and push the next

ptg999

Intermediate Recipe: Testing History Security 225

slide for display. Of course, this does not take into consideration previously viewed
slides that appear after the current slide since each next slide gets pushed fresh into
the history entries. To solve this, you can use some new client storage techniques of
HTML5, which you will see in Chapter 11, Client-Side Storage.

INTERMEDIATE RECIPE:
Testing History Security
Any time you are able to modify the browser history, page title, and URL address,
you need to think about security. Changing URL addresses has historically been one
of the more common phishing methods, also known as website forgery. The new His-
tory API provides developers for the first time a method to change the content of a
URL without actually loading a page. However, the HTML5 specification includes
safeguards for the various browsers to follow and protect against the misuse of the His-
tory API:

n A script cannot set a domain in the URL of pushState and replaceState dif-
ferent from the current domain.

n The popstate event can reference only state objects stored in the history by
pages with the same domain origin in order to maintain privacy across sites.

n A limit is placed on the number of entries a page may add to the browser history
stack through the pushState method to prevent “f looding” the history of the
user’s browser.

Through these browser policies, the possible malicious use of the History API
should be minimized. Let’s verify one of these policies by trying to change the URL
to a different domain.

Note
Browsers may impose limits and trim the history stack to prevent an overload from poten-
tial “flooding” attacks. The number of entries is determined by each browser, but the
order of removal follows the first in, first out (FIFO) methodology.

Much has been debated about allowing JavaScript to control the URL display of the
browser, without actually changing the page or causing a new page to load. The main
concern is that a method such as pushState or replaceState may be used to phish
for personal and confidential information by making it appear that the user is at a dif-
ferent location. You can imagine the havoc if you were able to change the address to
anything you like. However, browsers are required by the specification of the History
API to validate the address used in the url parameter. If an absolute path is used, then
the address must be of the same origin as the original page. Let’s verify that browsers
protect against this possible misuse by attempting to push a different domain page into
the history. Listing 9.7 provides a very simple page for pushing a new state. Try it and

ptg999

Chapter 9 Changing Browser History 226

verify that it works in your browser by following these steps and creating a copy of
Listing 9.7:

1. Create a blank HTML page that has a button that launches a pushPage function
when clicked.

 2. Add the pushPage function that checks for the history pushState method
availability and then pushes a new context of page.html.

Listing 9.7 A Simple Push in the Same Origin

<!DOCTYPE html>

<html>

<head>

<meta charset="UTF-8" />

<title>9.7 Push across domains</title>

</head>

<body>

<script>

// initialize the button handler

function init() {

 // attach the click button handler

 var btnPushPage = document.getElementById('btnPushPage');

 btnPushPage.addEventListener('click',pushPage,false);

}

// push the new state into history

function pushPage() {

 // we check to see if the History API is available

 if (typeof history.pushState !== "undefined") {

 // push the new state

 history.pushState(null, 'Good Page', 'page.html');

 } else {

 // the History API is not available

 alert('History API not available in this browser');

 }

}

// Add the listener to initialize the page

window.addEventListener('load',init,false);

</script>

<button id="btnPushPage">Try Push</button>

</body>

</html>

ptg999

Intermediate Recipe: Testing History Security 227

Let’s now take the previous listing and make a minor modification to see what will
happen if someone tried to use the pushState to falsify a domain URL. Change the
url parameter of the pushState method, as shown in Listing 9.8, to be an absolute
path of a domain different from the one you are currently running in. We have chosen
www.asite.com just as an example.

Listing 9.8 Setting a Different Origin

<!DOCTYPE html>

<html>

<head>

<meta charset="UTF-8" />

<title>9.8 Setting a Different Origin</title>

</head>

<body>

<script>

// initialize the button handler

function init() {

 // attach the click button handler

 var btnPushPage = document.getElementById('btnPushPage');

 btnPushPage.addEventListener('click',pushPage,false);

}

// push the new state into history

function pushPage() {

 // we check to see if the History API is available

 if (typeof history.pushState !== "undefined") {

 // push the new state

history.pushState(null, 'Bad Page', 'http://www.asite.com/fish.html');

 } else {

 // the History API is not available

 alert('History API not available in this browser');

 }

}

// Add the listener to initialize the page

window.addEventListener('load',init,false);

</script>

<button id="btnPushPage">Try Push</button>

</body>

</html>

www.asite.com

ptg999

Chapter 9 Changing Browser History 228

When pushing a new state into the history with the pushState method, the
browser will verify the URL passed. If the URL is a full path and the domain is dif-
ferent from which it is being “pushed,” the call will fail, throw an exception, or simply
not do anything based on the browser. The same holds true for the replaceState
method.

Helpful Libraries
As web developers, we need to be concerned not only about the security aspects of
the History API but also the support of the API across browsers and within a browser
across versions. With several of the new APIs of HTML5, the level of implementation
by the various browsers differs greatly, and backward compatibility will be a problem
for the foreseeable future, at least until the majority of users migrate to new versions.
For the History API, this means you will need to continue to support the hash address
method and hashChange event for backward compatibility of page states:

window.onhashchange = function() {

 alert("hash changed!");

};

window.location.hash = Math.random();

However, this does not mean you have to give up the benefits of the new HTML5
history functions. As with most browser-compatibility issues, other developers have
recognized this shortcoming and created libraries to handle the differences not only
between browsers but also between versions of browsers. For the History API, the
leading library at this time is history.js.

You could still program your own logic, but the history.js library is available on
GitHub (https://github.com/balupton/History.js) and provides an easy wrapper Java-
Script library that attempts to use the HTML5 history methods if supported but falls
back to the hash code method automatically if needed. Overall, the syntax is similar to
the History API methods, event, and attributes you have seen in this chapter. Unfortu-
nately, we do not have the space to play with the library here, but the library provides
the following:

n Multiple browser support
n Framework support, including jQuery, MooTools, and Prototype
n Backward compatibility to older browsers with the use of hash tags

Summary
The History API available in JavaScript is extremely powerful and provides web devel-
opers with the opportunity to change the user’s history at a site without changing the

https://github.com/balupton/History.js

ptg999

Summary 229

actual page. Sites such as GitHub and Flickr have already put the History API to great
use, providing more user-friendly functionality.

In this chapter, you examined how the pushState and replaceState methods and
popstate event work in conjunction with the history entry list (see Figure 9.4).

The following are the main technical features that HTML5 now adds to the
history:

n Pushing new entries into the browser entry history
n Replacing the current history entry state data
n Managing navigation event handling and retrieving state

You should now have some ideas of how you can employ these features in your
own website or application.

State Data Title URL State Data

Current Entry

Title URL

State Data

History Entry

Title URL

State Data

New Entry

Title URL

pop state
history.back

replaceState

pushState

Figure 9.4 History API with pushState and replaceState methods
and popstate event

ptg999

This page intentionally left blank

ptg999

10
Location Awareness with the

Geolocation API

For years, websites have used location information to provide enhanced user experi-
ences, such as where the closest store is or events in your area. The location data has
been gathered by using a browser’s IP address and matching it in a database or just
asking the user for their location. With smartphones and built-in GPS, there is a sig-
nificant increase in apps that are location-aware. With HTML5 and the Geolocation
API, there is an easy and fairly reliable method by which websites and web applications
can access a browser’s location. In this chapter, you will learn about the Geolocation
API objects and methods in a series of recipes to retrieve the browser device’s location
information for use in your application.

Geolocation Overview
The ability to identify the location information of a browser, whether laptop- or
mobile-based, provides key information that can be used for a variety of functionality,
including the following:

n Displaying the browser’s position on a map
n Displaying location-specific information or points of interest
n Adding location data to user contributions such as place reviews or photographs

Accessing a user’s location by correlating the IP address of the browser can be prob-
lematic because the database of IP addresses and locations must be extensive and well-
maintained. The location information can also be vague, providing detail only down
to a general area. It is not uncommon for sites that leverage location data to ask a user
for their ZIP or postal code or full address to overcome the IP address location chal-
lenges. However, this information is tied to where the user may be at the time rather

ptg999

Chapter 10 Location Awareness with the Geolocation API232

than where they may be in the future. The HTML5 Geolocation API provides built-
in methods that can provide quite granular information.

With the Geolocation API, the browser is now able to tell you its location in the
world via latitude and longitude values with a measure of accuracy. The degree of
accuracy is based on several factors, and developers can inf luence the degree of accu-
racy. Now you may be wondering, what good is latitude and longitude if you do not
know the latitude and longitude coordinates of the coffeehouse around the corner?
For geolocation to be beneficial, the universal means of conveying a location must
be at the “lowest common denominator,” and the coordinate system of latitude and
longitude provides this. As you will see later in this chapter, there are several services
from various providers that can consume latitude and longitude coordinates and pro-
vide additional information. And to reverse geocode (see the following sidebar), a set
of coordinates is quite easy given the large geographic databases of providers such as
Google.

Reverse Geocoding
Reverse geocoding, the opposite of geocoding that converts an address into a set
of latitude and longitude coordinates, is the practice of converting a set of latitude
and longitude coordinates into a physical address. Various services can provide this
information. One of the most commonly used is the Google Maps JavaScript API V3
Services (http://code.google.com/apis/maps/documentation/javascript/services.
html#ReverseGeocoding).

Browser Compatibility
The Geolocation API is still young, but given the value it holds, the API definition
is being adopted rapidly by the various browsers. Table 10.1 lists the current browser
support for the Geolocation API.

Table 10.1 Geolocation API
Browser Availability

Android 2.1+

Chrome 9.0+

Firefox 3.5+

Internet Explorer 9.0+

iOS Safari 3.2+

Opera 10.6+

Safari 5.0+

http://code.google.com/apis/maps/documentation/javascript/services.html#ReverseGeocoding
http://code.google.com/apis/maps/documentation/javascript/services.html#ReverseGeocoding

ptg999

233Beginner Recipe: Determining Your Location with a Simple getCurrentPosition

Where in the World: getCurrentPosition
The basic function of the Geolocation API is to find the current location of the browser
in the world. The getCurrentPosition method provides this information to you
in a JavaScript asynchronous call. It is important to note that the calls that determine
location in JavaScript are asynchronous in nature. Most JavaScript is performed syn-
chronously or in the main program f low. With asynchronous method calls, JavaScript
performs the call in the background and then returns the results to a function when the
process is complete. By having the API call as an asynchronous call, the query can be
displayed to the user without blocking the processing of the rest of the page.

The getCurrentPosition method retrieves the current position for the browser
and takes one required parameter (a success callback function name) and two optional
parameters (an error callback function and a position options object):

getCurrentPosition (successCallback [, errorCallback] [, positionOptions])

The parameters of the getCurrentPosition include the following:
n successCallback: The function to execute and pass the coordinates to
n errorCallback: (Optional) The function to handle any errors that occurred
n options: (Optional) An options object to handle how the position is retrieved

Since the call to getCurrentPosition is asynchronous, the method needs to
be told which functions for success and potential failure will be executed when the
method has completed. Let’s jump in and find your location now with a recipe.

BEGINNER RECIPE:
Determining Your Location with a Simple
getCurrentPosition
In this recipe, the page will use the getCurrentPosition method with a success
callback function to determine your current location and display the properties of the
position object returned. Use these steps and the code in Listing 10.1 to create this
recipe:

1. Create a blank HTML page with a div (called btnFindMe) and the Find Me
button, which will call the findMe function when clicked.

 2. Add the findMe function in a set of script tags with the following code to check
for the Geolocation API, and then call the getCurrentPosition method:

if (navigator.geolocation) {

 navigator.geolocation.getCurrentPosition(geoSuccess);

} else {

 document.getElementById('myLocation').innerHTML =

 "Geolocation API Not Supported";

}

ptg999

Chapter 10 Location Awareness with the Geolocation API234

 3. Add the geoSuccess function that will handle the successful callback from the
getCurrentPosition request.

4. Add a second div (called myLocation) to the HTML in which you will display
the returned position information from the getCurrentPosition.

Listing 10.1 getCurrentPosition to Find Browser Location

<!DOCTYPE html>

<html>

<head>

<meta charset="UTF-8" />

<title>10.1 Find Me</title>

<script>

// Initialize the page with other event listeners

function init() {

 var btnFindMe = document.getElementById('findMe');

 btnFindMe.addEventListener('click',findMe,false);

}

// success callback function for getCurrentPosition

function geoSuccess(position) {

 // grab the position DOMTimeStamp for display

 var dateDisplay = new Date(position.timestamp);

 // get reference to result div

 var myLocationDiv = document.getElementById('myLocation');

 // display the coords and timestamp object fields

 myLocationDiv.innerHTML = 'Lat: ' + position.coords.latitude + '
' +

 'Lng: ' + position.coords.longitude + '
' +

 'Accuracy: ' + position.coords.accuracy + '
' +

 'Altitude (opt): ' + position.coords.altitude + '
' +

 'Alt. Accuracy (opt): ' + position.coords.altitudeAccuracy + '
' +

 'Heading (opt): ' + position.coords.heading + '
' +

 'Speed (opt): ' + position.coords.speed + '
' +

 'Position DOMTimeStamp: ' + position.timestamp + '
' +

 'Time Date Stamp: ' + dateDisplay.toLocaleString();

}

// function called from button click to find position

function findMe() {

 var myLocationDiv = document.getElementById('myLocation');

ptg999

235Beginner Recipe: Determining Your Location with a Simple getCurrentPosition

 // check for geolocation support

if (navigator.geolocation) {

 // make asynchronous getCurrentPosition call

navigator.geolocation.getCurrentPosition(geoSuccess);

 myLocationDiv.innerHTML = 'Retrieving your location.';

 } else {

 // geolocation not supported

 myLocationDiv.innerHTML = 'Geolocation API Not Supported';

 }

}

// Initialize the page on load

window.addEventListener('load',init,false);

</script>

</head>

<body>

<div id='btnFindMe'>

 <button id="findMe">Find Me</button>

</div>

<div id="myLocation"></div>

</body>

</html>

When you click the Find Me button, the findMe() function will be called. The
first step in this function is to check whether the browser you are using supports the
Geolocation API. This check is done by using the following code:

if (navigator.geolocation) {

If the navigator geolocation object is available, then you can perform the
getCurrentPosition; otherwise, you can handle the lack of support of the API by
displaying an appropriate message that the API is not supported. Upon successfully
verifying the availability of the API, the getCurrentPosition method is called with
the callback function name of geoSuccess. This will be the function performed when
the getCurrentPosition completes.

When the getCurrentPosition method is called, the very first action that the
browser will perform is to verify that the user has authorized the browser to provide
this information to the page or prompt the user to do so. Depending on the browser
being used, the message and options may be slightly different. For example, in Firefox,
an authorization panel drops down from the top of the browser, allowing the user to
share their location or not share and remember the selection for the site. In Safari, a
dialog will appear that will confirm with the user to allow, disallow, and allow for the
next 24 hours.

When the browser is authorized to retrieve your location, the browser will lever-
age WiFi and cellular network information if available to determine the location. This

ptg999

Chapter 10 Location Awareness with the Geolocation API236

information will be passed to the success callback function as a position object. The
position object holds properties of the location including the latitude and longitude
(see Table 10.2).

The position object data is divided into the coords object and a timestamp, in
DOMTimeStamp format. Inside the geoSuccess function you can now display
the various properties of the coords object, referencing each through the posi-
tion root object. For example, to retrieve the latitude of the position, you use
position.coords.latitude. Each browser will handle the optional fields differently;
Figure 10.1 shows the output from Chrome 14.

Table 10.2 The Position Return Object

Object Property Type Purpose

coords latitude double Latitude coordinate of the
position

longitude double Longitude coordinate of the
position

accuracy double Accuracy of the latitude and
longitude values in meters

altitude double (Optional) Altitude value if
available

altitudeAccuracy double (Optional) Accuracy of the
altitude value

heading double (Optional) Heading direc-
tion from north in degrees if
available

speed double (Optional) Speed if available

timestamp DOMTimeStamp The current local time and
date

Figure 10.1 Your location revealed in Chrome 14.

ptg999

237Intermediate Recipe: Mapping a Location with getCurrentPosition

Location Privacy
Knowing the location of a browser, and thus the location of the person viewing the
browser, can be considered to be private information. The method for allowing users
to share their private location information is through an authorization action, as you
saw in this first recipe. Until the user either allows or denies access to the location, the
getCurrentPosition API call will be on hold. This is a key reason that this call is
performed via an asynchronous method so that the rest of the page does not “block”
waiting for the user authorization or reply.

You may be wondering at this point what happens if the user does not provide
authorization for the information or the location information times out. This is where
the error handler parameter of the getCurrentPosition comes into play and what
you will look at in the next recipe.

Tip
As you use the Geolocation API, you may find that in some instances your page produces
no result or returns a timeout error (as you will see in the next recipe). This will typi-
cally result from an error being present in your code in one of your callback functions.
Since the position methods are asynchronous, these errors may or may not bubble up
to your browser window based on the browser you are viewing. It can be helpful to use
console.log() debugging in your callback functions to identify the issue.

INTERMEDIATE RECIPE:
Mapping a Location with
getCurrentPosition
In this recipe, you will use the getCurrentPosition method to retrieve the location
of the browser and map it on a Google map on the page. You will include in the recipe
an error handler in case an error is returned from the getCurrentPosition method
(which you will cause to happen as soon as you have the page working correctly).

Similar to the prior recipe, when the page loads, the user can click the Map Me
button that will trigger the getCurrentPosition method. Once you receive the call,
you will then use the latitude and longitude coordinates to create an instance of a
Google map with a marker and an info window for the coordinates and city and state.
The city and state comes from the Mozilla address object and will not be available
in other browsers. If you want to show the corresponding physical address in other
browsers, then you will need to use reverse geocoding, which you will see in another
recipe in this chapter.

1. Leverage the previous recipe, and change the button to Map Me and the func-
tion called to mapMe.

2. Include the Google Maps JavaScript API V3 Overlay script tag (note that with
V3 of the Google Maps kit, you no longer need a developer key):

<script src="http://maps.google.com/maps/api/js?sensor=false">

ptg999

Chapter 10 Location Awareness with the Geolocation API238

 3. Modify the getCurrentPosition request to add the error handler function:

navigator.geolocation.getCurrentPosition(geoSuccess, geoErrorHandler);

 4. Add the geoErrorHandler function geoErrorHandler(error), which will
handle any errors that are returned by the getCurrentPosition request.

5. Update the HTML body div sections to mirror those in Listing 10.2 to have a
container including a mapCanvas, the mapMe button, and myLocation.

Listing 10.2 Using getCurrentPosition to Map a Location

<!DOCTYPE html>

<html>

<head>

<meta charset="UTF-8" />

<title>10.2 Map Me With Error Handling</title>

<style>

 #container {

 width:500px;

 }

 #mapCanvas {

 width:500px;

 height:300px;

 border-style:solid;

 border-width:2px;

 margin: 22px 0;

 }

 #btnMapMe {

 float:left;

 }

 #myLocation {

 float:right;

 }

</style>

<script src="http://maps.google.com/maps/api/js?sensor=false"></script>

<script>

// Initialize the page

function init() {

 // Add the button click listener

 var btnMapMe = document.getElementById('mapMe');

 btnMapMe.addEventListener('click',mapMe,false);

}

ptg999

239Intermediate Recipe: Mapping a Location with getCurrentPosition

// success callback function for getCurrentPosition

function geoSuccess(position) {

 // get reference to result div

 var myLocationDiv = document.getElementById('myLocation');

 // retrieve our lat and long coordinates

 var posLat = position.coords.latitude;

 var posLng = position.coords.longitude;

 var posAccuracy = position.coords.accuracy;

 // display the coords and timestamp object fields

 myLocationDiv.innerHTML = 'Lat: ' + posLat + ', Lng: ' + posLng +

➥'
Accuracy: ' + posAccuracy;

 // create a google map latlng out of our coordinates

 var myLatlng = new google.maps.LatLng(posLat, posLng);

 // set our options for our map using our latlng as the center

 var myOptions = {

 zoom: 14,

 center: myLatlng,

 mapTypeId: google.maps.MapTypeId.ROADMAP

 }

 // create our google map instance

 var map = new google.maps.Map(document.getElementById('mapCanvas'), myOptions);

 // add our marker for our location

 var marker = new google.maps.Marker({

 position: myLatlng,

 map: map

 });

 // create our info window text

 var infoText = '';

 infoText = posLat + ', ' + posLng + '
Accuracy: ' + posAccuracy;

 if (position.address) {

 infoText += '
' + position.address.city + ', ' + position.address.region;

 }

 // create the info window and set the text

 var infowindow = new google.maps.InfoWindow();

 infowindow.setContent(infoText);

 infowindow.open(map, marker);

}

ptg999

Chapter 10 Location Awareness with the Geolocation API240

// error handler for getCurrentPosition

function geoErrorHandler(error) {

 // initialize our error message

 var errMessage = 'ERROR: ';

 // based on the error code parameter set the message

 switch(error.code)

{

 case error.PERMISSION_DENIED:

 errMessage += 'User did not share geolocation data.';

 break;

 case error.POSITION_UNAVAILABLE:

 errMessage += 'Could not detect current position.';

 break;

 case error.TIMEOUT:

 errMessage += 'Retrieving position timed out.';

 break;

 default:

 errMessage += 'Unknown error.';

 break;

 }

 // display the error to the user

 document.getElementById('myLocation').innerHTML = errMessage;

}

// function called from button click to find position

function mapMe() {

 var myLocationDiv = document.getElementById('myLocation');

 // check for geolocation support

 if (navigator.geolocation) {

 // make asynchronous getCurrentPosition call

 navigator.geolocation.getCurrentPosition(geoSuccess, geoErrorHandler);

 myLocationDiv.innerHTML = 'Retrieving your location...';

 } else {

 // geolocation not supported

 myLocationDiv.innerHTML = 'Geolocation API Not Supported';

 }

}

// Initialize the page

window.addEventListener('load',init,false);

</script>

</head>

ptg999

241Intermediate Recipe: Mapping a Location with getCurrentPosition

<body>

<div id="container">

 <div id="mapCanvas"></div>

 <div id="btnMapMe">

 <button id="mapMe">Map Me</button>

 </div>

 <div id="myLocation"></div>

</div>

</body>

</html>

When you click the Map Me button, the mapMe function will be called. As
before, you check whether the Geolocation API is available and, if so, perform the
getCurrentPosition method. If the getCurrentPosition succeeds, then the
geoSuccess function is called, and the coordinates are retrieved, displayed in the
myLocation div, and then used to create a Google map instance with the marker and
info window. The result will look similar to Figure 10.2 but with your location.

In the getCurrentPosition method call, you add the second parameter, which is
the error handler, named geoErrorHandler. The following are the errors that can be
returned by the position methods:

n PERMISSION_DENIED (1): The request failed because the user did not authorize
use of the location information.

n POSITION_UNAVAILABLE (2): The position of the device could not be deter-
mined by the browser.

n TIMEOUT (3): This is returned if a timeout property has been supplied and the
timeout length has passed.

Figure 10.2 Your location mapped in a Google map

ptg999

Chapter 10 Location Awareness with the Geolocation API242

The error handler allows you to catch an error returned and take the appropri-
ate action. A common error, PERMISSION_DENIED, results from the user not granting
access to the information required by the Geolocation API call on the page. To view
this error, reload your page, and when the browser asks for you to allow access to the
location information, choose to not share or disallow access to your location. The
error handler geoErrorHandler will be called with a position error object passed to
it. The position error object, titled error in our code, will include two attributes:
code and message. The code shown previously is a numerical constant that defines
the type of error, while the message may contain an optional string message for you as
the developer to gain more understanding as to why the error occurred. In this case,
since the user has denied access to the location information, the PERMISSION_DENIED
error code will be provided, and you can display your own message.

Note
Mozilla adds a fourth value for possible error codes: UNKNOWN_ERROR (0). This error
is provided when the location retrieval fails for an unknown reason and is one that is
not covered by the other errors. In Listing 10.2, the switch default case will catch any
unknown error, including the UNKNOWN_ERROR provided by Mozilla. In this case, the
message attribute of the error object can be more beneficial for determining the reason
for the error.

In the recipe, you leverage the Google Maps JavaScript API V3 Overlay to display
to the user their location with a marker. Tied to this marker, you also open an info
window with their latitude and longitude coordinates. Mozilla provides an additional
position attribute titled address, which is not in the W3C specification. It provides
the physical location of the coordinates. This physical address location may of course
not be exact since the accuracy of the position may be too large, but when available, it
saves having to use another service to reverse geocode the coordinates. In this recipe,
if the address object is available, you can pull the city and region attributes from it and
append the values to the info window. The following are the address object attributes
that are available when the object is provided:

n city: DOMString with the city
n country: DOMString with the country
n countryCode: DOMString with the country code
n county: DOMString with the county
n postalCode: DOMString with the postal or ZIP code
n premises: DOMString with the premises
n region: DOMString with the region
n street: DOMString with the street name
n streetNumber: DOMString with the street number

ptg999

243Intermediate Recipe: Determining Distance with PositionOptions

If the address object is not available, then you can use a reverse geocoding service
provided by Google, as you will see in the next recipe. In the next recipe, you will
look at the three options provided with the getCurrentPosition interface and how
they can be beneficial depending on your specific needs.

INTERMEDIATE RECIPE:
Determining Distance with PositionOptions
This recipe will use getCurrentPosition to first locate your browser’s location
and then calculate the distance to a set of points, reverse geocode your position, and
display this information to the viewer. To better control the location information
provided, you will use the third parameter of the getCurrentPosition method,
PositionOptions.

PositionOptions is an object passed to the getCurrentPosition method as a
parameter and allows you to have some control over the behavior of the method. This
can be beneficial given the type of application you are working with. As an example,
if you are working on a location-based restaurant application for the mobile space, then
the normal accuracy of the returned location may be too broad for your needs. You
can set three options in the PositionOptions of getCurrentPosition, as shown in
Table 10.3.

Note
For the timeout option of the PositionOptions parameter, the time that the user
takes to authorize the access to the location information while the request panel or dialog
is up is not calculated in this amount. The timeout milliseconds is calculated only for the
time that the actual call is being performed.

Table 10.3 PositionOptions Parameters

Option Default Description

enableHighAccuracy False, not
enabled

(Optional) A boolean value that tells the
browser that if true, you desire the most
accurate location the device may be able
to provide. This may be the same location
depending on the device being used.

maximumAge 0, any age
allowed

(Optional) The maximum age of the
location position returned in milliseconds
since a browser may cache the last loca-
tion to conserve battery power.

timeout 0, no timeout (Optional) The maximum time, in milli-
seconds, to allow for a location position
to be returned by the browser.

ptg999

Chapter 10 Location Awareness with the Geolocation API244

When the page loads, the setLocation function will be called, which will trig-
ger the getCurrentPosition method using a set of options. Once you receive the
call, you will then use the latitude and longitude coordinates to create an instance of
a Google map, reverse geocode the coordinates, and calculate the distance to various
cities.

 1. Add the setLocation method call to the body onload attribute, and add the
setLocation function, making sure to include the position options object.

2. Update the Google Maps JavaScript API V3 Overlay script tag to load the geom-
etry library that will be used for the distance calculation:

<script src="http://maps.google.com/maps/api/js?sensor=false&libraries=geome
try">

 3. Add the reverseGeoCode function that takes your latitude and longitude point
and retrieves the address information from a Google geocoder.

 4. Add the calculateDistance function that uses computeDistanceBetween to
calculate the distance to London, New York, and San Francisco.

5. Update the HTML body div sections to mirror those in Listing 10.3 to have a
container, including a mapCanvas, location information, and city distance divs.

Listing 10.3 getCurrentPosition with Position Options

<!DOCTYPE html>

<html>

<!DOCTYPE html>

<html>

<head>

<meta charset="UTF-8" />

<title>10.3 Points To</title>

<style>

 #container {

 width:500px;

 }

 #mapCanvas {

 width:500px;

 height:300px;

 border-style:solid;

 border-width:2px;

 margin: 22px 0;

 }

 #location {

 float:right;

 text-align:right;

 }

ptg999

245Intermediate Recipe: Determining Distance with PositionOptions

 #cityDistance tr:nth-child(odd) { background-color:#eee; }

 #cityDistance tr:nth-child(even) { background-color:#fff; }

 .numDistance {

 text-align:right;

 }

</style>

<script

➥src="http://maps.google.com/maps/api/js?sensor=false&libraries=geometry">

➥</script>

<script>

// global reference variable

var map;

// success callback function for getCurrentPosition

function geoSuccess(position) {

 // get our lat and lng coordinates

 var myPosLat = position.coords.latitude;

 var myPosLng = position.coords.longitude;

 // display the coords and timestamp object fields

 document.getElementById('myPosLat').innerHTML = myPosLat;

 document.getElementById('myPosLng').innerHTML = myPosLng;

 // create our latlng object

 var myLatLng = new google.maps.LatLng(myPosLat, myPosLng);

 // set our options for the map and create the map

 var myOptions = {

 zoom: 14,

 center: myLatLng,

 mapTypeId: google.maps.MapTypeId.ROADMAP

 }

 map = new google.maps.Map(document.getElementById('mapCanvas'), myOptions);

 // reverse geocode the lat and lng

 reverseGeoCode(myLatLng);

 // calculate the distance to points of interest

 calculateDistance(myLatLng);

 // update our status

 document.getElementById('geoStatus').innerHTML = 'Location Retrieved';

}

// function to reverse geocode given a lat / lng

function reverseGeoCode(geoLatLng) {

ptg999

Chapter 10 Location Awareness with the Geolocation API246

 // create our object instances

 var geocoder = new google.maps.Geocoder();

 var infowindow = new google.maps.InfoWindow();

 // perform our geocoding

geocoder.geocode({'latLng': geoLatLng}, function(results, status) {

 if (status == google.maps.GeocoderStatus.OK) {

 // check if we received an address

 if (results[0]) {

 // create marker on map

 var marker = new google.maps.Marker({

 position: geoLatLng,

 map: map

 });

 // set the content to the address and open the window

 infowindow.setContent(results[0].formatted_address);

 infowindow.open(map, marker);

 }

 } else {

 alert('Geocoder failed due to: ' + status);

 }

 });

}

// calculate distance function

function calculateDistance(disLatLng) {

 // set up variables and objects for distance

 var conEarth = 3963.19; // ave. miles circumference

 var gmapsSpherLib = google.maps.geometry.spherical;

 // points of interest

 var NYCLatLng = new google.maps.LatLng(40.7141667,-74.0063889);

 var LDNLatLng = new google.maps.LatLng(51.5001524,-0.1262362);

 var SFOLatLng = new google.maps.LatLng(37.615223,-122.389979);

 // distance calculations

 var distFromLDN =

➥gmapsSpherLib.computeDistanceBetween(disLatLng,LDNLatLng,conEarth).

➥toFixed(2);

 var distFromNYC =

➥gmapsSpherLib.computeDistanceBetween(disLatLng,NYCLatLng,conEarth).

➥toFixed(2);

 var distFromSFO = ➥gmapsSpherLib.computeDistanceBetween(disLatLng,SFOLatLng,con
Earth).

➥toFixed(2);

ptg999

247Intermediate Recipe: Determining Distance with PositionOptions

 // set display with values

 document.getElementById('divDistFromLDN').innerHTML = distFromLDN + ' mi.';

 document.getElementById('divDistFromNYC').innerHTML = distFromNYC + ' mi.';

 document.getElementById('divDistFromSFO').innerHTML = distFromSFO + ' mi.';

}

// error handler for getCurrentPosition

function geoErrorHandler(error) {

 // initialize our error message

 var errMessage = 'ERROR: ';

 // based on the error code parameter set the message

 switch(error.code)

 {

 case error.PERMISSION_DENIED:

 errMessage += 'User did not share geolocation data.';

 break;

 case error.POSITION_UNAVAILABLE:

 errMessage += 'Could not detect current position.';

 break;

 case error.TIMEOUT:

 errMessage += 'Retrieving position timed out.';

 break;

 default:

 errMessage += 'Unknown error.';

 break;

 }

 // display the error to the user

 document.getElementById('geoStatus').innerHTML = errMessage;

}

// function to initialize call for position

function setLocation() {

 var divStatus = document.getElementById('geoStatus');

 // check for geolocation support

 if (navigator.geolocation) {

 // oldest allowed is 1 minute and timeout as 30 sec.

 var posOptions = {maximumAge:60000,

 timeout:30000};

 // make asynchronous getCurrentPosition call

 navigator.geolocation.getCurrentPosition(geoSuccess, geoErrorHandler,

➥posOptions);

ptg999

Chapter 10 Location Awareness with the Geolocation API248

 divStatus.innerHTML = 'Retrieving your location.';

 } else {

 // geolocation not supported

 divStatus.innerHTML = 'Geolocation API Not Supported';

 }

}

// Launch the location retrieval

window.addEventListener('load',setLocation,false);

</script>

</head>

<body>

<div id="container">

 <div id="mapCanvas"></div>

 <div id="location">

 <table id="status">

 <tr>

 <td colspan="2"><div id="geoStatus"></div></td>

 </tr>

 <tr>

 <td>Latitude:</td>

 <td class="numDistance"><div id="myPosLat"></div></td>

 </tr>

 <tr>

 <td>Longitude:</td>

 <td class="numDistance"><div id="myPosLng"></div></td>

 </tr>

 </table>

 </div>

 <div id="distance">

 <table id="cityDistance">

 <tr>

 <td>London:</td>

 <td class="numDistance"><div id="divDistFromLDN"></div></td>

 </tr>

 <tr>

 <td>New York:</td>

 <td class="numDistance"><div id="divDistFromNYC"></div></td>

 </tr>

 <tr>

 <td>San Francisco:</td>

 <td class="numDistance"><div id="divDistFromSFO"></div></td>

 </tr>

 </table>

 </div>

</div>

ptg999

249Intermediate Recipe: Determining Distance with PositionOptions

</body>

</html>

When the page loads, you use the getCurrentPosition method to retrieve the
latitude and longitude coordinates but with some key options passed. An object
titled posOptions is created and then passed to the getCurrentPosition. In the
posOptions, you set the maximum age option to 60000, equal to one minute, and the
timeout to 30 seconds (30000). This tells the getCurrentPosition to pull only from
a previously cached location if the age of the location information is less than one min-
ute old. The timeout limits the length of time allowed for the getCurrentPosition
to retrieve the position:

var posOptions = {maximumAge:60000, timeout:30000};

Once you have the position information, you then reverse geocode to get the full
address using a handy geocoder object from the Google script and then calculate the
distance to three cities. The result will look similar to Figure 10.3.

As you have seen in this recipe, you can control the behavior of the location posi-
tion acquisition by setting the PositionOptions object in the getCurrentPosition
call. The options allow you to change accuracy and performance, tuning your appli-
cation to the experience that is needed by the user. The recipes to this point have
included maps, reverse geocoding, and even distance calculations. The thought has
probably crossed your mind about the mobile space and how to change the informa-
tion presented to the user as their location changes. Well, the Geolocation API has just
the thing, as you will see in the next recipe.

Figure 10.3 Calculated distance from three cities

ptg999

Chapter 10 Location Awareness with the Geolocation API250

ADVANCED RECIPE:
Following a Moving Location with
watchPosition
The browser that your visitor is using in many cases will be mobile-based. It is not
uncommon to see people walking down the street, riding the subway, or otherwise
moving about while getting information about their surroundings or their locations.
The getCurrentPosition method provides a position object once when called.
However, as a person moves around, it would be nice to “follow” the location. This is
where two new methods, watchPosition and clearWatch, of the GeoLocation API
are useful.

The watchPosition method is very similar to the getCurrentPosition and takes
the same parameters. When the watchPosition method is called, the browser will
create a background task and provide a reference ID to a watch process as a return.
The background task will retrieve the current position, send the location to the suc-
cess callback, and then set a timer to watch the position. Each time the timer is trig-
gered and a new location is retrieved, the location is then compared to see whether it
is “significantly” different. If the new location is significantly different from the last,
then the success callback function is called with the new location information. The
process will continue to run until the clearWatch method is called with the watch ID
as a parameter or the browser tab or window is closed (in mobile platforms such as the
iPhone, this could be when the browser is also sent to the background). The following
are the interfaces of the watchPosition and clearWatch methods, respectively:

long watchPosition (successCallback [, errorCallback] [, positionOptions])

The parameters of the watchPosition method are as follows:
n successCallback: The function to execute and pass the location object to

when a new location is identified by the browser
n errorCallback: (Optional) The function to handle any errors that occurred
n options: (Optional) An options object to handle how the position is retrieved

clearWatch (watchId)

The parameter of the clearWatch method is as follows:
n watchId: The long ID reference to the watch process to end

In this recipe, you will use the watchPosition method to retrieve the location of
the browser and map a new marker on a Google map whenever the location differs
from the last marker by more than a quarter of a mile. The viewport for this recipe is
set in the meta tag for an iPhone width along with the CSS styles so that the recipe
can be easily run on an iPhone to show the movement on the map. A line will be
connected between the points to show a trail of the past points, and the map will be

ptg999

251Advanced Recipe: Following a Moving Location with watchPosition

centered on the last point shown. When the user clicks the Clear Watch button, the
watch process will end.

By checking the distance from the last point, this allows you to keep the map fairly
clean as a person moves with their mobile device. If, however, you were working on a
smaller scale such as directions in a city, a quarter-mile difference may be too large; if
you were working with a fast means of transportation, a quarter mile may not be large
enough. This difference check will be based on your own needs, but this recipe shows
how you can filter location points using some quick distance calculations as the loca-
tion changes.

1. Create the HTML page with the Start Watch and Clear Watch buttons, as
shown in Listing 10.4.

2. Include the script for the Google Maps JavaScript API V3 Overlay with the
geometry library and the global variables that will hold the watch ID, map, poly-
line, and last latitude and longitude coordinates.

 3. Add the initMap function in the script, and set the load event to launch the
initMap function.

 4. Add the startWatch and clearWatch functions.

 5. Add the successCallback and errorCallback functions.

Listing 10.4 Using watchPosition to Track Your Path

<!DOCTYPE html>

<html>

<head>

<meta charset="UTF-8" />

<meta name="viewport" content="width=device-width; initial-scale=1.0; maximum-

➥scale=1.0; user-scalable=0;" />

<title>10.4 Leaving My Mark</title>

<style>

 #container {

 width:300px;

 }

 #mapCanvas {

 width:300px;

 height:200px;

 border-style:solid;

 border-width:2px;

 margin: 22px 0;

 }

 #btnMap {

 float:left;

 }

ptg999

Chapter 10 Location Awareness with the Geolocation API252

 #location {

 float:right;

 }

 .numDistance {

 text-align:right;

 }

</style>

<script type="text/javascript"

➥src="http://maps.google.com/maps/api/js?sensor=false&libraries=geometry">

➥</script>

<script>

// declare our variables

var watchId; // our watchposition process id

var map; // our map

var poly; // our polyline for marking our path

var lastLatLng; // the last lat and lng coordinate

// set constant for miles for computeDistanceBetween method

var conEarthMi = 3963.19;

// initialize our map

function initMap() {

 // add the button listeners

 var btnStartWatch = document.getElementById('startWatch');

 var btnStopWatch = document.getElementById('stopWatch');

 btnStartWatch.addEventListener('click',startWatch,false);

 btnStopWatch.addEventListener('click',stopWatch,false);

 // set initial position to new york and create map

 lastLatLng = new google.maps.LatLng(40.7141667,-74.0063889); // new york

 var myOptions = {

 zoom: 14,

 center: lastLatLng,

 mapTypeId: google.maps.MapTypeId.ROADMAP

 }

 map = new google.maps.Map(document.getElementById('mapCanvas'), myOptions);

 // set our polyline for showing the path

 var polyOptions = {

 strokeColor: '#00FF00',

 strokeOpacity: 1.0,

 strokeWeight: 3

 }

ptg999

253Advanced Recipe: Following a Moving Location with watchPosition

 poly = new google.maps.Polyline(polyOptions);

 poly.setMap(map);

}

// success handler for geolocation watch position

function successCallback(position) {

 // get our latitude and longitude

 var posLat = position.coords.latitude;

 var posLng = position.coords.longitude;

 // create a new google maps latlng object

 var newLatLng = new google.maps.LatLng(posLat,posLng);

// calculate distance from last point

 var distFromLast =

➥google.maps.geometry.spherical.computeDistanceBetween(newLatLng,

➥lastLatLng, conEarthMi);

 // verify distance greater than a quarter of a mile

 if (distFromLast > 0.25) {

 // get the polyline path array

 var path = poly.getPath();

 // Add the new coordinate to our path array

 path.push(newLatLng);

 // Add a new marker at the new coordinate

 var marker = new google.maps.Marker({

 position: newLatLng,

 title: '#' + path.getLength(),

 map: map

 });

 // recenter the map on the new coordinate

 map.setCenter(newLatLng);

 // update our display

 document.getElementById('myPosLat').innerHTML = posLat.toFixed(8);

 document.getElementById('myPosLng').innerHTML = posLng.toFixed(8);

 document.getElementById('watchStatus').innerHTML = 'Updated Position (#' +

➥path.getLength() + ')';

 // set our last coordinate to the new coordinate

 lastLatLng = newLatLng;

 }

}

ptg999

Chapter 10 Location Awareness with the Geolocation API254

// error handler for geolocation watchposition

function errorCallback(error) {

 // initialize our error message

 var errMessage = 'ERROR: ';

 var divWatchStatus = document.getElementById('watchStatus');

 // based on the error code parameter set the message

 switch(error.code)

 {

 case error.PERMISSION_DENIED:

 errMessage += 'User did not share geolocation data.';

 break;

 case error.POSITION_UNAVAILABLE:

 errMessage += 'Could not detect current position.';

 break;

 case error.TIMEOUT:

 errMessage += 'Retrieving position timed out.';

 break;

 default:

 errMessage += 'Unknown error.';

 break;

 }

 // update our status

 divWatchStatus.innerHTML = errMessage;

}

// button start watch handler

function startWatch() {

 var divWatchStatus = document.getElementById('watchStatus');

 // verify geolocation is available

 if (navigator.geolocation) {

 // make sure only one watch

 if (watchId == null) {

 // set our position options

 // maximum age 40 seconds

 // timeout of 20 seconds

 // enhanced accuracy on for mobile

 var posOptions = {maximumAge:40000,

 timeout:20000,

 enhancedAccuracy:true}

ptg999

255Advanced Recipe: Following a Moving Location with watchPosition

 // start our watch

 watchId = navigator.geolocation.watchPosition(successCallback,

 errorCallback,

 posOptions);

 // update our status

 divWatchStatus.innerHTML = 'Watching Location ('+watchId+')';

 }

 } else {

 // update status that geolocation is not available

 divWatchStatus.innerHTML = 'Geolocation Not Supported';

 }

}

// button stop watch handler

function stopWatch() {

 // verify that we have a watch currently on

 if (watchId != null) {

// clear our watch

 navigator.geolocation.clearWatch(watchId);

 // set the watchId flag to null

 watchId = null;

 // update our status

 document.getElementById('watchStatus').innerHTML = 'Off';

 }

}

// Initialize the page

window.addEventListener('load',initMap,false);

</script>

</head>

<body>

<div id="container">

 <div id="mapCanvas"></div>

 <div id="btnMap">

 <button id="startWatch">Start Watch</button>

 <button id="stopWatch">Stop Watch</button>

 </div>

 <div id="location">

 <table id="status">

 <tr>

 <td>Latitude:</td>

ptg999

Chapter 10 Location Awareness with the Geolocation API256

 <td class="numDistance"><div id="myPosLat"></div></td>

 </tr>

 <tr>

 <td>Longitude:</td>

 <td class="numDistance"><div id="myPosLng"></div></td>

 </tr>

 <tr>

 <td colspan="2"><div id="watchStatus"></div></td>

 </tr>

 </table>

 </div>

</div>

</body>

</html>

Let’s look at Listing 10.4 in a bit of detail. When the page loads, the initMap func-
tion is called and initializes the map on the page. We have chosen coordinates for New
York City, but you could easily set a different starting center for the map or load the
map only when the watch starts. In the initMap, you create a polyline layer on top of
the map, which will allow you to connect the coordinates from the watch and display
the “path” to the viewer. The map is now initialized, and you can begin the watch of
the position.

