

Building Web
Applications with SVG

David Dailey
Jon Frost
Domenico Strazzullo

D
ow

n
lo

a
d
 f
ro

m
 W

o
w

!
e
B
o
o
k

<
w

w
w

.w
o
w

e
b
o
o
k.

co
m

>

Published with the authorization of Microsoft Corporation by:
O’Reilly Media, Inc.
1005 Gravenstein Highway North
Sebastopol, California 95472

Copyright © 2012 by Jon Frost, David Dailey, Domenico Strazzullo
All rights reserved. No part of the contents of this book may be reproduced or transmitted in any form or by any
means without the written permission of the publisher.

ISBN: 978-0-7356-6012-0

1 2 3 4 5 6 7 8 9 LSI 7 6 5 4 3 2

Printed and bound in the United States of America.

Microsoft Press books are available through booksellers and distributors worldwide. If you need support related
to this book, email Microsoft Press Book Support at mspinput@microsoft.com. Please tell us what you think of
this book at http://www.microsoft.com/learning/booksurvey.

Microsoft and the trademarks listed at http://www.microsoft.com/about/legal/en/us/IntellectualProperty/
Trademarks/EN-US.aspx are trademarks of the Microsoft group of companies. All other marks are property of
their respective owners.

The example companies, organizations, products, domain names, email addresses, logos, people, places, and
events depicted herein are fictitious. No association with any real company, organization, product, domain name,
email address, logo, person, place, or event is intended or should be inferred.

This book expresses the author’s views and opinions. The information contained in this book is provided without
any express, statutory, or implied warranties. Neither the authors, O’Reilly Media, Inc., Microsoft Corporation,
nor its resellers, or distributors will be held liable for any damages caused or alleged to be caused either directly
or indirectly by this book.

Acquisitions and Developmental Editor: Russell Jones

Production Editor: Holly Bauer

Editorial Production: Zyg Group, LLC

Technical Reviewer: Domenico Strazzullo

Copyeditor: Zyg Group, LLC

Proofreader: Zyg Group, LLC

Indexer: Zyg Group, LLC

Cover Design: Twist Creative • Seattle

Cover Composition: Karen Montgomery

Interior Composition: Zyg Group, LLC

Illustrator: Rebecca Demarest

I would like to dedicate this book to my wife, Caron: my friend
and companion on so many adventures.

—DaviD Dailey

I would like to dedicate this book to my mentors in the local
community, who consistently demonstrate their authentic pas-
sion for improving our town by regularly organizing events that
coordinate efforts to revitalize our world, and who manage it all
with an inspiring degree of heartfelt warmth and charm: Eduardo
Crespi of Centro Latino, Mark Haim and Ruth Schaefer of Peace-
Works and Sustainability, and Proffessor Miguel Ugarte.

—Jon Frost

I dedicate this book to the community of SVG adepts and
evangelists who have given so much time and effort.

—Domenico strazzullo

Contents at a Glance

Introduction xiii

ChApter 1 SVG Basics 1

ChApter 2 Creating and editing SVG Graphics 31

ChApter 3 Adding text, Style, and transforms 59

ChApter 4 Motion and Interactivity 89

ChApter 5 SVG Filters 145

ChApter 6 SVG tools and resources 191

ChApter 7 Building a Web Application: Case Studies 215

Index 255

 vii

Contents

Introduction . xiii

Chapter 1 SVG Basics 1
The What, Why, and Where of SVG . 1

The What . 2

The Why . 3

The Where . 4

Getting Started: A Simple Overview . 5

Viewing SVG . 5

Writing SVG . 5

Thirteen Examples That Show the Capabilities of SVG 6

Example 1: Dynamic Random Landscape Drawn with
JavaScript and SVG . 6

Example 2: Equidistant Positioning Points along a Bézier Curve . . . 8

Example 3: Simple Animation (Just 38 Lines of Markup
and No Script) . 9

Example 4: Use of Gradients and Patterns .10

Example 5: Intersecting Clip Paths .11

Example 6: Animated Text Crawling Along a Bézier Curve13

Example 7: Animated Reflected Gradients with Transparency13

Example 8: Clock with Impressionist Tinge .14

Example 9: Using a Filter to Create Pond Ripples over an Image . .16

Example 10: Using <replicate> to Simulate Digital
Elevation Maps . 17

Example 11: Non-Affine Cobblestones . 17

Example 12: Triangular Tiling .18

Example 13: A Web Application for Drawing Graphs (Networks) . .19

What do you think of this book? We want to hear from you!
Microsoft is interested in hearing your feedback so we can continually improve our books and learning
resources for you. to participate in a brief online survey, please visit:

microsoft.com/learning/booksurvey

viii Contents

Diving In: A Step-by-Step Approach to Building a Simple
SVG Document .21

Intermission and Analysis .22

Screen Coordinates .23

Summary. .29

Chapter 2 Creating and Editing SVG Graphics 31
Creating Basic Vector Shapes .32

Lines .32

Brief Review of SVG Presentation Attributes .33

Rectangles .34

Circles .34

Ellipses .35

Polylines and Polygons .35

Creativity with Basic Shapes .36

Paths in SVG .38

<path> Subcommands: M and L .39

Fill Properties: nonzero and evenodd .40

An Example of Building Complex Shapes .40

Quadratic Bézier Curves: The Q Subcommand42

Bézier Curve Example .43

Creating Smooth Curves: The S and T Subcommands 46

Elliptical Arc Example .47

Relative vs. Absolute Path Coordinates .49

Accessing and Reusing Graphics .50

Referencing Vector and Bitmap Images .50

The Group Element .50

The <use> Element . 51

Creating Patterns .52

Case Study: Designing a Reusable Pattern .52

Adding Basic Shapes .52

Summary. .58

 Contents ix

Chapter 3 Adding Text, Style, and Transforms 59
Adding and Positioning Text .60

The <text> Element .60

The <tspan> Element .63

Making Adjustments with dx and dy .64

Text and Shapes on a Path: <textPath> and <mpath>64

The <tref> Element .65

Working with Colors in SVG .66

Named Color Values .66

HSL .66

RGB .66

Creating Gradients in SVG .67

Applying Gradients to a Path .67

Clipping and Masking with SVG .73

Details of Transforms .77

The translate Command .77

The scale Command .78

Skewing: The skewX and skewY Commands .79

The rotate Command .79

The matrix Command .80

Adding Style Using CSS .80

Using Media Queries to Enhance Usability .82

Additional Capabilities of CSS3 .83

Vector Graphics, Symbol, and Button Libraries .83

Accessibility .83

Semantic Elements and Features .84

Case Study: A Simple SVG Web Interface .85

Summary .88

Chapter 4 Motion and Interactivity 89
Declarative Animation with SVG. .89

Getting Started .91

Motion Along a Path .95

D
ow

n
lo

a
d
 f
ro

m
 W

o
w

!
e
B
o
o
k

<
w

w
w

.w
o
w

e
b
o
o
k.

co
m

>

x Contents

Multivalued Interpolation .96

Interacting with Animation .98

Scripting SVG .101

Getting Started with JavaScript and SVG .102

Using Script to Find an Object and Change Its Attributes103

Adding New Content to an SVG Document109

Cloning Nodes .111

Evaluating Nodes (getAttribute) .113

SVG DOM .115

Measurements .122

Messages Between SMIL and Script .132

Passing Messages Between HTML and SVG135

Summary. .143

Chapter 5 SVG Filters 145
The Basic <filter> Element .146

The Basic Primitives .146

<feGaussianBlur> .147

<feColorMatrix>. .149

<feComponentTransfer> .153

<feMorphology> .157

<feConvolveMatrix> .158

Utility Filters .160

Simple Utility Filters .160

<feFlood> and <feOffset> .161

<feImage> and <feTile> .162

<feTurbulence> .163

numOctaves .164

Lighting Effects .175

Ways of Combining Filters .177

<feMergeNode> .177

<feBlend> .180

<feComposite>. .181

<feDisplacementMap> .184

 Contents xi

Summary. .190

Chapter 6 SVG Tools and Resources 191
Libraries .192

SVG Native JavaScript Libraries .193

D3: Data-Driven Documents .193

Pergola .198

Raphaël .199

Polymaps .200

carto:net .200

Legacy HTML Libraries .200

jQuery .200

Dojo .201

Sencha .201

Drawing Tools and Utilities .201

Adobe Illustrator .201

Inkscape .204

Scour .205

SVG-Edit .206

Other Useful Tools .206

Mugeda .206

Pilat .206

SVG Editor .206

SVG Drawing Tool .207

Grapher .207

SCION .207

Extension Tools .207

Batik .207

SmilScript and FakeSmile .208

<replicate> .209

Integrated Development Environments .210

Oxygen .210

Adobe Dreamweaver .210

HTML-Kit .211

xii Contents

Other Useful Information .211

Other Tools That Support SVG .211

Miscellaneous .212

Wikimedia and Wikipedia .212

The Open Clip Art Library .212

The OpenStreetMap Project .213

Summary. .213

Chapter 7 Building a Web Application: Case Studies 215
About Pergola .216

D3 Review .218

Polymaps .218

Interactive Multiple Documents Application .218

Encapsulating the Stream Example .219

Adding Interactivity to the D3 Stream Window222

The Transitions Menu .223

The Transition Tool Button .224

Encapsulating the Force Example .228

Improving the Application Design .233

Running in an HTML and SVG Context .234

Mapping Application .235

The Menus .237

Adding Map Features .242

GeoJSON .242

Adding Tools .246

The Complete Code .247

Summary. .254

Index 255

 xiii

Introduction

Scalable Vector Graphics, known as SVG, is the World Wide Web Consortium stan-
dard for graphical interactivity on the web and mobile platforms. SVG is a mature

standard, first released more than a decade ago and has been under improvement by
the W3C ever since. SVG is now available natively in all modern web browsers, as well
as more than one billion mobile devices. SVG provides ways to create interactive graph-
ics that can be rescaled without loss of clarity. Like HTML and HTML5, SVG coexists
happily with technologies that are already familiar to web programmers, such as CSS,
JavaScript, the Document Object Model, AJAX and, indeed, with HTML itself.

This book provides a comprehensive introduction to the language and how to use
it for interaction and animation. The text also provides exposure to several important
JavaScript packages and libraries, including D3, jQuery, and Pergola. While the book
does not provide exhaustive coverage of every feature of the SVG language, it does
offer essential guidance in using the key SVG components.

In addition to its coverage of basic SVG features, the book discusses a wide range
of software tools for creating SVG and for embellishing it with scripted functionality.
You’ll also find solid introductions to complex topics such as SVG animation and filters.
In many places, the book includes step by step examples and references numerous
examples and downloadable sample projects that you can explore for yourself.

SVG Testimonials
Many people have been involved in the creation of SVG. As part of the Introduction
to this book, we asked a handful of people who were closely involved in SVG’s evolu-
tion to expound a little on what they think about SVG’s past and future. Here are their
statements.

Jon Ferraiolo
The W3C launched the Scalable Vector Graphics Working Group in 1998 to provide
the vector graphics counterpart to HTML. The SVG WG chose to adopt all of the same
general approaches as HTML (markup, DOM, scripting, styling) but replaced HTML’s
<div>, <p> and elements with vector graphics element such as <rect>, <circle>
and <path>. With various events in 2001 (SVG 1.0 Specification approval, Adobe SVG
Viewer version 3 (ASV3) and bundling of ASV with Adobe Acrobat Reader 5), SVG
was ubiquitous on desktop browsers, with the result that temporarily SVG took off

xiv Introduction

like gangbusters, with tens of thousands of developers using SVG for various sorts of
interactive graphics applications (flow charts, business graphics, and mapping). But
SVG adoption dropped once Adobe abandoned ASV. Subsequently, the open source
browser teams added SVG support (first Mozilla, then WebKit). With the open source
project “SVGWeb” supporting older versions of SVG in IE6–8 and Microsoft’s announce-
ment of SVG support in IE9, SVG has once again regained ubiquity, and developers are
now (re)discovering the power and coolness of DOM-based scriptable graphics.

The future for SVG looks quite exciting, particularly when using SVG as a component
of HTML5. The W3C, in collaboration with the browser teams and the community, is
generalizing many of SVG 1.0’s best features (e.g., clipping, animation, filter effects) into
CSS so these features will also be available to HTML, and cleaning up SVG to make it
easier to use (e.g., removing SVG’s XML requirement). There is active discussion about
going to the next level with vector and raster graphics effects, particularly ones that
are able to leverage CPUs. Given the automatic update features of the modern browser,
developers will be able to take advantage of cool new features almost as soon as they
are defined.

Background: Jon Ferraiolo was one of SVG’s principal architects. He was the primary
author of the PGML submission that served as the starting point for SVG and was the
sole editor of the W3C’s original SVG specification (SVG 1.0). While employed at Adobe
Systems, Inc., he was the architect for several SVG-related projects at Adobe, including
the Adobe SVG Viewer and Adobe Illustrator’s SVG support. He is now a Distinguished
Engineer at IBM.

Alex Danilo
In the early days of the web, browsers were rapidly changing and competition was
fierce. When the W3C sent out a call for vector graphics proposals for the web, a col-
lective cheer from thousands of graphics people could be heard. At last, to be free of
those ancient bitmaps and bring the web into beautiful resolution and independent
glory. This was the birth of SVG.

As we know, Rome wasn’t built in a day, and over the years SVG was massaged and
honed to perfection by an army of enthusiastic graphics aficionados. The result is a gem
that’s polished and can glisten with vibrant color when viewed in the right light.

SVG enables vivid interactive experiences that adapt to any display size, a way to
bridge images with meaningful semantics, a powerful synergy with HTML and the DOM
and just looks so good!

 Introduction xv

Background: Alex Danilo joined the W3C SVG Working Group at the start of 2002
and is now the representative of his company Abbra. Abbra’s implementations both
for mobile devices and web have always been at the cutting edge of the development
of the SVG specification. Alex has very often produced the first proof of concept of
new proposals for SVG. His current focus is development of a rich-media capable SVG
engine for cross-platform application areas especially in resource constrained devices.

Cameron McCormack
It has been 10 years since the W3C Recommendation for SVG 1.0 was published, and
having been involved in the SVG community for most of that time period, I can say with
first-hand knowledge that SVG’s fortunes have definitely been mixed. This is not an in-
dictment on the technology itself, which is solid, but a historical problem of implemen-
tation availability.

In the early 2000s, there was a good deal of interest in SVG, as evidenced probably
most clearly by the activity on the SVG Developers Yahoo Group mailing list, a forum
that is still running today. Authors were creating visually rich, graphical, dynamic web
applications with SVG before it became popular (or possible) to do so with other open
web technologies. That this was possible at the time was, in my view, nearly entirely due
to Adobe’s investment in SVG and their development of the Adobe SVG Viewer plug-in.
It did not matter that browsers’ support for SVG was not up to scratch or did not exist
at all—through the use of the Adobe plug-in, SVG was available to everyone. (Techni-
cally not everyone, of course, as the plug-in was limited to particular operating systems
and architectures, but for most authors this was good enough.)

The last release of the Adobe plug-in, a preview of version 6, was made available in
2003. The preview release was somewhat unstable, but demonstrated attractive new
features, including a componentization model for SVG content whose fundamental
ideas even today garner interest despite a number of false starts in standardization
groups. However, for a long time after this release not a word was heard out of Adobe
on their plans for development. This caused growing consternation within the SVG
developer community, as progress of native browser implementations had been slow
to catch up to the features and performance of the plug-in. Interest in SVG began
to wane, and Adobe’s acquisition of Macromedia and the Flash platform only served
further to fuel the notion that SVG was dead. The years following were the Dark Ages of
SVG.

Although native browser implementations did improve during this time, there was
still a perpetual sense by developers at large that SVG wasn’t ready for prime time.
What was probably the biggest impediment to authors publishing SVG content was

xvi Introduction

the lack of implementation in Internet Explorer. With the arrival of one particular
version of IE or Windows, I don’t remember which, the unmaintained Adobe plug-in
stopped working altogether. This was a blow to developers, as Microsoft had no plans
to implement SVG at all, unlike the other major browser vendors who all were com-
mitted to supporting it.

In 2008, a major development occurred: the addition of SVG (and MathML) to the
HTML5 specification, which allowed authors to write HTML documents with inline
vector graphics without having to use mixed-namespace XML documents. This was a
welcome simplification, but importantly it helped to sell SVG as being a first class part
of the web platform.

By 2009—the same year that Adobe finally announced what everyone knew
already, that their plug-in was no longer being maintained—sentiment had finally
managed to shift away from the notion of SVG being a neat technology unsuitable
for publishing on the web due to Microsoft’s intransigence. This was helped by the re-
lease of SVG Web, a Flash-based SVG renderer developed by a team at Google. Once
again, authors had a way to target SVG content to Internet Explorer, as most Windows
computers already had Flash installed. Not only did SVG Web provide a way to render
SVG in IE, it did so with reasonably complete coverage of the SVG specification and
with great performance.

But perhaps the most welcome news to the SVG community came in 2010 when
Microsoft announced a preview release of Internet Explorer 9, the first version of IE to
support SVG. Finally it would be possible to publish SVG content using open web tech-
nologies and have all desktop browsers consume it without the need for any plug-ins or
workarounds. Hooray!

Today, SVG is in its strongest position yet. Browser implementations continue to
improve by leaps and bounds. Standards groups continue to draw SVG and CSS ever
closer, allowing the use of SVG features such as filters, patterns, and gradients in HTML
documents. The SVG Working Group itself is busy working on the next major revision of
the SVG specification itself to address issues and add features that have been requested
by the persevering SVG community over the years. JavaScript toolkit writers are choos-
ing SVG as their graphical output technology.

And the developer community is reinvigorated. SVG is very much alive!

Background: Cameron McCormack has been involved in SVG since 2003 and has
served as coeditor of the SVG specification and cochair of the SVG Working Group from
2007 to the present. As a graduate student at Monash University in Australia, Cameron
also spearheaded the implementation of SVG in Batik—sometimes called the most

 Introduction xvii

extensive implementation of SVG yet. He has since gone on to work at Mozilla Corpora-
tion, where his work with SVG and other web standards continues.

Jeff Schiller
I became involved with Scalable Vector Graphics (SVG) around the time that Firefox
was planning to ship its first partial implementation of SVG Full in Firefox 1.5. At
that time, native support was mostly a curiosity given that there was a very mature
browser plug-in (Adobe SVG Viewer) and sound alternatives to rich vector graphics in
web applications (Macromedia’s Flash). But what intrigued me about native SVG sup-
port was the integration with HTML: a DOM, an event model, scripting in JavaScript,
styling with CSS. This would allow graphical web applications to take advantage of the
AJAX bubble that was happening at the time: rich, dynamic applications that worked
cross-browser without a plug-in.

More SVG Full implementations began showing up, first in Opera which set the
standard for Full support, then in WebKit and finally in Internet Explorer, making it
ubiquitous across the web and mobile. As native SVG support began showing up in the
wild, HTML5 really started to take shape in the minds of browser vendors and I’ve been
delighted to follow both SVG and HTML as their paths became aligned. I believe the
arrival of graphics in the browsers (SVG and HTML Canvas) were essential in making the
web platform compelling for application developers: a powerful markup vocabulary, a
document model, a simple authoring syntax, and continuously improving support in
all major browsers. Refinement of both the implementations and the specification have
made SVG a really effective weapon in the web developer’s arsenal and I’m constantly
amazed at what people are doing with it.

Background: Jeff Schiller’s name is a familiar one in the SVG community. In addi-
tion to being the originator of and contributor to the popular and useful tools SVG-
Edit and Scour, he has also for many years maintained the web’s most definitive site
for cross-browser comparison of the completeness of the implementation of SVG. He
also spearheaded and chaired the W3C’s SVG Interest Group, and has made numerous
contributions to the evolution of the standard itself. Jeff began his work with SVG while
working at Motorola and is now a Google employee.

Doug Schepers
The fundamental idea of SVG is beautiful: take the best from popular vector programs
like Illustrator, and the structure, dynamic adaptability, and hyperlinking of web formats
like HTML and CSS, and then add in animation and raster effects like filters to make it
fun, funky, and functional.

xviii Introduction

Now that it’s supported in every modern browser, with tons of applications that output
SVG, the W3C SVG Working Group is turning its eye toward SVG 2. What’s in the cards?
Certainly more seamless integration with HTML5 and the assorted APIs that go into
making awesome web apps (though most of them already work with SVG), and a general
tidying up of the language to make common tasks easier for developers and implement-
ers, and a massive improvement to the DOM API to increase speed and usability. We’re
also working closely with the CSS Working Group on shared features, like filters for HTML,
and we plan to adopt some new CSS features, including complex text wrapping into and
around shapes, a long-standing SVG request.

And while it may sound a bit boring, we have a plan to work on smaller, more modu-
lar specs; what this means to developers and designers is more features more quickly.
Look for things like parameters (highly adaptable images) and features for mapping
(like non-scaling strokes and declarative level-of-detail) to come out as modules. And
we are always looking for use cases and requirements that solve real-world problems
for developers.

Background: Doug Schepers has been involved in SVG as a developer since
the very early days, starting in 2001. He was deeply involved in raising the public’s
awareness of SVG. In 2007 he was hired by W3C itself to serve on the Working Group.
Doug’s footprints can be seen all over the SVG specification from its earlier days
through the present.

Who Should Read This Book
This book is designed as both a basic introduction and a more advanced treatment that
delves deeply into some of the advanced aspects of SVG. It should be equally accessible
to a professional web programmer, an undergraduate student with a few semesters of
computing coursework, a scientist who wants to make large datasets more interactive,
or a graphical designer with a strong technical side. In short, if you are familiar with the
basics of web development and computer graphics and have an interest in developing
websites that are richly graphical and interactive, then this is the right book for you.

Assumptions
This book assumes some familiarity with HTML and web graphics. Prior experience with
programming is not a requirement, though prior programming experience will clearly
help you understand some of the chapters (such as Chapter 4 and Chapter 7) that
involve programming. Familiarity with the basics of coordinate geometry and fluency
with high school algebra will likely also aid in comprehension—though that would be

 Introduction xix

true with any treatment of graphics involving the x-y plane—so the foray into math-
ematics you’ll find here should prove to be a gentle one.

With a heavy focus on database concepts, this book assumes that you have a basic
understanding of relational database systems such as Microsoft SQL Server, and have
had brief exposure to one of the many flavors of the query language known as SQL. To
go beyond this book and expand your knowledge of SQL and Microsoft’s SQL Server
database platform, other Microsoft Press books such as Programming SQL Server 2012
offer both complete introductions and comprehensive information on T-SQL and
SQL Server.

Who Should Not Read This Book
A graphical artist who finds notation distasteful will probably not find either SVG or this
book to his or her liking. SVG is a declarative language based on XML; accordingly, it
has a rigorous syntax that is not forgiving of grammar errors. If you’re interested in a
purely point-and-click environment, or simply want to create a graphical user interface
containing drawings and illustrations, then a package such as Inkscape or Illustrator
may prove to be a better direction for your creative expression.

Web authors who primarily develop web pages with a package such as Microsoft
Expression Studio or Adobe Dreamweaver rather than coding HTML by hand may be
interested in some of the new software tools being developed for integrating SVG and
HTML. However, while this book discusses some of these tools briefly, the book is not
intended as a tutorial in the use of design packages.

Organization of This Book
This book is organized in seven chapters. Chapter 1, “SVG Basics,” orients the reader
to SVG itself, showing how to get started, the contexts in which SVG can be created
and viewed, and a diverse sampling of examples that may whet the reader’s appetite.
Chapter 2, “Creating and Editing SVG Graphics,” and Chapter 3, “Adding Text, Style,
and Transforms,” get into the dynamics of the core of SVG: the basic shapes, patterns,
gradients, clips, masks, and images. Chapter 4, “Motion and Interactivity,” introduces
the two fundamental aspects of SVG interactivity: animation and scripting. Chapter 5,
“SVG Filters,” discusses filters, one of the most complex and powerful parts of the
graphical language. Chapter 6, “SVG Tools and Resources,” and Chapter 7, “Building
Web Applications: Case Studies” introduce and provide examples of the broad range
of tools and libraries that support SVG development.

xx Introduction

Conventions and Features in This Book
This book presents information using conventions designed to make the information
readable and easy to follow.

■■ This book has numerous examples in which the reader may examine the illustra-
tion itself and the code used to create the example.

■■ On occasion, the code shown is an excerpt showing only the parts needed for
understanding the narrative text. In such cases, a link is provided to a work-
ing example on the web, so that the reader may examine a complete working
example.

■■ In cases of very lengthy source code, the example has been annotated in a table
so that blocks of code and explanatory comments may be seen side by side.

About the Companion Content
Most of the chapters in this book include exercises that let you interactively try out new
material learned in the main text. The working examples can be seen on the web at:

http://go.microsoft.com/FWLink/?Linkid=257519

or

http://cs.sru.edu/~svg

The examples are organized by chapter number as well as linked from the above
addresses.

Installing the Code Samples
There’s no need to “install” the code samples for this book—you simply need a browser
that can display SVG.

System Requirements
You will need the following hardware and software to be able to follow along with the
step-by-step examples in this book:

http://cs.sru.edu/~svg

 Introduction xxi

■■ A modern web browser: Microsoft Internet Explorer 9 or 10, Firefox 6 or higher,
Opera 8 or higher, or Safari or Chrome (any version).

■■ For mobile users: either Opera Mobile, the Android Ice Cream Sandwich OS, or
the iPhone will suffice, though in truth, there are dozens of SVG-enabled brows-
ers too numerous (and quickly evolving) to mention.

■■ A simple text editor (such as NotePad) or a syntax-completion environment
(such as http://notepad-plus-plus.org/ or http://www.htmlkit.com/) for editing
your own examples.

■■ If you wish to share your content on the web: a web server that serves the
proper mime type for .svg files, namely as “image/svg+xml”.

■■ Internet connection to view examples that accompany the book.

Acknowledgments
Jon Frost initially came up with the idea for this book; his motivation brought it
about and saw it through to completion. David Dailey was instrumental in bringing
the vision of the book to light through his insight and wisdom and brought a healthy
down-to-earth style to the writing process. Jon and David were fortunate to be joined
by Domenico Strazzullo, originally brought in as a technical reviewer. His contribu-
tions were so energetic and thorough that we just had to have him write a chapter—
and who better to do that than the author of Pergola himself?

David: I’d also like to thank my family for their patience and understanding during
the writing process and my academic department and university for their generous
support with my SVG-related endeavors. Also to the creators of SVG and the SVG Open
folks: thanks for the language and for the fun.

Jon: I am grateful for my supportive family, my super-supportive and playful wife,
my super-playful and loving dog, and my good friends from cultures around the world
who continue to teach me the vital necessity of sharing and caring.

Domenico: I’d like to thank Microsoft Press and the editors at O'Reilly for giving us
this terrific opportunity to expose SVG to the greatest number of developers, and help
it reach a long deserved status.

xxii Introduction

Errata & Book Support
We’ve made every effort to ensure the accuracy of this book and its companion con-
tent. Any errors that have been reported since this book was published are listed on our
Microsoft Press site at oreilly.com:

http://go.microsoft.com/FWLink/?Linkid=257518

If you find an error that is not already listed, you can report it to us through the
same page.

If you need additional support, email Microsoft Press Book Support at mspinput@
microsoft.com.

Please note that product support for Microsoft software is not offered through the
addresses above.

We Want to Hear from You
At Microsoft Press, your satisfaction is our top priority, and your feedback our most
valuable asset. Please tell us what you think of this book at:

http://www.microsoft.com/learning/booksurvey

The survey is short, and we read every one of your comments and ideas. Thanks in
advance for your input!

Stay in Touch
Let’s keep the conversation going! We’re on Twitter: http://twitter.com/MicrosoftPress

http://www.microsoft.com/learning/booksurvey

 1

C H A P T E R 1

SVG Basics

I decided that if I could paint that flower in a huge scale, you could not ignore its
beauty.

Georgia O’Keefe

In this chapter:

the What, Why, and Where of SVG . 1

Getting Started: A Simple Overview . 5

thirteen examples that Show the Capabilities of SVG 6

Diving In: A Step-by-Step Approach to Building
a Simple SVG Document. 21

Scalable Vector Graphics (SVG) is a graphical standard maintained and endorsed by the World Wide
Web Consortium (W3C), the same group that created and continues to maintain HTML, CSS, XML,
and other technologies that constitute the World Wide Web.

The What, Why, and Where of SVG

SVG is much more than its name suggests. It is true that SVG is a language that allows for the creation
of two-dimensional vector elements, which are simply mathematical representations of graphical
objects, and that these vectors are infinitely scalable and can be transformed within the bounds of
the 2D coordinate system. However, SVG is unique in that it is an open standard defined by the W3C
(http://w3c.org/svg/), and like other W3C languages such as HTML and XML, it has its own Document
Object Model (DOM) that brings with it many benefits, and it’s interoperable with other open stan-
dard languages such as JavaScript, CSS, and HTML.

SVG has been in the works over the past decade and has matured a great deal during that time,
with collaboration from interested parties around the world. The great appeal of SVG is that, like
HTML, it’s easy to read and edit, while allowing for complex interactivity and animations through

2 Building Web Applications with SVG

scripting and Synchronized Multimedia Integration Language (SMIL), which is another W3C standard.
Browsers have matured over the last few years, and all the major ones now natively support much of
the SVG specification, so you no longer need to fuss with proprietary SVG plug-ins. All of these capa-
bilities allow for a much greater degree of creativity, with complex interactivity mixing with animation
and real-time data, all within the context of SVG-enhanced web applications. This is ideal for modern
designers and developers, as demonstrated throughout this book.

the What
SVG is based on vectors rather than pixels. While a pixel-based approach (used by programs such as
Adobe Photoshop) places pigment or color at xy-coordinates for each pixel in a bitmap, a vector-
based approach (used by programs such as Adobe Illustrator) composes a picture out of shapes, each
described by a relatively simple formula and filled with a texture (a term used broadly here to refer to
a mixture of colors, gradients, and patterns).

SVG is scalable. As you may already know, if you zoom in on pixel-based art, you will eventually
reach a maximum resolution. Even with the 10-megapixel cameras that are now commonplace (or the
100-megapixel cameras that can be had for a small fortune), increasing the zoom factor much be-
yond screen resolution will cause pixelation. Scalability is a tremendous advantage for the emergence
of the mobile web, as well as for very-large-display devices (as for outdoor advertising).

The following image shows the difference between what happens when you zoom into a vector
graphic (left) and a bitmap (right).

 CHAPTER 1 SVG Basics 3

the Why
Some of the advantages of SVG are now discussed, with brief explanations:

■■ Client-side graphics Because SVG uses client-side graphics, its impact on your web server
is light. In addition to being scalable, SVG is dynamic and interactive. A user can interactively
explore the data underlying a picture in novel ways.

■■ Open source (XML) Anyone can view the source code that underlies the graphic. It’s read-
able by humans and looks a lot like HTML.

■■ Accessibility Because the SVG source code is written in XML, it is also readable by screen
readers and search engines. While a picture might be worth a thousand words, a megapixel
image is not worth much at all to someone who can’t see it. The ability of SVG to bring geom-
etry to those who cannot see it extends its reach into many domains that pixel-based imagery
just cannot go.

■■ Open standard Because it was created by the W3C (the same organization that brought us
HTML and the web itself), SVG is nonproprietary and vendor neutral.

■■ Familiar technologies SVG uses technologies already familiar to web programmers: DOM,
JavaScript, CSS, and AJAX. Rather than having to learn entire realms of technology, program-
ming languages, and terminology to deal with the complex and technical area of com-
puter graphics, designers, programmers, and web professionals can leverage skills learned
elsewhere.

■■ Web applications SVG is suitable for incorporation with HTML5, web-based applications,
and rich Internet applications (RIAs). The last 10 years have seen a great elevation of the status
of the phrase web-based application. Not so many years ago, people in the web community
used to respond with sarcasm or disbelief when someone talked about wanting to create a
web-based application that lived primarily in the browser. A cursory inspection of the his-
tory of HTML5 reveals that the creation of web applications was one of the primary intentions
behind the development of this emerging specification. The incorporation of inline SVG into
the HTML5 specification is a great advantage for web developers.

■■ SMIL SMIL is a W3C declarative language supporting multimedia and animation for
nonprogrammers. SMIL is partially incorporated into the SVG specification. Those who have
had more than a cursory exposure to programming animation in JavaScript may find them-
selves enamored of the ease with which certain complex animations can be authored using
SVG animation (or SMIL), as well as the ability to update many objects on the screen almost
concurrently. While SVG also supports scripted animation through JavaScript, SMIL brings
convenience, parsimony, and elegance to the table.

■■ The adoption of SVG As of 2010, SVG is supported natively by the most current versions
of the five major web browsers. Additionally, it can be found in the chip sets aboard several
hundred million mobile phones, with major support being offered from Nokia, Ikivo, Sony

4 Building Web Applications with SVG

Ericsson, Opera Mobile, Samsung, iPhone, and several others. This will be discussed further
in the next section.

■■ Other technologies SVG has overlap with Flash, Vector Markup Language (VML), and
Silverlight—but it has the advantages of being nonproprietary, standardized, cross platform,
and interoperable with other XML languages and W3C standards.

the Where
Vector graphics are everywhere. The art world, for example, is replete with examples of the use of
vector graphics. As Professor Jerrold Maddox wrote in “SVG and Art: Expanding the possibilities, dif-
ferent times and different places,” “Image making based on vector-like forms is the way most of the
art of the world is and has been made” (http://www.personal.psu.edu/jxm22/svgopen/). He continues,
“The Song [dynasty] in China and Renaissance Europe are only times and places where tonal art ever
took off—and photography made it seem like the only way to do it” (personal correspondence, 2011).
Accordingly, from a global and historical perspective, we might see images that are not vector based
as more the anomaly than the rule.

SVG, nowadays, is also pretty much everywhere. As of this writing, an estimated 1.5 billion devices
in the world are SVG enabled (from http://en.wikipedia.org/wiki/Usage_share_of_web_browsers and
http://marketshare.hitslink.com/browser-market-share.aspx?spider=1&qprid=2).

If we add to this the two mobile manufacturers whose devices are SVG enabled (Ikivo with 350 mil-
lion users [http://www.ikivo.com/04about.html] and Apple, whose iPhone boasts another 100 million
[http://mashable.com/2011/03/02/100-million-iphones/]) and Abbra’s estimate that “Today over 700
million mobile phones have been shipped with in-built support for SVG version 1.1—more than twice
as many as the nearest competing technology—FlashLite” (http://abbra.com/products.html), then our
estimate rises to close to two billion devices that are SVG ready!

Adobe provided the first support for SVG in the browser (via a plug-in known as ASV 3) as early
as 2000, though support in other applications (such as CORELDraw and Microsoft Visio) came
earlier (http://www.w3.org/G6raphics/SVG/History). SVG has had considerable support in draw-
ing programs, including Illustrator, CORELDraw, and Inkscape, for many years now, and it’s also
supported in a variety of Internet Protocol Television (IPTV) applications and in the popular KDE
desktop environment for Linux.

In the browser market, Konqueror was the first browser to support SVG natively, in 2004 (http://
en.wikipedia.org/wiki/Scalable_Vector_Graphics#Native_support). As of early 2005, the Opera browser
had fairly extensive SVG support, and Firefox developed support for basic SVG shortly thereafter in
version 2. By mid-2007, Safari had implemented basic support as well. Google debuted its Chrome
browser in 2008, and in 2009 Microsoft announced that Internet Explorer would finally have native
support, rounding out SVG support for all the major browsers.

Beyond browsers, there are several dozen software applications that read or export SVG content
(see the list at http://en.wikipedia.org/wiki/Scalable_Vector_Graphics).

 CHAPTER 1 SVG Basics 5

Getting Started: A Simple Overview

You’ll see a more detailed step-by-step example at the end of this chapter, but it is important that you
gain some idea of what’s involved in viewing and creating SVG at the outset.

Viewing SVG
Start up any modern browser and point it at the website related to this book, http://cs.sru.edu/~svg
.com. Internet Explorer, Firefox, Chrome, Safari, and Opera all support viewing SVG on the web, so you
can use any of those. The most important exception is this: if you are using Internet Explorer, you will
either need to upgrade to Internet Explorer 9 (which requires Microsoft Windows Vista or later), or
you will need to download the free SVG plug-in (ASV version 3.03) from Adobe, at http://www.adobe
.com/svg/viewer/install/mainframed.html. For all the other browsers listed, using the latest version will
always prove helpful, because all of these browsers are making steady and frequent progress on their
implementations of the SVG specification.

SVG is a big specification—one that’s not trivial to implement. SVG 1.1 is generally the version
against which browsers are compared. As of this writing, no browser implements all of SVG 1.1,
despite the specification having reached recommendation status (meaning that it is officially a W3C
standard) in 2003 (http://www.w3.org/Graphics/SVG/History). Improvements to browser support tend
to appear on a monthly basis, so it is best to make sure that you’re using the latest release of what-
ever browsers you use.

As another example of the importance of using current browser versions, Firefox 3.6 does
not support SMIL animation, while Firefox 4.0 does. You’ll see more about the idiosyncrasies of
browser support in the discussions of the relevant topics, but note that the parts of SVG that per-
tain to animation, filters, and fonts are most likely to show browser differences.

Writing SVG
There are many different paths that one can follow to develop SVG. This book will show you several of
those in more detail in Chapter 6, “SVG Tools and Resources.” In the meantime, we recommend using
any simple text editor—for example, Notepad for Windows or TextEdit (properly configured for Mac;
see http://support.apple.com/kb/HT2523)—or any of the plethora of editing tools in Linux or UNIX
(nano, pico, emacs, vi, ed, kate, vim, kwrite, gEdit, etc.).

First, enter this very simple SVG file into your text editor, and save the file with the name
myfirstfile.svg (you can save the file to your local hard drive or a remote server, so long as you know
how to get to it from your web browser):

<svg xmlns="http://www.w3.org/2000/svg">
<circle r="50"/>
</svg>

D
ow

n
lo

a
d
 f
ro

m
 W

o
w

!
e
B
o
o
k

<
w

w
w

.w
o
w

e
b
o
o
k.

co
m

>

http://cs.sru.edu/~svg.com
http://cs.sru.edu/~svg.com
http://www.adobe.com/svg/viewer/install/mainframed.html
http://www.adobe.com/svg/viewer/install/mainframed.html
http://support.apple.com/kb/HT2523

6 Building Web Applications with SVG

The file is also visible at http://cs.sru.edu/~ddailey/svg/simplest.svg should you have any problems
seeing the file you’ve created.

You’ll see information about more advanced editing environments at the end of this chapter, and
you’ll of course see many more examples of SVG code throughout the rest of the book.

Thirteen Examples That Show the Capabilities of SVG

To fully appreciate the power of SVG, complete with its interactivity and animation capabilities, I
encourage you to take a look at the tutorial page on this book’s website (http://cs.sru.edu/~svg), which
contains links to interesting examples, and also to explore and read the examples illustrated and
briefly discussed below.

Note We haven’t yet defined the terms for the effects described below, but we’ll make
them clear later on. At this point, we simply want to ensure that you have some idea of
what SVG can accomplish before you begin working with it. How else to know the lay of
the land?

example 1: Dynamic random Landscape Drawn with
JavaScript and SVG
The scenery here, inspired by one author’s frequent drives from his homeland in New Mexico to his
graduate school in Colorado, shows the effect of motion parallax on the various mountain ranges
leading from the foothills to the Continental Divide. As the vantage point moves continually north-
ward toward the badlands of Wyoming, a slightly impressionistic hot-air balloon follows. Its vertical
position, speed, and wind deformation change somewhat randomly as we move. The various lay-
ers of mountains recede behind us to the left, with the taller peaks remaining visible longer. Owing
to the use of random elements, no two landscapes will ever be the same (ignoring the infinitesimal
probability of extreme coincidence). The example can be seen at (http://srufaculty.sru.edu/david
.dailey/svg/balloon.svg).

http://cs.sru.edu/~svg
http://srufaculty.sru.edu/david.dailey/svg/balloon.svg
http://srufaculty.sru.edu/david.dailey/svg/balloon.svg

 CHAPTER 1 SVG Basics 7

Here’s how it’s done:

■■ The sky The sky consists of two rectangles. One, the background, is simply filled with
a linear gradient consisting of colors that move from brighter shades of sky blue to gray,
from bottom to top. The second rectangle provides a snow globe effect. The foreground
and smog, due to the overpopulation of communities along the front range, are simulated
through the color transitions in the foothills and the overlay of gray stemming from the
background and foreground.

■■ The snow globe effect This is produced using a radial gradient of varying transparency in
the foreground. With SVG gradients, you vary not only the colors as they change gradually
from one to another, but also their relative opacity.

■■ The balloon The balloon is entirely handled through JavaScript. A series of almost parallel
Bézier curves is created with start points and endpoints that coincide. The control points differ
and change over time. The entire group (a <g> element in SVG) then has its horizontal and
vertical positions varied through a timed loop that refreshes the screen every 10 milliseconds.

■■ The drawing of the mountains There are four layers of mountains, each filled with a linear
gradient that changes from yellow-brownish in the plains and foothills to the blue-white
of the snowcapped peaks of the Continental Divide. The hint of green in the second range
behind the foothills is meant to suggest the presence of the forests there. The heights of the
peaks are randomly determined, with an array of random xy-coordinates being first generated
and then sorted by their x-values. Then they are divided into triplets so that the peaks can be
connected by a series of curves, each having the previous endpoint and the next separated by
points in a cubic Bézier curve.

8 Building Web Applications with SVG

■■ The movement of the mountains The foreground layers are simply shifted leftward more
quickly than the layers in the back. Each array has its first element removed so that another
random element can be added onto the end of the array without the array becoming arbi-
trarily large. Any memory of what has happened is systematically purged.

example 2: equidistant positioning points along a Bézier Curve
The mathematics of Bézier curves, while quite accessible to a mathematician, are not trivial. Bézier
curves were, after all, not discovered until 1959 (see http://en.wikipedia.org/wiki/B%C3%A9zier_curve),
130 years after Évariste Galois resolved the theory of roots of polynomials and laid the foundation for
much of the algebra of the 19th and 20th centuries. Fortunately, SVG (following the lead of Adobe
Illustrator 88) gives direct and intuitive access to these wonderfully expressive curves in terms of
the ability to draw, measure, subdivide, orient, and animate them. In this example (visible at http://
srufaculty.sru.edu/david.dailey/svg/curve.svg), the curve is drawn with a simple set of markup com-
mands, and each time the user clicks the curve or near it, JavaScript is used to measure the curve
and divide it into an increasingly larger number of parts, with the option of animating the process
ultimately being offered to the user.

Here’s how it’s done:

■■ Drawing the curve The markup used is quite simple:

<path d="M 10 150 C 200 80 350 300 450 100" id="B"
 stroke="black" fill="none" stroke-width="4"/>

Note The drawing of SVG paths is one of the most powerful and expressive aspects
of the language; it’s covered in Chapter 2.

■■ Measuring and subdividing the curve The JavaScript language binding of SVG allows you
to interrogate properties of things that have been drawn either through markup or dynami-
cally, and to manipulate them using methods. In this case, we are using two function calls:
L = B.getTotalLength(); and P = B.getPointAtLength(L * i / n);. The first measures the path, B,
and returns a numeric value; the second returns a point (an object with both x and y values)
a given fraction of the distance along B. Script is then used to create new ellipses of different
colors at those fractional mileposts.

 CHAPTER 1 SVG Basics 9

example 3: Simple Animation (Just 38 Lines of Markup
and No Script)
This example, visible at http://srufaculty.sru.edu/david.dailey/svg/ovaling.svg, has been cited by others
for the richness it achieves even with such simplicity. The example uses SMIL animation to simultane-
ously vary 4 different attributes of 26 different objects. At the SVG Open 2010 conference in Paris,
one of Microsoft’s demonstrations showed that this particular example could be animated using one
of several SMIL emulators for SVG, although as of this writing, most browsers can run the animation
without additional assistance. Creating such a rich animation with other technologies, such as the
HTML5 <canvas> tag or Java Applets, would take much more code, thought, experimentation, and
time to develop.

Here’s how it’s done:

■■ Drawing one petal of the flower An ellipse is drawn with a given centroid and differing
radii in the x and y directions. It is made slightly more transparent than opaque (the opacity
is set to 0.4). It is then filled with a gradient (in this case, a linear gradient moving from red to
blue and then through green to yellow).

■■ Replicating the petal SVG allows considerable reuse of code. In this case, the initial petal is
reused four times through a series of <use> elements, each of which applies a different rota-
tion to the petal. This creates a petal cluster, which itself is then grouped and reused 5 more
times, for a total of 25 petals being drawn with only 9 lines of markup.

10 Building Web Applications with SVG

■■ Animating the illustration The initial petal of the flower (which is later replicated) has
three separate animations applied to it. The first gradually changes its orientation from 0 to
360 degrees over a period of 7 seconds. The next 2 animations vary the x value of the centroid
and the radius in the y direction over, respectively, 8 seconds and 3 seconds. Because 3, 7, and
8 are relatively prime, the entire animation will repeat every 168 seconds (3 × 7 × 8 = 168).
Because the animation is applied to a petal that is then reused 24 times, each of the 25 petals
inherits the same animation, with the rotation and repositioning being applied relative to each
differing initial position. One more circle at the center of the composition has its own color
animated to add a pleasant bit of chromatic variety.

example 4: Use of Gradients and patterns
This example, visible at http://srufaculty.sru.edu/david.dailey/svg/grid2.svg, consists of just 19 lines of
markup (not counting its animations) and no JavaScript. It demonstrates that some rather intriguing
results can be concocted by juxtaposing some quite simple SVG elements.

After you have grown accustomed to SVG, animations of this sort will be remarkably easy to create
and experiment with on your own.

 CHAPTER 1 SVG Basics 11

Here’s how it’s done:

■■ Creating the repeating pattern In this case, the pattern consists of two circles (one filled with
an off-center radial gradient and the other with a flat color and a different-colored stroke).

■■ Restricting the pattern to a shape The pattern is then applied to an ellipse (which of
course is animated).

example 5: Intersecting Clip paths
The example at http://srufaculty.sru.edu/david.dailey/svg/newstuff/clipPath4.svg demonstrates
four things:

■■ SVG allows bitmapped images (.png, .jpg, and .gif) to be imported and used in conjunc-
tion with other graphical primitives. As you will see later, this is done through the <image>
element.

■■ Images and other shapes can be clipped to the confines defined by a given shape (in this case,
a five-pointed star) using the <clipPath> element.

■■ There is more than one way of making clip paths intersect. Here, the lavender rectangle inter-
sects the five-pointed stars in two rather different ways.

■■ Like almost all things in SVG, clip paths can be animated. The example uses SMIL animation to
rotate the stars, revealing different parts of the underlying faces.

This particular example, first constructed in 2006, has served as a mini-benchmark test for brows-
ers. Originally, it only worked properly in Internet Explorer with ASV. Over time, Opera came to
handle the multiple clip paths and the animation, and each of the other browsers has been gradually
phasing in correct handling of intersected clip paths as well.

12 Building Web Applications with SVG

Here’s how it’s done:

■■ Clipping an image by a shape The leftmost image is defined by an <image> element. Its
attribute clip-path=“url(#CPST)” references the element <clipPath id=”CPST”>, which itself
contains a star-shaped <path> element.

■■ Clipping a clip path This is done in either of two ways in this example: First, the <image>
element to which a clip path has been applied is reused with a <use> element. The <use>
element then has another clip path applied to it (which happens to consist of the lavender
rectangle). The two clip paths intersect as would be expected. The other approach is to build
a <clipPath> that has its own clip-path attribute defined. This works in Internet Explorer 9,
Opera, and Internet Explorer with ASV, as you would expect, and is the same regardless of
whether the secondary clip path is applied to the parent <clipPath> or the elements within it.
The other browsers show a variety of idiosyncratic responses to this approach.

