

DZone, Inc. | www.dzone.com

 tech facts at your fingertips

CONTENTS INCLUDE:

n	 Configuration
n	 Popular PEAR Packages
n	 Object-Oriented PHP
n	 Regular Expressions
n	 MySQL Integration
n	 Hot Tips and more...

PHP is the world's most popular server-side Web scripting
language, sporting a syntax simple enough to attract novice
programmers yet powerful enough to run some of the world's
most popular websites, among them Yahoo!, Facebook,
GameSpy, and Vimeo.

This reference card was created to help you quickly navigate
some of PHP's most commonplace features, including object-
oriented programming, array and string manipulation, regular
expressions, and MySQL integration.

ABOUT THIS REFCARD

CONFIGURATION

POPULAR PEAR PACKAGES

P
H

P

w

w
w

.d
zo

n
e.

co
m

 G

e
t

M
o

re
 R

e
fc

ar
d

z!
 V

is
it

 r
ef

ca
rd

z.
co

m

n 	Authoritative content
n 	Designed for developers
n 	Written by top experts
n 	Latest tools & technologies
n	 Hot tips & examples
n 	Bonus content online
n 	New issue every 1-2 weeks

Subscribe Now for FREE!
Refcardz.com

Get More Refcardz
(They’re free!)

By W. Jason Gilmore

PHP's behavior can be configured at a variety of levels:

Global Configuration
The php.ini file is PHP's configuration file, containing more
than 200 directives capable of tweaking nearly every aspect of
the language's behavior. This file is parsed every time PHP is
invoked, which for the server module version occurs only when
the web server starts, and every time for the CGI version.

Host- and Directory-specific Configuration
If you lack access to the php.ini file, you may be able to change
desired directives within Apache's httpd.conf or .htaccess files.
For instance, to force the display of all PHP errors for solely your
development domain (for instance http://dev.wjgilmore.com),
add the following to a .htaccess file:

php_flag display_errors on

The PHP Extension Application Repository (PEAR) is the de facto
service for distributing reusable PHP components. Over 500
packages are available for download from http://pear.php.net/,
including these popular solutions:

PEAR Packages Description

Auth Facilitates authentication against IMAP, LDAP, plaintext files,
most modern databases, RADIUS, and other authentication
solutions.

Config Aids in the management of application configuration data

HTML_QuickForm2 Streamlines the creation, processing, and validation of HTML
forms.

HTML_Table Simplifies the generation of dynamic HTML tables

HTTP_Upload Assists in the management of files uploaded through an
HTML form.

Mail Facilitates transmission of e-mail through a website by
supporting multiple mailer backends (including PHP's native
mail() function, Sendmail, and SMTP)

MDB2 A database abstraction layer supporting numerous
databases, including MySQL, PostgreSQL, Oracle, and MS
SQL.

Net_UserAgent_
Detect

Provides information regarding the user's browser and
operating system.

PHPDocumentor Automates the code documentation creation and
management process

PHPUnit Aids in the creation, execution and analysis of application
tests

XML_RPC Supports creation of PHP-driven XML-RPC clients and
servers.

Script-specific Configuration
Occasionally you'll want to tweak directives on a per-script basis.
For instance to change PHP's maximum allowable execution
time for a script tasked with uploading large files, you could call
the ini_set() function from within your PHP script like so:
ini_set('max_execution_time', 60);

Changing the PHP File Extension
PHP's default file extension is .php, however you can change it
to whatever you please by adding the desired extension to the
AddType directive within Apache's httpd.conf file. For instance to
configure Apache to recognize .dzone as a supported PHP file
extension:
AddType application/x-httpd-php .php .dzone

Hot
Tip

Each directive is assigned one of three permis-
sion levels (PHP_INI_ALL, PHP_INI_PER_DIR, PHP_
INI_SYSTEM) which determines where it can be
set. Be sure to consult the PHP documentation

before tweaking settings outside of the php.ini file. See
http://www.php.net/ini for a complete list of directives.