To start, the Start Watch button is clicked or tapped. As normal, you should be
asked to confirm you want to share your location information. Once clicked, the
startWatch function will be called. In the startWatch function, you check that
there is no watch process already running by checking the global watch ID variable.
This prevents more than one watch process from being started. You then set the posi-
tion options and call the watchPosition method. The return of watchPosition, the
watch ID, is then stored in the watchId variable so that you can use it to stop the pro-
cess later with the clearWatch.

When the watchPosition returns with a location object, you pull out the lati-
tude and longitude properties, create a latitude and longitude object, and then cal-
culate the distance with the last latitude and longitude coordinates with the Google
computeDistanceBetween method. In this case, you pass into the method the new
coordinate, the last coordinate, and a constant value, informing the function that
you want the return value in miles. You then check this distance to see whether it is
greater than a quarter of a mile so that you do not f lood the map with markers. If the
next point is more than the distance, then you push onto the poly path array of points
the new coordinate and add a new marker. Pushing the coordinate onto the array
updates the line on the map, so with each new point the path will grow, showing
where you have been, as shown in Figure 10.4.

This recipe shows how you can access the browser’s location and be notified when-
ever that position changes. This information can be used for a wide array of applica-
tions including integration with databases of location-based services such as the Yahoo
Query Language and the beta of Google Places to show nearby places of interest.

ptg999

Summary 257

Note
One thing to consider as you are working with devices, especially mobile devices, and
retrieving geolocation information is that the continual retrieval of device information will
accelerate the use of the device’s battery. This should be taken into account when you
design your application and used only when needed in order to minimize the usage.

Summary
The Geolocation API provides an easy interface for adding location-specific and posi-
tion-aware functionality to websites and applications. Some of the solutions that can be
designed include the following:

n Display of location specific information
n Proximity awareness
n Dynamic adjustment to a locale, such as language and currency

Figure 10.4 Growing the path with coordinate points

ptg999

Chapter 10 Location Awareness with the Geolocation API258

n Map and route integration
n Geotagging data, pictures, and other items with location information

In this chapter, you learned the getCurrentPosition, watchPosition, and
clearWatch methods along with the success and error callbacks from these methods.
The possibilities are endless, and it is exciting to have this option now in browsers.

ptg999

11
Client-Side Storage

The persistence of information in the visitor’s browser has historically been limited to
keys and values in cookies. Cookie storage is limited in size and structure, and cook-
ies are passed with each request to their corresponding websites, creating unnecessary
overhead. Certain sets of data could improve the user experience if cookies could be
stored and retrieved locally, instead of being retrieved by web servers each time they
are used. In HTML5, two client-side storage facilities have been added: web storage,
which includes session and local storage, and database storage. In this chapter, you will
learn about these new client-side storage options and work through some recipes to
get you started with storing data locally in the browser.

Client-Side Storage Overview
To start talking about the new storage APIs, let’s first look at what we previously had
available in browsers to store information locally. Typically, to store information that
could be retrieved at a later time in a visitor’s browser, you had to create a cookie.
Information stored may have included user preferences, form information, user keys,
or the like. However, the storage of cookies is limited to approximately 4KB, contains
only simple key/value pairs, and increases overhead by sending the cookie with each
request to the server.

The session and local web storage options provided in HTML5 are similar to cook-
ies in that the structure is in key/value format, in which string values can be assigned
to string-based keys. A value can be accessed in the session or local storage by asking
for the appropriate key in the storage object. The difference between the session and
local options is simply the scope of the object in the visitor’s session. In session stor-
age, the data is stored only for that particular session with the website. Once the ses-
sion has ended, through closing the window or tab in the browser, the storage will
be removed. When the user returns, the session storage will be empty. If, instead,
you want the data to be available across sessions, whether at the same time in another

ptg999

Chapter 11 Client-Side Storage260

window or a new session at a later date, then you can use the local storage, which is
persisted even after closing the current session.

Key/value pairs limit storing more complex information (or at least make it dif-
ficult). Thus, a third type of storage has been added to provide data storage like you
would normally use on the server side: database storage. Database storage leverages a
SQLite database or IndexedDB and allows you to store more complex data objects, as
you will see later in the chapter. Like local storage, database storage persists across ses-
sions. Which storage mechanism you use in your website or application depends on
the type of information you need to store, the scope of the data, and how long you
need the data to be persisted. Table 11.1 provides a quick way to determine the appro-
priate storage type.

Data Security
When we discuss data storage, we must also discuss security. Like storing information
in a server database of a web application, similar security guidelines should be applied to
database storage on the client side. This is especially true since unlike a server where you
may have control over the firewalls, users, passwords, and other security features, a visi-
tor’s browser is outside the immediate network. This makes it that much more important
to be vigilant about what is stored in the client browser and how it is stored. Encryption
may be a consideration depending on the data you are storing, but if you are considering
encryption of the data, you may want to reconsider storing it in the first place.

The storage options in HTML5 employ “origin-based” security by limiting access
to session, local, and database client-side storage to pages that originate from the same
domain from which the storage was created. In this manner, pages from other sites
or applications cannot access the data. However, the “origin” security implementa-
tion uses the page’s origin as the determining factor for access to the session and local
storage lists of key/value pairs. Because of this, there is the potential for storage to be
exposed to embedded scripts. This makes knowing the actions that the external files
you use in your pages that much more important.

Note
Data you store using the local, session, or database objects is limited to the specific
browser that is being used by the visitor at the time. If the user returns to your site or
application using a different browser or a different computer, then the storage will not be
accessible. Data that you would like accessible anywhere will still need to be stored on
your database server or in the cloud.

Table 11.1 Client Storage Types and Properties

Storage Format Scope Persistence

Session Key/value Session only Session only

Local Key/value Across sessions Across sessions

Database Structured Across sessions Across sessions

ptg999

Client-Side Storage Overview 261

Client-side storage is being adopted rapidly by the different browser platforms, and
Chrome is the leader in this support. There is still debate about the implementation of
the best database storage mechanism by the different browsers, but Table 11.2 lists the
current support of the client-side storage objects by various browsers.

Table 11.2 Client-Side Storage
Browser Availability

Android 2.1+

Chrome 10.0+

Firefox 10.6+

Internet Explorer 8.0+

iOS Safari 3.2+

Opera 10.6+

Safari 4.0+

Keys and Values: sessionStorage and localStorage
The session storage and local storage objects are similar in their implementations
and differ only in the scope and persistence of the data that is written, as shown in
Table 11.1. The browser provides a built-in storage interface for each storage type,
sessionStorage and localStorage, and each uses a list of key/value pairs to store
the data. You can set a value to a key and then retrieve the value by asking for the key.
Both storage objects provide methods to set values, get values, remove a key, retrieve
a key for a position in the list, and clear all the key/value pairs in the storage object.
The methods and properties of each storage object type are the same, because they are
inherited from the same Storage interface defined in the Web Storage specification:

n setItem(key,value): Sets the key/value pair passed as parameters. If the key
exists, then the value is updated with the value passed.

n getItem(key): Returns the value for the key passed as a parameter.
n removeItem(key): Removes the key/value pair as defined by the key passed.
n key(n): Returns the name of the key for the index provided.
n clear: Removes all key/value pairs.
n length: Provides the number of key/value pairs in the storage list.

To set an item, you call setItem and provide a key and a value to be set:

setItem(key, value)

ptg999

Chapter 11 Client-Side Storage262

Here are the parameters:
n key: The key to file the string value under
n value: The value to be stored with the file

The value is a string, so if you are storing a number, it will be treated as a string in
the storage and will need to be converted back to the proper data type when retrieved.
The key and value will then be stored in no particular order in the list of key/value
pairs in the browser storage for the domain that the page has been loaded from.

If you set the item with a key that already exists, then the value of that key will be
updated with the new value provided. Thus, the setItem method acts as both a create
method and an update method. To store the value “book” under the key “source” in
the session storage, you would make the following call in JavaScript:

sessionStorage.setItem('source', 'book');

The setItem method does not have a return value, so to protect against possible
storage errors, you can enclose the call in a try-catch block.

To retrieve the value of a key from either the session storage or the local storage,
you call getItem with the key that you are interested in. The return will be a string
value, which you can then use in your script:

string getItem(key)

Here key is the string key to retrieve the corresponding value.
To retrieve the value stored in the previous example, you would ask for the

“source” key from the session storage by performing the following call:

textSource = sessionStorage.getItem('source');

Since the session and local storage are based around storage objects, you can also
use object dot notation to access stored values of keys by using the key as the property
name, as shown here:

textSource = sessionStorage.source;

Now that we have brief ly discussed the get and set methods of the session and
local storage, we’ll show a basic recipe in action. We will start the recipes with the ses-
sion object and then move to local storage.

Tip
In browsers such as Firefox, the user can disable storage. To validate that storage is
available, your code should attempt to write and then retrieve a value. If the value cannot
be retrieved, then storage may be disabled in the browser.

ptg999

Beginner Recipe: Getting and Setting Session Storage 263

BEGINNER RECIPE:
Getting and Setting Session Storage
In this recipe, the HTML page will use the getItem and setItem methods of the
sessionStorage object to store and retrieve the number of times that a visitor views a
page in the session. This number is incremented with each refresh of the page and dis-
played to the visitor. Perform the following steps to create the page in Listing 11.1:

1. Create a blank HTML page with a div titled divVisits.

 2. Add the init function in a set of script tags with the code from Listing 11.1.

 3. Add the window.addEventListener event handler to launch the init function
after the page loads.

Listing 11.1 Displaying Page Visits Using Session Storage

<!DOCTYPE html>

<html>

<head>

<meta charset="UTF-8" />

<title>11.1 Session Storage Page Visits</title>

<script>

function init() {

 // reference the div for display

 var divVisits = document.getElementById('divVisits');

 // check if our browser supports sessionStorage

 if (window.sessionStorage) {

 var visits; // number of visits to this page

 // check to see if our variable exists using dot notation

if (sessionStorage.visits) {

 // retrieve key and convert to int

visits = parseInt(sessionStorage.getItem('visits'));

 // increment the visits

 visits++;

 } else {

 // default to first visit

 visits = 1;

 }

ptg999

Chapter 11 Client-Side Storage264

 // update our visits variable

sessionStorage.setItem('visits',visits);

 // display the number of session visits

 divVisits.innerHTML = 'Session page visits: ' + visits;

 } else {

 // sessionStorage not available

 divVisits = 'Window sessionStorage is not available';

 }

}

// onload launch our init function

window.addEventListener('load',init,false);

</script>

</head>

<body>

 <div id="divVisits"></div>

</body>

</html>

When you load the page created in Listing 11.1 in your browser, the init function
will be launched. The init function will first check to see whether the sessionStorage
object is available in the window by checking for window.sessionStorage. If the
sessionStorage object is not available, then you will display a message in your div
on the page.

Assuming that the session Storage object is available, the JavaScript code then
checks to see whether the key “visits” exists by asking for the value through the dot
notation: sessionStorage.visits. If the key “visits” exists, then the value will be
returned, and the check will pass. Otherwise, you know that this is the first time for
this session and will start the “visits” count at 1. If the key is in session storage, then
to demonstrate the get method of retrieving values, you will retrieve the value of the
key via the getItem method. When the value is retrieved, you convert the “visits”
string value to an integer data type with parseInt. This conversion must be done
because all values in web storage are stored as basic strings. If your script is storing and
then retrieving other data types, you will want to convert these strings to their proper
types.

After you have either retrieved the number of visits and incremented it by 1 or set
the initial value to 1, the script will then update the “visits” key in the session stor-
age with the setItem method. If the key was not in session storage previously, then
setItem will add the key/value pair, but if the “visits” key was already in session stor-
age, then the value will be updated with the new number of visits.

ptg999

Beginner Recipe: Getting and Setting Session Storage 265

Chrome Developer Tools for Viewing Storage
You may wonder after loading the page created in Listing 11.1 in your browser how
you can validate what is happening behind the scenes in the local session storage as the
script runs. The Google Chrome browser has a set of tools titled Developer Tools that
you may already be familiar with. If you open these tools in your browser window and
refresh your page, you will be able to see the session storage key/value pairs under the
Resources section, as shown in Figure 11.1.

In Figure 11.1, the domain that has stored keys is shown on the left under Session
Storage, and on the right are the key/value pairs that are currently stored. In this case,
the current value of visits is 2, and the JavaScript has displayed this to the user. The
Developer Tools of Chrome are useful for working with the session and local storage
because you can confirm not only that your script is working correctly but also add,
update, and remove key/value pairs through the user interface. In the current version
of the Developer Tools, you will need to refresh the storage key/value view pane with
the Refresh button at the bottom if you change a key/value pair.

Tip
Any object that has a toString built-in method can be stored in the value field of
the key/value pairs of session and local storage. Even more complex JSON struc-
tured objects can be stored by using the JSON.stringify(yourObject) and
JSON.parse(itemRetrieved) methods to convert the JSON object to a string and
then convert the string retrieved back to your object.

Figure 11.1 Viewing the session storage key/value pairs in Chrome’s
Developer Tools

ptg999

Chapter 11 Client-Side Storage266

This recipe performed a very simple setting and getting of a key/value pair in ses-
sion storage. The next recipe will include error handling and show the availability of
session storage across pages.

BEGINNER RECIPE:
Styling from Session Storage
In this recipe, you will provide the visitor to your page with the opportunity to select
a theme color for the background of the pages. The visitor’s selection will be stored in
the session storage and retrieved on a second page to control the background color. A
theme reset option is provided, which will remove the stored background key/value
pair from the session storage. The following is the removeItem method that will be
used in this recipe:

removeItem(key)

Here key is the key string to be removed.
Like any data storage mechanism, session and local storage have size limitations in

place to protect the browser and the client’s machine. Each browser sets its own size
limitation, but unlike cookies, which are limited to a rather small 4KB, the sizes allo-
cated for session and local storage are much larger. At the time of writing this book,
Internet Explorer 9, for example, has a 10MB limitation. If your script attempts to set
or update a value for a key and hits this ceiling, an error will be thrown. To prevent
your script from abruptly ending because of this error, you should wrap your setItem
method calls in a try-catch block. In this recipe, we will show you how to catch this
error if it were to happen. The following steps and Listing 11.2 will allow you to cre-
ate page 1 of the recipe:

1. Create the page in Listing 11.2 with the style, script, and body tags.

 2. Add the themeContent and themeSettings divs, as shown in Listing 11.2
with the corresponding HTML.

 3. Add the initTheme, setTheme, resetTheme, and applyTheme functions to
your script.

 4. Add the window.addEventListener statement to trigger the initTheme
function.

Listing 11.2 Setting a Theme in Session Storage

<!DOCTYPE html>

<html>

<head>

<meta charset="UTF-8" />

<title>11.2 Theme Selector - Page 1</title>

<style>

#themeContent {

ptg999

Beginner Recipe: Styling from Session Storage 267

 background-color:#FFF;

 border-style:solid;

 border-width:2px;

}

#themeSettings {

 margin:10px;

}

</style>

<script>

var themeDiv; // output display div

// function to initialize the theme

function initTheme() {

 // set our div reference for output

 themeDiv = document.getElementById('theme');

 // check if our browser supports sessionStorage

 if (window.sessionStorage) {

 // set the button handler

 var btnResetTheme = document.getElementById('resetTheme');

 btnResetTheme.addEventListener('click',resetTheme,false);

 // set the select list change handler

 var selThemeColor = document.getElementById('themeColor');

 selThemeColor.addEventListener('change',setTheme,false);

 // check if we have previously set the theme color

 if (sessionStorage.themeColor) {

 // set the initial theme color

 var themeColor = sessionStorage.getItem('themeColor');

 document.getElementById(themeColor).selected = true;

 applyTheme(themeColor);

 }

 } else {

 themeDiv.innerHTML = 'sessionStorage is not supported.';

 }

}

// set the chosen theme

function setTheme() {

 // retrieve the theme color selected

 var themeColor = document.getElementById('themeColor').value;

ptg999

Chapter 11 Client-Side Storage268

 // use our try catch and set the theme color

try {

 sessionStorage.setItem('themeColor',themeColor);

 applyTheme(themeColor);

 }

 catch(err){

 // error code 22 QUOTA_EXCEEDED_ERR says we ran out of space

 if(err.code == QUOTA_EXCEEDED_ERR){

 themeDiv.innerHTML = 'sessionStorage ran out of memory.';

 // perform any other handling we want to here

 }

 }

}

// function to reset the theme color

function resetTheme() {

 // remove the item from the session storage

sessionStorage.removeItem('themeColor');

 // reset display

 document.getElementById('default').selected = true;

 document.body.style.backgroundColor = '';

 themeDiv.innerHTML = 'Theme reset.';

}

// apply a theme to the page

function applyTheme(themeColor) {

 document.body.style.backgroundColor = themeColor;

 themeDiv.innerHTML = 'Theme ' + themeColor + ' applied. ';

}

// initialize our window

window.addEventListener('load',initTheme,false);

</script>

</head>

<body>

<div id="themeContent">

 <div id="themeSettings">

 <H1>Page 1</H1>

 Choose Theme:

 <select id="themeColor">

 <option id="default" value="">Select color...</option>

 <option id="blue" value="blue">Blue</option>

 <option id="red" value="red">Red</option>

 <option id="yellow" value="yellow">Yellow</option>

 <option id="green" value="green">Green</option>

 </select>

ptg999

Beginner Recipe: Styling from Session Storage 269

 <button id="resetTheme">Reset Theme</button>

 <div id="theme"></div>

 Go To Page 2

 </div>

</div>

</body>

</html>

After setting the theme on page 1, which is in Listing 11.2, you can verify that the
theme has been stored by loading a different page that reads the storage and uses the
theme information to set the proper theme. Use the following steps and Listing 11.3 to
create the second page to show the theme color previously selected:

1. Create a new page based on Listing 11.3 with the appropriate sections.

2. Modify the page’s a tag in both pages to correspond to the name of your pages
so that you can navigate back and forth between the pages.

Listing 11.3 Showing the Theme Page 2

<!DOCTYPE html>

<html><head>

<meta charset="UTF-8" />

<title>11.3 Showing the Theme - Page 2</title>

<style>

#themeContent {

 background-color:#FFF;

 border-style:solid;

 border-width:2px;

}

#themeSettings {

 margin:10px;

}

</style>

<script>

// initialize our page

function init() {

 // retrieve the saved theme color

 var themeColor = sessionStorage.getItem('themeColor');

 applyTheme(themeColor);

}

// apply the theme to the page

function applyTheme(themeColor) {

 document.body.style.backgroundColor = themeColor;

ptg999

Chapter 11 Client-Side Storage270

 var themeDiv = document.getElementById('theme');

 themeDiv.innerHTML = themeColor + ' theme.';

}

// initialize the page

window.addEventListener('load',init,false);

</script>

</head>

<body>

<div id="themeContent">

 <div id="themeSettings">

 <H1>Page 2</H1>

 <div id="theme"></div>

 Go To Page 1

 </div>

</div>

</body>

</html>

When page 1 is loaded into your browser, the page first retrieves the currently
stored theme color from the session storage. The first time the page is run, there is
no theme, and the return value is empty, so the theme is set to the browser’s default.
On subsequent loads of the page, the color would be retrieved, set to the background
color, and set as the selected value in the color select control.

Note
To run recipes involving session storage, you will need to upload the pages to a server
instead of running them in “local mode.” The reason is that in local mode some browsers
will throw an error saying that the operation is not supported. For example, in Firefox, an
“Operation is not supported” code 9 error will be thrown.

Once loaded, the visitor can change the drop-down list of options to another color,
which will change the page background color and store the color in session storage
under the key themeColor. In the script, this setItem call to store the setting has
been wrapped in a try-catch block. If triggered because of the size constraints, the
code informs the visitor that the session storage is full, but you could perform what-
ever actions are needed when this scenario occurs. After setting the theme color, the
visitor can click Go To Page 2, which will load the second page. Since the second page
is in the same session as the first page, it will also have access to the session storage
key/value pair saved on page 1. The second page then retrieves this item and sets the
background to the stored color.

ptg999

Intermediate Recipe: Storing Forms with Local Storage 271

In Listing 11.2, you also added the option for the visitor to reset the theme. In
this case, the recipe removes the key/value pair from the session storage with the
removeItem method. The recipe could have also updated the key by calling setItem
with an empty string value.

At the beginning of this chapter, we discussed how session storage allows you to
store data for that session only. If you load the page created in Listing 11.2 into two
tabs or windows in the same browser and then select different colors, each tab will
have its own background color since there is a different session for each tab or win-
dow. To have the values available across browser windows or tabs, and even after the
browser is closed and reopened, you will need to use the local storage object. We will
look at the local storage object in the next recipe.

INTERMEDIATE RECIPE:
Storing Forms with Local Storage
Session storage, as shown in the previous recipes, provides you with a method to store
items for the period of the visitor’s session, which can be beneficial for short-term stor-
age. At times, though, you will want to store data in the visitor’s browser for use when
they return or even across currently active sessions. This is where local storage is valu-
able. Local storage uses the same key/value pair list to store data with the getItem,
setItem, and removeItem web storage methods. The important factor is that the data
you store in local storage persists even after the session is closed.

This recipe shows an example of remembering form data that a visitor has previ-
ously filled out. A visitor could come to your site, start a form, and then navigate away
or close their browser. Typically, the visitor would have found the form empty when
they returned to the site. In this recipe, as the visitor fills out the form, the JavaScript
catches the changes and stores the form fields and values in the local storage. Then if
the page is closed and reloaded, the page checks local storage to see whether there is
stored form data and automatically populates the form with the information. A similar
implementation could even handle collecting form data from a multipage form and
storing it locally until the entire form has been completed.

Two new concepts with the session and local storage are employed in this recipe:
key and length. The key method allows you to retrieve the name of the key stored
by supplying an index value to the key method:

DOMString key(index)

Here, index is the index of the key/value pair to return the key string for.
The recipe also uses the length property of the session and local storage, which

returns the number of key/value pairs in the session or local storage. To return the
number of key/value pairs, you would use a call like the following:

var numItems = localStorage.length;

ptg999

Chapter 11 Client-Side Storage272

In this recipe, you will use both the key method and the length property to loop
through the localStorage key/value pairs. Let’s do the following steps to get started
with Listing 11.4:

1. Create a blank HTML file and add the body HTML from Listing 11.4, which
holds the form and form fields you will be using. For simplicity sake, we have
used onchange inline for the form fields, but you could replace these with event
listeners for each of the fields.

 2. Add the script tags in the head of the HTML file with the window
.addEventListener function to launch the checkStorage function when the
page is loaded.

 3. Add the checkStorage function in the script, as shown in Listing 11.4.

 4. Add the changeField function in the script, as shown in Listing 11.4, which
will handle the form field changes.

5. Load the file in your Chrome browser with the Developer Tools open to the
local storage area, and enter information in the fields.

Listing 11.4 Storing Form Changes in localStorage

<!DOCTYPE html>

<html>

<head>

<meta charset="UTF-8" />

<title>11.4 Storing Form Data with Local Storage</title>

<script>

// function to read storage and init form

function checkStorage() {

 // check if local storage available

 if (window.localStorage) {

 var key, value, field;

 // loop through local storage

 for (var i = 0; i < localStorage.length; i++) {

 // retrieve the key

 key = localStorage.key(i);

 // set the field from the key

 field = document.getElementById(key);

 // check for field and assign value

 if (field) {

 // retrieve the value

 value = unescape(localStorage.getItem(key));

ptg999

Intermediate Recipe: Storing Forms with Local Storage 273

 // set the field value

 field.value = value;

 }

 } // end for loop

 } // end local storage check

} // end function

// set the localStorage with the changed field

function changeField(formField) {

 // check if local storage available

 if (window.localStorage) {

 var key, value;

 // set key to form field id

 key = formField.id;

 // set value to form field value

 value = escape(formField.value);

 // try to set item in local storage

 try {

 localStorage.setItem(key, value);

 }

 catch (err) {

 if (err.code == QUOTA_EXCEEDED_ERR) {

 alert('localStorage ran out of memory.');

 }

 }

 } else {

 alert('localStorage is not supported.');

 }

}

// initialize our form from storage

window.addEventListener('load',checkStorage,false);

</script>

</head>

<body>

<h1>My Form</h1>

<form id='myForm'>

 <table>

 <tr>

 <td>First Name:</td>

 <td><input type="text" id="firstName" onchange="changeField(this);" /></td>

 </tr>

ptg999

Chapter 11 Client-Side Storage274

 <tr>

 <td>Last Name:</td>

 <td><input type="text" id="lastName" onchange="changeField(this);" /></td>

 </tr>

 <tr>

 <td>Email:</td>

 <td><input type="email" id="email" onchange="changeField(this);" /></td>

 </tr>

 <tr>

 <td>Telephone:</td>

 <td><input type="tel" id="phone" onchange="changeField(this);" /></td>

 </tr>

 </table>

</form>

</body>

</html>

After you enter your first name in the firstName field and tab to the next field,
the onchange event will fire for the firstName field. The changeField func-
tion will then execute with the form field of firstName passed as a parameter.
The changeField function will then store the field data in a key/value pair in
localStorage. The function uses the ID of the form field for the key and the value
as the value in the key/value pair. So, if you have Developer Tools open in Chrome
when you are doing this, you should now see the key firstName with the value of the
text entry you supplied.

To see the real power of localStorage, close your tab or browser window and
then reopen it to this form page. When you reopen the page, the checkStorage func-
tion will execute on page load. This function is designed to check whether you have
previously stored any form information in local storage and retrieve this information.
The function will retrieve each key/value pair by looping through the localStorage
list, check to see whether there is a form field ID that matches the key name, and if so
set the field value to the value retrieved.

In this recipe, you use simple text fields to show the power of localStorage,
but this could be used for other types of form inputs as well. The changeField and
checkStorage functions would need to be updated to handle different logic for dif-
ferent field types such as a select list or a radio button, but the value could be stored
like the regular text input in local storage.

After the page is finished with the stored form information and the form is ulti-
mately submitted to the server, you would ideally want to remove the fields. Besides
the removeItem method that you saw before, the storage API provides a method for
clearing the entire session or local storage: clear. The clear method takes no param-
eters nor does it return any result and “clears” all key/value pairs for the page’s domain
out of the list. The following is an example of the call:

localStorage.clear();

ptg999

Advanced Recipe: Catching Events in Local Storage 275

The execution of this line will clear all key/value pairs from the local storage list
no matter which page added them or when they were added. Because this is an all-or-
nothing type of method, you should be absolutely positive you want to clear the con-
tents of the session storage or the local storage.

In the recipes to this point, you learned about the basics of adding, updating, and
removing stored data for a site on the client machine. This assumes the visitor is on a
single page interacting with the site at the time. If the stored information was changed
from another page in the browser, you have had no way to automatically handle that
change on a previously open page. The client-side storage API provides an event
structure for session storage and local storage updates that you can catch and handle on
an open page. This next recipe combines the methods you have seen along with stor-
age update events to refresh your page content.

ADVANCED RECIPE:
Catching Events in Local Storage
In this recipe, you will use the local storage methods and properties to implement a
notes sidebar, which will allow the visitor to take notes as they browse through the
site. The notes are stored in the local storage of the visitor’s browser, and the order of
the notes is maintained. The visitor can add a new note, update a note, remove a note,
or remove all their notes. In addition, if the visitor is viewing the site in multiple tabs
or browser instances, the notes will automatically update on all pages when a change
happens on one page.

To automatically update the list of notes on a browser tab or window based on a
change in the list of the notes by the visitor on another tab or window, you will need
to employ the storage event mechanism. Like other events you have seen, a storage
event is raised when the session storage or local storage is modified. The event could
occur when a new key/value pair is added, updated, or removed. A handler on the
page can listen for these events and perform actions based on the receipt of the event.
The storageEvent contains attributes that will help determine the actions that need
to be taken (Table 11.3). In this recipe, you will catch the event, verify that it is from
local storage, alert the visitor of the change, and then refresh the notes list so that you
are showing the current list.

Table 11.3 The storageEvent Attributes

Attribute Type Purpose

key DOMString The key on which the change occurred

oldValue DOMString The old value

newValue DOMString The new value

url DOMString The URL of page that made the change

storageArea Storage The storage area that this update occurred in

ptg999

Chapter 11 Client-Side Storage276

Let’s get started with the following steps for Listing 11.5:

1. Create a blank HTML page with the HTML body and style tags, as shown in
Listing 11.5.

 2. Add the script tags and keyCode variable declaration. This variable holds a key
that you will prefix each stored note with.

 3. Add the window.addEventListener line and the initNoteBoard and
updateNoteBoard functions.

4. Add the note functions: addNote, changeNote, updateNote, and removeNote.
The changeNote function loads the note into the update form, while
updateNote modifies the note in local storage.

 5. Add the clearAllNotes function to allow the visitor to reset the note board.

6. Add the event handler function, onStorageEvent, which will catch any storage
events.

Listing 11.5 Storing Notes in Local Storage

<!DOCTYPE html>

<html>

<head>

<meta charset="UTF-8" />

<title>11.5 Storing Notes in Local Storage</title>

<style>

* {margin: 0; padding: 0;}

body {padding: 20px;}

h1 {font-size: 120%; margin: 0 0 .5em;}

section {width: 300px;}

#noteBoard, textarea {

 -moz-border-radius: 10px;

 -webkit-border-radius: 10px;

 border-radius: 10px;

 -moz-box-shadow: 0px 0px 4px rgba(0,0,0,.4);

 -webkit-box-shadow: 0px 0px 4px rgba(0,0,0,.4);

 box-shadow: 0px 0px 4px rgba(0,0,0,.4);}

#noteBoard {

 background: #FCFABA;

 float: right;

 padding: 10px 20px;}

#noteBoard div {

 border-bottom: 1px dashed #CCC;

 margin: 0 0 5px;

 padding: 5px 0;

 width: 100%;}

#noteBoard div.buttons {border: none;}

#addNote, #updateNote {float: left;}

ptg999

Advanced Recipe: Catching Events in Local Storage 277

#addNote {

 border-right: 1px dashed #ccc;

 margin: 0 50px 0 0;

 padding: 0 50px 0 0;}

#updateNote { display:none;}

textarea {

 border: none;

 clear: both;

 height: 150px;

 margin: 0 0 10px;

 padding: 10px;

 width: 280px;}

input[type="text"] {margin: 0 0 10px; padding: 4px; }

button {padding: 5px;}

</style>

<script>

// note prefix for storage entries

var keyCode = 'note';

// initialize our note board

function initNoteBoard() {

// set our listener for storage changes

 window.addEventListener('storage', onStorageEvent, false);

 // set listeners for new and update note

 var btnAddNote = document.getElementById('btnAddNote');

 var btnUpdateNote = document.getElementById('btnUpdateNote');

 btnAddNote.addEventListener('click',addNote,false);

 btnUpdateNote.addEventListener('click',updateNote,false);

 // update the display

 updateNoteBoard();

}

// our storage event handler

function onStorageEvent(eventObj) {

if (eventObj.storageArea == localStorage) {

 // alert visitor of change

 alert(eventObj.key + ' changed from "' +

 eventObj.oldValue +

 '" to "' +

 eventObj.newValue + '".');

ptg999

Chapter 11 Client-Side Storage278

 // update the display

 updateNoteBoard();

 }

}

// add a note function

function addNote() {

 // retrieve the number of notes we have

 var numNotes = parseInt(localStorage.getItem('numNotes'));

 if (isNaN(numNotes)) {

 numNotes = 0;

 }

 // set our key and value

 var noteKey = keyCode+numNotes;

 var noteValue = document.getElementById('note').value;

 // set our note

 localStorage.setItem(noteKey, noteValue);

 // update the number of notes

 numNotes++;

 localStorage.setItem('numNotes', numNotes);

 // update our note board

 updateNoteBoard();

 // reset our note entry

 document.getElementById('note').value = '';

}

// function to load the note to be updated

function changeNote(noteKey) {

 // set our key and value in the update form

 document.getElementById('oldKey').value = noteKey;

 document.getElementById('oldNote').value = localStorage.getItem(noteKey);

 // show our update note area

 document.getElementById('updateNote').style.display = 'block';

}

// function to update the note

function updateNote() {

 // retrieve our new values for the note

 var key = document.getElementById('oldKey').value;

 var note = document.getElementById('oldNote').value;

ptg999

Advanced Recipe: Catching Events in Local Storage 279

 // update the key/value pair

 localStorage.setItem(key, note);

 // clear our update area

 document.getElementById('updateNote').style.display = 'none';

 document.getElementById('oldKey').value = '';

 document.getElementById('oldNote').value = '';

 // update our display

 updateNoteBoard();

}

// function to remove a note

function removeNote(noteKey) {

 // retrieve our number of notes

 var numNotes = parseInt(localStorage.getItem('numNotes'));

 // extract our note key index from the note key

 keyIdx = parseInt(noteKey.substring(keyCode.length,noteKey.length));

// loop through notes and move each down the list

 for (var i = keyIdx; i < numNotes; i++) {

 localStorage.setItem(keyCode+i,localStorage.getItem(keyCode+(i+1)));

 }

 // update our number of notes

 numNotes--;

 localStorage.setItem('numNotes',numNotes);

 // remove the last note that is now a duplicate

 localStorage.removeItem(keyCode + numNotes);

 // update our display

 updateNoteBoard();

}

// function to remove all notes

function clearAllNotes() {

 // retrieve the number of notes

 var numNotes = parseInt(localStorage.getItem('numNotes'));

 if (isNaN(numNotes)) {

 numNotes = 0;

 }

// loop through note key/value pairs and remove

 for (var i = 0; i < numNotes; i++) {

ptg999

Chapter 11 Client-Side Storage280

 localStorage.removeItem(keyCode+i);

 }

 // update our number of notes to 0

 localStorage.setItem('numNotes','0');

 // update the display

 updateNoteBoard();

}

// display our notes

function updateNoteBoard() {

 // set our display area

 var noteBoard = document.getElementById('noteBoard');

 // retrieve our number of notes

 var numNotes = parseInt(localStorage.getItem('numNotes'));

 // set default to 0 if no notes

 if (isNaN(numNotes)) {

 numNotes = 0;

 }

 var notes = '<div>My Notes:</div>';

 var key = '';

 var value = '';

// loop through the notes

 for (var i = 0; i < numNotes; i++) {

 // create our key with our prefix

 key = keyCode + i;

 // retrieve our key

 value = localStorage.getItem(key);

 // build our display for this note

 notes += '<div><p>'+value+'</p><div class="buttons">'+

 '<button onclick="changeNote(\''+key+'\');">Change</button>'+

 '<button onclick="removeNote(\''+key+'\');">Remove</button>'+

 '</div>'+

 '</div>';

 }

 // finish off our display

 notes += '<div style="float:right;"><button id="clearAllNotes">Remove All

➥Notes</button></div>';

ptg999

Advanced Recipe: Catching Events in Local Storage 281

 // set the list to the display

 noteBoard.innerHTML = notes;

 // set listener for clearing all notes

 var btnClearAllNotes = document.getElementById('clearAllNotes');

 btnClearAllNotes.addEventListener('click',clearAllNotes,false);

}

// initialize our note board

window.addEventListener('load',initNoteBoard,false);

</script>

</head>

<body>

<h1>Note Board</h1>

<section id="noteBoard"></section>

<section id="addNote">

<h1>Add a new note here:</h1>

 <textarea name="note" id="note"></textarea>

 <button id="btnAddNote">Add Note</button>

</section>

<section id="updateNote">

<h1>Update the note</h1>

 <input type="text" name="oldKey" id="oldKey" disabled />

 <textarea name="oldNote" id="oldNote"></textarea>

 <button id="btnUpdateNote">Update Note</button>

</section>

</body>

</html>

When the page loads, the initialization launches the initNoteBoard function. This
function attaches the event listener to catch any events that are storage events and will
launch the storageEvent handler. Next, the initNoteBoard updates the display of
notes by checking local storage. In the updateNoteBoard function, the script will
first retrieve the key numNotes, which is a count of the number of notes that you have
stored previously. Then, using numNotes, the script will loop through and retrieve
each key/value pair using the keyCode, “note” with the index starting at 0. So, to
retrieve the first note, the page calls getItem with the key note0. The keyCode and
numNotes keys are used for two reasons. First, using them will ensure that you do not
have to cycle through any other key/value pairs that may be stored in local storage for
the site, and second, this will allow you to keep your notes in order. Remember that
for session and local storage there is no specific order to the key/value pairs in the list.
The browser will insert them using setItem in no particular order (see Figure 11.2).

ptg999

Chapter 11 Client-Side Storage282

The real power of this recipe is in the event handling. If you load the page into two
browser tabs or windows and add a new note in one of the windows, the event han-
dler will be triggered. In this case, the onStorageEvent function will be called, and
the function will perform two actions. First, the function alerts the visitor that there
has been a change and provides the visitor with a little information on the update.
Second, the event handler calls the update display function to show the updated list of
notes. If you play around with the addition, update, and removal of notes, you will see
how this event handling behaves.

If you remove a note, the event handler will show you multiple changes happen-
ing in local storage. The reason for this is how the order of the notes is maintained.
To maintain the order of the list, the script uses an algorithm by which entries after
the one to be removed are pushed down the list and the last entry is then removed.
Remember that the clear method will not only remove the key/value pairs you are
interested in but will remove all key/value pairs in the storage.

Note
Storage events do not get triggered on the same page that made the session or local
storage modification. Instead, storage events are propagated notices to other browser
windows or tabs. To catch a change on the page that made the change, you will need to
call the logic directly when the change is made.

Figure 11.2 Sample output showing multiple key/value pairs in
local storage

ptg999

Web SQL Database API 283

In this recipe, you used a specific key, numNotes, to hold the number of notes
that had been entered. In addition, to keep the notes ordered, you used a key prefix
with an incrementing number such as note0, note1, and note2. What if the script
needed to sort the list based on different criteria or needed to catalog your notes into
categories? You could devise your own method using JavaScript and objects, but with
HTML5 and its definition of the Web SQL Database API, this task becomes quite
simple, as you will see in this chapter’s final recipe.

Web SQL Database API
As you saw in the previous recipes of this chapter, the Session and Local Storage APIs
allow for the storage of simple data in the client browser. If you want to store more
complex objects, properties, and relationships, you will need to leverage the new Web
SQL Database API or IndexedDB API. Like other APIs, these are not part of HTML5
core specification but a set of additional specifications being adopted by browsers. In
general, the Web SQL Database API is currently supported by several browsers, while
the IndexedDB API is still being defined and has limited support. Over time, it is
expected that the IndexedDB will be more widely supported, but we will focus on the
Web SQL Database API in this chapter for demonstration.

If you have had the opportunity to work on server-side pages and database access,
most likely you have used a similar SQL-based database. And if not, then here is your
opportunity to have a powerful data management storage system right in the browser.
Table 11.4 shows the browser support for the Web SQL Database API.

Table 11.4 Web SQL Database
Browser Availability

Android 2.1+

Chrome 9.0+

Firefox -

Internet Explorer -

iOS Safari 3.2+

Opera 10.6+

Safari 3.2+

The Web SQL Database API specification is based on SQLite, so if you have
already used SQLite in a mobile environment such as iOS development, then it will be
familiar. At the same time, if you have used a server-side database such as MySQL, the

ptg999

Chapter 11 Client-Side Storage284

basic commands and structure will be recognizable. If you have no SQL experience,
then you may want to seek some resources on SQL commands, but we will cover the
basic create, read, update, and delete commands in the next recipe. Like session and
local storage, the web database is available only to the pages in the same origin from
which it was created for security purposes; however, unlike session and local storage,
the web database can store complex data with relationship information.

Note
Currently, there is some debate as to the underlying database format for use with the
Web SQL Database API. SQLite is listed in the W3 Web Database specification and has
been implemented by several browsers. However, until there is general acceptance, the
web database group of the W3C has put the specification on hold for further develop-
ment. This has resulted in further pushing of the IndexedDB specification, which is gain-
ing traction.