 CHAPTER 1 SVG Basics 13

example 6: Animated text Crawling Along a Bézier Curve
To anyone who enjoyed the excitement of new applications being unveiled in the Macintosh envi-
ronment of the mid-to-late 1980s, Adobe Illustrator’s ability to allow the layout of text to follow an
arbitrary curve, using a simple graphical user interface (GUI), fell in the category of “utterly cool.” The
example at http://srufaculty.sru.edu/david.dailey/svg/newstuff/textpath1.svg demonstrates that SVG
can do this—and go one step further: it can animate the text moving along that curve!

Here’s how it’s done:

■■ Laying text along a path While this will be discussed with examples later in the book, it
works rather like this: First, running text (a sequence of characters) is placed in an SVG <text>
element. Also in the <text> goes a <textPath> element that has a simple URI reference to the
ID of the <path> element.

■■ Animation of text following a path One attribute of <textPath> is startOffset. Its value
determines an offset for the initial position of the text. That is, a value of zero means that the
text will begin at the start of the path; higher values mean that the text will begin closer to the
endpoint. The effect is accomplished by simply animating that value with an SVG <animate>
element.

Example 7: Animated Reflected Gradients with Transparency
Some of the effects offered by SVG seem to be more interesting than useful. This is often true of
things like pure mathematics, until one’s imagination discovers (or invents) their utility. The radial gra-
dients available in SVG have the ability to repeat bands of color, using the values of reflect or repeat.

When seen in motion at http://srufaculty.sru.edu/david.dailey/svg/newstuff/gradient11c.svg, this
example is quite impressive. It’s best rendered by Chrome and ASV.

14 Building Web Applications with SVG

Here’s how it’s done:

■■ The two swirly gradients SVG has two primary sorts of gradients: linear and radial. The
radial gradient allows for a special type called a reflected gradient. In this case, two identi-
cal ellipses are located one atop the other. Both have alternating bands of opacity and
transparency coinciding with their alternating colors, which allows us to see through to the
background.

■■ The animation The center and focal points of the reflected gradients are then independent-
ly animated using SMIL animation.

example 8: Clock with Impressionist tinge
There are lots of SVG clocks on the Web. Displaying time is a medium of expression ripe with op-
portunity, it seems. This particular one is probably not the most artful, elegant, appealing, fanciful,
decorative, or marketable version available, but its ability to do what it does with only 79 lines of code
(about half JavaScript and half SVG) may help to illustrate the ease and brevity with which you can
achieve rich effects. You can find an animated version of this (for browsers that support SMIL anima-
tion) at http://srufaculty.sru.edu/david.dailey/svg/ballclock.svg.

 CHAPTER 1 SVG Basics 15

Here’s how it’s done:

■■ The animation All animation is handled declaratively (using SMIL). That is, there are no
JavaScript statements involving setTimeout() or setInterval() (used for conventional web
animation). A generic animation that handles the rotation of the clock’s hands is declared in
markup and then cloned through JavaScript, with its properties being modified in a simple
loop that handles the details of how fast each hand should move. Likewise, the gears are each
cloned from one protogear, with the dash patterns around their edges and their rotations
being assigned different speeds.

■■ The markup The markup is kept minimal by using script to replicate many copies of similar
things. SVG does not yet have a <replicate> element that might allow some of this script to
be handled declaratively. In the meantime, we can use markup and script for what each does
best—SVG allows the pleasant intermingling of both. The JavaScript is also used to assign
colors, sizes, and speeds to the various gears, and to determine the actual time of day so the
clock’s hands may be initialized.

■■ The clock face The hour marks are also done declaratively by setting the dash-array attri-
bute of the stroke around the clock face. The appearance of a slight curvature to the clock
face is provided through a radial gradient.

16 Building Web Applications with SVG

example 9: Using a Filter to Create pond ripples over an Image
This example shows some of the more advanced aspects of scripted animated gradients used in con-
junction with filters to distort an image. The animated version shows ripples (customizable by the user
using HTML input elements) moving across an image—much as ripples would disrupt the reflection of
an image in a pond.

Here’s how it’s done:

■■ Creating concentric circles The circles are created with script. A gradient can have differ-
ent color bands, called stops, defined within it. In this case, a series of concentric stops (orange
and green) is created through script and added to a gradient, which is then applied to an
ellipse under the image of a face.

■■ Animating concentric circles The radius (or offset) of each stop is then modified gradually
through subtle changes in a setTimeout loop defined in JavaScript. Interestingly, the script for
this example resides in the HTML rather than within the SVG, and the SVG DOM is accessed
from there.

■■ Distorting the image Once the above two things have been done, the rest is rather easy.
A filter is created that brings in both the concentric circles and the face as layers, and then dis-
tortion is applied through a filter effect known as <feDisplacementMap>, using the red chan-
nel of the gradient to determine the degree of distortion associated with the image. Because
green doesn’t contain red but orange does, <feDisplacementMap> provides the differential
distortion in concentric bands.

 CHAPTER 1 SVG Basics 17

example 10: Using <replicate> to Simulate Digital
elevation Maps
SVG is still evolving. Version 2 of the specification is presently under deliberation by the W3C’s Working
Group. While the language currently has only two types of gradients (linear and radial), several propos-
als exist for increasing that number. One, the proposal to allow declarative markup to create many ob-
jects that are tweened from one another—like animation, only spatial rather than temporal—is to use
<replicate>. While <replicate> would handle a wide variety of issues (such as this rotatable 3D portrayal
of a geographic landform), other proposals are considerably less broad in scope.

Here’s how it’s done:

■■ Interpolating between paths In this example, which you can find at http://srufaculty.sru
.edu/david.dailey/svg/dem/DEM_1.svg, many concentric polygons (with varying numbers of
points in their definition) are defined through interpolation and then cloned.

■■ Simulating 3D rotation Script then manipulates the data to enable rotation in three
dimensions.

Example 11: Non-Affine Cobblestones
Here’s another example showing the use of <replicate> (see http://srufaculty.sru.edu/david.dailey/svg/
replicate/repRectsGrad2g.svg). This example replicates interpolated polygons in two directions. While
<replicate> is not (yet) supported by the SVG specification, it is supported through an open source
JavaScript initiative that allows SVG-like declarative markup to be interspersed with actual SVG to cre-
ate a wide range of effects.

http://srufaculty.sru.edu/david.dailey/svg/dem/DEM_1.svg
http://srufaculty.sru.edu/david.dailey/svg/dem/DEM_1.svg
http://srufaculty.sru.edu/david.dailey/svg/replicate/repRectsGrad2g.svg
http://srufaculty.sru.edu/david.dailey/svg/replicate/repRectsGrad2g.svg

18 Building Web Applications with SVG

Here’s how it’s done:

■■ The basic shape First, a quadrilateral is drawn with SVG using a <path> element.

■■ Replicating from left to right It is then replicated by placing a <replicate> element inside
the <path>. The <replicate> element instructs the quadrilateral’s shape and position to be
gradually duplicated from left to right. Additionally, the gradient applied to the quadrilateral
is retrieved, and one of its defining color bands (or stops) is gradually changed from red to
green, and finally to purple (with the color values of that gradient being modified as well).

■■ Replicating vertically The results of the first replication are viewed as part of a group that
is then replicated upward, with its scale being modified as it is cloned.

example 12: triangular tiling
While SVG has a <pattern> element, which allows the creation of repeated rectangular tiles, if you
wish to use nonrectangular tilings or to individually modify the elements from one part of a pat-
tern to another, then script may be the way to go. The juxtaposition of opacity, rotation, gradients,
and triangles is something easily done in SVG. The rotation of the inner triangles creates a bivalent
appearance of either clover leaves or honeycombs, depending on orientation. You can see this ex-
ample at http://srufaculty.sru.edu/david.dailey/svg/triBraids4.svg.

D
ow

n
lo

a
d
 f
ro

m
 W

o
w

!
e
B
o
o
k

<
w

w
w

.w
o
w

e
b
o
o
k.

co
m

>

 CHAPTER 1 SVG Basics 19

Here’s how it’s done:

■■ The basic shapes We begin with two triangles, having different orientations and gradient
fills. Some opacity in the gradients is used to allow the background to be seen.

■■ Duplication using script In this case, script is used to build a triangular tiling through
cloning of the initial triangles. The center of each triangle is then filled with another triangular
shape filled with random colors (from a very select range of possibilities).

■■ Finishing effects An underlying gradient is applied and slowly animated to give an almost
subliminal sense of “atmosphere.” For browsers that support SMIL animation, some of these
effects, including rotation, are animated.

example 13: A Web Application for Drawing Graphs (Networks)
This particular application has been built and rebuilt by its authors in many different languages (cT,
HyperTalk, Java, VML, and now SVG with JavaScript) over the past 25 years. It has proven invaluable
for the teaching of discrete mathematics to undergraduate students. Basically, using a few thousand
lines of JavaScript, it builds a click-and-drag GUI interface to allow the creation, editing, replication,
storage, and retrieval of finite graphs. Like many emerging web applications, the SVG here is sort of
secondary, with JavaScript and event handling consuming the predominant effort. SVG can be used
to play a crucial role in the increasingly important realm of web applications.

20 Building Web Applications with SVG

Here’s how it’s done:

■■ Drawing One advantage of using SVG—instead of comparatively lightweight graphical
technologies, such as <canvas> in HTML—for building web applications is that objects in
SVG are in the DOM. This means that events can be easily attached to objects and SVG event
handling, much like those in the nongraphical parts of HTML. Thus, mouse coordinates (as well
as the targets of events) can easily be interrogated to allow the creation and repositioning of
objects, in the classical sense of a GUI.

■■ Connecting Again, because SVG objects are in the DOM, it is easy to build JavaScript refer-
ents to those objects so that arrays of objects and their properties may be maintained along
with connections back to their visible instantiations. It is easy to connect and disconnect nodes
of graphs, precisely because they are objects, both in JavaScript and SVG.

■■ Interface The example shown here uses JavaScript to build a menuing system along with
dialog boxes, and the ability to export and import the user’s drawings. However, much of this
functionality can also be provided through higher-level tools, such as D3, and Pergola (dis-
cussed in later chapters).

 CHAPTER 1 SVG Basics 21

Diving In: A Step-by-Step Approach to Building a
Simple SVG Document

The following exercises are presented at a deliberately slow pace. Once you get the hang of how SVG
works (in some general way), the pace will quicken a good deal.

A first file

We already introduced a very simple example of an SVG file in this chapter, in the “Writing SVG” sec-
tion. Let us recommence at that point:

1. Open a trusty text editor (something that allows you to see and save plain text—typically plain
ASCII or UTF-8 in .txt format).

2. Create a file containing the following lines of code, and save it as first.svg:

<svg xmlns="http://www.w3.org/2000/svg">
 <circle r="50"/>
</svg>

3. Open the same file in a web browser. You can leave your text editor open because you may
wish to later revise the file to add new things. For your browser, you may use a current version
of Chrome, Firefox, Internet Explorer (see notes on this from the “Viewing SVG” section earlier
in the chapter), Opera, or Safari.

You should see something that looks like the image below, which shows screen shots of
Firefox, Chrome, Opera, Internet Explorer, and Safari (from left to right, top to bottom).

22 Building Web Applications with SVG

4. If you wish to serve this file from your own server, then make sure that the server is serving its
mime type as Content-Type: “image/svg+xml”. You may have to contact your systems admin-
istrator to make sure the server is properly configured. If problems arise, please refer to the
document SVG MIME Type, at http://planetsvg.com/tools/mime.php.

Intermission and Analysis
Next, we’ll discuss the code from the preceding exercise so you can see what it does.

<svg xmlns="http://www.w3.org/2000/svg">
 <circle r="50"/>
</svg>

SVG As XML
The first and last lines show that SVG, as an XML dialect, is a markup language. Each element—in the
simplest case, a single word between the angle brackets—must have a beginning (the <svg> in this
case) and an end (the </svg> in this example). You can end the tag like this:

<svg></svg>

Or you can end it like this:

 <circle ... />

This second example is called a self-terminating tag, because the slash (/) occurs at the end of the
tag itself. Note that the second line in this example is indented as a convention for making the code
more readable—the indentation isn’t required.

Attributes
All SVG elements have a collection of attributes that are divided into two categories: regular at-
tributes and presentation attributes (http://www.w3.org/TR/SVG/attindex.html). The first category
includes, for example, geometrical attributes, such as x, cx, and width. The second category includes,
for example, paint attributes, such as fill, stroke-width, display, and opacity.

The <circle> element, for example, has an attribute r (meaning radius). The fact that the r attribute
has a value of 50 means (in the simplest and standard case) that the circle’s radius will be 50 pixels.

the SVG Namespace
The <svg> element has the attribute/value pair xmlns=”http://www.w3.org/2000/svg” (meaning that
the XML namespace used to interpret the document will be one specified by the W3C).

 CHAPTER 1 SVG Basics 23

The xmlns attribute (which appears not to have been a part of the language originally, because the
Adobe and Opera viewers are unique in not requiring it) is necessary for most browsers to be able to
display the code as SVG.

Essentially, the xmlns attribute merely tells the browser that it will be speaking a new dialect of
XML. This is because most browsers of the 20th century assumed that the only language they would
need to know was HTML. Writing <svg> isn’t sufficient to let the browser know this, because the XML
specification requires a namespace. It is rather unfortunate, from the perspective of teachers and
learners, that the computer languages we learn are filled with mysteries that have no apparent pur-
pose until one becomes a guru. However, you can think of the code xmlns=”http://www.w3.org/2000/
svg” within the <svg> element as just that: a mysterious incantation probably placed in the language
to make sure that casual learners know to be on their guard. It turns out that it is not all that impor-
tant to understand.

Screen Coordinates
Before beginning the second exercise, in which you’ll begin experimenting with SVG, consider the
drawing space itself—the browser window. Each point within the drawing space (also known as the
Cartesian plane) is identified by a pair of coordinates (x and y). The upper-left corner of the screen
is the point (0,0) and—depending on screen resolution and the current size of the window—the
lower-right corner could have coordinates such as (800,640), (951,651), or (1440,900). The number of
pixels determines the resolution of the screen. The resolution on mobile devices varies considerably;
240×320 pixels is a popular size for smaller and older devices.

24 Building Web Applications with SVG

Modifying your code and experimenting

In this exercise, you’ll experiment with the circle you drew in the previous exercise by changing its
location, size, and color, rebuilding it so that only its outer boundary remains black.

1. Move the circle to the center of the screen. You do this by setting the x and y coordinates of
the center of the circle (cx and cy, respectively) to 50 percent, which is measured relative to the
width and height of the browser window.

 <svg xmlns="http://www.w3.org/2000/svg">

 <circle r="50" cx="50%" cy="50%"/>

</svg>

2. Increase the radius and set it as a fixed proportion of the browser’s width.

Note A geometric attribute, such as cx, cy, or r in this case, can be set as either a
proportional value (relative to window size) or an absolute value (pixels, by default).

<svg xmlns="http://www.w3.org/2000/svg">
 <circle r="25%" cx="50%" cy="50%"/>
</svg>

3. Change its color. You can do this by setting the fill attribute to a named color, or in a variety of
other ways (e.g., using CSS or HTML hexadecimal values, RGB values, or HSB values).

<svg xmlns="http://www.w3.org/2000/svg">

 <circle r="25%" cx="50%" cy="50%" fill="darkorange"/>

</svg>

 CHAPTER 1 SVG Basics 25

4. Change the code so that just the outside of the circle is colored. This actually involves three
tasks: setting the fill of the circle to none so that its interior is transparent, setting its stroke
to some color (e.g., darkorange), and defining a width for the stroke. The code below also
adjusts the color from the named color darkorange to #e60, which is a bit lower on the
red channel and a good bit lower on the green channel than the darkorange hexadecimal
equivalent, #FF8C00.

<svg xmlns="http://www.w3.org/2000/svg">
 <circle r="25%" cx="50%" cy="50%" fill="none" stroke="#e60" stroke-width="25"/>

</svg>

5. Make the inside transparent. You can accomplish this by putting another opaque circle behind
it and scooting it a bit to the left. Note that the first object defined appears behind objects
that appear later in the document tree. In this case, we’ve also added another namespace
identifier (which is not strictly needed here, but will become necessary for elements that use
the SVG linking facilities to link to external documents or code fragments defined elsewhere
within the same document). It’s here so you can become accustomed to seeing it, because it’s
part of the standard declaration of a typical SVG document.

26 Building Web Applications with SVG

<svg xmlns="http://www.w3.org/2000/svg"
 xmlns:xlink="http://www.w3.org/1999/xlink" >
 <circle cx="30%" cy="50%" r="25%"
 fill="lightgreen" stroke="#e60" stroke-width="25"/>
 <circle cx="50%" cy="50%" r="25%"
 fill="none" stroke="#e60" stroke-width="25"/>
</svg>

Accomplishing a given effect

In this exercise, we will present a picture and ask you to analyze and then try to draw it.

1. Observe the following SVG drawing, referred to as “the objective”:

2. Identify the type of objects that seem to be used in the drawing.

 CHAPTER 1 SVG Basics 27

tip Until we introduce the full range of graphical primitives, we will restrict
the drawing to circles, ellipses, and rectangles, all of which are somewhat self-
explanatory once you see the syntax.

In this case, it appears that there are three objects: a circle (that very much resembles our
earlier one), an oval (called an ellipse in SVG), and a rectangle.

3. Identify the order in which the objects are drawn. The front-most object appears to be the
ellipse, and its yellowish fill pattern appears slightly transparent, because you can see through
it to the objects behind it. From back to front (which coincides with the order in which the
objects will be drawn), there appears to be a circle, then a rectangle, and finally an ellipse. It’s
important to note that the topmost object (the ellipse) is transparent in its interior but not its
boundary.

4. Determine whether the objects seem to be drawn using relative values (percentages) or abso-
lute values (pixels) for their geometric attributes.

You may find it useful to view the drawing on the web, where you can see how the draw-
ing is affected by resizing the browser. You can find the drawing here: http://granite.sru
.edu/~ddailey/svg/lesson3.svg.

In this case, it makes sense to begin with the assumption that the geometry has been drawn
relative to the window size for three reasons: because the circle seems to be the same as in the
second exercise (which used relative values for its geometry), because the rectangle’s top line
seems to coincide with the center of the circle, and because the ellipse appears to share the
same center as the circle.

5. Start off with the same file you created at the end of the previous exercise, because it appears
that the two files share the same circle, and the objective illustration would involve placing
that circle beneath the other objects—which means earlier in the markup code.

<svg xmlns="http://www.w3.org/2000/svg"

 xmlns:xlink="http://www.w3.org/1999/xlink" >

 <title>Collage involving <rect> , <circle> and <ellipse> </title>

 <circle cx="50%" cy="50%" r="25%" fill="none" stroke="#e60" stroke-width="25"/>

</svg>

The preceding code contains one additional line: a <title> element. As an image format, SVG
has great potential to address issues of accessibility for visually impaired people, so it is best
to get in the habit of adding a title to all your documents. You’ll see more about accessibility
later in this book, because it is an important topic, particularly for SVG.

6. Add a light-blue rectangle on top of the circle and adjust its size, position, color, stroke, and
stroke width:

http://granite.sru.edu/~ddailey/svg/lesson3.svg
http://granite.sru.edu/~ddailey/svg/lesson3.svg

28 Building Web Applications with SVG

<svg xmlns="http://www.w3.org/2000/svg"

xmlns:xlink="http://www.w3.org/1999/xlink" >

 <title>Collage involving <rect> , <circle> and <ellipse> </title>

 <circle cx="50%" cy="50%" r="25%" fill="none"

 stroke="#e60" stroke-width="25"/>

 <rect x="10%" width="80%" y="50%" height="10%"

 fill="#8ff" stroke="black" stroke-width="6" />

</svg>

The <rect> element, like the <circle>, can have fill, stroke, stroke-width, and other attributes.
The x and y attributes specify the rectangle’s upper-left corner, and height and width specify
its size. Because you want the top of the rectangle to coincide with the center of the window,
you can set x to “50%”. You also want it centered on the screen horizontally, so the distance of
its rightmost extent (specified by x + width) to the right edge of the window should equal x.
By experimenting a bit with different values of x and the corresponding value of width (deter-
mined by the centering constraint), you can visually estimate the values above (or similar val-
ues). Note that 100% – (80% + 10%) = 10%, which means that the rectangle will be centered
horizontally, even though it is not centered vertically. The values for stroke-width and fill can
likewise be estimated through experimentation.

7. Put an oval atop everything and fill it with a transparent shade of yellow, while keeping its
stroke opaque:

<svg xmlns="http://www.w3.org/2000/svg"

 xmlns:xlink="http://www.w3.org/1999/xlink" >

 <title>Collage involving <rect> , <circle> and <ellipse> </title>

 <circle cx="50%" cy="50%" r="25%" fill="none" stroke="#e60" stroke-width="25"/>

 <rect x="10%" width="80%" y="50%" height="10%" fill="#8ff"

 stroke="black" stroke-width="6" />

 <ellipse cx="50%" cy="50%" rx="10%" ry="40%" fill="yellow" fill-opacity=".45"

 stroke="purple" stroke-width="15" />

</svg>

An ellipse, like a circle, has a center defined by cx and cy. However, owing to the difference
in its vertical and horizontal extents, it has two radii: ry and rx, respectively. Because this oval
is taller than it is wide, you can approximate the values above fairly closely by testing a few
values and seeing what happens. Alternatively, you could actually measure the drawing on the
screen to duplicate the effect more precisely.

http://support.apple.com/kb/HT2523

 CHAPTER 1 SVG Basics 29

The preceding code introduces a new attribute: opacity. All the typical drawn objects (such as
rect, circle, polygon, ellipse, and path) all have an opacity attribute. When opacity is set to “1.0”,
an object’s stroke and fill are completely opaque. When opacity is set to “0.0”, the object is
completely invisible. If you don’t specify opacity, the browser assumes that opacity is 1. If you
wish to specify different levels of opacity for an object’s stroke and fill, you can do so using
the attributes stroke-opacity and fill-opacity.

The code you end up with for this exercise should closely match the code of the example at http://
granite.sru.edu/~ddailey/svg/lesson3.svg.

Summary

With this chapter, we hope to have given you a sense of how useful, elegant, and important SVG is
for building informative and appealing graphics. You can accomplish a broad range of effects with
this technology, ranging from practical to artistic, while making your graphics both dynamic and
interactive. SVG is a powerful technology, and yet it allows you to easily begin the process of experi-
menting and learning. We feel it is a valuable technology that is just beginning its ascent to wide-
spread deployment.

D
ow

n
lo

a
d
 f
ro

m
 W

o
w

!
e
B
o
o
k

<
w

w
w

.w
o
w

e
b
o
o
k.

co
m

>

 31

C H A P T E R 2

Creating and editing SVG Graphics

Order becomes beauty
beyond infinite planes
and the undeciphered dense text
a mosaic flower, fiery,
chaos tamed in fullness,
spring.

Orides Fontela

In this chapter:

Creating Basic Vector Shapes . 32

paths in SVG . 38

An example of Building Complex Shapes 40

Accessing and reusing Graphics . 50

Creating patterns . 52

Case Study: Designing a reusable pattern 52

By the end of this chapter, you will have explored the core concepts and practiced the basic skills to
begin tapping into your visual creativity. One great thing about programming graphics is that you can
usually visualize your work almost immediately. To demonstrate this, you’ll walk through a process
that uses all of the basic shape elements of SVG. As a teaser, here’s a look at one of the graphics that
you will build in this chapter.

32 Building Web Applications with SVG

This graphic incorporates all of the basic shapes, the simple Bézier curve, more complex cubic
Bézier curves, and bitmap images. It also demonstrates the logical grouping and reusing of related
graphics, and finally, how to pull everything together into a reusable tiling pattern, which is also
known as tessellation of the plane.

Note Although mathematical functions underlie the creation of SVG, and getting the most
out of SVG requires a decent grasp of mathematical concepts, those of us who have limited
mathematical talents can still harness the power and creative potential of SVG.

Creating Basic Vector Shapes

To get started, we’ll go over the six basic shape elements: <line>, <rect>, <circle>, <ellipse>,
<polyline>, and <polygon>.

Lines
To create a visible line in SVG, simply set the x2 and y2 values of the <line> element. You can set the
line’s color and other properties as well using the stroke-related attributes.

 CHAPTER 2 Creating and Editing SVG Graphics 33

<line x2="300" y2="100" stroke="green" stroke-width="10" stroke-linecap="round" />

Note By default, most SVG shape properties have initial or default values. For example, the
initial value of most positioning properties is zero, which is why you do not have to specify
the x1 and y1 values for the <line> element. Also, the default fill color for shapes is black,
so the shape <circle r="50" /> or <polygon points="850,75 850,325 742,262 742,137" /> will
appear black even though the fill has not been specified.

Brief review of SVG presentation Attributes
Besides the command attributes that define a shape’s position, radius, width, and height, SVG also has
many attributes that define a shape’s style. You are probably already familiar with attributes such as
display, visibility, font, and letter-spacing. SVG also has many SVG-specific styling properties (as in the
example above, which shows how the stroke attribute allows you to define the color of the line).

SVG presentation attributes can help you quickly set the paint and geometrical values of SVG ele-
ments; apply gradients, filters, and clipping; and control the interactive behavior. Chapter 3, "Adding
Text, Style, and Transforms" covers presentation attributes in more depth, but Table 2-1 provides a
quick reference for common properties that you will be using in this chapter.

TABLE 2-1 Common SVG Presentation Attributes

Attribute Values

stroke This specifies the color of the stroke. The valid color values are the same as in CSS3 and HTML5:
named color (e.g., "blue"), hexadecimal (e.g., "#f34a12"), RGB (e.g., "rgb(255,255,255)"), HSL
(e.g., "rgb(100%,50%,90%)"),%), and so on. More detail about SVG colors can be found here:
http://www.w3.org/TR/SVG/color.html.

stroke-width This specifies the width of the stroke for a shape or text using either a percentage or a length value.
When using a length value, we recommend specifying the type of unit (px, cm, etc.) to prevent
cross-browser issues. It is worth pointing out that the units specified in the outermost <svg> tag
are inherited by all descendants, and that the default value is px. You can find more details about
possible length values here: http://www.w3.org/TR/SVG/types.html#DataTypeLength. Note that
the stroke is centered on the edge of a shape, so if stroke-width is set to a large enough value, the
shape’s fill may not even display.

stroke-opacity This is a number between 1.0 and 0.0. A value of 1 makes the stroke entirely opaque and 0 makes
it invisible.

stroke-dasharray This is a list of user coordinate values (px) that determines the length or pattern of the invisible
spacing to be drawn between segments along the stroke of text or a shape.

34 Building Web Applications with SVG

Attribute Values

stroke-linecap This defines the shape at both ends of a line. The options are butt (the default), round, and square.

stroke-linejoin This determines the shape to be used at the corners of paths or basic shapes. The options are miter
(the default), round, and bevel.

fill This specifies the color of the shape or text.

fill-opacity This is similar to the stroke opacity. Note that if the opacity is between 0 and 1, and the stroke
value is set to a different color or opacity than the fill color, then the inner portion of the stroke will
be a different color than the outer portion of the stroke, which can create some nice effects.

fill-rule This determines which portions of a shape will be filled. The options are nonzero (the default) and
evenodd. Note that this is usually straightforward, but for more interesting or complex shapes, the
result of fill-rule can be less obvious, as explained in the “Fill Properties: nonzero and evenodd”
section.

rectangles
The rectangle element (<rect>) requires width and height attributes, but you can also specify x and
y attributes, which specify the position in relation to the top-left corner of the SVG canvas. If they
are not specified, they default to (0,0). Optional rx and ry attributes are also available, which apply a
uniform rounding to all the corners. If only rx is specified, ry is equal to rx.

<rect x="50" y="50" width="300" height="170" rx="90" ry="50"
 stroke="darkseagreen" stroke-width="10"
 fill="lightgray" fill-opacity="0.6" />

Circles
As mentioned in Chapter 1, “Stepping into SVG,” the SVG <circle> element only requires a value for
the radius. In the following image, the cx and cy values are set to (100,50).

 CHAPTER 2 Creating and Editing SVG Graphics 35

<circle cx="150" cy="150" r="100"
 stroke="darkseagreen" stroke-width="10" fill="grey" fill-opacity="0.6"/>

ellipses
The <ellipse> element provides the additional attribute ry so that both the x and y radius values can
be set as shown below:

<ellipse cx="110" cy="55" rx="70" ry="35"
 stroke="darkseagreen" stroke-width="0.8"
 fill="lightgray" fill-opacity="0.6" />

polylines and polygons
There are just two additional basic shapes: the polyline and the polygon. They are very similar to each
other in that they both simply require the points attribute, which contains a list of x,y value pairs. Both
of these shapes allow for drawing a series of straight lines, as if a pen were set down and used to draw
on paper.

36 Building Web Applications with SVG

The primary difference between the <polyline> and <polygon> shape elements in SVG is that the
polyline path will not be closed by default—that is, the two endpoints will not be connected unless
you specify that they should be. If you wish a polyline shape to be closed, you need to specifically
draw an endpoint that meets back up with the starting point. The polygon, on the other hand, will
automatically close the shape from the last specified point, as shown in this example:

// open
<polyline points="200,60 240,230 310,230 350,60"
 fill="lightcyan" fill-opacity="0.7" stroke="darkviolet"
 stroke-width="25" stroke-linecap="round" stroke-opacity="0.2" />

// closed
<polygon points="100,50 115,120 150,150 115,180 100,250 85,180 50,150 85,120"
 fill="darkorange" fill-opacity="0.5" stroke="papayawhip"
 stroke-width="20" stroke-opacity="0.7" stroke-linejoin="miter"/>

Note how the stroke-linejoin and stroke-linecap attributes affect the shape.

Note All of these basic shapes have been purposely designed by the W3C community for
ease of use, and each type of shape element carries an inherent semantic meaning as well.
As discussed in the previous chapter, there are many benefits of semantic languages, and
the well-defined shape elements of SVG have inherent benefits for projects such as map-
ping, CAD, and graphic design.

Creativity with Basic Shapes
The beauty of the SVG language is that with just this basic knowledge, you are already able to start
building some complex vector graphics that will render in all the major browsers. As an example, this
next image demonstrates some of the fancy things that you can already do with a little creativity and
knowledge of SVG shape properties.

 CHAPTER 2 Creating and Editing SVG Graphics 37

This next example shows how the <line> element can be styled, with surprising results. All of the
shapes on the left of the figure were created with a single <line> element, and all of the shapes on
the right were created with just two <line> elements.

Even more interesting, the following minimalistic example demonstrates how to create fancy circu-
lar shapes using just one or two <circle> elements.

This third example uses only one or two <polygon> elements—again with interesting results:

38 Building Web Applications with SVG

I encourage you to open the code samples (see the Introduction for instructions on downloading
the code samples) that come with this book to better understand how these interesting shapes were
created. This will provide you with valuable insights into the workings of presentation attributes such
as stroke, opacity, dash array, and others.

In addition to the basic shape elements, SVG provides the much more expressive <path> element,
which allows you to create any type of two-dimensional shape.

Paths in SVG

The <path> element is the most flexible drawing primitive in SVG. It contains subcommands that
allow it to mimic all of the other basic shapes. As such, it is a bit trickier to learn.

Like other drawing primitives such as <rect> and <ellipse>, <path> can take attributes such as fill,
stroke, and dash array. On the other hand, <path> uses a special syntax to describe the way it actu-
ally visits points on a plane. It borrows some of its origin (at least ideologically) from turtle graphics
(http://en.wikipedia.org/wiki/Turtle_graphics), which are used in the Logo programming language to
help introduce younger children to the basics of computer programming.

The SVG <path> element is very expressive due to the range of powerful path commands that it
uses. As with the HTML5 <canvas> element, paths can be used to draw pen-up and pen-down move-
ments, quadratic and cubic Bézier curves, and elliptical arcs, all within a single path. That is, you move
the pen (or drawing point) from position to position, raise it and lower it, and make strokes of varying
types. These instructions within the <path> syntax are called subcommands of the path object. In
SVG, you’ll find them in the data attribute (d) of the <path>.

 CHAPTER 2 Creating and Editing SVG Graphics 39

Paths typically begin with the M subcommand, which instructs the drawing to begin at a specific
(x,y) point, such as (100,100), like so:

d = "M 100,100 ..."

From there, you continue adding points—that is, (x,y) pairs—describing segments to be joined
along the path. The following section shows how this works.

<path> Subcommands: M and L
Start by specifying where the drawing will begin. As the first command for the d attribute, you insert a
notation such as M x y, where x and y are numbers. You can think of M x y as meaning “Move the pen
to the coordinates (x,y).” From there, you have the option of drawing a line (L), a quadratic curve (Q),
a cubic curve (C), or an arc (A). For example, d="M 50 50 L 150 150" would draw a diagonal line from
the point (50,50) to the point (150,150).

<path stroke="black"
 d="M 50 50 L 150 150"/>
<path d="M 150 50
 L 250 150 350 100"/>

You should note several things about this example:

■■ The second path does not specify a stroke; by default, the figure is filled with black. If you
specify fill="none", the figure will be invisible unless you specify a stroke.

■■ You can, for the sake of legibility, use commas between pairs of coordinates, in which case the
space after the comma is optional.

■■ You can omit the command letter on subsequent commands if the same command is used
multiple times in a row, as shown in the second path, where the L command is followed by
two pairs of values. Note also that if a MoveTo command (M or m) is directly followed by mul-
tiple pairs of coordinates, the subsequent pairs are treated as implicit LineTo commands.

40 Building Web Applications with SVG

Fill properties: nonzero and evenodd
Since a path is filled with black by default, it is natural to wonder what happens when a path crosses
itself. As mentioned in Table 2-1, the default fill-rule value is nonzero, which means that by default, the
union of the regions traversed by the path is filled unless you specify otherwise. You can find more
information on this in the “Fill Properties” section of the SVG specification, at http://www.w3.org/TR/
SVG/painting.html#FillProperties.

Here is an example to show the difference between the fill-rule values nonzero and evenodd.

<path d="M 70,290 L 150,150 200,250 40,250 100,150 170,290"/>
<path d="M 70,290 L 150,150 200,250 40,250 100,150 170,290"
 fill-rule="evenodd" transform="translate(250,0)"/>

This example demonstrates the default fill technique, as well as the evenodd fill rule on a shape that
intersects itself in more than one place.

Note To demonstrate how the fill-rule attribute rule works in this example, we moved the
second path shape, which has fill-rule="evenodd" applied to it, 250 units along the x-axis
through the use of the translate method of the transform attribute. You will learn more
about the transform capabilities in Chapter 3.

An Example of Building Complex Shapes

This section shows how you can use the pen-down command M to make more complex shapes with
<path>.

http://www.w3.org/TR/SVG/painting.html#FillProperties
http://www.w3.org/TR/SVG/painting.html#FillProperties

 CHAPTER 2 Creating and Editing SVG Graphics 41

The following code creates two paths, with one apparently drawn inside the other (in the sense
that the coordinates of one are contained inside the polygon defined by the other):

<path d="M 100,350 300,100 500,350" fill="none" stroke="black" stroke-width="20"/>
<path d="M 250,320 250,220 350,220 350,320" fill="none" stroke="black" stroke-width="20"/>

The figure contains two paths: one with three points, the other with four. Note how the triangle
encompasses the rectangle.

Next, we add the simple z subcommand (shown below in bold) at the end of each of the strings,
which closes the path by drawing a final line back to the path’s starting point. After we do that, the
paths will be closed rather than left open between endpoints.

<path d="M 100,350 300,100 500,350 z" fill="none" stroke="black" stroke-width="20"/>
<path d="M 250,320 250,220 350,220 350,320 z" fill="none" stroke="black" stroke-width="20"/>

The new rendered SVG image looks like this:

Alternatively, you could create the preceding image using only a single path object (see
http://www.w3techcourses.com/svg_images/onepath.svg), as follows:

<path d="M 100,350 300,100 500,350 z
 M 250,320 250,220 350,220 350,320 z"
 fill="none" stroke="black" stroke-width="20"/>

42 Building Web Applications with SVG

This method can save a bit on markup, but is a little harder. However, there are some additional
benefits to this approach that are worth considering. By combining the two shapes above into one
compound path, you can define the fill rule of that path as evenodd. The net effect of this is that the
shape’s fill color will not be applied to the interior region (although it would be applied to regions
inside the interior region). Try this combined code:

<path d="M 100,350 300,100 500,350 z
M 250,320 250,220 350,220 350,320 z"
 fill="#ff8" stroke="black" stroke-width="15" fill-rule="evenodd"/>

You can see the advantage in the next graphic. The rectangles that underlie the triangle are visible
through the rectangular hole in the shape. This effect would be difficult to produce if the two parts
of this compound path were separate paths, because to be visible, the rectangle would have to be on
top of the triangle—but in that case, nothing inside it other than the triangle itself would be visible.

We have just demonstrated how to create a complex vector graphic shape using a single SVG path
element that contains a yellow triangle with a rectangular hole showing pink and green rectangles
underneath. The next section discusses creating shapes using Bézier curves.

Quadratic Bézier Curves: the Q Subcommand
I became aware of Bézier curves in the mid-1980s when I discovered that Adobe Illustrator had the
ability to draw amazing curves quickly. You can find good treatment of the subject on Wikipedia, at
http://en.wikipedia.org/wiki/B%C3%A9zier_curve#Quadratic_curves.

Here’s basically how a quadratic Bézier curve works in SVG. You define an initial point (e.g.,
100,200) using a pen-down command. From there, you set a course heading toward the next point;
however, instead of actually moving to the next point, you just aim in that direction. So, for example,
while "M 100 200 L 200 400" will make you actually arrive at the point (200,400), "M 100 200 Q 200
400…" will merely point you in that direction. Ultimately, you also need a final destination, which is the
final coordinate pair required for a quadratic Bézier curve. In the example that follows, the command
"M 100,200 L 200,400 300,200" draws a red path between (and reaching each of) the three points

D
ow

n
lo

a
d
 f
ro

m
 W

o
w

!
e
B
o
o
k

<
w

w
w

.w
o
w

e
b
o
o
k.

co
m

>

 CHAPTER 2 Creating and Editing SVG Graphics 43

indicated. But simply replacing the L with a Q (i.e., "M 100,200 Q 200,400 300,200") produces a curve
that passes through both endpoints and is a tangent to the associated lines of the allied line path at
the endpoints of the segments.

Bézier Curve example
This example clearly shows how the quadratic Bézier curve is created.

<path d="M 100 200 Q 200,400 300,200" fill="none" stroke="blue" />
<path d="M 100 200 L 200,400 300,200" fill="none" stroke="red"/>

While an infinite number of curves are tangent to both the line "M 100 200 L 200 300" at (100,200)
and "M 200 400 L 300 200" at (300,200), only one quadratic shares these properties, even if you allow
for rotations (in the sense of parametric equations) of the quadratic. That is, those three points in the

44 Building Web Applications with SVG

plane uniquely define a specific curve. Likewise, any three noncollinear points in the plane determine
one quadratic Bézier curve.

Revisiting the earlier example, which modified the fill rule to produce an empty space in the mid-
dle of the curve, you can draw the same curve with quadratic splines instead of lines to see the effect.

Here’s an example of a graphic that uses a quadratic spline:

<path fill-rule="evenodd"
 d="M 70 140 L 150,0 200,100 L 40,100 100,0 L 170,140 70 140"/>

<path fill="red" fill-rule="evenodd"
 d="M 70 140 Q 150,0 200,100 Q 40,100 100,0 Q 170,140 70 140"/>

Note how the above example

<path id="H" fill="#bbb" fill-rule="evenodd"
 d="M 70 140 L 150,0 200,100 L 40,100 100,0 L 170,140 70 140"/>

can have its Ls modified to Qs:

<path id="X" fill="#b42" fill-rule="evenodd"
 d="M 70 140 Q 150,0 200,100 Q 40,100 100,0 Q 170,140 70 140"/>

That produces a shape similar to the following (we’ve changed the colors and added in identifiers
to the paths for easy reference in the text here):

 CHAPTER 2 Creating and Editing SVG Graphics 45

The figure shows two paths produced from the preceding code. Both paths have the same points,
but one is linear (id="H") and the other is quadratic (id="X").

Observe that the angles of the reddish shape (X) at which the curves actually meet are sharp rather
than rounded. Let’s look more closely. If you’re familiar with trefoil knots (see http://en.wikipedia.org/
wiki/Trefoil_knot), then that is the sort of shape we’ll be aiming toward.

First, observe that if the desired shape were to pass through any of the six points of the linear path
H, then in order for the parts of the curve that meet there to be smooth, and for any of them to be
tangent to lines of H, the new curve would have to extend beyond the bounds of X. You could extend
the lines of X into a larger equilateral triangle and then work on building your trefoil knot. You could
do this with cubic Bézier curves by defining a curve that passes through the same three endpoints
(http://www.w3techcourses.com/svg_images/lineOutCub.svg) that it already does, but that is guided
by the control points consisting of the three points of the circumscribed triangle (shown in the next
figure as the light green line).

<path fill="#c53" fill-rule="evenodd" opacity=".5"
 d="M 70 140 C 17.5 ,140 150,0 200,100 C 220, 140 40,100 100,0 C 127,-47 170,140 70 140"/>

As a final example, the following demonstrates how to stitch Bézier curves together smoothly. For
this to happen, the slopes of the lines at either side of a segment’s endpoint must be the same.

http://en.wikipedia.org/wiki/Trefoil_knot
http://en.wikipedia.org/wiki/Trefoil_knot

46 Building Web Applications with SVG

Notice that the brown and blue paths share the same beginning points and endpoints, initial
and final control points, and midpoints (150,200). They differ only in terms of the control points
surrounding the midpoint. The blue path aims toward (100,100) and then changes direction toward
(200,300), passing through the midpoint on its way and tangent to the line, as shown. Because the
three relevant points, (100,100), (150,200), and (200,300), are collinear, the slopes of both segments
are the same at the point where they meet, implying that the curve is smooth (continuously dif-
ferentiable) at that point.

Creating Smooth Curves: the S and t Subcommands
These shortcut commands help with creating smooth curves, and they require fewer data points than
constructing cubic and quadratic Bézier curves without these shortcut commands. This is because
one of the Bézier curve points is used simply as a reference point, which is then reflected to create a
smooth curve.

You use the S command to draw a smooth cubic Bézier spline segment from the current point to
a new point (x,y). The previous segment must also be a smooth cubic Bézier spline, and that second
control point is then reused via reflection relative to the current point as the segment’s first control
point. The second control must be explicitly specified.

You use the T command to draw a smooth quadratic Bézier spline segment from the current point
to a new point (x,y). The previous segment must also be a smooth quadratic Bézier spline, and that
control point is then reused via reflection relative to the current point.

 CHAPTER 2 Creating and Editing SVG Graphics 47

The following image demonstrates the automatic reflection process for both these commands:

As you have seen, the <path> element can express both simple and complex shapes using the L, H,
V, Q, and C commands. The geometric calculations involved are quite complex, which is why vector-
drawing programs such as Inkscape, Illustrator, SVG-Edit, and Visio are very helpful in the SVG design
process.

elliptical Arc example
One other often-used path command is the elliptical arc command (A), which allows you to quickly
draw subsets of ellipses or intersecting ellipses. The arc subcommand of the <path> element has the
following syntax: A rx ry XAR large-arc-flag sweep-flag x y.

The arc begins at the current point (which is determined by the last coordinate specified) and ends
at (x,y), as demonstrated below:

You now have the choice of four elliptical arc segments: two small ones and two large ones. These
arc segments can have a positive angular orientation (clockwise) or a negative orientation. The large-
arc-flag (fl) controls the angular orientation of the larger arc segment via fl = 0 : small, fl = 1 : large. The
sweep-flag (fs) controls the angular orientation analogously, via fs = 0 : positive, and fs = 1 : negative.

48 Building Web Applications with SVG

Note For the special case where the endpoint coordinates (x,y) are equal to the current
point’s coordinates, the arc will not get rendered. Because this behavior is not intuitive
when large-arc-flag is set to 1, this might be changed in the SVG 2.0 specification.

Using this elliptical arc information, here’s the code to create a simple spiral:

<svg width="600" height="400" viewBox="0 0 400 300">
<path stroke="darkslategray" stroke-width="6" fill="none"
 stroke-linecap="round"
 d="M50,100
 A100,50 0 0 1 250,100
 A80,40 0 0 1 90,100
 A60,30 0 0 1 210,100
 A40,20 0 0 1 130,100
 A20,10 0 0 1 170,100" />
</svg>

That code produces the following spiral:

Table 2-2 provides a quick reference for the path commands and properties.

TABLE 2-2 Path Commands

Commands Parameters Instruction

M, m x, y Move to a new point (x,y).

L, l x, y Draw a line from the current point to a new point (x,y).

H, h x Draw a horizontal line from the current point to a new point (x,current-point-y).

V, v y Draw a vertical line from the current point to a new point (current-point-x,y).

A, a rx, ry,
x-axis-rotation,
large-arc-flag,
sweep-flag, x, y

Draw an elliptical arc from the current point to a new point (x,y). The arc belongs to
an ellipse that has radii rx and ry and a rotation with respect to the positive x-axis of
x-axis-rotation (in degrees). If large-arc-flag is 0 (zero), then the small arc (less than
180 degrees) is drawn. A value of 1 results in the large arc (greater than 180 degrees)
being drawn. If sweep-flag is 0, then the arc is drawn in a negative angular direc-
tion (counterclockwise); if it is 1, then the arc is drawn in a positive angular direction
(clockwise).

 CHAPTER 2 Creating and Editing SVG Graphics 49

Commands Parameters Instruction

Q, q x1, y1
x, y

Draw a quadratic Bézier curve from the current point to a new point (x,y) using
(x1,y1) as the control point.

T, t x, y Draw a smooth quadratic Bézier curve segment from the current point to a new
point (x,y). The control point is computed automatically as the reflection of the con-
trol point on the previous command relative to the current point. If there is no previ-
ous command or if the previous command was not a Q, q, T, or t, the control point is
coincident with the current point.

C, c x1, y1
x2, y2
x, y

Draw a cubic Bézier curve from the current point to a new point (x,y) using (x1,y1)
and (x2,y2) as control points.

S, s x2, y2
x, y

Draw a smooth cubic Bézier curve segment from the current point to a new point
(x,y). The first control point is computed automatically as the reflection of the control
point on the previous command relative to the current point. If there is no previous
command or if the previous command was not a C, c, S, or s, the first control point is
coincident with the current point. (x2,y2) is the second control point.

relative vs. Absolute path Coordinates
This next example uses a mixture of MoveTo (M), Vertical (V), LineTo (L), Bézier (Q), HorizontalTo (H),
and ClosePath (Z) commands to generate a fairly elegant shape, as shown on the left of the follow-
ing image. The example on the right requires less spatial brain power to generate the same shape
because it uses relative versions of commands (i.e., lowercase commands). The coordinates of the new
point are relative to the position of the previous point (40,80).

Note The data of the path’s d attribute actually follows a specific set of rules, called the
Backus-Naur Form (BNF). You can find more detailed information on these rules at http://
www.w3.org/TR/SVG/paths.html#PathDataBNF.

50 Building Web Applications with SVG

Accessing and Reusing Graphics

From buttons, icons, and window UIs, to building graphs and gaming graphics, there are many logical
use cases for accessing and reusing raster and vector graphics in SVG.

Linking to both internal and external image data is worth a quick mention here because it is a
common method for accessing and reusing SVG.

referencing Vector and Bitmap Images
The SVG language provides the <image> element, which can reference other SVG images, as well as
PNG and JPEG bitmap images. The syntax for the <image> element is similar to the <rect> element in
that it has x, y, width, and height attributes.

The <image> element has the additional attribute xlink:href, which allows you to specify the loca-
tion of the referenced image. Similar to HTML’s href attribute, the xlink:href attribute allows the refer-
enced image to be stored either locally or on the Internet. The code for referencing a bitmap image is
as follows:

<image xlink:href="GrandMothersParty-121YO.png" x="340" y="0" width="140"
 height="160" opacity="0.5"/>

Referencing other SVG images is just as easy and becomes very useful in many application scenarios,
such as reusing the same vector symbol on a page or dynamically loading vector images on demand.

the Group element
The SVG group element, <g>, is great for logically grouping sets of related graphical objects. This group
capability makes it easy to add styles, transformations, interactivity, and even animations to entire
groups of objects. The following code groups a circle and a bitmap image together into a group named
iris, which is then grouped together with an ellipse shape into another group named eye.