PHP

POPULAR FRAMEWORKS

Web frameworks help the programmer to embrace best practices,
simultaneously decreasing errors and eliminating redundant code.
If you haven't yet settled upon a framework, consider checking out
one or several of the following popular solutions:

#23

 tech facts at your fingertips

PHP

2

DZone, Inc. | www.dzone.com

OBJECT-ORIENTED PHP

Popular Frameworks, continued Object-Oriented PHP, continued

Creating a Class
A class defines the behavior and characteristics of an entity you'd
like to represent in an application. A sample class follows:
class RadioStation {
	 private $_id;
	 private $_name;
	 private $_frequency;
	 private $_band;
	 private $_audioStream;

	 public function setBand($band) {
		 $this->_band = $band;
	 }

	 public function getBand() {
	 return $this->_band;
	 }
	 ...
}

Object Instantiation
To create an instance of a class (known as an object), you call the
class name like you would a function, preceding it with the new
keyword:
$wtvn = new RadioStation();

Class Constructors
Constructors are useful for performing initialization tasks at
class instantiation time, thereby saving you the hassle of calling
additional class methods. Constructors are declared using the
__construct() method, like so:

function __construct($id="") {
	� // If specific station ID is requested, retrieve it

from the database
	 if (isset($id))
					 $this->find($id);
}

Class Destructors
Custom class destructors can perform tasks when the object is
destroyed. You can create a destructor using the __destruct()

method:
function __destruct() {
	� printf("The radio station %s has been destroyed!",

$this->name);
}

Attribute and Method Visibility
PHP supports three levels of attribute and method visibility:

Framework Source

CakePHP http://www.cakephp.org/

CodeIgniter http://www.codeigniter.com/

eZ Components http://ez.no/ezcomponents

Prado http://www.pradosoft.com/

symfony http://www.symfony-project.org/

Zend Framework http://framework.zend.com/

Class Constants
Class constants are defined with the const keyword, and can
be referenced through the scope resolution operator (::). For
instance, to define a constant identifying the RadioStation class'
minimum supported PHP version:

const MIN_PHP_VER = '5.3';

You can then reference it outside the class like so:

echo RadioStation::MIN_PHP_VER;

Extending Classes
Class hierarchies can be created using the extends keyword. For
instance, an application tasked with cataloging all major media
outlets might first define a MediaOutlet class which defines
some broad characteristics, and then child classes such as
RadioStation and TVStation would inherit from it:

class MediaOutlet {
	 protected $owner;
	 protected $residentCountry;

	 public function setOwner($owner) {
		 ...
	 }
}
class RadioStation extends MediaOutlet {
	 ...
}

If you wanted to prevent child classes (in this case,
RadioStation) from overriding a parent method, prefix it with
the final keyword. For instance:

final public function setOwner($owner) {
	 ...
}

Class Abstraction
The aforementioned MediaOutlet class would be more
accurately defined as an abstract class, because it would never
be explicitly instantiated (instead, one would instantiate derived
classes such as RadioStation, TVStation, Newspaper, etc.).
Abstract classes are declared using the abstract keyword:

abstract class MediaOutlet {
	 ...

}

You can choose to override any methods found within an
abstract class, which would then be inherited by its child classes,
or alternatively you can declare them as abstract, requiring these
methods be defined by any child.

Creating Interfaces
An interface helps developers rigorously enforce application
specifications, and is similar to an abstract class, but contains
solely the required method signatures. Any class implementing
the interface must also implement all defined interface methods.

Interfaces are defined using the interface keyword and their
names are typically prefixed with a capital I:
interface IRadioStation {
	 public function setBand($band);
	 public function getBand();
}

class RadioStation implements IRadioStation {
	 ...
}

Attribute and
Method Visibility

Description

Public Public attributes and methods can be accessed anywhere

Private Private attributes and methods are only accessible within
the class that defines them

Protected Protected attributes and methods are available to the class
and its subclasses.

 tech facts at your fingertips

PHP

3

DZone, Inc. | www.dzone.com

WORKING WITH ARRAYS

The array is one of programming's most powerful data structures,
capable of managing a seemingly endless variety of data.