To interact with the web database, the API provides three core asynchronous com-
mands. The reason these commands are typically asynchronous is so that the rendering
of the browser page does not get “blocked” while waiting for a database call to return.
Depending on the amount of data requested in a transaction, the page could have to
wait several seconds for the set of data to be returned. The three core commands allow
you to open (or create a database), create a transaction, and execute SQL statements
within the transaction:

n openDatabase: Opens a present database or creates a database based on the
parameters passed if the database is not present.

n Transaction: Encompasses the commands to the database so that you can per-
form a rollback on the entire transaction if needed. There is a read-only version
available, readTransaction.

n executeSql: The method to run an actual SQL command on the open database.

The openDatabase method opens an established database, or if the database is not
present, the method will automatically create the database described in the parameters
and then open the database as follows:

WindowDatabase openDatabase(name, version, displayName, estimatedSize [,

➥creationCallBack])

The parameters of the openDatabase method are as follows:
n name: The name of the database
n version: A version number you assign to the database
n displayName: A user-friendly display name for the database
n estimatedSize: An estimated size for the database
n creationCallBack: (Optional) The function called when the database has been

created for the first time

ptg999

Web SQL Database API 285

A WindowDatabase object is returned that will then be used to perform transac-
tions with. The database is automatically closed when the browser window or tab is
closed.

Tip
The version number of the openDatabase method is a value that you can use to track
versions of your database structure and data. This can be helpful if you are using the
database to provide quick, local lookups of data. When your lookup data changes and the
user comes back to your website, you could check this version by having stored the value
in a table in a master web database. If the lookup database was not up-to-date, then a
new one could be installed. Or, you could use the error code when opening to validate that
it is the wrong version.

To query the database, a transaction request must be performed. The transaction
method wraps one or more executeSql commands to create a single transaction for
the database to act on. The transaction can be used for rollback purposes if any of the
SQL queries fail. The callback parameter of the transaction encompasses the inline
function for the executeSql methods, as shown here:

transaction(callback [, errorCallback] [, successCallback])

The parameters of the transaction method are as follows:
n callback: The functionality to perform within the transaction
n errorCallback: (Optional) The function to handle any errors that occurred
n successCallback: (Optional) The success function called if all processes within

the transaction were successful

The executeSql method takes your SQL query command as the first parameter
and can include an array or optional arguments, a successful callback, and an optional
error callback, as shown here:

executeSql(sqlStatement [, arguments] [, callback] [, errorCallback])

The parameters of executeSql method are as follows:
n sqlStatement: A SQL statement to be executed
n arguments: (Optional) An array of optional arguments
n callback: (Optional) The functionality to perform if the SQL statement execu-

tion is successful
n errorCallback: (Optional) The functionality to perform if the SQL statement

execution creates an error

The error handler parameter option for the database API methods is used to catch
any errors that could occur in interacting with the database. This could include
instances such as an error in your SQL or an issue in accessing the database:

ptg999

Chapter 11 Client-Side Storage286

n UNKNOWN_ERR (0): An unknown error beyond the ones listed here occurred.
n DATABASE_ERR (1): An error occurred in the database that is not covered by an

error category.
n VERSION_ERR (2): The version stated in the command does not match the ver-

sion of the database.
n TOO_LARGE_ERR (3): The resulting data set from the database to your request

was too large to be returned.
n QUOTA_ERR (4): There is no remaining storage space or the user declined to

allocate more for your database.
n SYNTAX_ERR (5): The request failed because of a syntax error.
n CONSTRAINT_ERR (6): The request failed because it violated a constraint in the

structure of the database.
n TIMEOUT_ERR (7): The transaction failed because it could not establish a data-

base lock in a timely manner.

A common error seen is SYNTAX_ERR, which signifies there is a syntax issue in your
SQL command. The message portion of the error object passed to your error handler
will be critical in giving you more specifics about the particular error code.

At this point, you may be asking how this all works together to store and retrieve
information in a database. The next recipe puts these core methods together to do
exactly that.

ADVANCED RECIPE:
Using a Web Database for a Grocery List
This recipe will use the interfaces for the web database that we have just reviewed to
create a shopping list that will be stored completely in the browser’s database resource.
The visitor will be able to add items to the list, including a quantity and name, and
select from a drop-down the grocery department the item is found in. Whenever an
item is added, the grocery list will be updated and displayed. The list will be grouped
by department to make a shopping trip easier. The visitor can remove items from the
list and clear the list completely. If the visitor leaves and returns to the page, the page
will show the stored items.

The database that is created by this recipe will have two tables: a groceryitems table
to hold the items in the list and a departments table, which will be a lookup table with
a predefined list of departments. When the page first loads, the database and tables will
be created, and the departments table will be populated with the department informa-
tion. The groceryitems table will have four fields, as defined in Table 11.5.

The departments table will have two fields, as defined in Table 11.6.
By default when the departments table is created, the script will add four depart-

ments into the departments table.

ptg999

Advanced Recipe: Using a Web Database for a Grocery List 287

Tip
Like with session storage and local storage, the Chrome Developer Tools provide a pro-
ficient way to view the SQLite database as your JavaScript executes. You can find the
Database section under the Resources section in the Developer Tools window. Unlike ses-
sion storage and local storage items, the database tables and data cannot be edited in
Developer Tools, but this functionality may be added in the future.

For debugging purposes, a Remove Database button is also put on the page so that
you can remove the database. Currently, the web database specification does not con-
tain a method to remove a database. To work around this, and remove a database, you
will have to “drop” the tables that have been created in the database, and your data-
base will be empty. As you develop using the web database API, re-creating the data-
base will be useful to verify your SQL database creation transactions.

To create the grocery list page, follow these steps:

1. Create the basic structure of the page with the HTML body, the shoppingdb
var declaration, the window.addEventListener load event handler, and the
init JavaScript function.

2. Add the JavaScript functions that are called from the init function:
openShoppingDb and dbPresent.

3. To finish the initialization of the database, add the initShoppingDb,
onDbError, and nullHandler functions. The initShoppingDb function cre-
ates the tables and inserts the departments. The onDbError function is a generic
function to handle database errors that may occur as the script perform transac-
tions, and the nullHandler is used to catch successful transaction events. If you
load the page at this point, you should see the database being created by your
script in the Chrome Developer Tools.

Table 11.5 The groceryitems Table Structure

Field Type Description

itemid INTEGER Unique primary key for each item in the table

quantity INTEGER The number of this particular item to get

itemname TEXT The name of the item

deptid INTEGER The department ID that comes from the departments
table

Table 11.6 The departments Table Structure

Field Type Description

deptid INTEGER Unique primary key for each department in the table

deptname TEXT The number of this particular item to get

ptg999

Chapter 11 Client-Side Storage288

4. You need to display the grocery items when the page is shown by adding the
initPage, getDepartments, and showDepartments functions. The “get and
show” technique will be common because the transaction requests are asynchro-
nous and will need a callback function to handle the results. In this case, the
getDepartments performs the request to get the departments from the depart-
ments table and then the showDepartments function to display them. The
showDepartments will create the options for our select list.

5. To finish the display on initialization, you need to show any grocery items
that have been previously stored in the database, so add getGroceryItems and
showGroceryItems from Listing 11.6.

6. To add an item, the addGroceryItem function is called, which will take the
inputs of the input fields and insert them into the groceryitems table. If success-
ful, the page will display the new list of grocery items. To remove an item, add
the deleteItem method.

7. To complete the page, add the resetGroceryList method to clear the grocery
list and the debug function of removeDatabase to drop the database tables.

Listing 11.6 Creating a Grocery List with a Client Database

<!DOCTYPE html>

<html>

<head>

<meta charset="UTF-8" />

<title>11.6 Database Grocery List</title>

<style>

section {

 margin-bottom:20px;

}

</style>

<script>

var shoppingdb = null; // our database reference

// function kick off init of page

function init() {

 // check to see if database support available

 if (window.openDatabase) {

 // set the button click handlers

 var btnAddGroceryItem = document.getElementById('addGroceryItem');

 var btnResetGroceryList = document.getElementById('resetGroceryList');

 var btnRemoveDatabase = document.getElementById('removeDatabase');

 btnAddGroceryItem.addEventListener('click',addGroceryItem,false);

 btnResetGroceryList.addEventListener('click',resetGroceryList,false);

 btnRemoveDatabase.addEventListener('click',removeDatabase,false);

ptg999

Advanced Recipe: Using a Web Database for a Grocery List 289

 // open the database

 openShoppingDb();

 // check if we have reference to database

 if (shoppingdb) {

 // check if the database initialized or not

 dbPresent();

 }

 } else {

 alert('Databases are not supported in this browser');

 }

}

// open database function

function openShoppingDb() {

 // try to open our database

 try {

 var dbSize = 5000000; // 5MB size

shoppingdb = openDatabase('shoppingdb', '1.0', 'shopping list', dbSize);

 } catch (err) {

 // Error occurred opening database

 shoppingdb = null;

 console.log('Error opening database: ' + err.code + ' - ' + err.message);

 return;

 }

}

// function check to see if database tables present

function dbPresent() {

 // start our transaction

shoppingdb.readTransaction(function(tx) {

 // execute sql to pull first record

 // if successful, then initialize the page

 // if not, then initialize the database

 tx.executeSql('SELECT 1 FROM departments', [],

 initPage, initShoppingDb);}

);

}

// function initialize the page

function initPage() {

 // get the departments

 getDepartments();

ptg999

Chapter 11 Client-Side Storage290

 // load any grocery items present

 getGroceryItems();

}

// initialize the shopping database

function initShoppingDb() {

 // start our database transaction

shoppingdb.transaction(function(tx) {

 // create tables for database

 tx.executeSql('CREATE TABLE IF NOT EXISTS ' +

 'groceryitems(itemid INTEGER NOT NULL PRIMARY KEY, quantity INTEGER,

➥itemname TEXT, deptid INTEGER)',

 [], nullHandler, onDbError);

 tx.executeSql('CREATE TABLE IF NOT EXISTS ' +

 'departments(deptid INTEGER NOT NULL PRIMARY KEY, deptname TEXT)',

 [], nullHandler, onDbError);

 // Fill our departments table

 tx.executeSql('INSERT INTO departments(deptname) VALUES (?)',

 ['Fresh Produce'], nullHandler, onDbError);

 tx.executeSql('INSERT INTO departments(deptname) VALUES (?)',

 ['Deli'], nullHandler, onDbError);

 tx.executeSql('INSERT INTO departments(deptname) VALUES (?)',

 ['Bakery'], nullHandler, onDbError);

 tx.executeSql('INSERT INTO departments(deptname) VALUES (?)',

 ['Grocery'], initPage, onDbError);

 });

}

// standard db error function

function onDbError(tx, err) {

 alert('Database error occurred: ' + err.code + '|' + err.message);

}

// our null handler for success

function nullHandler(tx, r) {

 return;

}

// function get the department list

function getDepartments() {

 // begin our database transaction

 shoppingdb.readTransaction(function(tx) {

 // execute our sql to retrieve the departments

 tx.executeSql('SELECT * FROM departments ORDER BY deptname ASC', [],

 showDepartments, onDbError);

 });

}

ptg999

Advanced Recipe: Using a Web Database for a Grocery List 291

// function show the departments retrieved

function showDepartments(tx, rs) {

 // get reference to the department select

 var selectObj = document.getElementById('department');

 // loop through department recordset and add to select

 for (var i=0; i < rs.rows.length; i++) {

 row = rs.rows.item(i);

 selectObj.options[selectObj.options.length] =

 new Option(row.deptname, row.deptid, false, false);

 }

}

// function to get the grocery items

function getGroceryItems() {

 // start our database transaction

 shoppingdb.readTransaction(function(tx) {

 // retrieve the list of items

 tx.executeSql('SELECT * FROM groceryitems, departments WHERE

➥groceryitems.deptid=departments.deptid ORDER BY deptname ASC',

 [], showGroceryItems, onDbError);

 });

}

// function to show the grocery item list

function showGroceryItems(tx, rs) {

 var myShoppingList = document.getElementById('myShoppingList');

 var tableRow = '<table>';

 var row = null;

 // set table headings

 tableRow +=

➥'<tr><td>Quantity</td><td>Item</td><td>Department</td><td>Delete</td>

➥</tr>';

// loop through record set returned

 for (var i=0; i < rs.rows.length; i++) {

 // retrieve our row

 row = rs.rows.item(i);

 // build our table row

 tableRow += '<tr><td>' + row.quantity + '</td>' +

 '<td>' + row.itemname + '</td>' +

 '<td>' + row.deptname + '</td>' +

 '<td><button onclick="deleteItem(' +

 row.itemid + ');">X</button></td></tr>';

 }

 tableRow += '</table>';

ptg999

Chapter 11 Client-Side Storage292

 // set our info in the div

 myShoppingList.innerHTML = tableRow;

}

// add a grocery item to our database groceryitems table

function addGroceryItem() {

 // open our database transaction async call

 shoppingdb.transaction(function(tx){

 // retrieve our data for the grocery item

 var itemname = document.getElementById('item').value;

 var quantity = parseInt(document.getElementById('quantity').value);

 var deptid = parseInt(document.getElementById('department').value);

 // perform our executeSql insert

 tx.executeSql('INSERT INTO groceryitems(quantity, itemname, deptid) VALUES

➥ (?,?,?)',

 [quantity, itemname, deptid], getGroceryItems, onDbError);

 });

}

// function remove an item from the list

function deleteItem(id) {

 // start our transaction

 shoppingdb.transaction(function(tx) {

 // execute sql to delete the item from the database

 tx.executeSql('DELETE FROM groceryitems WHERE itemid=?',

 [id], getGroceryItems, onDbError);

 }

);

}

// function reset grocery list

function resetGroceryList() {

 // start our transaction

 shoppingdb.transaction(function(tx) {

 // execute our sql to drop the grocery item table

 tx.executeSql('DROP TABLE groceryitems', [], nullHandler, onDbError);

 });

}

// function remove database

function removeDatabase() {

 // start our transaction

 shoppingdb.transaction(function(tx) {

 // drop our tables

 tx.executeSql('DROP TABLE departments', [], nullHandler, onDbError);

ptg999

Advanced Recipe: Using a Web Database for a Grocery List 293

 tx.executeSql('DROP TABLE groceryitems', [], nullHandler, onDbError);

 });

}

// call init on load

window.addEventListener('load',init,false);

</script>

</head>

<body>

<section>

 Quantity:<input type="number" id="quantity" />

 Item:<input type="text" id="item" placeholder="Milk" />

 Department:<select id="department"></select>

 <button id="addGroceryItem">Add Item</button>

</section>

<section id="myShoppingList"></section>

<section>

 <button id="resetGroceryList">Reset Grocery List</button>

 <button id="removeDatabase">Remove Database</button>

</section>

</body>

</html>

When the page is loaded in your browser, the init function will check that the
Web SQL Database API is available by verifying that the window.openDatabase
method is available. If available, the openDatabase method is called with the database
parameters. In this case, the script sets roughly 5MB for the size because the browsers
appear not to confirm with the user for database creations of this size or smaller. If your
database exceeds this size at creation or later, the browser will confirm with the user to
allocate more space. If this is the first time that you have run the code, then the data-
base will be created and the handle returned; otherwise, the database will be opened.

Since the recipe uses the departments table values to load the select list of depart-
ments, you need to make sure that if this is a new database instance that you populate
the departments table with your lookup information. To check whether you need to
create the tables, the script checks for the presence of the database tables by doing a
simple query and tries to select the first row in the department table in the dbPresent
method. If the table does not exist yet, then the script creates both tables and inserts
the department values into the departments table in the initShoppingDb method.
After the database is loaded, the script loads the departments into the select list from
the database and displays any stored grocery items by calling the getGroceryItems
method. The getGroceryItems method will open another transaction to request all
items from the groceryitems table and, if successful, pass the resulting data set of rows
to the showGroceryItems method. The show method will then loop through the
grocery items and display them in the myShoppingList section of the page.

ptg999

Chapter 11 Client-Side Storage294

Note
The transaction method is used for SQL commands that require write permissions in
the database. By requiring write permission, the transaction puts a write lock on the data-
base, preventing others from writing to the database at that time. If you are performing
only read commands on the database, you should use the readTransaction method.
The readTransaction method is called the same way as the transaction method.

Once the page is initialized and the database and the departments are populated,
the visitor can then enter a quantity and item and select the department for the new
item for their shopping list. The addGroceryItem will then take this information,
create a database transaction, and perform a SQL insert to add the item in an inline
function call. If the insert fails, you will call the error handler, onDbError, that will
display our error. If successful, then the script will call getGroceryItems and subse-
quently showGroceryItems to display the resulting set of rows returned from the gro-
ceryitems table. Figure 11.3 shows the output after having entered several items.

Figure 11.3 Sample output after adding several grocery items

ptg999

Summary 295

When the getGroceryItems function is called, the script will call the
readTransaction method with an inline function call to executeSql. The SQL
command selects from the groceryitems table all records, groups them by department,
and sorts them by department alphabetically. In addition, the SQL command joins the
groceryitems table and departments table on the deptid so that the return set will also
include the department name to display. If the executeSql call is successful, the script
will return the results to showGroceryItems, passing the transaction reference and
recordset of results. To display the results from the recordset, the script loops through
the recordset rows. Each row represents a record returned by the SQL query, and you
can reference each field via dot notation.

To remove an item, the visitor clicks the X button, which calls the deleteItem
method with the item ID passed. The page then uses the item ID passed to delete
the item from the groceryitems table. If the call is successful, then the list is refreshed
through the get and show grocery items functions. Lastly, the visitor can reset the gro-
cery list, which will delete all items from the groceryitems table.

This recipe is a quick sample of integrating client web databases into your web-
sites and applications. The recipe covered writing, retrieving, updating, and deleting
records along with the initial creation of the database. This functionality provides the
building blocks needed to implement your own database storage.

Summary
In this chapter, you learned about some of the exciting new methods to store data on
the client browser. Previously, client browser technology was limited to the use of
cookies. With the addition of session storage, local storage, and web databases, there is
now a robust platform, albeit young, on which you have several options to store simple
key/value pairs or complex data structures. With these storage options, you can cre-
ate powerful off line applications, reduce round-trips to your server for data, and store
robust information across browser sessions at the client.

ptg999

This page intentionally left blank

ptg999

12
Communication and Threading

The HTML5 APIs cover a wide range of improvements and areas, but two of the
newest ones include the WebSocket and Web Workers APIs. These two sets fill some
key gaps in website and web application development. Before these APIs, opening a
bidirectional communication channel with servers was difficult. In addition, perform-
ing heavy processing in the page blocked the user interface from user interaction. The
WebSocket API provides bidirectional communication between client JavaScript and
a server over a socket connection, while the Web Workers API opens up basic thread-
ing options to client JavaScript. In this chapter, you will learn how to implement these
APIs in some simple but effective recipes by which you can base your own solutions.

WebSocket API Overview
The WebSocket API provides a new method of communicating with servers through
direct socket messages. These messages are bidirectional and can be sent from the cli-
ent page to the server or from the server to the browser page at any time while the
connection is open. The web socket uses a separate server-defined protocol without
the HTTP request overhead, so the packets also have the benefit of being lightweight.
By default, however, to enable a web socket connection, you must have a correspond-
ing WebSocket service on the server that the messages are being sent and received
from. These services can be written in a wide array of languages. Prior to HTML5,
this communication functionality was available only through specialized object instal-
lations, a comet persistent connection, or frequent polling of the server from the client.

To create a web socket connection, a script creates an instance of the WebSocket
interface, passing in the web service URL, as shown here:

var myWS = new WebSocket("ws://some.webservice.com/");

The WebSocket object, when instantiated, attempts to open a socket connection
with the service listening at the URL provided in the constructor of the WebSocket
object. If the connection is successfully opened, then the WebSocket object instance
provides methods to send a message and close the connection as follows:

ptg999

Chapter 12 Communication and Threading298

n send(DOMString): Sends data in the form of a string
n send(ArrayBuffer): Sends data in the form of an ArrayBuffer
n send(Blob): Sends data in form of a blob
n close([code][,reason]): Closes the socket connection with an optional code

as an unsigned long and a DOMString for a reason

To determine when the socket connection is ready for data to be sent, you can use
either the connection’s readyState attribute, which can have one of four values listed
in Table 12.1, or the onopen event.

The following are the events available on a WebSocket instance:
n onopen: The socket connection is open and ready.
n onclose: The socket connection is closed.
n onmessage: A message has been received on the socket connection.
n onerror: An error has occurred with the socket connection.

Table 12.2 shows the version of each browser that supports the WebSocket API.
Note, however, that the level of support varies between browsers and will be noted
where applicable in the chapter’s recipes.

Table 12.2 Web Socket API Browser
Availability

Android -

Chrome 10.0+

Firefox 4.0+

Internet Explorer -

iOS Safari 4.2+

Opera 11.0+

Safari 5.0+

Table 12.1 The WebSocket readyState Attribute Values

Value Constant Description

0 CONNECTING The socket connection is attempting to connect.

1 OPEN The socket connection is open and ready.

2 CLOSING The socket connection is in the process of being closed.

3 CLOSED The socket connection is closed.

ptg999

Beginner Recipe: Talking Through Web Sockets 299

BEGINNER RECIPE:
Talking Through Web Sockets
This recipe will use the WebSocket interface to open a web socket connection with
a server, send a message that the user inputs, and receive an echo of the same mes-
sage back from the server. In this case, we will use a free testing web socket service
set up at www.websocket.org. This free online service makes it easy to test your web
socket scripts by verifying that you can open a connection, send messages, and receive
messages. To create this connection, perform the following steps, which result in List-
ing 12.1:

1. Create a blank HTML page with a message input element, the send and close
buttons, and the status and message result divs.

2. Add the global variables for the web socket and URL.

 3. Add the init function and event listener for the page load event.

 4. Add the onOpen, onClose, onMessage, and onError functions to handle the
events of the web socket connection.

 5. Add the postMessage, closeWS, and updateStatus functions to handle send-
ing messages, closing the connection, and updating the connection status.

Listing 12.1 Sending and Receiving Data Through Web Sockets

<!DOCTYPE html>

<html>

<head>

<meta charset="UTF-8" />

<title>12.1 Web Socket Communication</title>

<script>

// set up our global web socket reference

var directorWebSocket = null;

// assign our web socket listener address

var wsUri = 'ws://echo.websocket.org/';

// create web socket connection on page load

function init()

{

 // add the button event handlers

 var btnSend = document.getElementById('btnSend');

 var btnClose = document.getElementById('btnClose');

 btnSend.addEventListener('click',postMessage,false);

 btnClose.addEventListener('click',closeWS,false);

 updateStatus('initializing websocket connection');

www.websocket.org

ptg999

Chapter 12 Communication and Threading300

 // create the web socket instance with the listener address

directorWebSocket = new WebSocket(wsUri);

 // set up our handler functions for the web socket events

directorWebSocket.onopen = function(evt) { onOpen(evt) };

 directorWebSocket.onclose = function(evt) { onClose(evt) };

 directorWebSocket.onmessage = function(evt) { onMessage(evt) };

 directorWebSocket.onerror = function(evt) { onError(evt) };

}

// WEB SOCKET EVENT HANDLERS

// web socket connection successfully opened

function onOpen(evt) {

 console.log('Director Connection open');

 updateStatus('Connection open');

};

// received a message through the web socket connection

function onMessage(evt) {

 console.log('Received Message: ' + evt.data);

 updateStatus('message received: ' + evt.data);

 document.getElementById('messages').innerHTML = evt.data;

};

// error received from the web socket

function onError(evt) {

 console.log('Director Connection error: ' + evt.data);

 updateStatus('error: '+ evt.data);

};

// web socket connection successfully closed

function onClose(evt) {

 console.log('Director Connection closed.');

 updateStatus('connection closed.');

};

// CLIENT FUNCTIONS

// send message through web socket connection

function postMessage() {

 // get the message from the input

 msg = document.getElementById('msg').value;

 console.log('sending ws message: ' + msg);

 updateStatus('sending message: ' + msg);

ptg999

Beginner Recipe: Talking Through Web Sockets 301

 // use send() to send the message

directorWebSocket.send(msg);

}

// tell web socket to close

function closeWS() {

 console.log('disconnecting ws');

 updateStatus('disconnecting');

 // tell the web socket instance to close the connection

directorWebSocket.close();

}

// helper function to change the status of the web socket

function updateStatus(msg) {

 document.getElementById('wsState').innerHTML = msg;

}

// add page load event listener to kick off init function

window.addEventListener('load', init, false);

</script>

</head>

<body>

<div id="btnTryCall">

 <input type="text" id="msg" />

 <button id="btnSend">Send Message</button>

 <button id="btnClose">Close Web Socket</button>

</div>

<div id="wsState"></div>

<div id="messages"></div>

</body>

</html>

When the page loads from Listing 12.1, the init function is called. In the init
function, the script adds the button event listeners and then creates a web socket con-
nection by creating an instance of the WebSocket interface, passing in the address.
After creating this instance, the recipe registers for the onopen, onclose, onmessage,
and onerror events, linking a function to each event. When the web socket success-
fully opens the connection, the onopen event is fired, and the onOpen function is
called, changing the connection status displayed on the page. In this recipe, we have
left in the console log statements so that in the developer log of your browser you can
see the f low of the web socket connection.

The page displays an input box for the user to type a message and send through the
web socket to the server. The message is sent in the postMessage function where you

ptg999

Chapter 12 Communication and Threading302

call the send method on the web socket with the message passed as a parameter. After
being received, the web socket service repackages the text string and sends the string
back to the page as a message. The onmessage event handler catches the incoming
message, and the corresponding onMessage function takes the incoming message and
updates the display with the data portion of the message.

If any errors occur during the opening, use, or closing of the web socket connec-
tion, the onerror event handler will catch the error and display the data portion of
the error to the user. Once the conversation is complete between the page and the web
socket service, you can close the web socket connection by calling the close method
on the web socket.

Note
The service that your web socket instance sends messages to and receives messages
from will typically be one of your own design and living on your web server. You can find
several open source examples online in various languages for setting up a web socket
server process. In the online reference list for the book, we have included links to several
of these packages.

In this recipe, you opened a connection with a remote server and sent messages
back and forth using the web socket connection. This can be extremely useful for
bidirectional communication and especially proactive messaging from the service to a
connected browser page.

Threading Through Web Workers
A prevalent issue with JavaScript running in an HTML page is that the JavaScript runs
on a single thread on the page and can easily block the interface when performing
heavy processing. With the HTML5 Web Workers API, a new opportunity exists for
developers to separate this processing and have the functionality performed on a back-
ground thread with lower priority than the main thread of the HTML page. In this
manner, the main thread can remain unblocked and allow the user to interact with the
page with little to no negative effect.

The Web Workers API implementation in HTML5 provides two types of web
workers: dedicated and shared web workers. A dedicated web worker is specific to the
page that launches the web worker and is not available across pages. A shared worker,
in contrast, can be shared across multiple pages from the same origin in the same
browser instance. The shared worker has its own state, which also spans the pages, as
you will see in the last recipe of this chapter.

So, what is a web worker in particular? A web worker is a JavaScript script separated
as a file to be run on the new thread. The script to be run on the separate thread can
even be passed to the web worker instead of being held in a dedicated .js file. The web
worker can communicate with the launching page and the main script, and vice versa,
through the use of messages that are posted between the threads.

ptg999

Threading Through Web Workers 303

Tip
Web workers are not able to manipulate the DOM elements of the page because the web
worker runs on a separate thread than the page itself. The DOM can be modified only
from the main page thread.

To create an instance of a web worker, you create a new instance of the Worker
interface, passing in the script or file to be executed, as shown here, for creating a
dedicated worker:

var myWorker = new Worker('worker_script.js');

The dedicated web worker from the previous code will execute the JavaScript when
the web worker is created. A dedicated web worker will remain running and available
until the thread is terminated or the page that created the dedicated web worker is
closed. The following are the methods available with a dedicated web worker:

n postMessage(Message [, MessagePort]): Sends a message to the web worker
thread. The worker thread “catches” the message with the onmessage event
described later.

n terminate(): Terminates the worker thread on which the method is called.

There are two events available on a dedicated web worker: onmessage and
onerror. The onmessage event allows the main page script to receive messages
from the web worker thread or have the web worker receive messages from the main
thread. Table 12.3 shows the onmessage and onerror events available on the Worker
interface.

Note
If you have programmed in a language that supports the use of multiple threads, then you
are probably aware of thread-safety issues and problems that can arise in running threads
concurrently. In the HTML5 Web Workers API, messaging between threads via serialized
objects protects against these issues for the most part. To prevent other concurrency
issues, worker threads do not have access to the DOM page structure or non–thread-safe
components. Only the main page thread can update the DOM elements of the page.

Table 12.3 The Worker Events

Event Name Attribute Purpose

message onmessage Triggered when a message is received. An event
object with a data member will be provided with
the message.

error onerror Triggered when an error occurs in the worker
thread. The event provides a data member with
the error information.

ptg999

Chapter 12 Communication and Threading304

Table 12.4 shows the version of each browser that supports the Web Workers API.

Table 12.4 Web Workers API Browser
Availability

Android 2.1

Chrome 10.0+

Firefox 3.6+

Internet Explorer 10.0+

iOS Safari -

Opera 10.6+

Safari 4.0+

Note that Safari is the only browser platform that supports shared workers, which
will be covered later in this chapter. After 2.1, the Android browser removed support
for workers.

BEGINNER RECIPE:
Creating a Web Worker
In this recipe, you will create a simple dedicated web worker to use a rudimentary
method to sum a range of numbers in the background on the web worker thread.
When the HTML page loads, the web worker will be started. As the web worker pro-
gresses through the number range, the worker will provide progress percentage mes-
sages back to the main script. Once the web worker completes summing the numbers,
the worker will send a message to the main script with the final result. A terminate
button is provided so the user can terminate the worker at any moment.

The web worker as described will execute the commands in a thread that does not
block the main page scripting and processing. To demonstrate, the page includes a
timestamp button to log a date timestamp on the page. As the worker progresses, try
clicking the date timestamp button to verify that the main page is not blocked by the
activities of the web worker thread. The recipe will have two files: the HTML page in
Listing 12.2 and the web worker JavaScript file in Listing 12.3.

1. Create the page in Listing 12.2 with the output tag, buttons, and log result
section.

2. Add the script portion to the page, including the worker variable and
startWorkerThread initialization function.

 3. Add the terminateWorker function to terminate the web worker thread.

 4. Add the getTimeStamp function and the window.addEventListener trigger.

ptg999

Beginner Recipe: Creating a Web Worker 305

Listing 12.2 Sending the Message to the Web Worker

<!DOCTYPE html>

<html>

<head>

<meta charset="UTF-8" />

<title>12.2 Simple Web Worker Communication</title>

<script>

// global reference to our web worker

var worker = null;

// on page load start the web worker

function startWorkerThread() {

 // add button event handlers

 var btnTimeStamp = document.getElementById('btnTimeStamp');

 var btnTerminateWorker = document.getElementById('btnTerminateWorker');

 btnTimeStamp.addEventListener('click',getTimeStamp,false);

 btnTerminateWorker.addEventListener('click',terminateWorker,false);

 // create the web worker instance

worker = new Worker('12_3_simple_worker.js');

 // assign handler for receiving messages from web worker

worker.onmessage = function (event) {

 // display the message in our result field

 document.getElementById('result').textContent = event.data;

 };

}

// handle the button to terminate the web worker

function terminateWorker() {

 // tell the web worker to terminate

worker.terminate();

}

// local thread to time stamp and show how main thread is

// not blocked by calculations going on

function getTimeStamp() {

 // get the current date and time and add to the time log

 var currentDateTime = new Date();

 document.getElementById('timeLog').innerHTML += currentDateTime+ '
';

}

ptg999

Chapter 12 Communication and Threading306

// kick off the web worker on page load

window.addEventListener('load',startWorkerThread,false);

</script>

</head>

<body>

 <p>Computing <output id="result"></output></p>

 <button id="btnTimeStamp">Time Stamp</button>

 <button id="btnTerminateWorker">Terminate Worker</button>

 <section id="timeLog"></section>

</body>

</html>

When the page creates the web worker, you pass into the new instance the Java-
Script filename to be executed on the new thread. In this case, the JavaScript file is
named 12_3_simple_worker.js. Listing 12.3 provides the code for this file that loops
through the range of numbers, adds them, and posts messages back to the main page
script.

1. Create the JavaScript file in Listing 12.3 with the variables at the top.

 2. Add the for loop to cycle from 1 to maxLimit, adding the numbers and sending
back the percentage complete status.

3. Add the final postMessage to send the sum total to the main page script.

Listing 12.3 Performing the Task in the Web Worker

// The 12.3 js simple web worker file

// initialize our variables

var sum = 0;

var currentPercentageComplete = 0;

var maxLimit = 100000000;

// loop

for (var j=0; j<=maxLimit; j++) {

 // perform long way of summation

 sum+=j;

 // determine percentage complete

 newPercentageComplete = Math.round((j/maxLimit)*100);

 // minimize messages sent by only sending message

 // when percentage has changed

 if (newPercentageComplete > currentPercentageComplete) {

ptg999

Beginner Recipe: Creating a Web Worker 307

 // send message back to main page thread

postMessage(newPercentageComplete + '% complete');

 // update current percentage complete

 currentPercentageComplete = newPercentageComplete;

 }

}

// finally post resulting sum value to main page thread

postMessage('Sum = ' + sum);

When the main page is loaded in the browser, the startWorkerThread function
is called by the window load event. The function adds the button listeners; creates a
new Worker instance, passing in the JavaScript filename; and assigns this reference to
the worker variable. After creating this instance, the script registers for the onmessage
event and defines a function when the event occurs to take the data and display the
message from the worker thread in the result output. When the worker thread sends
a message to the main script through a postMessage, the onmessage event handler
will be triggered.

When the instance of the worker is created, the script is loaded into the thread and
executes automatically. In the next recipe, you will see how you can manually tell the
script when to start running after creating the thread.

As the script executes in the worker thread, a total sum is calculated (albeit in a
very long and arduous way for demonstration purposes) by looping through one num-
ber at a time. As the loop progresses, the script checks to see whether the percentage
progress has increased. If the completion percentage has changed, then the script posts
a message to the main page through the postMessage command, including the new
percentage completion amount. This posted message triggers the onmessage event
handler in the main page script. The main script then takes this event and accesses the
data member that contains the actual text. The main script then displays the percent-
age complete, as shown in Figure 12.1.

If the user did want to terminate the worker thread without closing the page, the
terminate worker button can be used to tell the worker to stop immediately with the
terminate method.

Figure 12.1 Sample output showing multiple timestamp displays while
the worker is progressing

ptg999

Chapter 12 Communication and Threading308

Tip
Web workers are considered heavy in their creation and execution. Web workers are best
used when they are “long-lived” and will perform processing that should not block the
interface main thread. You should consider carefully when to use a worker thread and
how many threads are to be created. By definition, there is no limit on the number of web
workers you can create, and web workers can even create instances of other workers.
However, with each web worker created, there is significant overhead. It is best to keep
your web workers to a minimum.

INTERMEDIATE RECIPE:
Adding Two-Way Communication
In the previous recipe, you learned how the main script can create a dedicated web
worker and the worker can send messages back to the main script. The posting of mes-
sages is designed to be available between threads, which includes the main page thread
that created the worker instance. This means the main script and the worker thread
can send each other messages through the postMessage method of the Worker inter-
face. In this recipe, the main script will send messages to the web worker, and the web
worker will in turn send a confirmation of receipt of the message to the main script.

This recipe also looks at error handling for the worker at two levels: through the
error event and via custom messages returned to the main script. The message that
is sent through the postMessage method is in the format of a serialized object. This
means you can send JSON-formatted strings to encapsulate multiple data members.
In this recipe, you will use this method of sending complex data to inform the main
script about the type of message being sent and the payload of the message. In addi-
tion, the onerror event handler is programmed to handle any JavaScript error as the
worker script is processed. To get started with this recipe, follow these steps, which
result in Listing 12.4:

1. Create a blank HTML file and add the body HTML from Listing 12.4, which
includes the input field, button to send the message, and section to show the
message returned.

2. Add the script section with the worker declaration and onmessage handler.

 3. Add the onerror handler to catch any worker errors.

 4. Add the postToWorker function to send the text input to the web worker via
the postMessage method.

Listing 12.4 Creating the Client Page

<!DOCTYPE html>

<html>

<head>

<meta charset="UTF-8" />

<title>12.4 Worker Communication</title>

ptg999

Intermediate Recipe: Adding Two-Way Communication 309

<script>

// create our web worker

var worker = new Worker('12_5_two_way_worker.js');

// create handler for messages from web worker

worker.onmessage = function (event) {

 // retrieve message portion of data

var msgFromWorker = event.data;

 // check to see our type of message

 switch (msgFromWorker.msgType) {

 case 'MSG':

 // message sent from web worker - display

 var workerResponse = document.getElementById('workerResponse');

 workerResponse.innerHTML = 'Worker sent: ' + msgFromWorker.msg;

 break;

 case 'ERR':

 // error sent from web worker - alert user

 alert('Error from worker: ' + msgFromWorker.msg);

 break;

 }

};

// error handler for web worker

worker.onerror = function (error) {

 // simply alert user with error

 alert('Error from worker: ' + error.message);

};

// post the input to the web worker

function postToWorker() {

worker.postMessage(document.getElementById('inputForWorker').value);

}

// initialize our handlers

function init() {

 var btnPostToWorker = document.getElementById('btnPostToWorker');

 btnPostToWorker.addEventListener('click',postToWorker,false);

}

window.addEventListener('load',init,false);

</script>

</head>

ptg999

Chapter 12 Communication and Threading310

<body>

 <p>Enter a text message for the worker thread (leave blank to have worker

➥return a message type of error):</p>

 <input id='inputForWorker' />

 <button id="btnPostToWorker">Send to Worker</button>

 <section id="workerResponse"></section>

</body>

</html>

Like the previous recipe, you will use an external JavaScript file to hold your web
worker code. Listing 12.5 contains the script for this file and can be created through
the following steps. Make sure that the name of the file is the same used in the worker
instantiation in your main script in Listing 12.4.

1. Create a blank file, and add the onmessage event handler from Listing 12.5.

 2. Add the if condition and resulting sections to check for a valid input and send
back to the main script either an error or a confirmation message.

Listing 12.5 Adding the Web Worker

// The 12.5 2 way Web Worker js file

// Catch messages sent to the web worker

onmessage = function(event) {

 // check for empty data and send back an error

 if (event.data === '') {

 // post message to client with error info

postMessage({msgType:'ERR',msg:'Invalid data entry'});

 } else {

 // post message to client confirming receipt

 newMessage = 'Worker received "' + event.data + '"';

postMessage({msgType:'MSG',msg:newMessage});

 }

}

When the HTML page loads, the web worker is created by loading the JavaScript
worker file, but notice that the web worker does not perform any actions on creation,
unlike the prior recipe. The web worker will wait until any incoming messages trigger
the message handler. On the HTML page, the user is prompted to enter a text string
into the input field and click the Send to Worker button. The Send to Worker button
triggers a postMessage of the text string to the web worker. The web worker then
checks whether this string is empty and, if so, posts a message back to the main script
using a JSON string with a message type of “ERR” and an appropriate message. If
the message received by the web worker is not empty, then the web worker wraps the

ptg999

Advanced Recipe: Leveraging a Shared Web Worker 311

string in another string to show what was received and posts this updated message back
in the same JSON format with a message type of “MSG.”

After the error or message has been posted back to the main script, the onmessage
event handler in the main script is triggered with the message from the web worker.
The function checks to see what type of message has been sent and then either alerts
the user of an error or updates the result field with the message from the web worker,
as shown in Figure 12.2, and completes the communication loop.

To trigger the error message, leave the input field blank, and click the Send to
Worker button to send an empty string to the web worker.

This recipe and the one prior leveraged dedicated web workers, which are solely
available to the page that creates them. In some cases, though, you may have the need
to employ a web worker with a shared scope across pages. In the next recipe, we will
explain the structure of a shared web worker and how to implement the connections
to the web worker.

ADVANCED RECIPE:
Leveraging a Shared Web Worker
The scope of a dedicated web worker, as you saw in the previous recipes, is to the
page that has created the web worker. In all aspects, the web worker is sandboxed to
thread-safe operations in that environment. The HTML5 Web Workers API has a
second worker interface titled SharedWorker. This interface provides the same web
worker functionality but in a scope that can be shared across multiple pages in the
same browser from the same origin. Functionality in the shared web worker can be
independent to each request like a dedicated web worker or the web worker can share
its environment across the pages, as you will see in this recipe.

Since a shared web worker instance can have multiple clients communicating with
the thread, the interface is slightly different from the dedicated web worker interface.
A shared web worker uses a port assignment to identify the connection of a page to
the web worker. This identity is used by the shared web worker to identify the source
of messages and to whom messages should be posted. The following is a creation of
the SharedWorker:

var sworker = new SharedWorker(‘mySharedWorker.js’);

Figure 12.2 Sample output showing the message received and returned
by the web worker

ptg999

Chapter 12 Communication and Threading312

The shared web worker has one event, connect, which is executed when a client
thread connects to the shared web worker, as shown in Table 12.5.

As mentioned, each client connection has a port designation to uniquely identify
that connection. The post message method and message events get pushed to the port
so that the messaging is performed at the connection level.

In this recipe, we will explain how to use a shared web worker across multiple
pages to calculate an average number from values provided from any of the connected
pages. When the average is changed, the result is sent to each page for display. For ease
of testing, the client pages are displayed in one container page using iframes rather
than having to load each page individually in your browser. Thus, there are three
files to be created: the main container page, which holds the iframes for each client
page; the client page that accepts input from the user and connects to the shared web
worker; and the actual shared web worker JavaScript file. Let’s get started with the
container file shown in Listing 12.6:

1. Create a blank HTML page with the HTML body and three iframes in div
tags, as shown in the listing.

2. Next add the style tags and styling for the div and iframe tags to show the
iframes in three equal columns across the page. This concludes the container
file.

