
!

DZone, Inc. | www.dzone.com

By Andy Harris

HTML BASICS

C
o

re
 H

TM
L

w
w

w
.d

zo
ne

.c
o

m

G

et
 M

o
re

 R
ef

ca
rd

z!
 V

is
it

 r
ef

ca
rd

z.
co

m

#64

Core HTML

HTML and XHTML are the foundation of all web development.
HTML is used as the graphical user interface in client-side
programs written in JavaScript. Server-side languages like PHP
and Java also receive data from web pages and use HTML
as the output mechanism. The emerging Ajax technologies
likewise use HTML and XHTML as their visual engine. HTML
was once a very loosely-defined language with very little
standardization, but as it has become more important, the
need for standards has become more apparent. Regardless of
whether you choose to write HTML or XHTML, understanding
the current standards will help you provide a solid foundation
that will simplify all your other web coding. Fortunately HTML
and XHTML are actually simpler than they used to be, because
much of the functionality has moved to CSS.

Common Elements
Every page (HTML or XHTML shares certain elements in
common.) All are essentially plain text files, with the .html
extension. HTML files should not be created with a word
processor, but in some type of editor that creates plain text.
Every page has a large container (HTML or XHTML) and
two major subcontainers, the head and the body. The head
area contains information useful behind the scenes, such as
CSS formatting instructions and JavaScript code. The body
contains the part of the page that is visible to the user.

Tags and Attributes
An HTML document is based on the notion of tags. A tag is a
piece of text inside angle brackets (<>). Tags typically have a
beginning and an end, and usually contain some sort of text
inside them. For example, a paragraph is normally denoted like
this:

<p>
 This is my paragraph.
</p>

The <p> indicates the beginning of a paragraph. Text is then
placed inside the tag, and the end of the paragraph is denoted
by an end tag, which is similar to the start tag but with a slash
(</p>.) It is common to indent content in a multi-line tag, but it
is also legal to place tags on the same line:

<p>This is my paragraph.</p>

Tags are sometimes enhanced by attributes, which are name
value pairs that modify the tag. For example, the tag
(used to embed an image into a page) usually includes the
following attributes:

<img src = “myPic.jpg”
 Alt = “this is my picture” />

CONTENTS INCLUDE:
!" HTML Basics
!" HTML vs XHTML
!" Validation
!" Useful Open Source Tools
!" Page Structure Elements
!" Key Structural Elements and more...

The src attribute describes where the image file can be found,
and the alt attribute describes alternate text that is displayed if
the image is unavailable.

Nested tags
Tags can be (and frequently are) nested inside each other. Tags
cannot overlap, so <a> is not legal, but <a></
b> is fine.

HTML VS XHTML

HTML has been around for some time. While it has done its
job admirably, that job has expanded far more than anybody
expected. Early HTML had very limited layout support.
Browser manufacturers added many competing standards and
web developers came up with clever workarounds, but the
result is a lack of standards and frustration for web developers.
The latest web standards (XHTML and the emerging HTML 5.0
standard) go back to the original purpose of HTML: to describe
the structure of the data only, and leave all formatting to CSS
(Please see the DZone CSS Refcard Series). XHTML is nothing
more than HTML code conforming to the stricter standards
of XML. The same style guidelines are appropriate whether
you write in HTML or XHTML (but they tend to be enforced in
XHTML):

 done with an ending tag, but a special case allows for
 non-content tags.

Most of the requirements of XHTML turn out to be good
practice whether you write HTML or XHTML. I recommend

! Authoritative content
! Designed for developers
! Written by top experts
! Latest tools & technologies
! Hot tips & examples
! Bonus content online
! New issue every 1-2 weeks

Subscribe Now for FREE!
Refcardz.com

Get More Refcardz
(They’re free!)

http://www.refcardz.com
http://www.refcardz.com
http://www.dzone.com
http://www.dzone.com
http://www.refcardz.com
http://www.refcardz.com
http://www.refcardz.com
http://www.refcardz.com

DZone, Inc. | www.dzone.com

2
Core HTML

using XHTML strict so you can validate your code and know it
follows the strictest standards.