<!-- Group containing the eye. -->
<g id="eye">
 <!-- Draw the ellipse. -->
 <ellipse fill="#a1d9ad" fill-opacity="0.7" fill-rule="nonzero"
 stroke="#32287d" stroke-width="1" stroke-opacity="0.5" />

 <!-- Group containing the eye's iris. -->
 <g id="iris"
 cx="50" cy="50" rx="20" ry="14" />

 <!-- Draw the circle. -->
 <circle fill="black" fill-opacity="1" fill-rule="nonzero"
 stroke="#32287d" stroke-width="1" stroke-linecap="butt"
 stroke-linejoin="bevel" stroke-miterlimit="4"
 id="path3395" cx="50" cy="50" r="10" />

 CHAPTER 2 Creating and Editing SVG Graphics 51

 <!-- Reference the bitmap image (PNG) -->
 <image id="bitmapCentralBall"
 width="5.5%" height="5.5%"
 x="39px" y="42px"
 xlink:href="iris-small.png"
 alt="NASA Photo of Jupiter" />
 </g>
</g>

With some creativity, you could then add some scripted interactivity such that the iris group could
follow the mouse, while the eye group could blink randomly or at set intervals.

You’ll see another great use for <g> during the discussion of transformations and interactivity in
SVG in Chapter 4, “Motion and Interactivity.” You can associate items together in a group and then
define transformations to move, scale, or rotate all the items together so that their spatial relations to
one another are maintained. Through the use of interactivity in SVG, you can assign, for example, an
onclick event to an entire group so that all elements within the group respond to the event.

the <use> element
The <use> element lets you reuse existing elements and thus write less code. Like the <image>
element, <use> takes x, y, height, and width attributes, and it references other content using the
xlink:href attribute.

As an example, you can reuse the following rectangle

 <!-- Draw the upper-right rectangle. -->
 <rect fill="#ada1d9" fill-opacity="1" fill-rule="nonzero"
 stroke="#32287d" stroke-width="10" stroke-linecap="butt"
 stroke-linejoin="bevel" stroke-miterlimit="4" stroke-opacity="0.4"
 id="rectangle" width="20" height="20" x="90" y="-10" />

by referencing it with the <use> element:

 <!-- Reuse the first rectangle element and move it to a different position. -->
 <use x="" y="" xlink:href="#rectangle" />

52 Building Web Applications with SVG

Creating Patterns

The SVG language helps you create and reuse patterns with ease. Patterns are extremely useful—in
fact, the grid background found in many of this book’s examples is just a simple pattern that consists
of a single 10-by-10-pixel rectangle. The <defs> element can be used to store content that will not be
directly displayed. This stored hidden content can then be referenced and displayed by other SVG ele-
ments, which makes it ideal for things such as patterns that contain reusable graphics.

To create a basic pattern in SVG, first place a rectangle within a <pattern> element, and then put
everything inside of a <defs> element.

<defs>
 <pattern id="Pattern01" width="10" height="10" patternUnits="userSpaceOnUse">
 <rect width="10" height="10" fill="#FFFFFF" stroke="#000000" stroke-width="0.1"/>
 </pattern>
</defs>

Now, to use this pattern anywhere in your SVG graphic, simply set your element’s fill attribute
value to the id of the pattern, like this: url(#Pattern01).

<rect id="Background" x="0" y="0" width="100%" height="100%"
 fill="url(#Pattern01)" stroke-width="0.5" stroke="#000000" />

Case Study: Designing a Reusable Pattern

The example in this section gives you a closer look at how to write SVG code that generates a pattern
composed of both vector and bitmap graphics.

Adding Basic Shapes
Building upon your knowledge up to this point, you’ll walk through each step of the design and cre-
ation process.

1. Create and save a file named tile.svg that contains the following lines of code:

<svg xmlns="http://www.w3.org/2000/svg" xmlns:xlink="http://www.w3.org/1999/xlink"
 version="1.1"

 width="800" height="600"

 viewBox="0 0 400 300" preserveAspectRatio="none">

 <g id="layer1"></g>

</svg>

2. With this framework in place, you can start adding some basic shapes. The next example
shows a simple pattern design. Tile patterns are known mathematically as tessellations of
the plane.

 CHAPTER 2 Creating and Editing SVG Graphics 53

To create this pattern in SVG code, first create the following line:

<line stroke="#000000" stroke-width="1" stroke-linecap="round"

 stroke-linejoin="round" stroke-miterlimit="4" stroke-opacity="0.4"

 stroke-dasharray="1, 6" stroke-dashoffset="0"

 x1="90" y1="10" x2="10" y2="90"

 id="patternLine1" />

Now, as mentioned earlier, you can reuse the line. By changing the x and y values you can
effectively rotate the line by 90 degrees. Also, to mix the pattern up a bit, you can override
stroke-opacity and other style attributes that would otherwise be inherited from the refer-
enced element:

<use stroke-opacity="1"

 transform="rotate(90, 50, 50)"

 xlink:href="#patternLine1"

 id="patternLine2" />

3. Next, draw the rest of the elements that you want to include in your pattern—for example:

<ellipse fill="#a1d9ad" fill-opacity="0.7" fill-rule="nonzero"

 stroke="#32287d" stroke-width="1" stroke-opacity="0.5"

 id="path3389" cx="50" cy="50" rx="30" ry="20" />

<!-- Draw the upper-right rectangle. -->

<rect fill="#ada1d9" fill-opacity="1" fill-rule="nonzero"

 stroke="#32287d" stroke-width="10" stroke-linecap="butt"

 stroke-linejoin="bevel" stroke-miterlimit="4" stroke-opacity="0.4"

 id="patternRect-upperRight"

 width="20" height="20" x="90" y="-10" />

<!-- Reuse the first rectangle element and rotate it 90 degrees each time. -->

54 Building Web Applications with SVG

<use transform="rotate(90, 50, 50)"

 xlink:href="#patternRect-upperRight"

 id="patternRect-lowerRight" />

<use transform="rotate(180, 50, 50)"

 xlink:href="#patternRect-upperRight"

 id="patternRect-lowerLeft" />

<use transform="rotate(270, 50, 50)"

 xlink:href="#patternRect-upperRight"

 id="patternRect-upperLeft" />

<!-- Draw the circle. -->

<circle fill="#d9d2a1" fill-opacity="1" fill-rule="nonzero"

 stroke="#32287d" stroke-width="1" stroke-linecap="butt"

 stroke-linejoin="bevel" stroke-miterlimit="4"

 id="path3395" cx="50" cy="50" r="10" />

<!-- Draw the path using "relative"coordinates via lowercase path commands.

 Note that we can easily switch to using the Polyline element by changing

 the "d" attribute to "points". -->

<path fill="none" stroke="#000000" strGoke-width="1px" stroke-linecap="butt"

 stroke-linejoin="miter" stroke-opacity="1"

 d="m 0,50 10,0 0,20 20,20 0,0 0,0 20,0 0,10"

 id="patternPath-lowerLeft" />

<!-- Reuse the first path, rotate it 90 more degrees for each of the four corners. -->

<use transform="rotate(90, 50, 50)"

 xlink:href="#patternPath-lowerLeft"

 id="patternPath-upperLeft" />

<use transform="rotate(180, 50, 50)"

 xlink:href="#patternPath-lowerLeft"

 id="patternPath-upperRight" />

<use transform="rotate(270, 50, 50)"

 xlink:href="#patternPath-lowerLeft"

 id="patternPath-lowerRight" />

These SVG elements form the basis for the pattern that you will create in the next step. You
may have noticed the use of the transform attribute. You can see how the referenced rec-
tangle and path shapes were moved into a different position via a rotate command. The next
chapter will cover the usefulness of transformations in greater detail.

4. To create a more interesting pattern design, rather than using simple MoveTo (M) path
commands, simply alter the <path> element’s values to use a relatively positioned smooth
quadratic Bézier curve using the s command, and an absolutely positioned cubic Bézier curve
using C. So, the path’s data becomes the following:

d="M 0,50 s 10,0 0,20 C 20,20 0,0 0,0"

5. Add a reference to a bitmap image of the planet Jupiter and position the image at the center.
Also, move the graphics to the origin of the coordinate system, which equals the x,y value of
(0,0), to complete your initial tile design. Now the tile looks like this:

D
ow

n
lo

a
d
 f
ro

m
 W

o
w

!
e
B
o
o
k

<
w

w
w

.w
o
w

e
b
o
o
k.

co
m

>

 CHAPTER 2 Creating and Editing SVG Graphics 55

6. Finally, add the <pattern> element inside of a <defs> element and move the tile design
graphics inside of the <pattern>.

<defs>
 <pattern id="gridPatternWithTessellation"
 x="20" y="20" width="100" height="100
 patternUnits="userSpaceOnUse">
 <!--Insert the tile elements here. -->
 </pattern>
</defs>

56 Building Web Applications with SVG

Below the <defs>, you then simply create a rectangle, path, or any other SVG shape and set its
fill value to be the pattern, as shown at the end of the full code listing below.

<svg
 xmlns="http://www.w3.org/2000/svg"
 xmlns:xlink="http://www.w3.org/1999/xlink"
 id="chapter2-ShapesPatternsGroupsUse"
 version="1.1"
 width="800" height="600"
 viewBox="0 0 400 300" preserveAspectRatio="none"
>
 <defs>
 <!-- Begin Example -->
 <pattern id="gridPatternWithTessellation" x="20" y="20" width="100" height="100"
 patternUnits="userSpaceOnUse">
 <!-- Draw the lines. -->
 <line stroke="black" stroke-width="1" stroke-linecap="round" stroke-
linejoin="round"
 stroke-miterlimit="4" stroke-opacity="0.4" stroke-dasharray="1, 6"
 stroke-dashoffset="0"
 x1="90" y1="10" x2="10" y2="90"
 id="patternLine1" />
 <!-- Reuse the first line, rotate it 90 degrees, and update the style attributes.
-->
 <!-- For appendix or wiki - note that currently most browsers do not support
styling
 of Use elements using either CSS or SVG attributes -->
 <use stroke-opacity="1"
 transform="rotate(90, 50, 50)"
 xlink:href="#patternLine1"
 id="patternLine2" />
 <!-- Draw the upper-right rectangle. -->
 <rect fill="#ada1d9" fill-opacity="1" fill-rule="nonzero" stroke="#32287d"
 stroke-width="10" stroke-linecap="butt" stroke-linejoin="bevel"
 stroke-miterlimit="4" stroke-opacity="0.4"
 id="patternRect-upperRight"
 width="20"
 height="20"
 x="90"
 y="-10" />
 <!-- Reuse the first rectangle element and rotate it 90 degrees each time. -->
 <use transform="rotate(90, 50, 50)"
 xlink:href="#patternRect-upperRight"
 id="patternRect-lowerRight" />
 <use transform="rotate(180, 50, 50)"
 xlink:href="#patternRect-upperRight"
 id="patternRect-lowerLeft" />
 <use transform="rotate(270, 50, 50)"
 xlink:href="#patternRect-upperRight"
 id="patternRect-upperLeft" />
 <!-- Group containing the eye. -->
 <g id="eye">
 <!-- Draw the ellipse. -->
 <ellipse fill="#a1d9ad" fill-opacity="0.7" fill-rule="nonzero"
 stroke="#32287d" stroke-width="1" stroke-opacity="0.5"

 CHAPTER 2 Creating and Editing SVG Graphics 57

 cx="50" cy="50" rx="22" ry="14" />
 <!-- Group containing the eye's iris. -->
 <g id="iris">
 id="path3389"
 cx="50" cy="50" rx="20" ry="14" />

 <!-- Draw the circle. -->
 <circle fill="black" fill-opacity="1" fill-rule="nonzero" stroke="#32287d"
 stroke-width="1" stroke-linecap="butt" stroke-linejoin="bevel"
 stroke-miterlimit="4"
 id="path3395"
 cx="50" cy="50" r="10" />
 <!-- Reference the bitmap image (PNG) -->
 <image id="bitmapCentralBall"
 width="5.5%" height="5.5%"
 x="39px" y="42px"
 xlink:href="iris-small.png"
 alt="NASA Photo of Jupiter" />
 </g>
 </g>
 <!-- Draw the path using "relative" coordinates via lowercase path commands.
 Note that we can easily switch to using the Polyline element by changing
 the "d"
 attribute to "points". -->
 <path fill="none" stroke="black" stroke-width="1px" stroke-linecap="butt"
 stroke-linejoin="miter" stroke-opacity="1"
 d="M 0,50 s 10,0 0,20 C 20,20 0,0 0,0"
 id="patternPath-lowerLeft" />
 <!-- Other interesting paths
 MoveTo Polyline-like d="m 0,50 10,0 0,20 20,20 0,0 0,0 20,0 0,10"
 Quadratic d="M 0,50 Q 10,0 0,20 S 20,20 0,0"
 Smooth Quadratic d="M 0,50 S 10,0 0,20 Q 20,20 0,0"
 Cubic d="M 0,50 C 10,0 0,20 20,20 S 0,0 0,0"
 Smooth Quadratic & Cubic d="M 0,50 s 10,0 0,20 C 20,20 0,0 0,0" -->

 -->
 <!-- Reuse the first path, rotate it 90 more degrees for each of the
 four corners. -->
 <use
 transform="rotate(90, 50, 50)"
 xlink:href="#patternPath-lowerLeft"
 id="patternPath-upperLeft" />
 <use
 transform="rotate(180, 50, 50)"
 xlink:href="#patternPath-lowerLeft"
 id="patternPath-upperRight" />
 <use
 transform="rotate(270, 50, 50)"
 xlink:href="#patternPath-lowerLeft"
 id="patternPath-lowerRight" />
 </pattern>
 </g>
 <pattern id="gridPattern" width="10" height="10" patternUnits="userSpaceOnUse">
 <path d="M10 0 L0 0 L0 10" fill='none' stroke='gray' stroke-width='0.25'/>
 </pattern>
 </defs>
 <g id="layer1">

58 Building Web Applications with SVG

 <!-- background grid -->
 <rect id="grid" width="100%" height="100%" x="0" y="0"
 stroke='gray' stroke-width='0.25' fill='url(#gridPattern)'/>
 <!-- grid illustrations -->
 <use xlink:href="#coords"/>
 <text x="3" y="9" font-size='8'>(0,0)</text>
 <!-- Begin Example -->
 <rect id="gridWithTessellation" width="300" height="300" x="20" y="20"
 fill='url(#gridPatternWithTessellation)' />
 </g>
 <rect id="gridWithTessellation"
 x="20" y="20" width="300" height="300"

 fill='url(#gridPatternWithTessellation)' />

</svg>

With just these lines of code, you have created an interesting work of art and a useful tiling pattern
that has all the benefits of SVG. To meet the needs of your company, group, or imagination, you only
need to edit the base tile to create an entirely different design for your application.

Because there is a bitmap image within the pattern, if end users zoom in they will see a slightly
pixelated graphic surrounded by the smoother, unpixelated vector graphics. You should consider
bitmap pixelation when your project requires high-fidelity printouts.

Note There are several programs that assist with creating tiles for patterns. Inkscape, for
example, has some excellent built-in pattern creation features, and there is a powerful pat-
tern creation program on the LearnSVG.com website as well, which was originally devel-
oped by Michel Hirtzler (see http://pilat.free.fr/tiling_loc/tile.svg).

Summary

At this point, you should be off to a great start exploring the expressive language of SVG. This chapter
showed you the basics of working with SVG in a very condensed form, including creating basic vector
shapes and paths, building more complex shapes, and creating and working with patterns. In the next
chapter, we will delve into animations and scripting, as well as gradient rotation, scaling, and other
transformations.

 59

C H A P T E R 3

Adding text, Style, and transforms

I want to do with you what spring does with the cherry trees.
Pablo Neruda

In this chapter:

Adding and positioning text. 60

Working with Colors in SVG . 66

Creating Gradients in SVG . 67

Clipping and Masking with SVG . 73

Details of transforms . 77

Vector Graphics, Symbol, and Button Libraries 83

Accessibility . 83

Case Study: A Simple SVG Web Interface. 85

You are now ready to move on to some of the slightly more advanced features of SVG. In this chapter,
you will start adding more interesting effects and styles with SVG using text, colors, gradients, clip-
ping, masking, CSS3, and coordinate system transformations. A thorough reading of this chapter will
take your skills from novice to intermediate in your understanding of how SVG can be styled with
and without the CSS language. By the end of this chapter, you will be able to create an SVG web page
that makes use of CSS and SVG styling effects to create beautiful designs that automatically adjust to
target a variety of end-user devices. Let’s start with text.

60 Building Web Applications with SVG

Adding and Positioning Text

Adding text to SVG is quite simple after you understand the basic constructs. The main difference be-
tween text and the shape elements in SVG is that text is positioned at the lower-left corner of the first
text character: the font’s baseline (assuming the writing system flows from left to right, like English,
Spanish, and Russian, but unlike Arabic or Hebrew).

Text in SVG can be styled, shaped, and spaced in a great number of ways, and if you wish to
explore it in more detail, you can look to the SVG 1.1 specification for a plethora of rich details. For
example, letter spacing and kerning, which control the space between text characters, are determined
first by the default font rules, but can be overridden by the SVG letter-spacing and font-kerning con-
sistent with http://lists.w3.org/Archives/Public/www-svg/2012May/0101.html attributes.

Due to the different text-rendering engines used by different implementers, text may not render
exactly the same way. However, the homogeneity in the rendering is usually satisfactory, although it
could be better.

Version 2 of the SVG specification will address what is considered a major limitation for text in the
current version (1.1)—the inability to format the text flow (e.g., into a rectangle). To its benefit, how-
ever, SVG has the ability to define vector fonts and glyphs with remarkably flexible content.

Some of the examples at http://srufaculty.sru.edu/david.dailey/svg/text/ will give you a good
overview of what SVG can do with text. We also recommend you read the W3C’s text specification,
at http://www.w3.org/TR/SVG/text.html.

It is also worth watching the SVG 2.0 spec as it emerges, since some aspects of text-handling are
being improved, amended and deprecated, to bring SVG's treatment into more compliance with CSS.

the <text> element
The classic Hello World example that follows shows how to make use of the <text> element. Note that
the <text> element needs a closing tag after the text content, as shown here:

<svg xmlns="http://www.w3.org/2000/svg" xmlns:xlink="http://www.w3.org/1999/xlink">
 <text x="20px" y="55px" font-family="Verdana" font-size="43pt">Hello World!</text>
</svg>

http://www.w3.org/TR/SVG/text.html

 CHAPTER 3 Adding Text, Style, and Transforms 61

Some of the most useful attributes of the <text> element are x (for setting the horizontal posi-
tion), y (for the vertical position of the baseline of the text), fill (for determining the text’s color or
pattern), font-size, and font-family, though there are literally dozens of other text attributes that you
can experiment with. As a general rule, the use of attributes gives you precise control over layout and
rendering. Size and positioning values can be expressed with unit identifiers, which are the same as in
CSS: em, ex, px, pt, pc, cm, mm, and in. If you don’t specify a font family in the outermost <svg> ele-
ment (or through a style sheet) for the whole document, remember to always specify it for a particu-
lar <text> element or for its container element; otherwise, the browser will use the font family that
has been set as the default in the browser’s options.

Next is a more interesting example using a variety of features that allow effects commonly found
in vector-editing software, such as gradients, rotation, and stretching textual content:

62 Building Web Applications with SVG

<linearGradient id="g">
 <stop offset="0" stop-color="#870"/>
 <stop offset=".2" stop-color="#520"/>
 <stop offset=".4" stop-color="#000"/>
 <stop offset=".6" stop-color="#840"/>
 <stop offset=".8" stop-color="#210"/>
 <stop offset="1" stop-color="#832"/>
</linearGradient>
<text id="T" fill="none" stroke-width="4" stroke="url(#g)" stroke-opacity="1"
 font-family="serif" font-stretch="ultra-expanded" stroke-dasharray="10 5"
 rotate="-25 -20 -15 -10 -5 0 5 10 15 20"
 textLength="90" lengthAdjust="spacingAndGlyphs" font-style="oblique"
 text-decoration="overline" font-size="50" x="5" y="65%" font-weight="bold">
 Decorative</text>

The above example looks like this in the Opera browser, though if you try it in other browsers, you
are likely to be surprised by how inconsistently it is rendered:

There is an imaginative little program called Textorizer (http://lapin-bleu.net/software/textor-
izer/) that can create artistic effects in SVG using any bitmap image (e.g., PNG or JPEG) and overlay
it with the text of your choice. As you will see in the code sample for the SVG image that follows, the
program maps the colors of the background bitmap image with the color of each letter in the text
that you specify. If you then remove the <image> element from the output file, you end up with an
interesting work of art composed entirely of your text:

 CHAPTER 3 Adding Text, Style, and Transforms 63

Some of you may recognize this beautifully uplifting three-story-high mural that I photographed
in downtown Philadelphia. This graphic is composed entirely of SVG text.

The next sections will offer some guidance on how to deal with text in SVG.

the <tspan> element
The <tspan> element allows you to group and associate characters, sentences, and even paragraphs,
while allowing you to alter the placement of the contained glyphs.

For example, assuming we don’t need to change the color and size of each character in the sen-
tence, we could improve upon the previous example by using <tspan> like so:

<text x='116' y='7.6' font-size='6.1' fill='rgb(200,242,254)'>
 G
 <tspan x='5'>r</tspan>
 <tspan x='7'>o</tspan>
 <tspan x='9'>w</tspan>
 <tspan x='12'>w</tspan>
</text>

This repositions the individual characters along the x-axis relative to the parent <text> element’s
value for x using the <tspan> element’s x attribute.

64 Building Web Applications with SVG

Note SVG 1.1 currently does not have built-in support for word wrapping. This is expected
to be added to the next edition of the language, SVG 2.0. In the meantime, there are al-
ready several open source script-based approaches that add support for word wrapping.

Making Adjustments with dx and dy
Both the <text> and <tspan> elements provide the dx and dy attributes, which can be used to reposi-
tion one or more characters along the x-axis and y-axis. This allows for interesting effects, such as
making words bend up or down, or even step up a staircase. The following image shows a sampling
of commonly used text properties and their effects:

text and Shapes on a path: <textpath> and <mpath>
One of the most interesting and useful features of SVG is the capability of using paths for positioning
shapes and text. As an example, all five of the primary browsers now support text effects such as the
one shown in the following figure. This example demonstrates how to place text along a Bézier curve.

 CHAPTER 3 Adding Text, Style, and Transforms 65

<defs>
 <path id="curve" d="M 10 100 C 200 30 300 250 350 50" />
</defs>
<text font-family="arial" font-size="16" fill="black">
 <textPath xlink:href="#curve">Hello, here is some text lying along a Bézier curve.</textPath>
</text>

The path above is defined inside a <defs> element, which serves to define the path, but without
rendering it. You can use various flags, such as startOffset, to position the text along the path. The
startOffset attribute of the <textPath> element lets you specify the distance in pixels from the begin-
ning of the curve where the text will actually begin. When animated with SMIL (see Chapter 4), this
attribute makes the text appear to crawl along the curve at a speed determined by the SMIL.

the <tref> element
Another useful element is <tref>, which allows you to reuse letters and entire paragraphs of text. You
can specify the referencing to the character data of another <text> element with a <tref> element
like this:

<defs>
 <text id="ReferencedText">
 Reusable character data
 </text>
</defs>
<text font-family="arial" font-size="16" fill="black">
 <tref xlink:href="#ReferencedText"/>
</text>

D
ow

n
lo

a
d
 f
ro

m
 W

o
w

!
e
B
o
o
k

<
w

w
w

.w
o
w

e
b
o
o
k.

co
m

>

66 Building Web Applications with SVG

Working with Colors in SVG

Thanks to the W3C’s standardization efforts, there are many similarities in how we work with colors in
HTML, CSS, and SVG, so some of the following information may already be familiar to you.

Named Color Values
SVG supports 147 colors, with names such as white and blue, and even forestgreen, tomato, and corn-
silk. This makes it easy to remember specific colors.

hSL
Likely you have heard the acronym HSL, which stands for hue, saturation, and lightness (or luminance).
If you have ever seen a circular color wheel in a drawing program, just picture that. With that picture
in mind, most people can grasp HSL. This method of specifying colors is intuitive because our minds
can fairly quickly comprehend the three concepts involved:

■■ Lightness Lightness of colors ranges from solid (opaque) to invisible (transparent) (L = 0%
to 100%).

■■ Saturation Saturation of colors ranges from black to bright white (S = 0 to 360).

■■ Hue Hue simply defines the degree along the circular color spectrum, with the circle running
from red (0 degrees) to green (120 degrees) to blue (240 degrees) (H = 0 to 360).

rGB
RGB (red, green, blue) is probably the most common approach for specifying colors in SVG, mainly
because HSL had not been an option until recently, and most drawing and IDE programs use RGB by
default. The advantage of using RGB over named colors is the ability to quickly adjust color values
incrementally, which would be difficult to do with named colors without an amazing memory or
reference chart.

RGB values can be created as functional values between 0 and 255, or as percentages, such as
rgb(255, 0, 0) or rgb(100%, 0, 0). RGB can also be specified in three-digit or six-digit hexadecimal
notation—for example, #a2f and #aa22ff, which are equal.

 CHAPTER 3 Adding Text, Style, and Transforms 67

Creating Gradients in SVG

In the world of graphics, a gradient simply refers to the gradual transition, in some direction, of one
color into another, or of combinations of such transitions involving multiple colors. The 19th century
artist Georges Seurat did a lot to popularize the underlying scientific work showing how scenes can
be simulated by collections of points of colored light. Seurat’s points are numerous and their sizes
nearly infinitesimal. Translated into the world of computer imagery, though, that implies big file sizes.
But if we decompose regions not into monochromatic points (a process known as posterization), but
into regions of smooth transition (namely gradients), we can transmit less data and yet still create
high-quality, realistic images. Excitingly, the instructions for creating gradients can convey semantics
as well as rendering instructions for the browser, and it’s this that makes SVG amenable to indexing by
search engines in a way that can’t readily be applied to formats such as GIF, JPEG, or PNG. If you’re in-
terested in the broader topic of visual perception and information transmission, you might like to see
some of the work of Marvin Minksy (see http://courses.media.mit.edu/2004spring/mas966/Minsky%20
1974%20Framework%20for%20knowledge.pdf), or the articles at http://quantombone.blogspot
.com/2010/08/beyond-pixel-wise-labeling-blocks-world.html and http://srufaculty.sru.edu/david.dailey/
engraver.htm for a more modern take.

Applying Gradients to a path
Let’s get started with the basics here. This example shows the definition of a linear gradient and that
of a radial gradient, which are then applied to the fill attribute of a path:

<path d="M 100 200 200 200 150 100 z" stroke="black" stroke-width="2" fill="url(#g)"/>
<linearGradient id="g">
 <stop offset="0" stop-color="white"/>
 <stop offset="1" stop-color="black"/>
</linearGradient>
<radialGradient id="g">
 <stop offset="0" stop-color="white"/>
 <stop offset="1" stop-color="black"/>
</radialGradient>

http://courses.media.mit.edu/2004spring/mas966/Minsky%201974%20Framework%20for%20knowledge.pd
http://courses.media.mit.edu/2004spring/mas966/Minsky%201974%20Framework%20for%20knowledge.pd
http://quantombone.blogspot.com/2010/08/beyond-pixel-wise-labeling-blocks-world.html
http://quantombone.blogspot.com/2010/08/beyond-pixel-wise-labeling-blocks-world.html
http://srufaculty.sru.edu/david.dailey/engraver.htm
http://srufaculty.sru.edu/david.dailey/engraver.htm

68 Building Web Applications with SVG

The gradient is applied to the fill attribute of an element using a local URL: fill="url(#g)". This dem-
onstrates that an object may have a color or a gradient as its fill, but not both.

 CHAPTER 3 Adding Text, Style, and Transforms 69

Note that in the linear gradient above, two <stop> elements have been built. This means the gradi-
ent has two colors applied to it, one for each stop. Those colors are determined by the stop-color
attribute. The offset attribute is either a number (between 0 and 1) or a percentage, and it determines
where the gradient stop is placed in the direction established by the gradient vector, which is defined
by attributes of the gradient element (x1, x2, y1, y2 for a linear gradient, and cx, cy for a radial gradi-
ent). For the linear gradient in the example, white is applied at the leftmost part of the triangle, while
black is applied to the rightmost part. Shades of gray gradually darken as we move to the right, with
a grayscale value of 128/256, or 50%, occurring halfway across the image, or along the line where x
equals 150. For the radial gradient, the midpoint of the bounding rectangle around the path is chosen
as the center. From there, we apply our first stop color (zero percent of the way out toward the cor-
ners of the bounding box). Black will be applied to the four corners of the bounding rectangle, with
shades of gray gradually lightening as we move toward the center.

The number of stops in a gradient need not be limited to two. In the example below, four stops are
defined, with the offset values specified in percentages. The rectangles in the following figure are 200
pixels wide. That means the linear gradient is white at 0 pixels, black at 50 pixels, white at 150 pixels,
and black at 200 pixels.

<stop offset="0" stop-color="white"/>
<stop offset=".25" stop-color="black"/>
<stop offset=".75" stop-color="white"/>
<stop offset="1" stop-color="black"/>

70 Building Web Applications with SVG

the stop-opacity Attribute
In addition to specifying the color of a <stop> within a gradient, you can also specify its opacity
through an attribute known as stop-opacity. You can thus make gradients act like differential masks,
allowing, for example, an image underneath to gradually fade into view. Here’s an example of how
stop-opacity works:

<stop offset=".8" stop-color="black" stop-opacity="0.5"/>

stop-opacity (like the regular opacity of drawn objects) takes values between 0 (transparent) and
1.0 (opaque). Here are some examples of using stop-opacity with gradients to allow differing amounts
of what is underneath to be visible along a partly transparent gradient.

This example shows two different gradients defined and used in separate images. It creates a
tricolor gradient by superimposing one on the other. Notice the use of the transform attribute to
control the direction in which the gradient is applied. Here’s the code:

<linearGradient id="r" >
 <stop offset="0" stop-color="red"/>
 <stop offset="1" stop-color="green"/>
</linearGradient>
<linearGradient id="t" gradientTransform="rotate(90,.5,.5)">
 <stop offset="0" stop-color="white" stop-opacity="0"/>
 <stop offset="1" stop-color="#208" />
</linearGradient>
<rect x="10" y="10" width="100" height="100" fill="url(#r)" />
<rect x="120" y="10" width="100" height="100" fill="url(#t)" />
<rect x="60" y="120" height="100" width="100" fill="url(#r)"/>
<rect x="60" y="120" height="100" width="100" fill="url(#t)"/>

 CHAPTER 3 Adding Text, Style, and Transforms 71

This is similar to the previous example, but uses more than two colors in the gradient, as well as the
stop-opacity attribute:

<linearGradient id="r" >
 <stop offset="0" stop-color="red"/>
 <stop offset=".5" stop-color="yellow"/>
 <stop offset="1" stop-color="green"/>
</linearGradient>
<linearGradient id="t" gradientTransform="rotate(90,.5,.5)">
 <stop offset="0" stop-color="#008" />
 <stop offset=".4" stop-color="cyan" stop-opacity="0"/>
 <stop offset=".6" stop-color="cyan" stop-opacity="0"/>
 <stop offset="1" stop-color="#22a" />
</linearGradient>
<linearGradient id="s" gradientTransform="rotate(45,.5,.5)">
 <stop offset="0" stop-color="#008" />
 <stop offset=".45" stop-color="red" stop-opacity="0"/>
 <stop offset=".55" stop-color="green" stop-opacity="0"/>
 <stop offset="1" stop-color="#22a" />
</linearGradient>
<rect x="10" y="10" height="100" width="100" fill="url(#r)"/>
<rect x="120" y="10" height="100" width="100" fill="url(#t)"/>
<rect x="230" y="10" height="100" width="100" fill="url(#s)"/>
<rect x="120" y="120" height="100" width="100" fill="url(#r)"/>
<rect x="120" y="120" height="100" width="100" fill="url(#t)"/>
<rect x="120" y="120" height="100" width="100" fill="url(#s)"/>

In this example, one simple gradient is used to impart a slightly asymmetric sheen that fades into
darkness at the sides, to simulate the appearance of a rotating cylinder:

72 Building Web Applications with SVG

<linearGradient id="cylinder" x1="0" y1="1" x2=".2" y2="0">
 <stop offset=".1" stop-color="red"/>
 <stop offset=".1" stop-color="white"/>
 <stop offset=".2" stop-color="white"/>
 <stop offset=".2" stop-color="blue"/>
 <stop offset=".3" stop-color="blue"/>
 <stop offset=".3" stop-color="white"/>
 <stop offset=".4" stop-color="white"/>
 <stop offset=".4" stop-color="red"/>
 <stop offset=".5" stop-color="red"/>
 <stop offset=".5" stop-color="white"/>
 <stop offset=".6" stop-color="white"/>
 <stop offset=".6" stop-color="blue"/>
 <stop offset=".7" stop-color="blue"/>
 <stop offset=".7" stop-color="white"/>
 <stop offset=".8" stop-color="white"/>
 <stop offset=".8" stop-color="red"/>
 <stop offset=".9" stop-color="red"/>
 <stop offset=".9" stop-color="white"/>
 <stop offset="1" stop-color="white"/>
 <stop offset="1" stop-color="blue"/>
</linearGradient>
<linearGradient id="gradient1">
 <stop offset="0" stop-color="black"/>
 <stop offset="0.3" stop-color="white" stop-opacity="0"/>
 <stop offset="0.4" stop-color="white" stop-opacity=".8"/>
 <stop offset="0.6" stop-color="white" stop-opacity=".0"/>
 <stop offset="1" stop-color="black"/>
</linearGradient>
<rect x="10" y="10" height="250" width="55" fill="url(#cylinder)"/>
<rect x="10" y="10" height="250" width="55" fill="url(#gradient1)"/>

 CHAPTER 3 Adding Text, Style, and Transforms 73

The following example shows how you can create the appearance of weaving by using a number
of SVG elements linearly related to the number of threads. In the case of the dark green and the tan
threads, a gradient is applied with discrete boundaries between opacity and transparency to give the
illusion of the thread disappearing behind the other. Here’s the code:

<stop offset=".20" stop-color="black"/>
<stop offset=".21" stop-color="#b83"/>
<stop offset=".29" stop-color="#b83"/>
<stop offset=".30" stop-color="black"/>
<stop offset=".30" stop-color="#b83" stop-opacity="0"/>
<stop offset=".40" stop-color="#b83" stop-opacity="0"/>
<stop offset=".40" stop-color="black"/>

Clipping and Masking with SVG

Like the slightly more complex <mask> (which we’ll discuss later), the <clipPath> element gives you
a way to define a collection of shapes that you can use to carve a given figure into more interesting
shapes. You can apply a clip path to any drawn objects in SVG, including groups of objects, and the
clip path itself can consist of many shapes. Masks are a lot like clip paths, but more flexible.

Some of the experiments with gradients might suggest that you can use the stop-opacity of a
gradient to simulate certain kinds of cropping or clipping. In particular, let’s use a radial gradient to
restrict the appearance of a rectangular bitmap to an elliptical region.

<image x="15%" width="30%" y="15%" height="30%"
 xlink:href="fireenginefromWebsters1911.gif" />

74 Building Web Applications with SVG

<radialGradient id="r" fy=".55" >
 <stop offset=".3" stop-opacity="0"/>
 <stop offset=".8" stop-color="black" />
 <stop offset=".9" stop-color="white" />
 <stop offset="1" stop-color="brown"/>
</radialGradient>
<rect x="15%" y="15%" height="30%" width="30%" fill="url(#r)"/>

<radialGradient id="r" fy=".55" >
 <stop offset=".3" stop-opacity="0"/>
 <stop offset=".8" stop-color="black" />
 <stop offset=".9" stop-color="white" />
 <stop offset="1" stop-color="brown"/>
</radialGradient>
<image x="15%" width="30%" y="15%" height="30%"
 xlink:href="fireenginefromWebsters1911.gif" />
<rect x="15%" y="15%" height="30%" width="30%" fill="url(#r)"/>

This serves to illustrate some of the power of gradients, but it should be fairly straightforward to
conclude that using linear and radial gradients (the only kinds available in SVG at present) to clip an
image down to an arbitrary shape isn’t easy.

You can use the following code to produce a similar effect just as easily, as the image that follows
demonstrates:

<clipPath id="CP">
 <ellipse cx="29%" cy="26%" rx="10%" ry="8%"/>
</clipPath>
<image y="0" x="10%" width="40%" height="55%" xlink:href='p17.jpg' clip-path="url(#CP)"/>

As this example shows, you can put elements, like gradients, inside a <clipPath>, and then apply
the clip path (through its id) to the object or group of objects to be clipped.

 CHAPTER 3 Adding Text, Style, and Transforms 75

Next, we’ll illustrate an example that clearly differentiates between what you might accomplish
with clip paths as opposed to gradients. In the following example, we insert numerous ellipses into
the clip path, showing that the clipped regions can be complex.

<clipPath id="CP">
 <ellipse cx="19%" cy="25%" rx="2.5%" ry="4%"/>
 <ellipse cx="24%" cy="25%" rx="2.5%" ry="4%"/>
 <ellipse cx="29%" cy="25%" rx="2.5%" ry="4%"/>
 <ellipse cx="34%" cy="25%" rx="2.5%" ry="4%"/>
 <ellipse cx="39%" cy="25%" rx="2.5%" ry="4%"/>
</clipPath>
<g clip-path="url(#CP)">
 <image y="0" x="10%" width="40%" height="55%" xlink:href='p17.jpg' />
 <rect y="0" x="15%" width="10%" height="55%" fill="purple" opacity=".6" />
 <rect y="0" x="33%" width="10%" height="55%" fill="yellow" opacity=".8" />
</g>

Note that the content of a <clipPath> cannot involve either groups (<g>) or complex uses (<use>).
A clip path is limited to simple drawn objects and reuses of simple drawn objects. If we wanted to
reuse content, we could do so through a <mask>, as follows:

<mask id="CP">
 <g id="U">
 <ellipse cx="19%" cy="25%" rx="2.5%" ry="4%" fill="white"/>
 <ellipse cx="24%" cy="25%" rx="2.5%" ry="4%" fill="white"/>
 <ellipse cx="29%" cy="25%" rx="2.5%" ry="4%" fill="white"/>
 <ellipse cx="34%" cy="25%" rx="2.5%" ry="4%" fill="white"/>
 <ellipse cx="39%" cy="25%" rx="2.5%" ry="4%" fill="white"/>
 </g>
 <use xlink:href="#U" transform="translate(0,40)" />
 <use xlink:href="#U" transform="translate(0,80)" />
</mask>
<g mask="url(#CP)">
 <image y="0" x="10%" width="40%" height="55%" xlink:href='p17.jpg' />
 <rect y="0" x="15%" width="10%" height="55%" fill="purple" opacity=".6" />
 <rect y="0" x="33%" width="10%" height="55%" fill="yellow" opacity=".8" />
</g>

While a clip path declares that content is either inside it (and hence visible) or outside it (and
hence invisible), a mask allows degrees of visibility, depending on the brightness of the objects
inside the mask.

76 Building Web Applications with SVG

The following example demonstrates both clipping and masking:

<defs>
 <clipPath id="clipRays">
 <rect x="5" y="80" width="100" height="100"/>
 <circle cx="170" cy="100" r="50"/>
 <polygon points="300 30 350 130 250 130" />
 <ellipse cx="425" cy="100" rx="50" ry="40"/>
 <rect x="494" y="80" width="100" height="100"/>
 </clipPath>
 <mask id="maskRays">
 <rect x="5" y="80" width="100" height="100" fill="red" />
 <circle cx="170" cy="100" r="50" fill="purple" />
 <polygon points="300 30 350 130 250 130" fill="white" />
 <ellipse cx="425" cy="100" rx="50" ry="40" fill="black" />
 <rect x="494" y="80" width="100" height="100" fill="orange" /> </mask>
 <g id="rays">
 <g id="RaysRight">
 <path d="M300,13.51c548.1,268.4,548.1,268.4,548.1,268.4
 s23.52-35.35,23.52-35.35-571.7-233-571.7-233" fill="red"/>
 <path d="M300,13.31c452.8,307.3,452.8,307.3,452.8,307.3
 s26.29-29.41,26.29-29.41-479.1-277.8-479.1-277.8" fill="green"/>
 <path d="M300,13.14c365.4,342.9,365.4,342.9,365.4,342.9
 s28.82-23.98,28.82-23.98-394.2-318.9-394.2-318.9" fill="blue"/>
 <path d="M300,12.97c282.9,376.5,282.9,376.5,282.9,376.5
 s31.22-18.84,31.22-18.84-314-357.7-314-357.7" fill="lime"/>
 <path d="M300,12.81c203.7,408.8,203.7,408.8,203.7,408.8
 s33.51-13.91,33.51-13.91-237.2-394.9-237.2-394.9" fill="purple"/>
 <path d="M300,12.66c127.1,440,127.1,440,127.1,440
 s35.73-9.153,35.73-9.153-162.9-430.9-162.9-430.9" fill="orange"/>
 <path d="M300,12.51c52.68,470.4,52.68,470.4,52.68,470.4
 s37.89-4.522,37.89-4.522-90.57-465.8-90.57-465.8" fill="yellow"/>
 </g>
 <use id="RaysLeft" xlink:href="#RaysRight" transform="translate(600) scale(-1, 1)" />
 </g>
</defs>
<!-- Light Ray 1 -->
<use xlink:href="#rays" x="0" y="0" clip-path="url(#clipRays)"/>
<!-- Light Ray 2 -->
<use xlink:href="#rays" x="0" y="0" transform="scale(1 -1) translate(0 -380)"
 mask="url(#maskRays)"/>

 CHAPTER 3 Adding Text, Style, and Transforms 77

As you can see, both clip paths and masks can have a variety of shapes. The example above shows
how clip paths simply behave like cookie cutters, while masks behave more like light filters.

Note that the ray-filled shapes at the bottom of the preceding image, which have a mask applied
to them, filter out more color than the upper rectangles. The color that they filter out is defined by
the fill color of the shapes that are used inside of the mask. When the color white is used in the mask,
as in the triangle at the bottom of the image, then no colors are filtered out. When the color black is
used in the mask, as in the invisible ellipse at the bottom, then all of the colors are filtered out, and
none of the underlying masked graphic is displayed on the screen.

Note You can clip outside a clip path only by setting the fill rule to evenodd on the clipping
object or with masks.

Here’s another illustration of the difference between clip paths and masks:

 <linearGradient id="gradient1" >
 <stop offset="0.0" stop-color="black"/>
 <stop offset="1" stop-color="white"/>
</linearGradient>
<mask id="Ma">
 <rect x="300" y="300" width="400" height="100" fill="url(#gradient1)"/>
</mask>
<text x="220" y="365" font-family="impact" font-size="52" mask="url(#Ma)"
 fill="black">The Masked Text: it o</text>

Details of Transforms

The SVG language provides some useful methods for repositioning individual objects or entire groups
of objects through these simple transform commands: translate, scale, rotate, skewX, and skewY.

the translate Command
One of the most useful transformation commands is translate, which allows you to reposition con-
tent by simply specifying the new xy-coordinates in this format: transform="translate(50,10)". This
simple command will shift graphical objects 50 units along the x-axis and 10 units along the y-axis.
This effectively establishes a new coordinate system for the object or group to which the transform
is applied, and often this makes it straightforward to apply other transformations, such as skewing,
rotating, and scaling.

D
ow

n
lo

a
d
 f
ro

m
 W

o
w

!
e
B
o
o
k

<
w

w
w

.w
o
w

e
b
o
o
k.

co
m

>

78 Building Web Applications with SVG

the scale Command
The syntax for the scale command looks like this: transform="scale(2)". The scale command scales the
graphical elements that it is applied to with respect to the origin of the coordinate system (0,0). This
means that when the size of a shape that has positive x and y values is doubled, its top-left corner as
well as the rest of the graphic is expanded horizontally along the x-axis and vertically along the y-axis.
There are ways to center the graphic prior to applying the scale command, as you will see in later
examples.

The next example shows the effects of the scale and translate commands:

Note The order in which the transformation commands are applied affects the final result.
For example, if you use the translate command before applying the scaling, the result will
usually be quite different from applying them in the opposite order, because the origin of
the coordinate system is often not centered on the graphic being transformed. In many
cases, it is easier to first apply the translate command to center the graphic on the origin,
and then apply other transformations.

 CHAPTER 3 Adding Text, Style, and Transforms 79

Skewing: the skewX and skewY Commands
Using the skewX and skewY commands, you can skew shapes horizontally or vertically. For example,
the command <transform="skewX(25)"> will pull the graphic 25 units along the horizontal axis relative
to the origin or top-left corner of the graphic, which produces a skewed effect.

the rotate Command
You can rotate vector and bitmap graphics using the rotate command. The following rotate com-
mand will rotate an object 50 degrees in the standard clockwise direction: transform=“rotate(50)”.
It is important to note that the rotate command actually takes up to three parameters—degrees, cx,
and cy—where cx and cy (which are by default the point [0,0]) are the center about which the rota-
tion will occur.

SVG transformations by example: Step by step

All of the transform commands can be used in combination with opacity and other style effects to
create 2.5D (see http://en.wikipedia.org/wiki/2.5D) mirror-image effects. For example, you can reuse a
shape or image via the <use> element, flip it using the scale command, and then reposition it to dis-
play below the original image. Adding the skewX command and making the graphic slightly opaque
results in a reflection. The following exercise shows you how to do this:

1. Hand-code (or draw) the SVG shapes that you want to work with:

<line id="water" x1="-50" y1="110" x2="100%" y2="110"
 stroke="blue" stroke-width="1" stroke-opacity="0.7" />
 <g id="scene">
 <circle id="sun" r="50" cx="30" cy="30"
 fill="orange" stroke="grey" stroke-width="1" />
 <circle id="venusInTransit" r="5" cx="15" cy="20"
 fill="black" stroke="grey" stroke-width="1" />
 </g>

2. Add another grouping (a <use> element) within the current group, and add skewX, skewY,
scale and transform commands to the new grouping

<use xlink:href="#scene" mask="url(#hazeIca)"
 transform="scale(1 -1) translate(30 -210) skewX(-20) skewY(5)"/>

The following image shows the result:

http://en.wikipedia.org/wiki/2.5D

80 Building Web Applications with SVG

As you can see, this flips the graphic along the x-axis and then also along the y-axis. The translate
command then repositions the object back at the correct location in the coordinate system so that
the image displays below the original image.

the matrix Command
The matrix command is more complex and requires more mental power to make use of, but it allows
for a more concise and efficient means of specifying precise transformations on an object. The format
of this command will likely remind you of mathematics classes. The command has the format matrix(a,
b, c, d, e, f), which specifies a mathematical transformation matrix that looks like this: [a b c d e f]. This
command is primarily used by SVG-editing programs that use mathematical functions to track and
apply the transformations.

The best way to understand how this works is to observe the effects of the commands in an editor
such as Inkscape. You can find more details on this command in the SVG specification, at http://www
.w3.org/TR/SVG/coords.html#TransformMatrixDefined.

Adding Style Using CSS
In previous chapters, you saw how to add style using the SVG presentation attributes to modify many
of the shape, text, and bitmap properties.

http://www.w3.org/TR/SVG/coords.html#TransformMatrixDefined
http://www.w3.org/TR/SVG/coords.html#TransformMatrixDefined

 CHAPTER 3 Adding Text, Style, and Transforms 81

Just like in HTML, both the class and style attributes can also be used to add style in SVG. However,
there are many advantages to using the class rather than style attribute, because the class attribute
can take values from a style sheet that in practice requires fewer changes to the DOM.

Most of the SVG presentation attributes are available for us in CSS style sheets. For example, a rec-
tangle’s fill color and stroke-opacity attributes can be defined in CSS.

Using a style sheet in SVG is very similar to the usage in HTML5. You can define CSS rules inline
using the <style> element. In this next example, several types of CSS selectors are used to target
specific bars of a bar chart.