Listing 12.6 Creating the Client Page Holder

<!DOCTYPE html>

<html>

<head>

<meta charset="UTF-8" />

<title>12.6 SharedWorker Across Pages</title>

<!-- This is purely a container page to show

multiple pages using a shared worker. This would

perform the same if the pages were in separate

tabs or windows in the same browser. -->

<style>

 div{float:left;width:33.3%;height:500px}

 iframe{width:100%;height:100%}

</style>

</head>

Table 12.5 The SharedWorker Events

Event Name Attribute Purpose

connect onconnect Triggered when a message is received. An event
object with a data member will be provided with
the message.

ptg999

Advanced Recipe: Leveraging a Shared Web Worker 313

<body>

 <div>Client Page 1<iframe src="12_7_sw_client.html"></iframe></div>

 <div>Client Page 2<iframe src="12_7_sw_client.html"></iframe></div>

 <div>Client Page 3<iframe src="12_7_sw_client.html"></iframe></div>

</body>

</html>

Next, you need to create the client page as coded in Listing 12.7, which will be loaded
into each iframe of the container and display the input field for the user to enter a
number:

1. Create a blank HTML page with the body, as shown in Listing 12.7, including
the input tag, SEND NUMBER button, and log section.

 2. Add the script tags and global reference for the shared worker instance called
sworker. This will be the SharedWorker instance for posting and receiving
messages.

 3. Add the window.addEventListener line and the init function, which creates
the shared worker connection and registers the onmessage handler for that cli-
ent’s port of the shared worker.

 4. Add the sendNumber function, which takes the input value and sends the num-
ber to the shared worker for processing.

Listing 12.7 Creating the Client Pages

<!DOCTYPE html>

<html>

<head>

<meta charset="UTF-8" />

<title>12_7 SharedWorker Client</title>

<script>

// global SharedWorker reference

var sworker = null;

// initialize the page and SharedWorker connection

function init() {

 // reference our log output section

 var logOutput = document.getElementById('log');

 // add the button listener

 var btnSendNumber = document.getElementById('btnSendNumber');

 btnSendNumber.addEventListener('click',sendNumber,false);

 // create our SharedWorker reference

sworker = new SharedWorker('12_8_shared_worker.js');

ptg999

Chapter 12 Communication and Threading314

 // onmessage handler for messages from SharedWorker

sworker.port.onmessage = function(msg) {

 // based on type of message display appropriately

 switch (msg.data.msgType) {

 case 'LOG':

 // received a log message, add to log

 logOutput.innerHTML += msg.data.msgText + '
';

 break;

 case 'AVE':

 // received a new average value, update average

 var aveOutput = document.getElementById('average');

 aveOutput.innerHTML = msg.data.aveValue;

 // add log entry

 logOutput.innerHTML += msg.data.msgText + '
';

 break;

 }

 }

}

// send the number entered to the SharedWorker

function sendNumber() {

 // retrieve the number

 var numToSend = document.getElementById('numberToSend').value;

 // post message to the SharedWorker (notice port)

sworker.port.postMessage(numToSend);

 // reset our value input field

 document.getElementById('numberToSend').value = '';

}

// add our event page load initialize call

window.addEventListener("load", init, false);

</script>

</head>

<body>

 Current Average: <output id="average"></output>

 <input id="numberToSend" />

 <button id="btnSendNumber">Send Number to SharedWorker</button>

 <hr width="100%">

 Messages from SharedWorker:

ptg999

Advanced Recipe: Leveraging a Shared Web Worker 315

 <section id="log"></section>

</body>

</html>

When the client page in Listing 12.7 loads, you initialize a connection with the
shared worker that is built from the file 12_4_sworker.js. The last step in this recipe
is to create the shared worker JavaScript file. The shared-worker JavaScript file is pro-
vided in Listing 12.8 and created with the following steps:

1. Create a JavaScript file, named 12_4_sworker.js (or whatever name you choose
as long as it matches the shared worker file parameter in your client HTML
page).

2. Add the global variables at the top of the script and the onconnect event
handler.

 3. Add the sendAllConnections and updateAverage functions to the script.

Listing 12.8 Adding the Shared Worker .js File

// 12.8 SharedWorker js file for averaging numbers across pages

// Initialize the connections array for storing the connection ports

var count = 0;

var connections = new Array();

// Initialize our average formula variables

var average = 0;

var numValues = 0;

var sumValues = 0;

// onconnect event for SharedWorker

onconnect = function(msg) {

 // get the reference for this connection

 var port = msg.ports[0];

 // store this connection reference for future messages

 connections[count] = port;

 // increment the number of connections we have

 count += 1;

 // respond to the client and initialize their average

 port.postMessage({msgType:'LOG',msgText:'[SW] Now connected [' + count +

➥'].'});

 port.postMessage({msgType:'AVE',msgText:'[SW] Average updated: ' + average +

➥'.', aveValue:average});

ptg999

Chapter 12 Communication and Threading316

 // create handler for when we receive a message from the client

 port.onmessage = function(msg) {

 // set the value passed into the SharedWorker

 var newValue = msg.data;

 // respond that we received the value

 port.postMessage({msgType:'LOG',msgText:'[SW] Received: ' + newValue + '.'});

 // update the Average with the new value

 updateAverage(newValue);

 }

}

// helper function to send a message to all clients

function sendAllConnections(msgTypeVal,msgVal) {

 // loop through the clients and postMessage

 for (var i=0; i<count; i++) {

 // post message to client with our JSON formatted message

 // with message type, text, and current average

 connections[i].postMessage({msgType:msgTypeVal,

 msgText:msgVal,

 aveValue:average});

 }

}

// our simple average update function

function updateAverage(newValue) {

 // adjust average formula variables

 numValues++;

 sumValues += parseFloat(newValue);

 // create new average

 average = Math.round((sumValues / numValues)*100)/100;

 // update all clients with new average

 sendAllConnections('AVE','[SW] Average updated: ' + average + '.');

}

To run this recipe, load the container HTML page into your browser. Note that at
the time of writing this recipe, only Safari has support for the SharedWorker inter-
face. When the container loads, it will load an instance of the client page into the
three iframes HTML page, as shown in Figure 12.3. Each client page will create an
instance of the SharedWorker interface, which creates a single shared web worker

ptg999

Advanced Recipe: Leveraging a Shared Web Worker 317

thread and connects the client page to a single shared web worker. When the cli-
ent page connects, the onconnect event handler will be triggered in the shared web
worker. The event handler will get the port reference that the connection is tied to
so that you can send messages to this client connection later and store this port in a
connections array. Next, the shared web worker in the onconnect event handler
sends, to the port just connected to, a log message stating that the client has connected
and what number connection the client has. In addition, the shared web worker sends
to the client the current average to initialize the display on the client page. Lastly, the
shared web worker registers an event handler for this port for the onmessage event so
that when the client page posts a message to the shared web worker, the message can
be caught.

When the shared web worker sends the log or average messages back to the client
page upon initial connection, the onmessage handler in the client page will catch
these messages. The client page will determine the type of message based on the fields
in the JSON string passed and update the display by adding the log message and set-
ting the average value if required.

Once all the client pages are initialized with the connection to the shared web
worker, the user may enter a number into any of the client pages and click the Send
Number to SharedWorker button. This will call the sendNumber function in the
client JavaScript and will in turn post a message to the shared web worker with the
number entered. Note that you use the port of the sworker to call the postmessage
on, as shown here, which is slightly different from posting messages to dedicated web
workers:

sworker.port.postMessage(numToSend);

This post message command will send the user input to the shared web worker,
which will then take this number in the onmessage event that was registered and
return a log message that the number was received to the client port. After sending the
log message of receipt, the shared web worker will update the current average in the
global variables and send this new average to all connected clients. The helper function
to send to all clients loops through the connections and posts the new average in a
message. Figure 12.3 shows a sample run of the recipe.

The SharedWorker interface should be considered young; it is supported in only a
few browser platforms and has minimal functionality. There are also challenges with
this interface that have not been worked out yet, such as handling disconnections of
clients, but the interface is promising and offers a lot of functionality for developers in
the future.

Tip
In developing your own web worker structure, it is beneficial to first develop the worker
functionality in your main page to allow for easy debugging. Once you have the core
worker functionality working, then you can encapsulate the code in a separate worker file
and thread.

ptg999

Chapter 12 Communication and Threading318

Summary
In this chapter, the recipes have demonstrated the use of the WebSocket API and Web
Workers API for some key patterns of communication. The WebSocket API provides
an easy-to-use communication method between servers and client pages, while Web
Workers provides an efficient means to off load heavy processing from the main thread
of your website or application. By leveraging these new APIs in your applications, you
can enhance the overall user experience and functionality. The recipes in this chapter
have only touched the surface of what can be done with these APIs but have given you
the basis to implement your own solutions.

Figure 12.3 Sample output showing messages received by each
client page

ptg999

13
Browser Experience in HTML5

Browsers have notoriously been isolated from the rest of the operating system for
security reasons. With HTML5, several APIs have come forth that allow tighter inte-
gration with the operating system of the device that the user may be on and to offer
more typical user experiences of a native application. We have grouped three of these
APIs into this chapter on the browser experience. The three APIs allow for the follow-
ing types of user experiences:

n Drag and drop of objects outside the browser and inside the page
n Application cache storage to allow for off line web page usage
n Desktop notifications to alert users to events in the browser window

In this chapter, you will learn about these APIs even though they are more nascent
than the other APIs we have covered and have room for improvement. We will start
with one of the more refined and end with an API that is not yet supported by the
majority of browsers but has great promise. So, let’s dig in with the drag and drop API.

Drag and Drop API
The drag and drop API has been added to the HTML5 APIs to allow users to select
an object, drag the object to an area on the page, and drop the object triggering some
action. The basis of the drag-and-drop functionality is the combination of four pieces:

n A draggable object from within or external to the browser
n A drop zone to receive the object
n Events that allow control of the behavior of the drag and drop
n A data store to transfer contextual data on the object

To allow an object in a browser to be dragged, there is a new attribute titled
draggable. The draggable attribute has three potential values: true, false, and

ptg999

Chapter 13 Browser Experience in HTML5320

auto. If draggable is set to true, then the object can be dragged by the user. If
the attribute is set to false, then the object cannot be dragged. If the value is set to
auto, then the browser will use the default draggable value for the type of object as if
the draggable attribute were not provided. For example, you have probably noticed
already that you can grab an image on a page and drag it around. When you drop
it, of course, nothing happens since there is no drop zone defined; yet it can still be
dragged. To create a draggable div, the code would look like the following:

<div class="divClass" id="myDiv" draggable="true">My Div</div>

To create an area where an object can be dropped, an attribute named dropzone
has been added in HTML5. The dropzone attribute can have one of three values:
copy, move, or link. The value you choose depends on the type of action you want
performed when the object is dropped. A sample dropzone declaration on a div looks
as follows:

<div id="divDropzone" dropzone="copy" …

The dropzone attribute also can use a filter, such as a list of formats like f:/image/
png, which states that only images files of type PNG can be dropped onto the drop
zone.

Next, you must handle the actual start of the dragging and dropping of the item by
catching events that are triggered by the elements that you have now designated as the
draggable object and the dropzone object. When the user starts to drag an object,
the ondragstart attribute or dragstart event will be fired. By calling a function
on this event, you will be able to then store some data about the object that is being
dragged. When the object is then dropped on the dropzone, the dropzone will fire
an attribute event titled ondrop or the drop event. When this event is fired, the data
that has been stored on the object being dragged can then be retrieved and used to
perform any functions the script chooses. To pass this information, you use a new
interface titled DataTransfer.

The DataTransfer interface has various attributes and methods, but the two that
will be used to pass information are setData and getData. The following are the
methods available with the DataTransfer interface:

n setData(format, data): Sets the data, of type format (such as text) into the
data store.

n getData(format): Retrieves the data from the data store, of type format.
n clearData([format]): Clears the data store of the optional format provided. If

no format is provided, then the entire store is cleared.
n void setDragImage(image, long x, long y): Uses the image at x,y coordi-

nates to show the user.
n void addElement(element): Adds the element provided to the data store.

Table 13.1 shows the version of each browser that supports the drag and drop API.

ptg999

321Beginner Recipe: Dragging and Dropping Across divs

Table 13.1 Drag and Drop API
Browser Availability

Android 2.1+

Chrome 10.0+

Firefox 3.6+

Internet Explorer 6.0+

iOS Safari -

Opera -

Safari 3.2+

BEGINNER RECIPE:
Dragging and Dropping Across divs
This recipe will use the drag-and-drop functionality to allow the user to drag a note
image to a corkboard dropzone. When the drop of the note occurs, a new copy of the
note image selected will be added to the corkboard, as shown in Figure 13.1.

This recipe will show you the basics of creating a drag-and-drop use case by
using the attributes of draggable and dropzone along with the key events and
DataTransfer interface. Listing 13.1 shows the code for this example, but you can
follow these steps to create the file:

1. Create a blank HTML page with the style and body sections shown in Listing
13.1. In the body section, make sure to add the event handler attributes to the
note images and the board div.

 2. Add the fileAttributes section to the HTML body where the recipe will dis-
play the file attributes.

Figure 13.1 Sample output showing basic drag-and-drop functionality
using draggable notes on the left and a drop zone on the right

ptg999

Chapter 13 Browser Experience in HTML5322

 3. Add the dragStartHandler and dropHandler functions, which both take the
target element that the event triggered on, along with the event itself.

 4. Add the getStartPos and init functions, which retrieve the drag start position
in the element being dragged and initialize the style, respectively.

Listing 13.1 A Basic Drag-and-Drop Example

<!DOCTYPE html>

<html>

<head>

<meta charset="UTF-8" />

<title>13.1 Basic Drag and Drop</title>

<style>

#notes {

 float:left;

 height:220px;

 width:50px;

 text-align:center;

 border-style:solid;

 border-width:2px;

 border-color:#333;

 background-color:#666;

}

#board {

 float:left;

 width:300px;

 height:220px;

 border-style:solid;

 border-width:2px;

 border-color:#333;

 background-image:url('corkboard.png');

}

</style>

<script>

// variables to hold the offset of the click on image

var imgOffsetX = 0;

var imgOffsetY = 0;

// function to handle starting the drag

function dragStartHandler(tgt, evt) {

 evt.dataTransfer.setData("Text", tgt.id);

}

// Handler for drop action

function dropHandler(tgt, evt) {

ptg999

323Beginner Recipe: Dragging and Dropping Across divs

 // prevent the default browser action from occurring

 // for example open a new tab with the item dragged

if(evt.preventDefault) {

 evt.preventDefault();

 }

 // retrieve the id of the image being dragged

 var elImgId = evt.dataTransfer.getData("Text");

 // create a new image instance

 var oImg = new Image();

 // set the src of the image

 oImg.src = document.getElementById(elImgId).src;

 // set the image position

 oImg.style.position='absolute';

 var newX = evt.x - imgOffsetX;

 var newY = evt.y - imgOffsetY;

 var divLeft = tgt.x;

 var divTop = tgt.y;

 var divWidth = parseInt(tgt.style.width);

 var divHeight = parseInt(tgt.style.height);

 // make sure image is fully in the div

 var imgWH = 50;

 if (newX<tgt.offsetLeft) {

 newX=tgt.offsetLeft

 } else if (newX+imgWH>(tgt.offsetLeft + divWidth)) {

 newX = tgt.offsetLeft + divWidth-imgWH;

 }

 if (newY<tgt.offsetTop) {

 newY=tgt.offsetTop;

 } else if (newY+imgWH>(tgt.offsetTop + divHeight)) {

 newY = tgt.offsetTop + divHeight-imgWH;

 }

 // position image

 oImg.style.left = newX+'px';

 oImg.style.top = newY+'px';

 // append image to the div dropzone

 tgt.appendChild(oImg);

}

ptg999

Chapter 13 Browser Experience in HTML5324

// help function to set the point of click on the note image

function getStartPos(evt) {

 imgOffsetX = evt.offsetX;

 imgOffsetY = evt.offsetY;

}

// initialize the board width and height

function init() {

 document.getElementById('board').style.width = '300px';

 document.getElementById('board').style.height = '220px';

}

// call the init function on page load

window.addEventListener('load',init,false);

</script>

</head>

<body>

 <h1>Drag notes to the corkboard:</h1>

 <div id="notes">

 <img id="note_blue" src="post_blue.png" onmousedown="getStartPos(event);"

➥ondragstart="dragStartHandler(this, event);">

 <img id="note_green" src="post_green.png" onmousedown="getStartPos(event);"

➥ondragstart="dragStartHandler(this, event);">

 <img id="note_pink" src="post_pink.png" onmousedown="getStartPos(event);"

➥ondragstart="dragStartHandler(this, event);">

 <img id="note_yellow" src="post_yellow.png" onmousedown="getStartPos(event);"

➥ondragstart="dragStartHandler(this, event);">

 </div>

 <div id="board" dropzone="copy" ondrop="dropHandler(this, event);"

➥ondragover="return false;"></div>

</body>

</html>

When the page loads in the browser, each image sets an ondragstart event han-
dler to call the dragStartHandler with the respective element. Note how you do not
need to add the draggable attribute since the default setting for images is draggable.
In the div board line, you set the div to be a dropzone and set the ondrop and
ondragover event handlers. The ondragover event handler is needed to override the
standard browser functionality and simply returns false when the event is raised. If
the user selects a note and starts dragging the note, then the dragStartHandler func-
tion will be called. In addition, the onmousedown event will trigger a helper function
that simply stores the x and y coordinates in variables for use in calculating where to
position the note on the board. In the dragStartHandler function, the script sets the
ID of the element that is being dragged in the DataTransfer interface.

ptg999

Advanced Recipe: Leveraging Events and dataTransfer 325

The user then drops the note onto the board, and the dropHandler function will
be called. The first thing you do in the drop handler is negate the default behavior of
the browser by calling preventDefault on the event. This will allow you to control
the behavior of the drop action in the browser. The script then gets the element ID
from the data store, creates a new image, sets the source, and does some calculations to
set the position of the new image on the board. Note that the positioning will work in
only some browsers such as Chrome based on the positioning methods available, but
this is not critical to the example. Once the image is created and positioned, you then
append the image to the board div, resulting in a copy of the note image.

This is a simple example of the drag-and-drop functionality. In the next recipe, you
will incorporate these concepts with other drag-and-drop events to have much more
control over the drag-and-drop experience.

ADVANCED RECIPE:
Leveraging Events and dataTransfer
In the previous recipe, you used just the essentials of the drag and drop API to catch
an image being dropped onto an area and make a new image to be added to the area.
The drag and drop API interface provides several other events besides the basic drag-
and-drop events to allow you to control both the drag and drop behaviors. With these
events, you can control behaviors such as the type of items that can be dragged along
with where they can be dropped. The following are the other events that the drag and
drop API produces:

n dragstart: The drag operation has started on a draggable object.
n drag: The object is being moved.
n dragenter: A drag operation enters into an available dropzone.
n dragleave: A drag operation leaves an available dropzone.
n dragover: An object is being dragged over an available dropzone.
n drop: An object is released onto an available dropzone.
n dragend: A drag operation on a draggable object has ended.

In this recipe, you will employ the drag and drop API to create the mathematical
game commonly referred to as the Towers of Hanoi and created by mathematician
Édouard Lucas in 1883 (you can find more on the history of the game on Wikipedia
at http://en.wikipedia.org/wiki/Tower_of_Hanoi). The basic rules are that you have
three posts, with the leftmost post containing a series of disks stacked from largest to
smallest. The number of the disks can vary between different boards. The goal is to
move the stack to the rightmost post, moving one disk at a time and only onto either
an empty post or a post with a larger disk than the one being moved. We will use the
drag and drop API events and dataTransfer object to create this game, making sure
to enforce the rules of play.

http://en.wikipedia.org/wiki/Tower_of_Hanoi

ptg999

Chapter 13 Browser Experience in HTML5326

During the play of the game, if the player attempts to place a disk onto a stack that
has a smaller disk, then the code will not allow the disk to be dropped. However, if
the move is valid, then the disk will be moved and added to the stack. In addition, if
the user attempts to move a disk that is not on the top of a particular stack, then it will
be disallowed. After each move of a disk onto the rightmost stack, you will check to
the see whether the user has successfully moved the entire stack and congratulate. Let’s
get started and see how to use the various events to enforce the rules of the game:

1. Create the page shown in Listing 13.2 with the style and body tags for the
blocks and three drop zones. Note that on the blocks you add the draggable
attribute to make sure the browser understands that these divs can be dragged.

 2. Add the script tags, add the initTowers function, and add the
window.addEventListener to trigger the initialization.

3. Add the event handlers for the blocks; the blockHandleDragStart and
blockHandleDragEnd functions will allow only the top block of a tower to be
dragged. The functions will also change the style on the start and end of the
dragging motion.

4. To go with the block handlers, you need the drop zone handlers. Add the tower
drop zone handler functions, towerHandleDragOver, towerHandleDragLeave,
and towerHandleDragDrop, to control the tower drop zone’s style when mov-
ing a block over it and handle the dropping of a block on a tower.

5. Add the global variable declarations at the top of the script for the tower block
game map (the two-dimensional array named towers), the number of blocks for
the game, and the counter for the number of moves made by the player.

Note
You can find the images for this recipe on the book’s website (see the introduction for
location information).

Listing 13.2 Employing Drag and Drop for Towers of Hanoi

<!DOCTYPE html>

<html>

<head>

<meta charset="UTF-8" />

<title>13.2 Towers Game</title>

<style>

.towerDropZone {

 float: left;

 height: 200px;

 width: 200px;

 margin: 5px;

 padding: 15px;

 position:relative;

ptg999

Advanced Recipe: Leveraging Events and dataTransfer 327

 background-color:#fff;

 background-image:url(tower.png);

 background-repeat:no-repeat;

 background-position:bottom;

}

.towerDropZone.over {

 border-radius: 15px 15px;

 background-color:#EEE;

}

.tower {

 width: 200px;

 position:absolute;

 bottom:1px;

 border:none;

}

.block {

 height: 25px;

 margin:1px auto;

 border: 1px solid #ccc;

 border-radius: 15px 15px;

 background-color:#00F;

 color:#FFF;

 text-align:center;

 font-size:19px;

 font-weight:bold;

}

</style>

<script>

// Declare the map of towers, number of blocks and step count

var towers = [[],[],[]];

var numblocks = 4;

var numMoves = 0;

// Initialize the event handlers and state

function initTowers() {

 // Set the event handlers for the tower drop zones

 var towerDropZones = document.querySelectorAll('#towers .towerDropZone');

 [].forEach.call(towerDropZones, function(tdz) {

tdz.addEventListener('dragover', towerHandleDragOver, false);

 tdz.addEventListener('drop', towerHandleDragDrop, false);

 tdz.addEventListener('dragleave', towerHandleDragLeave, false);

 });

 // Set the event handlers for the individual blocks

 var blocks = document.querySelectorAll('.block');

 [].forEach.call(blocks, function(block) {

ptg999

Chapter 13 Browser Experience in HTML5328

block.addEventListener('dragstart', blockHandleDragStart, false);

 block.addEventListener('dragend', blockHandleDragEnd, false);

 });

 // Set up the map of initial block state on tower 0

 for (var i=numblocks-1;i>=0;i--) {

 // add the block to the tower map on first tower (3,2,1,0)

 towers[0].push(i);

 // Create the different widths for the blocks

 document.getElementById(i+"block").style.width = (90 + i * 30) + "px";

 }

}

// Handler for a block dragging over a tower drop zone

function towerHandleDragOver(e) {

 // prevent the default action from occurring so we can drop

if (e.preventDefault) {

 e.preventDefault();

 }

 // Set the effect to the move option

 e.dataTransfer.dropEffect = 'move';

 // Set the look of the tower to show available

 this.className = "towerDropZone over";

 return false;

}

// Handler for a block drag leaving a tower drop zone

function towerHandleDragLeave(e) {

 // Set tower drop zone look back to normal

 this.className = "towerDropZone";

}

// Handler for dropping a block on a tower drop zone

function towerHandleDragDrop(e) {

// prevent the default action

 if (e.preventDefault) {

 e.preventDefault(); // necessary; allows us to drop

 }

 // Change the tower drop zone look back to normal

 this.className = "towerDropZone";

ptg999

Advanced Recipe: Leveraging Events and dataTransfer 329

 // Get the JSON data passed through dataTransfer

var blockInfo = JSON.parse(e.dataTransfer.getData("Text"));

 // Set the origin / destination towers, and block info

 var blockId = blockInfo.blockId;

 var blockNum = parseInt(blockInfo.blockId);

 var fromTowerId = parseInt(blockInfo.fromTowerId);

 var toTowerId = this.id;

 // Get tower element

 var tower = document.getElementById("tower"+toTowerId);

 // Logic to determine if the block can be dropped on tower

 var towerheight = towers[toTowerId].length;

 if (towerheight == 0) {

 // Tower empty - Insert block before <p> holder in the tower

tower.insertBefore(document.getElementById(blockId),document.

➥getElementById("p"+toTowerId));

 } else {

 // Tower has blocks - get top block value on tower

 var topBlock = towers[toTowerId][towerheight-1];

 // check if block can be put on top of block

 if (topBlock > blockNum) {

 // insert block before top block to go on top

tower.insertBefore(document.getElementById(blockId),document.

➥getElementById(topBlock+"block"));

 } else {

 // block can not be put on top of current top block

 // return false to kill action

return false;

 }

 }

 // Update the game map locations for this block

towers[toTowerId].push(blockNum);

 towers[fromTowerId].pop();

 // Increment the number of moves made

 numMoves++;

 document.getElementById("numMoves").textContent = numMoves;

 // Check to see if game is over - all blocks in order on 3rd tower

 if (towers[2].length==numblocks) {

 // Game complete - make blocks not draggable

 var blocks = document.querySelectorAll('.block');

 [].forEach.call(blocks, function(block) {

ptg999

Chapter 13 Browser Experience in HTML5330

block.draggable = false;

 });

 // notify user

 alert("Congratulations - you have moved the tower.");

 }

}

// Handler for a block starting to be dragged

function blockHandleDragStart(e) {

 // Retrieve the block id and origin tower id

 var blockId = this.id;

 var fromTowerId = this.parentNode.parentNode.id;

 // Get variables to be able to check if the block grabbed

 // is the top block on the tower

 var towerheight = towers[fromTowerId].length;

 var topBlock = towers[fromTowerId][towerheight-1];

 var thisBlock = parseInt(blockId);

 // Check if this is the top block on the tower

 if (topBlock == thisBlock) {

 // block is the top block so we can move it

 this.style.opacity = '0.4';

// create the JSON packet for passing info with dataTransfer

 var blockinfo = {

 "blockId": blockId,

 "fromTowerId": fromTowerId};

 // set the data for the dataTransfer

 e.dataTransfer.setData("Text", JSON.stringify(blockinfo));

 } else {

 // block is not the top block

 this.style.opacity = '1.0';

 // return false to prevent the block being dragged

return false;

 }

}

// Handler for a block drag action ending

function blockHandleDragEnd(e) {

ptg999

Advanced Recipe: Leveraging Events and dataTransfer 331

 // set the block opacity back to normal

 this.style.opacity = '1.0';

}

// Call our initilization function when page loads

window.addEventListener('load',initTowers,false);

</script>

</head>

<body>

 <h1>Towers Game</h1>

 <p>Move the pieces on the left stack to the right most tower.

 A block may only be moved onto an empty tower or a tower with a larger

➥block.</p>

 <div>Number of moves made: 0</div>

 <section id="towers">

 <div class="towerDropZone" id="0">

 <div class="tower" id="tower0">

 <div class="block" id="0block" draggable="true">1</div>

 <div class="block" id="1block" draggable="true">2</div>

 <div class="block" id="2block" draggable="true">3</div>

 <div class="block" id="3block" draggable="true">4</div>

 <p id="p0" />

 </div>

 </div>

 <div class="towerDropZone" id="1">

 <div class="tower" id="tower1"><p id="p1" /></div>

 </div>

 <div class="towerDropZone" id="2">

 <div class="tower" id="tower2"><p id="p2" /></div>

 </div>

 </section>

</body>

</html>

So, now that you have built up the page and ideally played a couple rounds by
dragging the blocks back and forth, you have an idea of how the events are triggered
based on the actions of the player. But let’s take a couple minutes and go through some
of the details in how the game logic integrates with the drag-and-drop functionality.

When the page loads, the recipe declares the global variables for the game map (if
you have programmed position-based games, then a game map will be second-nature
for you; otherwise, a game map can be thought of simply as a representation of where
the game pieces are at any specific time), the number of blocks for the game, and the
counter for number of player moves. The game map in this case is a two-dimensional
array that keeps track of what blocks are on each of the three towers. The drop zones,
or towers, have integer-based IDs starting at zero, which map directly to the towers

ptg999

Chapter 13 Browser Experience in HTML5332

array. Upon running the initTowers function, the page registers the drop zone han-
dlers for each drop zone tower and then the event handlers for the blocks that will be
moving around. Then the script sets the current game map by adding into the array
for tower zero (the first tower) the four blocks, 3, 2, 1, 0. You will notice you add this
in reverse order, which references that block 3 is bigger than block 2, and so on. In
addition, you use this order then to size the blocks through the style property dynami-
cally, and this concludes the initialization of the game board.

Let’s take a look at the game f low now. When the user drags a block from one
tower to another tower, several things occur as events are fired. First, the drag start
event is fired, and the blockHandleDragStart function executes. This function first
verifies that the block selected is the top block of the tower that the block was on. If it
is not, then the function returns false, which prevents the block from being able to
be dragged. If it is the top block, then the recipe creates a JSON string with some key
information: the block ID and the tower ID from which the block is being dragged.
This data is then set into the DataTransfer interface so that when the block is
dropped onto a new tower, you will have the block selected and the tower from which
the block was moved. To show the user you are dragging the particular block, you also
change the opacity of the block in the function.

As the block is then dragged into a drop zone, or tower, the drag-over event is fired,
and the towerHandleDragOver function executes. The purpose of this function is to let
the player know that they have moved over a drop zone. This is performed by changing
the style of the tower div area that is being dragged over, as shown in Figure 13.2.

One key item, though, is the inclusion of the preventDefault command. As you
saw in the previous recipe, to prevent the browser from performing the default action,
which can cause issues with the game f low, you must use this command. If the block
is just “passing through” the tower drop zone, then the drag leave event will be fired,
and the towerHandleDragLeave function will be executed. This function changes
the style of the tower drop zone being left back to the normal view.

When the block is dropped onto a tower drop zone, the bulk of the game logic is
executed in the towerHandleDragDrop function. When this function is launched,

Figure 13.2 Sample output showing block 3 being dragged from the
first tower to the last tower. The event drag start has fired already, and

the drag-over event has just fired as you get into the drop zone.

ptg999

Advanced Recipe: Leveraging Events and dataTransfer 333

you will first call the preventDefault method to again prevent the browser from
using its default logic for a drag-and-drop event. Next, the recipe will retrieve the
dataTransfer information to be able to use this data in the game logic. The key to
the logic is to determine whether the block can be dropped, and this is done by check-
ing the game map to see whether the tower the block is being dropped on is either
empty or has a larger block already on the tower. If the tower has a smaller block, then
the block cannot be added, and you will return false, which will prevent the drop
from occurring on the tower. If the block can be added, then you “insert” the block
either before the top block (to display the blocks correctly) or before a placeholder on
the tower, which is the paragraph tag (<p id="px">). Once the block has been added
to the HTML, the recipe then updates the game map, increments the counter for the
number of moves, and lastly checks to see whether the player has completed the game.

To check whether the player has completed the game, you do a very simple check
to see whether the last tower has all four blocks. Since the game logic prevents a
smaller block from being lower on a tower than a larger block, you do not need to
verify the order. If the game is solved, then the player should not be able to move the
blocks anymore, so the code makes the blocks not draggable by programmatically set-
ting each block’s draggable attribute to false. This ends the game; to play again, the
player must reload the page.

You could enhance this recipe greatly with features such as changing the color of
the drop zone based on whether the block can be dropped on an area. But we will let
you add those features if you want, now that you understand the f low of events with
the drag and drop API and know how to add logic based on when the events fire.

In both of the examples of the drag and drop API, you have passed simple text
strings with the DataTransfer interface. The DataTransfer interface, as mentioned
earlier, can handle multiple types of information being transferred, including images,
files, and so on. These recipes touch on just the basics of getting a drag-and-drop solu-
tion functional. There are many other features to the drag and drop API, including
different behaviors, objects that can be dragged, and dragging from the desktop into
a browser. In Chapter 14, Working with Local Files, you will learn how the dragging
and dropping of files from outside the browser to a drop zone in the page is handled
with some of the special features of the DataTransfer interface.

Tip
If you find yourself having a difficult time debugging your drag-and-drop programming
because every time you drop an object onto your drop zone the browser launches a new
tab or window with just the object that you are dragging, then most likely you have left out
the preventDefault method call on the event being fired. The browsers will execute
their default processes for handling a drop action based on the type of object being
dragged without this method. For example, in Firefox, if you are dragging an image and
drop it onto a drop zone that does not execute the preventDefault method, a new tab
will be opened, showing just the image that you were dragging.

ptg999

Chapter 13 Browser Experience in HTML5334

Application Cache and API
On smartphones and tablet devices, if you want an application to always be available,
then you need a native app. If you want to use an application from a website, then you
need an Internet connection—that is, until application cache came along. Application
cache means you can run online applications off line, not just on smartphones or tablets
but on desktop browsers as well.

Table 13.2 shows the version of each browser that supports the application cache
and API.

Table 13.2 Application Cache
Browser Compatibility

Android 2.1+

Chrome 10.0+

Firefox 3.6+

Internet Explorer -

iOS Safari 3.2+

Opera 10.6+

Safari 4.0+

The application cache is a list of files, captured in a manifest, that tells the browser
to download these files and store them so that when the user comes back to the page,
the files are available to be used. This is incredibly useful if you don’t have a connec-
tion, but even if you do have a connection, this will speed up your page’s loading time
because the files have already been loaded.

Any page that references the manifest will automatically be stored, but that does
not mean you want to, or indeed should (consider file size and type limit restrictions),
store everything off line. What you want to offer the user is a suitable off line experi-
ence. If you have an application design, then the key files for using the app should be
stored off line.

Browser Cache Security
Since the application cache is storing files on the user’s file system of the developer’s
choosing, there are security implications associated with the website or application. It
is not too far-fetched that a malicious file could be cached from the web server on the
client’s machine. With this security issue in mind, a browser will ask the user prior to
caching any files whether the user trusts the site for storing data and files on the local
system. Figure 13.3 shows a sample of how a browser will ask the user for permission.

ptg999

Beginner Recipe: Creating a Manifest File 335

Referencing a Manifest File
It is easy for the browser to reference the manifest file; simply add the manifest attri-
bute to the html element, with the name of your manifest file (.appcache), as follows:

<!DOCTYPE html>

<html manifest="application.appcache">

<head>

</head>

<body>

</body>

</html>

Note
Any file (.html, .php, and so on) referenced in the manifest file will be downloaded and
cached.

Your web server might not know what to do with an .appcache file, so you might
need to add the MIME type to your server. You can do this via IIS, or if you’re using
Apache, use the following code on your server:

AddType text/cache-manifest .appcache

BEGINNER RECIPE:
Creating a Manifest File
You do not need any special software to create the manifest file; you can use any basic
text editor such as Notepad. Save the file as xxx.appcache. At the top of the file, you
must include the following:

CACHE MANIFEST

Note
We suggest not creating the manifest file until you finish your app or website, because
you don’t want to store unfinished files as they may disrupt development. Clearing or
refreshing the cache isn’t as straightforward as refreshing the page (we’ll cover this later
in the chapter).

From here, you can just start listing files that want to be stored, as shown here:

CACHE MANIFEST

css/main.css

js/jquery.js

images/logo.png

Figure 13.3 Permission request for application caching

ptg999

Chapter 13 Browser Experience in HTML5336

That should be all you need. If you created an HTML page and included a manifest
file listing files, as in the previous listing, then after visiting the page while online, the
page and supporting files will be cached. If you then disconnect your Internet connec-
tion and refresh the page, the page will display normally. Files listed in the manifest
can be either relative or absolute addressed.

But there is more you can do. You can split the manifest file into three sections:
CACHE, FALLBACK, and NETWORK:

n CACHE: Files that should be cached on the client browser device for use when
the Internet connection is not available

n FALLBACK: A list of files and their replacements when a connection is not
available to the Internet

n NETWORK: Files that require a connection only and should not be cached

CACHE
The CACHE section is basically the same as in the previous example. Files listed like
those in the previous example or with a CACHE heading are “explicit” and will be
downloaded and cached on the browser. They can include files stored externally, but
you cannot use wildcards when caching files, so css/* will not work.

Warning
Do not cache the manifest itself in the cache because it will be nearly impossible to
inform the browser of a new manifest.

FALLBACK
The FALLBACK section of the manifest is incredibly useful and can act as a way
of detecting whether the user is online or off line. Using FALLBACK, you can tell
the browser what file to use if a specific file is unavailable because of the user being
off line. For example, if you had a large CSS file that was not necessary for off line use,
then you could omit the file from the CACHE section and instead use FALLBACK, as
shown here:

CACHE MANIFEST

FALLBACK:

online.css offline.css

So, in this example, if the user is off line but the HTML page calls online.css, the
manifest file has told the browser to switch to off line.css (note the files are separated
by a space), which has been cached. Handy, isn’t it? This is restricted not just to CSS
files but could work for images, JavaScript files, HTML pages, and even movie clips.
Just put each declaration on a new line.

With FALLBACK, you can use a wildcard technique. So if you wanted all files to
have a fallback, you could use the following:

/ /offline.html

ptg999

Beginner Recipe: Using Web Pages Offline 337

So, if the user is off line, all files after the slash, such as /page1.html, will be shown
off line.html instead. Remember, though, once a file, such as page1.html, has been opened
and it references the manifest file, then it will be downloaded and available off line.

You could go further with FALLBACK and offer certain directories or just HTML
pages as a generic fallback:

/js/ /offline.js

*.html /offline.html

NETWORK
The NETWORK section tells the browser which files are available only with a connec-
tion, and it stops these files from being downloaded. Usually resources that go in this
section are resources that require a database or server connection, such as a login page:

CACHE MANIFEST

NETWORK:

login.aspx

Updating the Cache via the Manifest
When the browser sees the manifest file for the first time, it downloads the files in the
list, and it will not refresh the cache until you force it. You can do this via the API,
which will be covered later; by clearing the browser cache (Firefox has the option of
deleting a manifest on a site-by-site basis; select Firefox > Options > Advanced); or by
updating the manifest file. Updating a file that is listed in the manifest will not force
an update; you must make a change to the manifest itself. An easy way of doing this,
rather than adding or deleting resources, is to leave or update a comment. You can
make comments in the file by starting the line with a hash (#), as shown in the fol-
lowing example. Comments must be on their own line.

CACHE MANIFEST

v1.0 - 06.28.2011

CACHE:

magic.js

style.css

Refreshing the cache can be as simple as just updating a comment.

BEGINNER RECIPE:
Using Web Pages Offline
You have read the logic, so now you’ll see an example. In this web application, you
will create a simple multiplication of two numbers provided and allow the user to use
a “contact us” type of form if online. If the user is off line, then you will fall back to a
static page with contact information. In this recipe, you will have the following:

ptg999

Chapter 13 Browser Experience in HTML5338

n Three HTML pages
n One JavaScript file
n Two CSS files
n Two images

On the first HTML page are two input fields (the new HTML5 input type, of
course), and the button will multiple the two numbers together (there is no validation
in this example). When the submit button is fired, the result will display, and there
will be an option to contact a fictitious company with your results via a contact form.
However, the contact form will display only if there is a connection, so you will offer
a FALLBACK option, which is a page that simply has a telephone number on it.

Also in the app you have a CSS file that has some layout styles and then a separate
CSS file that loads a pretty font (for example, it could be coming from a web font ser-
vice). You want this pretty font to display only if the user is online.

Finally, an image will simply tell you whether the user is online (a check mark
graphic) or not (an X graphic).

Listing 13.3 shows the HTML for this application, and Listing 13.4 shows the man-
ifest file. You can see it in action in Figure 13.4.

Listing 13.3 HTML to Display the Calculation Form

<!DOCTYPE html>

<html manifest="13_3_cookbook.appcache">

<head>

<meta charset="utf-8">

<title>Offline</title>

<script src="13_3_calculation.js"></script>

<link rel="stylesheet" href="13_3_offline_style.css" />

<link rel="stylesheet" href="13_3_offline_style2.css" />

</head>

<body>

 <h1>Submit a calculation</h1>

 <label for="first">First</label>

 <input required type="number" id="first" name="first" />

 <label for="second">Second</label>

 <input required type="number" id="second" name="second" />

 <input type="submit" onclick="calculate()" value="Calculate" />

 <div id="resultHolder">

 <h2>Your result is </h2>

 <p>Now you have your result, you can <a

➥href="13_1_offline_contact.html">contact us</p>

 </div>

</body>

</html>

ptg999

Beginner Recipe: Using Web Pages Offline 339

Listing 13.4 Manifest for the Calculation App

CACHE MANIFEST

Version 1.0

CACHE:

13_3_calculation.js

13_3_offline_style.css

NETWORK:

13_3_offline_style2.css

FALLBACK:

connection-tick.gif connection-cross.gif

13_3_offline_contact.html 13_3_offline_offline.html

If you try this example while online, you will see the pretty Comic Sans font and
the check mark graphic (see Figure 13.4), but if you then go off line and refresh, the
app has no font assigned, and the X graphic is showing (see Figure 13.5). If you com-
plete the calculation and attempt to access the contact form, you will instead see the
“Ring us” page shown in Figure 13.6.

Figure 13.4 Output for submitting a calculation while online

Figure 13.5 Output for submitting a calculation while offline

ptg999

Chapter 13 Browser Experience in HTML5340

Plenty of options are available to you with the application cache. Your app might
be all on one page, or it might be spread across several pages so you need to consider
which files to store and which files need Internet access.

There are some browser differences. IE9 does not support off line web applications
fully; however, it appears to cache the initial page, CSS, and JavaScript fine and work
off line, but this cache should not be relied upon. Chrome, Firefox, and Safari work
as expected and show the fallback image and HTML page. Opera 11 shows the fall-
back image, but when connecting to the form, instead of showing the fallback page, it
shows a connection error page.