XHTML has a number of flavors. The strict type is
recommended, as it is the most up-to-date standard which
will produce the most predictable results. You can also use
a transitional type (which allows deprecated HTML tags) and
a frameset type, which allows you to add frames. For most
applications, the strict type is preferred.

HTML Template
The following code can be copied and pasted to form the
foundation of a basic web page:

<html>
<head>
 <title></title>
</head>

<body>

</body>
</html>

XHTML Template
The XHTML template is a bit more complex, so it’s common to
keep a copy on your desktop for quick copy – and paste work,
or to define it as a starting template in your editor.

<!DOCTYPE html PUBLIC “-//W3C//DTD XHTML 1.0 Strict//EN”
“http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd”>
<html lang=”EN” dir=”ltr” xmlns=”http://www.w3.org/1999/xhtml”>
<head>
 <meta http-equiv=”content-type” content=”text/xml;
 charset=utf-8” />
 <title></title>
</head>

<body>

</body>
</html>

VALIDATION

The structure of your web pages is critical to the success of
programs based on those pages, so use a validating tool to
ensure you haven’t missed anything.

Validating Tool Description

WC3 The most commonly used validator is online at http://validator.w3.org This
free tool checks your page against the doctype you specify and ensures
you are following the standards. This acts as a ‘spell-checker’ for your code
and warns you if you made an error like forgetting to close a tag.

HTML Tidy There’s an outstanding free tool called HTML tidy which not only checks
your pages for validity, but also fixes most errors automatically. Download
this tool at http://tidy.sourceforge.net/ or (better) use the HTML validator
extension to build tidy into your browser.

HTML Validator
extension

The extension mechanism of Firefox makes it a critical tool for web
developers. The HTML Validator extension is an invaluable tool. It
automatically checks any page you view in your browser against both the
w3 validation engine and tidy. It can instantly find errors, and repair them
on the spot with tidy. With this free extension available at
http://users.skynet.be/mgueury/mozilla/, there’s no good reason not to
validate your code.

Some of the best tools for web development are available
through the open source community at no cost at all. Consider
these application as part of your HTML toolkit:

Open Source Tool Description

Aptana http://www.aptana.com/ This free programmer’s editor (based on Eclipse)
is a full-blown IDE customized for HTML / XHTML, CSS, JavaScript, and
Ajax. It offers code completion, syntax highlighting, and FTP support
within the editor.

USEFUL OPEN SOURCE TOOLS

Web Developer
Toolbar

https://www.addons.mozilla.org/en-US/firefox/addon/60 This Firefox
extension adds numerous debugging and web development tools to
your browser.

Firebug https:addons.mozilla.org/en-US/firefox/addon/1843 is an add-on that
adds full debugging capabilities to the browser. The firebug lite version
even works with IE.

PAGE STRUCTURE ELEMENTS

The following elements are part of every web page.

Element Description

<html></html> Surrounds the entire page

<head></head> Contains header information (metadata, CSS styles, JavaScript
code)

<title></title> Holds the page title normally displayed in the title bar and used
in search results

<body></body> Contains the main body text. All parts of the page normally visible
are in the body

KEY STRUCTURAL ELEMENTS

Most pages contain the following key structual elements:

Element Name Description

<h1></h1> Heading 1 Reserved fo strongest emphasis

<h2></h2> Heading 2 Secondary level heading. Headings go down to level 6,
but <h1> through <h3> are most common

<p></p> Paragraph Most of the body of a page should be enclosed in
paragraphs

<div></div> Division Similar to a paragraph, but normally marks a section of
a page. Divs usually contain paragraphs

LISTS AND DATA

Web pages frequently incorporate structured data so HTML
includes several useful list and table tags:

Element Name Description

 Unordered
list

Normally these lists feature bullets (but that can be
changed with CSS)