<svg xmlns="http://www.w3.org/2000/svg" xmlns:xlink=http://www.w3.org/1999/xlink
 height="170" width="450">
 <style type="text/css">
 svg {
 font: 12px sans-serif;
 shape-rendering: crispEdges;
 }
 text {
 fill:white;
 text-anchor:end;
 font-weight:bold;
 }
 g.bar rect {
 fill: green;
 }
 g > #LookAtMe {
 fill: steelblue;
 }
 rect#LookAtMe {
 fill: steelblue;
 }
 rect.custom {
 fill: orange;
 }
 </style>
 <g transform="translate(0, 4.5)" class="bar">
 <rect height="18" width="145.8" fill="papayawhip"></rect>
 <text text-anchor="end" fill="white" dy=".35em" dx="-6" y="9" x="145.8">39</text>
 <text text-anchor="end" dy=".35em" dx="-6" y="9" x="0">A</text>
 </g>
 <g transform="translate(0, 27)" class="bar">
 <rect height="18" width="31.5" style="fill:blue"/>
 <text text-anchor="end" fill="white" dy=".35em" dx="-6" y="9" x="31.5">12</text>
 <text text-anchor="end" dy=".35em" dx="-6" y="9" x="0">B</text>
 </g>

82 Building Web Applications with SVG

 <g transform="translate(0, 49.6)" class="bar">
 <rect id="LookAtMe" height="18" width="91.3" fill="steelblue"/>
 <text text-anchor="end" fill="white" dy=".35em" dx="-6" y="9" x="91.3">26</text>
 <text text-anchor="end" dy=".35em" dx="-6" y="9" x="0">C</text>
 </g>
 <g transform="translate(0, 72)" class="bar">
 <rect class="custom" height="18" width="211.4" fill="steelblue"/>
 <text text-anchor="end" fill="white" dy=".35em" dx="-6" y="9" x="211.4">54</text>
 <text text-anchor="end" dy=".35em" dx="-6" y="9" x="0">D</text>
 </g>

One thing worth noting here is how the CSS style sheet styles override the fill attribute of the first
rectangle. Also notice how the style attribute in the second rectangle overrides the fill rule in the CSS
style sheet.

Alternatively, style sheets can be pulled in from an external CSS file just as they are in HTML5. The
main difference from HTML is the stricter XML syntax that is required for SVG documents:

<?xml-stylesheet href="bookStyles.css" type="text/css"?>

Using Media Queries to enhance Usability
There are many examples of using CSS3 media queries (see http://www.w3.org/TR/css3-mediaqueries/)
to improve the usability of HTML5 content. SVG can harness this same capability. One of the most
common scenarios is automatically adjusting the layout based on the type of device the end user is
using, or, more generally, the screen resolution. In this example, the web page layout changes to try
to always fit the most important elements on the page.

For example, using the following media query CSS code, a number of changes to the document
will take place automatically, depending on the end user’s screen resolution:

@media screen and (max-width: 351px) {
 #pageContent {
 opacity: 0.3;
 }
 #backgroundGradient, #backgroundGridWithPattern {
 display: none;
 }
 #svgLogo01 {
 display: none;
 }
}

That is, when the end user’s device’s screen width is less than 351 pixels, the following takes place:

■■ The large logo graphic is hidden.

■■ The background gradient and grid are hidden.

■■ The opacity of the background is set to 0.3.

 CHAPTER 3 Adding Text, Style, and Transforms 83

Additional Capabilities of CSS3
The newer CSS3 language offers several new features that can be used with SVG, including 2D trans-
forms and transition effects. You can find more information about this on the Learn SVG website, at
http://learnsvg.com/CSS3/. The CSS and SVG Working Groups have been working on consolidating the
two approaches.

Among the anticipated features of CSS3 are the abilities to handle SVG filters, animation, gradients,
and transforms through CSS.

Vector Graphics, Symbol, and Button Libraries

Perhaps because the SVG format is an open format as opposed to a proprietary one (such as Flash),
many public-spirited projects such as Wikipedia and Inkscape have taken a liking to it. Likewise, many
of the users of Wikipedia and Inkscape have taken to redistributing their artistic work in ways that
are openly licensed for reuse. More and more graphics libraries and developer websites are using the
Creative Commons Public Domain license, which gives end users complete rights to reuse “the work,
even for commercial purposes, all without asking permission.” The details of this license can be found
at http://creativecommons.org/publicdomain/zero/1.0/.

The Inkscape users group, along with others, has contributed many fine examples to the Open
Clipart Library, at http://openclipart.org/Wikimedia Commons. Under the auspices of the Wikimedia
Foundation (which oversees Wikipedia), Wikimedia Commons is a collection of material, frequently
used by authors on Wikipedia, that is believed to be reusable, either because of being in the public
domain (no remaining copyright) or because of open licensing agreements (such as Creative Com-
mons). The main Wikimedia Commons page can be visited at http://commons.wikimedia.org/wiki/
Main_Page. However, to look for just SVG images at Wikimedia, you can either go to http://commons
.wikimedia.org/wiki/Category:SVG (which categorizes much of the SVG content there), or to the IAN
Symbol Library (http://ian.umces.edu/symbols/) or the Noun Project (http://thenounproject.com/).

Accessibility

Unlike many other image formats, and most conspicuously, the bitmapped formats used on the web,
such as JPEG, GIF, and PNG, SVG is intrinsically accessible to screen readers because it is XML and
composed of ASCII and Unicode. However, its ability to go further than this is vast. An author who is
concerned about accessibility (as we all should be) can annotate each drawn element with its own de-
scriptors, meaning that, in theory, both screen readers and search engines could separate the various
pieces of a visual composition and translate those elements as well as their geometric relations into
meaningful data that could be used as part of a query, rendered into tactile information, or excerpted
in a variety of useful ways.

http://creativecommons.org/publicdomain/zero/1.0/
http://commons.wikimedia.org/wiki/Main_Page
http://commons.wikimedia.org/wiki/Main_Page
http://commons.wikimedia.org/wiki/Category:SVG
http://commons.wikimedia.org/wiki/Category:SVG
http://ian.umces.edu/symbols/
http://thenounproject.com/

84 Building Web Applications with SVG

While semantic analysis of a bitmapped image requires artificial intelligence of the rendering device,
for SVG, it only requires agreement among authors and browser manufacturers that this accessibility
matters. Thus far, the SVG Working Group and the SVG Interest Group have given much attention to the
topic, and it is generally believed that the SVG promise for accessibility is very strong.

Semantic elements and Features
Most readers will be aware of HTML5 elements, so this is probably a good place to start. In HTML5,
several new important semantic elements have been added, including <nav>, <section>, <article>,
<aside>, <header>, <footer>, and even <address>. The way semantics plays out in HTML5 is that
these new elements have defined meanings. For example, the <section> element is designed to hold
sectioning elements so that modern browsers are able to know right where to look for hierarchical
section and subsection information within web pages.

This improved semantic design makes the jobs of developers and even web development IDE pro-
grams that much easier, because all of this semantic logic is built into the language and the browsers.
As a web-based example, the Semantic Notepad demo on the Internet Explorer Test Drive website
(http://ie.microsoft.com/testdrive/html5/semanticnotepad/default.html) shows how useful the new
HTML5 tags are with regard to semantics, or code that is designed to be aware of its own structure.

In SVG, semantics works much the same way, but the SVG elements have a different set of built-in
meanings. For example, besides the shape elements, you can use metadata and microdata elements
such as title, desc (description), RDF, microdata, and data attributes.

Note You can find more details about metadata in the SVG 1.1 specification here: http://
www.w3.org/TR/SVG/metadata.html.

One important distinction between accessibility in SVG and HTML is that the fundamental se-
mantic domain of HTML is text, while that of SVG is graphics. However, both have generally thus far
provided the bulk of their accessibility in the textual domain. What it means, for example, for a red
rectangle to be readable in sensory modalities other than the visual is intriguing, though shape and
geometry, which are a major focus of SVG, clearly have tactile dimensions as well, and can relatively
easily (in theory) be transfigured into that modality, as with Braille, in ways that extend the entire
concept of accessibility. Text (the T in HTML) is historically based on an auditory medium (speech), so
people’s thinking about what accessibility means in the graphical environment is still rather fledgling.

The following resources have more information on the topics of SVG and accessibility:

■■ Accessibility Features of SVG: W3C Note 7 August 2000 (http://www.w3.org/TR/SVG-access/)

■■ SVG Content Accessibility Guidelines (2010) (http://www.w3.org/TR/SVG/access.html#SVG
AccessibilityGuidelines)

http://www.google.com/url?q=http%3A%2F%2Fie.microsoft.com%2Ftestdrive%2FHTML5%2FSemanticNotepad%2FDefault.html&sa=D&sntz=1&usg=AFQjCNFNRQ6J8e7IzeJS6grvH2f3PpQrpw
http://www.google.com/url?q=http%3A%2F%2Fie.microsoft.com%2Ftestdrive%2FHTML5%2FSemanticNotepad%2FDefault.html&sa=D&sntz=1&usg=AFQjCNFNRQ6J8e7IzeJS6grvH2f3PpQrpw
http://www.google.com/url?q=http%3A%2F%2Fie.microsoft.com%2Ftestdrive%2FHTML5%2FSemanticNotepad%2FDefault.html&sa=D&sntz=1&usg=AFQjCNFNRQ6J8e7IzeJS6grvH2f3PpQrpw
http://www.google.com/url?q=http%3A%2F%2Fie.microsoft.com%2Ftestdrive%2FHTML5%2FSemanticNotepad%2FDefault.html&sa=D&sntz=1&usg=AFQjCNFNRQ6J8e7IzeJS6grvH2f3PpQrpw
http://www.google.com/url?q=http%3A%2F%2Fie.microsoft.com%2Ftestdrive%2FHTML5%2FSemanticNotepad%2FDefault.html&sa=D&sntz=1&usg=AFQjCNFNRQ6J8e7IzeJS6grvH2f3PpQrpw
http://www.google.com/url?q=http%3A%2F%2Fie.microsoft.com%2Ftestdrive%2FHTML5%2FSemanticNotepad%2FDefault.html&sa=D&sntz=1&usg=AFQjCNFNRQ6J8e7IzeJS6grvH2f3PpQrpw
http://www.google.com/url?q=http%3A%2F%2Fie.microsoft.com%2Ftestdrive%2FHTML5%2FSemanticNotepad%2FDefault.html&sa=D&sntz=1&usg=AFQjCNFNRQ6J8e7IzeJS6grvH2f3PpQrpw
http://www.google.com/url?q=http%3A%2F%2Fie.microsoft.com%2Ftestdrive%2FHTML5%2FSemanticNotepad%2FDefault.html&sa=D&sntz=1&usg=AFQjCNFNRQ6J8e7IzeJS6grvH2f3PpQrpw
http://www.google.com/url?q=http%3A%2F%2Fie.microsoft.com%2Ftestdrive%2FHTML5%2FSemanticNotepad%2FDefault.html&sa=D&sntz=1&usg=AFQjCNFNRQ6J8e7IzeJS6grvH2f3PpQrpw
http://www.google.com/url?q=http%3A%2F%2Fie.microsoft.com%2Ftestdrive%2FHTML5%2FSemanticNotepad%2FDefault.html&sa=D&sntz=1&usg=AFQjCNFNRQ6J8e7IzeJS6grvH2f3PpQrpw
http://www.google.com/url?q=http%3A%2F%2Fie.microsoft.com%2Ftestdrive%2FHTML5%2FSemanticNotepad%2FDefault.html&sa=D&sntz=1&usg=AFQjCNFNRQ6J8e7IzeJS6grvH2f3PpQrpw
http://www.google.com/url?q=http%3A%2F%2Fie.microsoft.com%2Ftestdrive%2FHTML5%2FSemanticNotepad%2FDefault.html&sa=D&sntz=1&usg=AFQjCNFNRQ6J8e7IzeJS6grvH2f3PpQrpw
http://www.google.com/url?q=http%3A%2F%2Fie.microsoft.com%2Ftestdrive%2FHTML5%2FSemanticNotepad%2FDefault.html&sa=D&sntz=1&usg=AFQjCNFNRQ6J8e7IzeJS6grvH2f3PpQrpw
http://www.google.com/url?q=http%3A%2F%2Fie.microsoft.com%2Ftestdrive%2FHTML5%2FSemanticNotepad%2FDefault.html&sa=D&sntz=1&usg=AFQjCNFNRQ6J8e7IzeJS6grvH2f3PpQrpw
http://www.google.com/url?q=http%3A%2F%2Fie.microsoft.com%2Ftestdrive%2FHTML5%2FSemanticNotepad%2FDefault.html&sa=D&sntz=1&usg=AFQjCNFNRQ6J8e7IzeJS6grvH2f3PpQrpw
http://www.google.com/url?q=http%3A%2F%2Fie.microsoft.com%2Ftestdrive%2FHTML5%2FSemanticNotepad%2FDefault.html&sa=D&sntz=1&usg=AFQjCNFNRQ6J8e7IzeJS6grvH2f3PpQrpw
http://www.google.com/url?q=http%3A%2F%2Fie.microsoft.com%2Ftestdrive%2FHTML5%2FSemanticNotepad%2FDefault.html&sa=D&sntz=1&usg=AFQjCNFNRQ6J8e7IzeJS6grvH2f3PpQrpw
http://www.w3.org/TR/SVG/metadata.html
http://www.w3.org/TR/SVG/metadata.html
http://www.w3.org/TR/SVG-access/

 CHAPTER 3 Adding Text, Style, and Transforms 85

■■ W3C Recommendation: “The <title> and <desc> elements” (2008) (http://www.w3.org/TR/
SVGTiny12/struct.html#TitleAndDescriptionElements)

■■ SVG Interest Group (http://www.w3.org/Graphics/SVG/IG/wiki/Accessibility_Activity)

Case Study: A Simple SVG Web Interface

In this final example, you will pull everything you’ve learned so far together into a simple yet powerful
SVG web interface that can be used by tiny devices, by mobile devices, and on desktop web browsers.

1. Create a rectangle with rounded corners, which will serve as a background area to contain all
of the other graphics. Also set the rectangle’s height and width to percentage values so that
the background resizes as the user’s screen expands and contracts.

2. Next, add a reference to the official SVG logo using the <image> element. You can find the
SVG logo here: http://www.w3.org/2009/08/svg-logos.html. Also add a reference to a bitmap
image and set its x and y position so that it is centered both horizontally and vertically in the
middle of the screen, even when the browser is resized.

3. Next, add text that is centered horizontally but below the two images. Your SVG should now
look similar to the following image:

<!-- Layer for content -->
 <g id="layer3">
<!-- Add background for primary content -->
 <rect id="pageContent" width="90%" height="85%" x="5%" y="5%" opacity="0.9" rx="50"
 ry="50" stroke="gray" stroke-width='0.25' fill='#333' fill-opacity="0.5"/>
<!-- Reference the official SVG logo as SVG -->
 <image id="svgLogo01" width="150px" height="150px"
 x="70px" y="50px" xlink:href="svg-logo-v.svg" alt="SVG Logo" />
<!-- Reference the bitmap image (PNG) -->
 <image id="bitmapCentralBall" width="25%" height="25%" x="38%"
 y="37.5%"xlink:href="iris-small.png" alt="NASA Photo of Jupiter" />
 <g id="textForTargettedDevices">
 <text id="textTiny" x="50%" y="80%" fill="black" font-family="tahoma, serif"
 text-anchor="middle">Text for tiny devices.</text>
 </g>
 </g>

http://www.w3.org/Graphics/SVG/IG/wiki/Accessibility_Activity

86 Building Web Applications with SVG

4. To spice up the user interface, add the background pattern created in the previous chapter.
On top of that, add a linear gradient aligned from top to bottom, as shown here:

5. Next, add another reference to the SVG logo and position it toward the upper-right of the
page. Also add two more <text> elements and give each of the <text> elements a unique ID
so that the code looks like the following.

<text id="textBasic" display="none" x="50%" y="80%" fill="orange"
 font-family="Tahoma, serif" text-anchor="middle">
 Text for larger mobile devices.</text>
<text id="TextDesktop" display="none" x="50%" y="80%" fill="orange"
 font-family="Tahoma, serif" text-anchor="middle">
 Text for desktops and wide display devices.</text>

6. Finally, add logic to the media queries in the style sheet so that the layout and display of the
page elements change depending on the end user’s screen size.

 CHAPTER 3 Adding Text, Style, and Transforms 87

<style type="text/css">

 @media screen and (min-width: 551px) {

 #svgLogo02 {

 display: inline;

 }

 #textDesktop {

 display: inline;

 }

 }

 @media screen and (max-width: 550px) and (min-width: 351px) {

 #textBasic {

 display: inline;

 }

 }

 @media screen and (max-width: 351px) {

 #pageContent {

 opacity: 0.3;

 }

 #backgroundGradient, #backgroundGridWithPattern {

 display: none;

 }

 }

@media screen and (max-width: 350px) and (min-width: 211px) {

 #textTiny {

 display: inline;

 }

 /* Not Yet Supported #textTiny:before {content: "dynamic text inserted here...";}

*/

 }

 @media screen and (max-width: 211px) {

 #svgLogo01 {

 display: none;

 }

 }

 </style>

88 Building Web Applications with SVG

You just created a solid start to a web application interface using the power of SVG and CSS to
support a variety of end-user devices and screen sizes. This example demonstrates how CSS can be
used to control the content of the SVG graphic based on various parameters, such as the width and
height of the viewing area. CSS can be just as helpful for controlling the style and content of printouts
as well. If you’ve made it this far, nice work!

Summary

So far, you have worked with static SVG, but as we will discuss in the next chapter, you can animate
and script SVG as well.

We encourage you to read on. That said, there is already so much that you can do with SVG, so
now might be an excellent time for you to tinker around with the examples you have learned so far.

 89

C H A P T E R 4

Motion and Interactivity

Neither love nor fire can subsist without perpetual motion; both cease to live so soon
as they cease to hope, or to fear.

François VI, Duc de La Rochefoucauld

In this chapter:

Declarative Animation with SVG . 89

Scripting SVG . 101

Although SVG can be a static image format suitable for illustrations, it was designed from its inception
to be interactive and dynamic. There are two very important and radically different approaches to
this dynamism: declarative animation and scripting. This chapter first introduces the powerful model
of declarative animation that’s used by SVG, and then introduces scripting. Scripting will come easiest
to those readers who already have some programming experience; therefore, the treatment here
proceeds gently. However, to take full advantage of scripting SVG, you will need some knowledge of
basic web programming.

Declarative Animation with SVG

SVG animation, as it is often called, refers to the declarative constructs borrowed from another
W3C standard: Synchronized Multimedia Integration Language (SMIL). Basically, the principle
behind declarative animation (as with the allied concepts of declarative programming) is that the
author tells the display device (computer screen, printer, mobile phone, etc.) what the end result is
supposed to be and leaves the details of implementation up to the client software. For example, a
programmer or developer can describe something like a circle and then let the device implement it
to the best of its ability.

Before getting into the practical aspects of this topic, we need to explain several important
notions:

90 Building Web Applications with SVG

■■ By declarative animation, we mean animation performed using markup rather than script.

■■ The term SMIL evokes different meanings for different audiences. Some use it to refer to the
subset of SMIL incorporated into and then expanded within SVG. Others use it to refer to the
much broader context of SMIL within the SMIL working group of the W3C. The latter is more
correct, though the ambiguity has sometimes led to disputes in discussions about using SMIL
within other W3C standards. The term SVG animation is more frequently used nowadays to
refer to declarative animation in SVG; however, SVG/SMIL might be a better term to refer to
this, because SVG also allows manipulation via CSS, and there is interest from several direc-
tions in bringing at least a subset of the power of SVG/SMIL into CSS so it can also be lever-
aged by HTML.

■■ All the major browsers except Internet Explorer have implemented declarative animation in
SVG. A number of cell phone implementations also offer support for SVG animation—and
some of these do not support JavaScript, leaving SVG animation as the only way for develop-
ers to perform animations in those platforms.

■■ To work with the following material, you'll need a browser that handles it well. Opera and the
ASV plug-in for Internet Explorer are the best implementations for SVG animation, followed
by Firefox 4 (or above). Chrome is slightly ahead of Safari at the time of this writing. You can
easily discover whether your browser supports SVG. Check to see if the following example
works in your browser. This example adds an ellipse containing two <animate> elements chil-
dren to the standard SVG template:

<svg xmlns="http://www.w3.org/2000/svg"
 xmlns:xlink=http://www.w3.org/1999/xlink
 width="100%" height="100%">

 <ellipse id="E" cx="90" cy="90" rx="30" ry="40" fill="#448">
 <animate attributeName="rx" dur="5s" values="20;90;20" repeatCount="indefinite"/>

 <animate attributeName="ry" dur="5s" values="30;60;30" repeatCount="indefinite"/>
 </ellipse>
</svg>

Alternatively, you can point your browser to the same example here: http://srufaculty.sru
.edu/david.dailey/svg/animoval0.svg. The browser should display an oscillating ellipse, the size
of which changes periodically (with an aspect ratio that changes as well) over a five-second
interval.

Note If the preceding example doesn’t work for you, change browsers and continue
experimenting with this section until you find one that works.

D
ow

n
lo

a
d
 f
ro

m
 W

o
w

!
e
B
o
o
k

<
w

w
w

.w
o
w

e
b
o
o
k.

co
m

>

http://srufaculty.sru.edu/david.dailey/svg/animoval0.svg
http://srufaculty.sru.edu/david.dailey/svg/animoval0.svg

 CHAPTER 4 Motion and Interactivity 91

■■ The idiosyncrasies of browser support are somewhat to be expected, because Safari, Chrome,
and Firefox all began their support for SMIL quite recently. The improvements within the past
year have been dramatic.

■■ Almost all attributes of SVG objects can be animated declaratively. This implies that anima-
tion extends very broadly through the technology in ways that you might not always think
of. Check http://srufaculty.sru.edu/david.dailey/svg/#SMIL and http://srufaculty.sru.edu/david
.dailey/svg/newstuff/Newlist.htm for a variety of illustrations.

■■ Not all animations can be done declaratively (at least not yet) in SVG. Script is still far more
powerful for creating complex effects. Later in the chapter, you’ll see some examples that can-
not be created using the declarative animation methods alone.

■■ Declarative animation is easy to use and appears (based on several years of anecdotal evi-
dence) to cut development time down considerably.

Getting Started
Let’s begin once more with the example described briefly above (and visible at http://granite.sru
.edu/~ddailey/svg/animoval2.svg):

<ellipse id="E" cx="90" cy="90" rx="30" ry="40" fill="#448">
 <animate attributeName="rx" dur="5s" values="20;90;20" repeatCount="indefinite"/>
 <animate attributeName="ry" dur="5s" values="30;60;30" repeatCount="indefinite"/>
</ellipse>

Inside the ellipse are two <animate> elements. One controls the width, and the other controls the
height of the ellipse during the animation. The attributes in this example control the following:

■■ attributeName This selects which attribute of the object will be animated.

■■ dur This is a measure (by default specified in seconds) that determines how long the anima-
tion will last.

■■ values This is a semicolon-delimited list of attribute values. These are often numeric, but
need not be. In this case, there are three values, and the start and end values are the same.
This means that the animation will start and stop with the same value.

■■ repeatCount A value of indefinite is the correct choice for animations that are to loop con-
tinually. Alternatively, you could put a positive integer here, specifying the number of times
that the animation has to repeat.

The graphic that follows shows the animation at various times: when t is near 0, when t equals 1.25,
and when t equals 2.5.

http://srufaculty.sru.edu/david.dailey/svg/newstuff/Newlist.htm
http://srufaculty.sru.edu/david.dailey/svg/newstuff/Newlist.htm
http://granite.sru.edu/~ddailey/svg/animoval2.svg
http://granite.sru.edu/~ddailey/svg/animoval2.svg

92 Building Web Applications with SVG

Just to give you a bit more exposure to the basic concepts, here’s another example which du-
plicates the ellipse from above and shifts its position a little. Then it varies the values attribute of
the second ellipse so that as one ellipse expands the other contracts. It also adds a rectangle (with
rounded corners) and applies some transparency for fun. You can see this example at http://granite
.sru.edu/~ddailey/svg/animoval1.svg:

<rect x="100" y="85" rx="12" height="30" width="150" fill="purple" stroke="black"
 stroke-width="3" />
<ellipse cx="100" cy="100" rx="30" ry="40" fill="#448" opacity=".75"
 stroke="black" stroke-width="3">
 <animate attributeName="rx" type="rotate" dur="5s" values="10;70;10"
 repeatCount="indefinite"/>
 <animate attributeName="ry" type="rotate" dur="5s" values="30;60;30"
 repeatCount="indefinite"/>
</ellipse>
<ellipse cx="250" cy="100" rx="30" ry="40" fill="#448" opacity=".75" stroke="black"
 stroke-width="3">
 <animate attributeName="rx" type="rotate" dur="5s" values="70;10;70"
 repeatCount="indefinite"/>
 <animate attributeName="ry" type="rotate" dur="5s" values="60;30;60"
 repeatCount="indefinite"/>
</ellipse>

In the two previous examples, the timing associated with the attributes was set to five seconds.
In the next example (visible at http://granite.sru.edu/~ddailey/svg/animoval2.svg), you’ll explore what
happens when you vary that interval for different attributes. Here is the code:

http://granite.sru.edu/~ddailey/svg/animoval1.svg
http://granite.sru.edu/~ddailey/svg/animoval1.svg

 CHAPTER 4 Motion and Interactivity 93

<rect x="100" y="85" rx="12" height="30" width="150" fill="purple" stroke="black"
 stroke-width="3" >
 <animate attributeName="width" dur="3s" values="150;100;150" repeatCount="indefinite"/>
</rect>
<ellipse id="E" cx="100" cy="100" rx="30" ry="40" fill="#448" opacity=".75" stroke="black"
 stroke-width="6" stroke-dasharray="8,4">
 <animate attributeName="rx" dur="3s" values="10;70;10" repeatCount="indefinite"/>
 <animate attributeName="ry" dur="5s" values="30;60;30" repeatCount="indefinite"/>
</ellipse>
<ellipse cx="250" cy="100" rx="30" ry="40" fill="#448" opacity=".75" stroke="black"
 stroke-width="6" stroke-dasharray="8,4">
 <animate attributeName="rx" dur="5s" values="70;10;70" repeatCount="indefinite"/>
 <animate attributeName="ry" dur="3s" values="60;30;60" repeatCount="indefinite"/>
 <animate attributeName="cx" dur="3s" values="250;200;250" repeatCount="indefinite"/>
</ellipse>

This example adds a stroke-dasharray attribute to the ellipses and lets the position of the center of
the second ellipse and the width of the rectangle vary (in synchrony with one another). This demon-
strates that desynchronizing and synchronizing can yield rather fascinating effects. While this example
appears to make the object rotate, this is simply because the circumference of the ellipse is changing
(as rx and ry change). Also, because dash arrays are allocated in terms of absolute units (pixel widths),
the number of dash segments needed to cover the ellipse also varies.

You might also experiment with the illusion of rotation by animating the dash-offset attribute. The
example at http://granite.sru.edu/~ddailey/svg/animoval3.svg presents two apparently interlocking
gears rotating in opposite directions.

It turns out that there is a better way of rotating objects than by animating the stroke. You can use
the <animateTransform> element to change the scale, position, or rotation of an object. Observe this
nifty extension of the preceding example, which uses <animateTransform>. You can see it at http://
granite.sru.edu/~ddailey/svg/animoval4.svg, but here you’ll examine a simpler case (http://granite.sru
.edu/~ddailey/svg/animoval5BW.svg) in more detail:

<ellipse id="One" cx="200" cy="100" rx="30" ry="40" fill="#555">
 <animate attributeName="rx" type="rotate" dur="5s" values="50;20;50"
 repeatCount="indefinite"/>
 <animate attributeName="ry" type="rotate" dur="5s" values="10;60;10"
 repeatCount="indefinite"/>
</ellipse>
<use id="Two" xlink:href="#One" fill-opacity=".35" stroke="#d06" stroke-width="3">
<animateTransform attributeName="transform" type="rotate" dur="5s" from="0 200 100"
 to="360 200 100" repeatCount="indefinite"/>
</use>
<use xlink:href="#One" transform="translate(100,0)" />
<use xlink:href="#Two" transform="translate(-100,0)" />

http://granite.sru.edu/~ddailey/svg/animoval5BW.svg
http://granite.sru.edu/~ddailey/svg/animoval5BW.svg

94 Building Web Applications with SVG

This example starts with a basic ellipse ("One") colored dark gray (#555) and animates both its
x and y radii. It then reuses the ellipse three times: once in the same location ("Two"), once to the
left, and once to the right. This example lets you see that the two gray ellipses oscillate only verti-
cally and horizontally. However, both the reddish ellipses have an animation applied through an
<animateTransform>, a child of the <use> element, so that they may be rotated as well. This should
serve to demonstrate that rotation adds a new property to the ellipses. Note that because of the
frequencies of oscillation, the reddish oval coincides precisely with the gray one four times in every
five-second cycle—which you can see by pausing the animation, as shown at http://granite.sru
.edu/~ddailey/svg/animoval5BWpause.svg.

Here’s a more adventurous example using similar ellipses that both oscillate and rotate as a part
of a clip path applied to an image that is then tiled through a pattern. This currently works best in
Firefox 4, Opera, and Internet Explorer with ASV. You can view it at http://granite.sru.edu/~ddailey/
svg/animoval4a.svg.

SVG also has an <animateColor> element, intended for gradually changing colors over time; how-
ever, it has been deprecated. Instead, SVG provides the ability to animate nonnumeric values using a
simple <animate> element with color names. So, you can use code such as the following to vary the
fill of the gray ellipse above concurrently with some of its other attributes (you can see an example at
http://granite.sru.edu/~ddailey/svg/animoval5.svg):

<ellipse id="One" cx="200" cy="100" rx="30" ry="40" fill="#555">
 <animate attributeName="rx" type="rotate" dur="5s" values="50;20;50"
 repeatCount="indefinite"/>
 <animate attributeName="ry" type="rotate" dur="5s" values="10;60;10"
 repeatCount="indefinite"/>
 <animate attributeName="fill" type="rotate" dur="5s" repeatCount="indefinite"
 values="red;plum;yellowgreen;red" />
</ellipse>

http://granite.sru.edu/~ddailey/svg/animoval5BWpause.svg
http://granite.sru.edu/~ddailey/svg/animoval5BWpause.svg
http://granite.sru.edu/~ddailey/svg/animoval4a.svg
http://granite.sru.edu/~ddailey/svg/animoval4a.svg

 CHAPTER 4 Motion and Interactivity 95

Motion Along a path
Now let's play a bit more with the positioning of these ellipses by using <animateMotion> to make
them follow a curve. You can see this example at http://granite.sru.edu/~ddailey/svg/animoval7.svg.

<path id="curve" stroke="black" stroke-width="3" opacity=".75"
 d="M 0,200
 C 100,200 0, 100, 100,100 C 200,100 100,200 200,200
 C 300,200 200, 100, 300,100 C 400,100 300,200 400,200
 C 500,200 400, 100, 500,100 C 600,100 500,200 600,200 z" >

</path>

<ellipse id="One" cx="0" cy="0" rx="20" ry="10" fill="inherit" opacity=".75" stroke="black"
 stroke-width="2">
 <animateMotion dur="10s" rotate="auto" repeatCount="indefinite">
 <mpath xlink:href="#curve"/>
 </animateMotion>
</ellipse>

This example draws three identical mounds (each 200 pixels to the right of the previous one). The
path is closed by the z subcommand.

First, it is important to point out that the locus of the ellipse is specified to be on the curve by
setting its center, (cx,cy), to (0,0). Also notice that the ellipse takes its orientation from the curve
itself, due to the rotate="auto" attribute. Also, because the distance traversed by the moving ellipse is
greater along the mounds than it is along the straight line, and because its apparent speed remains
constant, it takes less time to traverse the line than it does to traverse the mounds. That the shortest
distance between two points is a straight line is perhaps illustrated by this example, http://granite.sru
.edu/~ddailey/svg/animoval7c.svg, which takes the preceding code and passes a linear path through

http://granite.sru.edu/~ddailey/svg/animoval7c.svg
http://granite.sru.edu/~ddailey/svg/animoval7c.svg

96 Building Web Applications with SVG

the same extremities of the smooth curve above. You can see another example that illustrates what
happens when (cx,cy) equals (0,0) here: http://granite.sru.edu/~ddailey/svg/animoval7b.svg.

The <animateMotion> element allows you to move SVG content along a given path. If you have
previously created animations using programming or scripting languages, you might appreciate the
elegance of the declarative solution that <animateMotion> provides. The amount of code it saves is
commendable.

Multivalued Interpolation
The last type of animation demonstrated here is multivalued interpolation. In this instance, attribute
values are not single scalar values, but collections of values. To use it, you set up an interpolation
between two paths. The only restriction is that the paths must have the same number of coordinates
and the same types of subcommands (such as L, Q, C, or A) for the animation to work.

Consider the following example (visible at http://granite.sru.edu/~ddailey/svg/animoval8.svg), which
animates two vertices of a path:

<path id="curve" stroke="black" fill="yellowgreen" stroke-width="3" fill-opacity=".5" >
 <animate attributeName="d" dur="3s"
 values=" M 100,0 0,100 70,50 130,150 200,100 z;
 M 100,0 0,100 70,150 130, 50 200,100 z;
 M 100,0 0,100 70,50 130,150 200,100 z"
 repeatCount="indefinite"
 />
</path>

 CHAPTER 4 Motion and Interactivity 97

The key to understanding this example is to observe that the path’s shape, d, is governed by three
values (separated from one another by semicolons and typeset on separate lines for ease of read-
ing). The first and last of those strings of coordinates are the same, and each string has exactly five
points. The pentagon is animated by repeatedly morphing between the two shapes shown at the right
of the illustration. Furthermore, by examining the first, second, and last points of the pentagon, you
can see that we keep three of the vertices unchanged. Only the points where x equals 70 and 130 will
be changed. As one of these vertices moves down the page from (70,50) to (70,150), the other will
move up the same distance. The starting and middle values of the path are shown at the right of the
animation.

Other examples that involve transition between paths are shown in the following images—and of
course, we provide URLs so that you can view the live versions.

This graphic shows an example in which three curves are animated (see http://granite.sru.edu/
~ddailey/svg/animoval8b.svg):

The following shows an example of transitioning between random polygons (http://srufaculty.sru
.edu/david.dailey/svg/SVGOpen2010/Polygons/polygons10.svg):

http://granite.sru.edu/~ddailey/svg/animoval8b.svg
http://granite.sru.edu/~ddailey/svg/animoval8b.svg
http://w3techcourses.com/svg_images/animoval8b.svg
http://srufaculty.sru.edu/david.dailey/svg/SVGOpen2010/Polygons/polygons10.svg
http://srufaculty.sru.edu/david.dailey/svg/SVGOpen2010/Polygons/polygons10.svg
http://srufaculty.sru.edu/david.dailey/svg/SVGOpen2010/Polygons/polygons10.svg

98 Building Web Applications with SVG

This image shows an example of several traveling ellipses (http://granite.sru.edu/~ddailey/svg/
animoval9.svg):

Interacting with Animation
SVG animations can be started or stopped based on user-generated events, such as mouse clicks
and rollovers. You can trigger SVG animation from script, and conversely, trigger scripts to run upon
completion of an SVG animation. Let’s start with a simple example and work up from there, holding
off on scripting until the next section.

In this example (visible at http://granite.sru.edu/~ddailey/svg/animstart0.svg), an ellipse is instructed
to move along a curved path, as in previous examples. The difference, though, is that the animation
does not begin until an object (G) is clicked.

<path id="curve" stroke="black" fill="none" stroke-width="3" fill-opacity=".5"
 d="M 0,100 C 100,150 100,50 200,50 C 300,50 300,150 400,100" />
<ellipse cx="0" cy="0" rx="16" ry="8" fill="orange" opacity=".85" stroke="black"
 stroke-width="2">
 <animateMotion dur="3s" rotate="auto" repeatCount="2" begin="G.click">
 <mpath xlink:href="#curve"/>
 </animateMotion>
</ellipse>
<g id="G">
 <ellipse cx="200" cy="90" rx="33" ry="15" fill="yellow" stroke="black" stroke-width="2" />
 <text x="175" y="101" font-size="31" fill="black" font-family="arial">GO</text>
</g>

Here is how it works. First, the <animate> element contains the attribute begin="G.click". This
means that the action specified by the animation will begin exactly when an object having the id of G
is clicked. Second, the object G is actually a group containing both an ellipse and some text. The rea-
son for grouping them together is that ultimately, the developer cannot be sure whether the user will
actually click the oval or the text object. By grouping them, the developer ensures that whichever one
is clicked results in the animation activation. Third, the animation is instructed to run exactly twice,
using the attribute repeatCount="2".

A minor annoyance (which is actually two different minor annoyances that happen to look like
one) is that when the animation is not running, part of the ellipse is visible at the corner of the page.
This is because the ellipse has its centroid set to the coordinate (0,0), which is necessary to have the
ellipse centered on the curve throughout the animation. Fortunately, there are ways to work around
this, as you will see in the next example (visible at http://granite.sru.edu/~ddailey/svg/animstart0a.svg).

http://granite.sru.edu/~ddailey/svg/animoval8.svg

 CHAPTER 4 Motion and Interactivity 99

To modify the preceding code so that the ellipse doesn’t blink at the end of the cycle, simply re-
place the first ellipse and its children by the following code:

<ellipse id="One" cx="0" cy="0" rx="16" ry="8" fill="orange" opacity="0" stroke="black"
 stroke-width="2">
<set attributeName="opacity" to=".75" begin="G.click" />
 <animateMotion id="A" dur="3s" rotate="auto" repeatCount="2" begin="G.click" fill="freeze">
 <mpath xlink:href="#curve"/>
 </animateMotion>
</ellipse>

This example employs two new aspects of SVG animation: the <set> element and the "freeze"
value of the fill attribute. These accomplish two rather different effects.

The <set> element allows you to simply change the value of an attribute based on an event
(either generated by the user or by the passage of time). Initially, the ellipse is invisible (opacity="0");
however, when G is clicked, in addition to the <animateMotion> starting as before, the <set> element
makes the ellipse visible by changing the opacity value.

At the end of this animation, the fill="freeze" attribute specifies that the ellipse will remain at the
last values specified—namely, at the end of the curve.

You could instead make the ellipse disappear at the end of the animation (as in the example at
http://granite.sru.edu/~ddailey/svg/animstart0b.svg) by simply putting two <set> elements inside the
<ellipse> element, thusly:

<ellipse id="One" cx="0" cy="0" rx="16" ry="8" fill="orange" opacity="0"
 stroke="black" stroke-width="2">
 <set attributeName="opacity" to=".75" begin="G.click" />
 <set attributeName="opacity" to="0" begin="A.end" />
 <animateMotion id="A" dur="3s" rotate="auto" repeatCount="2" begin="G.click">
 <mpath xlink:href="#curve"/>
 </animateMotion>
</ellipse>

We’ll give one last example—an extension of the above—that employs a few more concepts to il-
lustrate some of the additional power of declarative animation. You can see it at http://granite.sru.edu/
~ddailey/svg/animstart1.svg.

The code will be annotated in parts because there are several parts that illustrate different
features.

http://granite.sru.edu/~ddailey/svg/animstart1.svg
http://granite.sru.edu/~ddailey/svg/animstart1.svg

100 Building Web Applications with SVG

Initially, for aesthetic purposes only, we lay down three curves, with two reusing the first with dif-
ferent values for the fill attribute. Then we lay down the yellow button:

<g id="G">
 <set attributeName="opacity" to="0" begin="G.click" />
 <set attributeName="opacity" to="1" begin="AM.end" />
 <ellipse cx="205" cy="30" rx="33" ry="15" fill="yellow" stroke="black" stroke-width="2">
 <set attributeName="fill" to="green" begin="G.mouseover" />
 <set attributeName="fill" to="yellow" begin="G.mouseout" />
 </ellipse>
 <text x="180" y="41" font-size="31" fill="black" font-family="arial"
 pointer-events="none">GO</text>
</g>

As in the earlier examples, this one identifies a group that contains an ellipse and some text. How-
ever, there are a few differences:

■■ The group is made to disappear when it is clicked and reappear when the <animateMotion>
(#AM) terminates.

■■ The ellipse is made to change colors from green to yellow and back as the mouse moves over
it or leaves. This is to signal to the user that the button is live and active. This direct affiliation
of behavior with the object being animated results in code that is more understandable, easier
to write, and easier to maintain than code that lives elsewhere, either in script or in a style
sheet. It also results in a DOM that is fairly easily scripted.

■■ The text object within the group is given the attribute pointer-events="none". This is because
the browser will otherwise detect that the mouse has entered the text object, which will trig-
ger a mouseout event on the ellipse.

Next, much as in the earlier example, the ellipse is created and instructed to follow one of the
curves twice, taking three seconds for each traversal:

<ellipse id="One" cx="0" cy="0" rx="16" ry="8" fill="orange" opacity="0"

 stroke="black" stroke-width="2">
 <set attributeName="opacity" to=".75" begin="G.click+3" />
 <set attributeName="opacity" to="0" begin="AM.end" />
 <animateMotion id="AM" dur="3s" rotate="auto" repeatCount="2" begin="G.click+3">
 <mpath xlink:href="#curve"/>
 </animateMotion>
</ellipse>

The difference here is that instead of having the ellipse appear exactly when the button is clicked,
the ellipse is told to become visible three seconds after the button is clicked (begin="G.click+3").

<text x="180" y="40" font-size="35" fill="black" font-family="arial" display="none">
 <set attributeName="display" to="block" begin="G.click" />
 <set attributeName="display" to="none" begin="G.click+1" />
// 3
</text>
<text x="180" y="40" font-size="35" fill="black" font-family="arial" display="none">
 <set attributeName="display" to="block" begin="G.click+1" />

 CHAPTER 4 Motion and Interactivity 101

 <set attributeName="display" to="none" begin="G.click+2" />
// 2
</text>
<text x="180" y="40" font-size="35" fill="black" font-family="arial" display="none">
 <set attributeName="display" to="block" begin="G.click+2" />
 <set attributeName="display" to="none" begin="G.click+3" />
// 1
</text>

This cluster of text objects simulates a countdown from –3 seconds to –1 second. The countdown
begins when G is clicked, but then, after each second, reveals a new number and hides the old num-
ber. The example could have just as easily used the visibility attribute, toggling its value from “hid-
den” to “visible” and back again; however, doing that causes the invisible object to take up screen real
estate. When that’s not desirable, using the display attribute (toggling between “block” and “none”)
removes that particular concern.

Scripting SVG

While SVG animation, following a declarative model, is pleasantly easy, scripting is still more
powerful—but also typically requires more work and expertise. It is our hope that this section will
be understandable to programmers and nonprogrammers alike; however, nonprogrammers should
be aware that programming skill typically takes months or years to cultivate.

Excerpting a bit from the W3C document, “An SVG Primer for Today’s Browsers” (http://
www.w3.org/Graphics/SVG/IG/resources/svgprimer.html#why_script), let us cut to the chase:

Without programming in SVG we cannot

■■ Create a new object wherever the user clicks the mouse;

■■ Build objects with random values for their attributes;

■■ Allow objects to have their attributes modified (nontrivially) by users;

■■ Allow moving objects to have their directions or velocities adjusted (nontrivially) by the user;

■■ Detect the distance between moving objects on the screen;

■■ Build a 3D rendering of a cylinder tumbling about in space;

■■ Build something which acts like a <select> object in HTML;

■■ Simulate the movement of armies of grasshoppers over an infinite meringue pie.

Now, while not all SVG developers share all the above interests with equal enthusiasm, this may
give you some idea of the range of possibilities that script enables. It is also worth mentioning that
among the proposals for additions to SVG 2 (http://www.w3.org/Graphics/SVG/WG/wiki/SVG2_
Requirements_Mailing_List_Feedback) are suggestions that might allow declarative access to random
values, collision detection, and enhanced 3D capabilities.

102 Building Web Applications with SVG

Getting Started with JavaScript and SVG
To begin our discussion, the first example (http://granite.sru.edu/~ddailey/svg/B/scriptstart1.svg) is a
sort of simplest case: a Hello World program in which the click of a button results in a simple scripted
response.

<svg xmlns="http://www.w3.org/2000/svg" xmlns:xlink="http://www.w3.org/1999/xlink">
<script><![CDATA[
 function Here(){
 alert("hello")
 }
]]></script>
<text id="Text" x="87" y="100" font-size="26" fill="black">Click</text>
<rect id="Rect" onclick="Here()" x="75" y="76" height="30" width="80" stroke="black"
stroke-width="2" fill="green" opacity=".5" rx="10"/>
</svg>

Clicking the button results in an alert box being opened, containing the message “hello”.

We want to point out several things about this code.

■■ JavaScript embedded in SVG typically resides within a <script> tag. Because SVG is actually
XML, you must use:

<script><![CDATA[

 CHAPTER 4 Motion and Interactivity 103

to begin a script tag and write:

]]></script>

to end the script tag. You define JavaScript functions and variables inside that script tag.

■■ Although the text is partly visible thanks to the opacity attribute set on the rectangle, a user
cannot click it. To place the text in front instead, and make it sensitive to events, you can
group the two objects by placing them inside a <g> element, first the rectangle, then the text
(as in the earlier examples in the section “Interacting with Animation”), and then register the
click event on the group rather than on the rectangle.

■■ When the user clicks on the rectangle, the event calls the JavaScript function Here(). Functions
are used to define blocks of statements which can be reused by calling the function again.

■■ The commands—in this case, just one: alert('hello')—inside the curly braces ({ and }) are the
JavaScript program statements that will run when the function activates.

■■ The net result of the above example is that when the green button is clicked, the word “hello”
will appear in an alert box.

■■ Alert boxes are not considered good user interface design; they are used primarily for debug-
ging by programmers.

The examples that follow will all begin with this basic prototype and add things as needed. When
beginning scripting, you may want to start with a simple scripting template (such as the one provided
at http://srufaculty.sru.edu/david.dailey/svg/simpleTemplate.svg) because not all the syntax is easily
memorable.

While the above example accomplishes very little, it serves the purpose of showing how to activate
a JavaScript function from a mouse click within an SVG document, and it’s intended to function only
as a gentle introduction—the sort of Hello World program typically found in introductory program-
ming texts. Programming is a big topic (as big as mathematics, indeed, as it holds the theory of
computing within it), so this book can at best provide just a glimpse of what you can do with SVG and
script working together.

Using Script to Find an Object and Change Its Attributes
Script presents the SVG author with several opportunities to manipulate objects in the SVG DOM.
First, though, one must know how to find an object in the DOM. There are at least two different but
effective ways to find an object so you can manipulate it.

example 1
Here, you’ll begin with the simple example above (http://granite.sru.edu/~ddailey/svg/B/scriptstart1.
svg) and change the statement alert('Hello') so that, instead, the code retrieves the object named rect
and then modifies it:

D
ow

n
lo

a
d
 f
ro

m
 W

o
w

!
e
B
o
o
k

<
w

w
w

.w
o
w

e
b
o
o
k.

co
m

>

104 Building Web Applications with SVG

<svg xmlns="http://www.w3.org/2000/svg" xmlns:xlink="http://www.w3.org/1999/xlink">
 <script><![CDATA[
 function Here () {
 var R = document.getElementById("Rect");
 R.setAttributeNS(null, "fill", "red");
 }
]]></script>
 <text id="Text" x="87" y="100" font-size="26" fill="black">Click</text>
 <rect id="Rect" onclick="Here()" x="75" y="76" height="30"
 width="80" stroke="black" stroke-width="2" fill="green" opacity=".5" rx="10"/>
</svg>

When an element defined in an SVG document is built and inserted into the DOM, it is called a node.
The DOM has a tree structure—computer scientists like to call the nodes “leaves.” The <rect> element
is a node that has been given an identifier using the id attribute: id="Rect".