Application Cache API
When the browser reloads a page that has a manifest, it first checks to see whether
there are any changes, and then if there are changes to the file, it does the update in
the background. If you open a page with a manifest in Chrome, open the Developer
Console, and refresh the page, you will see it returns the following:

Document was loaded from Application Cache with manifest http://
website/13_3_cookbook.appcache
Application Cache Checking event
Application Cache NoUpdate event

If you change the manifest and refresh again, you will see more activity:

Document was loaded from Application Cache with manifest http://website/13_3_
cookbook.appcache

Application Cache Checking event

Application Cache Downloading event

Application Cache Progress event (0 of 5) http://website/13_3_offline_style.css

Application Cache Progress event (1 of 5) http://website/13_3_calculation.js

Application Cache Progress event (2 of 5) http://website/13_3_offline.html

Application Cache Progress event (3 of 5) http://website/13_3_offline_offline.html

Application Cache Progress event (4 of 5) http://website/connection-cross.gif

Application Cache Progress event (5 of 5)

Application Cache UpdateReady event

There are several events in the ApplicationCache object, as listed next. The
browser provides by default the load event, but the application cache API gives you
further options if you want to use them.

n checking: The browser is downloading the manifest for the first time or is
looking for an update to the file.

Figure 13.6 The substitute page for the contact form while offline

ptg999

Notification API 341

n noupdate: The manifest has not been changed.
n downloading: If the browser is looking at the manifest for the first time, then it

will download the resources; otherwise, it has found an update and is download-
ing that update.

n progress: The browser is downloading a resource listed.
n cached: The resources have now been downloaded and cached.
n updateready: The resources in the manifest have been downloaded, and the

browser cache can be updated. The swapCache function can then be fired to
make the browser use the latest manifest. Note that the swapCache function
needs to be called; otherwise, the browser will still use the old cache.

n obsolete: The manifest file could not be found.
n error: The manifest file could not be found, the page referencing the manifest

did not download properly, or a fatal error occurred when checking the manifest.

These events give you options, such as using an addEventListener to tell the user
when an update is ready, and then calling the swapCache function:

applicationCache.addEventListener('updateready', function() {

 //do something

 alert("There is an update to the cache")

 applicationCache.swapCache();

})

Notification API
The Notification API, otherwise known as the Web Notifications API, is a newer set
of APIs that allow browser pages to alert users through a desktop notification. The
API is quite nascent and supported currently only through a WebKit specification and
thus WebKit-based browsers. The calls via the WebKit notifications interface are simi-
lar to those defined in the W3C draft specification, so when in the future the Web
Notifications API is supported by browsers, the update should be minimal.

Many times, a user will put the browser window into the background while using
other applications on their system. When the browser page alerts the user that their
session is about to expire, a stock has hit its mark to sell, or some other event that
might be important to the user, the alert could be located behind other windows of
the desktop. With the Notification API, the browser page can now ask the user’s desk-
top to display a notification on its behalf. The notification will be displayed like other
installed application notifications, usually in a corner of the user’s screen.

The WebKit Notification API provides two interfaces titled NotificationCenter
and Notification. The NotificationCenter interface provides the ability to request
permission for notifications by the user, maintain the state of permission, and create
notifications. The following are the methods available on the NotificationCenter
interface:

ptg999

Chapter 13 Browser Experience in HTML5342

n Notification createNotification(in DOMString iconUrl, in

DOMString title, in DOMString body): Creates a notification instance
based on the icon, title, and body provided

n Notification createHTMLNotification(in DOMString url): Creates an
HTML page–based notification

n Int checkPermission(): Retrieves the current origin’s permission level for
notifications

n void requestPermission([in Function callback]): Requests user permis-
sion for displaying notifications

The NotificationCenter interface is exposed in WebKit browsers through the
window object by referencing a window attribute titled webkitNotifications. For
example, to create a notification from JavaScript, you would use the following line:

window.webkitNotifications.createNotification(‘icon.png’,’My Title’,
➥’My Notification’);

As you can see, the interface has two different methods for creating notifications:
createNotification and createHTMLNotification. The createNotification
method takes parameters passed to display a standard desktop notification with
an icon, title, and body. Besides these values, there is no other customization that
can be performed on the notification when using createNotification. With
createHTMLNotification, a URL of a source page is passed to the method. This
URL page can then have formatting and the like to provide additional functionality,
such as hyperlinks. In either case, a Notification instance is returned.

Once the Notification instance has been created, you can then use the
Notification interface methods to control the display of the notification. In the
WebKit Notification interface, there are two methods, show and cancel, which are
explained here:

n show(): Adds the notification to the desktop queue to be displayed if permission
has been allowed

n cancel(): Removes a notification from the desktop or the queue

The Notification interface also has event handler functions to provide details of
the notification when it is displayed, when it is closed, or when an error occurs, as
listed here:

n ondisplay: The notification has been displayed on the desktop.
n onclose: The notification has been closed either manually or via the cancel

method.
n onerror: An error has occurred with the notification.

You will look at working with the Notification interface events in the last recipe
of this chapter.

ptg999

Notification API 343

Notification Permissions
Since the Notification API is able to display pop-ups of any nature on the user’s screen
at any time, there is a natural concern over security and unwanted advertising content.
The Notification API thus includes a permission system by which a user must first be
asked whether they want to allow or deny notifications for a particular origin. When
permission is requested from the user, a drop-down bar or similar method will be used
by the particular browser to ask the user for permission, as shown in Figure 13.7.

Note that the request for permission can be displayed only from an intentional user
action, such as clicking a button or link. Requesting permission when a page loads
will have no effect, and the permission request will not be displayed to the user for
security purposes.

It is also important to realize that permission for notifications is set by origin, not
by page. So, if a user denies notifications for one of your pages, then notifications will
be denied for the entire domain. If permission has not been provided by the user and
you create a notification, the notification will not fail but will also not be displayed. In
the final recipe of this chapter, you will see how to check what the current “permis-
sion level” is by the user for the domain.

Browser Compatibility
Table 13.3 shows the version of each browser that supports the Notification API.
Note, however, that the Notification API is implemented using WebKit because the
general specification is in draft. It is expected that the release specification will have a
notification method without leveraging WebKit.

Table 13.3 Notification API
Browser Availability

Android -

Chrome 10.0+

Firefox -

Internet Explorer -

iOS Safari -

Opera -

Safari -

Figure 13.7 Chrome notification permission request bar

ptg999

Chapter 13 Browser Experience in HTML5344

BEGINNER RECIPE:
Displaying a Simple Notification
This first notification recipe will use the WebKit notifications to request permission
from the user and then create and display a notification when the user clicks the fire
notification button. The user can fire as many notifications as they like, and a new
notification with an incrementing unique number will be displayed. If the desktop has
reached its limit for the number of notifications that can be shown, then the notifica-
tions will be queued for display.

It is a simple recipe but will show the basics of displaying desktop notifications on
the desktop. Let’s fire off our first notification by launching into Listing 13.5:

1. Create a blank HTML page with the HTML body tags as shown in Listing 13.5,
including the Set Permission and Fire Notification buttons selection.

 2. Add the window.addEventListener line for the page load event and the init
function, which attaches the click event button handlers.

3. Add the global variable notificationCount to keep a unique ID for each
notification.

 4. Add the setPermission function to request permission if the
webkitNotifications interface is supported.

 5. Add the fireNotification function, which creates and then displays the
notification.

Listing 13.5 Using createNotification to Display an Event

<!DOCTYPE html>

<html>

<head>

<meta charset="UTF-8" />

<title>13.5 Basic Notification</title>

<script>

// counter for notifications

var notificationCount = 0;

// initialize the page

function init() {

 // reference the buttons

 var btnSetPermission = document.getElementById('setPermission');

 var btnFireNotification = document.getElementById('fireNotification');

 // set our button click event handlers

 btnSetPermission.addEventListener('click',setPermission,false);

 btnFireNotification.addEventListener('click',fireNotification,false);

}

ptg999

Beginner Recipe: Displaying a Simple Notification 345

// Request the user permission for notifications

function setPermission() {

 // check if the webkitNotifications is supported

if (webkitNotifications) {

 // request permission from the user

window.webkitNotifications.requestPermission();

 } else {

 // Let the user know that notifications are not supported

 alert("Notifications are not supported on this browser.");

 }

}

// Function to fire the notification

function fireNotification() {

 // increment our notification counter

 notificationCount++;

 // create the notification passing in icon, title, body

var notification = webkitNotifications.createNotification(

 'icon_notification.png',

 'Number '+notificationCount,

 'This is notification '+notificationCount);

 // now show the actual notification

notification.show();

}

// Add our page load listener to initialize

window.addEventListener('load',init,false);

</script>

</head>

<body>

 <h1>Basic Notification Recipe</h1>

 <p>Click set permission to allow notifications, then fire a notification.</p>

 <section>

 <button id="setPermission">Set Permission</button>

 <button id="fireNotification">Fire Notification</button>

 </section>

</body>

</html>

When Listing 13.5 is loaded into the browser, the init function will run and add
the click event handlers to the two buttons, Set Permission and Fire Notification.
You will need to click the Set Permission button first to have the browser display the
authorization prompt. (Remember to run this in Chrome or another WebKit-based

ptg999

Chapter 13 Browser Experience in HTML5346

browser.) When the permission is asked, select the Allow option, which will tell the
browser it is OK for any page from the origin of the page to request the desktop to
display desktop notifications. Inside the setPermission function, you first test to
see whether webkitNotifications is available. If the interface is available, then the
script executes the requestPermission method of the webkitNotifications inter-
face. This will launch the request for permission to the user. If you have previously
set the permission to allow notifications, then calling requestPermission again will
do nothing. You can reset the permission for the page’s origin to allow for testing, as
shown in the following tip.

Tip
When testing notifications with these recipes or your own pages, you will notice
that once you have allowed or denied notifications, you will not be able to use the
requestPermission method to ask the user to allow or deny notifications again. To
reset the preference for notifications, you must go in to the settings of the browser and
reset the permission manually. In Chrome, you can find this option under Preferences >
Under the Hood > Privacy – Content Settings… > Notifications > Manage Exceptions…,
as shown in Figure 13.8.

To reset the notification permission for your domain, roll over your entry, and
click the X to remove your entry from the Hostname Pattern list, as shown in Fig-
ure 13.9. This will reset the permission and allow the JavaScript code to ask with the
requestPermission method.

Once the permission is set to allow desktop notifications, you can click the Fire
Notification button. This will execute the fireNotification method, which
increments the counter of notifications and then creates a notification through the
createNotification method. Passed into the method is an icon URL that we have
created, the title that includes the counter, and the text of the body of the notification
with the unique counter as well. After having created the notification, you still must
call the show method to tell the browser to ask the desktop to show the notification. If

Figure 13.8 Section in Chrome settings for managing notifications

ptg999

Beginner Recipe: Displaying a Simple Notification 347

permission has not been allowed or permission has been denied, then the notification
will not display.

Each time you click the Fire Notification button, a new notification will be created
and displayed. In Figure 13.10, you can see an example of clicking the Fire Notifica-
tion button several times.

Note
Each desktop environment will have a limit to the number of notifications that may be
shown at one time to the user. If you create a notification and the desktop is currently
showing the maximum number of notifications that can be shown, then the notification
will be queued until room is available on the desktop by the user removing a notification
or the notification being automatically removed.

This recipe showed a simple example of creating and displaying desktop notifica-
tions through the WebKit notifications. In the next recipe, you will use these methods
along with others and events to create notifications of new tweets from a Twitter user.

Figure 13.9 Hostname Pattern list in Chrome to reset notification
permissions

Figure 13.10 Sample output showing desktop notifications

ptg999

Chapter 13 Browser Experience in HTML5348

ADVANCED RECIPE:
Creating a Tweet Notification Page
After the previous recipe in which you were able to create desktop notifications, you
probably have some ideas of how you might use the Notification API. The ability to
notify the user of an event when they are not in the browser window is quite useful.

In this recipe, you will use the Notification API to display on the desktop noti-
fications of new tweets from a particular Twitter.com user. The recipe will use the
Twitter API statuses/user_timeline to retrieve new tweets by the user and then
display the tweets as notifications on the desktop. The page will check for new tweets
by the user repeatedly with a 60-second span between requests to Twitter.com. The
first time the request is made, the page will by default grab the three most recent
tweets to display. For more information on the Twitter API, see the documentation for
the REST API at http://dev.twitter.com/doc and the specific API method the recipe
will use at http://dev.twitter.com/doc/get/statuses/user_timeline.

Figure 13.11 shows the output of the code as desktop notifications of a couple
recent tweets.

Note
The Twitter API has the ability to perform callback functions through the Twitter REST API.
This recipe leverages this callback technique to be able to make direct JavaScript calls
to the Twitter API. You must use this callback method along with a JSONP format to get
around cross-domain request security issues that are normal with these client-based
requests. In addition, you could use a third-party library such as jQuery to perform the call
or even build your own proxy in your same domain. Note that like most APIs online, the
Twitter API enforces rate limits on its API for abuse, and if you use it too much, you may
receive an “over rate limit” error.

In addition to the createNotification and show methods that you saw in
the previous recipe, you will also use the cancel method to remove notifications
automatically after a certain time frame. The recipe will use the event handler of
ondisplay to trigger a timer to automatically remove the notification displayed after
15 seconds. The script will then wait a minute and ask Twitter for any new tweets.

Figure 13.11 Sample output showing desktop notifications of tweets

http://dev.twitter.com/doc
http://dev.twitter.com/doc/get/statuses/user_timeline

ptg999

Advanced Recipe: Creating a Tweet Notification Page 349

In the previous recipe, you may have noticed that it was difficult to know
whether permission had been provided or what the current permission level for
notifications was. In this recipe, you will use the checkPermission method on the
webkitNotifications interface to allow the user to view the permission at any time.
Typically, this is not something you would show to the user in your pages but some-
thing that can be useful in your scripting. The checkPermission method returns
an integer value describing the current permission state for desktop notifications, as
shown in Table 13.4.

Typically, to call an external web service with a callback function, you would
inline the script source as the URL of the REST call. This recipe shows an exciting
alternate method using a web worker to retrieve the results, parse them, and then send
them back to the main thread. This is done by using the importScripts command
in the web worker, as covered in Chapter 12, Communication and Threading. This
allows the main thread to continue without being blocked when the call is made to
Twitter and allows the results to be processed. You simply create a new web worker
each time you want to retrieve the results, and the web worker ends after processing
the results. The one caveat about this is that the notification cannot be launched from
the web worker since the notification is part of the window object, which is not avail-
able in the web worker. So, you simply send the information to the main thread to
show the notification. With this web worker model, there will be two files. Listing
13.6 is the main page, and Listing 13.7 is the web worker. Let’s start with the main
page, as shown in Listing 13.6:

1. Create a blank HTML page with the HTML body tags and buttons Set Permis-
sion, Check Permission Level, and Grab Tweets.

 2. Add the script tags and the global variables tworker and lastTweetId.

 3. Add the script tags and setPermission function for requesting permission for
the desktop notifications.

 4. Add the checkPermissionLevel function for retrieving and displaying the cur-
rent permission level.

 5. Add the grabTweets function, which starts the web worker, assigns listeners for
messages from the web worker, and handles the creation of notifications.

Table 13.4 Permission Levels for Desktop Notifications

Permission Value Explanation

PERMISSION_ALLOWED 0 Permission has been given by the user
for desktop notifications.

PERMISSION_NOT_ALLOWED 1 Permission has been allowed or denied
by the user. Typically, the request for
permission has not been performed.

PERMISSION_DENIED 2 The user has denied permission for
desktop notifications to this origin.

ptg999

Chapter 13 Browser Experience in HTML5350

Listing 13.6 Creating Notifications in the Main Thread

<!DOCTYPE html>

<html>

<head>

<meta charset="UTF-8" />

<title>13.6 Twitter Notifications</title>

<script>

// set our web worker reference

var tworker = null;

// set the last tweet read

var lastTweetId = 0;

// function to initialize our handlers

function init() {

 //set the handlers

 var btnSetPermission = document.getElementById('btnSetPermission');

 var btnCheckPermission = document.getElementById('btnCheckPermission');

 var btnGrabTweets = document.getElementById('btnGrabTweets');

 btnSetPermission.addEventListener('click',setPermission,false);

 btnCheckPermission.addEventListener('click',checkPermissionLevel,false);

 btnGrabTweets.addEventListener('click',grabTweets,false);

}

// function to request user permission for notifications

function setPermission() {

 // check if the browser supports notifications

 if (webkitNotifications) {

 // check notification not allowed yet

 if (webkitNotifications.checkPermission() == 1) {

 // request permission and callback to this function

 webkitNotifications.requestPermission(setPermission);

 } else {

 // verify that permission has been given

 alert('Permission has been given.');

 }

 } else {

 // notification not supported

 alert('Notifications are not supported on this browser. ');

 }

}

ptg999

Advanced Recipe: Creating a Tweet Notification Page 351

// Check the notification

function checkPermissionLevel() {

 // verify that notifications are supported

 if (webkitNotifications) {

 // get the current permission level

var permissionLevel = webkitNotifications.checkPermission();

 // map the permission level to the equivalent

 switch (permissionLevel) {

 case 0:

 // PERMISSION_ALLOWED

 alert('Current level: PERMISSION_ALLOWED (0)');

 break;

 case 1:

 // PERMISSION_NOT_ALLOWED

 alert('Current level: PERMISSION_NOT_ALLOWED (1)');

 break;

 case 2:

 // PERMISSION_DENIED

 alert('Current level: PERMISSION_DENIED (2)');

 break;

 }

 }

}

// function to get the Tweets and create the notifications

function grabTweets() {

 // verify in the log that we are creating the web worker

 console.log('creating worker');

 // create the web worker instance for getting the user tweets

 tworker = new Worker('13_7_tweetworker.js');

 // message event handler for messages from the web worker

 tworker.addEventListener('message', function(msg) {

 // determine type of message from the worker

 switch (msg.data.msgType) {

 // received a tweet message to display a notification

 case 'TWEET':

 console.log('creating notification');

ptg999

Chapter 13 Browser Experience in HTML5352

 // grab the icon, title and body from the worker message

 nIcon = msg.data.icon;

 nTitle = msg.data.title;

 nBody = msg.data.body;

 // create the notification

var notification = webkitNotifications.createNotification(nIcon, nTitle,

➥nBody);

// set the ondisplay event handler

 notification.ondisplay = function(event) {

 // play notification audio

 var audio = new Audio('13_6_notify.mp3');

 audio.play();

 // set a time out to remove the notification after 15 seconds

 setTimeout(function() {event.currentTarget.cancel()}, 15000);

 }

 // set the onclose event handler

notification.onclose = function() {

 // log that the notification was closed

 console.log('Notification closed.');

 }

 // set the onerror event handler

notification.onerror = function() {

 // log that the notification had an error

 console.log('Notification Error.');

 }

 // Display the notification

 notification.show();

 break;

 // The web worker has finished

 case 'END':

 // If we have a last tweet then store for next search

 if (msg.data.lastTweetId>0) {

 lastTweetId = msg.data.lastTweetId;

 }

 // set a timeout to search again in 1 minute

setTimeout('grabTweets()',60000);

ptg999

Advanced Recipe: Creating a Tweet Notification Page 353

 break;

 }

 }, false);

 // Kick off the worker search with the last tweet id

tworker.postMessage(lastTweetId);

}

// window load event handler

window.addEventListener('load',init,false);

</script>

</head>

<body>

 <h1>Creating Notifications from new Tweets</h1>

 Click on Set Permission first to authorize notifications.

 Then click Grab Tweets to start listening for new Tweets.

 <button id="btnSetPermission">Set Permission</button>

 <button id="btnCheckPermissionLevel">Check Permission Level</button>

 <button id="btnGrabTweets">Grab Tweets</button>

</body>

</html>

Now that the main page is complete, you need to create the web worker JavaScript
file that will retrieve the tweets and perform the parsing of any tweets returned, as
shown in Listing 13.7:

1. Create a .js file for the web worker with the onmessage handler for receiving
messages from the main page. The onmessage handler will also perform the
import of the REST API script from Twitter.com.

 2. Add the getResult function, which is the callback function from the
importScripts REST API call. This function will handle the parsing of any
tweets retrieved and send them back to the main thread for display. And that is it
for the web worker.

Listing 13.7 Leveraging a Web Worker to Follow Tweets

// 13_7_tweetworker.js

// Web worker thread for retrieving set of tweets

// callback function to parse tweets result

function getResult(data) {

 // variable for holding max id of tweet list

 var maxId = 0;

ptg999

Chapter 13 Browser Experience in HTML5354

 // check if we have tweets to parse

 if (data.length>0) {

 // variables for our notification

 var tIcon = '';

 var tTitle = '';

 var tBody = '';

 // loop through resultset in reverse

 for (var i=(data.length-1); i>=0; i--) {

 // grab our profile image, screen name, and tweet

tIcon = data[i].user.profile_image_url;

 tTitle = data[i].user.screen_name;

 tBody = data[i].text;

 // return the tweet info back to the main thread to display

postMessage({msgType:'TWEET',icon:tIcon,title:tTitle,body:tBody});

 // store the id_str as the max id so we do not show again

 maxId = data[i].id_str;

 }

 }

 // tell the main thread we are done this loop

postMessage({msgType:'END',lastTweetId:maxId});

}

// Catch message from main thread

onmessage = function(event) {

 // grab our starting id of the last tweet

 var lastId = event.data;

 var qString = '';

 // check if our last id is a real tweet id

 if (lastId != 0) {

 // if a real tweet id then use the since_id

 qString = '&since_id='+lastId;

 } else {

 // no prior tweets read so grab a max of three

 qString = '&count=3';

 }

 // use importScripts as a JSONP method instead of inline script tags

 // currently following screen name BreakingNews but you can change

 // to whichever twitter user you would like to follow

ptg999

Advanced Recipe: Creating a Tweet Notification Page 355

importScripts('http://api.twitter.com/1/statuses/user_timeline.json?

➥screen_name=BreakingNews'+qString+'&callback=getResult');

}

After loading the main page in your browser and before clicking Set Permission,
click the Check Permission Level button. This will call the checkPermissionLevel
function. The function will verify that webkitNotifications is available and then
perform the checkPermission method to retrieve the current permission level as an
integer value. The value is then translated into its meaning and displayed as an alert.
This will allow you to quickly validate whether permission is set correctly for the
domain for showing desktop notifications. You can play around with this by removing
the permission in the browser settings, denying permission, and finally allowing per-
mission to view the changes in the permission level. If you have not set the permission
to allow notifications, then you will want to do so prior to moving on with the recipe.

Upon loading the code, a global reference is set to the web worker, named
tworker, and a global variable named lastTweetId is set that will store the “book-
mark” for the last tweet that you have read for the user. At load time, this variable is
set to zero so that you know it is the first time loading the page and no prior tweets
have been read. When you launch the web worker to retrieve the list of tweets,
lastTweetId will be passed to the web worker to be used to determine tweets to
display. You need to keep this variable in the main page because once the web worker
has completed retrieving and parsing the tweets, the worker will go away. A new web
worker is created each time you make the request for tweets.

To start the process of retrieving tweets for the user and displaying notifications,
click the Grab Tweets button. This will execute the grabTweets method, which
will first add a logging message in the console log to verify that you are starting the
retrieval process. Next, the function will create a new web worker from the tweet-
worker.js file. Before going into this worker, let’s see what the rest of the grabTweets
function does, because the web worker as designed will do nothing until you tell it
to start processing with a message. The next step for the grabTweets function is to
assign the onmessage event handler to the web worker so that when the web worker
sends back messages, you can access them. You will use a similar style of message com-
munication as in the recipes of Chapter 12, Communication and Threading, with web
workers, where the web worker can send back different types of messages based on a
JSON-formatted payload with a message type and the parameters associated with that
message type.

There will be two different types of messages from the web worker to the main
page: a TWEET message and an END message. If you receive a msgType of TWEET,
it means that the web worker has found a tweet for display, and you will then use the
rest of the payload to display a notification with the icon of the user image, the user-
name as the title, and the tweet as the body. The code in this recipe creates the notifi-
cation; adds the ondisplay, onclose, and onerror event handlers; and finally shows

ptg999

Chapter 13 Browser Experience in HTML5356

the notification. The onclose and onerror event handlers will simply log a console
log message to show when the event is caught. You will use the ondisplay handler
to play a sound when the notification is displayed and set a timeout to automatically
remove the notification from the desktop if the user has not already closed the notifi-
cation. Then the notification is shown with the show method.

The END message will signify to the main page that the web worker has finished
its retrieval and processing of any tweets. By having the web worker tell you that the
thread is finished, you can make sure you do not have multiple workers (threads) run-
ning at the same time and assure that you wait a given time between when a worker
finishes and a new worker is kicked off. The END message will contain the last tweet
ID or the value zero if no tweets were retrieved. The last tweet ID will update the
bookmark if needed to keep track of the last message retrieved. After setting the last
tweet ID, the timer is then set for kicking off the grabTweets function again. We
have not bothered adding a stop feature for this recipe, but you could easily add one
with a f lag to prevent future retrievals and cancel the current web worker if needed.
At the end of the grabTweets function, the code tells the web worker to start by
sending a message passing the bookmark, lastTweetId, to the web worker.

Let’s now jump into the web worker and brief ly go through the retrieval of the
user tweets. In the web worker, there are basically two sections: the request for the
information through the onmessage event handler and the parsing of the result set in
the getResult function. The web worker is kicked off with the message with the last
tweet ID, so the web worker onmessage handler takes the last tweet ID and creates a
URL REST request by leveraging the importScripts method of workers. Like doing
inline script tags, importScripts simply loads an external script or set of scripts
into the web worker. This will allow you to get by cross-domain security issues. On
the request URL, you make sure to use the callback querystring option to name the
getResults function to launch with the results. Also, you dynamically set some of
the parameters based on whether this is the first request or a follow-on request. See the
Twitter API documentation for further explanation of these search options.

Once the callback function getResults is called with the JSON results, the web
worker checks to see whether there are any tweets by seeing whether the length of the
data is greater than zero. If the length is greater than zero and thus you have tweets to
parse, the script loops through each child of the results and pulls out the image URL,
the username, and the tweet. Once the script has these fields, the web worker then
posts a message back to the main thread with the information for the notification. After
sending the message, the web worker stores the ID of the tweet in a variable to send
back at the end of processing to the main page as the next bookmark of tweets to start
with. You may notice that the script parses the tweet result set in reverse order. The
reason for this is that the first record is the newest going to the last record, which is the
oldest. Because you want to display the notifications in the order in which the tweets
were written, you need to display them in reverse. This recipe has shown how notifica-
tions can be shown, automatically removed, and tied into other APIs to alert users even
when they may not be viewing the browser window of events from the page.

ptg999

Summary 357

Summary
In this chapter, you learned about some of the smaller API extensions. The drag and
drop, off line storage, and notifications APIs provide the means to greatly improve the
user experience with both websites and applications. The APIs provide a higher level
of integration that is quickly removing the differences between the browser experience
and native applications. It will be interesting to see how these API extensions are used
in the future.

ptg999

This page intentionally left blank

ptg999

14
Working with Local Files

Until HTML5, working with files in the client browser has had minimal attention
and support. Typically, the breadth of functionality has consisted of simple file selec-
tion for posting to a web server. With HTML5 and a supplemental API set, the File
API, we now have an increased set of functionality and more importantly a standard-
ized set of functionality to get basic attributes of files and read different file types into
the client browser through JavaScript. In this chapter, you will learn about the new set
of functionality with the File API through recipes that will cover the basics as well as
some newer File API specifications that are on the horizon.

File API Overview
The File API provides a standardized way to interact with user-selected files in the cli-
ent browser. The interfaces of the File API can be broken into three functional areas:

n Selecting a file or files in the FileList interface
n Retrieving attributes about the files through the File interface
n Reading the actual file through the FileReader interface

The FileList interface is a list of files selected by the user and may be traversed
like an array. The File interface provides properties on the selected file. With these
two interfaces, scripts can loop through selected files and retrieve key properties on
the files as follows:

n name: The name of the file
n type: The type of the file in MIME format and ASCII encoded
n size: The size of the file in bytes
n lastModifiedDate: The date and time that the file was last modified

ptg999

Chapter 14 Working with Local Files360

File API Security
The File API interacts with information and data outside the browser container on the
client’s device. This interaction with the local file system naturally sparks concerns of
security. The HTML5 File API specification handles file read access security concerns
by allowing the JavaScript to interact only with those files to which the user provides
access. The File API is not able to navigate the directory structure or select files on its
own without the user’s interaction through the file selection.

Table 14.1 shows the version of each browser that supports the File API. The level
of support varies between browsers, however, and will be noted where applicable in
this chapter’s recipes.

Table 14.1 File API Browser
Availability

Android 3.0+

Chrome 9.0+

Firefox 3.6+

Internet Explorer 10.0+

iOS Safari -

Opera 11.1+

Safari -

BEGINNER RECIPE:
Getting File Attributes
This recipe will use the File interface to get the name, type, size, and last-modified
date of a file selected by the page visitor through the standard file input element.
Before showing how to get this information, the recipe will show how to validate that
the FileList interface is available in the browser. To display the attributes of a file, as
shown in Listing 14.1, perform the following steps:

1. Create a blank HTML page with a file input element, and add the onchange
event handler to be called when a file is selected.

 2. Add the fileAttributes section to the HTML body where the recipe will dis-
play the file attributes.

 3. Add the handleFile function, taking fileInput as the parameter.

Listing 14.1 Displaying the Attributes of a File

<!DOCTYPE html>

<html><head>

ptg999

Beginner Recipe: Getting File Attributes 361

<meta charset="UTF-8" />

<title>14.1 Retrieving File Attributes</title>

<script>

// handle the file selected

function handleFile(fileInput) {

 // reference our section to display the attributes

 var fileAttributes = document.getElementById('fileAttributes');

 // verify the browser supports the files interface

if (fileInput.files) {

 // reference the file using the files interface

var file = fileInput.files[0];

 // create the output

 var output = 'File attributes:
';

 output += 'name: ' + file.name + '
';

 output += 'type: ' + file.type + '
';

 output += 'size: ' + (file.size/1024).toFixed(2) + 'KB
';

 output += 'last modified date: ' + file.lastModifiedDate;

 // set the output to the section

 fileAttributes.innerHTML = output;

 } else {

 // files interface not supported by browser

 fileAttributes.innerHTML = 'files interface not supported';

 }

}

</script>

</head>

<body>

 <h1>Select File Below:</h1>

 <section>

 <input type="file" id="input" onchange="handleFile(this)" />

 </section>

 <section id="fileAttributes"></section>

</body>

</html>

When the visitor to the page created in Listing 14.1 selects a file from the browse
button of the file input element, the onchange event handler will call the handleFile
function with the file element passed as the parameter. Inside the handleFile func-
tion, you first get a reference to the display section element and then check to verify
that the browser supports the FileList interface. If the browser does not support the

ptg999

Chapter 14 Working with Local Files362

FileList interface by checking for the presence of the Files array, a message is dis-
played in the fileAttributes section, but you could handle this by continuing with
your logic or asking the visitor for more information.

If the FileList interface is supported, you grab a specific instance from the array
of files, a File, by referencing the first file in the Files array, fileInput.files[0].
You then use that File interface instance to get the name, type, size, and
lastModifiedDate properties. A conversion is performed on the size attribute since
the unit of measure is in bytes and it is more common to see file sizes referenced in
kilobytes. The equation converts the bytes into kilobytes. You could enhance this by
having a function take the bytes and show the conversion in kilobytes, megabytes, or
another unit based on the total number of bytes as is done in normal directory listings.

Note
The File interface inherits from a Blob, so it includes the size and type attributes.
With the File interface, the name and lastModifiedDate attributes are added. How-
ever, in several browser platforms, the lastModifiedDate is not available and will
return an undefined value when asked for.

In this recipe, you took a file that the visitor selected and showed the file’s attri-
butes. This can be convenient for filtering files prior to uploading to servers or just
showing a confirmation to the user. The next recipe will expand on this and provide
an interface for the visitor to select multiple files to be processed.

BEGINNER RECIPE:
Processing Multiple Files with Drag and Drop
The FileList interface provides the capability to handle an array of File objects
from the local file system. This recipe shows how a drag-and-drop area can be used
with the FileList to handle multiple files selected by the user. This can have several
different uses, including the filtering of files by name, size, or type, and confirmation
by the user of the files they selected. Once the files are dragged and dropped onto
the drop zone, the script will loop through the FileList sequence using the length
property. The length property returns the numbers of elements, or File objects in
the FileList, and can be used to “walk” through the sequence of files. For each File
object, the page will display the file attributes in a table to confirm to the viewer what
was dropped onto the page’s drop zone. To create the drag-and-drop page, follow
these steps and the code in Listing 14.2:

1. Create the page in Listing 14.2 with the style and body tags for the drop
zone and filesSelected section. Make sure that the input element has the
multiple attribute and the onchange event handler.

2. Add the drop zone event listeners in an init function, and add the
handleFileDrop and handleDragOver functions for enabling the drop zone.

ptg999

Beginner Recipe: Processing Multiple Files with Drag and Drop 363

 3. Add the displayFiles function to loop through the files selected and display
the attributes in the table.

 4. Add the clearTable function and the addEventListener load trigger.

Listing 14.2 Looping Through Multiple Files with FileList

<!DOCTYPE html>

<html>

<head>

<meta charset="UTF-8" />

<title>14.2 Processing Multiple Files with FileList</title>

<style>

#dropZone {

 width:300px;

 border: 2px dashed #bbb;

 -moz-border-radius: 5px;

 -webkit-border-radius: 5px;

 border-radius: 5px;

 padding: 25px;

 text-align: center;

 font: 20pt bold;

 color: #bbb;

}

#fileTable {

 border: 1px solid #000;

 -moz-border-radius: 5px;

 -webkit-border-radius: 5px;

 border-radius: 5px;

 padding: 5px;

 visibility:hidden;

}

tr:nth-child(odd) { background-color:#eee; }

tr:nth-child(even) { background-color:#fff; }

</style>

<script>

// initialize our drop zone

function init() {

 // Setup the drop zone and listeners.

 dropZone = document.getElementById('dropZone');

 dropZone.addEventListener('dragover', handleDragOver, false);

 dropZone.addEventListener('drop', handleFileDrop, false);

}

// handle files dropped

function handleFileDrop(evt) {

ptg999

Chapter 14 Working with Local Files364

 // stop our drag and drop

 evt.stopPropagation();

 evt.preventDefault();

 // retrieve the filelist

 var files = evt.dataTransfer.files;

 // display the filelist selected

 displayFiles(files);

}

// handle files dragged over

function handleDragOver(evt) {

 // turn off drop zone while over

 evt.stopPropagation();

 evt.preventDefault();

}

// display the files selected

function displayFiles(files) {

 // clear the current table

 clearTable();

 // display number of files selected

 var fileCount = document.getElementById('fileCount');

 fileCount.innerHTML = files.length + ' File(s) Selected';

 // set up fields for table generation

 var fileTable = document.getElementById('fileTable');

 if (files.length>0) {

 var row;

 var cell;

 var textNode;

 // loop through filelist and create rows

 for (var i=0; i<files.length; i++) {

 // add our row

 var row = fileTable.insertRow(i);

 // add the file name cell

 cell = row.insertCell(0);

 textNode = document.createTextNode(files[i].name);

 cell.appendChild(textNode);

ptg999

Beginner Recipe: Processing Multiple Files with Drag and Drop 365

 // add the type of file cell

 cell = row.insertCell(1);

 textNode = document.createTextNode(files[i].type);

 cell.appendChild(textNode);

 // add the file size cell

 cell = row.insertCell(2);

 textNode = document.createTextNode((files[i].size/1024).toFixed(2)+'KB');

 cell.appendChild(textNode);

 if (files[i].lastModifiedDate != undefined) {

 // add the file last modified date cell

 cell = row.insertCell(3);

 textNode = document.createTextNode(files[i].lastModifiedDate);

 cell.appendChild(textNode);

 }

 }

 fileTable.style.visibility = 'visible';

 } else {

 fileTable.style.visibility = 'hidden';

 }

}

// clear the table

function clearTable() {

 // get our table

 var fileTable = document.getElementById('fileTable');

 // loop through and remove the present rows

 while (fileTable.rows.length>0) {

 fileTable.deleteRow(fileTable.rows.length-1);

 }

}

// initialize our window

window.addeventlistener('load',init,false);

</script>

</head>

<body>

 <h1>Drag multiple files to the drop zone below:</h1>

 <section id="fileSelection">

 <!--

 // Multiple file section can also be done with the multiple attribute

<input type="file" id="input" multiple="true"

➥onchange="displayFiles(this.files)">

 -->

ptg999

Chapter 14 Working with Local Files366

 <div id="dropZone">Drop files here</div>

 </section>

 <section id="filesSelected">

 <div id="fileCount"></div>

 <table id="fileTable">

 </table>

 </section>

</body>

</html>

After the page is loaded in the browser, the drop zone is initialized through the
init function called by the window load event listener. The init sets the dropzone
variable to the dropzone div and registers two event listeners for the dragover and
drop events. When the dragover event is triggered, the handleDragOver func-
tion will be called, while the handleFileDrop function will be called with the drop
event. When the files are dropped on the drop zone and the handleFileDrop is
called, the script will retrieve the FileList and pass it to the displayFiles method.

The displayFiles function calls the helper clearTable to clear out any past
results. The clearTable removes the rows from the table until all are removed. Next,
the displayFiles checks the length of the FileList to verify that files were dropped
onto the drop zone. The script loops through the FileList using an index to get each
File interface. With each File object, the attributes are retrieved and added as a new
cell in the new row to the table. Finally, the script displays the table by making it vis-
ible, as shown in the sample execution in Figure 14.1.

With the use of the drop zone and the FileList sequence, HTML5 makes it easy
for visitors to submit files to the client page. Up to this point, however, you have
looked at the attributes of a file and not the data in the file. In the rest of the chapter,
you will learn about reading different types of files in the client JavaScript.

Figure 14.1 Sample output showing multiple attributes from files
dragged and dropped onto the page

ptg999

367The FileReader Interface

Tip
The type attribute of the File interface that is inherited from the Blob interface returns
the Multipurpose Internet Mail Extensions (MIME) type of the file. The MIME type is a
DOMString in all lowercase and ASCII encoded. This MIME type string can be used to
filter based on file types such as image or the like. As shown in Figure 14.1, there are
two images of different types, but the MIME starts with image, so you can easily validate
that both files are images. The MIME type provides a simple and effective way to perform
file filtering and verification, as you will see in the next section.

The FileReader Interface
To read files into client memory, the HTML5 File API specification provides a new
interface called FileReader. This interface provides methods, attributes, and events
that allow developers to asynchronously read files from client-side JavaScript. Through
the FileReader events, you can display or process the data of the files. Several differ-
ent types of files can be read because the FileReader interface has four different read
methods depending on the type of file you may be reading:

n readAsArrayBuffer(Blob): Returns the file contents as an ArrayBuffer
n readAsBinaryString(Blob): Returns the file contents as a binary string
n readAsText(Blob [,encoding]): Returns the file contents as a text DOMString
n readAsDataURL(Blob): Returns the file contents as a DOMString that is a data

URL

Since the FileReader interface is asynchronous, this allows for the main thread of
the page to continue processing, while events are used to catch key stages of the file
being read. Table 14.2 shows the events that are defined as part of the FileReader
interface.

Table 14.2 The FileReader Events

Event Name Attribute Purpose

loadstart onloadstart Triggered when the read of the file begins

progress onprogress Triggered during the read of the file at the will of
the browser

abort onabort Triggered when an abort action is performed

error onerror Triggered when an error is encountered during
the file read

load onload Triggered when the file has been successfully
read

loadend onloadend Triggered when the file read has completed,
either in success or in failure

ptg999

Chapter 14 Working with Local Files368

By using the appropriate FileReader read method and listening to the FileReader
events, you can use the FileReader interface to perform work in the client browser
that would normally happen at the server after uploading a file. In this next recipe,
you will use the readAsDataURL method to create thumbnails of selected images in
the user’s browser and show their corresponding attributes.

Note
File reading may be employed as a synchronous interface by leveraging the
FileReaderSync with a web worker, since the Web Workers API allows the methods
to act on a different thread than the main one. The FileReaderSync interface has the
same methods as the FlieReader. See the W3C Working Draft for more information on
synchronous File API usage.

INTERMEDIATE RECIPE:
Previewing Images Through readAsDataURL
The readAsDataURL method of the FileReader interface takes a supplied Blob or
File reference and reads the data into a URL that can be loaded in an appropriate
container. In this recipe, you will let the visitor select multiple files and then filter the
images from the set of files, read them through the readAsDataURL, and load them
into image containers for viewing as thumbnails. Normally, to replicate this function-
ality prior to the HTML5 File API, you would have needed to upload the files to a
server, process them on the server, and then load them into the client browser page.
This required increased overhead in sending the files back and forth and processing the
files on the server. By using the HTML5 File API, you can remove the need to send
the files back and forth and leverage the processing power of the client’s machine to
perform the handling of the files.

This recipe will use the readAsDataURL method along with the onload
FileReader event to read the files selected. Also, the recipe will display the attributes
of each file when you mouse over the thumbnail. To get started with this recipe, per-
form the following steps to create Listing 14.3:

1. Create a blank HTML file and add the body HTML from Listing 14.3, which
includes the multiple file input element, a display section for the thumbnails,
and a display section for the attributes.

 2. Add the style section, which includes three style sets for handling the selection
and deselection of the images.

 3. Add the handleFiles function in the script as shown in Listing 14.3, which is
triggered when the files have been selected.