Creating an Array
The following two examples all create an array named $stations
consisting of three elements:

$stations = array (

 "WTVN",

 "WBNS",

 "WYTS");

$stations = array();

$count = array_push($stations, "WTVN", "WBNS", "WYTS");

You can create an array consisting of a character- or numerically-
based range using the range() function:
// $teenListenerDemographic =
// array(13,14,15,16,17,18,19)
$teenListenerDemographic = range(13,19);

Retrieving Array Contents
Indexed arrays such as those created so far can be accessed
according to their numerical offset (beginning with a zero-
based offset). For instance to retrieve the second value in the
$stations array:

$callSignal = $stations[1];

Perhaps the most flexible way to enumerate array contents is
through the foreach statement:
foreach($stations AS $station)
	 printf("%s
", $station);

Associative Arrays
Associative arrays give developers the opportunity to assign
meaningful context to both the array value and its corresponding
key:

$stations = array(
	 "WTVN" => "610",
	 "WBNS" => "1460",
	 "WYTS" => "1230 "
);

You can then obtain a value (in this case the station/band) by
referencing its call signal:

// $channel = "610"
$channel = $stations["WTVN"];

The foreach statement proves equally useful for navigating
associative arrays:

foreach($stations AS $key => value)
	 printf("%s => %s
", $key, $value);

Multidimensional Arrays
Multidimensional arrays are useful for representing more
complex data structures:

$stations = array(
	 "AM" =>
	 array("WTVN" => "610",
		 "WBNS" => "1460",
		 "WYTS" => "1230"),
	 "FM" =>
	 array("WLVQ" => "96.3",
		 "WNCI" => "97.9")
);

Multidimensional Arrays, continued

Referencing an element isn't unlike the methods used for
indexed and associative arrays; it's just a tad more verbose:

$channel = $stations["FM"]["WTVN"];

Determining Array Size
The number of elements found in an array can be determined
using the count() function:

// Outputs "3 stations are being tracked"
printf("%d stations are being tracked",
count($stations));

Sorting Arrays
PHP offers a powerful assortment of functions (more than 70)
capable of sorting arrays in a variety of ways. Most of these
functions accept an optional parameter which can change the
sorting behavior. Four values are supported, including SORT_
REGULAR for comparing elements without implicit typecasting,
SORT_NUMERIC for comparing elements numerically, SORT_STRING
for comparing elements as strings, and SORT_LOCALE_STRING, for
sorting elements according to the defined locale.

Description Function

Sort an array while maintaining the
key association

bool asort(array &$array [, int $sort_flags])

Reverse sort an associative array
while maintaining key association

bool arsort(array &$array [, int $sort_flags])

Sort an associative array by key,
maintaining index association

bool ksort(array &$array [, int $sort_flags])

Reverse sort an associative array by
key, maintaining index association

bool krsort(array &$array [, int $sort_flags])

Sort an array case-insensitively in an
order logically presumed by humans

bool natcasesort($array &array)

Sort an array in an order logically
presumed by humans

bool natsort(array &$array)

Sort an array in reverse order bool rsort(array &$array [, int $sort_flags])

Sort an array according to the
specifications of a user-defined
function

bool usort(array &$array, callback
$comparison_function)

Sort an array according to the
specifications of a user-defined
function, maintaining index
association

bool uasort(array &$array, callback
$comparison_function)

Key sort an array according to the
specifications of a user-defined
function

bool uksort(array &$array, callback
$comparison_function)

Consult the PHP manual for a complete listing: http://www.php.
net/array.

PHP supports over 100 functions identified as specific to string
parsing and manipulation. Following are the most commonly
used tasks.

STRING PARSING

Description Function

Converting an array
to a string

$stations = array("WTVN","WBNS","WYTS");
$stations = implode(",", $stations)
// $stations = "WTVN,WBNS,WYTS"

Converting a string
to an array

$stations = "WTVN,WBNS,WYTS";
$stations = explode(",", $stations);
// $stations[0]="WTVN", $stations[1]="WBNS",
$stations[2]="WYTS"

Counting words in
a string

$sentence = "Columbus is home to numerous
radio stations";
$words = str_word_count($sentence);
// $words = 7
See also: count_chars()

 tech facts at your fingertips

PHP

4

DZone, Inc. | www.dzone.com

PHP's regular expression features borrow heavily from both the
Perl and POSIX formats, and in fact are formally identified as
such.

Perl-compatible (PCRE) Regular Expression Functions

PHP supports eight PCRE-specific functions, including these
commonly used solutions:

REGULAR EXPRESSIONS

Description Function

Converting
a string to
uppercase

$callsign = strtoupper("wtvn");

// $callsign = "WTVN"

See also: lcwords(), strtolower(), ucfirst(),
ucwords()

Strip HTML and PHP
tags from a string

$input = "You won the <a href="http://www.
example.com">lottery!."
$clean = strip_tags($input);
// $clean = "You won the lottery!"