You use the method getElementById() to retrieve a particular node in the document, and the method
returns a reference that you can store in a variable for future use. In the above code we have declared
the variable R and we have assigned to it the node reference returned by the method. Think of R as
an alias for Rect. However, remember that the variable R is a reference to the Rect node only within
the body of the function (scope), because we have declared R as a local variable. If we wanted to be
able to reuse it outside of the function, or within other functions, we would need to declare it as a
global variable, right at the beginning of the script, and we would use it in the function body without
the var keyword:

 <script><![CDATA[

 var R;
 function Here () {
 R = document.getElementById("Rect");
 ...
 }

We have declared the global variable R, and we have assigned a value to it in the function body.
So long as we do not reassign that variable by giving it a new value, it will refer to the Rect node
throughout the program.

When the function Here() is activated by the click event, the node R will have the value of its fill
attribute changed to red. Note the use of the method setAttributeNS() instead of the more generic
setAttribute(); although the latter would work equally well in this particular case, this is not true for
methods that have an XML declination when used in documents using multiple namespaces, for
example HTML and SVG. Therefore it is essential to get into the right habit of using the appropriate
grammar.

example 2
Here’s a more general approach that would work for any item in the document for which you wish to
change the fill color. You can see this example at http://granite.sru.edu/~ddailey/svg/B/changeAttr2.svg.
The example begins the same as before, so the first lines are omitted here:

 CHAPTER 4 Motion and Interactivity 105

function Here (evt) {
 var R = evt.target;
 R.setAttributeNS(null, "fill", "red");
}
]]></script>
<text id="Text" x="67" y="100" font-size="26" fill="black">Click</text>
<rect onclick="Here(evt)" x="55" y="76" height="30" width="80" stroke="black"
 stroke-width="2" fill="blue" opacity=".5" rx="10"/>
<g transform="translate(100,0)">
 <text id="Text" x="87" y="100" font-size="26" fill="black">Click</text>
 <rect onclick="Here(evt)" x="75" y="76" height="30" width="80" stroke="black"
 stroke-width="2" fill="green" opacity=".5" rx="10"/>
</g>

Note the following about this example:

■■ Each of the two buttons, when clicked, sends a small gift (known as a parameter) to the func-
tion Here(). This parameter is the event (evt), which is an object that contains information
about what just happened.

■■ The code evt.target is a way of referring to the thing that received the event. In this case,
evt.target refers to whichever rectangle the user clicked.

■■ After you know what was clicked, you let R refer to that, and then change the attributes of
R the same way as in the previous example.

example 3
Notice that an object does not need to have a particular attribute specifically defined beforehand for
you to add and then change that attribute in code (see the example at http://granite.sru.edu/~ddailey/
svg/B/changeAttr3.svg, in which the dash array is adjusted by script even though the original element
contained no such attribute to begin with). This is possible because in reality the majority of attributes
are assigned to the element with an initial value (default) which, in the case of dash array for example,
is set to “none”.

function Here (evt) {
 var R = evt.target;
 if (evt.type == "mouseover") {
 R.setAttributeNS(null, "stroke-dasharray", "4,8");
 R.setAttributeNS(null, "stroke-width", "10");
 R.setAttributeNS(null, "fill", "green");
 }
 else if (evt.type == "mouseout") {
 R.setAttributeNS(null, "stroke-dasharray", null);
 R.setAttributeNS(null, "stroke-width", "2");
 R.setAttributeNS(null, "fill", "blue");
 }
}
]]>
</script>
<text id="Text" x="67" y="100" font-size="26" fill="black">Click</text>
<rect onmouseover="Here(evt)" onmouseout="Here(evt)" x="55" y="76" height="30" width="80"
 stroke="black" stroke-width="2" fill="blue" opacity=".5" rx="10"/>

http://granite.sru.edu/~ddailey/svg/B/changeAttr3.svg
http://granite.sru.edu/~ddailey/svg/B/changeAttr3.svg

106 Building Web Applications with SVG

 Note the following about this example:

■■ The rectangle has both an onmouseover and an onmouseout event defined. Both fire the same
function: Here().

■■ The code uses the type of the event (mouseover or mouseout) to determine which block of
code (inside the curly braces) to perform.

■■ The code adjusts several attributes during the call: fill, stroke-width, and stroke-dasharray.

■■ When the user moves the mouse out of the rectangle, the event fires and the function is
called again restoring the attributes to their original values.

■■ You could easily add another block of code, using another else if statement to trigger a func-
tion or change attribute values when the user clicks the mouse.

example 4
As you might expect, you can accomplish this just as well using the <set> element available in SMIL
animation, as illustrated here (also see the example at http://granite.sru.edu/~ddailey/svg/B/change
Attr4.svg):

<text id="Text" x="67" y="100" font-size="26" fill="black">Click</text>
<rect x="55" y="76" height="30" width="80" stroke="black" stroke-width="2"
 fill="blue" opacity=".5" rx="10">
 <set attributeName="fill" begin="mouseover" to="green"/>
 <set attributeName="stroke-width" begin="mouseover" to="10"/>
 <set attributeName="stroke-dasharray" begin="mouseover" to="4,8"/>
 <set attributeName="fill" begin="mouseout" to="blue"/>
 <set attributeName="stroke-width" begin="mouseout" to="2"/>
 <set attributeName="stroke-dasharray" begin="mouseout" to="none"/>
</rect>

Note the following about this example:

■■ As of this writing Chrome and Safari do not properly handle the rollover; they sometimes
appear to be confused about whether the mouse has left or entered.

■■ Opera and Firefox disagree on the number of attributes left in the DOM after the process
runs, as this example shows.

■■ This technique runs afoul of the popular approach of attempting to separate content, pre-
sentation, and behavior (into markup, styles, and script, respectively). Still, there is something
nice about having all aspects of an object right there with it. It is also not clear, in a graphical
language like SVG, what the distinction between the three necessarily is.

■■ The cross-browser issues associated with the SMIL approach, regardless of its elegance, might
recommend the scripted approach instead.

http://granite.sru.edu/~ddailey/svg/B/changeAttr4.svg
http://granite.sru.edu/~ddailey/svg/B/changeAttr4.svg

 CHAPTER 4 Motion and Interactivity 107

example 5
While on the topic of animation, here's an example of animating things using JavaScript (see http://
granite.sru.edu/~ddailey/svg/B/changeAttr5.svg). Here are the key parts of the script:

if (evt.type == "mouseover") {
 R.setAttributeNS(null, "stroke", "green");
 R.setAttributeNS(null, "fill", "green");
 running = true;
 animate();
}
var w = 2;
var dir = 1;
function animate () {
 if (!running) return;
 w = w + dir;
 R.setAttributeNS(null, "stroke-width", w);
 if (w > 5 || w < 1) dir =- dir;
 setTimeout("animate()", 50);
}

Note the following about this example:

■■ If the scripting looks complicated, realize that it is just a way of programming
nondeclaratively. On mouseover, the code calls the function animate(), which repeatedly
changes the stroke width.

■■ The animate() function uses the JavaScript command, setTimeout(), to repeatedly restart itself
and redraw the screen every 50 milliseconds.

■■ The value of the variable w increases every 50 milliseconds until it reaches 5, and then it
shrinks.

■■ You could obtain a similar effect rather easily using the declarative <animate> (which would
probably be more understandable to prospective web authors).

example 6
Next is an example that changes the text inside a text node. This is something that people often want
to do at about this stage of their learning, but it turns out that the conceptual approach is somewhat
different than what we’ve discussed so far. The words inside a text node are, in fact, not attributes
of the text node, but rather the contents of its child node. You’ll learn more about the distinction
between parent nodes and child nodes later in this chapter, in the section “The SVG DOM.” You can
see the example running at http://granite.sru.edu/~ddailey/svg/B/changeAttr6.svg.

<script><![CDATA[
 function Here (evt) {

 var R = evt.target;
 var T = document.getElementById("Text");
 if (evt.type == "mouseover") {

108 Building Web Applications with SVG

 R.setAttributeNS(null, "fill", "green");
 T.textContent = "please";
 T.setAttributeNS(null, "font-size","20");
 }
 else if (evt.type == "mouseout") {
 R.setAttributeNS(null, "fill", "blue");
 T.textContent = "Click";
 T.setAttributeNS(null, "font-size", "26");
 }
 }
]]></script>
<text id="Text" x="67" y="100" font-size="26" fill="black">Click</text>
<rect onmouseover="Here(evt)" onmouseout="Here(evt)" x="55" y="76" height="30" width="80"
 stroke="black" stroke-width="2" fill="blue" fill-opacity=".5" rx="10"/>

Note the following about this example:

■■ As before, the code changes the color of the <rect> element. But this time it also adjusts the
font size of the <text> element named Text, so that it fits into its button a bit better. The code
to do these two things uses the same techniques as in the earlier examples.

■■ The content of the text node is inside a node considered to be a child of the text node.
As such, the value of that node is not an attribute, so you can set its textContent. Because
the node inside is the first child of the text node, you could instead change the content of
firstChild using the code T.firstChild.nodeValue="please."

■■ The code T.textContent does not work in the Adobe plug-in (meaning that it won’t work with
Internet Explorer 8 or below). If support for those browsers matters to you, then you can use
the code T.firstChild.nodeValue="please", which works in all browsers.

 CHAPTER 4 Motion and Interactivity 109

Adding New Content to an SVG Document
There are two functions for adding new content to an SVG document: createElementNS() and
cloneNode(). Their purposes are similar, but their use cases are a bit different. Before getting into
the details of each, in general you use the following steps for both methods:

1. Create the element, using either createElementNS() or cloneNode().

2. Establish its properties (typically using setAttribute).

3. Insert the object into the SVG document.

So, let’s use a script to create a new element. (This example is shown at http://granite.sru.edu/
~ddailey/svg/B/addNodes1.svg.)

<svg xmlns="http://www.w3.org/2000/svg" width="100%"
 xmlns:xlink="http://www.w3.org/1999/xlink" >
 <script><![CDATA[
 xmlns="http://www.w3.org/2000/svg"
 xlink="http://www.w3.org/1999/xlink"

 function add (evt) {
 var C = document.createElementNS(xmlns, "circle");
 C.setAttributeNS(null, "r", 30);
 C.setAttributeNS(null, "cx", evt.clientX);
 C.setAttributeNS(null, "cy", evt.clientY);
 C.setAttributeNS(null, "opacity", .5);
 C.setAttributeNS(null, "fill", "red");
 document.documentElement.appendChild(C);
 }
]]></script>
<rect width="100%" height="100%" fill="white" onclick="add(evt)"/>
<text id="Text" x="67" y="90" font-size="17" font-family="arial" fill="black">
 Click anywhere to add something</text>
<rect x="55" y="70" height="30" width="285" onclick="add(evt)" stroke="black"
 stroke-width="2" fill="blue" opacity=".5" rx="10" />
</svg>

In this example, note the following:

■■ onclick="add(evt)" has been added to both the background rectangle and the button itself.

■■ evt is the click event. evt.clientX and evt.clientY refer to the x and y position of the click itself.

■■ Clicking a circle that has been added does not result in a new circle being added.

■■ document.documentElement refers to the drawing canvas within SVG—it corresponds roughly
to the <body> tag in HTML. This is the container to which you’re adding each new circle, and
it’s the same container in which the text and rectangle exist.

http://granite.sru.edu/~ddailey/svg/B/addNodes1.svg
http://granite.sru.edu/~ddailey/svg/B/addNodes1.svg

110 Building Web Applications with SVG

Instead of the onclick="add(evt)" statement, above, add a statement such as the following to
<script> at the very beginning of the script (outside the function):

document.documentElement.addEventListener("click", function (evt) {add(evt);}, false);

After doing that, clicks will be allowed everywhere, including atop the newly added circles.

Note The DOM Level 0 statement document.documentElement.setAttribute("onclick","add
(evt)") accomplishes much the same thing, but is unlikely to meet the demands of modern
applications.

The next example shows that you can use both declarative and scripted methods together in the
same document (in fact, you can use both scripted and declarative animation together—and even
combine them in ways that interact with one another). Consider the following (see the example at
http://granite.sru.edu/~ddailey/svg/B/addNodes2.svg):

<svg xmlns="http://www.w3.org/2000/svg" width="100%"
 xmlns:xlink="http://www.w3.org/1999/xlink" >
<script><![CDATA[
var xmlns = "http://www.w3.org/2000/svg";
var xlink = "http://www.w3.org/1999/xlink";
function add () {
 var C = document.createElementNS(xmlns, "circle");
 C.setAttributeNS(null, "r", 50);
 var x = 20 + Math.random() * 300;
 var y = 20 + Math.random() * 150;
 C.setAttributeNS(null, "cx", x);
 C.setAttributeNS(null, "cy", y);
 C.setAttributeNS(null, "opacity", .5);
 C.setAttributeNS(null, "fill", Color());
 document.getElementById("underlayer").appendChild(C);
}
function Color () {
 var R = parseInt(Math.random() * 255);
 var G = parseInt(Math.random() * 255);
 var B = parseInt(Math.random() * 255);
 return "rgb(" + R + "," + G + "," + B + ")";
}
]]></script>
<rect width="100%" height="100%" fill="white"/>
<g id="underlayer" />
<text id="Text" x="67" y="90" font-size="17" font-family="arial" fill="black">
Click here to add something</text>
<rect x="55" y="70" height="30" width="250" onclick="add()" stroke="black"
 stroke-width="2" fill="blue" opacity=".5" rx="10">
 <set attributeName="fill" begin="mouseover" to="green"/>
 <set attributeName="stroke-width" begin="mouseover" to="5"/>
 <set attributeName="fill" begin="mouseout" to="blue"/>
 <set attributeName="stroke-width" begin="mouseout" to="2"/>
</rect>
</svg>

http://www.w3.org/2000/svg
http://www.w3.org/1999/xlink

 CHAPTER 4 Motion and Interactivity 111

From this code, you can observe the following:

■■ Only the button (consisting of text under a <rect>) activates the function add().

■■ To prevent the button from being covered with circles (and hence becoming unavailable for
mouse clicks), a group named underlayer is created; it starts out without any content, but
content will be added to it later. This layer appears before the button in the markup, so it lies
under the button and thus can’t interfere with mouse events on it. (If it were atop the button,
then it would receive the mouse clicks.)

■■ Some declarative techniques are employed (namely, <set>, as discussed earlier in this chapter)
to give the button a rollover effect. If you wanted to avoid declarative techniques, you could
easily do this with script instead, using setAttribute(), as triggered by mouseover and mouseout
events.

■■ For fun, each new circle appears at a random location in the rectangle, ranging from x and y
values of (20,20) to values of (320,170).

■■ We added a random color to each circle by independently constructing random values for
each of its R, G, and B values.

Cloning Nodes
Cloning an existing object instead of building a new one can save a lot of code. We’ll show you two
examples of this. Here’s the first:

<script><![CDATA[
 function add (evt) {
 var C = evt.target;
 var N = C.cloneNode(false);
 N.setAttributeNS(null, "x", Math.random() * 300);
 N.setAttributeNS(null, "y", Math.random() * 200);
 document.documentElement.appendChild(N);
 }
]]></script>
<text font-size="17" font-family="arial" y="40" x="20" fill="black">
Click any blue shape</text>
<rect x="55" y="50" height="50" width="85" stroke="#503" onmousedown="add(evt)"
stroke-width="3" fill="blue" fill-opacity=".5" rx="20" stroke-dasharray="9,5,2,5"/>

In this relatively simple example (visible at http://granite.sru.edu/~ddailey/svg/B/addNodes30.svg),
the <rect> is armed to call the function add() whenever it is clicked. The function first finds the node
itself (namely the <rect>) and clones it. The parameter value false means that it does not copy any
child nodes it may find inside the rectangle. This leaves most of the object’s 11 attribute values intact,
but the 2 of them responsible for its positioning—x and y—have been altered.

In the next example (visible at http://granite.sru.edu/~ddailey/svg/B/addNodes3.svg), the advan-
tages of cloning are even clearer. Unfortunately, this doesn't work in Internet Explorer 9 or Safari yet,
because of the dynamic SMIL nodes. But it does work with current releases of Chrome, Firefox, Opera,
and Internet Explorer with ASV.

112 Building Web Applications with SVG

<svg xmlns="http://www.w3.org/2000/svg" width="100%"
 xmlns:xlink="http://www.w3.org/1999/xlink">
<script><![CDATA[
 xmlns="http://www.w3.org/2000/svg"
 xlink="http://www.w3.org/1999/xlink"
 function add (evt) {
 var C = evt.currentTarget;
 var N = C.cloneNode(true);
 N.setAttributeNS(null, "fill", Color());
 var s = (4 * Math.random() + 1);
 N.firstChild.setAttributeNS(null, "dur", s);
 document.documentElement.appendChild(N);
 }
 function Color () {
 var R = parseInt(Math.random() * 255);
 var G = parseInt(Math.random() * 255);
 var B = parseInt(Math.random() * 255);
 return "rgb(" + R + "," + G + "," + B + ")";
 }]]></script>
 <g onmousedown="add(evt)" fill="blue"><animateTransform attributeName="transform"
 type="rotate" dur="5s" values="0,100,100;360,100,100" repeatCount="indefinite"/>
 <text x="67" y="70" font-size="17" font-family="arial" fill="black">Click me</text>
 <rect x="55" y="50" height="30" width="90" stroke="black" stroke-width="2"
 fill="inherit" opacity=".5" rx="10" />
 </g>
</svg>

Note the following about this code:

■■ The text and the rectangle are placed inside a group that is being rotated by an
<animateTransform>.

■■ It is the group element that actually sends the event to the function. (We use a mousedown
event because the object is moving, and it is easier for the user to aim at and click down on a
moving object than to click both down and up on it.)

■■ It turns out that the target of the event in this case is actually the rectangle or the text, not the
group. To identify and clone the group, we need to use evt.currentTarget, the object on which
the event was registered, instead of evt.target, which is the object that triggers the event.

■■ The parameter passed to the cloneNode() method is set to "true". This means that its children—
namely, the <animateTransform>, the <text>, and the <rect>—are all cloned along with the
group.

■■ We then modify the fill of the group to a random color, and this is inherited by the <rect>.

■■ Finally, to separate the various buttons from one another, we find the first child of the
group—namely, the <animateTransform>—and modify its duration (dur) to be a random
amount of time.

■■ Note that the <animateTransform> is not separated by any whitespace from the <g> ele-
ment—and they are both in fact typed on the same line of text. This is important, because the
firstChild of the group would otherwise actually be a text node consisting of the white space.

 CHAPTER 4 Motion and Interactivity 113

evaluating Nodes (getAttribute)
Just as setAttributeNS() lets you change attribute values, the method getAttributeNS() provides a way
to retrieve the current value of some attribute of a given node. As an example, to get the x-coordinate
of the center of a circle with id="C", you might use syntax like this:

var myCircle = document.getElementById("C");
var value = myCircle.getAttributeNS(null, "cx") ;

The following example (at http://granite.sru.edu/~ddailey/svg/B/DOMplay0.svg) uses
getAttributeNS() to find the size values for a particular object, and then uses those to construct
slightly smaller objects.

<svg xmlns="http://www.w3.org/2000/svg" width="100%"
 xmlns:xlink="http://www.w3.org/1999/xlink" >

<script><![CDATA[
 xmlns = "http://www.w3.org/2000/svg";
 xlink = "http://www.w3.org/1999/xlink";
function add (evt) {
 var C = evt.target;
 var N = C.cloneNode(true);
 var rx = C.getAttributeNS(null, "rx");
 var ry = C.getAttributeNS(null, "ry");
 var cy = C.getAttributeNS(null, "cy");
// N.setAttributeNS(null, "cy", cy - 5);
// above line doesn't work because this value
// is overridden by animation
 N.setAttributeNS(null, "rx", rx - 10);
 N.setAttributeNS(null, "ry", ry - 5);
 N.setAttributeNS(null, "transform", "translate(0," + (62 - ry) + ")");
 document.documentElement.appendChild(N);
}]]>
</script>
 <radialGradient id="r1" cx="50%" cy="90%" r="34%" fy="80%" spreadMethod="reflect"
 gradientUnits="objectBoundingBox"> <stop offset=".1" stop-color="black" stop-opacity="0"/>
 <stop offset=".8" stop-color="orange"/>
 <stop offset=".9" stop-color="white" stop-opacity="0"/>
 <stop offset="1" stop-color="grey"/>
 </radialGradient>
 <text font-size="23" font-family="serif" x="20" y="40" fill="black">Click the oval</text>
 <ellipse ry="60" rx="110" fill="url(#r1)" stroke="black" onmousedown="add(evt)"
 stroke-width="2" >
 <animate attributeName="cx" type="translate" dur="9s" values="5%;90%;5%"
 repeatCount="indefinite"/> <animate attributeName="cy" type="translate" dur="13s"
 values="5%;90%;5%" repeatCount="indefinite"/>
 </ellipse>
</svg>

In this example, you should note the following:

■■ The position of the ellipse has been animated with different periodicities for its horizontal (cx)
and vertical (cy) movements. Because 9 × 13 = 117, the animation will repeat every 117 seconds.

■■ The ellipse has been filled with a reflected radial gradient, just for fun.

114 Building Web Applications with SVG

■■ The onmousedown attribute is used on the ellipse because it is easier to mouse down than to
click a moving object.

■■ The mousedown event calls the function add(), which recognizes the event that activated it,
and likewise the target of that event: the ellipse that was clicked (there may be more than one
target).

■■ The value true passed to the cloneNode() method means that the cloning of the target (the
ellipse) will include its children.

■■ The method getAttributeNS() is called to find the size of the clicked ellipse, to gather the
values so the code can create a smaller one. As with setAttribute and setAttributeNS, if we are
working only in the SVG namespace, we could use the simpler getAttribute0 and save our-
selves the need to specify the null attribute value.

■■ The new ellipse is placed down just a bit from where its predecessor was. But because the
value cy is controlled by the animation, assigning a value through script has no effect.

■■ The code uses a transform instead to move each new ellipse’s center a bit lower (because of
the reasons mentioned in the previous point).

■■ As the number of ellipses increases, you’ll see the animation slow down considerably.

■■ If you were to use a centralized <animateTransform> for the group of ellipses, it would be
more difficult to vary the horizontal and vertical cycle frequencies independently.

The last three points are addressed somewhat in this very similar example (visible at http://granite
.sru.edu/~ddailey/svg/B/DOMplay0b.svg). The differences in the code are briefly considered here.

function add (evt) {
 var C = evt.target;
 var N = C.cloneNode(false);
 var rx = C.getAttributeNS(null, "rx");
 var ry = C.getAttributeNS(null, "ry");
 var cy = parseInt(C.getAttributeNS(null, "cy"));
 N.setAttributeNS(null, "cy", cy + 5);
 N.setAttributeNS(null, "rx", rx - 10);
 N.setAttributeNS(null, "ry", ry - 5);
 C.parentNode.appendChild(N);
}

■■ The new node is added to the parentNode—the group that contains whatever object has been
clicked. This provides a first glimpse of the topic of the next section, “SVG DOM.”

■■ In the earlier example, cy could not be used because it was being animated. Now it can be.

■■ The function parseInt() converts the string value stored in cy to an integer. The subtraction
operation in the earlier case didn’t need to do this, because subtraction automatically casts
the result into integer arithmetic. Here, if you don’t use parseInt, you’ll get a “not a number”
error, at least in some browsers.

http://granite.sru.edu/~ddailey/svg/B/DOMplay0b.svg
http://granite.sru.edu/~ddailey/svg/B/DOMplay0b.svg

 CHAPTER 4 Motion and Interactivity 115

This example introduced only one new concept, the parentNode property, but it provided a chance
to explore some of the earlier ideas in a bit more detail.

SVG DOM
To those who have not already programmed with the DOM in HTML or XML, this topic can be fairly
complex. As you read this chapter, we encourage you to spend a week or two playing with some of
these examples and others at the authors’ websites (for example, see http://srufaculty.sru.edu/david
.dailey/svg/createElementBrowser.html). If you are not already a programmer, you may want to skip
this section.

To recap, the following two lists show topics that have already been covered in this chapter and
those that have not, respectively. Once you become familiar with all of these concepts, you will be
able to do most anything you will ever need to do in the SVG DOM.

Here are the topics that we’ve already covered:

■■ setAttributeNS()

■■ getAttributeNS()

■■ getElementById()

■■ createElementNS()

■■ appendChild()

■■ cloneNode()

■■ firstChild

And here are the topics that we’ll discuss in the final sections of the chapter:

■■ previousSibling() and nextSibling()

■■ getElementsByTagNameNS()

■■ parentNode()

■■ removeChild()

■■ createTextNode()

First, you will discover the utility of another method of a DOM object, called getElementsBy
TagNameNS(). Those familiar with HTML DOM have probably noticed that some browsers (but not
others) consider white space (which includes space characters, tabs, and carriage returns) that lie in
between tags as separate nodes in the DOM. Trying to modify, for example, the third child of a node,
might in one browser target a #text node and in another a <stop> node. Fortunately, for any given
SVG element (in other words, a node in the DOM) you can ask for all its children of a given type using
the getElementsByTagNameNS() method. Here's an example (visible at http://granite.sru.edu/~ddailey/
svg/B/DOMplay3.svg).

http://srufaculty.sru.edu/david.dailey/svg/createElementBrowser.html
http://srufaculty.sru.edu/david.dailey/svg/createElementBrowser.html
http://granite.sru.edu/~ddailey/svg/B/DOMplay3.svg
http://granite.sru.edu/~ddailey/svg/B/DOMplay3.svg

116 Building Web Applications with SVG

A key thing to note is that getElementsByTagNameNS() returns a node collection, but one that can-
not be treated as a regular array. That is, its elements must be addressed using this special syntax: get
ElementsByTagNameNS(namespace, name).item(n), instead of the regular array notation [n].

<svg xmlns="http://www.w3.org/2000/svg" width="100%"
 xmlns:xlink="http://www.w3.org/1999/xlink">
<script><![CDATA[
 xmlns = ”http://www.w3.org/2000/svg”;
 xlink = "http://www.w3.org/1999/xlink";
 var count = 0;
 var letters = ["A", "B", "C", "D", "E", "F", "G", "H", "I", "J"];
 var letco = 0;
 function add (evt) {
 var C = evt.currentTarget; // C.nodeName is g
 var N = C.cloneNode(true);
 var x = Math.random() * 700 + 5;
 var y = Math.random() * 400 + 5;
 N.setAttributeNS(null, "transform", "translate(" + x + "," + y + ")");
 var TspansN = N.getElementsByTagNameNS(xmlns, "tspan");
 var TspansC = C.getElementsByTagNameNS(xmlns, "tspan");
 if (TspansC.item(1).textContent == "Me") {
 N.setAttributeNS(null, "fill", Color());
 TspansN.item(1).textContent = letters[letco ++% letters.length];
 } else {
 N.setAttributeNS(null, "fill", C.getAttributeNS(null, "fill"));
 TspansN.item(1).textContent = TspansN.item(1).textContent;
 }
 TspansN.item(2).textContent = count++;
 document.documentElement.appendChild(N);
 }
 function Color () {
 return "rgb(" + parseInt(Math.random() * 255) + "," + parseInt(Math.random() * 255) + ","
 + parseInt(Math.random() * 255) + ")";
 }
]]></script>
<g onmousedown="add(evt)" fill="orange" transform="translate(300,200)">
 <rect height="30" width="80" fill="inherit" rx="10" stroke="black" stroke-width="2"
 fill-opacity=".7" />
 <text font-size="17" font-family="serif" transform="translate(6,20)" fill="black">
 <tspan>Click </tspan><tspan>Me</tspan><tspan></tspan>
 </text>
</g>
</svg>

Here are some notes about the preceding code:

■■ The event handler is added to the group so that the entire group (a <text>, a <rect>, and
three <tspan> elements) can be cloned.

■■ We wished to give each new button its own identity, but while preserving a bit of family
resemblance to the button that was used to create it.

■■ Each new button is given a new location (based on a translation involving random horizontal
and vertical displacements). In all other respects, it inherits the other attributes of its ancestor.

 CHAPTER 4 Motion and Interactivity 117

■■ If the first button is clicked, the new button gets a new number and a new random color.

■■ If a subsequent button is clicked, the new button is given a part of the name and color of that
newly clicked button.

■■ The text contains three <tspan> elements, each of which is retrieved as a part of the collection
through getElementsByTagNameNS(). Two elements of this collection are modified to change
the text within the button’s group, based, in one case, on the text found inside the activating
button.

Another example in which the use of getElementsByTagNameNS() is well motivated and perhaps
slightly less artificial (although it uses SMIL animation) can be seen at http://granite.sru.edu/~ddailey/
svg/B/DOMplay2.svg.

removing Content
Here’s a simpler example (visible at http://granite.sru.edu/~ddailey/svg/B/makeAndTake0.svg) that
shows the use of removeChild() to delete content from an SVG document:

<svg xmlns="http://www.w3.org/2000/svg" width="100%"
xmlns:xlink="http://www.w3.org/1999/xlink" >
<script><![CDATA[
 xmlns = "http://www.w3.org/2000/svg";
 xlink = "http://www.w3.org/1999/xlink";
 var lastOne;
 Root=document.documentElement;

 function Color () {
 var R = parseInt(Math.random() * 255);
 var G = parseInt(Math.random() * 255);
 var B = parseInt(Math.random() * 255);
 return "rgb(" + R + "," + G + "," + B + ")";
 }
 function add (evt) {
 var C = document.getElementById("C");
 var NC = C.cloneNode(false);
 NC.setAttributeNS(null, "cx", evt.clientX);
 NC.setAttributeNS(null, "cy", evt.clientY);
 NC.setAttributeNS(null, "fill", Color()); NC.removeAttribute("id");
 Root.appendChild(NC);
 }
 function remove (evt) { Root.removeChild(evt.target); }
]]></script>
 <defs>
 <circle r="20" fill-opacity=".5" id="C" onclick="remove(evt)" stroke="black"
 stroke-width="2" stroke-dasharray="8,4" />
 </defs>
 <rect width="100%" height="100%" fill="white" onclick="add(evt)"/>
 <rect x="25" y="30" height="50" width="235" stroke="#800" stroke-width="2" fill="grey"
 opacity=".65">
 </rect>
 <text x="37" y="50" font-size="12" font-family="arial" fill="#800">

http://granite.sru.edu/~ddailey/svg/B/DOMplay2.svg
http://granite.sru.edu/~ddailey/svg/B/DOMplay2.svg

118 Building Web Applications with SVG

 Click on blank space to add something</text>
 <text x="59" y="70" font-size="12" font-family="arial" fill="#800">
 Click something to get rid of it</text>
</svg>

This example requires only a few comments:

■■ Rather than typing document.documentElement whenever you wish to insert or remove things
from the SVG DOM, it is common to use the variable Root (or SVGRoot) to refer to that entity.

■■ After finding the invisible circle (hidden inside the <defs> element), all its attributes, including
the onclick attribute, are cloned. Its color and position are determined dynamically.

■■ Each circle, as cloned, has the built-in event handler to call the remove function.

■■ Each center’s new center (cx,cy) is taken from the coordinate of the mouse click (evt.clientX,
evt.clientY).

■■ The remove() function uses the event to determine which object was clicked. That object—
namely the target of the click event—is then removed from Root using Root.removeChild().

■■ There is a problem with this script: all cloned circles share the same id. We address that by
using the removeAttributeNS() method of the object. Alternatively, you could give each ele-
ment a unique id (by, for example, counting mouse clicks and folding that number into the id),
or you could simply not give the circle an id in the first place, and instead access it through
other DOM techniques, such as getElementsByTagNameNS().

The next example contains a button that recolors the most recent addition to a drawing. Rather
than illustrating the entire document, we’ll present the relevant code snippets. Look at the source of
the example (visible at http://granite.sru.edu/~ddailey/svg/B/makeAndTake1.svg) if you need to exam-
ine it more closely. Changes from the previous example are illustrated in bold.

Root = document.documentElement;
var lastOne = Root;
function add (evt) {
var C = document.getElementById("C");
var NC = C.cloneNode(false);
NC.setAttributeNS(null"cx", evt.clientX);
NC.setAttributeNS(null "cy", evt.clientY);
NC.setAttributeNS(null "fill", Color());
Root.appendChild(NC);
lastOne = NC;

}
function colorit(){
if (lastOne.nodeName != "circle") return;
lastOne.setAttributeNS(null, "fill", Color());
}

function remove (evt) {
lastOne = evt.target.previousSibling;

D
ow

n
lo

a
d
 f
ro

m
 W

o
w

!
e
B
o
o
k

<
w

w
w

.w
o
w

e
b
o
o
k.

co
m

>

 CHAPTER 4 Motion and Interactivity 119

Root.removeChild(evt.target);
}
]]></script>
<defs>
<!--here would be material that is identical to last example-->

<text x="50" y="100" font-size="12" font-family="arial" fill="black">
Click here to change color of last</text>
<rect x="40" y="80" height="30" width="200" onclick="colorit()"
stroke="blue" stroke-width="2" fill="red" opacity=".35" rx="10">
</rect>

Here, the primary addition is a function called colorit() that finds the last circle added and changes
its color. However, this brings about the following issues:

■■ You need a button to activate the colorit() function.

■■ You need to keep track of which circle was added last. So, the code contains a variable named
lastOne that gets set to point to the last circle created.

■■ Now suppose someone removes the last circle. In that case, the variable lastOne would point
to a nonexistent object. So, when an object is removed, the variable gets pointed to the
previously added circle. This is done by retrieving the previousSibling of the clicked item and
assigning it to lastOne.

■■ Finally, suppose all the circles have been deleted. In that case, lastOne will point to Root or
to the last element in the DOM—and that will not be a circle! Therefore, the test to check
whether lastOne points to a circle allows the change in color to happen safely.

Next, we’ll expand this example with one more feature: to allow text (in this case, a numeric
digit) to be placed physically inside one of the circles after it has been created. This actually requires
a bit more reworking of the conceptual model employed and a bit more code. We’ll include only
the parts that change (in bold). The example is visible at http://granite.sru.edu/~ddailey/svg/B/
makeAndTake2.svg.

<svg xmlns="http://www.w3.org/2000/svg" width="100%"
 xmlns:xlink="http://www.w3.org/1999/xlink" >
<script><![CDATA[
 var xmlns = "http://www.w3.org/2000/svg";
 var xlink = "http://www.w3.org/1999/xlink";
 var Root = document.documentElement;
 var lastOne = Root;

 function Color () {
 var R = parseInt(Math.random() * 255);
 var G = parseInt(Math.random() * 255);
 var B = parseInt(Math.random() * 255);
 return "rgb(" + R + "," + G + "," + B + ")";
 }

http://granite.sru.edu/~ddailey/svg/B/makeAndTake2.svg
http://granite.sru.edu/~ddailey/svg/B/makeAndTake2.svg

120 Building Web Applications with SVG

 function add (evt) {
 var G = document.getElementById("C");
 var NG = G.cloneNode("true");
 var C = NG.firstChild;
 C.setAttributeNS(null, "cx", evt.clientX);
 C.setAttributeNS(null, "cy", evt.clientY);
 C.setAttributeNS(null, "fill", Color());
 Root.appendChild(NG);
 lastOne = C;
 }

 function content () {
 if (lastOne.nodeName != "circle") return;
 var x = lastOne.getAttributeNS(null, "cx");
 var y = lastOne.getAttributeNS(null, "cy");
 var T = document.createElementNS(xmlns, "text");
 Msg = document.createTextNode(Math.floor(Math.random() * 10));
 T.appendChild(Msg);
 T.setAttributeNS(null, "x", x - 10);
 T.setAttributeNS(null, "y", parseInt(y) + 10);
 T.setAttributeNS(null, "font-size", 36);
 T.setAttributeNS(null, "fill", "black");
 lastOne.parentNode.appendChild(T);
 lastOne = lastOne.parentNode.previousSibling.firstChild;
 }

 function colorit () {
 if (lastOne.nodeName != "circle") return;
 lastOne.setAttributeNS(null, "fill", Color());
 }

 function remove (evt) {
 lastOne = evt.currentTarget.previousSibling.firstChild;
 Root.removeChild(evt.currentTarget);
 }
]]></script>

 <defs>
 <g id="C" onclick="remove(evt)">
 <circle r="20" fill-opacity=".5" stroke="black" stroke-width="2" stroke-dasharray="8,4"/>
 </g>
 </defs>
 <rect width="100%" height="100%" fill="white" onclick="add(evt)"/>
 <rect x="15" y="20" height="50" width="235" stroke="#800" stroke-width="2" fill="grey"
 opacity=".65"/>
 <text x="27" y="40" font-size="12" font-family="arial" fill="#800">Click on blank space to add
 something</text>
 <text x="49" y="60" font-size="12" font-family="arial" fill="#800">Click something to get rid
 of it</text>
 <text x="40" y="100" font-size="12" font-family="arial" fill="black">Click here to add content
 to last</text>
 <rect x="30" y="80" height="30" width="200" onclick="content()" stroke="black"
 stroke-width="2" fill="blue" opacity=".35" rx="10"/>
 <text x="40" y="140" font-size="12" font-family="arial" fill="black">Click here to change

 CHAPTER 4 Motion and Interactivity 121

 color of last</text>
 <rect x="30" y="120" height="30" width="200" onclick="colorit()" stroke="blue"
 stroke-width="2" fill="red" opacity=".35" rx="10"/>
</svg>

Here’s what happens in the preceding code:

■■ A new blue button is created that adds content (a random digit between 0 and 9) to the
last node.

■■ To let that content be a part of the node, the node to be cloned, “C”, is made into a group
containing the circle. That way, when content is to be added, it can be added to the group.
When it is time to remove content, the entire group may be deleted.

■■ The cloning operation now needs to remember that “C” is a group instead of a circle. This
means that to change attributes of the circle within the group, you have to get the firstChild
of the group.

■■ The cloning operation uses the parameter true because the group’s child (the circle) is needed.

■■ The new group is appended to Root and the variable lastOne is left pointing at the circle
so it may be easily accessed when the user decides to change colors (paralleling the earlier
example).

■■ The content() function first checks to see if lastOne points to a circle. If not, the function exits.

■■ If lastOne is a circle, then the code finds out what its coordinates are, because those will be
needed to position the text.

■■ A new SVG node of type text is created.

■■ Then a rather odd thing happens: to set the textContent of the new node, you have to create
a textNode inside it. This is the actual text itself—the typewritten characters that appear inside
the <text>—for example <text>content of textNode</text>. You do this in SVG by using the
method createTextNode(string), where the string contains the content of the text.

■■ The method parseInt() is once again applied to the y-coordinate before doing the addition so
that the addition operation is not confused with a concatenation operation.

■■ At this point, the code can append the text node and its contents—not into the node refer-
enced by lastOne, which you’ll recall is a <circle>—but rather into the group to which lastOne
belongs. That group is lastOne.parentNode.

■■ Finally, because one does not (typically) wish to overwrite the contents of this text node again,
lastOne gets redirected to point to the circle inside the preceding group within the document.
(This is not a foolproof technique, because the earlier nodes may have been given textual
content already, but it’s good enough for now. You could strengthen this example by checking
to see whether the previous node has a text child or not, and then continuing from there.)

122 Building Web Applications with SVG

Measurements
This section addresses the topics getBBox(), getTotalLength(), getPointAtLength(), and viewBox, be-
cause all are helpful in scripting when you need to be precise about element positioning.

You can use the getBBox() method, which stands for get bounding box. It finds the coordinates of
the smallest rectangle (parallel to the edges of the browser window) that contains the geometry of a
given shape.

Given a shape such as a 7-pointed purple star, like so:

<path onclick="displayBB(evt)" fill = "#837fc0" id = "P9" stroke = "black" stroke-width = "1"
 d="M 96 110.5 Q 191 132 96 154 1 176 77.5 115 154 54 111.5 142 69 230 69 132.5 69 35 111.5
 123 154 211 77.5 150 1 89 96 110.5 z" />

you can use getBBox() as follows:

The JavaScript used here (see http://granite.sru.edu/~ddailey/svg/BBox0M.svg) that finds the
bounding box looks like this:

function displayBB (evt) {
 var P = evt.target;
 var BB = P.getBBox();
 var msg1 = "This " + P.nodeName + " has upperleft corner at (" + BB.x + "," + BB.y + ")";
 var msg2 = "and it has width and height of " + BB.width + " and " + BB.height;
 buildBox(BB);
 alert(msg1 + "\n" + msg2);
}

 CHAPTER 4 Motion and Interactivity 123

You can see a complete example that additionally creates a visible rectangle with the coordinates
of the bounding box at http://granite.sru.edu/~ddailey/svg/B/BBox0M.svg.

Note Through a click event, the path activates the function displayBB(). Then evt.target is
used to identify the path itself. BB.x, BB.y, BB.width, and BB.height are the four crucial mea-
surements of the bounding box. The example finally just calls a small function that builds a
red rectangle at those coordinates.

Armed with that information, let’s consider a classic packing problem: how to fit a bunch of starlike
objects together in a box. Suppose that you have some SVG stars like these (from http://granite.sru
.edu/~ddailey/svg/B/BBox0.svg):

Further, assume that while duplicating and scattering them, you don’t want the objects to overlap,
as shown in this output of a small script (see http://granite.sru.edu/~ddailey/svg/B/BBox1.svg) that
produces these results by applying random transforms:

http://granite.sru.edu/~ddailey/svg/B/BBox0.svg
http://granite.sru.edu/~ddailey/svg/B/BBox0.svg

124 Building Web Applications with SVG

It would be better to have a bit of space left over than to have all of the objects on top of one
another. The classic packing problem is to minimize the amount of space left over—in other words,
to constrain the area needed for packing to the smallest area possible.

One simplifying assumption that packers often make is to wrap each item in a nicely sized rec-
tangle (with padding to prevent breakage!) and then fit the rectangles together inside the larger
rectangle—which is the screen in this case. (Alternatively, because these shapes are just irregular
enough that packing them truly tightly, rotating and adjusting them so that the space between them
is minimized might be a more economical packing solution than a rectangular one.) Furthermore, as-
sume (because this is SVG after all) that you can resize the stars to fit the boxes. That’s how getBBox()
can come in handy.

The preceding image was generated by the following JavaScript program embedded in SVG (vis-
ible at http://granite.sru.edu/~ddailey/svg/B/BBox2.svg). At present, this example works in all browsers
except Firefox (which has a known bug related to trying to measure something that has not actually
been rendered).

This example involves a bit of algebra and some programming, so it may seem a little opaque—
but we’ll give a general description of the gist of the program. We set the following listing inside
Table 4-1 to display the commentary side by side with the program listing. The hope is that you will
be able to see the flow of the program and the descriptions simultaneously.

 CHAPTER 4 Motion and Interactivity 125

TABLE 4-1 Creating Boxes Sized for Their Contents

Code Description

<svg xmlns="http://www.w3.org/2000/svg" width="100%"
xmlns:xlink="http://www.w3.org/1999/xlink"
onload="startup()">
<script><![CDATA[
xmlns = "http://www.w3.org/2000/svg";
xlink = "http://www.w3.org/1999/xlink";
Root = document.documentElement;

The standard beginning declares namespaces,
and then the startup() function is called im-
mediately. It begins the program and draws
the graphics.

var Nacross = 12; //this is how many boxes across we'd like
var Ndown = 7; //this is how many we'd like vertically

The code tiles 12 stars across and 7 down.
These are global variables defined early in the
program so that a programmer can find and
change them easily.

function Color () {
 var R = parseInt(Math.random() * 255);
 var G = parseInt(Math.random() * 255);
 var B = parseInt(Math.random() * 255);
 return "rgb(" + R + "," + G + "," + B + ")";
}

This is the same Color() function presented
before.

function startup () {
 var Stars = document.getElementsByTagNameNS(xmlns, "path");
 var R = document.getElementById("R");
 var BB = R.getBBox();
 var littleBoxw = BB.width / Nacross;
 var littleBoxh = BB.height / Ndown;

We measure the screen using getBBox() and
determine the size of the boxes.

 for (var i = 0; i < Nacross; i++) {
 for (var j = 0; j < Ndown; j++) {

In these two nested loops, the outer loop is
controlled by the variable i and works across
the screen, while the inner one works down-
ward. You could reverse this order without
difficulty.

 var R = document.createElementNS(xmlns, "rect");
 R.setAttributeNS(null, "width", littleBoxw);
 R.setAttributeNS(null, "height", littleBoxh);
 R.setAttributeNS(null, "x", littleBoxw*i);
 R.setAttributeNS(null, "y", littleBoxh*j);
 R.setAttributeNS(null, "fill", Color());
 R.setAttributeNS(null, "stroke", "black");
 R.setAttributeNS(null, "stroke-width", 1);
 R.setAttributeNS(null, "fill-opacity", .80);
 Root.appendChild(R);

The code creates one small rectangle whose
height and width are an appropriate fraction
of the available screen size. The starting posi-
tion is determined by multiples of the values
of i and j.

 var rS = Math.floor(Stars.length * Math.random());
 var SC = Stars.item(rS);
 SBB = SC.getBBox();

This code chooses a random star from among
the total number of paths in the document.
Then it measures the selected star.

 var StarClone = SC.cloneNode("false");
 var scale = "scale(" + littleBoxw / SBB.width + "," +
littleBoxh / SBB.height +")";
 var trans = "translate(" + (littleBoxw * i -BB.x *
(littleBoxw / SBB.width)) + "," + (littleBoxh * j - SBB.y *
(littleBoxh / SBB.height)) + ")";

StarClone.setAttributeNS(null, "transform", trans + scale) ;

Here, the code clones the randomly selected
star and performs some nasty algebra to
rescale and translate the star from its original
bounding box and location into the cell re-
served for it in the grid.

StarClone.setAttributeNS(null, "fill-rule", "evenodd");
StarClone.setAttributeNS(null, "fill", Color());
Root.appendChild(StarClone);

}}}
]]></script>

This code changes the color and fill rule of the
star to make it more interesting.

126 Building Web Applications with SVG

Code Description

<defs>

<path fill="#63f721" d="M 114.5 290.5 Q 213 280 114.5 270
Q 16 260 110.5 290.5 Q 205 321 119 271.5 Q 33 222 106.5
288.5 Q 180 355 121.5 274.5 Q 63 194 103.5 285 Q 144 376
123.5 278.5 Q 103 181 103 280.5 Q 103 380 123.5 282.5 Q 144
185 104 276 Q 64 367 122 286.5 Q 180 206 106.5 272.5 Q 33
339 119 289.5 Q 205 240 110.5 270.5 Q 16 301 114.5 290.5 z"
id="P18" stroke="black" stroke-width="1"/>

<path fill="#837fc0" d="M 96 110.5 Q 191 132 96 154 Q 1
176 77.5 115 Q 154 54 111.5 142 Q 69 230 69 132.5 Q 69 35
111.5 123 Q 154 211 77.5 150 Q 1 89 96 110.5 z" id="P9"
stroke="black" stroke-width="1"/>

<path fill="#6fcf96" d="M 347 442 Q 408 393 347 344.5 Q 286
296 252 366.5 Q 218 437 294.5 454.5 Q 371 472 371 393.5 Q
371 315 294.5 332.5 Q 218 350 252 420.5 Q 286 491 347 442
z" id="P47" stroke="black" stroke-width="1"/>

<path fill="#d17943" d="M 239 313.5 Q 329 284 239 255 Q 149
226 204.5 303 Q 260 380 260 284.5 Q 260 189 204.5 266 Q 149
343 239 313.5 z" id="P3" stroke="black" stroke-width="1"/>

<path fill="#3b63db" d="M 193.5 112 Q 290 129 193.5 146.5
Q 97 164 182 114.5 Q 267 65 204 140.5 Q 141 216 174.5
123.5 Q 208 31 208 129.5 Q 208 228 174 135.5 Q 140 43 203.5
118.5 Q 267 194 182 144.5 Q 97 95 193.5 112 z" id="P1"
stroke="black" stroke-width="1"/>

<path fill="#c44c80" d="M 374 192.5 Q 459 157 374 122 Q
289 87 324.5 172 Q 360 257 395 172 Q 430 87 344.5 122.5 Q
259 158 344.5 193 Q 430 228 394.5 142.5 Q 359 57 324 142.5
Q 289 228 374 192.5 z" id="P6" stroke="black" stroke-
width="1"/>

</defs>

The actual Bézier paths are placed inside a
<defs> element so that they’re defined but
not drawn. That way, they are available to
script. The actual star paths were first drawn
using the star tool in a drawing program at
this author’s website (http://srufaculty.sru .edu/
david.dailey/svg/Draw018.html). Then the
results were smoothed and resulting source
code was copied.