 Ordered
list

These usually are numbered, but this can be changed
with CSS

 List item Used to describe a list item in an unordered list or an
ordered list

<dl></dl> Definition
list

Used for lists with name-value pairs

<dt></dt> Definition
term

The name in a name-value pair. Used in definition lists

<dd></dd> Definition
description

The value (or definition) of a name – value pair

<table></table> Table Defines beginning and end of a table

<tr></tr> Table row Defines a table row. A table normally consists of several
<tr> pairs (one per row)

<td></td> Table data Indicates data in a table cell. <td> tags occur within
<tr> (which occur within <table>)

<th></th> Table
heading

Indicates a table cell to be treated as a heading with
special formatting

Visit http://www.aharrisbooks.net/dzone/listTable.html for an
example. Use view source to see the XHTML code.

Standard List Types
HTML supports three primary list types. Ordered lists and
unordered lists are the primary list types. By default, ordered
lists use numeric identifiers, and unordered lists use bullets.

http://www.refcardz.com
http://www.dzone.com

DZone, Inc. | www.dzone.com

3
Core HTML

LINKS AND IMAGES

Links and images are both used to incorporate external
resources into a page. Both are reliant on URIs (Universal
Resource Indicators), commonly referred to as URLs or
addresses.

<a> (anchor)
The anchor tag is used to provide the basic web link:

link to Google

In this example, http://www.google.com is the site to be visited.
The text “link to Google” will be highlighted as a link.

absolute and relative references
Links can be absolute references containing an entire url
including the http: protocol indicator.
http://www.aharrisbooks.net goes directly to my site from any
page on the internet.

A relative reference leaves out the http:// business. The
browser assumes the same directory on the same server as
the referring page. If this link: XHTML for
Dummies is on my main site, it will take you to
http://www.aharrisbooks.net/xfd.

<link>
The link tag is used primarily to pull in external CSS files:

<link rel = “stylesheet”
 type = “text/css”
 href = “mySheet.css” />

The img tag is used in to attach an image. Valid formats are
.jpg, .png, and .gif. An image should always be accompanied
by an alt attribute describing the contents of the image.

<img src = http://www.cs.iupui.edu/~aharris/face.gif
 alt = “me before shaving” />

Image formatting attributes (height, width, and align) are
deprecated in favor of CSS.

SPECIALTY MARKUP

HTML / XHTML includes several specialty tags. These are used
to describe special purpose text. They have default styling, but
of course the styles can be modified with CSS.

<quote>
The quote tag is intended to display a single line quote:

<quote>Now is the time for all good men to come to the aid of
their country</quote>

Quote is an inline tag. If you need a block level quote, use
<blockquote>.

<pre>
The <pre> tag is used for pre-formatted text. It is sometimes
used for code listings or ASCII art because it preserves carriage
returns. Pre-formatted text is usually displayed in a fixed-width
font.

<pre>
for i in range(10):
 print i
</pre>

However, you can use the list-style-type CSS attribute to
change the list marker to one of several types.

 uno
 dos
 tres

Lists can be nested inside each other

 English

 One
 Two
 Three

 Spanish

 uno
 dos
 tres

Definition lists
The special definition list is used for name / value pairs. The
definition term (dt) is a word or phrase that is used as the list
marker, and the definition data is normally a paragraph:

<h2>Types of list</h2>
<dl>
 <dt>Unordered list</dt>
 <dd>Normally used for bulleted lists, where the order of data is
not important. </dd>

 <dt>Ordered lists</dt>
 <dd>Normally use numbered items, for example a list of
!"#$%&'$!("#)*+,%,)$+,)(%-,%)!#)#!."!/'0"$123--4

))2-$45,/"!$!(")6!#$23-$4
))2--47#,-)$()-,#'%!8,)0)$,%9)0"-)-,/"!$!("1):;$,")0).((-)
alternative to a two-column table</dd>
</dl>

Use of tables
Tables were used in the past to overcome the page-layout
shortcomings of HTML. That use is now deprecated in favor of
CSS-based layout. Use tables only as they were intended – to
display tabular data.