See also: htmlentities(), htmlspecialchars()

Replace all
occurrences of a
substring

$phrase = "Big rockers listen to rock radio";
$phrase = str_replace("rock", "talk", $phrase);
// $phrase = "Big talkers listen to talk radio"

See also: substr_replace(), strireplace(),
strtr()

Return part of a string
as specified by an
offset

$description = "WFAN: Sports Radio 66";
$callsign = substr($description, 0, 4);

See also: strrchr()

Compare two strings
case-insensitively

if (strcasecmp("WTVN", "wtvn") == 0)
	 echo "The strings are equal in a case-
insensitive context."

See also: strncasecmp()

Convert newline
characters to the
HTML
 tag

$stations = "WTVN: 610\nWLW: 700\nWYTS: 1230";
$html = nl2br($stations);
// $html = "WTVN: 610
WLW: 700
WYTS:
1230"

See also: htmlentities(), htmlspecialchars()

Function Description

array preg_grep(str
$pattern, array $subject
[, int $flags])

Searches $subject for $pattern, returning an array of
matches. The optional $flags parameter can be set to
PREG_GREP_INVERT, causing an array consisting of
unmatched elements to be returned.

int preg_match(str
$pattern, str $subject [,
array &$matches [, int
$flags [, int $offset]]])

Determines whether $pattern exists in $subject. If
$matches is defined, a similarly named variable will
be returned containing the matches. If $flags is set to
PREG_OFFSET_CAPTURE, the string offset value will
also be returned for each match. See preg_match_all()
for a variation of this function.

mixed preg_
replace(mixed $pattern,
mixed $replacement,
mixed $subject [, int
$limit [, int &$count]])

Searches $subject for $pattern, replacing any
instances with $replacement. See preg_replace_
callback() for a variation of this function.

Common PCRE Pattern Modifiers

POSIX Regular Expression Functions
PHP supports seven functions as defined by the POSIX 1003.2
specification, including these commonly used solutions:

int ereg(str $pattern, str $string
[, array &$regs])

Search $string for a $pattern. You can optionally
include the $regs parameter, which will cause
an array of the same name to be returned
containing each match. See eregi() for case-
insensitive counterpart.

string ereg_replace(str
$pattern, str $replacement, str
$string)

Replace any patterns found in string with
replacement. See eregi_replace() for case-
insensitive counterpart.

array split(str $pattern, str
$string [, int $limit])

Split $string into an array, dividing it according
to $pattern. See spliti() for case-insensitive
counterpart.

Modifier Description

g Perform a global search

i Perform a case-insensitive search

m Treat the string as multiple lines (

s Ignore newline characters

x Ignore white space and comments

u Stop at the first match (ungreedy search)

Metacharacters

\A Match only beginning of string

\b Match a word boundary

\B Match anything but word boundary

\d Match a digit character

\D Match a non-digit character

\s Match a whitespace character

\S Match a non-whitespace character

[] Enclose a character class

() Enclose a character grouping or define backreference

$ Match end of line

^ Match beginning of line

. Match any character except for newline

\ Quote the next metacharacter

\w Match any string containing underscore and alphanumeric
characters

\W Match a string containing anything but underscore and
alphanumericl characters

[0-9] Any decimal digit from 0 - 9

[a-z] Any character from lowercase a through lowercase z

[A-Z] Any character from uppercase A through uppercase Z

[A-Za-z] Any character from upper case A through lowercase z

p+ Any string containing at least one p

p* Any string containing zero or more p's

p? Any string containing zero or one p

p{N} Any string containing sequence of two p's

p{N,M} Any string containing sequence of between N and M p's

p{2,} Any string containing sequence of at least two p's

p$ Any string with p at the end of it

^p Any string with p at the beginning of it

[^a-zA-Z] Any string not containing characters a-z through A-Z

p.p Any string containing p followed by any character, followed by
another p

POSIX Regular Expression Syntax

String Parsing, continued

Regular Expression Examples

Validating a Phone Number
Presumes the required format is XXX-XXX-XXXX.
// PCRE

if (preg_match('/^[2-9]{1}\d{2}-\d{3}-\d{4}$/', '614-
599-2599'))

	 echo "Valid number!";