<rect id="R" x="0" y="0" width="100%" height="100%"
fill="#ddd"/>
</svg>

The <rect> R is added so you can measure the
screen.

Before moving on to getTotalLength() and getPointAtLength(), we’ll show one more application of a
bounding box to set the stage for what follows.

Following is a script that draws a bounding box around a simple Bézier curve. You can find this
example at http://granite.sru.edu/~ddailey/svg/B/bbox2.3.svg.

<svg xmlns="http://www.w3.org/2000/svg" width="100%" xmlns:xlink="http://www.w3.org/1999/xlink"
 onload="initialize()">
<script><![CDATA[
 xmlns = "http://www.w3.org/2000/svg";
 xlink = "http://www.w3.org/1999/xlink";
 Root = document.documentElement;
 function initialize () { //some global variables
 B = document.getElementById("B");
 BB = B.getBBox();
 R = document.getElementById("R");
 }

http://srufaculty.sru.edu/david.dailey/svg/Draw018.html
http://srufaculty.sru.edu/david.dailey/svg/Draw018.html
http://www.w3.org/1999/xlink

 CHAPTER 4 Motion and Interactivity 127

 function measure () {
 var Rnew = R.cloneNode(false);
 Rnew.setAttributeNS(null, "x", BB.x);
 Rnew.setAttributeNS(null, "y", BB.y);
 Rnew.setAttributeNS(null, "width", BB.width);
 Rnew.setAttributeNS(null, "height", BB.height);
 Rnew.setAttributeNS(null, "fill", B.getAttributeNS(null, "stroke"));
 Rnew.setAttributeNS(null, "pointer-events", "none");
 Root.appendChild(Rnew);
 }
 function hilight (evt) {
 var P = evt.currentTarget;
 var Ps = P.childNodes.item(3);
 if (evt.type == "mouseover") Ps.setAttributeNS(null, "stroke", "red");
 else Ps.setAttributeNS(null, "stroke", "black");
 }
]]></script>
<path d="M 30 120 C -30 250 350 20 420 70" id="B" stroke="#008" fill="none" stroke-width="30"/>
<g id="H" onmouseover="hilight(evt)" onmouseout="hilight(evt)" onclick="measure()"
 transform="translate(170,-50)">
<rect id="R" x="100" y="160" height="37" width="115" fill="#888" stroke-width="2" stroke="black"
 fill-opacity=".3"/>
<text x="120" y="190" font-size="30" width="115" fill="#bbb" stroke-width="1"
 stroke="black">Click</text>
</g>
</svg>

The following remarks are relevant to this example:

■■ This example works properly in Internet Explorer 9, Firefox, Opera, and Internet Explorer with
ASV. Chrome and Safari, as of this writing, both miscalculate the object’s bounding box rather
dramatically.

■■ Realizing that in the examples to follow you might have to click the Click button many times,
we moved several global variables into an initialize function. Different programmers have
different styles, and some would rather spend the day in a pool of sludge than use global vari-
ables. However, in this case, we didn’t want to have to reenter the DOM each time the button
is clicked and reassign values of things such as curve B. Another approach makes good sense:
set a reference to a node (which is the best thing to do when a node is intended for manipula-
tion). Regarding the question of global variables, it’s also a good practice to protect a variable
with a namespace instead. This can be used to avoid collisions when mixing modular works
(external files, libraries, etc.).

■■ Additionally, you cannot create a reference to an object that does not yet exist. That’s why
initialize() is called from the onload event associated with the <svg> element itself.

■■ Before the button is clicked, the bounding box of curve B is retrieved. That information about
the bounding box is used to construct a new rectangle.

■■ The new rectangle takes its fill color from the stroke color of the curve itself. This will prove
useful in the next example, in which different curves will produce different-colored bounding
rectangles.

D
ow

n
lo

a
d
 f
ro

m
 W

o
w

!
e
B
o
o
k

<
w

w
w

.w
o
w

e
b
o
o
k.

co
m

>

128 Building Web Applications with SVG

■■ Note that the bounding <rect> constructed does not take into account the stroke width. This
may seem counterintuitive, and the SVG Working Group is considering alternatives for future
versions of the specification.

■■ The new rectangle has pointer-events set to "none" meaning that the button still is accessible
to mouse events, even though the rectangle is on top of it. This allows you both to see the
rollover effect on the button’s text and to use the buttons to create more rectangles. An alter-
native approach would be to change the stacking order of elements in the DOM by deleting
the button and then adding it back in, hence putting it on top again.

Note It’s useful to point out that appendChild() removes an element and appends it to the
top of the document or of a layer.

The example at http://granite.sru.edu/~ddailey/svg/B/bbox2.4.svg indicates that a bounding box
measures the initial state of a path’s animation. This is true regardless of whether the animation is run-
ning before or after the measurement of the bounding box.

points on a Curve
This section introduces two more allied methods: getTotalLength() and getPointAtLength(), which can
be used to calculate positions along complex curves; such calculations might otherwise defy simple
arithmetic. The example shown also provides a good lesson in DOM manipulation, because it involves
repeatedly filling a group with objects and then deleting them all again. You’ll also see a combina-
tion of SMIL animation and JavaScript in this example, with each type used for what it does best: SMIL
for animating the oscillation of a Bézier curve (which is difficult to interpolate through script) and
JavaScript for accessing the DOM. The example, visible at http://granite.sru.edu/~ddailey/svg/B/bbox4
.svg, is shown with interleaved discussion.

var animate = false
function startup (evt) {
 bunch = document.getElementById("bunch");
 E = document.getElementById("E");
}
Col = new Array("red", "magenta", "blue", "cyan", "green", "yellow", "orange");

The Boolean variable animate is used to start and stop the animation. When it is false, the anima-
tion will be stopped. One of the buttons will turn it on and off by changing the value of this variable.
An array of colors, Col, is defined, in which Col[0] becomes “red”, Col[1] becomes “magenta”, and so
forth, so the code can assign colors deterministically rather than randomly.

function populate (n) {
 if ((n > maxn) || (n < minn)) {
 incr =- incr;
 maxn = 60;
 }
 var v = n + incr;

http://granite.sru.edu/~ddailey/svg/B/bbox4.svg
http://granite.sru.edu/~ddailey/svg/B/bbox4.svg

 CHAPTER 4 Motion and Interactivity 129

 var p = "M 10 150 C 200 "+(5*n)+" 350 "+(300-5*n)+" 450 100";
 var B = document.getElementById("B");
 B.setAttributeNS(null, "d", p);
 var l = B.getTotalLength();
 if (bunch.childNodes.length > 0) DOs(bunch);
 for (i = 0; i < n + 1; i ++) {
 P = B.getPointAtLength(l * i / n)
 px = Math.ceil(P.x)
 py = Math.ceil(P.y)
 Enew = E.cloneNode(false)
 Enew.setAttributeNS(null, "cx", px);
 Enew.setAttributeNS(null, "cy", py);
 Enew.setAttributeNS(null, "fill", Col[i%Col.length]);
 bunch.appendChild(Enew);
 }
 if (animate) window.setTimeout("populate(" + v + ")", 10)
}

 if (animate) window.setTimeout("populate("+v+")",10)

}

The function populate() calls itself recursively and updates the screen every 10 milliseconds. This
is because JavaScript will not redraw the screen while functions are still processing. Using this recur-
sive call mechanism in HTML is a fairly standard trick. Each time the animation runs, the code deletes
all the existing ellipses and introduces n new ones (where n increases for a period of time and then
decreases). Each new ellipse is positioned 1/nth of the way along the curve further than the preceding
one. The position of the curve is updated too, just for fun.

function Dos (s) {
 num = s.childNodes.length;
 for (i = s.childNodes.length; i > 0; i--){
 s.removeChild(s.childNodes.item(i - 1));
 }
}

When deleting objects, make sure you don’t try to delete nonexistent nodes.

//]]></script>
<defs>
 <ellipse id="E" rx="10" ry="6" opacity=".75" stroke="black" stroke-width="2">
 <animateMotion dur="2s" rotate="auto" repeatCount="indefinite" begin="H.click">
 <mpath xlink:href="#B"/></animateMotion>
 </ellipse>
</defs>

A version referenced at http://granite.sru.edu/~ddailey/svg/B/bbox4.svg does something similar,
but does not employ SMIL.

<g>
 <path d="M 10 150 C 200 80 350 300 450 100" id="B" stroke="black" fill="none"
 stroke-width="4"/>
 <g id="bunch"></g>

130 Building Web Applications with SVG

</g>
<g id="G" onmouseover="hilight(evt)" onmouseout="hilight(evt)"
 onclick="animate=false;populate(n=n+incr)" transform="translate(60,-170)">
 <rect x="90" y="393" height="47" width="115" fill="#bbb" stroke-width="2" stroke="black" />
 <path fill = "#663e16" id = "P6" stroke = "black" stroke-width = "1"
 transform="translate(93,393) scale(.10,.09)"
 d =[..... very long path data consisting of handwritten letters....]/>
<g id="H" onmouseover="hilight(evt)" onmouseout="hilight(evt)"
 onclick="animate=!animate;populate(7)">
 <rect x="150" y="283" height="47" width="115" fill="#bbb" stroke-width="2" stroke="black" />
 <text x="155" y="325" font-size="47" width="115" fill="#bbb" stroke-width="2"
 stroke="black">Click</text>
</g>

</svg>

One button adds nodes manually to the path, and the other starts and stops the animation.

Another version (at http://granite.sru.edu/~ddailey/svg/B/BBox3.5.svg) shows that—at least in some
browsers—shows that positions of objects at a given time in the animation can be accessed, since
artifacts are left at their initial positions.

viewBox
While on the topic of measuring things, it is appropriate to discuss the viewBox, which is actually an
attribute of the svg element itself. The topic is not directly related to scripting, but allows you to de-
termine exactly how large drawings will be.

Note For a deeper treatment, read the W3C specification on the subject (http://www.w3
.org/TR/SVG/coords.html#ViewBoxAttribute).

To set the stage for this discussion, the following example (visible at http://granite.sru.edu/~ddailey/
svg/viewBox0.svg) provides a brief review about relative coordinates in SVG:

<svg xmlns="http://www.w3.org/2000/svg" width="100%"
 xmlns:xlink="http://www.w3.org/1999/xlink" >
<rect width="100%" height="100%" fill="#acf"/>
<ellipse rx="14%" ry="10%" cx="50%" cy="50%" fill="#79f"/>
<text font-size="45" textLength="150" lengthAdjust="spacingAndGlyphs" font-family="arial"
 font-weight="bold" x="44%" y="53%" >TEXT</text>
<path stroke="#207" stroke-width="2" d="M 460 220 C 560 320 660 320 760 220 z" fill="none"/>
</svg>

This code succeeds nicely in centering the ellipse on the screen; however, note that the
path and the text are centered only at certain screen sizes. In this code, we attempted to cen-
ter the text by aiming it a bit to the left of the center of the screen, and we also tried to stretch
the text so that its width in pixels remained constant (through the use of textLength="150" and
lengthAdjust="spacingAndGlyphs"—code currently supported in all browsers except Firefox). However,
the path is drawn in absolute coordinates, so the results vary considerably as a function of screen size.

http://www.w3.org/TR/SVG/coords.html#ViewBoxAttribute
http://www.w3.org/TR/SVG/coords.html#ViewBoxAttribute
http://granite.sru.edu/~ddailey/svg/viewBox0.svg
http://granite.sru.edu/~ddailey/svg/viewBox0.svg

 CHAPTER 4 Motion and Interactivity 131

The following example (visible at http://granite.sru.edu/~ddailey/svg/viewBox1.svg) provides a way
to make sure the text and graphics retain similar relations to one another regardless of the screen’s
size or aspect ratio:

<svg xmlns="http://www.w3.org/2000/svg" width="100%"
 xmlns:xlink="http://www.w3.org/1999/xlink"
 viewBox="0 0 100 100" preserveAspectRatio="none">
<rect width="100" height="100" fill="#acf"/>
<ellipse rx="10" ry="12" cx="50" cy="50" fill="#79f"/>
<text font-size="4" textLength="20" lengthAdjust="spacingAndGlyphs" font-family="arial"
 font-weight="bold" x="40" y="52" >TEXT</text>
<path stroke="#207" stroke-width=".5" d="M 35 46 C 45 60 55 60 65 46 z" fill="none" />
</svg>

The primary difference here, other than some of the coordinates having been reworked, is the use
of the viewBox attribute in the <svg> element itself. It works by declaring that all geometric values,
including font sizes and path coordinates, will be reworked as relative coordinates—in this case, rela-
tive to a rectangle that is 100 units wide and 100 units high. The preserveAspectRatio attribute is set
to “none” because the horizontal and vertical units would otherwise be set to the same size, meaning
that, for example, the <rect> would fill only the center of the screen on a typical browser screen that
is wider than it is tall. As shown in the next illustration, this allows text, paths, ellipses, and rectangles
to retain the same position and size relative to one another.

Clearly, this approach might not be optimal if you are interested in preserving the aspect ratios of
things like circles, or preserving the legibility of text, which is often designed for legibility with a fixed
aspect ratio. Nevertheless, the advantages of this method give the designer a powerful set of tools.

132 Building Web Applications with SVG

 You can see another example of the use of viewBox and other scaling methods, which shows
how an SVG document can take the place of a PowerPoint-based or HTML-based presentation,
at http://srufaculty.sru.edu/david.dailey/svg/devcon5.svg. This particular example does not take
advantage of the textLength attribute, because at the time the example was created, Firefox didn’t
support that feature.

Messages Between SMIL and Script
In this section we’ll discuss two techniques (one a SMIL attribute and one a JavaScript method) that
are useful in harnessing the power of both SMIL and JavaScript:

■■ beginElement This is used for activating SMIL from JavaScript.

■■ onend This is used for running a JavaScript function upon completion of a SMIL animation.

This section will be rather brief, consisting of two simple examples that illustrate the major prin-
ciples, followed by a more complex illustration of the principles.

From SMIL to Script
The following code (from an example visible at http://granite.sru.edu/~ddailey/svg/SMILscript1.svg)
illustrates the typical way of invoking JavaScript from SMIL:

<svg xmlns="http://www.w3.org/2000/svg" width="100%"
 xmlns:xlink="http://www.w3.org/1999/xlink" >
 <script><![CDATA[
 xmlns = "http://www.w3.org/2000/svg";
 xlink = "http://www.w3.org/1999/xlink";
 function stuff (evt) {
 O = evt.target.parentNode;
 O.setAttributeNS(null, "fill", "red");
 }

 CHAPTER 4 Motion and Interactivity 133

]]></script>
 <ellipse fill="lightgreen" cx="40" cy="100" rx="22" ry="14" stroke="#804" stroke-width="5">
 <animate attributeName="cx" dur="3s" onend="stuff(evt)" values="40;400;40"/>
 </ellipse>

</svg>

It includes an <animate> element that terminates after three seconds. When the animation fin-
ishes, the end event is fired, which activates the function stuff(), passing the event as a parameter. The
target of the event received by the function is in fact the <animate> element itself. Having retrieved
the <animate> element, you can now use script to enter the DOM and find its parent, the ellipse.
That ellipse is then colored red.

You could achieve this functionality quite easily through SMIL alone, using a <set> with something
like a begin="idOfTheAnimate.end" statement. However, this example demonstrates a role that is
often very useful in building complex animations.

From Script to SMIL
This example (see http://granite.sru.edu/~ddailey/svg/SMILscript2.svg) uses a mouse click on an object
to send a parameter to script that identifies which (of possibly many) animations to trigger.

<svg xmlns="http://www.w3.org/2000/svg" width="100%"
 xmlns:xlink="http://www.w3.org/1999/xlink" >
<script><![CDATA[
 xmlns = ”http://www.w3.org/2000/svg”;
 xlink = "http://www.w3.org/1999/xlink";
 function start (id) {
 document.getElementById(id).beginElement();
 }
]]></script>
<ellipse fill="blue" onclick="start('A')" cx="40" cy="140" rx="22" ry="14">
 <animate id="A" attributeName="cx" dur="3s" begin="indefinite" values="40;400;40"/>
</ellipse></svg>

The key statement involves beginElement(), a method applied to any identified animate or set
object. It is used to trigger the animation itself, namely to instigate the change in attribute values
specified by the animate or change.

As before, you could achieve the same results quite easily with <set> instead of relying upon
script. But you might want to use the script technique to select an object at random and vary certain
of its attributes before launching its animation.

Next, you’ll see a combination of these two methods (SMIL-to-script and script-to-SMIL) that pro-
duces a moderately entertaining animation: one in which an object follows a curve and then morphs
into a different shape when its flight path is complete. The following example is visible at http://
granite.sru.edu/~ddailey/svg/SMILscript5.svg.

134 Building Web Applications with SVG

<svg xmlns="http://www.w3.org/2000/svg" width="100%"
 xmlns:xlink="http://www.w3.org/1999/xlink">
<script><![CDATA[
 xmlns = "http://www.w3.org/2000/svg";
 xlink = "http://www.w3.org/1999/xlink";

 function start (evt) {
 var T = evt.target;
 var TP = T.parentNode;
 var rn = Math.floor(Math.random() * 6) + 3;
 var d = "M 40 0 ";
 for (var I = 0; I < 2 * rn - 1; i++) {
 if (i % 2 == 0) d + = "Q ";
 var rx = Math.random() * 100 - 50;
 var ry = Math.random() * 100 - 50;
 d += rx + " " + ry + " ";
 }
 TP.setAttributeNS(null, "d", d + "80 40 z");
 TP.setAttributeNS(null, "fill", Color());
 T.beginElement();
 }
 function Color () {
 // same function used before to create a random color
 }
]]></script>
<path fill = "none" id = "P1" stroke = "black" stroke-width = "1" opacity = "0.5"
 d = "M 325 158 Q 293 107 260.5 166.5 Q 228 226 181.5 256 Q 135 286 227.5 255.5 Q 320 225
 350.5 263 Q 381 301 402 290 Q 423 279 412 234 Q 401 189 448.5 193.5 Q 496 198 523.5 251.5 Q
 551 305 538 192 Q 525 79 460 89 Q 395 99 376 154 Q 357 209 325 158 z" />
<path id="PQ" fill="blue" stroke="black" stroke-width="2" d="M -50,-50 50,-50 50,50 -50,50 z"
 fill-rule="evenodd" >
 <animateMotion dur="2s" rotate="auto" onend="start(evt)" begin="0;indefinite" fill="freeze">
 <mpath xlink:href="#P1" />
 </animateMotion></path>
</svg>

Note the following about this example:

■■ begin="0;indefinite" in <animateMotion> allows the animation both to start as soon as the
page loads (at time zero) and to be started by script, using the T.beginElement() statement.

■■ The traveling shape (initially a square) is instructed, through <animateMotion>, to travel
around the path once every two seconds.

■■ fill="freeze" in <animateMotion> ensures that the traveling shape remains at the end of the
path instead of reverting to its initial position at the end of one cycle. If it didn’t, you would
see the shape flicker momentarily in the upper-left corner of the screen.

■■ When a circuit of the path is complete, the start() function is invoked.

■■ A path is constructed at random. An initial start point at (40,0) and an endpoint at (80,40) are
provided. The remainder of the points (between three and eight of them) are inserted into
the path, with every other point being a quadratic control point. This allows for a relatively

 CHAPTER 4 Motion and Interactivity 135

interesting set of shapes that combine curvilinear components and sharp edges. Varying the
complexity of the shapes by changing the number of points allows for even more variety.

■■ With some considerable effort, this animation could be done without SMIL, but it could not
be done without script. The SMIL handles the automatic rotation as well as the traversal of a
fairly complex cubic spline that would be a bit tricky without some fancy footwork, math, and
geometry.

Here are some other examples of animations you can explore that combine script with SMIL in
various ways:

■■ http://srufaculty.sru.edu/david.dailey/svg/newstuff/SMIL7g.svg Allows you to start and
stop animations with SMIL and script.

■■ http://srufaculty.sru.edu/david.dailey/svg/bezierovals.svg Displays ellipses on a Bézier
curve that add new numbers when the script terminates.

■■ http://srufaculty.sru.edu/david.dailey/svg/followPath.svg Builds a random path for an
<animateMotion> element.

■■ http://srufaculty.sru.edu/david.dailey/svg/followPath6.svg Also builds a random path to
be followed through an <animateMotion> element, but a wilder version.

■■ http://srufaculty.sru.edu/david.dailey/svg/followPath10.svg Grows a random path, but
gradually. It answers the question of how to animate the drawing of a path.

■■ http://srufaculty.sru.edu/david.dailey/svg/svgopen2008/makestars2.svg Displays
Bézier starflakes calculated with a rather fun bit of modular arithmetic.

■■ http://srufaculty.sru.edu/david.dailey/svg/stars3.svg Displays falling starflakes with a bit
of wind applied. The wind is actually an invisible object that changes the horizontal velocity of
things within a certain radius of it.

■■ http://srufaculty.sru.edu/david.dailey/svg/swatch3.svg Entitled “Starflake expressway,”
this one moves stars, each clipped by a common clip path along Bézier curves.

passing Messages Between htML and SVG
This is not only a large, complex topic, but also a fun one. In this section, we’ll provide just the basics
to get you started, but if you need to, you can look at “An SVG Primer for Today’s Browsers.”

Ways of putting SVG in htML
There are five ways of putting SVG content in an HTML document: you can use <embed>,
<object>, <iframe>, or , or you can do it inline (in HTML5). All are acceptable according to the
emerging standards for both HTML5 and SVG. The method, for various reasons, will not allow
script to run, but the others will. Inline support also has, at present, some rather major cross-browser

136 Building Web Applications with SVG

inconsistencies. The <iframe> method has, according to our experiments, several cross-browser
inconsistencies in accessing the SVG DOM. The <embed> method has problems with fallback content
for browsers that don’t support SVG, and <object> has some security problems associated with run-
ning script via the Adobe plug-in. Currently, the recommended technique is to use <object>, although
we will also present an example of inline SVG support because direct interspersing of SVG code inline
in HTML is the current trend.

the Other Way Around: putting htML in SVG
For HTML-centric people, it is natural to think of putting SVG in HTML. On the other hand, the con-
cept of communication encompassed by HTML is perhaps neither as adaptable nor as broad as that
of SVG, so in fairness, it is appropriate to mention that one can go the other way around, and use
<foreignObject> from within SVG to embed HTML. This has the advantage that the powerful filters,
masks, clipping paths, and animation of SVG can be brought to bear upon the stodgier and text-
heavy HTML. Fortunately, most browsers have at least partial implementations of <foreignObject>,
as the example at http://srufaculty.sru.edu/david.dailey/svg/foreignObject.svg (which runs in Opera,
Firefox, Chrome, and Safari) demonstrates. This example loads an HTML document into SVG using
<foreignObject> and then rotates it. The links on the page work, text remains selectable, and the
HTML scroll bars still work. Some authors have gone so far as to use SVG filters (discussed in the next
chapter) to restyle color themes of HTML documents in a way that may aid their legibility for people
with certain kinds of color blindness.

Using <object> to embed SVG in htML
Let’s get started with something that works pretty much everywhere—a sort of simplest case (visible
at http://granite.sru.edu/~ddailey/svg/simplestSVG.html):

D
ow

n
lo

a
d
 f
ro

m
 W

o
w

!
e
B
o
o
k

<
w

w
w

.w
o
w

e
b
o
o
k.

co
m

>

 CHAPTER 4 Motion and Interactivity 137

<!doctype html>
<html>
<body>
 <object type="image/svg+xml" data="simplest.svg">
 <!-- fall-back HTML content goes here -->
 <p>Sorry! Your browser does not support SVG!
 Please use a modern browser.</p>
 </object>
</body>
</html>

It’s important to note three things:

■■ As of this writing, the HTML5 doctype statement <!doctype html> is needed for Internet
Explorer 9 to switch out of quirks mode so it can see the SVG in HTML.

■■ If you’re using the Adobe plug-in with older versions of Internet Explorer, you should use
<embed> instead of <object>—this works across all modern browsers, but does not have the
advantage of supporting a statement to address browsers that don’t support SVG. Alter-
natively, you could use the advice at w to use <param> inside <object> to address those
idiosyncrasies.

■■ Inside the <object> tag, you can include a more extensive message that instructs the visitor
about which version of their own software would support SVG, or suggest alternative work-
arounds (such as getting the Adobe plug-in for older versions of Internet Explorer).

getSVGDocument()
Here’s a slightly more complex example (visible at http://granite.sru.edu/~ddailey/svg/peruse.html)
that allows one, from HTML, to interrogate properties about an embedded SVG document. You do
this by using the method getSVGDocument() in association with the <object>, <embed>, or <iframe>
HTML object.

<!doctype html>
<html>

<script>
 function peruse () {
 var D = document.getElementById("O");
 var SVGDoc = D.getSVGDocument();
 var SVGRoot = SVGDoc.documentElement;
 var who = SVGRoot.firstChild.nextSibling;
 var whoName = "<" + who.nodeName;
 var whoHow = who.attributes.item(0);
 var whoNow = whoHow.nodeName;
 var whoWhat = whoHow.nodeValue + ">";
 alert(whoName + " " + whoNow + "=" + whoWhat);
}
</script>

138 Building Web Applications with SVG

<body>
<button onclick="peruse()">open</button>

<object id="O" type="image/svg+xml" data="simplest.svg">
 <p>Sorry! Your browser does not support SVG!
 Please use a modern browser.</p>
</object></body>
</html>

The SVG itself is the simple example shown in Chapter 1, “SVG Basics”:

<svg xmlns="http://www.w3.org/2000/svg">
 <circle r="50"/>
</svg>

Three key concepts are important here:

■■ The <object> tag has been given an id, which is used so that the tag and the SVG DOM within
it can be retrieved from the HTML DOM using getElementById().

■■ The method getSVGDocument() retrieves the SVG document itself. If you were to insert the
statement alert(SVGDoc.nodeName) just after defining SVGDoc, you’d see that the nodeName
would be #document.

■■ SVGDoc.documentElement() retrieves the SVG DOM itself. An inserted alert(SVGRoot.node
Name) would reveal svg, and it is from there that you can traverse the node hierarchy of the
SVG document.

You can see similar examples using <iframe> and <embed> instead of <object> at http://srufaculty
.sru.edu/david.dailey/W3CCourse/week4/SVGinHTML.html.

Now let’s extend the concepts here just a bit. In the example shown below (and visible at http://
granite.sru.edu/~ddailey/svg/wordsput.html), an HTML table contains a group of words. Any word,
when clicked, creates a new SVG text node containing that word, positioned at some random location
within the SVG document.

<!doctype HTML>
<HTML><head>
<style>
 div.u{float:top; height:30%}
 div.d{float:bottom; height:70%}
 td{text-align:center;font-family:impact;width:15%;background:#eee}
</style>
<script>
function init () {
 var Ds = document.getElementsByTagName("td");
 for (var i in Ds) Ds[i].onclick = function () {add(this);};
 var D = document.getElementById("E");
 SVGDoc = D.getSVGDocument();
 SVGRoot = SVGDoc.documentElement;
 svgns = "http://www.w3.org/2000/svg";
}

http://srufaculty.sru.edu/david.dailey/W3CCourse/week4/SVGinHTML.html
http://srufaculty.sru.edu/david.dailey/W3CCourse/week4/SVGinHTML.html

 CHAPTER 4 Motion and Interactivity 139

function add (o) {
 var word = o.firstChild.nodeValue;
 var T = SVGDoc.createElementNS(svgns, "text");
 var MsgNode = SVGDoc.createTextNode(word);
 var fontratio = 0.05;
 var adj = (1 - fontratio);
 x = Math.random() * .9 - 2 * fontratio;
 y = Math.random() * .5;
 T.setAttributeNS(null, "x", x);
 T.setAttributeNS(null, "y", y);
 T.setAttributeNS(null, "font-size", fontratio);
 T.setAttributeNS(null, "font-family", "serif");
 T.appendChild(MsgNode);
 SVGRoot.appendChild(T);
}

</script></head>
<body>
<div align="center" class="u">
<table border=1>
 <tr><td>artichoke</td><td>balustrade</td>
 <td>cantaloupe</td><td>dandelion</td></tr>
 <tr><td>elephant</td><td>familiar</td>
 <td>groundhog</td><td>Hydrophlorone</td></tr>
</table>
Click on any word above
</div><hr>
<div class="d">
<object onload="init()" id="E" type="image/svg+xml" data="simplerect.svg" height="100%"
 width="100%">
<p>Message for browsers that don’t support SVG</p>
</object>
</div>
</body></html>

The SVG itself is quite a simple document (to begin with):

<svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 1 1" preserveAspectRatio="none">
 <rect x="0" y="0" width="100%" height="100%" fill="#ddd"/>
</svg>

Note the following about this example:

■■ Each table cell, when clicked, sends itself (an object) as a parameter to the function add().

■■ add() receives the table cell, determines what text is inside it, and then builds an SVG text
node whose content is equal to the table cell’s content.

■■ The new SVG node is inserted into the SVG DOM at a random location (taking into account
the size of the screen and the size of the font employed).

140 Building Web Applications with SVG

One more example (visible at http://granite.sru.edu/~ddailey/svg/wordsput2.html) demonstrates a
round trip from HTML to SVG and back. Here’s some new material from the script in HTML:

function respond (evt) {
 var w = evt.target.firstChild.nodeValue;
 document.getElementById(w).style.background = "red";
}

The SVG document used is the following:

<svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 1 1" preserveAspectRatio="none"
 onload="init()">
<script><![CDATA[
 function init () {
 Root = document.documentElement;
 Root.addEventListener("click", top.respond, false);
}
]]></script>
<rect x="0" y="0" width="100%" height="100%" fill="#ddd"/>
</svg>

Note the following about this example:

■■ This example makes a minor change to the SVG from the previous example—it adds an init()
function that runs when the document loads. This function makes each object responsive to
the mouse click.

■■ The clicked object triggers a function in top—namely, the HTML container. If the SVG is not
inside a container of some sort, then clicking the object will throw an exception. (Please realize
that this code has been kept simple to illustrate the more important issues.)

■■ The addEventListener() method is used to assign the event to the objects in the SVG DOM.
Root.setAttribute("onclick", "top.respond") would have done the same job.

■■ In the HTML, this time, instead of just adding an event handler to each <td> of the table, we
also give each one an id equal to the text inside it. This allows the text in SVG to be able to
find its parent.

■■ The click event inside the SVG document sends the event back to HTML, where the proper-
ties of the object that instigated the event are then examined and used to relate back to the
object of that name in HTML. Specifically, the SVG text will correspond to an item in HTML.
The button that originally led to the development of a node is thus identified.

■■ Experienced programmers will recognize that there are many other ways to accomplish the
same thing. However, this example provides a crucial illustration of how to access scripts in
HTML from events and scripts in SVG.

 CHAPTER 4 Motion and Interactivity 141

You can see an example (http://granite.sru.edu/~ddailey/wordtable.html) that starts with the above
code but mixes it with some simple AJAX-like round-tripping to the server to retrieve definitions
dynamically from a dictionary. The example then lets users click the retrieved words as well. This
example is a little too complex to describe here, but the server-side script is the very simple PHP script
shown below (in case you’re interested in actually examining how the code for the example actually
works):

<?
$num = 10;
$f = "/homes/ddailey/public_html/data/wordstudy/webster1913/ubest";
$o = file($f);
$c = count($o);
for ($i = 0; $i < $num; $i++) {
 $r = rand(0, $c-1);
 echo $o[$r];
 $l = $o[$r][0];
 echo "
";
}
?>

SVG Inline in htML5
The still-evolving HTML5 standard has a requirement to maintain close integration between HTML
and SVG. This means several things, but among the most important is that HTML allows the direct
insertion of SVG code into HTML, interleaved, as it were, among HTML tags, inline. The inline model
is not yet implemented consistently across browsers. There is ongoing discussion about ways that
HTML and SVG might share animation, filters, and fonts, and possibly even coexist within the same
namespace. However, it will be a few years before these decisions are finalized and broadly imple-
mented by browsers. What follows are a couple of examples that seem to work fairly consistently
even at present. In the following example (visible at http://granite.sru.edu/~ddailey/svg/htmlsvg.htm),
clicking either a button in HTML or a circle in SVG changes an attribute of its counterpart in the other
environment.

<!DOCTYPE HTML>
<html>
<script>
 function f () {
 document.getElementById("C").setAttributeNS(null, "fill", "orange");
 }
 function g () {
 document.getElementById("I").setAttribute("value","hello");
 }
</script>

<body>

142 Building Web Applications with SVG

Here is standard HTML, complete with the HTML5 doctype

Following is some SVG:

<svg width="300" height="250" xmlns="http://www.w3.org/2000/svg">
 <circle id="C" cx="100" cy="50" r="40" stroke="black" stroke-width="2"
 fill="lightgreen" onclick="g()"/>
 <text x="65" y="54" font-size="16" font-family="arial" pointer-events="none">
 click here</text>
</svg>

Later we revert to HTML and include a button:
<input id="I" type="button" onclick="f()" value="click here">

The button and the circle can speak to one another.
</body>
</html>

In the next example (visible at http://granite.sru.edu/~ddailey/svg/svginHTML.html), an example
previously used to demonstrate the simplest principles of scripting SVG is folded into a simple HTML
container to show how the combined DOMs can actually work to your advantage.

<!DOCTYPE HTML>
<html>
<script>
function startup () {
 S = document.getElementById("SVG");
 for (i in S.childNodes) S.childNodes[i].onclick = removeIt;
}
xmlns = "http://www.w3.org/2000/svg";
xlink = "http://www.w3.org/1999/xlink";

function removeIt (e) {
 T = e.target;
 if (T.nodeName == "rect") add(e.clientX, e.clientY);
 else T.parentNode.removeChild(T);
}
function add (x,y) {
 var C = document.createElementNS(xmlns, "circle");
 C.setAttributeNS(null, "r", 50);
 C.setAttributeNS(null, "cx", x);
 C.setAttributeNS(null, "cy", y);
 C.onclick = removeIt;
 S.appendChild(C);
}
</script>
<p onclick="removeIt()">Hello there!</p>
<svg xmlns="http://www.w3.org/2000/svg" width="100%" xmlns:xlink=http://www.w3.org/1999/xlink
 id="SVG" onload="startup()">
 <rect width="100%" height="100%" fill="white" />
 <circle r="50" />
 <text font-size="12" x="50" y="20" onclick="removeIt()">Click something to remove it</text>
 <text font-size="12" x="50" y="80">Click nothing to add something</text>
</svg>
</html>

 CHAPTER 4 Motion and Interactivity 143

Summary

The opportunities for making SVG come alive with motion and interactivity are rich and multifaceted.
In SMIL, the nonprogrammer has available a delightfully expressive vocabulary that allows almost any
collection of attributes to be animated with minimal code and conceptual ease. And for the program-
mer, or even the novice, DOM methods allow you to use JavaScript to build sophisticated interfaces.
The only limitations are, in the case of SMIL, the fact that implementations are still catching up with
the standard, and in the case of script, the complexity of code. In Chapters 6 and 7, you will see ways
of coming to terms with some of the issues related to code complexity.

 145

C H A P T E R 5

SVG Filters

The texture of experience is prior to everything else.
Willem De Kooning, 1948

In this chapter:

The Basic <filter> Element . 146

the Basic primitives . 146

Utility Filters . 160

Lighting effects . 175

Ways of Combining Filters . 177

The topic of filters is a complex one. There are many kinds of filters of varying complexity. You can
chain filters together in rather complex ways, storing intermediate results in temporary locations, and
then combine those temporary results together using a variety of methods of blending and com-
position. Rather than thinking of single filters, or even chains of filters, think of a flowchart of filters
hooked together in a network.

As in Adobe Photoshop, where you can overlay different layers while applying different filters to
each, and then extract color channels from those layers and calculate differences between the result-
ing layers, you can do such work in SVG. The difference is that in SVG you can do it programmatically
and dynamically on a web page through script or animation.

Another important thing to realize is that as some of the wonderful things developed within SVG
start to propagate outward, the proponents of HTML5 are beginning to recognize just how wonder-
ful SVG is, and have begun to borrow, carte blanche, many of the good ideas, including gradients,
clip paths, client-side graphics (e.g., using the <canvas> element), animation, fonts, and filters. In
some cases, this works relatively painlessly, and in other cases (such as with web fonts and animation),
it is not so clear whether the architectural crispness of SVG will be preserved, nor, indeed, whether
its expressive power will be preserved. So, while HTML5 and CSS3 are still in flux, it is premature to
say quite how this will all work out; but suffice it to say that learning about filters within SVG should

146 Building Web Applications with SVG

create neural pathways that will have some probability of enduring even after the conceptual frame-
work has been altered. It is clear that the elusive boundaries between semantics and presentation,
once so touted as crucial to all human intellect, have now been a bit fuzzified by this new zeal to
bring the glitz of SVG (sans, perhaps, its elegance) into both sides of the text-and-graphics dialectic.

The Basic <filter> Element

A <filter> is applied to another object much as a clip path or gradient is applied—namely, through an
attribute defined within the object to which the filter will be applied. The attribute looks something like
this: filter="url(#filtername)". The <filter> element itself must have one or more filter primitives inside it;
those primitive operations will be conducted in the order they are defined, from top to bottom.

Here’s an example of the syntax of the <filter> element:

<filter id="F">

 <anyParticularPrimitive1>
 <anyParticularPrimitive2>
 ...
 <anyParticularPrimitiveN>
</filter>
<anyParticularSVGObjectOrGroup filter="url(#F)"/>

The chapter begins with some examples using the simplest of the filter primitives, <feColorMatrix>
and <feGaussianBlur>, to give an illustration of the sorts of things you can accomplish.

Note As of this writing, cross-browser support for filters is not complete, but is improving
dramatically. To properly view the most complex of these examples, you will need either
Opera or the Adobe ASV plug-in for Internet Explorer. Internet Explorer 9, Microsoft’s first
release with native SVG support, did not yet support filters, but Internet Explorer 10 does.

The Basic Primitives

In the SVG specification, the discussion on filter primitives (at http://www.w3.org/TR/SVG/filters.html)
lists 16 different filter primitives ordered alphabetically. Since the topic is a complex one, this book
will attempt to bring a bit more organization to the subject, though clearly the specification provides
considerably more detail (but fewer examples).

The treatment begins with those primitives that blur, distort, or change the colors of relatively
simple content to which the filter is applied.

http://www.w3.org/TR/SVG/filters.html

 CHAPTER 5 SVG Filters 147

<feGaussianBlur>
Perhaps the simplest of the SVG filter primitives is the <feGaussianBlur>, which, stated simply, allows
you to blur an image. This treatment is adapted from the W3C’s primer, simply because I think it is the
best way to open the topic of SVG filters.

The parameter associated with <feGaussianBlur> is the standard deviation (stdDeviation). It con-
trols the distance from which neighboring pixels will be allowed to influence a given pixel, and hence
the amount of blurring. First, you set up a filter with an <feGaussianBlur> inside:

<filter id="A">
 <feGaussianBlur stdDeviation="1" />
</filter>

Then you apply the filter to the element to be blurred:

<rect x="42%" y="10%" width="16%" height="25%" fill="white"
 filter="url(#A)"/>

The following shows the effect of increasing the value of stdDeviation on two different images on a
black background:

<filter id="A"><feGaussianBlur stdDeviation=S/></filter>
<rect x="42%" y="10%" width="16%" height="25%" filter="url(#A)" fill="white"/>

S=2 S=10 S=25

<image x="42%" y="10%" width="16%" height="25%" filter="url(#A)" xlink:href="p0.jpg"/>

S=2 S=10 S=25

148 Building Web Applications with SVG

Notice that the blurred object expands beyond its original bounds and that values outside its
boundary are considered to be transparent so that any background present (in this case, monochro-
matic black) will be visible inside the edges of the image itself. To restrict the image so that it does not
bleed beyond its boundaries, you can either set the x, y, height, and width attributes of the filter itself
(the easiest way), or use another filter primitive, <feOffset> (discussed later in this chapter).

The following is an example of restricting the extent of a filter to the size of the source image:

Restricted to Size of Source Image Unrestricted to Size
of Source Image

<filter id="B" x="0%" y="0%" width="100%"
 height="100%">
 <feGaussianBlur stdDeviation="25"/>
</filter>

<filter id="A">
 <feGaussianBlur stdDeviation="25"/>
</filter>

It is also worth noting that if <feGaussianBlur> takes two parameters, rather than one, for its
stdDeviation attribute, then the first will represent horizontal blurring, while the second will represent
vertical blurring. The statement

<feGaussianBlur id="fGB" stdDeviation="25, 0" />

will blur the object only horizontally in ways that, for a monochromatic rectangle, might resemble a
linear gradient with three equidistant stops.

At http://granite.sru.edu/~ddailey/svg/directionalBlur.svg, you can see an example in which the blur-
ring happens either horizontally or vertically, as illustrated here:

Original

Blurred horizontally Blurred vertically

D
ow

n
lo

a
d
 f
ro

m
 W

o
w

!
e
B
o
o
k

<
w

w
w

.w
o
w

e
b
o
o
k.

co
m

>

http://granite.sru.edu/~ddailey/svg/directionalBlur.svg

 CHAPTER 5 SVG Filters 149

You can see a version that animates the blurring at http://granite.sru.edu/~ddailey/svg/
directionalBlurA.svg.

<feColorMatrix>
The <feColorMatrix> filter primitive allows you to reconfigure the colors of an image. In the simplest
case, you can use it to desaturate an image—that is, turn it from color to grayscale.

In the following example (also at http://granite.sru.edu/~ddailey/svg/filter1.svg), an unfiltered bit-
mapped image is displayed next to a filtered version of the same image:

<filter id="F">
 <feColorMatrix type="saturate" values="0" />
</filter>

<image id="I" x="0" y="0" width="200" height="200"
 preserveAspectRatio="none" xlink:href="p17.jpg" />

<use xlink:href="#I" filter="url(#F)" transform="translate(200,0)" />

The filter consists of an <feColorMatrix> operation. Like a gradient, pattern, clip path, or mask,
a filter is later applied to another SVG element—in this case a <use>—so that we can see what the
object looks like before and after applying the filter. In this particular case, the image is desaturated
so that it is, in effect, converted to a grayscale image. Note that animating the values attribute of this
example is quite easy to do and is shown at http://granite.sru.edu/~ddailey/svg/filter1a.svg.

Currently in SVG1.1, the range of values is from 0 to 1, but it appears as though SVG will allow a
broader range of values in the future (as in http://granite.sru.edu/~ddailey/svg/filter1b.svg and dis-
cussed at http://lists.w3.org/Archives/Public/www-svg/2011Sep/0093.html).

Observe that with just a tiny bit of play (reusing and reflecting the filtered and unfiltered image
below the originals, within a pattern), you can achieve interesting effects using only one bitmapped
image and a very small amount of code, as shown at http://granite.sru.edu/~ddailey/svg/filter3.svg:

<filter id="F">
 <feColorMatrix type="saturate" values="0" />
</filter>
<pattern id="Pix" patternUnits="userSpaceOnUse" width="200" height="200" >
 <g id="g" transform="scale(.5)">
 <image x="0" y="0" width="200" height="200" preserveAspectRatio="none"
 xlink:href="p17.jpg" />

http://granite.sru.edu/~ddailey/svg/directionalBlurA.svg
http://granite.sru.edu/~ddailey/svg/directionalBlurA.svg
http://granite.sru.edu/~ddailey/svg/filter1.svg
http://www.w3techcourses.com/svg_images/filter1.svg
http://www.w3techcourses.com/svg_images/filter1.svg
http://granite.sru.edu/~ddailey/svg/filter1a.svg
http://granite.sru.edu/~ddailey/svg/filter1b.svg
http://lists.w3.org/Archives/Public/www-svg/2011Sep/0093.html
http://granite.sru.edu/~ddailey/svg/filter3.svg
file:///Users/linda/Desktop/Developer%20Book/text/view-source:http://granite.sru.edu/%7Eddailey/svg/p17.jpg

150 Building Web Applications with SVG

 <image x="200" y="0" width="200" height="200" preserveAspectRatio="none"
 xlink:href="p17.jpg" filter="url(#F)"/>
 </g>
 <use xlink:href="#g" transform=" translate(200,100) scale(-1,1)"/>
</pattern>
<rect x="0" y="0" width="100%" height="100%" fill="url(#Pix)" />

You can also use <feColorMatrix> to rotate the color values (through the circular scale that is the
rainbow of hues) using hueRotate, as shown at http://granite.sru.edu/~ddailey/svg/filter1f.svg:

<filter id="F">
 <feColorMatrix type="hueRotate" values="90" />
</filter>
<filter id="G">
 <feColorMatrix type="hueRotate" values="180" />
</filter>
<filter id="H">
 <feColorMatrix type="hueRotate" values="270" />
</filter>
<image id="I" x="0" y="0" width="200" height="200" preserveAspectRatio="none"
 xlink:href="p17.jpg" />
<use xlink:href="#I" filter="url(#F)" transform="translate(200,0)" />
<use xlink:href="#I" filter="url(#G)" transform="translate(400,0)" />
<use xlink:href="#I" filter="url(#H)" transform="translate(600,0)" />

file:///Users/linda/Desktop/Developer%20Book/text/view-source:http://granite.sru.edu/%7Eddailey/svg/p17.jpg
http://granite.sru.edu/~ddailey/svg/filter1f.svg

 CHAPTER 5 SVG Filters 151

You can see a bit of further play with hueRotate at http://granite.sru.edu/~ddailey/svg/filter1g.svg,
which, like the above example, uses <pattern>, but also uses animation to create an effect that plays
a bit with the distribution of rods and cones in the retina to produce an interesting illusion. You can
see another example that animates the rotation of the colors in a pattern at http://cs.sru.edu/~ddailey/
svg/feColorMatrixPattern.svg.

In the illustration above, note how the color contrast between the lips and the skin does not seem
to bear up so well under hue rotation; this is because the chromas are ultimately very similar. At the
end of this section, we’ll briefly discuss how to exaggerate color contrasts under rotation.

The <feColorMatrix> filter primitive is quite a bit more powerful, as the example shown below (and
at http://cs.sru.edu/~ddailey/svg/feColorMatrix.svg) should indicate.

Without going into detail about the entire collection of effects, there are six bitmapped images
(faces) atop three colored stripes. The first image, at left, is unfiltered. Each of the others has a filter
somewhat like that of the third:

<filter id="inv">
 <feColorMatrix type="matrix"
 values="1 0 0 0 0
 0 -1 0 0 0
 0 0 -1 0 0
 1 1 1 0 0"
 >
 </feColorMatrix>
</filte

What this does is take each of the four color channels, treated as rows of the matrix—red, green,
blue, and alpha (opacity)—and compose it out of color values of the other three channels. In this case,
the red channel is kept unchanged:

Red = 1 * Red + 0 * G + 0 * B + 0 * A

The green and blue channels are, however, inverted, with their new color values being set equal
to the inverse of their values. Finally, the alpha channel is contributed to positively by red, green, and
blue values:

Alpha = 1 * Red + 1 * G + 1 * B

This has the effect that bright pixels (high on all three channels) are kept opaque, while dark pixels
(low on all three channels) are converted to transparent. The last column of the matrix represents a
constant used to adjust brightness on a channel, typically to scale the values so that the result is in the
range from 0 to 1, though that is not strictly required.

http://granite.sru.edu/~ddailey/svg/filter1g.svg
http://cs.sru.edu/~ddailey/svg/feColorMatrixPattern.svg
http://cs.sru.edu/~ddailey/svg/feColorMatrixPattern.svg
http://cs.sru.edu/~ddailey/svg/feColorMatrix.svg

152 Building Web Applications with SVG

In the above example, note that the final filter used is actually animated, demonstrating that two
multivalued attributes, like matrices, can themselves be interpolated using <animate>.