A table mainly consists of a series of table rows (tr.) Each table
row consists of a number of table data (tr) elements. The
table heading (th) element can be used to indicate a table cell
should be marked as a heading.

The rowspan and colspan attributes can be used to make a cell
span more than one row or column.

Each row of a table should have the same number of columns,
and each column should have the same number of rows. Use
of the span attribute may require adjustment to other rows or
columns.

<table border = “1”>
 <tr>
 <th> </th>
 <th>English</th>
 <th>Spanish</th>
 </tr>

 <tr>
 <th>1</th>
 <td>One</td>
 <td>Uno</td>
 </tr>

 <tr>
 <th>2</th>
 <td>Two</td>
 <td>Dos</td>
 </tr>
</table>

http://www.refcardz.com
http://www.dzone.com

DZone, Inc. | www.dzone.com

4
Core HTML

Legend
You can add a legend inside a fieldset. This describes the
purpose of the fieldset.

Label
A label is a special inline element that describes a particular
field. A label can be paired with an input element by putting
that element’s ID in the label’s for attribute.

Input
The input element is a general purpose inline element. It is
meant to be used inside a form, and it is the basis for several
types of more specific input. The subtype is indicated by the
type attribute. Input elements usually include an id attribute
(used for CSS and JavaScript identification) and / or a name
attribute (used in server-side programming.) The same element
can have both a name and an id.

Text
This element allows a single line of text input:

<input type = “text”
 id = “myText”
 name = “myText” />

Password
Passwords display just like textboxes, except rather than
showing the text as it is typed, an asterisk appears for each
letter. Note that the data is not encoded in any meaningful way.
Typing text into a password field is still entirely unsecure.

<input type = “password”
 id = “myPWD” />

Radio Button
Radio buttons are used in a group. Only one element of a radio
group can be selected at a time. Give all members of a radio
group the same name value to indicate they are part of a group.

<input type = “radio”
 name = “radSize”
 value = “small”
 id = “radSmall”
 selected = “selected” />
<label for = “radSmall”>Small</label>
<input type = “radio”
 name = “radSize”
 value = “large”
 id = “radLarge” />
<label for = “radLarge”>Large</label>

Attaching a label to a radio button means the user can activate
the button by clicking on the corresponding label. For best
results, use the selected attribute to force one radio button to
be the default.

Checkbox
Checkboxes are much like radio buttons, but they are

independent. Like radio buttons, they can be associated with a
label.

<input type = “checkbox”
 id = “chkFries” />
<label for = “chkFries”>Would you like fries with that?</label>

Hidden
Hidden fields hold data that is not visible to the user (although
it is still visible in the code) It is primarily used to preserve state
in server-side programs.

<input type = “hidden”
 name = “txtHidden”
 value = “recipe for secret sauce” />

<code>
The code format is used to manage pre-formatted text,
especially code listings. It is very similar to pre.

<code>
while i < 10:
 i += 1
 print i
</code>

<blockquote>
This tag is used to mark multi-line quotes. Frequently it is set
off with special fonts and indentation through CSS. It is (not
surprisingly) a block-level tag.

<blockquote>
 Quoth the raven:
 Nevermore
</blockquote>

The span tag is a vanilla inline tag. It has no particular
formatting of its own. It is intended to be used with a class or
ID when you want to apply style to an inline chunk of code.

This text will be highlighted.

The em tag is used for standard emphasis. By default,
italicizes text, but you can use CSS to make any other type of
emphasis you wish.

This tag represents strong emphasis. By default, it is bold, but you
can modify the formatting with CSS.

FORMS

Forms are the standard user input mechanism in HTML /
XHTML. You will need another language like JavaScript or PHP
to read the contents of the form elements and act upon them.

Form Structure
A number of tags are used to describe the structure of the
form. Begin by looking over a basic form:

<form action = “”>
))2/,6-#,$4
 <legend>My form</legend>
 <label for = “txtName”>Name</label>
 <input type = “text”
 id = “txtName” />
 <button type = “button”
 Onclick = “doSomething()”>
 Do something
 </button>
))23/,6-#,$4
</form>

Form
The <form></form> pair describes the form. In XHTML strict,
you must indicate the form’s action property. This is typically
the server-side program that will read the form. If there is no
such program, you can set the action to null (“”) The method
attribute is used to determine whether the data is sent through
the get or post mechanism.