// POSIX

if (ereg('^[2-9]{1}[0-9]{2}-[0-9]{3}-[0-9]{4}$', '614-
999-2599'))

	 echo "Valid number!";

 tech facts at your fingertips

PHP

5

DZone, Inc. | www.dzone.com

TELLING TIME WITH PHP

The Date Function
The date() f unction is perhaps one of PHP's most commonly
used functions, capable of retrieving nearly every temporal
attribute of a specific timestamp.

string date(string $format [, $int $timestamp])

a Lowercase Ante meridiem and Post meridiem

A Uppercase Ante meridiem and Post meridiem

B Swatch Internet Time

c ISO 8601 date

e Timezone identifier

g 12-hour hour format without leading zeros

G 24-hour hour format with leading zeros

h 12-hour hour format with leading zeros

H 24-hour hour format with leading zeros

i Minutes with leading zeros

I Specifies whether date is in daylight savings time

O Difference to Greenwich time (GMT) in hours

P Difference to Greenwhich time (GMT) with colon between hours and
minutes

r RFC 2822 date

s Seconds, with leading zeros

T Timezone abbreviation

u Milliseconds

U Seconds since Unix Epoch

z Timezone offset in seconds

d Day of month, two digits with leading zeros

D Three letter textual representation of day

j Day of month without leading zeros

l Textual representation of day

N ISO-8601 numeric representation

S Two character English ordinal suffix for day of month

w Numeric representation of day of week

z Numerical offset of day of year

Day Parameters

July 29, 2008 print date('F j, Y');

7/29/08 print date('m/j/y');

Today is Tuesday, July 29 10:45:21am printf("Today is %s", date('l, F j h:i:sa'));

There are 31 days in July. printf("There are %d days in %s.",
date('t'), date('F'));

Date Function Examples

W ISO-8601 week number of year

Week Parameters

F Full text representation of month

m Numeric representation of month

M Three letter textual representation of month

n Numeric representation of month, without leading zeros

t Number of days in given month

Month Parameters

Year Parameters
L Whether date is a leap year

o ISO-8601 year number

Y Full numeric representation of year

y Two digit representation of year

Telling Time with PHP, continued

Setting the Timezone
You can set the timezone for all scripts by setting the date.
timezone configuration directive within the php.ini file, or on
a per-script basis using the date_default_timezone_set()
function.

Other Useful Functions

Function Description

int mktime([int $hour [, int $min [, int
$sec [, int $month [, int $day [, int $year
[, int $is_dst]]]]]]])

Returns the Unix timestamp for a given
date

int time() Returns current timestamp

string setlocale(int $category, string
$locale)

Sets the script locale

int strtotime(string $time [, int $now]) Converts English textual date/time
description into a Unix timestamp

bool checkdate(int $month, int $day,
int $year)

Validates the date composed by the
$month, $day, and $year arguments.

array getdate([int $timestamp]) Retrieves a timestamp as an associative
array. Associative keys include seconds,
minutes, hours, mday (day of the
month), wday (day of week), mon
(month), year, yday (day of the year),
weekday, month, and 0 (seconds since
UNIX Epoch)

PHP 5.1.0 introduced an object-oriented DateTime class. See
http://www.php.net/DateTime for more information.

Validating a Username
Presumes username is between 6 and 10 alphabetical and
numerical characters.
// PCRE

if (preg_match('/^[a-z0-9]{6,10}$/i', '800gilmore'))

	 echo "Valid username!";

// POSIX

if (eregi('^[a-z0-9]{6,10}$', '800gilmore'))

	 echo "Valid username!";

Turn URLs into hyperlinks
// PCRE
$text = "Go to http://www.wjgilmore.com.";
$html = preg_replace('/\s(\w+:\/\/)(\S+\.?)(\w+)/',
			 ' \\1\\2\\3', $text);
// POSIX
$text = "Go to http://www.wjgilmore.com. ";
$html= ereg_replace('[a-zA-Z]+://(([.]?[a-zA-
Z0-9_/-])*)', '\\0', $string);
// $html = "Go to <a href=" http://www.wjgilmore.
com">http://www.wjgilmore.com."