 4. Add the showFile function to show the attributes of the file moused over.

 5. Add the clearFile function, which simply clears the attribute area when the
focus is no longer over the image.

ptg999

369Intermediate Recipe: Previewing Images Through readAsDataURL

Listing 14.3 Previewing Images with readAsDataURL

<!DOCTYPE html>

<html>

<head>

<meta charset="UTF-8" />

<title>14.3 FileReader - imgPanel Local Images</title>

<style>

.highlight,.unhighlight {

 max-height:100px;

 max-width:100px;

 -moz-border-radius: 5px;

 -webkit-border-radius: 5px;

 border-radius: 5px;

 margin:10px;

}

.highlight {

 border: 5px solid #6f0;

}

.unhighlight {

 border: 5px solid #000;

}

</style>

<script>

// load the image files selected

function handleFiles(files) {

 // set our defaults

 var fileLimit = 10; // maximum files at one time

 var sizeLimit = 500; // KB file size limit

 var imageType = /image.*/; // mime type of images - regular expression

 // reference the image panel and clear

 var imgPanel = document.getElementById('imgPanel');

 imgPanel.innerHTML = '';

 // calculate the file size limit in bytes

 var sizeLimitBytes = sizeLimit*1024;

 // check if the number of files is greater than limit

if (files.length<fileLimit) {

 // loop through the filelist

 for (var i = 0; i < files.length; i++) {

 // reference the current file

 var file = files[i];

ptg999

Chapter 14 Working with Local Files370

 // verify the file is an image

if (file.type.match(imageType)) {

 // verify the file is not above the max size

if (file.size<sizeLimitBytes) {

 // create an image container for the file

 var img = document.createElement("img");

 img.file = file;

 img.className = 'unhighlight';

 img.addEventListener('mouseover', showFile, false);

 img.addEventListener('mouseout', clearFile, false);

 imgPanel.appendChild(img);

// create our reader to read the file

 var reader = new FileReader();

 // set the onload event of the reader

 reader.onload = (function(aImg) { return function(e) { aImg.src =

➥e.target.result; }; })(img);

 // read the file as a data url for the image

 reader.readAsDataURL(file);

 } else {

 // file is too big

 alert(file.name+' is larger than '+sizeLimit+'KB.');

 }

 } else {

 // file is not an image mime type

 alert(file.name+' is not an image.');

 }

 }

 } else {

 // too many files were selected

 imgPanel.innerHTML = 'Only '+fileLimit+' files can be selected at a time.';

 }

}

// display the info on the image moused over

function showFile() {

 // highlight the current image

 this.className = 'highlight';

 // get references to our attributes panel and file

 var fileAttributes = document.getElementById('fileAttributes');

 var file = this.file;

ptg999

371Intermediate Recipe: Previewing Images Through readAsDataURL

 // create our file info

 var fileinfo = 'File info:
';

 fileinfo += file.name + '
';

 fileinfo += file.type + '
';

 fileinfo += (file.size/1024).toFixed(2) + 'KB
';

 fileinfo += file.lastModifiedDate + '
';

 // display the file info

 fileAttributes.innerHTML = fileinfo;

}

// reset after rolling off of image

function clearFile() {

 // clear the file attributes panel

 var fileAttributes = document.getElementById('fileAttributes');

 fileAttributes.innerHTML = '';

 // set highlight on image back to normal

 this.className = 'unhighlight';

}

</script>

</head>

<body>

 <h1>Select the images to preview.</h1>

 <section>

 <input type="file" id="input" multiple="true"

➥onchange="handleFiles(this.files)">

 </section>

 <section id="imgPanel"></section>

 <section id="fileAttributes"></section>

</body>

</html>

When the page created in Listing 14.3 loads, the visitor is prompted to choose a
file or set of files. After the files are selected, the onchange event of the input ele-
ment is triggered, which launches the handleFiles function and passes the files that
have been selected. The handleFiles function is the workhorse of the script and first
sets key default values. These defaults include the maximum number of files allowed,
the maximum size of each file, and a regular expression that will be used to match
on image MIME types. The file size and number of files are limited to prevent over-
loading of the client browser’s memory since the processing will be performed in the
memory of the client machine. In this recipe, you will be looping through the files,

ptg999

Chapter 14 Working with Local Files372

which will create multiple FileReaders acting at the same time. The script could be
more intelligent about the processing and have a pool of readers, which would not take
the next file until a reader frees up, but we will leave that up to you.

The script next checks that you have fewer files than the maximum and, if not,
displays an appropriate message. If you have a manageable number of files, then you
loop through the FileList and verify that each file is an image by matching on the
MIME type and ensure that each is less than the file size maximum you have put into
place. If each file meets these requirements, then the recipe creates an image container
with properties including the mouseover and mouseout events to show the attri-
butes. Now, the script is ready to read the file by creating a new FileReader for each
image. The script sets the onload event on the FileReader to load the result of the
FileReader into the source attribute of the image element, which creates the actual
thumbnail, as shown in Figure 14.2.

Lastly, you tell the FileReader to read each file through the readAsDataURL
method, which will return the data URL result for the image source. The rest of the
function handles the failure of the various checks put in place and displays the appro-
priate message to the user. The showFile and clearFile methods display the attri-
butes of the file.

This recipe shows a basic implementation of the FileReader interface and one of
the read methods available. In addition, we hope this recipe has shown you how you
must be conscious of running multiple asynchronous reads concurrently in the cli-
ent’s browser. To see this limitation in action, increase the limits on the file size and
number of files (but do so carefully because it is easy to max the memory in your
browser). In the next recipe, you will learn about some additional functionality on
the FileReader interface that will allow you to abort processing and catch errors that
may occur.

Figure 14.2 Sample output showing image files selected by the user
and displayed through the readAsDataURL method

ptg999

373Advanced Recipe: Parsing a CSV File with readAsText

ADVANCED RECIPE:
Parsing a CSV File with readAsText
By now you should be excited about the prospects that the FileReader interface pro-
vides for processing files in the client browser. This methodology can move processing
that has been problematic to the client side. One such area that is typical is the import
of files such as comma-separated value (CSV) formatted data documents. Typically,
the file is uploaded to the server and then parsed either immediately or on a scheduled
basis, and then it is imported into a database for use in the website or application. This
process can end up using precious server cycles.

In this recipe, we will show an alternative available with HTML5 by using the
readAsText method. The recipe will allow the user to select a local CSV file. The
file will then be read and parsed in the client’s browser, showing the rows and fields.
Note, though, that the CSV parsing logic in this recipe does not deal with the intrica-
cies of CSV structures. There are multiple locations on the web where you can find
robust parsing algorithms for CSV files. This recipe is meant more to show the f low of
using the FileReader and the readAsText method. Once parsed, the fields could be
put into JSON strings and sent via an Ajax web service call to a server for processing.

Besides the new method, readAsText, the recipe will also employ a function on
the FileReader called abort. This method allows the script or user to abort the read
process. When the abort method is called and successful, an ABORT_ERR is thrown by
the FileReader to verify that the abort has occurred. The FileReader has five pos-
sible errors that can be thrown because of issues reading the file or Blob provided, as
shown in Table 14.3.

Table 14.3 Possible FileReader Errors

Error Constant Value Explanation

NOT_FOUND_ERR 1 An error is thrown when the file to be read is
not found.

SECURITY_ERR 2 An error is thrown when a file may have
changed while a read occurred, a file is
deemed unsafe, or too many reads are being
made on the file.

ABORT_ERR 3 An error is thrown when the abort method is
called.

NOT_READABLE_ERR 4 The file cannot be read. Typically, this is
because of permissions on the file.

ENCODING_ERR 5 An error is thrown when a readAsDataURL
result is not in the form of a data URL. This
is not for encoding issues with reading files
as text.

ptg999

Chapter 14 Working with Local Files374

In this recipe, you will explore one of the last event handlers that the FileReader
provides, onprogress. The onprogress event handler provides notification of prog-
ress reading the file and can be used to display status to the user. The onprogress
event handler contains three attributes: lengthCompuatable, loaded, and total.
The lengthComputable attribute is a boolean f lag that marks whether the loaded
and total attributes are available. The loaded attribute is the number of bytes read so
far into memory, while the total is the total number of bytes to be read. By dividing
progress.loaded by progress.total, you can provide a completion percentage that
can be displayed to the user. In this recipe, as the file is read into memory, the page
will show a progress bar indicating the status. Note, though, that the progress event
is at the discretion of each browser’s implementation of the FileReader interface, so
it is not assured as to when or how often the event will be fired. The following steps
will create the code in Listing 14.4:

1. Create a blank HTML page with the HTML body and style tags as shown in
Listing 14.4, including the file selection, cancel button, file info section, and file
output div.

2. Add the style tags and styling for the various classes including hiding the cancel
button.

 3. Add the script tags and global reference to a FileReader instance called
textReader. This will be the FileReader instance for reading the CSV file
selected.

 4. Add the addEventListener load line and the init function that registers the
functions for the textReader events.

5. Add the corresponding event functions: onErrorHandler, updateProgress,
onAbortHandler, onLoadStartHandler, and onLoadHandler.

 6. Add the cancelFileReader function to allow the visitor to abort the read
process.

 7. Add the handleFile function, which starts the read process on the file, selected
through the readAsText FileReader method.

Listing 14.4 Displaying a CSV File’s Contents

<!DOCTYPE html>

<html>

<head>

<meta charset="UTF-8" />

<title>14.4 Basic File API</title>

<style>

#fileInfo {

 border: 1px solid #000;

 -moz-border-radius: 5px;

 -webkit-border-radius: 5px;

 border-radius: 5px;

ptg999

375Advanced Recipe: Parsing a CSV File with readAsText

 padding: 5px;

 visibility:hidden;

}

#progHolder {

 float:right;

 width:200px;

 height:30px;

 border:solid;

 border-width:1px;

 background-color:#999;

 text-align:center;

}

#progMeter {

 width:0px;

 height:30px;

 background-color:#9FF;

}

#btnCancel {

 visibility:hidden;

}

</style>

<script>

// set up a filereader

var textReader = new FileReader();

function init() {

 // set up our filereader handlers

 textReader.onerror = onErrorHandler;

 textReader.onprogress = updateProgress;

 textReader.onabort = onAbortHandler;

 textReader.onloadstart = onLoadStartHandler;

 textReader.onload = onLoadHandler;

}

// handle the selected file

function handleFile(inputFile) {

 // the csv mime type for regular expression

 var csvMimeType = /text\/csv/;

 // reference our selected file

 var file = inputFile.files[0];

 // verify that the file is a csv file

 if (file.type.match(csvMimeType)) {

ptg999

Chapter 14 Working with Local Files376

 // make the file info section visible

 var fileInfo = document.getElementById("fileInfo");

 fileInfo.style.visibility = 'visible';

// kick off the reader to read the csv file

 textReader.readAsText(file);

 // set our file info - the filereader is asynchronous

 // so this will display

 var output = 'File attributes:
';

 output += 'name: ' + file.name + '
';

 output += 'type: ' + file.type + '
';

 output += 'size: ' + (file.size/1024).toFixed(2) + 'KB
';

 output += 'last modified date: ' + file.lastModifiedDate;

 // display the file attributes

 var fileAttributes = document.getElementById('fileAttributes');

 fileAttributes.innerHTML = output;

 } else {

 // inform user that the file is not a csv

 alert(file.name + ' is not a CSV file.');

 }

}

// cancel filereader function

function cancelFileReader() {

// tell the filereader to abort

 textReader.abort();

}

// triggered filereader onloadstart handler

function onLoadStartHandler(evt) {

 // get our local element references

 var btnCancel = document.getElementById('btnCancel');

 var progMeter = document.getElementById('progMeter');

 var fileoutput = document.getElementById('fileoutput');

 // reset our cancel button, progress meter, and file output

 btnCancel.style.visibility = 'visible';

 progMeter.style.width = '0%';

 progMeter.innerHTML = 'loading...';

 fileoutput.innerHTML = '';

}

ptg999

377Advanced Recipe: Parsing a CSV File with readAsText

// triggered filereader onload handler

function onLoadHandler(evt) {

 // set our progress meter to 100% and hide the cancel button

 var progMeter = document.getElementById('progMeter');

 var btnCancel = document.getElementById('btnCancel');

 progMeter.style.width = '100%';

 progMeter.innerHTML = 'loaded.';

 btnCancel.style.visibility = 'hidden';

// split the file into an array for processing

 var fileArr = evt.target.result.split('\n');

 // process each row and set to rows in a table

 // this is a simplistic processing for csv and

 // does not handle differences in csv format

 var strDiv = '<table>';

 for (var i=0; i<fileArr.length; i++) {

 strDiv += '<tr>';

 var fileLine = fileArr[i].split(',');

 for (var j=0; j<fileLine.length; j++) {

 strDiv += '<td>'+fileLine[j].trim()+'</td>';

 }

 strDiv += '</tr>';

 }

 strDiv += '</table>';

 // set our output

 var fileoutput = document.getElementById('fileoutput');

 fileoutput.innerHTML = strDiv;

}

// progress handler for the filereader

function updateProgress(evt) {

 // reference to our progress meter

 var progMeter = document.getElementById('progMeter');

 // compute and display the progress

if (evt.lengthComputable) {

 var loaded = Math.round((evt.loaded / evt.total)*100);

 if (loaded < 100) {

 progMeter.style.width = loaded + '%';

 } else {

 progMeter.style.width = '100%';

 }

 }

}

ptg999

Chapter 14 Working with Local Files378

// handle any abort of the filereader reading

function onAbortHandler(evt) {

 alert('File read cancelled');

}

// handle any error with the filereader

function onErrorHandler(evt) {

switch(evt.target.error.code) {

 case evt.target.error.NOT_FOUND_ERR:

 alert('File Not Found!');

 break;

 case evt.target.error.SECURITY_ERR:

 alert('File security error.');

 break;

 case evt.target.error.ABORT_ERR:

 break;

 case evt.target.error.NOT_READABLE_ERR:

 alert('File is not readable.');

 break;

 case evt.target.error.ENCODING_ERR:

 alert('File encoding error.');

 break;

 default:

 alert('An error occurred reading the file.');

 };

}

// initialize our window

window.addeventlistener('load',init,false);

</script>

</head>

 <h1>Select a csv file to process.</h1>

 <section>

 <input type="file" id="input" onchange="handleFile(this)">

 <button id="btnCancel" onclick="cancelFileReader();">Cancel

➥Processing</button>

 </section>

 <section id="fileInfo">

 <div id="progHolder">

 <div id="progMeter"></div>

 </div>

 <div id="fileAttributes"></div>

 </section>

ptg999

379Advanced Recipe: Parsing a CSV File with readAsText

 <div id="fileoutput"></div>

</body>

</html>

When the page is loaded into the browser, the visitor can browse for a CSV file to
read. When the file is selected, the handleFile method is called with the file passed.
The handleFile method first checks to validate that a CSV file has been selected by
matching a regular expression for the MIME type. If the file does not match the CSV
MIME type, then an alert is displayed informing the user that the file is not a CSV-
formatted file. If the file is a CSV-formatted file, then the code calls the readAsText
method of the FileReader instance with the file passed as the parameter. This begins
the read process as an asynchronous process that will trigger the appropriate events as
the read progresses. To verify that the read is asynchronous, you have placed the dis-
play of the file attributes after calling the readAsText function. The attributes will be
displayed right after calling the readAsText since the read is not blocking the main
thread of the script.

In the init function of the script, you registered the onLoadStartHandler func-
tion to be called when the onloadstart event occurs. The onloadstart event will
be triggered when the FileReader begins reading the file. When this event occurs,
the onLoadStartHandler displays the cancel button, progress meter, and output div.

As the file is read, you update the progress meter by having the updateProgress
method called when the FileReader triggers an onprogress event. The
updateProgress method checks to validate that the loaded and total attributes are
available by checking the attribute lengthComputable. This attribute basically states,
if true, that the loaded and total attributes are available. The updateProgress will
use loaded and total to calculate the percentage complete and display this value
through a progress meter, which is built by setting the width of the progMeter div in
the progHolder div.

If the file finishes being read by the FileReader, then the onload event will be
triggered, and the function onLoadHandler will be called with the results in the
event passed to the method. In the method, you turn off the cancel button and mark
the progress as 100 percent so that the visitor knows the file has been read into mem-
ory. Since CSV files are line-oriented, you next split the result on line breaks to create
an array of lines by executing the following line:

var fileArr = evt.target.result.split('\n');

The result reference is the text file in memory. After you have split the result into the
array of lines or rows of comma-separated values, the script then loops through each
array element and splits the values by the comma character. As the script loops through
each row, the values are added to an output string, which is displayed in the file output
div when all the rows are complete, as shown in Figure 14.3.

ptg999

Chapter 14 Working with Local Files380

The method used to parse the comma-separated value file in this recipe is rather
simplistic; it does not handle cases such as commas that are embedded in the values,
and it does not understand the difference between quoted and unquoted values. You
can find more encompassing parsing methods online, but for the purpose of showing
how the readAsText method works, this recipe uses a simple model.

This recipe includes the abort option through a cancel button. If the visi-
tor clicks the cancel button while the FileReader is reading the file, then the
cancelFileReader method is called, which in turn calls the abort method on the
FileReader instance, TextReader. This instructs the FileReader instance to can-
cel the read process, removes any information already read from memory, and trig-
gers the onabort event. In turn, the script will catch the onabort event with the
onaborthandler method and display a message to the visitor, confirming the cancel-
ation of the reading.

You will also notice that the script includes an error handler for any errors passed
with the onerror event. When a read process is aborted, an error event is created,
called ABORT_ERR, and the onErrorHandler method will be called with this error.
The script will simply ignore this error since you take care of the abort elsewhere.
However, other errors that may be encountered will be handled with an appropriate
message to the user.

This recipe shows the power of using the FileReader interface for processing a
CSV file on the client browser. The results of the CSV file parsing could be filtered,
displayed, and packaged up for transmittal to a web server with no work on the server.
The recipe includes the functionality of reading a file, aborting the process, and han-
dling errors that may occur. This should provide a template to start processing your
files in your own web pages.

Figure 14.3 Sample output showing a selected and parsed CSV file

ptg999

File API Extended Specifications 381

File API Extended Specifications
You are probably wondering at this point if you can navigate the system directory,
create files, and write to them. Two newer specifications are being prepared based on
the File API to handle these exact use cases. The first is the File API: Directories and
System, and the second is the File API: Writer specification. These specifications have
gone through several renditions and are still in f lux, so they have not been imple-
mented by many browsers. In fact, the only browser to support these extended File
API objects and methods is Chrome at this time.

Note
With Chrome 12 and newer versions, the browser uses a custom version of the
requestFileSystem call, webkitRequestFileSystem. The parameters for
the call are the same, but you will need to conditionally use the correct call based on the
Chrome version. Ideally, as the specifications solidify and more browsers support the File
API specifications, the calls will again be generic and the same across the board.

There are several objects and methods in the Directories and Writer File APIs, but a
couple are key to this recipe and working with the file system and files. Here are some
of the more useful directories and system interfaces:

n FileSystem: Represents the file system being worked with
n Entry: Represents a generic entry in the file system
n DirectoryEntry: Represents a directory in the file system
n FileEntry: Represents a file in the file system

And here are some of the more useful file writer interfaces:
n BlobBuilder: Used for managing Blobs of data used with the file interfaces
n FileSaver: Used to monitor writing events and progress
n FileWriter: Used for writing, truncating, and appending to a file

The DirectoryEntry and FileEntry interfaces are built on the Entry interface,
which has standard copy, move, and remove methods. The Directories and Writer
API sets have corresponding events and a set of possible errors. In addition, the APIs
provide for both asynchronous calls, for embedded use, and synchronous calls, for use
with web workers. Each of the interfaces has methods and attributes, and we recom-
mend you review the most up-to-date specifications for current information. How-
ever, Table 14.4 describes some of the methods you will be leveraging in this chapter.

The FileWriter interface also has the attributes of length and position, which
can be used for positioning the location to append or write information in the file.

Multiple methods are associated with the directory and system including copy-
ing and moving, and there are file and directory attributes that you would find in
a normal directory and file explorer. These methods and attributes would make it

ptg999

Chapter 14 Working with Local Files382

fairly easy to make your own file and directory explorer. Unfortunately, we do not
have the room here to create a recipe such as this, but you can find all the necessary
information for using these methods and attributes in the Directories and System API
specification. One thing to note, though, is that these interfaces appear to deal with a
file system that is “generated” by the browser in a sandbox specific to the originating
domain for security purposes. In the next recipe, you will create a file in a local file
system and write some data to the file.

ADVANCED RECIPE:
Creating a Local File
In this recipe, you will create a page that uses a local text file to store a list of user-
added email addresses. The page will allow the user to add an email address, which

Table 14.4 Key File Directory and System, and Writer Methods

Interface Method Purpose

FileSystem requestFileSystem Requests a file system in which to store
application data

Entry copyTo Copies an Entry of either a
Directory or File to a given location

Entry getMetadata Retrieves metadata about this Entry

Entry getParent Retrieves the parent DirectoryEntry
of the Entry

Entry moveTo Moves an Entry from its current file
system location to a different location

Entry remove Deletes the Entry, whether a file or
directory

Entry toURL Returns a URL for the given Entry that
can be used for reference

FileEntry createWriter Creates an instance of a file writer for
writing to the file

FileEntry file Returns the file that the FileEntry is
pointing to

FileWriter seek Sets the position of the location in the
file for executing the next write method

FileWriter truncate Changes the length of the file either by
shortening or by extending

FileWriter write Writes the data provided into the File
at the current position

ptg999

Advanced Recipe: Creating a Local File 383

will be appended to the file; display the list of email addresses from the file; and
remove the file.

Note
Since there is no security permission interface for allowing a user to authorize the browser
to access the local file storage at this time, you must instruct the Chrome browser that
permission is given by launching the browser with two arguments; --unlimited-
quota-for-files and –allow-file-access-from-files. To launch the
Chrome browser with these arguments, you can launch Terminal in the Mac OS and use
the following command:

open /Applications/Google\ Chrome.app –n –-args –unlimited-quota-for-files

➥–allow-file-access-from-files

This command will launch the Chrome browser, passing in the command-line arguments
that instruct the browser to allow file access and set an unlimited quota for the files. If
you do not launch Chrome in this manner, you will receive security or permission errors
that prevent you from accessing the file system.

This script would normally use the requestFileSystem method to retrieve a ref-
erence to the local file system; however, in Chrome 12 and newer, the browser uses
its own version of the method, webkitRequestFileSystem, since the specification
has been in f lux. In addition, conditional logic is used in the script to create a Blob
object through either the BlobBuilder or the WebKitBlobBuilder depending on the
browser version. To create the page, perform the following steps to create Listing 14.5:

1. Create a blank HTML file and add the body HTML from Listing 14.5, which
includes the email input element, multiple button elements, and display div for
the list of email addresses to be displayed.

 2. Add the fileErrorHandler function, which will handle any directory or file
errors that are encountered by the asynchronous code.

 3. Add the fileAction function in the script shown in Listing 14.3, which gets the
file reference and acts as a dispatcher based on the action requested by the user.

 4. Add the writeToFile, readFromFile, and removeFile functions, which han-
dle the specific action with the passed-in file reference.

5. Add the event listener for the page load, which will kick off the fileAction
method to show any email addresses if the storage file exists.

Listing 14.5 Storing a List of Emails in a Local File

<!DOCTYPE html>

<html>

<head>

<meta charset="UTF-8" />

<title>14.5 File Creating / Writing Async</title>

<script>

ptg999

Chapter 14 Working with Local Files384

// File API error handler

function fileErrorHandler(e) {

 var msg = '';

 // Set the appropriate error message based on code

 switch (e.code) {

 case FileError.NOT_FOUND_ERR:

 msg = 'File or directory not found.';

 break;

 case FileError.SECURITY_ERR:

 msg = 'Security issue found.';

 break;

 case FileError.NOT_READABLE_ERR:

 msg = 'File or directory cannot be read.';

 break;

 case FileError.ENCODING_ERR:

 msg = 'Address of file or directory malformed.';

 break;

 case FileError.NO_MODIFICATION_ALLOWED_ERR:

 msg = 'File or directory cannot be modified.';

 break;

 case FileError.INVALID_STATE_ERR:

 msg = 'File or directory state error.';

 break;

 case FileError.SYNTAX_ERR:

 msg = 'Syntax error with writing to file.';

 break;

 case FileError.INVALID_MODIFICATION_ERR:

 msg = 'Modification requested is invalid.';

 break;

 case FileError.QUOTA_EXCEEDED_ERR:

 msg = 'Not enough space in storage quota remains.';

 break;

 case FileError.TYPE_MISMATCH_ERR:

 msg = 'Wrong type for file or directory.';

 break;

 case FileError.PATH_EXISTS_ERR:

 msg = 'Path already exists.';

 break;

 default:

 msg = 'Unknown file API error.';

 break;

 };

 console.log('File API error: ' + msg);

}

ptg999

Advanced Recipe: Creating a Local File 385

// Function to get fileSystem and dispatch action

function fileAction(actionType) {

 var fileName = 'HTML5FileText.txt';

 // Begin the asychronous process of working with the file system

 // Retrieve the fileSystem object

 window.webkitRequestFileSystem(window.PERSISTENT, 1024 * 1024,

➥function(fileSystemObj) {

 // Retrieve a reference to the file or create the file if not present

 fileSystemObj.root.getFile(fileName, {create:true}, function(fileEntry) {

 // Dispatch to the handler function

 switch (actionType) {

 case 'write':

 writeToFile(fileEntry);

 break;

 case 'read':

 readFromFile(fileEntry);

 break;

 case 'remove':

 removeFile(fileEntry);

 break;

 }

 }, fileErrorHandler);

 }, fileErrorHandler);

}

// Async handler for appending entry to file

function writeToFile(fileEntry) {

 // Create a writer to the file

 fileEntry.createWriter(function(fileWriter) {

 // onwriteend handler for the writer

 fileWriter.onwriteend = function(e) {

 console.log('Write to file successful.');

 readFromFile(fileEntry);

 };

 // onerror handler for the writer

 fileWriter.onerror = function(e) {

 console.log('Write to file failed: ' + e.toString());

 };

ptg999

Chapter 14 Working with Local Files386

 // Create a blob for use in adding to file

 var bb = new (window.BlobBuilder || window.WebKitBlobBuilder)();

 var emailToAdd = document.getElementById('emailAddress').value + "
";

 bb.append(emailToAdd);

 // Seek the end of the file and then add the blob

 fileWriter.seek(fileWriter.length);

 fileWriter.write(bb.getBlob('text/plain'));

 }, fileErrorHandler);

}

// Async handler for reading file

function readFromFile(fileEntry) {

 // Retrieve the file object

 fileEntry.file(function(file) {

 // Create a file reader

 var reader = new FileReader();

 // onloadend reader handler

 reader.onloadend = function(e) {

 // Display the file results

 var emailDiv = document.getElementById('emailList');

 emailDiv.innerHTML = this.result;

 };

 // Read the file using the reader

 reader.readAsText(file);

 }, fileErrorHandler);

}

// Async handler for removing file

function removeFile(fileEntry) {

 // Remove the file

 fileEntry.remove(function() {

 console.log('File removed.');

 }, fileErrorHandler);

}

// Read from file by default

window.addEventListener('load',fileAction('read'),false);

</script>

</head>

ptg999

Advanced Recipe: Creating a Local File 387

<body>

 <input type="email" id="emailAddress" /><button onClick="fileAction('write');">
Add Email</button>

 <button onClick="fileAction('read');">Read Emails</button>

 <button onClick="fileAction('remove');">Remove File</button>

 <div id="emailList"></div>

</body>

</html>

To launch the page created in Listing 14.5, make sure to launch Chrome via the
command line with the arguments for providing permission to the local file system.
If Chrome is not launched with these parameters, then the page will not be able to
work with the local files. When the page loads, the page is told to load any emails
from the file and display them in case the file exists currently. This is done by calling
the fileAction function with the read value. In the fileAction function, you start
a series of asynchronous function calls by first getting a reference to the file system via
the webkitRequestFileSystem method. You pass to the function the duration of the
file f lag, size of the file, inline callback function, and error handler. The duration f lag
informs the browser how to handle the files, specifically, whether to allow the browser
to remove the files if necessary (TEMPORARY) or to leave the files alone (PER-
SISTENT). In this example, you have created one generic error handler for all the
directory and file method calls even though some of the error codes may not be appli-
cable. The set of error codes is consistent, however, across the File APIs. You could,
of course, have separate error handlers for more specialized error messages and actions
based on your need.

After you have a handle to the file system, the script then executes the getFile
method on the file system root object, passing in the filename, an opening parameter,
success callback, and error handler. In this case, when you get the file, you inform the
method to create the file if the file is not present by setting the create f lag to true.
If the f lag were set to false, the method would not create the file if not present and
would act only as an opening function. After getting the file entry, the script then
dispatches the f low to the readFromFile function, which continues the asynchronous
f low by getting the file and reading it via a file reader object instance. When the file
reader object finishes reading the file, the results are then displayed in the result div,
as shown in Figure 14.4.

Now that the file is created, the user can add email addresses by entering them and
clicking the Add Email button, which will kick off the fileAction. The fileAction
will launch the writeToFile where you will create a fileWriter to work with writ-
ing the text to the file. The script first sets some handlers for when the fileWriter is
complete, onwriteend, and, if the writing of the text fails for any reason, onerror.
The script uses the BlobBuilder to create a Blob object of the email address that was
entered. In this case, you conditionally select the interface since it differs between

ptg999

Chapter 14 Working with Local Files388

versions of Chrome. Then the script uses the seek method of the file writer to move
the location to the end of the file based on the length property, and you then call the
write command to add the Blob in a text format. Note that you add an HTML break,

, at the end of each email address when you append the address to the file. This
is purely for ease of use in displaying multiple email addresses in the div when the file
is read. You could format the data of the file in a layout that best fits your information.
Upon completing the write out to the file of the new email address, the script triggers
a read to update the list displayed on the page.

Lastly, the script provides a removal option for the file, which calls remove on the
FileEntry. This will remove the file from the file system. If you leave the page and
return without removing the file, the file will persist since you asked the file system
for the file to be persisted with the webkitRequestFileSystem call. The months
ahead should see quite a bit of forward progress with these specifications, and it is
expected that the various browser manufacturers will begin to incorporate the File
API: Directories and System API and the File API: Writer API more.

Summary
In this chapter, the recipes demonstrated how to view file attributes and read files
through the new File API in the client browser. In addition, you learned about some
of the newer file specifications, which will add functionality beyond just reading
files. By shifting the workload that would normally have to be performed through
server-side processing to the client browser, you can distribute the processing to client
machines and improve the overall experience of the visitor.

Figure 14.4 Sample output showing email addresses read from the file
after being added

ptg999

15
Integrating Device Data

Over the past 20 years, the Hypertext Markup Language has come a long way and is
constantly evolving through the work of browser creators and various groups such as
the W3C working groups. HTML5 as we know it is a collection of HTML tags and
attributes, JavaScript APIs, and CSS styles. In this book, we have covered many of the
extension APIs created as part of HTML5. However, the work effort to further the
browser experience for users, especially as users use more and more mobile devices,
has not stopped and in fact is stronger than ever. In the past couple years, there has
been an explosion of new mobile devices with a fundamental difference from the
mobile phones of the past. No longer is the device a mobile phone with numerous
other features but instead is a mobile device with the phone as just one feature.

In this chapter, you will learn about one of the most exciting and new areas of the
browser experience: integration with device features such as cameras, microphones,
gyroscopes, accelerometers, and device applications such as contact databases, calendar-
ing apps, and picture galleries. With these device APIs, it is expected that web pages
will be able to perform a wide range of functions including video conference calls,
appointment scheduling in a user’s calendar, insertion of pictures from a user’s gallery,
battery level checks, or other tasks that have typically been limited to native device
applications or specialized plug-ins. Very shortly web developers will also have the
benefit of tying into this functionality.

Brief Device APIs History
The W3C Device APIs and Policy Working Group was formed in May 2009 to create
a set of client-side APIs and events to interact with device hardware and applications.
The group defined in its original charter several different APIs that were quite broad
and overlapped several other groups. The expected end date of the group’s charter
was set for July 2011. However, the group for various reasons re-chartered in Novem-
ber 2010 with a more focused set of APIs. The group is now labeled the Device APIs

ptg999

Chapter 15 Integrating Device Data390

Working Group and is expected to create several APIs focused on device integration
between November 2010 and the new end date of June 2013.

As you can imagine, the breadth of API coverage for a topic such as device APIs is
quite broad. The working group is making great headway in creating API and event
specifications for use by browser manufacturers. Even though it is early, some browsers
have already begun including these APIs. The API set and events of the Device APIs
Working Group include the following:

n Application Registration API: Provides the ability for web applications to register as
an application in the system and allow the application to handle calls with a reg-
istered data string identifier

n Battery Status event*: Provides an event for battery status changes, including the
battery level and plugged in status

n Beep API: Provides control of the device system beeps
n Calendar API*: Provides read access to the calendar events on the device
n Contacts API*: Provides read access to contacts and their information from the

device’s contact storage application
n Gallery API*: Provides access to the gallery of the device, which could include

audio, video, and image files
n Generic Sensor API: Provides integration and support for various sensors on the

device
n HTML Media Capture*: Provides attributes and HTML abilities to capture media

live on the device such as audio, video, and images
n Media Capture API*: Provides a programmatic interface for capturing media via

the camera and microphone of a device
n Menu API: Provides control of the application device menus
n Messaging API*: Allows a client page to send an mms, sms, or mailto URI

scheme-based message
n Network Information API*: Retrieves the current network connection type for the

device
n Tasks API: Provides access to the personal tasks managed on the device
n Vibration API: Provides control of the vibration of the device

At this point, the APIs listed are very young and any that have been implemented
in a browser are the exceptions. In fact, at the time of writing this book, only the
Contacts API has made it to the state of a last call on the specification draft. The
specifications marked with an asterisk (*) have some form of draft published on the
www.w3.org site. By the end of 2011, many of these APIs are expected to have work-
ing draft versions of their specifications. In this chapter, we will go through a portion
of these APIs, showing some of the more evolved ones, along with some recipes with

www.w3.org

ptg999

Contacts API 391

API implementations that are available now. Note that given the nascence of these
APIs, it is too early to say which browser platforms will support what features.

Contacts API
The Contacts API is designed to allow the user interacting with a browser page to
share information about a contact (or contacts) from their local contact application
with the page. The user may choose to share only particular fields with the page. In
addition, the user can select to only provide contacts that match the criteria requested
by the page, such as those that have an address state value of “CA.” The API is a read-
only API, so new entries cannot be added at this time. The Contacts API specifica-
tion recommends the use of current industry formats such as a vCard to add or update
contacts in a user’s contact repository. Because the API provides access to personal and
confidential information, the browser agent is required to ask permission of the user
prior to providing access to the Contact APIs.

If permission is given, then the JavaScript on the page can use a Contacts inter-
face to begin finding contacts. The Contacts interface has one method, find, which
allows the script to find one or more contacts, as shown here, in the find method
signature:

void find (DOMString[] fields, ContactFindCB successCB, optional ContactErrorCB
errorCB, optional ContactFindOptions options);

The parameters to the find function are explained here:
n DOMString[] Fields: An array of DOMStrings representing the contact record

fields to be returned
n successCB: The success callback function to launch on success
n errorCB: An optional callback function to be launched on failure
n Options: Search options to match contact records on, such as first name

To prevent blocking the page while searching contacts, the find method uses call-
back functions on success or failure. If there are matching contacts and fields to be
returned, then the success callback function will be launched with a results variable
containing an array of the results. If the find method executed without error but no
results are returned, then a null value will be passed into the success callback func-
tion, representing that no matching contact records were found.

The contact record returned is an instance of the Contacts interface, which con-
tains several attributes and other contact interface subtypes such as ContactName,
ContactAddress, and so on, since a contact could realistically have multiple subcom-
ponents such as multiple addresses. Table 15.1 shows the attributes for the Contacts
interface. We will not describe all the subinterfaces here, but they can easily be refer-
enced in the W3C draft of the Contacts API at www.w3.org/TR/contacts-api.

www.w3.org/TR/contacts-api

ptg999

Chapter 15 Integrating Device Data392

Note
At this time, the Contacts API is not known to be supported by any browser agent. How-
ever, it is expected that browser agents will support this API shortly and possibly prior to
the publication of this book. We are providing the following recipe as an example; it may
contain errors or differences to actual implementations that may take form.

Table 15.1 The Contacts Interface Attributes

Attribute Type Attribute Description

DOMString id Unique identifier for the contact

DOMString displayName The name of the contact

ContactName name Full name of the contact

DOMString nickname Nickname of the contact

ContactField phoneNumbers One or more phone num-
bers for the contact in a
ContactField

ContactField emails One or more email addresses
for the contact in a
ContactField

ContactAddress addresses One or more addresses for the
contact in a ContactAd-
dress object

ContactField ims One or more instant mes-
sage identifiers in a
ContactField

ContactOrganization organizations One or more addresses for the
contact in a ContactOrga-
nization object

Date birthday The contacts birth date in
Date object

DOMString note The note field on the contact
record

ContactField photos One or more photo URL for the
contact

[DOMString] categories Array of DOMStrings repre-
senting the categories for this
contact

ContactField urls One or more URLs for this con-
tact in a ContactField

ptg999

Beginner Recipe: Retrieving All Contacts and Mobile Numbers 393

BEGINNER RECIPE:
Retrieving All Contacts and Mobile Numbers
Even though it would probably not be recommended to retrieve all contacts of a
user, sometimes this may be applicable. This recipe will use the find method of the
Contacts interface with the success and error callback functions to retrieve all con-
tacts, check whether the contact has a mobile number, and display the contact’s name
and mobile number in a div on the page. To create this recipe, perform the following
steps, resulting in Listing 15.1:

1. Create a blank HTML page with a button element and the result div. Add the
click handler to the button to launch the findAllContacts method.

 2. Add the script tags to the page and the findAllContacts method, which
launches the contacts request.

 3. Add the contactsFindSuccess callback function and the contactsError
callback function to handle success and failure events from the contacts request,
respectively.

Listing 15.1 Retrieving and Displaying all Contact Mobile Numbers

<!DOCTYPE html>

<html>

<head>

<meta charset="UTF-8" />

<title>15.1 Retrieve All Contacts</title>

<script>

// Initialize the page function

function init() {

 // set the button handler

 var btnFindAll = document.getElementById('findAll');

 btnFindAll.addEventListener('click',findAllContacts,false);

}

// Success callback function for finding contacts

function contactsFindSuccess(contacts) {

 // Get reference to our div for displaying the results

 var divResults = document.getElementById('divResults');

 // Loop through the contacts results

 for (var i in contacts) {

 // For each contact loop through any phone numbers

 for (var j in contacts[i].phoneNumbers) {

ptg999

Chapter 15 Integrating Device Data394

 // Check if the phone number is a mobile number

 if (contacts[i].phoneNumbers[j].type === 'mobile') {

 // Display the contact name and phone number

 divResults.innerHTML += contacts[i].displayName + '(' +

➥contacts[i].phoneNumbers[j].value + ')';

 }

 }

 }

}

// Error callback function for finding contacts

function contactsError(error) {

 // Handle the error appropriately, in this case just display

 alert(error.code);

}

// Function to find the contacts

function findAllContacts() {

// Check if the Contacts API is available

 if (navigator.contacts) {

 // set the array of fields to retrieve

 var arrFields = ['displayName', 'phoneNumbers'];

 // perform the find method on the contacts

 navigator.contacts.find(arrFields, contactsFindSuccess, contactsError);

 } else {

 // let the user know that the Contacts API is not supported

 alert('The Contacts API is not supported in this browser... yet');

 }

}

// Initialize the page on load

window.addEventListener('load',init,false);

</script>

</head>

<body>

 <h1>Retrieve all contacts with mobile phone numbers</h1>

 <button id="findAll”>Find All Contacts</button>

 <div id="divResults"></div>

</body>

</html>

ptg999

Beginner Recipe: Retrieving All Contacts and Mobile Numbers 395

In this example, when the user clicks the Find All Contacts button, the
findAllContacts function will be called to make a request on the Contacts inter-
face. In the findAllContacts function, the code first checks to see whether the
Contacts interface is available. If the interface is not available, then an alert will be
shown, but you could replace this with alternative logic as required by your solution.
If the Contacts interface is available, then the code creates the array of fields that you
want to have returned by the Contacts find method. The code then calls the find
method and provides the array of fields, a success callback function, and an error call-
back function.

The phoneNumbers field that is retrieved via the Contacts interface is structured
as a ContactField interface. The ContactField interface is comprised of type,
value, and pref attributes, as shown in Table 15.2.

The type attribute is a DOMString, and with a type of phoneNumbers, the type
attribute can be either home or mobile. The value attribute is the actual number,
and the pref attribute is a boolean value that lets you know whether the value is the
preferred value or primary value for this contact. When the success callback function,
contactsFindSuccess, is called, a result set is passed to the function. This result set
is an array of contact interface instances that you can then loop through. In this case,
we have named the results variable contacts.

In the success callback, the recipe first creates a reference to the result div on the
page so that you can display any matching results. Next, the function loops through
the contacts array. For each contact, the recipe loops through the phoneNumbers for
that contact. For each phone number, the code checks the type to see whether the
phone number is a mobile number. If the phone number is a mobile, then the code
displays the name and the phone number in the result div.

The Contacts find method used in this recipe asks for all contacts with success
and error callback functions. The find method can take a fourth parameter that is
optional, of type ContactFindOptions. Based on the Contacts API specification, this
interface implementation is up to the specific browser agent. However, the basics of
this interface is the creation of a filter that is matched on the contact fields requested.
This is a simple filtering method and will match any of the fields requested and in any
position in the values. For example, if the filter value “son” is provided and the fields
displayName and emails are retrieved, then any contact that has the string “son”

Table 15.2 The ContactField Interface Attributes

Attribute Type Attribute Description

DOMString type The classification of this value

DOMString value The actual value of the field

Boolean pref A flag to signify that this field is the primary or
preferred value

ptg999

Chapter 15 Integrating Device Data396

in either set of fields will match, such as “sonny@....com” or “Chuck Hudson.” The
expected statement of this example would be as follows:

{filter: 'son'}

Until a browser agent actually implements the Contacts API with filtering, we can
only guess at the extent of control we will have over the filtering, but it appears that
the filter will provide at least some basic screening of the contacts on the device.

Note
The Contacts API is designed purely as a read-only service of the contacts data on the
device. To perform addition and update of contacts in the data store on the device, you
would put the contact information into a standard format for the contact application such
as a text-based vCard and then reference this card text through an href element so that
a user can download the card into their contact application.