Fieldset
Most form elements are inline tags, and must be encased
in a block element. The fieldset is designed exactly for this
purpose. Its default appearance draws a box around the form.
You can have multiple fieldsets inside a single form.

http://www.refcardz.com
http://www.dzone.com

DZone, Inc. | www.dzone.com

5
Core HTML

size. Numerous CSS attributes replace this capability with much
more flexible alternatives. See the CSS refcard for details.

I (italics)
HTML code should indicate the level of emphasis rather
than the particular stylistic implications. Italicizing should
be done through CSS. The tag represents emphasized
text. It produces italic output unless the style is changed to
something else. The <i> tag is no longer necessary and is not
recommended. Add font-style: italic to the style of any element
that should be italicized.

B (bold)
Like italics, boldfacing is considered a style consideration. Use
the tag to denote any text that should be strongly
emphasized. By default, this will result in boldfacing the
enclosed text. You can add bold emphasis to any style with the
font-weight: bold attribute in CSS.

DEPRECATED TECHNIQUES

In addition to the deprecated tags, there are also techniques
which were once common in HTML that are no longer
recommended.

Frames
Frames have been used as a layout mechanism and as a
technique for keeping one part of the page static while
dynamically loading other parts of the page in separate frames.
Use of frames has proven to cause major usability problems.
Layout is better handled through CSS techniques, and dynamic
page generation is frequently performed through server-side
manipulation or AJAX.

Table-based design
Before CSS became widespread, HTML did not have adequate
page formatting support. Clever designers used tables to
provide an adequate form of page layout. CSS provides a
much more flexible and powerful form of layout than tables,
and keeps the HTML code largely separated from the styling
markup.

HTML ENTITIES

Sometimes you need to display a special character in a web
page. HTML has a set of special characters for exactly this
purpose. Each of these entities begins with the ampersand(&)
followed by a code and a semicolon.

Character Name Code Note

Non-breaking space Adds white space

< Less than < Used to display HTML code or
mathematics

> Greater than > Used to display HTML code or
mathematics

& Ampersand & If you’re not displaying an entity but really
want the & symbol

© Copyright © Copyright symbol

® Registered trademark ® Registered trademark

Numerous other HTML entities are available and can be found
in online resources like w3schools.

Note that the data is still not protected in any meaningful way.

Button
Buttons are used to signal user input. Buttons can be created
through the input tag:

<input type = “button”
 value = “launch the missiles”
 onclick = “launchMissiles()” />

This will create a button with the caption “launch the missiles.”
When the button is clicked, the page will attempt to run a
JavaScript function called “launchMissiles()” Standard
buttons are usually used with JavaScript code on the client.
The same button can also be created with this alternate format:

<button type = “button”
 Onclick = “launchMissiles()”>
 Launch the missiles
</button>

This second form is preferred because buttons often require
different CSS styles than other input elements. This second
form also allows an tag to be placed inside the button,
making the image act as the button.

Reset
The reset button automatically resets all elements in its form to
their default values. It doesn’t require any other attributes.

<input type = “reset” />
<button type = “reset”>
 Reset
</button>

Select / option
Drop-down lists can be created through the select / option
mechanism. The select tag creates the overall structure, which
is populated by option elements.

<select id = “selColor”>
 <option value = “#000000”>black</option>
 <option value = “#FF0000”>red</option>
 <option value = “#FFFFFF”>white</option>
</select>

The select has an id (for client-side code) or name (for server-
side code) identifier. It contains a number of options. Each
option has a value which will be returned to the program. The
text between <option> and </option> is the value displayed to
the user. In some cases (as in this example) the value displayed
to the user is not the same as the value used by programs.