Output "December 25
falls on a Thursday"

$date = date('l', mktime(0,0,0,12,25,2008));

printf("December 25 falls on a %s", $date);

Output "Next month is
August."

printf("Next month is %s", date('F', strtotime('+1
month')));

Output "Last Friday
fell on July 25, 2008"

$date = date('F d, Y', strtotime('Last Friday'));

printf("Last Friday fell on %s", $date);

Output "Oggi è
martedì"

setlocale(LC_ALL, "it_IT");

printf("Oggi è %s", strftime("%A"));

Retrieve a page's last-
modified date

echo date('l, F j h:i:sa', filemtime($_SERVER["SCRIPT_
NAME"]));

Calculate the
difference between
two dates

$date1 = strtotime("2008-08-14");

$date2 = strtotime("2008-07-11");

$diff = $date2 - $date1;

printf("Difference in days: %s", $diff / 60 / 60 / 24);

Date-related Examples

 tech facts at your fingertips

PHP

6

DZone, Inc. | www.dzone.com

MYSQL INTEGRATION

Although PHP supports several popular databases, MySQL
remains by far the most common database solution. PHP's
MySQL support has evolved considerably in recent years, with
the MySQLi (MySQL Improved) extension being the current
recommended solution. Here are the most commonly used
methods.

Hot
Tip

The PHP 5.3 release includes a new MySQL
driver known as mysqlnd (MySQL Native Driver).
This driver eliminates the need for a previously
required special licensing exception (FLOSS), and

eliminates the need to have MySQL installed on the same ma-
chine as PHP. It has already been integrated with the mysql
and mysqli extensions, with PDO support in the works.

Connecting to MySQL
The mysqli extension provides a number of ways to connect to
MySQL, but the easiest involves just passing the connection data
along when instantiating the mysqli class:
mysqli new mysqli([string host [, string user [, string
pswd
	 [string dbname [int port [string socket]]]]]]);

Here's an example:
$mysqli = new mysqli("localhost", "webuser", "secret",
"corporate");

Handling Connection Errors
In case of connection error you can retrieve both the error
number and error string using the errno() and error()
methods. Example:
if ($mysqli->errno) {
	 printf("Unable to connect: %s", $mysqli->error);
	 exit();
}

Sending a Query to the Database
Once the connection has been established, you can begin
querying the database. Queries are sent using the query()
method:
mixed query(string $query [, int $resultmode])

Setting the optional $resultmode parameter to MYSQLI_USE_
RESULT will cause query() to return the result as an unbuffered
set.

Example:
$result = $mysqli->query("SELECT callsign FROM
stations");

Sending INSERT, UPDATE, and DELETE queries works
identically. For instance, sending an UPDATE query works like
this:
 $result = $mysqli->query("UPDATE stations SET station
= '610' WHERE callsign = 'WTVN'");

Retrieving Data
Data can be parsed from the result set using a number of data
structures, including via associative and indexed arrays, and
objects.

Retrieving data as an associative array:
while ($row = $result->fetch_array(MYSQLI_ASSOC) {
	 printf("%S", $row["callsign"]);
}

Retrieving data as an indexed array:
while ($row = $result->fetch_row() {
	 printf("%S", $row[0]);
}

Retrieving data as an object:
while ($row = $result->fetch_object() {
	 printf("%S", $row->callsign);
}

Determining the Number of Rows Affected and Retrieved
To determine the number of affected rows after sending an
INSERT, UPDATE, or DELETE query, use the affected_rows
property.

Example:
$result = $mysqli->query("UPDATE stations SET station =
'610' WHERE callsign = 'WTVN'");
printf("Rows affected: %d", $result->rows_affected);

To determine how many rows were returned when using a
SELECT query, use the num_rows property:
$result = $mysqli->query("SELECT * FROM stations WHERE
state ='Ohio');

printf("Rows affected: %d", $result->num_rows);

Working with Prepared Statements
Prepared statements both optimize query performance and
decrease the possibility of SQL injection attacks by separating
the query data from the logic, first passing the query to MySQL
for preparation, binding variables to the query columns, and
finally passing the data to MySQL for query execution.