Filter Chaining with <feColorMatrix>
We’ll introduce one more topic before moving to the next filter primitive: the idea of chaining filter
effects.

Above, one of our <feColorMatrix> filters succeeded in oversaturating an image. Note that in the
example of hueRotate, the color values of the image were sufficiently similar such that when the hues
of an image were rotated along the rainbow, the bluish image became uniformly bluish. You can
adjust this by sending the results of one filter primitive to another. Consider this code:

<filter id="F">
 <feColorMatrix type="matrix"
 values=" 3 -1 -1 0 0
 -1 3 -1 0 0
 -1 -1 3 0 0
 0 0 0 1 0"
 />
 <feColorMatrix type="hueRotate" values="30" />
</filter>

In this filter, we have chained two different <feColorMatrix> effects. The result is that we first
supersaturate the image and then rotate the color 30 degrees (toward yellow from red).

This is illustrated in the fourth illustration from the left in the following image (shown also at
http://cs.sru.edu/~ddailey/svg/filter1f3.svg):

Unfiltered Rotated Saturated Rotated then
saturated

Saturated
then rotated

Animated

It is noteworthy that the order of application of filters is significant. In this case, oversaturating
before rotating the hue results in a ceiling effect on the red channel. Many pixels are shifted toward
their highest possible red values. By rotating first and then saturating (see the fifth illustration from
the left in the above image), you can better preserve the hue differential between lips and skin. This
ability to chain filter effects together affords you a great deal of power in how you can combine the
various effects.

You can see another comparison between the ordering of filter effects at http://granite.sru
.edu/~ddailey/svg/feColorMatrixBlur.svg, at which we contrast the effects of first blurring and then
applying hueRotate in the reverse order:

http://cs.sru.edu/~ddailey/svg/filter1f3.svg
http://granite.sru.edu/~ddailey/svg/feColorMatrixBlur.svg
http://granite.sru.edu/~ddailey/svg/feColorMatrixBlur.svg

 CHAPTER 5 SVG Filters 153

Original

hueRotate then blurBlur then hueRotate

<feComponenttransfer>
While <feColorMatrix> allows remapping between color channels, you can achieve more precise
control of remapping within an individual color channel by using <feComponentTransfer>. The
<feComponentTransfer> primitive allows the independent redefinition of each of the four color chan-
nels R, G, B, and A. It allows the adjustment of brightness and contrast through the application of any
of a variety of different functions to any or all channels of an image. The types of adjustment allowed
include identity, table, discrete, linear, and gamma. discrete can be used to posterize an image (i.e., to
reduce it to fewer color values). linear is used for simple brightening and darkening, contrast adjust-
ment, or even inversion, while table can be used to remap a color’s histogram—like discrete, only con-
tinuously. It is a powerful filter and can motivate a much deeper treatment than this chapter allows,
but we’ll consider some of its expressive range with some examples.

One of the most common uses of this filter primitive is likely to be posterization, or discretizing an
otherwise smooth color-density function. The effect, also known as color quantization, results in the
use of fewer overall colors in an image, generally with sharp boundaries between areas where one
color is dominant.

Here’s how it works. Shown in the next figure (and at http://granite.sru.edu/~ddailey/svg/
feComponentTransfer.svg) is the effect of simply posterizing an image. The unfiltered image is at top
left, and the posterized one is immediately to the right.

http://granite.sru.edu/~ddailey/svg/feComponentTransfer.svg
http://granite.sru.edu/~ddailey/svg/feComponentTransfer.svg

154 Building Web Applications with SVG

Original Posterize R, G; blank B Blur then posterize, blank B

Flip R; blank B; reduce A Blur then posterize R, G Blur/posterize/feColorMatrix

The filter applied to the second image looks like this:

<filter id="G">
 <feComponentTransfer>
 <feFuncR type="discrete" tableValues="0 .5 1"/>
 <feFuncG type="discrete" tableValues="0 1"/>
 <feFuncB type="discrete" tableValues="0"/>
 </feComponentTransfer>
</filter>

What it does is remap the red channel of the image so that the new image has only three values
of red: 0, 127, and 255. All values that are closer to 127 get rounded to 127, with other values get-
ting rounded either upward to 255 or downward to 0. The green channel is quantized to exactly two
values, 255 and 0, and the blue channel is completely blackened (or blanked).

The third image is first blurred (reducing some of the discontinuities along the edge, effectively
smoothing the effect of pixels that are different from their surroundings) prior to posterization. The
green channel is given three values instead of two (to give it slightly more discriminant power), and
the red is shifted higher a bit to increase subtleties in the lower range. This is done by dividing the
range from 0 to 255 into four class intervals and rounding anything from 0 to 65 to 0, from 66 to 127
to 127, and from 127 to 255 to 255, resulting in a net reddening of the image. That is, using the fol-
lowing code, this option maps the red values in the interval [0,1] to one of the three values as follows:

(0 to .25) → 0; (.25 to .50) → .5; (.50 to .75 and .75 to 1.0) → 1

<filter id="H">
 <feGaussianBlur stdDeviation="3" />
 <feComponentTransfer>
 <feFuncR type="discrete" tableValues="0 .5 1 1"/>
 <feFuncG type="discrete" tableValues="0 .5 1"/>
 <feFuncB type="discrete" tableValues="0"/>
 </feComponentTransfer>
</filter>

 CHAPTER 5 SVG Filters 155

That is, you can use <feComponentTransfer> to do a bit of manual equalization.

The bottom-left image uses a fairly simple set of transforms:

<filter id="F">
 <feComponentTransfer>
 <feFuncR type="table" tableValues="1 0 0"/>
 <feFuncB type="table" tableValues="0"/>
 <feFuncA type="table" tableValues=".75"/>
 </feComponentTransfer>
</filter>

It effectively inverts the red channel, mapping two-thirds of the red values to dark and the dark-
est one-third (on that channel) to bright. The green channel is left unaffected, and the blue channel
(barely present in the original image to begin with) is completely suppressed (darkened). On the other
hand, all alpha values (which are 1.0 to begin with, since this is an opaque image) are made slightly
transparent by mapping alpha to 0.75.

The other two images, the source code of which you can examine at the web page, do a bit more
play with the discrete attribute, with the last image additionally using <feColorMatrix> to recast just
some of the pixels (the most yellow ones) to transparent. This ability to selectively turn certain pixels
transparent is not something that <feComponentTransfer> has on its own, since it only works with one
channel at a time. Used in conjunction with <feColorMatrix>, though, you can produce some quite
interesting results.

Other attributes of <feComponentTransfer> include identity, table, linear, and gamma. identity
appears to be the null filter, leaving its channel untouched; gamma adjusts the curvilinearity of a
channel; table allows remapping of specific color values (as in an already discretized color distribu-
tion); linear is worth a bit of further mention.

Just as the discrete value establishes thresholds where the boundaries between a quantized chan-
nel’s values map one direction or another, linear allows you to vary the slope of the function that
transforms original pixels to new ones on a selected channel.

You can use this to actually invert an image (by turning each of its color channels upside down), as
shown here (and at http://granite.sru.edu/~ddailey/svg/feComponentTransfer3.svg):

Using feComponentTransfer to form the photographic negative

http://granite.sru.edu/~ddailey/svg/feComponentTransfer3.svg

156 Building Web Applications with SVG

The code to do this employs one new wrinkle: a slight change in color space from the default RGB
color space used in SVG to sRGB (see http://en.wikipedia.org/wiki/SRGB). This alternative color space
adjusts the gamma setting in a fairly fancy manner that maps more similarly across both printers and
monitors. The code used looks like this:

<filter id="J" color-interpolation-filters="sRGB">
 <feComponentTransfer>
 <feFuncR type="linear" slope="-1" intercept="1" />
 <feFuncG type="linear" slope="-1" intercept="1" />
 <feFuncB type="linear" slope="-1" intercept="1" />
 </feComponentTransfer>
</filter>

As you can see, we merely plot a line from (0,1) to (1,0) instead of the usual (0,0) to (1,1), hence
inverting the values on each channel.

While the resultant image may not be exactly equal to the photographic negative, I performed the
following test: The two images were taken into Adobe Photoshop. The image on the left was pasted
atop the one on the right, with a 50% opacity applied to the pasted layer. The result was an appar-
ently monochromatic gray region (at least to the eye). Upon equalization of the area, subtleties of
the difference appeared, but these were probably just artifacts of the browser’s processing. In other
words, the result is visually indistinguishable from a photographic negative!

When type equals "table", it is similar to discrete, except that instead of clamping the values in the
class interval to the specified value, it linearly interpolates the values in adjacent class intervals; so,
instead of discretizing, table creates piecewise linear transformations such as sawtooth functions.

You can see the contrast between type="discrete" and type="table" in the following example
(shown at http://cs.sru.edu/~ddailey/svg/feComponentTable.svg), in which a sawtooth function is
applied either discretely or piecewise linearly on the blue channel.

Blur then table
then ColorMatrix

Blur and ColorMatrix -
no component Transfer

Blur then discrete
then ColorMatrix

Comparing fecomponentTransfer: Discrete and Table

Here’s a final example illustrating some of the richness of <feComponentTransfer> (here used
with support from <feGaussianBlur> and <feColorMatrix>): http://granite.sru.edu/~ddailey/svg/
feComponentTransfer2.svg.

http://en.wikipedia.org/wiki/SRGB
http://cs.sru.edu/~ddailey/svg/feComponentTable.svg
http://granite.sru.edu/~ddailey/svg/feComponentTransfer2.svg
http://granite.sru.edu/~ddailey/svg/feComponentTransfer2.svg

 CHAPTER 5 SVG Filters 157

It begins with an <feGaussianBlur> (animated on stddeviation) to vary the granularity of the edges.
It uses a discrete function to quantize the dominant channel, red. Next, it uses a linear adjustment to
animate both the blue and green channels. Finally, it uses an <feColorMatrix> to convert bright pixels
to transparent ones. Since the slope of the functions on blue and green is oscillating (at different
frequencies), it means that which pixels are transparent changes with time. Several screen shots are
shown here:

<feMorphology>
<feMorphology> is typically used as a part of the alpha channel of an image to thin or thicken an
image. The W3C gives an example in which a boldface font is made thinner though the use of an
<feMorphology> filter. See http://en.wikipedia.org/wiki/Dilation_%28morphology%29 for a discussion
of the mathematics of this filter effect.

In the example at http://srufaculty.sru.edu/david.dailey/svg/feMorphologyDilate.svg, you can see the
effects of animating the two possible types of <feMorphology>: dilate and erode. When applied to an
area having some transparency in it, it can either expand (dilate) or shrink (erode) the affected region.

The example at http://cs.sru.edu/~ddailey/svg//feMorphology.svg begins by using
<feComponentTransfer> and <feColorMatrix> to convert a part of the image (the exaggerated green
pixels) to transparent. The dilation morphology is then animated to slowly expand the transparent
region, displacing other pixel values in its wake.

http://en.wikipedia.org/wiki/Dilation_%28morphology%29
http://srufaculty.sru.edu/david.dailey/svg/feMorphologyDilate.svg
http://cs.sru.edu/~ddailey/svg//feMorphology.svg

158 Building Web Applications with SVG

Animating feComponentTransfer with
Blur and ColorMatrix

<feConvolveMatrix>
This is a powerful but complex filter effect, well known to those in scientific image processing,
since it is often used for sharpening images, or for boundary detection. It allows what is known as a
convolution filter. To use it, you define a square matrix (typically n×n for some odd number n) in which
the center cell of the matrix refers to the pixel itself; and the cells above, left, below, and to the right
of it within the matrix refer to the pixels above, left, below, and to the right of that pixel in the source
image. The numeric coefficients in the matrix define the weight that each neighboring pixel will have
in the calculation of the new color value of that pixel. In the simplest case, the matrix

0 0 0
0 1 0
0 0 0

leaves any image unaffected, since the new value of a pixel will be equal to 1 times its current value
plus the sum of 0 times the values of its eight nearest neighbors (those immediately north, northeast,
east, southeast, south, southwest, west, and northwest of it). That is, each pixel remains unaffected by
its neighbors.

In a slightly different convolution, though, you can sharpen an image by letting each pixel be
negatively influenced by its eight neighbors but still retain its own identity:

<feConvolveMatrix order="3"

kernelMatrix=
" -1 -1 -1
 -1 9 -1
 -1 -1 -1
" />

 CHAPTER 5 SVG Filters 159

Note that the sum of the coefficients is 1, meaning, generally, that the overall brightness values of
the result (in each channel) will be roughly the same as the original. In general, you want to prevent
the sum of the coefficients from being 0.

This effect is shown here and in the middle of the page at http://cs.sru.edu/~ddailey/svg/
feConvolveMatrix.svg:

Sharpening

Some effects using feConvolveMatrix

Unfiltered Animated blur followed by edge
detection and feColorMatrix

You can see a pleasant set of convolution filters at the Open GL website, at http://www.opengl.org/
resources/code/samples/advanced/advanced97/notes/node152.html, should you wish to experiment
further. In the meantime, here’s another example that may help to explain how they work.

To accomplish an effect somewhat like vertical blurring, you can use a filter such as follows. In it,
each pixel is enhanced if it is similar to the pixels in its same vertical “stripe,” but also sharpens a bit if
it differs from pixels further to its left or right.

<filter id="G">
<feConvolveMatrix order="7"
kernelMatrix="

 -1 0 0 2 0 0 -1
 -1 0 0 2 0 0 -1
 -1 0 0 2 0 0 -1
 -1 0 0 3 0 0 -1
 -1 0 0 2 0 0 -1
 -1 0 0 2 0 0 -1
 -1 0 0 2 0 0 -1

 " />
</filter>

The result, as shown at http://cs.sru.edu/~ddailey/svg/feConvolveMatrix2.svg, is illustrated in the
center image below and is contrasted with the effect of simply using a vertical <feGaussianBlur>.
Note that the convoluted image, while vertically blurred, is done so much more clearly than with the
use of the simpler blur filter, which smears pixel values. That is, the crispness of the shapes suggests

http://cs.sru.edu/~ddailey/svg/feConvolveMatrix.svg
http://cs.sru.edu/~ddailey/svg/feConvolveMatrix.svg
http://www.opengl.org/resources/code/samples/advanced/advanced97/notes/node152.html
http://www.opengl.org/resources/code/samples/advanced/advanced97/notes/node152.html
http://cs.sru.edu/~ddailey/svg/feConvolveMatrix2.svg

160 Building Web Applications with SVG

a more discrete and less analog effect, which is to a large extent consistent with the nature of the
underlying philosophy of the calculations.

convolveMatrix vertical Blur vertical

Original

Utility Filters

A number of filter primitives serve to merely provide some sort of necessary functionality, but would
rarely be used alone. For example, some might introduce some sort of basic imagery into a filter
chain. The most important of these are <feTurbulence>, <feDiffuseLighting>, and <feSpecularLighting>.
Some others, <feFlood>, <feImage>, <feTile>, and <feOffset>, provide rudimentary operations that
are useful within filter chains.

The presentation will begin gently, and build gradually toward more complexity.

Simple Utility Filters
The simpler utility filters allow ways to insert things into a filter chain. Each of the utility filters allows
something to be entered into the filter chain through what we’ll call R, which here refers to the rec-
tangle subtended by the filter, either through its own x, y, width, and height, or through the geometry
of the object to which it is applied.

■■ <feFlood> enters a single color into R.

■■ <feOffset> allows something in a filter chain to be translated horizontally and vertically.

■■ <feImage> enters an external file or local image (bitmapped or SVG) into R.

■■ <feTile> allows an input image in a filter chain to tile R like a pattern.

 CHAPTER 5 SVG Filters 161

<feFlood> and <feOffset>
In the example at http://cs.sru.edu/~ddailey/svg/feFlood.svg, the two images in the top row show the
effects of applying <feFlood>, in this case laid atop either an unfilled or a filled rectangle.

<filter id="f1">
 <feFlood x="10%" y="10%" width="80%" height="80%" flood-color="green" flood-opacity=".5"/>
</filter>
<rect x="15%" y="15%" width="20%" height="30%" fill="none" stroke-width="2" stroke="blue"/>
<rect x="15%" y="15%" width="20%" height="30%" filter="url(#f1)"/>
<rect x="60%" y="15%" width="20%" height="30%" fill="red" stroke-width="2" stroke="blue"/>
<rect x="60%" y="15%" width="20%" height="30%" filter="url(#f1)"/>

The advantage of this is that you can hence use a filter that applies a bit of green atop any other
graphics that you might have, using the same filter wherever it is desired.

Note that the filter effect (like many others) bleeds outside of the rectangle of the graphic to
which it is applied. As discussed earlier in this chapter, though, you can constrain this by setting the
x, y, height, and width of the filter itself. Also note that applying flood-opacity leaves the underlying
content visible through the filter effect, and, as you’ll see later, adjusting the individual opacities of
multiple <feFlood> filters in the same filter can prove quite useful.

The bottom two examples in this illustration use <feOffset> in conjunction with <feFlood> to slide
the effect over and down a few pixels.

<filter id="f2">
 <feFlood x="10%" y="10%" width="80%" height="80%" flood-color="green" flood-opacity=".5"/>
 <feOffset dx="40" dy="25"/>
</filter>
<rect x="15%" y="55%" width="20%" height="30%" fill="none" stroke-width="2" stroke="blue"/>
<rect x="15%" y="55%" width="20%" height="30%" filter="url(#f2)"/>
<rect x="60%" y="55%" width="20%" height="30%" fill="red" stroke-width="2" stroke="blue"/>
<rect x="60%" y="55%" width="20%" height="30%" filter="url(#f2)"/>

D
ow

n
lo

a
d
 f
ro

m
 W

o
w

!
e
B
o
o
k

<
w

w
w

.w
o
w

e
b
o
o
k.

co
m

>

http://cs.sru.edu/~ddailey/svg/feFlood.svg

162 Building Web Applications with SVG

<feOffset> is frequently used to create drop shadows, such as shown below and at http://
srufaculty.sru.edu/david.dailey/svg/text/offsetblur2.svg (in this case using Gaussian blur for the shadow
and something called <feMergeNode>, which will be discussed later, to recombine results of different
primitives).

<feImage> and <fetile>
In each of the two examples at http://cs.sru.edu/~ddailey/svg/feImage2.svg, a rectangle is filtered
using <feImage>, which allows the interjection of an external (or internal) image into the filter stream.
The second instance of the image is then passed into a <feTile> filter, which acts a bit like <pattern>,
but inside a filter chain.

In the first case (shown on the left in the graphic below), a rectangle is rather simply filtered while
a bitmapped image is introduced:

<filter id="f1" primitiveUnits="objectBoundingBox">
 <feImage xlink:href="p84.jpg" preserveAspectRatio="none"/>
</filter>

<rect x="10%" y="10%" width="20%" height="30%" filter="url(#f1)" />

http://srufaculty.sru.edu/david.dailey/svg/text/offsetblur2.svg
http://srufaculty.sru.edu/david.dailey/svg/text/offsetblur2.svg
http://cs.sru.edu/~ddailey/svg/feImage2.svg
file:///Users/linda/Desktop/Developer%20Book/text/view-source:http://cs.sru.edu/%7Eddailey/svg/p84.jpg

 CHAPTER 5 SVG Filters 163

In the second case, we take the results of the <feImage> and direct it into an <feTile>, which rather
simply allows content to be tiled as though in a <pattern> element:

<filter id="f2" primitiveUnits="objectBoundingBox">
 <feImage xlink:href="p84.jpg" x="0" y="0" width="25%" height="50%"
 preserveAspectRatio="none"/>
 <feTile/>
</filter>

In this case, <feTile> will make four copies of the image horizontally and two vertically because of
the way the width and height attributes on <feImage> have been set. The outline of the blue rec-
tangle shows the original size of the rectangle before filtering.

<feTile> is a rather simple primitive that just stretches the content to fill 100 percent of the area
to be tiled. Its convenience is that it can easily be inserted into a filter chain and that the calcula-
tions of the size of the pattern space do not need to be manually calculated, as is often the case with
<pattern>.

<feturbulence>
<feTurbulence> is one of the most expressive and complex of the filter primitives. It is used, often in
conjunction with others, to create textures and warps involving quasirandomness.

From the W3C’s SVG 1.1 specification, we find that it “creates an image using the Perlin turbulence
function (see http://cs.nyu.edu/~perlin/). It allows the synthesis of artificial textures like clouds or
marble.”

Like <feFlood>, <feTurbulence> fills a rectangle with new content. It has five specific attributes:
baseFrequency (required), numOctaves, seed, stitchTiles, and type. In the simplest case, the primitive
is used as follows:

<filter id="T1">
 <feTurbulence baseFrequency=".04"/>
</filter>
<rect x="30" y="10" height="100" width="100" filter="url(#T1)"/>

A more fully populated example of the syntax of the primitive is shown here:

<filter id="T2">
 <feTurbulence baseFrequency=".01" type="fractalNoise"
 numOctaves="3" seed="23" stitchTiles="stitch" />
</filter>
<rect x="30" y="10" height="100" width="100" filter="url(#T2)"/>

These two examples are shown next and at http://cs.sru.edu/~ddailey/svg/feTurbulence1.svg:

file:///Users/linda/Desktop/Developer%20Book/text/view-source:http://cs.sru.edu/%7Eddailey/svg/p84.jpg
http://cs.nyu.edu/~perlin/
http://cs.sru.edu/~ddailey/svg/feTurbulence1.svg

164 Building Web Applications with SVG

Turbulence fractalNoise

The parameters governing <feTurbulence> are each worth of explanation, so we’ll discuss them next.

baseFrequency
The most important of the parameters, baseFrequency, controls the scale or frequency of the noise.
Larger numbers (approaching 1) result in a tighter grain, while smaller numbers (approaching 0) result
in coarser, wider-grained textures. As with <feGaussianBlur>, you can control both the horizontal and
vertical components of <feTurbulence>. Here are four examples in which, for type="fractalNoise", the
values of baseFrequency have been varied. You can see the example at http://cs.sru.edu/~ddailey/svg/
feTurbulence2.svg.

baseFrequency=”.01” baseFrequency=”.04” baseFrequency=”1” baseFrequency=”.01, .1”

Note that in the last example, a lower value for baseFrequency has been provided in the horizon-
tal direction, meaning that the frequency is higher in that direction, resulting in the appearance of
horizontal streaking.

numOctaves
Variations in numOctaves essentially adjust the amount of detail present in the texture. Only inte-
gers are allowed, and in most cases, more than three octaves of turbulence (or grains of noise) does
not increase the visual complexity of the filter. Generally, depending on the use, either one or two
octaves of turbulence will suffice for most scenarios. In the example at http://cs.sru.edu/~ddailey/

http://cs.sru.edu/~ddailey/svg/feTurbulence2.svg
http://cs.sru.edu/~ddailey/svg/feTurbulence2.svg
http://cs.sru.edu/~ddailey/svg/feTurbulence3.svg

 CHAPTER 5 SVG Filters 165

svg/feTurbulence3.svg, you can see the effects of varying this parameter both for single values of
baseFrequency and for a double-valued example.

numOctaves=”1” numOctaves=”2” numOctaves=”3” numOctaves=”2”

type
There are only two values for type: turbulence and fractalNoise. The default value is turbulence. The
visual difference is primarily that turbulence appears stringier and fractalNoise looks cloudier. You can
see the contrast below, and at http://cs.sru.edu/~ddailey/svg/feTurbulence4.svg.

type=”turbulence” type=”fractalNoise” type=”turbulence” type=”fractalNoise”

seed
<feTurbulence> accepts a seed value that allows different scenes of the same characteristics to be
generated from instance to instance. In the example at http://cs.sru.edu/~ddailey/svg/feTurbulence5.
svg (shown below), four adjacent rectangles in the top row are filled with turbulence having the same
seed value. Note how all four adjoin with no seams. The bottom row, on the other hand, has four dif-
ferent seed values, and the seams between the four tiles are clearly visible (once the contrast has been
enhanced and transparency eliminated to make the effect more obvious).

http://cs.sru.edu/~ddailey/svg/feTurbulence3.svg
http://cs.sru.edu/~ddailey/svg/feTurbulence4.svg
http://cs.sru.edu/~ddailey/svg/feTurbulence5.svg
http://cs.sru.edu/~ddailey/svg/feTurbulence5.svg

166 Building Web Applications with SVG

As shown in the above example, you can create new types of textures by further filtering the
results of <feTurbulence>. We’ll present some further examples of this, together with some ideas
about how to create textures of given qualities.

Following is an example of simple turbulence from which the transparency channel has been effec-
tively removed (by mapping alpha values everywhere to 1.0).

The above (visible at http://cs.sru.edu/~ddailey/svg/feTurbulence11a.svg) is created, quite simply, as
follows:

<filter id="Q" x="0" y="0" height="100%" width="100%">
 <feTurbulence baseFrequency=".01" numOctaves="1" />
 <feComponentTransfer>
 <feFuncA type='linear' intercept="1" slope='0' />
 </feComponentTransfer>
</filter>

http://cs.sru.edu/~ddailey/svg/feTurbulence11a.svg

 CHAPTER 5 SVG Filters 167

<rect x="15%" y="15%" height="70%" width="70%" filter="url(#Q)"/>

Now, while it is easy to vary the specific pattern displayed in this rectangle by changing the value
of seed, it is not so easy to simply move the pattern around. To make this point clearer, consider the
following example:

This example (at http://cs.sru.edu/~ddailey/svg/feTurbulence11.svg) shows five positions of a single
filtered rectangle (filtered as in the previous example) as its location changes through an animation.
Note how the rectangles that overlap share the same pattern. It is as though the rectangle is a win-
dow, moving through an infinite space populated with turbulence.

The rectangle is animated as follows:

<rect x="40%" y="40%" height="20%" width="20%" filter="url(#T1)">
 <animate attributeName="x" values="10%;60%;70%;10%" dur="5s" repeatCount="indefinite" />
 <animate attributeName="y" values="70%;10%;30%;60%;70%" dur="7s" repeatCount="indefinite" />
</rect>

This example illustrates that <feTurbulence> is defined relative to absolute coordinates. The pattern
does not move with the object that has been filtered with it!

This can create either obstacles or opportunities, depending on how you look at it and what you
want to accomplish. But it should cause some rethinking of how you can use turbulence to animate
certain types of things, such as clouds, fire, water, rain, bubbles, and smoke. In cases of fluid motion,
you’ll want the turbulence to “flow” continuously in a given direction.

An approach that has been around since the earliest days of SVG animation (used in the flicker-
ing candle from Adobe’s SVG Zone; also visible at http://svg.kvalitne.cz/adobe/candleinthewind.svg)
appears to solve this problem quite efficiently. You can also see another approach that we’ve used

http://cs.sru.edu/~ddailey/svg/feTurbulence11.svg
http://svg.kvalitne.cz/adobe/candleinthewind.svg

168 Building Web Applications with SVG

with the animated text examples at http://srufaculty.sru.edu/david.dailey/svg/text/texteffects2.htm.
Since turbulence cannot easily be moved through a rectangle, the approach works as follows:

<g filter="url(#Q)">
 <animateTransform attributeName="transform" type="translate"
 from="0 0" to="0 -20000" dur="200" repeatCount="indefinite"/>
 <rect x="25%" y="25%" height="50%" width="50%"/>
 <animateTransform attributeName="transform" type="translate"
 from="0 0" to="0 20000" dur="200" repeatCount="indefinite"/>
 </rect>
</g>

Essentially, this example (visible at http://cs.sru.edu/~ddailey/svg/feTurbulence11b.svg) drags the
rectangle at the same speed in two opposite directions, with the net effect that it is left stationary.
The reason that it works this way is that the <g> that is filtered, when dragged, brings both the filter
region and the <rect> with it, but only the <rect> is retransformed, with the net appearance that only
the filter region (and hence the pattern) appears to move.

This effect is used twice at http://cs.sru.edu/~ddailey/svg/feTurbulence11g.svg (shown below) to
separately animate two different layers of clouds at differing speeds.

Likewise, using two layers of turbulence, together with lighting effects (discussed in the next
section), allows the appearance of a flyover of a distant moon (see http://cs.sru.edu/~ddailey/svg/
feTurbulence11h.svg):

http://srufaculty.sru.edu/david.dailey/svg/text/texteffects2.htm
http://cs.sru.edu/~ddailey/svg/feTurbulence11b.svg
http://cs.sru.edu/~ddailey/svg/feTurbulence11g.svg
http://cs.sru.edu/~ddailey/svg/feTurbulence11h.svg
http://cs.sru.edu/~ddailey/svg/feTurbulence11h.svg

 CHAPTER 5 SVG Filters 169

This section concludes with a variety of effects using turbulence, and describes some of the ways
that turbulence can be used in combination with other filter effects to create a variety of intriguing
textures.

In the example at http://cs.sru.edu/~ddailey/svg/feTurbulence16.svg, you can see four dif-
ferent effects created by adjusting the chroma of turbulence using <feColorMatrix> and/or
<feComponentTransfer>.

In the effect, in the example at the upper left, the transparency of the turbulence as well as the
green and blue channels are simply eliminated, as follows:

<filter id="T1" x="0" y="0" height="100%" width="100%">
 <feTurbulence baseFrequency=".015" numOctaves="1" />
 <feComponentTransfer>

http://cs.sru.edu/~ddailey/svg/feTurbulence16.svg

170 Building Web Applications with SVG

 <feFuncA type="linear" intercept="1" slope='0' />
 <feFuncG type="linear" intercept="0" slope='0' />
 <feFuncB type="linear" intercept="0" slope='0' />
 </feComponentTransfer>
</filter>

This is similar to the effect at the lower right, which eliminates the green, blue, and alpha channels
through an <feColorMatrix>:

<feColorMatrix type="matrix"
 values="1 0 0 1 0
 0 0 0 0 0
 0 0 0 0 0
 0 0 0 0 1"
></feColorMatrix>

The effect at the lower left shows what happens if, again, the blue and alpha channels are elimi-
nated, but if the red and green channels are discretized (mapping middle ranges of red or green to
high values and eliminating low values through <feComponentTransfer>):

<feFuncR type="table" tableValues="0 0 1 1 1 1 1 1 1 1 1"/>
<feFuncG type="table" tableValues="0 0 1 1 1 1 1 1 1"/>

Finally, the most complex of the examples, at the upper right, has its blue, green, and alpha chan-
nels removed as before, and has its red channel discretely mapped; though in this case it is trans-
formed nonmonotonically, so that very low, medium, and high values of red are eliminated, but low
values are heightened.

<feFuncR type="table" tableValues="0 0 .5 1 .5 0 0 0 0 0 0 0 "/>

The result is that the red “islands” have holes carved into them.

In the examples at http://cs.sru.edu/~ddailey/svg/feTurbulence17.svg (shown in the following figure),
these concepts are explored a bit further.

http://cs.sru.edu/~ddailey/svg/feTurbulence17.svg

 CHAPTER 5 SVG Filters 171

The example at the upper left takes turbulence and, once more, adjusts the chroma:

<feTurbulence baseFrequency=".019,.06" numOctaves="1"/>
<feComponentTransfer>
 <feFuncA type="linear" intercept="1" slope='0' />
 <feFuncR type="linear" intercept="0" slope='.1' />
 <feFuncG type="linear" intercept="0" slope='.4' />
 <feFuncB type="linear" intercept="0" slope='.9' />
</feComponentTransfer>

Specifically, after eliminating transparency (by setting the alpha values to 1), instead of eliminating
two of the channels, the red channel is severely dampened, and the green channel is partially damp-
ened. The result is a texture vaguely reminiscent of water.

In the example at the top right, the blue channel is discretized, much as in the “islands” example
discussed above, like so:

<feFuncB type="table" tableValues="0 0 0 1 1 0 0 0 0 0 0 0 "/>

Next, the boundaries of the pseudoglyphs (islands with holes) are smoothed, by first blurring and
then sharpening:

172 Building Web Applications with SVG

<feGaussianBlur stdDeviation="3"/>
<feConvolveMatrix order="5"
 kernelMatrix="
 1 1 1 1 1
 1 -2 -2 -2 1
 1 -2 -.2 -2 1
 1 -2 -2 -2 1
 1 1 1 1 1
"/>

You might want to experiment with changing the number of octaves to one or three (from two) in
this example to see how the complexity of the shapes can be increased or decreased accordingly. You
can see an animated version of this at http://cs.sru.edu/~ddailey/svg/feTurbulence19.svg.

At the lower right, the example works much the same way as the blue pseudoglyphs. The differ-
ences are that the outer edges of the islands (the darker shades of blue) are turned blue and the inner
parts are turned green. This is accomplished as follows:

<feComponentTransfer>
 <feFuncA type="linear" intercept="1" slope='0' />
 <feFuncB type="table" tableValues="0 0 .5 1 1 0 .5 .5 0 0 0 0 "/>

</feComponentTransfer>
<feGaussianBlur stdDeviation="2"/>
<feColorMatrix type="matrix"
 values=" 0 0 0 0 0
 0 0 1 0 0
 0 0 2 0 -1
 0 0 0 1 0"
/>

Specifically, <feComponentTransfer> is used to make the blue channel bimodal, with modes at 4/13
and 7/13 of the way across the 13 intervals established by the 12 table values. Then <feColorMatrix>
is used to eliminate the red channel (it could also have been used to eliminate the alpha channel,
hence sparing the earlier use of the <feFuncA>). The blue channel is preserved, but is forked into both
blue and green. That is, in the result, pixels having both high and low values of blue will be turned
green; those having only high values of blue will be made both blue and green, namely cyan.

The final of these four effects (at the bottom right) is accomplished as follows:

<feTurbulence baseFrequency=".08 .03" numOctaves="1" />
<feColorMatrix type="matrix" values="
 .5 .5 0 0 .1
 .4 .5 0 0 -.1
 0 0 0 0 0
 0 0 0 0 1"
>
</feColorMatrix>
<feGaussianBlur stdDeviation="1 2"/>
<feConvolveMatrix order="5"
 kernelMatrix="
 1 1 1 1 1

http://cs.sru.edu/~ddailey/svg/feTurbulence19.svg

 CHAPTER 5 SVG Filters 173

 1 -2 -2 -2 1
 1 -2 -.7 -2 1
 1 -2 -2 -2 1
 1 1 1 1 1"
/>
<feComponentTransfer>
 <feFuncG type="linear" intercept="-.5" slope='1' />
</feComponentTransfer>

In this code, several things happen:

1. baseFrequency=“.08 .03” is used to make the frequency higher in the horizontal direction.

2. <feColorMatrix> succeeds first in eliminating blue and alpha, and then in yoking together
(somewhat) the green and red channels, so that the result is predominantly orange, but with a
bit of independence of green from red and a bit stronger redness than greenness.

3. We blur, slightly more vertically than horizontally, and then apply slight sharpening, to
enhance the dark edges around the grains.

4. Finally, the green channel is further dampened to shift the image more toward red and away
from yellow, using a component transfer effect. This last effect could perhaps have been
accomplished within <feColorMatrix>, but a bit of fussing with the values didn’t succeed, so I
just slapped it in as an aftereffect.

Next, we’ll explore a series of examples (visible at http://cs.sru.edu/~ddailey/svg/feTurbulence18.svg)
involving the creation of a woodlike texture:

D
ow

n
lo

a
d
 f
ro

m
 W

o
w

!
e
B
o
o
k

<
w

w
w

.w
o
w

e
b
o
o
k.

co
m

>

http://cs.sru.edu/~ddailey/svg/feTurbulence18.svg

174 Building Web Applications with SVG

The first of these examples (top left) proceeds rather simply on the basis of previous examples:

<feTurbulence baseFrequency=".007,.15" numOctaves="2" />
<feComponentTransfer>
 <feFuncR type="linear" intercept="-.1" slope="1"/>
 <feFuncG type="linear" intercept="-.05" slope=".2"/>
 <feFuncB type="linear" intercept="0" slope="0"/>
 <feFuncA type="linear" intercept="1"/>
</feComponentTransfer>

That is, higher frequencies are used in the vertical direction, resulting in a horizontal grain. Blue
and alpha channels are eliminated; while green is considerably dampened. This gives a plausible grain
and range of coloration.

The second example (top right) shows that <feColorMatrix> can yield more precise control over
the coloration:

<feTurbulence baseFrequency=".007,.15" numOctaves="2" />
<feColorMatrix type="matrix"
 values=" 1.2 0 0 0 -.1
 .05 .03 0 0 0
 0 0 .02 0 0
 0 0 0 0 1
"/>

In this example, red is again emphasized more than green, but instead of the two being indepen-
dent, as in unprocessed turbulence, a bit of covariation is introduced, allowing the green channel to
be influenced by both red and green. Blue is deemphasized and transparency is eliminated.

The third and fourth illustrations (bottom row) both use concepts developed in the next section:
the introduction of new threads in a filter chain that are later recombined. We’ll further articulate
these concepts then, but for now, know that in both examples, an <feFlood> filter is used to introduce
a particular color (in this case a reddish brown) into the filter, which is then used as the background of
the texture. In the second, another filter, <feDisplacementMap>, is used to distort the grain using yet
another source of turbulence to define the distortion.

Finally, the example at http://cs.sru.edu/~ddailey/svg/feTurbulence14a.svg shows the effect of con-
currently varying the <feBaseFrequency> and the chroma of a texture applied to a pattern that itself
has an animated pattern space:

http://cs.sru.edu/~ddailey/svg/feTurbulence14a.svg

 CHAPTER 5 SVG Filters 175

Lighting Effects

Two rather complex filters involve lighting effects: <feDiffuseLighting> and <feSpecularLighting>. Both
are rather similar, in some ways, to <feConvolveMatrix> and <feGaussianBlur>, in that they allow for
directional effects. That is, they allow for pixels to be influenced by their neighbors in certain direc-
tions. In the case of these lighting effects, we first convert an image to binary black and white, and
then we pretend that these shades represent elevations and that a shadow is cast across the result-
ing contours. What is varied is the type and positioning of the light source. Lighting effects are often
used in conjunction with other filters to create more complex effects. Basically, there are diffuse and
specular effects filters into which you can place a collection of lights.

We’ll present a few experiments with <feDiffuseLighting> first, with a link to an animated example
that reveals the effects of simultaneously varying several of the parameters associated with the light-
ing effect.

In the example at http://cs.sru.edu/~ddailey/svg/lighting.svg, several different kinds of lights are
placed into an <feDiffuseLighting> element (with one <feSpecularLighting> used last).

http://cs.sru.edu/~ddailey/svg/lighting.svg

176 Building Web Applications with SVG

DistantLight to azimuth, elevation

Pointlight upper center

Spotlight upper left

DistantLight mid azimuth, lo elevation

Pointlight middle left

Spotlight upper center

DistantLight animated

Pointlight animated

Specular PointLight

In these examples, the same colored pattern that was used in the previous example (involv-
ing <feConvolveMatrix>) is reused nine times, each with a slightly different lighting effect. Each
of the three basic lights is placed inside the filter primitive, using either <feDiffuseLighting> or
<feSpecularLighting>. We’ll show the middle effect (“Pointlight middle left”) in some detail and leave
inspection of the others to you if you wish to explore further.

Here are the filter and the effect object (an ellipse filled with a trichromatic pattern with a white
background):

<filter id="pointLightB" filterUnits="objectBoundingBox" x="0" y="0" width="1" height="1">
 <feDiffuseLighting in="SourceGraphic" diffuseConstant="1" surfaceScale="10"
 lighting-color="white">
 <fePointLight x="40" y="50" z="10"/>
 </feDiffuseLighting>
</filter>

<ellipse fill="url(#OvalPattern)" stroke="black" stroke-width="2"
 filter="url(#pointLightB)" cx="50%" cy="50%" rx="10%" ry="10%"/>

In this case, you can imagine that a light source is located 10 pixels above the plane of the drawing
and that each dark ellipse protrudes like a small half-sphere above the plane. The light emanates in all
directions from a point located 10 units above the coordinate (40,50), as based on the affected rec-
tangle of the filter (upper left being [0,0]). You can perhaps better understand the effect by animating
the x, y, and z positions, as is done in the image immediately to the right (Pointlight animated).

You can also modify the color of the light, though if you want two different-colored lights, you
would have to use different spot filters.

 CHAPTER 5 SVG Filters 177

Ways of Combining Filters

There are several ways to combine or chain together two or more filter effects. You have already seen
many simple examples of chaining: taking the output of one filter primitive and using it as an input to
the next within a shared <filter> tag. You can even create veritable image-processing flow diagrams
with the SVG filters module, allowing for enormous variation and sophistication in the effects that can
be produced.

First, consider the default way in which filters handle multiple effects. Ordinarily, the first primi-
tive within a <filter> receives as input the SourceGraphic—the element to which the filter has been
applied. For example, if we define

<rect filter="url(#Fs)" ... />

then it is that rectangle that is considered to be the SourceGraphic of the filter Fs. Each primitive in
succession (FP1, FP2, . . . FPk), takes the output, or result, from the previous filter as if it were its input.
Here we’ll demonstrate two equivalent approaches, the first of which just uses default values of the
in and result attributes of successive filters, while the second makes all those default values explicit.
There would be no reason to specify the values of in or result in the following example, but the
example may help make it clear what is meant by the in and the result of a filter. In both cases, it is the
final filter from which the output is rendered into the affected graphical objects.

<filter id="Fs">
 <FP1/>
 <FP2/>
 <FP3/>
 <FP4/>
 <FP5/>
</filter>

<filter id="Fs">
 <FP1 in="SourceGraphic" result="A"/>
 <FP2 in="A" result ="B" />
 <FP3 in="B" result ="C" />
 <FP4 in="C" result ="D" />
 <FP5 in="D" />
</filter>

In the above, FPx refers to any filter primitive (e.g., <feGaussianBlur>). Once you know where the
SourceGraphic enters into the computations and how results are named and reused, then you are
in a position to start varying the order and using those more complex filter primitives that combine
results of two or more primitives, hence chaining filter primitives together in more complex and
interesting ways.

SVG also gives access to the graphical content underneath a given image. That is, you can use
the state of the rendered imagery in the layer below the filtered object itself as part of the filter. This
allows combinations of an image with its background using techniques for combining two images:
<feMergeNode>, <feBlend>, <feComposite>, and <feDisplacementMap>. We’ll revisit the use of
BackgroundImage to do this shortly.

<feMergeNode>
The <feMerge> filter allows the combination of filters concurrently rather than serially (as in the ear-
lier examples). Rather than each filter being applied to the output of the preceding filter, <feMerge>
gives us a way to temporarily store the output of each filter. Once several layers have been created
and stored as the results of different primitives, you can place them on the canvas in order from

178 Building Web Applications with SVG

bottom to top. The topmost layers should have some transparency (or incompleteness) in the fill
area to allow those layers underneath to be visible (see http://srufaculty.sru.edu/david.dailey/cs427/
StateOfArt-Dailey.html#footnote20sym).

In the following example (visible at http://cs.sru.edu/~ddailey/svg/feMergeNode1.svg), we are inter-
ested in converting an image from standard RGB to partial transparency, in this case using the darkest
parts of the image so that an underlying color shines through. In this case, we’re using yellow, created
through <feFlood> as a part of the filter.

The code for the above illustration is shown next:

<filter id="twoF" x="0%" y="0%" width="100%" height="100%">
 <feFlood flood-color="yellow" result="A"/>
 <feColorMatrix type="matrix" in="SourceGraphic" result="B"
 values="
 1 0 0 0 0
 0 1 0 0 0
 0 0 1 0 0
 1 1 1 0 0
 "/>
 <feMerge>
 <feMergeNode in="A"/>
 <feMergeNode in="B"/>
 </feMerge>
</filter>
<image x="35%" y="20%" xlink:href="p84.jpg" filter="url(#twoF)" height="50%" width="30%"/>

<feFlood> has inserted a yellow rectangle into the filter stream, but it is temporarily held in
memory as result A. As before, <feColorMatrix> is used to map dark parts of the image to transparent
(keeping alpha high for bright values of red, green, and blue); the result is stored in B. Finally, the two
effects are overlaid, as though stacked, and result A being under result B.

http://srufaculty.sru.edu/david.dailey/cs427/StateOfArt-Dailey.html#footnote20sym
http://srufaculty.sru.edu/david.dailey/cs427/StateOfArt-Dailey.html#footnote20sym
http://cs.sru.edu/~ddailey/svg/feMergeNode1.svg

 CHAPTER 5 SVG Filters 179

To bolster your understanding of these effects, it is worth pointing out that the following code
(visible at http://cs.sru.edu/~ddailey/svg/feMergeNode2.svg) accomplishes essentially the same result.

<filter id="twoF" x="0%" y="0%" width="100%" height="100%">
 <feFlood flood-color="yellow" result="A"/>
 <feImage xlink:href="p84.jpg" preserveAspectRatio="none"/>
 <feColorMatrix type="matrix" result="B"
 values="
 1 0 0 0 0
 0 1 0 0 0
 0 0 1 0 0
 1 1 1 0 0
 "/>
 <feMerge>
 <feMergeNode in="A"/>
 <feMergeNode in="B"/>
 </feMerge>
</filter>

<rect x="35%" y="20%" filter="url(#twoF)" height="50%" width="30%"/>

Here, instead of filtering an <image>, we filter a <rect>, inserting the image into the filter through
<feImage>.

Two more examples that demonstrate alternative ways of accomplishing the same thing that
<feMergeNode> does are shown at http://cs.sru.edu/~ddailey/svg/feTurbulence8.svg and http://cs.sru
.edu/~ddailey/svg/feTurbulence9.svg. In the first, we introduce one kind of turbulence into another by
laying one rectangle containing partly opaque turbulence atop another rectangle filled with higher-
frequency turbulence. In the second, we accomplish this effect with a single filter by layering the
effects with <feMergeNode>.

http://cs.sru.edu/~ddailey/svg/feMergeNode2.svg
http://cs.sru.edu/~ddailey/svg/feTurbulence8.svg
http://cs.sru.edu/~ddailey/svg/feTurbulence9.svg
http://cs.sru.edu/~ddailey/svg/feTurbulence9.svg

180 Building Web Applications with SVG

<feBlend>
The <feBlend> primitive enables the combination of two layers of an image using the methods
multiply, darken, screen, or lighten—similar to those used in programs such as Adobe Photoshop—
to logically combine color values of coincident pixels.

The example at http://cs.sru.edu/~ddailey/svg/feBlend.svg (shown below) demonstrates these four
modes of composing an image with what lies underneath it.

Except for the value of the mode attribute, all of these effects are the same, so we’ll only illustrate
the multiply example in detail.

The filter itself is relatively straightforward:

<filter id="multiply" x="0" y="0" height="100%" width="100%">
 <feBlend mode="multiply" in2="BackgroundImage" in="SourceGraphic"/>
</filter>

However, the code contains one significant exception—the use of two input images: in and
in2. This allows what is underneath—namely, the three colored stripes—to be multiplied by the
SourceGraphic. Inserting what is underneath and defined as BackgroundImage is done by enabling
the background on a group element that contains both the three stripes and the filtered image:

<g enable-background="new">
 <rect x="0" y="10%" height="4%" width="100%" fill="red"/>
 <rect x="0" y="14%" height="4%" width="100%" fill="green"/>
 <rect x="0" y="18%" height="4%" width="100%" fill="blue"/>
 <image x="5%" y="5%" xlink:href="p84.jpg" filter="url(#multiply)" height="23%" width="15%"
 preserveAspectRatio="none"/>
</g>

Therefore, any content laid down before the filtered object in the group with background enabled
will be used in the computation of the <feBlend>.

Note that since the filter is applied to an image, the default value of in is in fact SourceGraphic, so
stating in="SourceGraphic", as above, is not strictly required.

http://cs.sru.edu/~ddailey/svg/feBlend.svg

 CHAPTER 5 SVG Filters 181

The modes of <feBlend> work as follows:

■■ normal Allows BackgroundImage (or another value for the in2 attribute) to be visible only if
SourceGraphic (or another value for the in attribute) contains transparency.