Multiple Selections
You can also create a multi-line selection with the select and
option tags:

<select id = “selColor”
 size = “3”
 multiple = “multiple”>
 <option value = “#000000”>black</option>
 <option value = “#FF0000”>red</option>
 <option value = “#FFFFFF”>white</option>
</select>

DEPRECATED FORMATTING TAGS

Certain tags common in older forms of HTML are no longer
recommended as CSS provides much better alternatives.

Font
The font tag was used to set font color, family (typeface) and

http://www.refcardz.com
http://www.dzone.com

!

Design Patterns

By Jason McDonald

CONTENTS INCLUDE:

!" Chain of Responsibility

!" Command

!" Interpreter

!" Iterator

!" Mediator

!" Observer

!" Template Method and more...

DZone, Inc. | www.dzone.com

Pa
tt

er
ns

 w

w
w

.d
zo

ne
.c

om

 G
et

 M
or

e
R

ef
ca

rz
!

Vi
si

t
re

fc
ar

dz
.c

om

#8

Brought to you by...

Inspired

by the

GoF

Bestseller

This Design Patterns refcard provides a quick reference to the

original 23 Gang of Four (GoF) design patterns, as listed in

the book Design Patterns: Elements of Reusable Object-

Oriented Software. Each pattern includes class diagrams,

explanation, usage information, and a real world example.

Chain of Responsibility,
 continued

Object Scope: Deals with object relationships that can

be changed at runtime.

Class Scope: Deals with class relationships that can be

changed at compile time.

C Abstract Factory

S Adapter

S Bridge

C Builder

B Chain of

Responsibility

B Command

S Composite

S Decorator

S Facade

C Factory Method

S Flyweight

B Interpreter

B Iterator

B Mediator

B Memento

C Prototype

S Proxy

B Observer

C Singleton

B State

B Strategy

B Template Method

B Visito
r

ABOUT DESIGN PATTERNS

Creational Patterns: Used to construct objects such

that they can be decoupled from their im
plementing

system.

Structural Patterns: Used to form large object

structures between many disparate objects.

Behavioral Patterns: Used to manage algorithms,

relationships, and responsibilitie
s between objects.

CHAIN OF RESPONSIBILITY

 O
bject Behavioral

COMMAND

 O

bject Behavioral

successor

Client

<<interface>>

Handler

+handlerequest()

ConcreteHandler 1

+handlerequest()

ConcreteHandler 2

+handlerequest()

Gives more than one object an opportunity to handle a request by linking

Use

When

!
"Multiple objects may handle a request and the handler doesn’t have to

 be a specific object.

!
"A set of objects should be able to handle a request with the handler

 determined at runtime.

!
"A request not being handled is an acceptable potential outcome.

Example
Exception handling in some languages implements this pattern. When an

exception is thrown in a method the runtime checks to see if th
e method

has a mechanism to handle the exception or if it
 should be passed up the

call stack. When passed up the call stack the process repeats until code to

handle the exception is encountered or until th
ere are no more parent

objects to hand the request to.

Receiver

Invoker

Command

+execute()

Client
ConcreteCommand

+execute()

Purpose
Encapsulates a request allowing it to

 be treated as an object. This allows

the request to be handled in traditionally object based relationships such

as queuing and callbacks.

Use

When

!
"You need callback functionality.

!
"Requests need to be handled at variant tim

es or in variant orders.

!
"A history of requests is needed.

!
"The invoker should be decoupled from the object handling the invocation.

Example
Job queues are widely used to facilitate the asynchronous processing

of algorithms. By utilizing the command pattern the functionality to be

executed can be given to a job queue for processing without any need

for the queue to have knowledge of the actual implementation it is

invoking. The command object that is enqueued implements its particular

algorithm within the confines of the interface the queue is expecting.

Upcoming Titles
Adobe ColdFusion
Selenium
Virtualization
ASP.NET MVC Framework
Oracle Berkeley DB
Java Performance Tuning
Eclipse Plug-In Development

Most Popular
Spring Configuration
jQuery Selectors
Windows Powershell
Dependency Injection with EJB 3
Netbeans IDE JavaEditor
Getting Started with Eclipse
Very First Steps in Flex

“Exactly what busy developers need:
simple, short, and to the point.”