To prepare a query, create the query, and then initialize a
statement object using the stmt_init() method:
$query = "INSERT INTO stations VALUES(?, ?)";

$stmt = $mysqli->stmt_init();

Next the query is prepared by passing it to MySQL using the
prepare() method:
$stmt->prepare($query);

Next, bind the parameters using the bind_param() method:
$stmt->bind_param('ss', "WTVN", "610");

Finally, execute the prepared statement using the execute()
method:
$stmt->execute();

You can also use prepared statements to retrieve results. The
general process used to execute the previous INSERT query is
identical to that required for executing a SELECT query, except
that the bind_param() method is not required, and you bind
results following a call to the execute() method. An example
follows:

$query = �"SELECT callsign, frequency FROM stations
 ORDER BY callsign";

$stmt = $mysqli->stmt_init();
$stmt->prepare($query);
$stmt->execute();
$stmt->bind_result($callsign, $frequency);
while ($stmt->fetch())
	 printf("%s: %s
", $callsign, $frequency);

Transactions
By default the MySQLi extension will render each query
"permanent" upon successful execution, actually changing the
database's contents when INSERT, UPDATE, and DELETE queries
are processed. However the success of some tasks depend upon
the successful execution of several queries, and until all have

7

 tech facts at your fingertips
PHP

DZone, Inc.
1251 NW Maynard
Cary, NC 27513

888.678.0399
919.678.0300

Refcardz Feedback Welcome
refcardz@dzone.com

Sponsorship Opportunities
sales@dzone.com

Copyright © 2008 DZone, Inc. All rights reserved. No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form or by means electronic, mechanical,
photocopying, or otherwise, without prior written permission of the publisher. Reference: Beginning PHP and MySQL, Jason Gilmore, Apress, 2008.

Version 1.0

$7
.9

5

ISBN-13: 978-1-934238-27-1
ISBN-10: 1-934238-27-9

9 781934 238271

5 0 7 9 5

ABOUT THE AUTHOR

Beginning PHP and MySQL is

the definitive book on the PHP

language and MySQL database.

Readers are treated to compre-

hensive introductions of both

technologies, and in addition to

in-depth instruction regarding

using these two technologies in

unison to build dynamic web sites.

RECOMMENDED BOOK

W. Jason Gilmore
Jason Gilmore is founder of W.J. Gilmore, LLC, providing web development,

consulting, and technical writing services to clientele ranging from publicly

traded corporations to small startups. Jason is a prolific contributor to a

number of leading publications such as Developer.com, Linux Magazine,

and TechTarget, with almost 100 articles to his credit. He's cofounder of the

CodeMash conference (http://www.codemash.org/), a non-profit organiza-

tion charged with organizing the annual namesake event.

Publications
n Beginning PHP and MySQL
n Beginning PHP and PostgreSQL 8 with Robert H. Treat
n Beginning PHP and Oracle

Website
http://www.wjgilmore.com

BUY NOW
books.dzone.com/books/phpsql

USEFUL ONLINE RESOURCES

Resource Source

PHP Zone http://php.dzone.com

The PHP Website http://www.php.net

Zend Developer Zone http://devzone.zend.com/

PlanetPHP http://www.planet-php.net/

PHPDeveloper.org http://phpdeveloper.org/

Developer.com http://www.developer.com/

ONLamp PHP Devcenter http://www.onlamp.com/php/

successfully executed, no changes to the database should actually
occur. ATM transactions and online credit card processing are
common examples requiring several queries. Using transactions,
you can change the MySQLi extension's behavior, committing a
series of queries as you see fit.

To begin a transaction, start by disabling the autocommit feature:
$mysqli->autocommit(FALSE);

Execute the various queries as you see fit, and if everything
proceeds as you expect, execute the commit() method:
$mysqli->commit();

Otherwise, if a problem occurs, execute the rollback() method:
$mysqli->rollback();

Transactions, continued

Get More FREE Refcardz. Visit refcardz.com now!

Upcoming Refcardz:

Core Seam

Core CSS: Part III

Hibernate Search

Equinox

EMF

XML

JSP Expression Language

ALM Best Practices

HTML and XHTML

Available:
Essential Ruby
Essential MySQL
JUnit and EasyMock
Getting Started with MyEclipse

Spring Annotations

Core Java

Core CSS: Part II

PHP

Getting Started with JPA

JavaServer Faces

Core CSS: Part I

Struts2

Core .NET

Very First Steps in Flex

C#

Groovy

NetBeans IDE 6.1 Java Editor

RSS and Atom

GlassFish Application Server

Silverlight 2

Visit refcardz.com for a complete listing of available Refcardz.

Design Patterns
Published June 2008

FREE

DZone communities deliver over 4 million pages each month to

more than 1.7 million software developers, architects and decision

makers. DZone offers something for everyone, including news,

tutorials, cheatsheets, blogs, feature articles, source code and more.

“DZone is a developer’s dream,” says PC Magazine.