Messaging API
The Messaging API is designed to allow a page to use the sms, mms, and mailto URI
schemes to send messages to a particular address. The API is quite simple because it
has one interface and one method: device and sendMessage. The device interface is
expected to be part of the navigator interface, so to check for the support of the Mes-
saging API, you can use this:

if (navigator.device.sendMessage) {

 … your sendMessage code here …

}

If the browser agent supports the Messaging API, then you can use the
sendMessage method to send a message to a given recipient. The structure of the
sendMessage method is shown here:

void sendMessage (DOMString to [,Blob attachments] [, messagingErrorCB]);

The to parameter takes a URI scheme that matches either the sms, mms, or mailto
scheme and can accept querystrings that include body elements and the like. The
attachments field can be for pictures or videos, and the final parameter is an optional
error handler. So, to send a basic message via SMS, you might call sendMessage as
follows:

navigator.device.sendMessage(‘sms:+17705551212?body=Hi%20Tom’);

If an error callback function is added, which would be recommended because other-
wise you would not know that a sendMessage failed, then an error object will be passed
to the handler with an error code. Table 15.3 provides the list of possible error codes.

Even though the Messaging API is a short specification, the implications are
extraordinary. Now client pages will be able to send text messages, videos, and pic-
tures through MMS messages and email straight from the device’s browser.

ptg999

Network Information API 397

Tip
It is expected that the sendMessage method will be implemented in browser agents
to support the URI functionalities so that features such as multiple recipients will be
enabled. If this is the case, then it would be easy to send a message to multiple SMS
recipients by just separating the numbers with commas, as in “sms:+17705551212,+
18025551212….”

Network Information API
Determining the connection speed of a browser is important to be able to throttle data
and functionality for better user experiences. The Network Information API aims to
expose a simple type attribute that will signify the type of connection that the device
currently has. Based on this value, a page could change its behavior to fit the size and
speed of the data pipe that is available. The value of the type of connection can be one
of the following: unknown, ethernet, wifi, 2g, 3g, 4g, and none. A new interface is
provided called Connection, which has one attribute associated with it: type. So, to
retrieve the current connection type, you would use the following:

var connectionType = navigator.connection.type;

Knowing the type of connection, you can dynamically change style sheets between
full and light versions or change the logic on the page to retrieve only partial results
when on a slower connection.

Table 15.3 The Messaging API Error Code Values

Value Constant Term Description

0 UNKNOWN_ERROR An unknown error occurred.

1 INVALID_ARGUMENT_ERROR An invalid parameter was passed
with the sendMessage method.

3 TIMEOUT_ERROR The request to send a message
timed out.

4 PENDING_OPERATION_ERROR The browser is already waiting on a
callback.

5 IO_ERROR An error with the communication
occurred.

6 NOT_SUPPORTED_ERROR The sendMessage method is not
supported.

20 PERMISSION_DENIED_ERROR The user or browser did not autho-
rize the method call.

30 MESSAGE_SIZE_EXCEEDED The message scheme limit was
exceeded for this message type.

ptg999

Chapter 15 Integrating Device Data398

In addition to the Connection interface, there are two new events: online and
offline. These events are tied to the window object and can be used to check a
change in the connection type if online is fired or handle the device if it goes off line.

Tip
An online event could be sent multiple times as a user changes connection types. Your
code should be streamlined to minimize the functionality that is run on this event since
the event could be repeatedly sent based on rapid connection type switching.

Battery Status Events
The Battery Status events allow you to capture events associated with the device’s bat-
tery state. In the Battery Status Event Specification, there are two status changes pos-
sible that will trigger an event. The first status change is triggered when the device is
either plugged into a power source or unplugged from the power source. The second
event signifies a change in the battery charge level by 1 percent or more. In either
case, a battery status event will be dispatched. The event will then have attributes
available: isPlugged, which is a boolean value, and level, which is a f loat and ranges
from 0 to 100, with 100 meaning that the battery is fully charged. If the level is null,
then the browser was not able to report the battery level.

To sign up for handling a battery status event, an onbatterystatus property and
an event batterystatus are available. Either of the following examples is valid:

window.addEventListener('batterystatus', function (event) {

 alert(event.level);

}

window.onbatterystatus = function (event) {

 alert(event.level);

}

In either case, the level of the current battery will be alerted to the user. If
you wanted to alert the user if the plugged-in status changed, then you could use
event.isPlugged to retrieve the boolean value if the device is plugged in.

Note
If the browser is not able to determine the current battery level, between 0 and 100 inclu-
sive, then a null value will be assigned to the level property.

HTML Media Capture
HTML Media Capture is designed to instruct browser agents to launch media capture
tools based on new parameters and attributes to the file input element. By providing

ptg999

Intermediate Recipe:Capturing Pictures with File Input 399

information on what types of information to accept for the file input and a recommen-
dation of what to use to “capture” the input, the browser agent can launch the appro-
priate device capture mechanism. The capture could take the form of a video, audio,
or picture because they are all forms of media that are typically available on devices
with cameras and microphones such as smartphones, tablets, and laptops.

Normally, the file input element opens the file-browsing window to select an
appropriate file to be submitted. HTML Media Capture uses the accept attribute of
the file input to recommend a file picker that is appropriate, such as the camera for
accepting an image. The following are the three different accept attribute values
available:

n image/*: For accepting images from the camera or user’s gallery of images
n audio/*: For accepting audio input through recording via the device

microphone
n video/*: For accepting video files recorded through the device camera and

microphone

An additional attribute can be added to suggest what method the browser should
use to capture the input. The capture attribute can take one of four values: camera,
camcorder, microphone, or filesystem. The default value, if a capture attribute is
not provided, is filesystem. So, a sample file input element for capturing audio from
a microphone would be as follows:

<input type="file" accept="audio/*" capture="microphone">

Between the accept and capture attributes, you will be able to use the device
microphone and camera in some interesting ways. Already there are groups working
to implement streaming of full duplex audio/video calls between devices using HTML
Media Capture and other HTML5 technologies such as WebSocket.

INTERMEDIATE RECIPE:
Capturing Pictures with File Input
In this recipe, you will use the accept and capture attributes on the file input ele-
ment to have the browser launch the device’s built-in camera picture capture screen,
have the user take the picture, and then return the picture to the page. With the pic-
ture file returned to the page, HTML Media Capture will take the file and load it into
a new image element that is scaled as a thumbnail and added to the page. To create the
code in Listing 15.2, follow these steps:

1. Create a blank HTML page with the file input element and thumbnails div.

 2. Add the script tags to the page and the handleCapture function, which han-
dles the file that is delivered via the onChange method of the file input.

ptg999

Chapter 15 Integrating Device Data400

Note
At the time of writing, this example runs on devices with Android 3.0 and newer, which
support HTML Media Capture. Thus, the screenshots for this recipe are from an Android
tablet.

Listing 15.2 Capturing a Camera Image

<!DOCTYPE html>

<html>

<head>

<meta charset="UTF-8" />

<title>15.2 HTML Media Capture</title>

<script>

// Function to handle the HTML media capture of a file

function handleCapture(files) {

 // Set the image matching pattern

 var imageType = /image.*/;

 // We expect only one picture at a time but loop through any files provided

 for (var i = 0; i < files.length; i++) {

 // Retrieve the file from those passed in

 var file = files[i];

 // Check if the file is an image type

 if (file.type.match(imageType)) {

 // Create our new image element

 var newImg = document.createElement("img");

 newImg.classList.add("obj");

 newImg.file = file;

 newImg.style.maxHeight = "100px";

 newImg.style.maxWidth = "100px";

 // Append the new image element to the thumbnails area

 var thumbnails = document.getElementById('thumbnails');

 preview.appendChild(newImg);

 // Load the image element with the contents of the file

 var reader = new FileReader();

 reader.onload = (function(aImg) {

 return function(e) { aImg.src = e.target.result; };

 })(newImg);

 reader.readAsDataURL(file);

 }

 }

}

ptg999

Intermediate Recipe:Capturing Pictures with File Input 401

</script>

</head>

<body>

 <h2>Media Capture - Camera</h2>

<input type="file" accept="image/*;capture=camera"

 capture="camera"

 onChange="handleCapture(this.files)"></input>

 <div id="thumbnails"></div>

</body>

</html>

When the page is loaded in the browser, the normal “Choose file” prompt is pro-
vided, as shown in Figure 15.1.

When the user clicks “Choose file,” the browser is told through the accept and
capture attributes to launch the camera selector, which in this case launches the
Android picture-taking screen, as shown in Figure 15.2.

Once the picture is taken, a picture file is sent to the page, and the handleCapture
function is called with the file passed as an argument. In the handleCapture func-
tion, you first check the file to verify that it is an image type and then create a new
image element that you add to the page and load with the file. In Figure 15.3, the
“Choose file” button has been clicked a couple times, and the resulting pictures that
were taken have been added as thumbnails to the div for viewing.

Figure 15.1 Sample output from Listing 15.2 showing the page ready to
capture an image

ptg999

Chapter 15 Integrating Device Data402

Figure 15.2 The default camera screen is brought up by the device for
capturing the image.

Figure 15.3 After the image has been taken, the user is automatically
returned to the web app, and the thumbnail is displayed.

ptg999

Device Orientation and Motion Events 403

Device Orientation and Motion Events
Device Orientation and Motion Events originally started as a specification in the
Device API Working Group but was later moved into the Geolocation working group,
so you will not see it in the current list of the Device API Working Group. We have
left it as part of this chapter since it is specifically focused on integrating with the
internal gyroscope of the device that the user may be using at the moment. Many
phones, tablets, and even computers have this internal gyroscope built into the hard-
ware, and browser agents such as Chrome have already implemented the events into
their JavaScript engines.

The Device Orientation specification from the W3C organization specifies three
new events, as listed here:

n deviceorientation: Provides orientation in an alpha, beta, gamma format
showing the spatial positioning of the device

n compassneedscalibration: An event fired by the browser agent that states
that the compass of the device is in need of calibration

n devicemotion: Provides acceleration, acceleration including gravity, rotation
rate, and interval used for device movement

All three of the events in the device orientation are fired on the window object and
are registered for as any normal event on the window object. The deviceorientation
event provides through event data passed into your handler four attributes that can be
read: alpha, beta, gamma, and absolute. The alpha, beta, and gamma properties
correspond to orientation of the device such as the tilt or rotation of the device. The
alpha property represents the rotation, while the beta and gamma correspond to the
tilt left/right and front/back. For example, a laptop sitting on the desk would have
a beta of 0 and a gamma of 0, while the alpha would have a value representing its
orientation. For a laptop, the orientation is based on the keyboard, not on the screen,
while the orientation of a mobile phone would be the phone itself. The absolute
property signifies whether the browser is able to provide absolute values for the orien-
tation angles. If the device is not able to set the value absolutely, then this value will
be false. In most of our testing, this value was indeed false, although the beta and
gamma angles were absolute, and the alpha was set to an arbitrary 0 when the page was
executed.

The compassneedscalibration event is a straightforward event that notifies the
window that the internal compass of the device is in need of calibration. The event,
according to the specification, may be canceled by the website or application, and
the default device calibration user interface could be replaced by a custom calibra-
tion provided by the web application. However, the details on this event are still to be
determined.

The devicemotion event is a more complicated event because it contains attributes
for the acceleration, rotation, and interval. The acceleration attribute is an instance

ptg999

Chapter 15 Integrating Device Data404

of a new interface, DeviceAcceleration, which provides the acceleration attributes
x, y, z in a double data type format to show the X, Y, Z directional acceleration. The
rotation rate is also an interface instance, but of DeviceRotationRate, which provides
the rotation in the format of alpha, beta, gamma. All attributes of the devicemotion
event appear as optional attributes in the specification. Table 15.4 shows the attributes
of the devicemotion event in more detail.

INTERMEDIATE RECIPE:
Creating a Bubble Level
If you have had the opportunity to play in the mobile device programming area, you
will most likely have seen a bubble level sample native app that is available on most
mobile platforms to show the orientation of the device. The deviceorientation
event can be used to provide the same type of functionality in client-side JavaScript by
looking at the beta and gamma event fields. (You do not need the alpha field since
the bubble level does not use the rotation of a device.) In this recipe, you will create
a rudimentary bubble level using layered canvas elements to build up a composite
bubble level and display the beta and gamma values, as shown in Figure 15.4.

You could improve the algorithms for positioning to add features such as bounding
the bubble to the circle, but this recipe will show the basics of handling device orienta-
tion data. To create this bubble level, use Listing 15.3 and perform the following steps:

1. Create a blank HTML page with the three canvas elements that comprise the
bubble level and add the spans for displaying the beta and gamma values.

 2. Add the style section for styling the canvas elements.

Table 15.4 The devicemotion Event Attribute Values

Attribute Type Description

acceleration DeviceAcceleration The acceleration of the device rep-
resented as X, Y, Z values.

accelerationIncludingGravity DeviceAcceleration The acceleration of the device
including the effect of gravity rep-
resented in X,Y,Z values.

rotationRate DeviceRotationRate The rotation of the devices shown
via alpha, beta, and gamma
angles.

interval double The interval, in milliseconds, at
which the acceleration and rota-
tion data is collected. This is
expected to be a constant.

ptg999

Intermediate Recipe: Creating a Bubble Level 405

 3. Add the init function, which includes the definition of the
deviceorientation event handler in the script tags.

4. Add the launching of the init function when the page loads with the
window.addEventListener.

Note
This recipe requires that your browser support the canvas element and that the device
you launch this page on has an internal gyroscope for providing the beta and gamma
values.

Listing 15.3 Creating a Bubble Level with Beta and Gamma Values

<!DOCTYPE html>

<html>

<head>

<meta charset="UTF-8" />

<title>15.3 Bubble Level</title>

<style>

#canvas {

 height:100px;

 width:100px;

}

</style>

<script>

// canvas and context reference variables for drawing

var cvsBackground;

var ctxBackground;

var cvsBubble;

var ctxBubble;

var cvsCircle;

var ctxCircle;

Figure 15.4 Sample output showing the bubble level canvas layers and
beta/gamma values on a laptop while being tilted

ptg999

Chapter 15 Integrating Device Data406

// Variable holders for the beta and gamma values

var tempBeta = 0;

var tempGamma = 0;

// The canvas location and center variables

var canvasX;

var canvasY;

var canvasXCenter;

var canvasYCenter;

// Initialize the canvas object references and orientation event handler

function init() {

 // Grab references to the canvas objects and their contexts

 cvsBackground = document.getElementById('background');

 ctxBackground = cvsBackground.getContext('2d');

 cvsBubble = document.getElementById('bubble');

 ctxBubble = cvsBubble.getContext('2d');

 cvsCircle = document.getElementById('circle');

 ctxCircle = cvsCircle.getContext('2d');

 // Set the canvas coordinates and center coordinates

 canvasX = parseInt(cvsBackground.offsetLeft);

 canvasY = parseInt(cvsBackground.offsetTop);

 canvasXCenter = parseInt(cvsBackground.width/2);

 canvasYCenter = parseInt(cvsBackground.height/2);

 // Draw the bubble level background

 ctxBackground.fillStyle='#0c0';

 ctxBackground.beginPath();

 ctxBackground.arc(canvasXCenter,canvasYCenter,50,0,Math.PI*2,true);

 ctxBackground.closePath();

 ctxBackground.fill();

 // Draw the bubble

 ctxBubble.fillStyle='#0FF';

 ctxBubble.beginPath();

 ctxBubble.arc(canvasXCenter,canvasYCenter,10,0,Math.PI*2,true);

 ctxBubble.closePath();

 ctxBubble.fill();

 // Draw the center circle to designate level

 ctxCircle.strokeStyle='#fff';

 ctxCircle.lineWidth='5';

 ctxCircle.beginPath();

 ctxCircle.arc(canvasXCenter,canvasYCenter,20,0,Math.PI*2,true);

 ctxCircle.closePath();

 ctxCircle.stroke();

ptg999

Intermediate Recipe: Creating a Bubble Level 407

 // Add the listener for deviceorientation events

 window.addEventListener('deviceorientation', function(event) {

 // Check if the beta or gamma have changed

 if (parseInt(event.beta)!=tempBeta||parseInt(event.gamma)!=tempGamma) {

// Set our beta and gamma variables

 tempBeta = parseInt(event.beta);

 tempGamma = parseInt(event.gamma);

 // Set the adjustment variables

 var adjX = 0;

 var adjY = 0;

 var adjFactor = 3; // Scaling factor for bubble movement

 var adjMax = 40; // Maximum adjustment for bubble

 // Determine the new position of the bubble

 if (tempBeta*adjFactor > adjMax) {

 adjY = -adjMax;

 } else if (tempBeta*adjFactor < -adjMax) {

 adjY = adjMax;

 } else {

 adjY = tempBeta*adjFactor * -1;

 }

 if (tempGamma*adjFactor > adjMax) {

 adjX = -adjMax;

 } else if (tempGamma*adjFactor < -adjMax) {

 adjX = adjMax;

 } else {

 adjX = tempGamma*adjFactor * -1;

 }

 // Move the bubble to the new position

 cvsBubble.style.left = canvasX+adjX+'px';

 cvsBubble.style.top = canvasY+adjY+'px';

 // Set our span values for displaying the beta and gamma

 var spanBeta = document.getElementById('betaValue');

 var spanGamma = document.getElementById('gammaValue');

 spanBeta.innerHTML = tempBeta;

 spanGamma.innerHTML = tempGamma;

 }

 }, true);

}

// call the init function on page load

window.addEventListener('load',init,false);

ptg999

Chapter 15 Integrating Device Data408

</script>

</head>

<body>

 <h1>Chapter 15 Bubble Level</h1>

 <!-- The canvas elements are layered as defined below -->

 <canvas id="background" style="position:absolute; left:100px; top:150px;">

 The bubble level background.

 </canvas>

 <canvas id="bubble" style="position:absolute; left:100px; top:150px;">

 The bubble which moves to show the level.

 </canvas>

 <canvas id="circle" style="position:absolute; left:100px; top:150px;">

 The overlaid circles to show the center of the level.

 </canvas>

 Beta Value:

 Gamma Value:

</body>

</html>

When the page loads in your browser and the init function is called, the script
will first create the various components of the bubble level. The bubble level is com-
prised of three canvas elements: the background, the bubble, and the foreground cen-
ter ring. The purpose of having the bubble level split into these three components is
twofold. First, this allows for a layering to take place with the bubble above the back-
ground but below the center ring to look like a real bubble level. Second, this allows
you to programmatically move the bubble without having to redraw the elements with
each movement.

After drawing the bubble level components, the script sets the event handler for
the deviceorientation event. The function for the event handler is designed to
first check whether there has been any change in the beta and gamma values and then
set the temporary holding variables to the new values if there is a change. Next, the
function sets some position adjustment variables, which are used in the calculations
for positioning the bubble canvas. The adjFactor variable is used to “accelerate” the
movement away from the center the farther the bubble gets, while the adjMax vari-
able is the maximum distance the bubble can be moved. After calculating the new top
and left coordinates of the bubble canvas, you move the canvas and display the updated
beta and gamma angles. Notice that when dealing with the beta and gamma angles,
you use just the integer portion of the double value provided with the event. In our
testing, the angles provided are extremely granular, so to prevent moving the canvas
on the minutest change of the angle; we opt to move the canvas only when a whole
degree of change has occurred.

ptg999

Summary 409

Summary
In this chapter, you learned about some of the new and upcoming APIs and event
specifications that are being created to provide access to all types of device informa-
tion and features. It is only a matter of time before these specifications are complete,
published, and available for use in the various browser platforms. web applications in
the end will have many of the integrations that native device applications provide.
There are still several specifications to be completed around the device APIs, but the
efforts show how HTML5 continues to grow in its functionality.

ptg999

This page intentionally left blank

ptg999

Recipes

Beginner Recipes

Building an HTML5 Starter Document 2

Using the header Element to Create a Site Header 5

Using the hgroup Element to Group Headings 7

Creating Navigation with the nav Element 8

Creating a Sidebar with the aside Element 15

Using the footer Element 17

Marking Up Figures and Captions with the figure and figcaption
Elements 31

Marking Up the Date and Time with the time Element 34

Making a Native Toggle Widget with the details Element 35

Using the address Element for Contact Information 37

Highlighting Text with the mark Element 38

Using the s Element to Show Inaccurate or Irrelevant Content 39

Wrapping Links Around Elements 47

Dealing with Internet Explorer 55

Testing for HTML5 Features 57

Using Custom Fonts with @font-face 77

Creating a Form to Collect Contact Information 97

Creating a Search Form with input type=”search” 101

Creating Calendar and Time Controls 102

Creating a Number Picker 105

Creating a Slider (Without the Need for JavaScript) 106

Creating a Color Picker 107

Displaying Results with the output Element 108

Using Form Placeholder Text 109

ptg999

Recipes412

Creating an Autocomplete Feature with list and datalist 110

Tracking the Completion of a Task with the progress Element 111

Measuring with the meter Element 112

Jumping to a form Element When the Page Loads 114

Allowing Multiple Entries 115

Basic Validation with the required Attribute 116

Limiting User Input 118

Laying a Grid on the Canvas 130

Making Simple Shapes and Lines 134

Adding Text 144

Drawing an Image 145

Including Video with the video Element 163

Including Audio with the audio Element 187

Adding to History with pushState 208

Creating an Image Viewer 211

Changing History with replaceState 216

Determining Your Location with a Simple getCurrentPosition 233

Getting and Setting Session Storage 263

Styling from Session Storage 266

Talking Through Web Sockets 299

Creating a Web Worker 304

Dragging and Dropping Across divs 321

Creating a Manifest File 335

Using Web Pages Offline 337

Displaying a Simple Notification 344

Getting File Attributes 360

Processing Multiple Files with Drag and Drop 362

Retrieving All Contacts and Mobile Numbers 393

Intermediate Recipes

Using the New article Element 11

Grouping Content with the section Element 12

ptg999

 413

Using the HTML5 Outliner to Ensure the Correct Structure 19

Adding Semantic Information with Microdata 47

Using WAI-ARIA with HTML5 49

Leveraging jQuery to Replace a Calendar 59

Using Modernizr to Detect Features 62

Creating a Responsive Design with CSS3 Media Queries 69

Making Buttons with CSS Gradients and Multiple Backgrounds 80

Enhancing a Site with Transformations and Transitions 84

Writing Your Own Validation Rule 117

Customizing and Styling the Form 119

Drawing Polygons with a Path 139

Drawing Arcs and Circles 143

Cropping an Image 146

Animating a Sprite Map 147

Enabling Video for All Browsers 166

Creating a Video with Subtitles and Captions 173

Enabling Audio for All Browsers 188

Creating a Beat Mixer 193

Popping State in the Image Viewer 214

Changing the Page History 218

Testing History Security 225

Mapping a Location with getCurrentPosition 237

Determining Distance with PositionOptions 243

Storing Forms with Local Storage 271

Adding Two-Way Communication 308

Previewing Images Through readAsDataURL 368

Capturing Pictures with File Input 399

Creating a Bubble Level 404

Advanced Recipes

Using All the New Elements to Build a News Page 21

Using All the New Elements to Build a Search Results Page 25

ptg999

Recipes414

Marking Up an Article Page with Comments 51

Creating Animations with CSS 89

Putting It All Together to Make a Sign-Up Form 121

Animating an Image 151

Animating a Vertical Bar Chart 155

Making Your Own Custom Controls 178

Adding Streaming Radio 197

Using Advanced State Data Objects to Pass Information Across Pages 221

Following a Moving Location with watchPosition 250

Catching Events in Local Storage 275

Using a Web Database for a Grocery List 286

Leveraging a Shared Web Worker 311

Leveraging Events and dataTransfer 325

Creating a Tweet Notification Page 348

Parsing a CSV File with readAsText 373

Creating a Local File 382

ptg999

A
abbr element, 46

abort function, FileReader, 373, 376, 378,
380

ABORT_ERR, FileReader, 373, 378

accept attribute, HTML Media Capture,
399–402

Accessibility

ARIA improving, 49–51
navigation with nav and, 10
placeholder text and, 109
video with subtitles and captions for,

173–176
Acronyms, 46

:active state, CSS3 transitions, 86

addEventListener function

bubble levels for device orientation,
405, 407–408

creating web worker, 304–306
customizing video controls, 181–183,

185
database storage, 287–288, 293
displaying simple notification,

344–345
leveraging events and dataTransfer,

326–328
leveraging shared web worker,

313–314
parsing CSV file with readAsText,

374, 378

Index

processing multiple files with drag-
and-drop, 363, 365

storing forms with local storage,
272–273

addGroceryItem function, database storage,
288, 292–293

addNote function, local storage, 276–278,
281

address element, contacts, 37–38

Adobe Photoshop, coordinate-based drawing
system, 129

Advanced recipes, 413–414, xxviii

Alerts. See Notification API

alt text

display on image hover, 89
marking up figures and captions with,

32
for poster image, 171

and syntax, CSS3 Media Queries, 71

Android

browser support. See Browser support
targeting with media queries, 76

animateSprite function, 147–149

Animation

CSS3, 86, 89–94
image, 151–155
sprite map, 147–150
vertical bar chart, 155–161

ptg999

416 antiClockwise value, arcs

antiClockwise value, arcs, 143

APIs, types of

application cache, 340–341
audio media, 192–193
Contacts, 391–396
drag and drop, 319–325
File. See File API
Geolocation. See Geolocation API
Google Maps. See Google Maps API

V3 Services
History, 207
history of Device, 389–391
HTML Media Capture, 398–402
IndexedDB API, 260, 283–286
Messaging, 396–397
Network Information, 397–398
notifications, 341–343
video media, 177
Web Workers. See Web Workers API
WebSocket, 297–302

.appcache file, 335

Application cache

API, 340–341
creating manifest file, 335–337
overview of, 334–335
using web pages online, 337–340

arc method

drawing arcs and circles in canvas, 143
laying grid on canvas, 130–133

Arc tool, 134

aria-required;"true", 116

ARIA (Web Accessibility Initiative Accessible
Rich Internet Applications), 49–51

article element

for document outline, 21
marking article page with comments, 53
for news home page, 23–25

putting footer elements inside, 17–18
for search results page, 27–29
within section, 12
section element vs., 14–15
use of, 11–12

article page, with comments, 51–54

aside element

for document outline, 21
for news home page, 23–25
for search results page, 28–29
for sidebar, 15–17

Association list, 43–44

Asynchronous commands, Web SQL
Database API, 284

@font-face, CSS3, 77–78

Attribute selectors, CSS3, 72

Attributes

audio, 190–192
canvas element, 128
ContactField interface, 395
Contacts interface, 391–392
DataTransfer interface, 320
DeviceAcceleration interface, 404
devicemotion event, 403–404
deviceorientation event, 403
getting file, 360–362
HTML Media Capture, 399
Microdata, 48
onprogress event of FileReader, 374

audio attribute, video element, 171

audio element

adding streaming audio, 198–206
creating beat mixer, 193–197
enabling audio for all browsers,

188–190
including audio with, 187–188
new attributes, 190–192

ptg999

417Browser handling

Audio, embedding with HTML5

creating beat mixer, 193–197
enabling for all browsers, 188–190
free files for testing, 192
media API, 192–193
new attributes, 190–192
streaming radio, 197–206
using audio element, 187–188

Author information

disallowing cite element from, 39–40
within footer, 6, 17
within header, 6
using b element for, 40

Authorization, location privacy and, 237

Autocomplete, creating with list and datalist,
110–111

autofocus attribute, 114–115

autoplay attribute

audio element, 191
video element, 172

B
b element

for author names, 40
changes to, 44–45
marking article page with comments,

53
Back button, session history, 207, 213–214

Background color

animating banner, 92–93
drawing canvas grid, 133
making buttons with CSS3 gradients

and multiple, 81
styling from session storage, 266–271

Backward compatibility, HTML5, xxv

Bar chart, animating vertical, 155–161

Basic User Interface Module, CSS3,
120–121

Batteries, mobile device, 257

Battery Status events, 398

Beat mixer, 193–197

Beginner recipes, 411–412, xxviii

beginPath method, canvas lines, 139, 142

bezierCurveTo, drawing curves, 143

BlobBuilder interface, 381

Block handlers, leveraging events, 326–328,
330

blockquote, and cite element, 40

Blog entry, 11–12

Boilerplates, 57

Borders

adding to canvas, 128
drawing canvas grid, 131, 133

Browser experience in HTML5

application cache, 334–335
application cache API, 340–341
creating manifest file, 335–337
creating tweet notification page,

347–356
displaying simple notification,

344–347
drag and drop API, 319–321
dragging and dropping across divs,

321–325
leveraging events and dataTransfer,

325–333
notifications API, 341–343
overview of, 319
using web pages off line, 337–340

Browser handling

boilerplates, 57
custom video controls, 184
dealing with Internet Explorer, 55–57
detect features with Modernizr,

62–66
history of HTML, xxiii
overview of, 55

ptg999

418 Browser handling

Browser handling (continued)

polyfilling, 66–67
principles of HTML5, xxv
replace calendar with jQuery, 59–62
testing for HTML5 features, 57–59
useful HTML5 verification sites, 67

Browser history

adding to with pushState, 208–211
basics, 207–208
browser compatibility, 208
change page history, 218–220
create with replaceState, 216–218
creating image viewer, 211–214
helpful libraries, 228
popstate in image viewer, 214–216
testing security, 225–228
using advanced state data objects,

221–225
Browser support

application cache, 334
audio codecs, 188
autofocus attribute, 114
calendar widget, 102
canvas, 128
client-side storage, 261
color picker, 107
CSS animation, 90
CSS transformations and transitions,

84
CSS3 @font-face, 77
CSS3 gradients, 80
CSS3 Media Queries, 70
datalist element, 110–111
drag and drop API, 321
email input type, 98
enabling audio, 188–190
enabling video, 166–173
File API, 360

formnovalidate/novalidate attributes,
119

Geolocation API, 232
History API, 208
HTML5 and video codecs, 165
meter element, 113
min and max attributes, 118
multiple attributes, 115
Notification API, 343
number picker, 105
output element, 108
pattern attribute, 117
placeholder attribute, 110
progress element, 112
quirks with beat mixer, 197
required attribute, 116
search input type, 101
slider control, 106
step attribute, 118
tel input type, 99
url input type, 100
video element, 164
Web SQL Database, 283
Web Workers API, 303
WebSocket API, 298

Bubble level, creating, 404–408

C
Cache

application. See Application cache
updating via manifest file, 337

CACHE section, manifest file, 336

cached event, application cache API, 341

calculateDistance function, PositionOptions,
244–246

Calendar widget

leveraging jQuery to replace, 59–62
time controls for, 102–105

ptg999

419client-side storage

callback function, tweet notifications, 348–
349, 353, 356

Camera, capturing pictures with file input,
399–402

cancel method, notifications, 348, 352

canvas

adding text, 144
animating image, 151–155
animating sprite map, 147–150
animating vertical bar chart, 155–161
applying gradients to shapes, 137
creating bubble level, 404–408
cropping image, 146–147
drawing and styling rectangle or

square, 135–137
drawing arcs and circles, 143
drawing image, 145–146
drawing lines and paths, 138–139
drawing polygons with path, 139–142
laying grid on, 130–134
overview of, 127–128
setting up canvas element, 128–129
testing browsers for HTML5 features,

58–59
tools, 134
transformation tools, 150–151
X and Y coordinates, 129

Captions

creating video, 173–176
figcaption associating image, 31–34

capture attribute, HTML Media Capture,
399–402

Cascading Style Sheets. See CSS (Cascading
Style Sheets)

Categories, recipe, xxviii

changeField function, local storage, 272–274

changeNote function, local storage, 276,
278, 280

chapters value, kind attribute, 173

Character encoding, 2–3

charset declaration, 2–3

checking event, application cache API,
340–341

checkPermission method, tweet
notifications, 349–351, 353, 355

checkPermissionLevel function, tweet
notifications, 349–353, 355

checkStorage function, local storage,
272–274

Chrome

browser support. See Browser support
HTML5 Outliner extension icon,

19–21
Chrome Developer Tools

storing forms with local storage, 272,
274

viewing SQLite database, 287
viewing storage, 265–266

Circle, drawing in canvas, 143

cite element, changes to, 39–40

clearAllNotes function, local storage, 276,
279–281

clearFile function, previewing images, 368,
370–372

clearRect method

clearing canvas, 142, 154
rectangles, 136

clearTable function, drag-and-drop, 363–366

clearWatch function, watchPosition, 251,
255–256

client-side storage

catching events in local storage,
275–283

Chrome Developer Tools for viewing,
265–266

data security, 260–261
disabling in browser, 262
getting and setting sessionStorage,

263–264

ptg999

420 client-side storage

client-side storage (continued)

overview of, 259–260
session storage and local storage,

261–262
storing forms with local storage,

271–275
styling from session storage, 266–271
types of, 259
using web database for grocery list,

286–295
Web SQL Database API, 283–286

closePath method, canvas lines, 139, 142

closeWS function, WebSocket API, 299–301

Codecs

audio element issues, 188
HTML5 and video, 165
why you should care about, 165–166

Coding, principles of HTML5, xxv

Color. See also Background color

CSS3 transitions, 86–89
overriding form placeholder text, 109
stylizing squares, 136

color input type

color picker, 107–108
creating sign-up form, 122–125

Color picker, 107–108

comma-separated value (CSV) file, parsing
with readAsText, 373–380

Comments

marking up article page with, 51–54
marking up in article element, 11–12

Communication

adding two-way, 308–311
creating web worker, 304–308
leveraging shared web worker,

311–318
overview of, 297
talking through web sockets, 299–302

threading through Web Workers API,
302–304

WebSocket API overview, 297–298
compassneedscalibration event, Device

Orientation, 403

Compatibility. See Browser support

Compositing, canvas tools, 135

computeDistanceBetween function

PositionOptions, 244
watchPosition, 252–253, 256

Concurrency, 303

connect event, shared web worker, 312

Connection interface, Network Information
API, 397

Contact information

with address element, 37–38
creating form to collect, 97–101

ContactField interface, 392, 395

Contacts API

development of, 390
overview of, 391–392
retrieving all contacts and mobile

numbers, 393–396
Contacts interface, 391–392

contactsFindSuccess function, Contacts
interface, 393

Content

footer element, 17–19
grouping with section element, 12–14
possible header, 5

controls attribute, audio element, 191

controls attribute, video element, 172–173

Controls, custom video, 178–186

Cookbook style, HTML5, xxvii–xxviii

Cookies, storage of, 259

Coordinate system, canvas

laying grid, 130–134
overview of, 129

ptg999

421dataTransfer

coords object, getCurrentPosition, 236, 239

Copyright data, footer element, 17

Create Polygon button, 142

createHTMLNotification attribute,
NotificationCenter, 342

createLinearGradient method, shapes, 135

defined, 342
createNotification attribute,

NotificationCenter

simple notification, 344–347
tweet notifications, 348, 352

createPattern method, cropping image,
145–146

createRadialGradient method, shapes, 135

Cropping image, 145–146

Cross-browser fixes, @font-face, 79

CSS (Cascading Style Sheets), 188

beat mixer, 193–197
build HTML5 starter document, 3
creating video with subtitles and

captions, 174–176
custom video controls, 179, 184
HTML5 vs., xxvi
making IE compatible with HTML5,

56–57
setting video height and width, 167
streaming radio player, 197
usability during development, xxix
using for section breaks, 46
using web pages online, 338–340
using with ARIA roles, 51

CSS3

animations, 89–94
Basic User Interface Module, 120–121
buttons with gradients and multiple

backgrounds, 80–83
custom fonts with @font-face, 77–78
feature detection with Modernizr,

62–64

file formats and cross-browser fixes,
78–79

iPhone and Android devices and, 76
Media Queries, 69–76
overview of, 69
sensible usage, 76
styling canvas, 128
stylizing form elements, 119–121
transformations and transitions, 84–89
type services, 79–80

CSV (comma-separated value) file, parsing
with readAsText, 373–380

Curves, drawing

with Curve tool, 134
overview of, 143–144

Custom fonts

with CSS3 @font-face, 77–78
file formats and cross-browser fixes,

78–79
type services, 79–80

Custom video controls, 178–186

Custom web forms, 119–121

D
data parameter, History API

pushState method, 208–209
replaceState method, 216–218

Database storage

HTML5 options, 260
security issues on client side, 260–261
using for grocery list, 286–295
Web SQL Database API, 283–286

datalist element

creating autocomplete feature,
110–111

creating sign-up form, 122–125
dataTransfer

attributes and methods, 320

ptg999

422 dataTransfer

dataTransfer (continued)

drag and drop API, 321–324
leveraging events and, 325, 329–330,

332–333
date input type

calendar, 103–104
creating sign-up form, 122–125
leveraging jQuery to replace calendar,

59–62
Date, marking up with time element, 34–35

datetime attribute, time element, 34–35

datetime input type, calendar, 102–103

datetime-local input type, calendar, 103

dbPresent function, database storage, 287,
289, 293

Debugging

developing worker functionality for
easy, 317

drag-and-drop programming, 333
in Geolocation API, 237
removing database for, 287–288

Dedicated web workers

adding two-way communication,
308–311

defined, 302
methods and events, 303

Definition list, 42–43

del element, edited or removed text, 39

deleteItem method, database storage, 288

Description list, dl element for, 43–44

descriptions value, kind attribute, 173

details element, toggling with, 35–37

Device APIs Working Group, 389–390

Device data, integrating

Battery Status events, 398
Contacts API, 391–396
Device APIs history, 389–391
Device Orientation and Motion

Events, 403–408

HTML Media Capture, 398–402
Messaging API, 396–397
Network Information API, 397–398
overview of, 389

Device Orientation and Motion Events

creating bubble level, 404–408
overview of, 403–404

DeviceAcceleration interface, 404

devicemotion event, 403–404

deviceorientation event

creating bubble level, 404–408
defined, 403

DeviceRotationRate interface, 404

Direct download, for older browsers, 167

Directories and System specification, File
API, 381–382

DirectoryEntry interface, 381

Display results, with output element,
108–109

displayFiles function, multiple files with
drag-and-drop, 362–366

div element

drag and drop API, 321–325
as last resort, 14–15

dl element, 42–44

doctype

HTML5 starter document, 2
news home page, 23
search results page, 26

Document Type Definition (DTD), 2

downloading event, application cache API,
341

Drag and drop API

dragging and dropping across divs,
321–325

leveraging events and dataTransfer,
325–333

overview of, 319–321
processing multiple files, 362–367

ptg999

423errorCallback parameter

draggable attribute, drag and drop API,
319–320, 321, 324

dragstart attribute, drag and drop API, 320

dragStartHandler function, drag and drop
API, 322, 324

drawAxis function, vertical bar chart
animation, 155, 157–158, 161

drawBar function, vertical bar chart
animation, 155, 160–161

drawImage method, canvas, 145–150

drawing, with canvas. See canvas

drawPolygon function, 139–142

drop event, dropzone attribute, 320

Drop zones

leveraging events and dataTransfer,
326, 328, 331–333

processing multiple files with drag-
and-drop, 362–366

dropHandler function, 322, 324–325

dropzone attribute, 320–321, 324

DTD (Document Type Definition), 2

Duration, custom video controls, 179–181,
183–185

durationChange event, streaming radio, 200,
206

E
Effects, canvas tools for, 135

Elements

grouping or text-level. See grouping
or text-level elements

structural. See structural elements, new
wrapping links around, 47

Elements, changes to existing

abbr, 46
b and strong, 44–45
cite, 39–40
dl, 42–44
hr, 46

i and em, 45–46
ol, 40–42
removed elements, 46–47
small, 44

em element, 45–46

Email, creating local file, 382–388

email input type

creating contact forms, 98–99
creating sign-up forms, 122–125

Embedded

audio. See Audio, embedding with
HTML5

video. See Video, embedding with
HTML5

Embedded OpenType (.eot) font file format, 78

Emphasis, sentence, 45–46

enableHighAccuracy, PositionOptions, 243

ENCODING_ERR, FileReader, 373, 378

Encryption, data storage, 260–261

END message, tweet notifications, 355–356

Entry interface, 381

.eot (Embedded OpenType) font file format, 78

Error code values

FileReader, 373, 378
Messaging API, 397

error event, application cache API, 341

Error handling

changing message for web forms, 121
Web SQL Database API, 285–286

Error handling, Geolocation API

determining distance, 247
following moving location, 254
location privacy, 237
mapping location, 238, 240–242

errorCallback parameter

getCurrentPosition, 233
watchPosition, 250, 251

ptg999

424 Event handling

Event handling

and dataTransfer, 326–328
local storage, 276–277, 282
tweet notifications, 348, 351–353

Events

application cache, 340–341
Battery Status, 398
catching in local storage, 275–283
dataTransfer and leveraging, 325–333
Device Orientation and Motion,

403–404
drag and drop API, 320, 325
FileReader, 367–368
leveraging shared web worker, 312
media API, 177, 192–193, 197
Network Information API, 398
parsing CSV file with readAsText,

374–376
Web Workers API, 303
WebSocket API, 298

executeSql method, Web SQL Database API,
284–285

Extensible Hypertext Markup Language
(XHTML), xxiii–xxiv

F
Fallback container, canvas, 129

Fallback content, in older browsers, 167–
169, 189–190

FALLBACK section, manifest file, 336–337

Fast-forward button, custom video controls,
186

Feature detection methods, browsers

Modernizr, 62–66
overview of, 57–59

figcaption element, 31–34

figure element

and figcaption, 31–34
rotation transform applied to, 84

File API

extended specifications, 381–382
overview of, 359–360

File formats, and CSS3 cross-browser fixes,
78–79

file input element, capturing pictures,
399–402

File interface, 359–362

fileAction function, local file, 383, 385–387

fileAttributes section, 360–362

FileEntry interface, 381

fileErrorHandler function, local file, 383–386

FileList interface

File API, 359
getting file attributes, 360–362
processing multiple files with drag-

and-drop, 362–367
FileReader interface

File API, 359
Local files, 367–368
overview of, 367–368
parsing CSV file with readAsText,