James Ward, Adobe Systems

Download Now

Refcardz.com

Professional Cheat Sheets You Can Trust

DZone, Inc.
140 Preston Executive Dr.
Suite 100
Cary, NC 27513

888.678.0399
919.678.0300

Refcardz Feedback Welcome
refcardz@dzone.com

Sponsorship Opportunities
sales@dzone.com

Copyright © 2009 DZone, Inc. All rights reserved. No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form or by means electronic, mechanical,
photocopying, or otherwise, without prior written permission of the publisher. Reference:

Version 1.0

$7
.9

5

DZone communities deliver over 6 million pages each month to

more than 3.3 million software developers, architects and decision

makers. DZone offers something for everyone, including news,

tutorials, cheatsheets, blogs, feature articles, source code and more.

“DZone is a developer’s dream,” says PC Magazine.

6
Core HTML

RECOMMENDED BOOKABOUT THE AUTHOR

HTML 5 / CSS 3 PREVIEW

New technologies are on the horizon. Firefox 3.5 now has
support for significant new HTML 5 features, and CSS 3 is
not far behind. While the following should still be considered
experimental, they are likely to become very important tools in
the next few years. Firefox 3.5, Safari 4 (and a few other recent
browsers) support the following new features:

Audio and video tags
Finally the browsers have direct support for audio and video
without plugin technology. These tags work much like the img tag.

<video src = “myVideo.ogg” autoplay>
 Your browser does not support the video tag.
</video>
<audio src = “myAudio.ogg” controls>
 Your browsers does not support the audio tag
</audio>

The HTML 5 standard currently supports Ogg Theora video,
Ogg Vorbis audio, and wav audio. The Ogg formats are open-
source alternatives to proprietary formats, and plenty of free

tools convert from more standard video formats to Ogg. The
autoplay option causes the element to play automatically. The
controls element places controls directly into the page.

The code between the beginning and ending tag will execute
if the browser cannot process the audio or video tag. You can
place alternate code here for embedding alternate versions
(Flash, for example)

The Canvas tag
The canvas tag offers a region of the page that can be drawn
upon (usually with Javascript.) This creates the possibility of
real interactive graphics without requiring plugins like Flash.

Font Face
This is actually a CSS improvement, but it’s much needed. It
allows you to define a font-face in CSS and include a ttf font
file from the server. You can then use this font face in your
ordinary CSS and use the downloaded font. If this becomes a
standard, we will finally have access to reliable downloadable
fonts on the web, which will usher in web typography at long
last.

You don’t need expensive or complicated
software or a super-powerful computer
to build a Web site that does all sorts of
amazing things. All you need is a text editor
and the clear, step-by-step guidance you’ll
find in HTML, XHTML, and CSS All-In-One
Desk Reference For Dummies.

Andy Harris
I am a lecturer in computer science at Indiana University / Purdue
University - Indianapolis. I’ve been interested in computing since
the early eighties, when my brother and I took the money we
were saving for a car and blew it on a TRS-80 model 1 with the
built-in Japanese character set. My favorite part about writing
is hearing from readers. It’s great when somebody sends me a
link to a game or project they’ve written using one of my books.
I’d love to get a line from you about one of my books, what

you’d like to see me work on next, or just to say hi. I hope my writing feels like a
conversation, and I’m looking forward to hearing from your side of the talk.

Andy’s Website: http://www.aharrisbooks.net

BUY NOW
books.dzone.com/books/html-xhtml-css-dummies

ISBN-13: 978-1-934238-80-6
ISBN-10: 1-934238-80-5

9 781934 238806

50795

http://books.dzone.com/books/html-xhtml-css-dummies
http://refcardz.com
http://www.dzone.com
http://www.dzone.com
mailto:refcardz@dzone.com
mailto:sales@dzone.com
http://www.refcardz.com