373–380
previewing images through

readAsDataURL, 368–372
FileReaderSnyc, 368

FileSaver interface, 381

FileSystem interface, 381

FileWriter interface, 381–382, 385–387

Fill effect, canvas tools, 135

fillRect method, rectangle or square,
135–136

fillStyle method

adding text to canvas, 144
shapes, 135–137

fillText method

adding text to canvas, 144
drawing canvas grid, 130–134

Filters, dropzone attribute, 320

ptg999

425getItem method

find method, Contacts interface, 391,
393–395

findAllContacts method, Contacts interface,
393–395

FindMe function, getCurrentPosition,
233–235

Firefox. See Browser support

fireNotification function, Notification API,
344–345

Flash Player fallback, older browsers, 167–
169, 189–190

Font Squirrel, 78–80

Font stacks, with CSS font-family, 80

FontDeck service, 80

Fonts

adding text to canvas, 144
customizing with CSS3 @fontface,

77–78
file formats and cross-browser fixes,

78–79
type services, 79–80

footer element

author information within, 6
in blockquote, 40
creating news home page, 23–25
creating search results page, 28–29
use of, 17–19

form element, jumping to when page loads,
114–115

Formats

CSS3 cross-browser fixes and file,
78–79

drawImage function, 145
formnovalidate attribute, form entries,

119

Forms. See Web forms

Forum post, marking up, 11–12

Full-screen mode, video, 181, 183–185

G
Geocoding, 232

geoErrorHandler function

getCurrentPosition, 238, 240–242
PositionOptions, 247

Geolocation API

browser compatibility, 232
Device Orientation specification,

403–404
getCurrentPosition, location

awareness, 233–236
getCurrentPosition, location privacy,

237
getCurrentPosition, mapping location,

237–243
overview of, 231–232
PositionOptions, determining

distance, 243–249
watchPosition, following moving

location, 250–257
geoSuccess function, getCurrentPosition,

234–236, 239

getContext method, drawing on canvas, 129

getCurrentPosition method, Geolocation API

determining browser location, 233–236
determining distance with

PositionOptions, 243–249
location privacy, 237
mapping location, 237–243
overview of, 233

getData attribute, DataTransfer, 320

getDepartments function, database storage,
288

getGroceryItems function, database storage,
288, 290–292

getItem method

sessionStorage, 263–264
sessionStorage and localStorage, 262

ptg999

426 getTimeStamp function, web worker,

getTimeStamp function, web worker,
304–305

GitHub, 228

Glossary, creating with dl, 43

Google

Chrome. See Chrome
Font Directory, 79–80
HTML5 and video codecs, 165–166

Google Maps API V3 Services

Geolocation API and, 232
getCurrentPosition, 237–243
PositionOptions, 244–249
watchPosition, 250–257

Grab Tweets button, tweet notifications, 355

grabTweets function, 349

Gradient generators, 83

Gradients

adding to shapes, 137–138
buttons with multiple backgrounds

and CSS3, 80–83
canvas tools, 135

Gregorian calendar, 34–35

Grid system, canvas, 130–134

Grocery list page, database storage,
287–295

Grouping content, 12–14

Grouping headings, 7–8

Grouping navigation, 9–10

Grouping or text-level elements. See also
Elements, changes to existing

contact information with address,
37–38

create article page with comments,
51–54

date and time with time, 34–35
figure and figcaption, 31–34
highlight text with mark, 38
inaccurate/irrelevant content with s, 39
toggle with details, 35–37

using Microdata, 47–49
using WAI-ARIA, 49–51
wrapping links around elements, 47

growBars function, 157, 159–161

H
H.264 codec (MPEG-4), 165–166

handleCapture function, HTML Media
Capture, 399–401

handleDragOver function, multiple files,
362–364, 366

handleFile function

getting file attributes, 360–361
parsing CSV file, 374–375, 378–379

handleFileDrop function, multiple files,
362–363, 366

handleFiles function, image preview, 368–
369, 371

hash address method, History API, 228

hashChange event, History API, 228

header element

creating document outline, 21
creating news home page, 23–25
creating search results page, 27–28
creating site header, 5–7
grouping headings with hgroup, 7–8
nav element within, 9

Headings

document outline, 21
group with hgroup, 7–8
multiple header elements on page, 6–7

height value, video element, 167

hgroup element

grouping headings, 7–8
making document outline, 21

Hickson, Ian "Hixie", 4, xxiv

high attribute, progress element, 113

Highlight text, 38

ptg999

427initPage function, database storage

History

changing browser. See Browser
history

History API, 207
of HTML, xxiii–xxv

history.js library, 228

Hosting sites, audio for older browsers, 189

:hover state, CSS3 transitions, 86–89

hr element, 46

HTML (Hypertext Markup Language),
xxiii–xxv

HTML Media Capture, 398–402

HTML4, input types, 95–97

HTML5

Boilerplate, 57
cookbook style, xxvii–xxviii
enhanced functions and new features,

xxvi
logo, xxvii
principles of, xxv–xxvi
readiness for use, xxix
third party libraries, xxviii
Web Forms 2.0 and Web App 1.0 as,

xxiv
XHTML 2 vs., xxiv

HTML5DevelopersCookbook.com, xxvix

HTML5Shiv, 56

I
i element, 45–46

Icons, xxvii

id style, canvas, 129–130

IE (Internet Explorer). See also Browser
support

audio in older browsers, 189–190
CSS compatibility with, 56–57
supporting HTML5, 55
use Selectivizr for new CSS selectors,

72

using JavaScript for HTML5, 55–56
video in older versions, 167–169

IE Print Protector, 56

IETF (Internet Engineering Task Force),
history of HTML, xxiii

Image viewer

creating history entries, 211–214
popstate event in, 214–216

Images

adding captions, 31–34
adding hover effect, 88–89
animating, 151–155
capturing camera, 399–402
cropping, 145–146
drawing in canvas, 145–146
for online web pages, 338–340
previewing with readAsDataURL,

368–372
img tag, using figure/figcaption elements

vs., 32

importScripts command, tweet notifications,
349, 353, 355–356

inaccurate content, showing with s element,
39

IndexedDB API, database storage, 260,
283–286

init function

creating bubble level, 404–408
creating database storage, 287–288
drawing polygons with canvas, 140
for session storage, 263–264
streaming radio player, 199, 202, 205
talking through web sockets, 299

initGraph function, animating vertical bar
chart, 155, 157, 160–161

initMap function, watchPosition, 251–252,
255–256

initNoteBoard function, local storage, 276–
277, 281

initPage function, database storage, 288

ptg999

428 initShoppingDb function, database storage

initShoppingDb function, database storage,
287, 289–290, 293

Input types

color, 107–108
contact form, 97–101
date, 103–104
datetime, 102–103
datetime-local, 103
email, 98–99
HTML4, 95–97
leveraging jQuery to replace calendar,

59–62
month, 104
multiple entries on, 115–116
number, 105–106
range, 106–107
search, 100
search form, 101–102
sign-up form, 122–125
tel, 99
time, 104
url, 100
week, 104–105

Integration of device data. See Device data,
integrating

Interface

Basic User Interface Module, CSS3,
120–121

BlobBuilder, 381
Connection, 397
ContactField, 392, 395
Contacts, 391–395
DeviceAcceleration, 404
DeviceRotationRate, 404
directories and system, 381
DirectoryEntry, 381
Entry, 381
File, 359–362

File API, 359
file writer, 381
FileEntry, 381
FileList, 359–367
FileReader. See FileReader interface
FileSaver, 381
FileSystem, 381
FileWriter, 381
Notification, 341–342
NotificationCenter, 341–342
worker, 303

Intermediate recipes, 412–413, xxviii

Internet Engineering Task Force (IETF),
history of HTML, xxiii

Internet Explorer. See IE (Internet Explorer)

Intersection points, canvas grid, 134

:invalid class, CSS3, 121

INVALID_ARGUMENT_ERROR code,
Messaging API, 397

IO_ERROR code, Messaging API, 397

iOS Safari. See Browser support

IP address location challenges, 231

iPhone, 76. See also Browser support

Irrelevant content, show with s element, 39

itemid attribute, Microdata, 48

itemprop attribute, Microdata, 48

itemref attribute, Microdata, 48

itemscope attribute, Microdata, 48

itemtype attribute, Microdata, 48

J
JavaScript

building HTML5 starter document, 3
creating custom video controls, 184
creating video with subtitles and

captions, 174–176
drawing on canvas from, 129

ptg999

429loadPages function, page history

feature detection with Modernizr
and, 64–65

implementing canvas with, 127–128
for jQuery calendar widget, 61
making IE compatible with HTML5,

55–56
styling mobile phones with, 69
using web pages online, 338–340

jQuery calendar

using as fallback, 59–62
using Modernizr as detection tool,

65–66
jQuery plug-in, video with subtitles and

captions, 174–176

JSON

listing radio stations and URLs, 197,
205

pushing pages with data, 221–222,
224

viewing storage with Developer
Tools, 265

JSONP, Twitter REST API and, 348

JW Player, 169, 189–190

K
key method, storing forms with local

storage, 271–275

Key/value pairs

Chrome's Developer Tools for
viewing, 265–266

origin-based security and, 260
for session and local storage, 261–262
for session storage, 263–264
storing forms with local storage,

271–275
styling from session storage, 266–271
for web storage, 259–260

kind attribute, video with subtitles and
captions, 173

L
Labels, adding with Microdata, 47–49

Landmark Roles section, ARIA

marking article page with comments,
51–54

overview of, 49–51
Languages, datetime control on calendar,

103

lastModifiedDate property, File API, 359, 362

lastTweetId, tweet notifications, 355

Latitude coordinates

Geolocation API, 232
getCurrentPosition, 242
PositionOptions, 244–249
reverse geocoding, 232
watchPosition, 253, 255–256

Layers, in canvas, 150

Legal issues, type services, 79–80

legend element, 32

length property, local storage of forms,
271–272

lengthComputable attribute, onprogress
event, 374, 377, 379

Libraries, 228, xxviii

License agreements, within footer, 18

line method, drawing canvas grid, 130–133

Line tool, canvas, 134

Linear gradients, 81, 137–138

Lines, drawing in canvas, 138–139

Links

within footer element, 19
wrapping around elements, 47

list attribute, datalist element, 110–111

loaded attribute, onprogress event, 374

loadeddata event listener, custom video
controls, 185

loadPages function, page history, 219–220

ptg999

430 Local files

Local files

creating, 382–388
File API extended specifications,

381–382
File API overview, 359–360
FileReader interface, 367–368
getting file attributes, 360–362
parsing CSV file, 373–380
previewing images, 368–372
processing multiple files, 362–367

Local storage

catching events in, 275–283
key/value pairs, 261–262
origin-based security for, 260
session storage vs., 259
storing forms with, 271–275
web database storage vs., 284

Location awareness. See Geolocation API

Logos

within footer element, 18
within header element, 5
HTML5 and, xxvii

Longitude coordinates

Geolocation API, 232
getCurrentPosition, 242
PositionOptions, 244–249
in reverse geocoding, 232
watchPosition, 253, 255–256

loop attribute

audio element, 190
video element, 172

low attribute, progress element, 113

M
Manifest file

application cache API, 340–341
application cache files captured in, 334

creating, 335–337
referencing, 335
using web pages online, 337–340

Map Me button, 237–238, 241

Mapping location, with getCurrentPosition,
237–243

mark element, highlighting text, 38

max attribute

limiting form entries, 118
number input type, 105
progress element, 111–112, 113
range input type, 105–106
restricting dates or times of widgets,

104–105
max-device-width, CSS3 Media Queries,

71–72

max-width, CSS3 Media Queries, 71

maximumAge, PositionOptions, 243

Measurement, with meter element, 112–113

Media API

audio, 192–193
video, 177

Media capture. See HTML Media Capture

Media Queries, CSS3

browser support, 70
combining different queries, 71–72
condensed HTML for news site,

72–73
default screen layout, 73–74
example of, 70
inside CSS file, 70–71
overview of, 69–70
reduced screen size, 74–75
selectors, 72
sensible usage, 76
for smartphone, 75–76
targeting iPhone and Android devices,

76–77

ptg999

431nextExhibit function, add pages to history

MESSAGE_SIZE_EXCEEDED code, Messaging
API, 397

Messaging API, 396–397

metadata attribute, audio element, 190

metadata value, kind attribute, 173

meter element, measurement with, 112–113

Micro-library, Modernizr, 63

Microdata, adding semantic information,
47–49

Microformats, extending HTML, 49

MIME types, HTML5 video development, 169

min attribute

limiting form entries, 118
number input type, 105
progress element, 113
range input type, 105–106
restricting dates or times of widgets,

104–105
Mobile browsing, CSS3 Media Queries for,

69–76

Modernizr

detect browser features, 62–66
load cross-browser polyfills, 66–67

month input type, calendar, 104

mouseclick events, CSS transitions, 86–89

mouseover events

CSS transitions, 86–89
interacting with canvas, 155

moveGear function, animating image,
152–155

moveTo method, canvas lines, 138

Movie credits, creating, 43–44

Mozilla, gradient syntax, 81

.mp3 files (MP3), audio codec

audio element issues, 188
beat mixer, 193–197
streaming radio, 197–206

MPEG-4 (H.264 codec), 165–166

multimedia API, 177

multiple attribute, web form entries,
115–116

Multiple entries, web forms, 115–116

myLocation, getCurrentPosition, 234

N
name property, File API, 359, 362

nav element

create navigation, 8–10
creating document outline, 21
creating news home page, 23–25
creating search results page, 27–29

Navigation

header element for, 5–7
with nav element. See nav element

Navigator geolocation object, 235

Nesting elements

article element, 11
aside element, 16–17
strong element, 45

Network Information API, 397–398

NETWORK section, manifest file, 336–337

News item, marking up, 11–12

News page

building with new elements, 21–25
creating with sections, 13–14

News site

condensed HTML for, 72–73
with CSS for default screen layout,

73–74
with CSS for reduced screen size,

74–75
with CSS for smartphone, 75–76
with default CSS, 73–74

nextExhibit function, add pages to history,
210

ptg999

432 nextState function, changing history

nextState function, changing history, 217

Notes, local storage events, 275–283

NOT_FOUND_ERR, FileReader, 373, 378

Notification API

creating tweet notification page,
347–356

displaying simple notification,
344–347

overview of, 341–343
Notification interface, 341–342

NotificationCenter interface, 341–342

NOT_READABLE_ERR, FileReader, 373, 378

NOT_SUPPORTED_ERROR, Messaging API,
397

noupdate event, application cache API, 341

novalidate attribute, limiting form entries,
119

nth-child selector, CSS3, 72

nth-of-type selector, CSS3, 72

nullHandler function, database storage, 287

number input type, 105–106, 122–125

Number picker, 105–106

O
obsolete event, application cache API, 341

offline event, Network Information API, 398

Offline, web pages, 337–340

.ogg files (Ogg Vorbis), audio code

audio element issues, 188
beat mixer, 193–197
streaming radio, 197–206

Ogg Theora codec, 165

ol element

changes to, 40–42
marking article page with comments,

53
onbatterystatus property, Battery Status

events, 398

onchange event

capturing pictures with file input,
399–402

getting file attributes, 360–361
processing multiple files, 362, 365
streaming radio player, 205

onclose event

tweet notifications, 352, 355–356
WebSocket API, 298–301

onconnect event, shared web worker, 317

onDbError function, database storage, 287,
290–294

ondisplay event, tweet notifications, 348,
352, 355–356

ondragstart attribute, drag and drop API,
320, 324

ondrop event, dropzone attribute, 320

onerror event

tweet notifications, 352, 355–356
two-way communication, 308–309
Web Workers API, 303
WebSocket API, 298–302

online event, Network Information API, 398

onload FileReader event, previewing images,
368, 370, 372

onmessage event

creating web worker, 307
leveraging shared web worker, 317
tweet notifications, 352, 355
Web Workers API, 303
WebSocket API, 298–302

onmousedown event, drag and drop API,
324

onopen event, WebSocket API, 298–301

onprogress event, FileReader, 374

onStorageEvent function, local storage,
276–277, 282

open attribute, details, 35–36

ptg999

433postMessage function

openDatabase method, Web SQL Database
API, 284–285

openShoppingDb function, 287, 289

OpenType PS (.otf) font file format, 78

Opera, 59–60. See also Browser support

optimum attribute, progress element, 113

options parameter, getCurrentPosition, 233

options parameter, watchPosition, 250

Ordered lists, 40–41

Origin-based security, storage options, 260

.otf (OpenType PS) font file format, 78

Outline, making document, 19–21

Outliner extension icon, HTML5, 19–21

output element, display results, 108–109

P
Page elements

content. See grouping or text-level
elements

structural. See structural elements, new
Paragraph break, hr element, 46

Parsing CSV file, with readAsText, 373–380

Path tool, canvas, 134

Paths

drawing polygons with canvas, 139–142
drawing using canvas, 138–139

pattern attribute, validation rules, 117

pause method, beat mixer, 194, 197

PENDING_OPERATION_ERROR, Messaging
API, 397

PERMISSION_DENIED error

getCurrentPosition, 241–242
PositionOptions, 247
watchPosition, 254

Permissions

desktop notifications, 349
local file, 383
Notification API, 343

simple notifications, 344–346
tweet notifications, 349–351, 353, 355

PERMISSIONS_DENIED_ERROR, Messaging
API, 397

PERMISSION_UNAVAILABLE error

getCurrentPosition, 241
PositionOptions, 247
watchPosition, 254

Phishing attacks, and history security, 225

Placeholder text, forms, 109–110

Play button

beat mixer, 194, 197
custom video controls, 178

Play/Pause button, streaming radio, 198,
200–202, 205–206

Playback rate, video, 181–183, 185

Policies, browser, 225

Polyfilling, 66–67

Polygons, drawing, 139–142

popstate event

adding/modifying history for site, 207
changing page history, 218–220
in image viewer, 214–216
pushing pages with data, 221–225
retrieving data parameter for new

entry with, 208
testing history security, 225

position return object, browser location, 236

PositionOptions method, Geolocation API,
243–249

posOptions, getCurrentPosition, 247, 249

poster attribute, video element, 170–171

postMessage function

creating web worker, 307
leveraging shared web worker, 317
two-way communication, 308–310
Web Workers API, 303
WebSocket API, 299–302

ptg999

434 postToWorker function, two-way communication

postToWorker function, two-way
communication, 308–310

preload attribute, audio element, 190–191

preload attribute, video element, 171

preventDefault method

debugging drag-and-drop, 333
dragging and dropping across divs, 325
leveraging events and dataTransfer,

328, 332–333
progress element, tracking completion of

task, 111–112

progress event, application cache API, 341

Properties

audio media API, 192–193
client storage types and, 260
detecting with Modernizr, 62–63
File API, 359
sessionStorage and localStorage, 261
video media API, 177

pubdate attribute, time element, 34

pushPage function, history security,
225–227

pushState method

adding to history, 208–211
changing page history, 218–220
defined, 207
in image viewer, 216
pushing pages with data, 221–225
testing history security, 225–228

Q
quadraticCurveTo, drawing curves, 143

Quotation marks, syntax, 3

R
Radial gradients, 81–83, 137–138

range input type

creating sign-up form, 122–125

creating slider, 106–107
custom video control quirks, 186

RDFa, extending HTML, 49

readAsDataURL, previewing images,
368–372

readAsText method, parsing CSV file,
373–380

readFromFile function, local files, 383,
385–387

readyState attribute value, WebSocket, 298

readyState value, custom video controls,
181, 184

Recipes

advanced, 413–414
beginner, 411–412
cookbook style used in this book,

xxvii–xxviii
intermediate, 412–413

Rectangle tool, canvas, 134

Rectangles, drawing, 135–136

Regular expressions, writing validation rule,
117

Remove Database button, 287

Removed elements, from HTML5, 46–47

removeDatabase function, 288, 292–293

removeFile function, local files, 383, 385

removeItem method, styling from session
storage, 266, 271

removeNote function, local storage, 276,
279–280

repeat parameter, cropping image, 146

replaceState method

changing history, 216–218
changing page history, 218–220
defined, 207
pushing pages with data, 221–225
testing history security, 225, 228

requestPermission method, Notification API,
345–346

ptg999

435setItem method, client-side storage

required attribute

creating sign-up form, 122–125
email input type, 98–99
form validation, 95, 116

:required class, CSS3, 121

resetGroceryList method, database storage,
288, 292–293

Resets, CSS, 57

restore method, canvas, 151

results attribute, search input type, 101

Reverse geocoding, 232

reversed attribute, ol element, 40–41, 53

reverseGeoCode function, PositionOptions,
244–245

Rewind button, custom video controls, 186

rotate function, CSS transform property,
84–86

rotate method, canvas, 150–151, 154

Rules, writing validation, 117

S
s element, 39

Safari. See Browser support

save method, canvas, 151

scale function, CSS transform property, 86

scale method, canvas, 151

Script tags, tweet notifications, 348

Search form

create with input type="search",
101–102

header element for, 5
search input type

creating search form, 101–102
using autofocus, 114–115

Search results page, 25–29

section element

creating news home page, 23–25
creating search results page, 27

grouping content, 12–14
making document outline, 21
using article element vs., 14–15

Security

browser cache, 334
data storage issues on client side,

260–261
File API, 360
Notification API permissions, 343
testing history, 225–228

SECURITY_ERR, FileReader, 373, 378

select element, streaming radio player,
200–201, 205

Selectivizr, 72

Selectors, new CSS3, 72

Semantic information, adding with
Microdata, 47–49

sendAllConnections function, shared web
worker, 315–316

sendMessage method, Messaging API,
396–397

sendNumber function, shared web worker,
313, 317

Session history, 207

Session storage

getting and setting, 263–264
key/value pairs, 261–262
local storage vs., 259
origin-based security for, 260
running recipes for, 270
styling from, 266–271
viewing with Chrome's Developer

Tools, 265–266
web database storage vs., 284

Sessions

database storage across, 260
local storage across, 259–260

setData attribute, DataTransfer, 320

setItem method, client-side storage, 261–264

ptg999

436 setLocation function, PositionOptions

setLocation function, PositionOptions, 244

setPermission function

Notification API, 344–347
tweet notifications, 349

setStation function, streaming radio, 197,
201, 205

shadow effect, 135

shadowBlur method, shapes, 135–137

shadowColor method, shapes, 135–137

shadowOffsetX method, shapes, 135–137

shadowOffsetY method, shapes, 135–137

Shapes, 135, 137–138

Shared web workers, 302, 311–318

shoppingdb var declaration, database
storage, 287, 289

showDepartments function, database
storage, 288

showFile function, previewing images, 368,
370, 372

showGrid function, laying grid on canvas,
131, 133

showGroceryItems function, database
storage, 288, 291, 293–295

Sidebar

creating with aside element, 15–17
grouping navigation with nav, 9–10
local storage events, 275–283

Sign-up forms, 121–125

Site header, creating, 5–7

Site owner, within footer, 17

Site terms and conditions, within footer, 17

size property, File API, 359, 362

skew function, CSS transform property, 86

Slider control, 106–107

small element, 44

Smartphones, 75–76

Socket connections. See WebSocket API

source element

displaying video formats, 166–167
enabling audio for all browsers,

188–190
Specifications, File API extended, 381–382

Sprite map, animating, 147–150

SQLite database

storage, 260
using web database for grocery list,

287
Web SQL Database API based on,

283–284
Squares, drawing, 135–136

src attribute

audio element, 190
video element, 170

Stack, history

adding to history with pushState, 207
changing page history, 220
defined, 207
replacing current history state, 218

start attribute, ol element, 40–41

startAnimation function, sprite map,
147–149

startWatch function, watchPosition, 251,
256

startWorkerThread function, web worker,
304–307

stateInfo div

creating image viewer, 212–213
popping state in image viewer,

215–216
pushing and popping of history state,

216
replacing current history state,

217–218
step attribute

limiting form entries, 118

ptg999

437text-level elements

number input type, 105–106
range input type, 105–106

stepDegrees method, animating image, 154

stopAnimation function, sprite map,
147–149

Storage. See Client-side storage

storageEvent attributes, local storage, 275

Streaming audio, 197–206

streamPlaying function, streaming radio,
200–201, 206

stringify method, JSON

changing page history, 219
popping state in image viewer, 215
pushing pages with data, 222, 224

stroke effect, canvas tools, 135

stroke method, canvas lines, 138

strokeRec method, rectangles, 136

strokeStyle method, shapes, 135–137

strokeText method, canvas, 144

strong element, 44–45

Structural elements, new

article, 11–12
article vs. section, 14–15
build news page, 21–25
build search results page, 25–29
build starter document, 2–4
correct structure with HTML5

Outliner, 19–21
create navigation with nav, 8–10
create sidebar with aside, 15–17
create site header with header, 5–7
footer, 17–19
group content with section, 12–14
group headings with hgroup, 7–8
overview of, 1
where new elements come from, 4–5

Stylize

rectangles and squares, 135–137
from session storage, 266–271
video subtitles, 173–176
web forms, 119–121

Subtitles, video, 173–176

successCallback parameter

getCurrentPosition, 233
watchPosition, 250, 251

summary element, within details element,
35–36

.svg (SVG) font file format, 78

swapCache function, application cache API,
341

Syntax

HTML5 writing style, 3
XHTML rules, xxiii

SYNTAX_ERR, Web SQL Database API, 286

T
Table of contents, show/hide, 36–37

Tags, HTML4, 62–66

Task completion, tracking, 111–112

tel input type

contact form, 99
sign-up form, 122–125

terminateWorker function, 304–306

Testing

browsers for HTML5 features, 57–59
history security, 225–228
notifications, 346

Text

adding to canvas, 144
form placeholder, 109–110

text input type, 96, 122–125

text-level elements. See grouping or text-
level elements

ptg999

438 textReader, FileReader

textReader, FileReader, 374–376

Themes

setting in session storage, 266–270
showing, 268–270

Third party libraries, HTML5, xxviii

Threading. See Web Workers API

Time controls, calendar, 101–105

time element

date and time with, 34–35
marking article page with comments,

53
time input type, calendar, 104

Time zones, calendar, 103

Timeout

notifications, 352, 356
PositionOptions, 243

TIMEOUT error code

getCurrentPosition, 241
Messaging API, 397
PositionOptions, 247
watchPosition, 254

Timeout error, Geolocation API, 237

timestamp, GetCurrentPosition, 239

title parameter

pushState method, 208–209
replaceState method, 216–218

Toggle, with details element, 35–37

Tools, canvas, 134

toString built-in method, viewing session
storage, 265

total attribute, onprogress event, 374

Towers of Hanoi game, 325

track element, 173–174

transaction method, Web SQL Database API,
284–285

Transformations

canvas tools for, 150–151
CSS3, 84–89

Transitions, CSS3, 84–89, 94

translate function

canvas, 151, 154
CSS transform property, 86

Transparency effect, canvas tools, 135

.ttf (TrueType/OpenType) font file format, 78

TWEET message, tweet notifications,
355–356

Tweet notification page, 348–356

Twitter REST API, 348

Twitter, tweet notification page, 348–356

tworker, notifications, 349–350, 353, 355

type attribute, Network Information API, 397

type attribute, ol element, 40–42

type property, File API, 359, 362

type services, CSS3, 79–80

TypeKit service, 80

U
UNKNOWN_ERROR code

getCurrentPosition, 242
Messaging API, 397
PositionOptions, 247
watchPosition, 254

Unordered lists, marking up navigation, 8

updateAverage function, shared web worker,
315–316

updateNote function, local storage, 276–281

updateNoteBoard function, local storage,
276–281

updateready event, application cache API, 341

Updates

cache, via manifest file, 337
contacts in Contact API, 391

updateStatus function, WebSocket API,
299–301

Uploads, multiple file, 115

Uppercase, syntax writing style, 3

ptg999

439Web Applications 1.0

url input type

contact form, 100
sign-up form, 122–125

url parameter, pushState method, 208–209,
211

url parameter, replaceState method, 216–218

URLs

adding to history with pushState,
209–211

drawImage method and, 145
previous use of History API, 207
testing history security, 225–228

User input, limiting on web forms, 118–119

V
:valid class, CSS3, 121

Validation, HTML5 form

email input type, 99
overview of, 95
use required attribute for, 116
writing own rule for, 117

Validators, HTML5, 4

value attribute, progress element, 111–113

vCard, Contact API, 391

Verification sites, 67

Version number, openDatabase method, 285

Vertical bar chart, animating, 155–161

video element

basic use of, 163–166
browser compatibility with, 164
custom video controls, 178–186
enabling video for all browsers,

166–167
HTML5 and video codecs, 165
natively rendering video, 163
new attributes, 170–173
for older browsers, 167–169

Video, embedding with HTML5

custom controls, 178–186
enabling for all browsers, 166–169
media API, 177
new attributes, 170–173
overview of, 163
subtitles and captions, 173–176
with video element, 163–166

Video players, downloading available, 186

Viewing storage with Developer Tools,
265–266

Viewport, iPhone and Android, 76

Vimeo, HTML5 and video codecs, 165–166

Volume control, streaming radio, 198, 200,
202, 204–206

Volume control, video, 180–183, 185

VP8 (webM) multimedia format, 165–166

.vtt file (WebVTT), 173–176

W
W3C validator, 4

W3C (World Wide Web Consortium)

developing HTML5, xxiv
developing XHTML 1.0, xxiii
Device APIs and Policy Working

Group, 389–390
HTML5 logo and, xxvii

WAI-ARIA (Web Accessibility Initiative
Accessible Rich Internet Applications),
49–51

watchID parameter, clearWatch, 250

watchPosition method, Geolocation API,
250–257

.wav files (WAV) audio codec, 188

Web Accessibility Initiative Accessible Rich
Internet Applications (ARIA), 49–51

Web Applications 1.0, xxiv

ptg999

440 Web forms

Web forms

allow multiple entries, 115–116
autocomplete feature, 110–111
calendar and time controls, 102–105
color picker, 107–108
contact information, 97–101
customize and stylize, 119–121
display results with output element,

108–109
error messages, 121
HTML4 input types, 95–97
jumping to form element when page

loads, 114–115
limit user input, 118–119
measuring with meter element, 112–113
number picker, 105–106
placeholder text, 109–110
search form, 101–102
sign-up form, 121–125
slider, 106–107
storing with local storage, 271–275
tracking task completion, 111–112
validation, 95, 116
validation rule, 117

Web Forms 2.0, history of HTML, xxiv

Web Hypertext Application Technology
Working Group (WHATWG), xxiv–xxv

Web Notifications API. See Notification API

Web pages offline, 337–340

Web SQL Database API

overview of, 283–286
using for grocery list, 286–295

Web storage, HTML5 options, 259–260

Web worker

leveraging to follow tweets, 353–356
tweet notifications, 349–353

Web Workers API

creating web worker, 304–307

defined, 297
leveraging shared web worker,

311–318
minimizing use of web workers, 308
threading through, 302–304
two-way communication, 308–311

WebKit browser

CSS animation in, 89
displaying simple notification, 344
gradient syntax, 81
input types and, 61
search input type, 101–102
supporting Notification API, 341–343

webkitEnterFullScreen function, 183, 185

webkitNotifications attribute,
NotificationCenter interface, 341

webkitRequestFileSystem, Chrome 12

creating local file, 383–388
defined, 381

webM (VP8) multimedia format, 165–166

Website forgery, 225

WebSocket API, 297–302

week input type, calendar, 104–105

WHATWG (Web Hypertext Application
Technology Working Group), xxiv–xxv

width value, video element, 167

Wildcard, FALLBACK section of manifest,
336–337

.woff (WOFF) font file format, 78

Worker interface, 303

Writer, File API specification for file,
381–382

Writer specification, File API, 381–382

writeToFile function, local file, 383, 385, 387

X
X coordinate, canvas

cropping image, 145–146

ptg999

441z-index style attribute, canvas

drawing canvas grid, 130–134
interacting with canvas, 155
overview of, 129

XHTML (Extensible Hypertext Markup
Language), xxiii–xxiv

Y
Y coordinate, canvas

cropping image, 145–146
drawing canvas grid, 130–134

interacting with canvas, 155
overview of, 129

YouTube

adding fallback content for older
browsers, 167–169

HTML5 and video codecs, 165–166

Z
z-index style attribute, canvas, 150

	Contents
	Introduction
	Acknowledgments
	About the Authors
	1 New Structural Elements in HTML5
	BEGINNER RECIPE: Building an HTML5 Starter Document
	Doctype
	Character Encoding
	JavaScript and CSS Links
	Syntax Writing Style

	Where Do All the New Elements Come From?
	BEGINNER RECIPE: Using the header Element to Create a Site Header
	BEGINNER RECIPE: Using the hgroup Element to Group Headings
	BEGINNER RECIPE: Creating Navigation with the nav Element
	INTERMEDIATE RECIPE: Using the New article Element
	INTERMEDIATE RECIPE: Grouping Content with the section Element
	Which Should You Use: article or section?

	BEGINNER RECIPE: Creating a Sidebar with the aside Element
	BEGINNER RECIPE: Using the footer Element
	INTERMEDIATE RECIPE: Using the HTML5 Outliner to Ensure the Correct Structure
	ADVANCED RECIPE: Using All the New Elements to Build a News Page
	ADVANCED RECIPE: Using All the New Elements to Build a Search Results Page
	Summary

	2 Grouping, Text-Level, and Redefined Semantics
	BEGINNER RECIPE: Marking Up Figures and Captions with the figure and figcaption Elements
	BEGINNER RECIPE: Marking Up the Date and Time with the time Element
	BEGINNER RECIPE: Making a Native Toggle Widget with the details Element
	BEGINNER RECIPE: Using the address Element for Contact Information
	BEGINNER RECIPE: Highlighting Text with the mark Element
	BEGINNER RECIPE: Using the s Element to Show Inaccurate or Irrelevant Content
	Changes to Existing Elements
	The cite Element
	The ol Element
	The dl Element
	The small Element
	The b and strong Elements
	The i and em Elements
	The abbr Element
	The hr Element
	Elements That Are No More

	BEGINNER RECIPE: Wrapping Links Around Elements
	INTERMEDIATE RECIPE: Adding Semantic Information with Microdata
	INTERMEDIATE RECIPE: Using WAI-ARIA with HTML5
	ADVANCED RECIPE: Marking Up an Article Page with Comments
	Summary

	3 Browser Handling in HTML5
	BEGINNER RECIPE: Dealing with Internet Explorer
	Using JavaScript to Make HTML5 Compatible
	Making CSS Compatible

	Boilerplates
	BEGINNER RECIPE: Testing for HTML5 Features
	INTERMEDIATE RECIPE: Leveraging jQuery to Replace a Calendar
	INTERMEDIATE RECIPE: Using Modernizr to Detect Features
	Polyfilling
	Useful HTML5 Verification Sites
	Summary

	4 New Layout and Style Techniques with CSS3
	INTERMEDIATE RECIPE: Creating a Responsive Design with CSS3 Media Queries
	Sensible Usage
	Targeting the iPhone and Android Devices

	BEGINNER RECIPE: Using Custom Fonts with @font-face
	File Formats and the Cross-Browser Fix
	Type Services

	INTERMEDIATE RECIPE: Making Buttons with CSS Gradients and Multiple Backgrounds
	INTERMEDIATE RECIPE: Enhancing a Site with Transformations and Transitions
	ADVANCED RECIPE: Creating Animations with CSS
	Summary

	5 HTML5 Web Forms
	Validation
	HTML 4 Input Types
	BEGINNER RECIPE: Creating a Form to Collect Contact Information
	Input type="email"
	Input type="tel"
	Input type="url"

	BEGINNER RECIPE: Creating a Search Form with input type="search"
	BEGINNER RECIPE: Creating Calendar and Time Controls
	Input type="datetime"
	Input type="datetime-local"
	Input type="date"
	Input type="time"
	Input type="month"
	Input type="week"
	Placing Restrictions on Dates and Times

	BEGINNER RECIPE: Creating a Number Picker
	BEGINNER RECIPE: Creating a Slider (Without the Need for JavaScript)
	BEGINNER RECIPE: Creating a Color Picker
	BEGINNER RECIPE: Displaying Results with the output Element
	BEGINNER RECIPE: Using Form Placeholder Text
	BEGINNER RECIPE: Creating an Autocomplete Feature with list and datalist
	BEGINNER RECIPE: Tracking the Completion of a Task with the progress Element
	BEGINNER RECIPE: Measuring with the meter Element
	BEGINNER RECIPE: Jumping to a form Element When the Page Loads
	BEGINNER RECIPE: Allowing Multiple Entries
	BEGINNER RECIPE: Basic Validation with the required Attribute
	INTERMEDIATE RECIPE: Writing Your Own Validation Rule
	BEGINNER RECIPE: Limiting User Input
	Step
	Min, max
	Formnovalidate, novalidate

	INTERMEDIATE RECIPE: Customizing and Styling the Form
	Error Messages
	ADVANCED RECIPE: Putting It All Together to Make a Sign-Up Form
	Summary

	6 Drawing with Canvas
	Canvas Overview
	Getting Started
	X and Y Coordinates

	BEGINNER RECIPE: Laying a Grid on the Canvas
	Canvas Tools
	BEGINNER RECIPE: Making Simple Shapes and Lines
	Drawing and Styling a Rectangle or Square
	Applying Gradients to Shapes
	Drawing Lines and Paths

	INTERMEDIATE RECIPE: Drawing Polygons with a Path
	INTERMEDIATE RECIPE: Drawing Arcs and Circles
	Drawing Curves

	BEGINNER RECIPE: Adding Text
	BEGINNER RECIPE: Drawing an Image
	INTERMEDIATE RECIPE: Cropping an Image
	INTERMEDIATE RECIPE: Animating a Sprite Map
	Canvas Transformations
	ADVANCED RECIPE: Animating an Image
	ADVANCED RECIPE: Animating a Vertical Bar Chart
	Summary

	7 Embedding Video with HTML5
	BEGINNER RECIPE: Including Video with the video Element
	Browser and Device Support
	HTML5 and Video Codecs
	Why Should You Care About Codecs?

	INTERMEDIATE RECIPE: Enabling Video for All Browsers
	Adding Fallback Content for Older Browsers
	New Video Attributes

	INTERMEDIATE RECIPE: Creating a Video with Subtitles and Captions
	Other Subtitle Styling Options

	The Media API
	ADVANCED RECIPE: Making Your Own Custom Controls
	Summary

	8 Embedding Audio with HTML5
	BEGINNER RECIPE: Including Audio with the audio Element
	INTERMEDIATE RECIPE: Enabling Audio for All Browsers
	Adding Fallback Content for Older Browsers

	New Audio Attributes
	The src Attribute
	The preload Attribute
	The loop Attribute
	The autoplay Attribute
	The controls Attribute

	The Media API
	INTERMEDIATE RECIPE: Creating a Beat Mixer
	ADVANCED RECIPE: Adding Streaming Radio
	Summary

	9 Changing Browser History
	History Basics
	Browser Compatibility

	BEGINNER RECIPE: Adding to History with pushState
	BEGINNER RECIPE: Creating an Image Viewer
	INTERMEDIATE RECIPE: Popping State in the Image Viewer
	BEGINNER RECIPE: Changing History with replaceState
	INTERMEDIATE RECIPE: Changing the Page History
	ADVANCED RECIPE: Using Advanced State Data Objects to Pass Information Across Pages
	INTERMEDIATE RECIPE: Testing History Security
	Helpful Libraries
	Summary

	10 Location Awareness with the Geolocation API
	Geolocation Overview
	Browser Compatibility
	Where in the World: getCurrentPosition

	BEGINNER RECIPE: Determining Your Location with a Simple getCurrentPosition
	Location Privacy

	INTERMEDIATE RECIPE: Mapping a Location with getCurrentPosition
	INTERMEDIATE RECIPE: Determining Distance with PositionOptions
	ADVANCED RECIPE: Following a Moving Location with watchPosition
	Summary

	11 Client-Side Storage
	Client-Side Storage Overview
	Data Security
	Keys and Values: sessionStorage and localStorage

	BEGINNER RECIPE: Getting and Setting Session Storage
	Chrome Developer Tools for Viewing Storage

	BEGINNER RECIPE: Styling from Session Storage
	INTERMEDIATE RECIPE: Storing Forms with Local Storage
	ADVANCED RECIPE: Catching Events in Local Storage
	Web SQL Database API
	ADVANCED RECIPE: Using a Web Database for a Grocery List
	Summary

	12 Communication and Threading
	WebSocket API Overview
	BEGINNER RECIPE: Talking Through Web Sockets
	Threading Through Web Workers
	BEGINNER RECIPE: Creating a Web Worker
	INTERMEDIATE RECIPE: Adding Two-Way Communication
	ADVANCED RECIPE: Leveraging a Shared Web Worker
	Summary

	13 Browser Experience in HTML5
	Drag and Drop API
	BEGINNER RECIPE: Dragging and Dropping Across divs
	ADVANCED RECIPE: Leveraging Events and dataTransfer
	Application Cache and API
	Browser Cache Security
	Referencing a Manifest File

	BEGINNER RECIPE: Creating a Manifest File
	CACHE
	FALLBACK
	NETWORK
	Updating the Cache via the Manifest

	BEGINNER RECIPE: Using Web Pages Offline
	Application Cache API
	Notification API
	Notification Permissions
	Browser Compatibility

	BEGINNER RECIPE: Displaying a Simple Notification
	ADVANCED RECIPE: Creating a Tweet Notification Page
	Summary

	14 Working with Local Files
	File API Overview
	File API Security

	BEGINNER RECIPE: Getting File Attributes
	BEGINNER RECIPE: Processing Multiple Files with Drag and Drop
	The FileReader Interface
	INTERMEDIATE RECIPE: Previewing Images Through readAsDataURL
	ADVANCED RECIPE: Parsing a CSV File with readAsText
	File API Extended Specifications
	ADVANCED RECIPE: Creating a Local File
	Summary

	15 Integrating Device Data
	Brief Device APIs History
	Contacts API
	BEGINNER RECIPE: Retrieving All Contacts and Mobile Numbers
	Messaging API
	Network Information API
	Battery Status Events
	HTML Media Capture
	INTERMEDIATE RECIPE: Capturing Pictures with File Input
	Device Orientation and Motion Events
	INTERMEDIATE RECIPE: Creating a Bubble Level
	Summary

	Recipes
	Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X
	Y
	Z