■■ screen Allows each image’s values to add brightness to the others. For example:

white screen black = white
and
red (#FF0000) screen grey (#808080) = #ff8080 ("rose" or a rose-like color)

■■ multiply Allows values of the images to subtract brightness from one. For example:

white mult black = black
and
red (#FF0000) mult grey (#808080) = #800000 (a shade of red darker than "darkred")

■■ lighten Takes the brighter value of the two images at each pixel. For example:

white lighten black = white
and
red (#FF0000) lighten grey (#808080) = #ff8080 ("rose")

■■ darken Takes the darker value of the two images at each pixel. For example:

white darken black = black
and
red (#FF0000) darken grey (#808080) = #800000 ("darker red")

<feComposite>
Neither <feMerge> nor <feBlend> presents us with a way to either average or intersect two images.
<feComposite> can be used for that work. It allows the superimposition of the footprints of images
as well as the relative blending of their pixel values. Like <feMerge>, it takes two inputs, in and in2.
By default, in is the SourceGraphic.

As of this writing, only two browsers, Opera and ASV, seem to handle <feComposite>, and though
both appear to pass the SVG Working Group’s two tests in the test suite at http://www.w3.org/
Graphics/SVG/Test/20110816/harness/htmlObjectApproved/index.html, their treatment is different
for the example at http://cs.sru.edu/~ddailey/svg/feCompositeCompare.jpg. The lower example, as
rendered in ASV, is the correct rendition.

http://www.w3.org/Graphics/SVG/Test/20110816/harness/htmlObjectApproved/index.html
http://www.w3.org/Graphics/SVG/Test/20110816/harness/htmlObjectApproved/index.html
http://cs.sru.edu/~ddailey/svg/feCompositeCompare.jpg

182 Building Web Applications with SVG

A representative example (with operator="in") looks like this:

<filter id="in">
 <feComposite in2="BackgroundImage" in="SourceGraphic" operator="in" />
</filter>

The more complex operator, arithmetic, deserves a bit more explanation. When arithmetic is speci-
fied, four other parameters are invoked: k1, k2, k3, and k4. These assign weights, respectively, to a
component representing the multiple of the two images, the linear effect of the first image, the linear
effect of the second image, and an intercept, or brightness adjustment. In the following illustration,
when the operator is arithmetic, then k1 equals 0, k2 equals 1, k3 equals –1, and k4 equals 1, meaning
that the SourceGraphic (in) contributes positively, the BackgroundImage (in2) contributes negatively,
and the brightness is boosted.

The example at http://cs.sru.edu/~ddailey/svg/feComposite2.svg (shown in the following figure)
illustrates another set of uses for <feComposite>.

http://cs.sru.edu/~ddailey/svg/feComposite2.svg

 CHAPTER 5 SVG Filters 183

Unfiltered Plain turbulence Composite: In Composite: In2
Operator: Arithmetic,

k1=1

Operator: Arithmetic,
k1=6

Double turbulenceC/Arith+MaskArithmetic +
Animation

The first two illustrations (at the top left) show the basic forms to be combined: a simple ellipse and
a turbulence map.

Third from the left in the top row shows the result of combining the two using operator="in".
Here’s the corresponding code:

<filter id="compositeI" y="0" x="0" width="100%" height="100%">
 <feTurbulence baseFrequency=".05" numOctaves="3" result="A"/>
 <feComposite in="A" in2="SourceGraphic" operator="in" />
</filter>
<ellipse cx="385" cy="87" rx="75" ry="87" fill="red" filter="url(#compositeI)"/>

Effectively, this constrains the turbulence to the ellipse itself. Immediately to the right of that
image, the order of the composition is reversed:

<filter id="compositeJ" y="0" x="0" width="100%" height="100%">
 <feTurbulence baseFrequency=".05" numOctaves="3" result="A"/>
 <feComposite in2="A" in="SourceGraphic" operator="in" />
</filter>

<ellipse cx="535" cy="87" rx="75" ry="87" fill="red" filter="url(#compositeJ)"/>

In short, by using operator="in", you map the colors of one image to the shape of the other.

The rightmost image in the top row shows the same thing, but with operator="arithmetic" instead.
Here’s the code:

<filter id="compositeA" y="0" x="0" width="100%" height="100%">
 <feTurbulence baseFrequency=".05" numOctaves="3" result="A" />
 <feComposite in2="A" in="SourceGraphic" operator="arithmetic"
 k1="1" k2="1" k3="1" k4="-1" />
</filter>

184 Building Web Applications with SVG

<ellipse filter="url(#compositeA)" cx="700" cy="87" rx="75" ry="87" fill="red" />

In its use of operator="arithmetic", k1, k2, and k3 are all equal to 1.0, meaning that both of the
images, as well as their cross-product, contribute positively to the result. Since this results in a very
bright image, k4, the adjustment (or brightness) coefficient, is adjusted downward to ensure that,
among other things, the composition remains within the footprint of the ellipse.

Immediately below that image, another set of values for operator="arithmetic" is shown. Here’s
the code:

<feComposite in2="A" in="SourceGraphic" operator="arithmetic"
 k1="8" k2="1" k3="1" k4="-1" />

This has the result of clamping the colors of the areas where the shapes overlap more closely to
the red values of the ellipse represented by SourceGraphic.

Generally, it would appear that the most interesting sets of values associated with the parameters
in this case arise from varying k1.

The remaining effects on the page experiment with animation as well as masking. By applying
a mask that fades to transparency at the outer edge of the ellipse, the appearance of bumpiness at
the edges is conveyed, which, when combined with animation, gives the illusion of a sphere being
rotated.

<feDisplacementMap>
This effect is a bit different from others in the sense that it converts color values in one image into
geometric distortions of pixels at the same location in another image.

<feDisplacementMap> takes in (SourceGraphic by default) and in2, and uses a specified channel (R,
G, B, or A) of in2 to serve as displacement value to determine the direction and distance each pixel of
in will be moved in either the x or y direction (or both).

For example, if you wanted to use the red channel of in2 to horizontally distort in, and if the
underlying image represented by in2 is, say, a red-and-black checkerboard (hence, high on red over
the red squares and low on red over the black squares), then those pixels of in that lie above red
squares would be moved to the right, while those above black squares would be moved to the left.

In the example at http://cs.sru.edu/~ddailey/svg/feDisplacement1.svg, a checkerboard pattern is
used to fill the background. An <image> element is then filtered with a displacement that moves
those pixels above the red squares and those above the black squares 150 pixels apart from one
another in both the x and y directions.

http://cs.sru.edu/~ddailey/svg/feDisplacement1.svg

 CHAPTER 5 SVG Filters 185

Here’s the source code for this example:

<defs>
 <pattern id="Pattern" patternUnits="userSpaceOnUse" width="100" height="100">
 <rect x="0" y="0" width="100" height="100" fill="#f02"/>
 <rect x="0" y="0" width="50" height="50" fill="black"/>
 <rect x="50" y="50" width="50" height="50" fill="black"/>
 </pattern>
 <filter id="d" x="-20%" y="-20%" height="140%" width="140%">
 <feDisplacementMap scale="150" in2="BackgroundImage" yChannelSelector="R"
 xChannelSelector="R" />
 </filter>
</defs>
<g enable-background="new">
 <rect x="0%" y="0%" height="100%" width="100%" fill="url(#Pattern)"/>
 <image filter='url(#d)' xlink:href="p17.jpg" x="30%" y="25%" width="40%" height="50%"
 preserveAspectRatio="none" />
</g>

This succeeds in separating every other square of the image and in moving each apart both verti-
cally and horizontally, as shown.

<feDisplacementMap> is a remarkable tool when it comes to warping images and producing cer-
tain naturalistic effects, particularly when <feTurbulence> is used at the source of the displacement.
Following are a collection of examples that use <feTurbulence>, together with brief explanations of
how each is done.

186 Building Web Applications with SVG

Warping with a Simple Gradient
In the example at http://cs.sru.edu/~ddailey/svg/feDisplacement4.svg, a linear gradient is inserted into
a filter through <feImage>. It is then used as the source of distortion for some other SVG content, as
shown:

<defs>
 <linearGradient id="LG" gradientTransform="rotate(12 .5 .5)">
 <stop offset="0" stop-color="black"/>
 <stop offset=".35" stop-color="#300"/>
 <stop offset=".45" stop-color="#8a8"/>
 <stop offset=".5" stop-color="blue"/>
 <stop offset=".57" stop-color="#8a8"/>
 <stop offset="1" stop-color="black"/>
 </linearGradient>
 <rect id="r" x="0" y="0" height="100%" width="100%" fill="url(#LG)"/>
</defs>

<filter id="D" height="165%" y="-30%" width="140%">
 <feImage xlink:href="#r" result="M" />
 <feDisplacementMap in="SourceGraphic" in2="M" scale="1" xChannelSelector="B"
 yChannelSelector="G">

 <animate attributeName="scale" dur="2s" values="0;85;0" repeatCount="indefinite"/>
 </feDisplacementMap>
</filter>
<use xlink:href="#r"/>
<g id="GEL" filter='url(#D)'>
 <ellipse cx="50%" cy="50%" fill="none" stroke="#302" stroke-width="40"
 rx="20%" ry="15%" />
 <text x="40%" y="53%" font-size="55" fill="black" font-family="arial">Warping</text>
</g>

You can see similar examples at http://cs.sru.edu/~ddailey/svg/feDisplacement4a.svg, in
which the gradient itself is rotated, and at http://srufaculty.sru.edu/david.dailey/svg/newstuff/
filterDisplacementMap4.svg (shown in the figure that follows), in which the gradient is a reflected
radial gradient that is animated, instead of a simpler linear one.

http://cs.sru.edu/~ddailey/svg/feDisplacement4.svg
http://cs.sru.edu/~ddailey/svg/feDisplacement4a.svg
http://srufaculty.sru.edu/david.dailey/svg/newstuff/filterDisplacementMap4.svg
http://srufaculty.sru.edu/david.dailey/svg/newstuff/filterDisplacementMap4.svg

 CHAPTER 5 SVG Filters 187

Warping with turbulence
The examples at http://cs.sru.edu/~ddailey/svg/feDisplacement3.svg and http://cs.sru.edu/~ddailey/
svg/feDisplacement2.svg show how using <feTurbulence> as the source of distortion for an image can
produce interesting results. The following illustration shows this effect manifest differently on four
separate copies of the same image:

D
ow

n
lo

a
d
 f
ro

m
 W

o
w

!
e
B
o
o
k

<
w

w
w

.w
o
w

e
b
o
o
k.

co
m

>

http://cs.sru.edu/~ddailey/svg/feDisplacement3.svg
http://cs.sru.edu/~ddailey/svg/feDisplacement2.svg
http://cs.sru.edu/~ddailey/svg/feDisplacement2.svg

188 Building Web Applications with SVG

Spherical Warping
The illustration at http://cs.sru.edu/~ddailey/svg/feComposite5.svg (shown below) has two images that
you can compare, one of which has had a lens effect applied (namely, a spherical gradient has been
used as the source of displacement).

A close comparison of the two images will reveal that while the grain of the image on the right is
similarly sized throughout the image, in the example on left, the grain tends to be larger toward the
center. As the images rotate, the illusion of the image at left being spherical is more apparent.

The actual lens effect is imparted from a small PNG image found in the SVG test suite in the
SVG Working Group’s discussion, at http://www.w3.org/Graphics/SVG/Test/20110816/harness/
htmlObjectApproved/filters-displace-01-f.html.

It is a pity, it might seem, that one has to resort to using a PNG file in order to introduce a lens
effect into SVG, but we’ll discuss alternatives to linear and radial gradients in a later chapter.

The following illustration shows how you can use the source raster image with <feDisplacementMap>
to make a spherical transform, as in the example at http://cs.sru.edu/~ddailey/svg/feComposite9b.svg:

http://cs.sru.edu/~ddailey/svg/feComposite5.svg
http://www.w3.org/Graphics/SVG/Test/20110816/harness/htmlObjectApproved/filters-displace-01-f.html
http://www.w3.org/Graphics/SVG/Test/20110816/harness/htmlObjectApproved/filters-displace-01-f.html

 CHAPTER 5 SVG Filters 189

As in this other example, sphere.png is brought into the filter using<feImage>, where it is used to
filter a simple rectangular grid:

<filter id="sphere" y="-60%" x="-60%" width="260%" height="220%" >
 <feImage xlink:href="sphere.png" />
 <feOffset dx="-35" dy="15" result="Map" />
 <feDisplacementMap in="SourceGraphic" in2="Map" scale="250" xChannelSelector="R"
 yChannelSelector="G" result="C"/>
</filter>

<feOffset> is used to counterbalance the offset that <feDisplacementMap> imparts to the whole
image, and then, owing to the nature of the map (sphere.png), the red channel is used to offset
horizontally while the green is used for vertical offsets. The image is later blurred and posterized to
induce the interesting visual pattern.

Other examples of the use of spherical distortion include http://cs.sru.edu/~ddailey/svg/
feComposite6.svg, which demonstrates something resembling planetary motion, and http://cs.sru
.edu/~ddailey/svg/feComposite8.svg, which demonstrates something vaguely reminiscent of a global
weather system.

http://cs.sru.edu/~ddailey/svg/feComposite6.svg
http://cs.sru.edu/~ddailey/svg/feComposite6.svg
http://cs.sru.edu/~ddailey/svg/feComposite8.svg
http://cs.sru.edu/~ddailey/svg/feComposite8.svg

190 Building Web Applications with SVG

Summary

This concludes the study of SVG filters. We hope we have reached our goal of showing you how using
them can be exciting and fun, without requiring extensive knowledge of mathematics.

 191

C H A P T E R 6

SVG tools and resources

An architect’s most useful tools are an eraser at the drafting board, and a wrecking
bar at the site.

Frank Lloyd Wright

Great discoveries and improvements invariably involve the cooperation of many
minds.

Alexander Graham Bell

In this chapter:

Libraries . 192

SVG Native JavaScript Libraries . 193

Legacy htML Libraries . 200

Drawing tools and Utilities . 201

Other Useful tools . 206

extension tools. 207

Integrated Development environments . 210

Miscellaneous . 212

The SVG language can be very expressive, but just like verbal language, it takes skill, tools, and
mastery to empower its potential magic. The world of SVG is now a decade old, and during that time
many tools specific to SVG have come about. Some preexisting authoring tools and vector graphics–
editing software have adopted the technology, either as a native format or as an export option.

Whether your inclinations are more artistic, statistical, or programming oriented, you will find in
this chapter a substantial set of tools that will be useful for enhancing your creativity and developing
experience, and improving your workflow.

192 Building Web Applications with SVG

Just like in traditional drawing, SVG covers the two fundamental expressions of the discipline, free-
hand drawing and technical drawing, thus constituting the ideal meeting point between artists and
technicians. But this is not all; SVG has also been widely adopted by researchers in several domains
like chemistry, physics, cartography, and so on, where in effect it is not uncommon to find individuals
who shelter a bit of each under the same cap.

Libraries

Among the JavaScript libraries reviewed here, some are HTML legacy libraries that have had SVG
plug-in modules added later, and others were written to use SVG natively. Thanks to the efforts led
by the W3C to make SVG more interoperable, SVG can now coexist with HTML in a mixed namespace
without any particular effort from the developer. The native SVG libraries are therefore probably best
suited to produce modern applications. The solutions offered span the complete range of scenarios:
HTML with embedded SVG, SVG and HTML in a mixed context, and SVG as stand-alone document.
The legacy libraries, on the other hand, carry the overhead weight of backward HTML compatibility
(one of their primary objectives). However, when using SVG, you will be necessarily targeting modern
browsers, with their improved scripting engines and support for multicore and GPU processing, or the
Adobe ASV plug-in, which is now well declining toward obsolescence.

If you’ve been using legacy libraries for a time, you may be tempted to continue using them in
order to capitalize on your learning efforts; however, we encourage you to invest in the discovery
of modern SVG-dedicated libraries, as this effort may prove worthwhile in the short run, in terms of
efficiency and development costs.

Before reviewing the libraries, we’d like to mention debugging. Whether you will be using librar-
ies or not, the developer tools built into modern browsers can be extremely useful when developing
applications. The console can be used to quickly view and update object data and DOM elements.
You can access any global object or property of an object by simply typing its name. You can assign a
new value and see the result applied in real time. You can inspect the complete DOM tree and check,
for instance, that the value of an attribute effectively corresponds to what was expected. A typical
example is when a value yields NaN; if a value relates to a geometrical attribute, this does not throw
a script error; the script continues execution and the elements are built and rendered, but a particular
action (e.g., a transformation on an element) will simply not be applied. It is then just a reflex for you
to jump directly to the offending portion of your code. The DOM inspector is the perfect debugging
companion.

 CHAPTER 6 SVG Tools and Resources 193

SVG Native JavaScript Libraries

There are several SVG libraries available that you can use when building SVG-based applications.
These include D3, Pergola, Raphaël, Polymaps, and carto:net, each of which is described in the follow-
ing sections.

D3: Data-Driven Documents
D3, distributed under an open source license, is ideal for building interactive SVG, HTML, and other
DOM-based animations, visualizations, and applications. D3 emerged from the realm of visualiza-
tion science, and borrows ideas from the open source Protovis (http://mbostock.github.com/protovis/)
library. It has been well received by the SVG and web visualization communities. This section will get
you up to speed with D3—and there is a lot to explore.

Primarily through the keen insights and focused efforts of Mike Bostock, D3 was designed specifi-
cally to facilitate the integration and visualization of data using W3C DOM-based languages. A quote
from the D3 website concisely explains its purpose:

D3 is not a traditional visualization framework. Rather than provide a monolithic system with all
the features anyone may ever need, D3 solves only the crux of the problem: efficient manipulation
of documents based on data.

Besides allowing for a low-level representation of dynamic data sources on top of the selection-
based “kernel,” D3 includes a collection of helper modules for creating advanced graphs and for
mapping. D3 also provides convenient abstractions that support highly complex visualization tasks,
including transitions and animation.

A few of the core concepts that you need to understand are the following:

■■ Element creation and selection

■■ Data and DOM manipulation

■■ Displaying quantitative ordinal data to scale

To start programing with D3, you will first need to download the D3 library, which you can find
here: https://github.com/mbostock/d3.

After downloading the D3 library, you’ll find that several of the examples will not run out of the
box due to their use of external data files. This is due to the XMLHttpRequest 1 security restrictions
of most browsers. However, as of this writing, Firefox implements XMLHttpRequest 2, where those
restrictions do not apply. You will then be able to run the scripts on your local computer using Firefox.
Alternatively, you can either set your browser’s “Allow file access from files” security setting to true or
run the examples in a local web server environment. If you do not have a local web server yet, you
can use the Python web server included in the D3 package.

194 Building Web Applications with SVG

To keep things simple and demonstrate how D3 is DOM agnostic, this first example uses D3 to cre-
ate an HTML table. This will show how you can create, select, and set element and attribute values to
produce the graphic based on data.

First, set up your HTML document shell:

<html>
<head>
<title>D3 Example 1 ~ HTML Table</title>
<script type="text/javascript" src="http://mbostock.github.com/d3/d3.js">
</script>
<style type="text/css" media="screen">
 table {
 border: solid 1px #ccc;
 }
</style>
</head>
<body>
<h1>Generating HTML with D3</h1>
<div id="vis" style="width:100%;height:100%;"></div>

<script type="text/javascript">
// Code goes here, just before the end of the HTML body tag.
</script>
</body>
</html>

Next, here’s the script to insert into the <script> tag:

// The data is stored in an associative array, as per D3's requirement.
var data = [[11, 22, 33, 44, 55, 66, 77, 88, 99, 'aa', 'bb', 'cc', 'dd', 'ee', 'ff']];
var t = d3.select("#vis")
 .append("table")
 .selectAll("tr")
 .data(data);

 CHAPTER 6 SVG Tools and Resources 195

 t.enter().append("tr")
 .selectAll("td")
 .data(function(d) { return d; })
 .enter().append("td")
 // .attr("style", function(d) { return "background-color:#cc" + d + "33"; })
 // Values can be numeric
 .style("padding", 4)
 // Values can be strings
 .style("background-color", function(d) { return "#cc" + d + "33"; })
 .text(function(d) { return d; });

Notice that the preceding code illustrates alternative ways of setting the style using the style()
method or the attr() method.

Although creating SVG with D3 is useful, the primary benefit of D3 is that it can efficiently select
SVG, HTML, or MathML DOM objects, which is useful for data manipulations and data-driven docu-
ments. You can use both custom input controls and the standard HTML input controls that have
become familiar to developers over the past 15 years to implement interactivity.

The D3 library provides scales to help with mapping raw data points to the correct scale within the
visualization. The basic concept is that you will have a domain or raw input data points and a cor-
responding range of possible output values that map to the visualization. Rather than having to write
functions to perform the mathematical calculations for each data point, you can simply choose one of
the D3 quantitative or ordinal scales, which greatly simplify the programming. Scales are one of the
core features of D3.

Quantitative Scales
The quantitative scales currently support linear, power, logarithmic, quantize, and quantile scales.
The simplest way to explain how D3 scales work in practice is with real numbers and the standard
linear scale:

var x = d3.scale.linear()
 .domain([0, 10])
 .range([0, 200]);

In this case, when the raw data input value is 5, the range output value, x(0), would equal 100. Like-
wise, x(1) equals 20 and x(8) equals 160. For example, when creating the HTML table in the preceding
image, rather than using the raw data values in the associative array, we could have instead run the
input data values, or the domain values, through the D3 linear scale to map these values to a range of
output values. Linear scales work well for linear graphs such as bar charts and other common visual-
izations; however, the other scales make it just as easy to transform the same input data into graphs
that use logarithmic, exponential, or other nonlinear scales.

196 Building Web Applications with SVG

Ordinal Scales
The ordinal scales map logical categories over a discrete domain. The next example uses the ordinal
scale to map US state data along the y-axis using the height value, as in the following image.

y = d3.scale.ordinal().rangeRoundBands([0, h], .1);
yAxis = d3.svg.axis().scale(y).orient("left").tickSize(0);

Colors
Ordinal scales also define categorical colors that are useful for quickly adding ranges of colors and
mapping the colors to graph data. Because one of the primary goals of D3 is to empower visualiza-
tions, and because the SVG language is able to create vector graphics, the D3 library has several SVG-
specific functions and classes, including shapes, events, axes, controls, and behaviors.

The following image (from http://www.jasondavies.com/bloomfilter/) shows the Bloom Filter using
the d3.svg.diagonal shape.

 CHAPTER 6 SVG Tools and Resources 197

Similarly, this next example also uses the d3.svg.diagonal shape, but adds transitions to create an
interactive pedigree visualization. You can expand or collapse the pedigree tree by clicking any of the
light-blue nodes within the graphic. All the child nodes of the clicked node then transition toward the
parent node as their opacity fades away throughout the transition.

198 Building Web Applications with SVG

Note You can find a large number of appealing and instructive examples at http://
mbostock.github.com/d3/ex/.

pergola
The Pergola library is the creation of developer and early SVG inventor Domenico Strazzullo, a
coauthor of this book. His goal was to design a library that provided developers with a powerful tool
for building web apps, user interfaces, and mapping applications.

The Pergola library has a very cleanly designed JavaScript framework architecture that is dedi-
cated to effectively generating SVG through class inheritance, constructors, prototype superclass
and subclass extensions, and assemblies that comprise interface elements. JavaScript developers
who are already familiar with SVG should be able to grasp the SVG-centric architecture of Pergola
quickly. As the Pergola documentation states (see http://www.dotuscomus.com/pergola/pergola_1.4.0/
Documentation/documentation.html):

Pergola also implements a very powerful feature to some of its classes which allows the user to
define, very simply in the call to the constructors, any SVG attributes as instance properties, using
SVG grammar. This mechanism also has the advantage of producing SVG elements which are clear
of all those attributes that have initial values, as per the specification, resulting in an optimized SVG
file as it would be if written manually by a competent SVG developer.

http://www.dotuscomus.com/pergola/pergola_1.4.0/Documentation/documentation.html
http://www.dotuscomus.com/pergola/pergola_1.4.0/Documentation/documentation.html

 CHAPTER 6 SVG Tools and Resources 199

This is also true for single elements built by the user through the DOM helper. For more details,
see the article “JavaScript DOM Helper” in SVG Magazine, at http://www.svgmagazine.com/jul2011/
dom-helper.html.

You can find a quick introduction to the capabilities of this library at http://www.dotuscomus.com/
pergola/overview.html. Chapter 7, “Building a Web Application: Case Studies,” goes into more depth
on using both the Pergola and d3.js libraries to build modern web applications.

raphaël
Raphaël was designed to make use of Microsoft’s VML (Vector Markup Language) when the browser
is unable to display SVG, and has been a significant factor in allowing a greater number of businesses
to more seriously consider the use of SVG in their applications. For this reason, you can consider
Raphaël to be a hybrid library. Nevertheless, Raphaël does use SVG as its primary display, and there-
fore it can be categorized as a native SVG library.

Raphaël has a number of useful graph and animation capabilities, and provides a few helpful
methods for visualizing data. For example, you can pull data directly from an HTML table and use it
within a graph, as shown in the following graphic.

http://www.svgmagazine.com/jul2011/dom-helper.html
http://www.svgmagazine.com/jul2011/dom-helper.html
http://www.dotuscomus.com/pergola/overview.html
http://www.dotuscomus.com/pergola/overview.html

200 Building Web Applications with SVG

The library provides a means of quickly creating a basic set of graph layouts that will display in
older Microsoft browsers. You can download the library on the home page of the Raphaël website,
at http://raphaeljs.com, where you can also find a range of helpful starter examples.

polymaps
Polymaps is a free JavaScript library for making dynamic, interactive maps in modern web browsers.
It is a library specialized for mapping applications, and it uses SVG natively. It has a powerful layers
module, a GeoJSON parser, and a collection of functions specific to mapping.

This library is used in the “Mapping Application” case study in Chapter 7. You can download it from
the Polymaps home page, at http://polymaps.org/.

carto:net
In the domain of cartography, which greatly contributed to giving an early thrust to the popularity of
SVG, carto:net was probably the first SVG library of dedicated JavaScript utilities. carto:net covers the
domain exhaustively, and includes subjects such as server-side SVG generation, server-client commu-
nication, and XSLT-based generation. It also proposes a collection of GUI widgets, often accompanied
by tutorials. The library is maintained by top-notch SVG developers Andreas Neumann and André
Winter. It’s available at http://www.carto.net/svg/samples/.

Legacy HTML Libraries

The rest of the JavaScript libraries discussed in this section were written primarily for HTML, but offer
SVG support through plug-ins.

jQuery
The free, open source jQuery JavaScript library has become increasingly popular over the last several
years. SVG support is provided by the jQuery.svg.js plug-in, which you can find at http://keith-wood
.name/svg.html. Contrary to the current trend for modern libraries, jQuery defines a proprietary API
and pseudolanguage.

http://www.carto.net/svg/samples/
http://keith-wood.name/svg.html
http://keith-wood.name/svg.html

 CHAPTER 6 SVG Tools and Resources 201

Dojo
The developers of Dojo have regularly presented at SVG Open for several years, and make a good
case for its utility. The library’s support for SVG (Dojox.drawing) is rather consistent and reputed to
be superior, in terms of features, to both the jQuery.svg module and Raphaël. You can find more
information at http://dojotoolkit.org/ (and more reference information at http://dojotoolkit.org/
reference-guide/dojox/gfx/utils/toSvg.html).

Sencha
Formerly known as ext.js, Sencha is a powerful and popular library oriented toward building interfaces
and systemic applications. The latest release (4) includes a new module, named Ext.draw, which works
with SVG and switches automatically to VML for compatibility with older versions of Internet Explorer.
Its data visualization (charts) capabilities include transitions and animations. Ext.draw is backward
compatible with previous versions of the software. Sencha is distributed under both a commercial
license and the GPLv3 license.

Drawing Tools and Utilities

The following discussion of various drawing tools is by no means exhaustive of the programs that
support SVG. In addition to the ones discussed here, CorelDRAW is also noteworthy (Corel was deeply
involved in SVG development in the early 2000s), as is Xara X, both of which appear to have at least
partial SVG support (see http://www.unleash.com/davidt/svg/index.asp and http://site.xara.com/
products/xtreme/features/3.asp).

Adobe Illustrator
Since 1988, Illustrator has been one of the premier professional graphics tools used by artists, design-
ers, architects, and others. It is extremely powerful and serves as the de facto standard for vector-
based drawing. Ever since Adobe’s seminal involvement in the development of the SVG standard,
Adobe Illustrator has exported content to SVG. Because of this heavy early involvement in SVG devel-
opment, Adobe has recently recommenced its involvement in the SVG Working Group. The following
image shows the four steps involved in creating a rectangle in Illustrator.

http://dojotoolkit.org/reference-guide/dojox/gfx/utils/toSvg.html
http://dojotoolkit.org/reference-guide/dojox/gfx/utils/toSvg.html
http://site.xara.com/products/xtreme/features/3.asp
http://site.xara.com/products/xtreme/features/3.asp

202 Building Web Applications with SVG

D
ow

n
lo

a
d
 f
ro

m
 W

o
w

!
e
B
o
o
k

<
w

w
w

.w
o
w

e
b
o
o
k.

co
m

>

 CHAPTER 6 SVG Tools and Resources 203

204 Building Web Applications with SVG

Inkscape
Jon Cruz, one of the lead developers for the open source Inkscape project, said that, in the beginning,
the developers wanted to make something like Adobe Illustrator, only free. He went on to say that the
objective has changed; now they are looking for something like Adobe Illustrator, only better. You can
download this free software download from http://inkscape.org/, and you can install it on Windows,
Mac, or Linux operating systems. Its native file format is SVG. Members of the Inkscape develop-
ment team have begun contributing to the SVG Working Group within the past year. Inkscape is the
software responsible for much of the open-license clip art available. The following image shows the
creation of a rectangle in Inkscape.

 CHAPTER 6 SVG Tools and Resources 205

Scour
Much of the imagery available as public domain or open license on the web (particularly, that avail-
able from Wikimedia and OpenClipArt.org, as discussed in various places later in this chapter) has
been created using either Adobe Illustrator or Inkscape. SVG developers may wish to take advantage
of some of this imagery for creating animations or more complex scenes—but may find that it is hard
to program with, or base derivations upon, because of the complexity of the output.

In such cases, a nearly indispensable tool that works in conjunction with drawing packages that
produce SVG output is Scour (which is a part of Inkscape, actually), a small program created by Jeff
Schiller for the purpose of cleaning up some of the bulky output that such programs sometimes cre-
ate. Both Inkscape and Illustrator seem to have become sensitive to the occasional need of authors to
be able to adjust SVG drawings programmatically, and Scour can dramatically simplify the markup to
make it easier to do so.

Perhaps the easiest way to use Scour is simply to open a file in Inkscape and resave it as “optimized
SVG.” Scour allows users to specify the number of decimals of accuracy, as well as a number of other
features.

206 Building Web Applications with SVG

SVG-edit
We turn now to a new class of SVG drawing programs: web applications. The most important of these
to date is SVG-Edit. The program is an open source, Google code project that enables web-based SVG
drawing. SVG-Edit is well maintained, and it’s still evolving, through the efforts of a sizable group of
volunteers. Though SVG-Edit doesn’t have the sophistication, user base, or expressive power of Illus-
trator or Inkscape, it does produce fairly clean code and provides an easy way to create SVG drawings
without interrupting your workflow by opening a new application window. One enduring complaint
with SVG-Edit is that its Bézier curve editor is bulky and counterintuitive. Many geometrically flu-
ent SVG authors view this as a serious drawback. However, the simplicity of the web-based interface
and the ease of converting drawings to usable SVG code make this limitation easier to bear. You can
experiment with SVG-Edit at http://svg-edit.googlecode.com/svn/trunk/editor/svg-editor.html.

Other Useful Tools

Some other tools are worthy of brief mention because they either show promise for development or
enable certain things that the programs described in the previous sections do not. They are also all
web based, meaning that you can experiment with them easily, with very little investment of either
time or effort.

Mugeda
From https://www.mugeda.com/, this quite new entry into the space of web-based drawing programs
stems from a company headed by Lucas Wang. Mugeda has intuitive drawing tools, a crisp interface,
and impressive animation capabilities. Its SVG support is still under development, but the sophistica-
tion of its user interface and overall functionality makes it worth keeping an eye on.

pilat
In the cartographic domain, Michel Hirtzler, known for his pioneering work with the SVG DOM, cre-
ated an interesting tool with two components. The first lets you choose from a list or load from a file
system, and display a path itinerary in the GPX format, while the other lets you easily draw on a map
and save or load an itinerary. You can then open the file with GPS software or transmit to a GPS. The
tool uses IGN cartography (cartographic databases and infrastructures) and Open Layers (an open
source mapping library); you can select maps, orthoimagery, cadastral parcels, or administrative
display. Pilat provides some mapping widgets, and displays longitude and latitude with a selectable
measurement system. Pilat is available at http://pilatinfo.org/ign/index.html.

SVG editor
Web programmer Chris Peto developed this program (see http://www.resource-solutions.de/
svgeditor/) several years ago, though it is still under development. It features a good interface and
has many UI features to recommend it over SVG-Edit.

http://www.resource-solutions.de/svgeditor/
http://www.resource-solutions.de/svgeditor/

 CHAPTER 6 SVG Tools and Resources 207

SVG Drawing tool
This is another web-based program contemporary with SVG-Edit and SVG Editor (find it at http://
srufaculty.sru.edu/david.dailey/svg/Draw018.html). While it hasn’t been actively maintained since
2005, it does produce cleaner output than many of the others, and supports path smoothing, path
simplification, and a certain amount of intentional randomness. An allied program, available at http://
srufaculty.sru.edu/david.dailey/svg/SVGOpen2010/Polygons/polygons8.html, produces random poly-
gons in polynomial time.

Grapher
A project begun at Carnegie Mellon in the mid-1980s, Grapher has been rebuilt in half a dozen plat-
forms and languages since landing in SVG with JavaScript. This open source project, located at http://
srufaculty.sru.edu/david.dailey/grapher/, in its current incarnation, coded largely by Eric Elder, allows
for the creation and editing of the mathematical objects known as graphs. The code base could be
useful for people doing software project management, navigation research, website design, and other
things network theoretic.

SCION
While not exactly a drawing tool, Statechart-to-ECMAScript Compiler (SCION) focuses on top-down
construction of web programs and interfaces. It is one of several programs developed outside the
web environment over the years involving a kind of visual programming. You can see more about
it at https://github.com/jbeard4/SCION and http://svgopen.org/2010/papers/45-Developing_a_
StatecharttoECMAScript_Compiler_Optimized_for_SVG_User_Interface_Development_for_the_World_
Wide_Web/index.html.

Extension Tools

A variety of tasks, such as detecting whether or not an older browser supports SVG, are difficult or
troublesome for web developers to perform. In addition, there are things that certain modern brows-
ers don’t do well (or at all)—for example, current versions of Internet Explorer lack SMIL support.
Finally, there are operations that the SVG spec itself doesn’t yet support. Fortunately, in the world
around SVG, a number of programmers facing such issues have come up with some interesting tools
that can help.

Batik
The Apache Batik project, available at http://xmlgraphics.apache.org/batik/, is a Java-based SVG
engine that offers what may be the most comprehensive SVG implementation anywhere. As Cameron
McCormack, one of the cofounders of the project, writes:

ttp://svgopen.org/2010/papers/45-Developing_a_StatecharttoECMAScript_Compiler_Optimized_for_SVG_User_Interface_Development_for_the_World_Wide_Web/index.html
ttp://svgopen.org/2010/papers/45-Developing_a_StatecharttoECMAScript_Compiler_Optimized_for_SVG_User_Interface_Development_for_the_World_Wide_Web/index.html
ttp://svgopen.org/2010/papers/45-Developing_a_StatecharttoECMAScript_Compiler_Optimized_for_SVG_User_Interface_Development_for_the_World_Wide_Web/index.html

208 Building Web Applications with SVG

When you load a document in Squiggle (the stand-alone SVG viewer built with Batik) or in an
SVG canvas embedded in your own Java application, it has access to all the regular Java classes that
you can use. And you can access them directly from JavaScript embedded in the SVG document.

As such, it has numerous features that simplify the creation of data-driven SVG documents, as
well as access to the powerful image manipulation libraries of Java and Linux. It also has facilities for
exporting SVG to bitmapped formats such as JPEG and PNG so that older browsers that are not SVG
enabled can display fallback content. From Java, you can invoke the Batik rasterizer and then inspect
the pixel values of the results—a capability that is not currently implemented in stand-alone SVG.
Cameron McCormack identifies Batik’s most important features as the following:

■■ Squiggle, the stand-alone viewer

■■ The JSVGCanvas Java component, which can be embedded in any Java Swing application or in
Java applets

■■ The rasterizer Java class and command-line program, which is capable of converting from SVG
to PDF (even though PDF is not a raster format)

SmilScript and FakeSmile
In the somewhat complicated evolution of SVG from being a centerpiece of the W3C standards to
becoming an unwelcome cousin of the <canvas> tag (Apple’s darling), and then rebounding back
to supplant Flash and Silverlight, SVG has been a complicated specification for browser developers
to implement. Firefox, despite having an early native SVG implementation, lagged far behind Opera
and ASV in implementing SMIL animation. Similarly, although Firefox now has very good support
for SVG animation, some other browsers (notably WebKit and Internet Explorer) still lag behind.
Between 2006 to 2008, the FakeSmile and SmilScript projects were developed to solve such prob-
lems by implementing in JavaScript what browsers were reluctant to support natively. For people
who want animation content to play in recalcitrant browsers, FakeSmile and SmilScript may provide
partial solutions.

SmilScript
This animation library was begun in 2006 by Doug Schepers, who, in his presentation at SVG Open
in 2007, remarked that SmilScript was less of a serious attempt at implementing animation than an
attempt to show the browser community that implementing animation was not as difficult a task as
some had argued. SmilScript is still available at http://schepers.cc/svg/smilscript/, and is distributed
under an open source artistic license. It interpolates between the values specified by begin and end—
although it doesn’t handle a values attribute—and overall, it manages to mimic a good number of the
things that SMIL animation can do. Its list of supported and unsupported features lets SVG developers
know exactly what it might help with.

 CHAPTER 6 SVG Tools and Resources 209

FakeSmile
Development of FakeSmile was begun in 2008 by David Leunen, though the effort (licensed under
the MIT and GNU licenses) seems to have attracted several other contributors. You can see the most
recent version at https://code.launchpad.net/smil.

<replicate>
The <replicate> proposal for adding declarative drawing to SVG was first proposed to
the SVG Working Group by David Dailey in 2008 (see http://lists.w3.org/Archives/Public/
public-svg-ig/2008JulSep/0109.html). A more formal proposal was presented at SVG Open 2010
(see http://svgopen.org/2010/papers/46-A_proposal_for_adding_declarative_drawing_to_SVG/index
.html). Basically, <replicate> is an extension to the <use> tag that allows developers to create multiple
instances of a drawing using tweening (the process of generating intermediate frames between two
images), specified by syntax much like that used for <animate>, which interpolates over time. Hence,
<replicate> is like <animate>, but for space instead of time. <replicate> is a Google code project with
an open license. The proposal has recently gained some traction within the SVG Working Group, but
it is unclear whether <replicate> will be adopted. In the meantime, the proposal is being extended
to include animation support for browsers that don’t yet support SMIL, and to include declarative
randomness so that rich scenes may be generated relatively easily. You can see a large collection of
examples of <replicate> that use the JavaScript code base at http://srufaculty.sru.edu/david.dailey/
svg/SVGOpen2010/replicate.htm. Interest in the proposal has come from outside the SVG group as
well. For example, there are use cases for HTML form element replication (e.g., for repeating fields
in data entry), InkML for multivariate time-series data, and 3D declarative applications. At present,
<replicate> enables several things that SVG doesn’t, including rich gradients, 3D drawing and anima-
tion, and perspective patterns. The following image shows an example.

http://lists.w3.org/Archives/Public/public-svg-ig/2008JulSep/0109.html
http://lists.w3.org/Archives/Public/public-svg-ig/2008JulSep/0109.html
http://svgopen.org/2010/papers/46-A_proposal_for_adding_declarative_drawing_to_SVG/index.html
http://svgopen.org/2010/papers/46-A_proposal_for_adding_declarative_drawing_to_SVG/index.html
http://srufaculty.sru.edu/david.dailey/svg/SVGOpen2010/replicate.htm
http://srufaculty.sru.edu/david.dailey/svg/SVGOpen2010/replicate.htm

210 Building Web Applications with SVG

The code below shows the proposed <replicate> syntax:

<text id="T" fill="url(#g)" font-family="serif" stroke="black"
 stroke-width="1.5" stroke-opacity=".1"
 font-size="28" x="4" y="60" font-weight="bold">
 <replicate repeatCount="190">
 <replicateAttribute attributeName="transform"
 from="rotate(-20 50 50)" to="rotate(10 50 50)" />
 </replicate>
 TWIST
</text>

Integrated Development Environments

While a fair number of options exist that support HTML code development in the context of style
sheets and web resources, SVG has not been quite so blessed, perhaps because of its complexity, or
perhaps because of the longstanding uncertainty about whether Microsoft would support it. Here is a
brief and current inventory of tools (which is likely to quickly become more substantial).

First, the perfect integrated development environment (IDE) for SVG does not yet seem to exist.
The perfect IDE would have code hinting, would be aware of SVG syntax, would enable SVG preview-
ing (which a few actually do), and most importantly, would provide the ability to edit a drawing in the
preview window, thereby adjusting the code in a markup window. As the popularity of SVG continues
to grow (which it has greatly over the past two years), such a development environment is likely to
come into existence soon. Announcements by majors for this type of product were made at the SVG
Open 2011 conference.

Oxygen
For several years, this powerful XML-based authoring system was the recommended environment for
creating SVG documents and presentations for SVG Open. This Romanian-based product features
code hinting and broad-based XML support, including support for XSLT and conversions between
XML types. Oxygen is a powerful, professional-class IDE that connects programmers with the vast
world of XML, of which SVG is just a part. Its SVG preview feature, as well as its ability to embed SVG
in DocBook and XHTML documents, is quite thoroughly implemented, and has far better SVG support
than some browsers. As of a year ago, Oxygen supported most of the SVG standard, with the excep-
tion of compound filters and SMIL animation.

Adobe Dreamweaver
Having both built and acquired a number of solid web development platforms, including those from
Allaire, Aldus, and Macromedia, Adobe provides products that have long been choices for web devel-
opers. The next section mentions some of Adobe’s other products, but the centerpiece of its web
development lineup for the programmer/coder is Dreamweaver. Dreamweaver not only allows live

 CHAPTER 6 SVG Tools and Resources 211

previewing of SVG that has been embedded within an HTML document (through the <object> tag),
but also supports code hinting and previewing for stand-alone SVG documents.

htML-Kit
This freely downloadable software (with its companion professional edition) is available from http://
www.htmlkit.com/. For those who have used Allaire’s Homesite, the interface and IDE will be very
familiar. To preview SVG, the free version requires that you download and configure a plug-in, but the
professional version, HTML-Kit Tools, offers HTML5 awareness, including options for using a template
to create SVG 1.1 documents and adding SVG 1.1 code blocks.

Other Useful Information
The SVG Interest Group (chartered by the W3C) organized some information in 2009 and 2010 at
http://www.w3.org/Graphics/SVG/IG/wiki/Authoring_tools_and_editors. Based on an informal poll of
the SVG community (through the svg-developers and SVG-IG lists), we found that SVG authors are
also using the following tools:

■■ Chrome Developer Tools

■■ Opera Dragonfly

■■ Firefox Firebug

■■ Mozilla SeaMonkey

■■ Komodo Edit

■■ Notepad++

■■ TextPad

■■ Eclipse

■■ gEdit

■■ Safari Web Inspector

■■ WebDwarf

Other tools that Support SVG
There are literally hundreds of applications, both conventional and web-based, that support SVG at
some level. The software behemoths Microsoft and Adobe both have extensive SVG support in their
product lines.

212 Building Web Applications with SVG

In addition to Illustrator, several other Adobe products support or use SVG, including the following:

■■ Edge

■■ InDesign

■■ Dreamweaver

Microsoft software (other than Internet Explorer 9) that supports SVG includes the following:

■■ Visio

■■ Expression

■■ Visual Studio

■■ Bing Maps

■■ PowerPoint Live (provides some support as an export format)

Miscellaneous

This section describes some other interesting things that you may want to know about SVG, including
the extensive open source and public domain clip art libraries at Wikimedia Commons (http://commons
.wikimedia.org/), the Open Clip Art Library (http://openclipart.org), and the fascinating OpenStreetMap
project.

Wikimedia and Wikipedia
The SVG images used on Wikipedia (generally stored at Wikimedia) are browsable by category at
http://commons.wikimedia.org/wiki/Category:SVG. These categories range from Astronomy, Biol-
ogy, and Chemistry, to Flags, Ancient Egypt, and Vectorized Brick Wall Textures. Often, as discussed
at some length in the article “Geometric Accessibility: Who Needs SVG?” (http://cs.sru.edu/~ddailey/
svg/GeometricAccessibility.html), such image files may come with considerably more bulk than strictly
needed. Refer to the “Scour” section earlier in this chapter for ways of simplifying such files if you are
interested in adapting them for your own use.

the Open Clip Art Library
At the Open Clip Art Library (http://openclipart.org/), you can find extensive (albeit a bit hard to
browse) collections of quality vector graphics intended for use by the public. Wikipedia informs us:

http://commons.wikimedia.org/
http://commons.wikimedia.org/

 CHAPTER 6 SVG Tools and Resources 213

The project started in early 2004 by Inkscape (http://en.wikipedia.org/wiki/Inkscape) developers
Jon Phillips (http://en.wikipedia.org/wiki/Jon_Phillips) and Bryce Harrington to collect designs of
flags from all around the world, having been inspired by the efforts to create a collection of flags
created by users of vector graphics software Sodipodi (http://en.wikipedia.org/wiki/Sodipodi). It
progressed very well and the project goals were extended to generic clipart, and as of October
2007 it incorporated over 10,000 images from over 500 artists, and offers the entire collection
for free download. All images are dedicated to the public domain (http://en.wikipedia.org/wiki/
Public_domain) by their contributors.

The project has grown considerably, attracting more than 5,000 unique visitors per day and con-
taining more than 30,000 graphic files.

the OpenStreetMap project
Finally, we’d like to mention the OpenStreetMap project (http://www.openstreetmap.org/). This
project started in response to a need for better maps for bicyclists in England, but has expanded into
a worldwide volunteer organization that consists of more than 100,000 volunteers. Volunteers from
around the world upload GPS coordinates from their cell phones and other GPS devices, and then
later annotate their coordinates, entering the data into an enormously successful map of the world.

One of the founders of OpenStreetMap, George James, tells many fascinating anecdotes about
the power of crowdsourcing as practiced within the project (see http://www.svgopen.org/2010/
registration.php?section=keynotes). One intriguing anecdote relates that when relief workers arrived
in Haiti following the earthquake of 2010, much of the devastated area had not been mapped, com-
plicating the relief effort. But volunteers using OpenStreetMap were able to map the affected area
almost completely within three days. James points out that OpenStreetMap may produce as many as
10,000 SVG images per day.

Summary

This chapter described a number of tools that you can use to aid in SVG development. The past
decade has seen a slow yet unstoppable snowball effect for SVG that has produced an avalanche of
software and open source JavaScript toolkit libraries, and an associated rise in developer interest in
the SVG language. This is an exciting time for web and SVG developers, because this coming decade
will see even more improvements. The creators of the toolkits and applications described in this chap-
ter are actively improving them at this very moment.

D
ow

n
lo

a
d
 f
ro

m
 W

o
w

!
e
B
o
o
k

<
w

w
w

.w
o
w

e
b
o
o
k.

co
m

>

http://www.svgopen.org/2010/registration.php?section=keynotes
http://www.svgopen.org/2010/registration.php?section=keynotes

 215

C H A P T E R 7

Building a Web Application:
Case Studies

All things were established in harmony

after the order of the numbers.
Boethius, circa 520 AD

In this chapter:

About pergola. 216

D3 review . 218

polyMaps . 218

Interactive Multiple Documents Application 218

Mapping Application . 235

This chapter will show you how to create web applications that can run equally well in a pure SVG
context or in a mixed namespace HTML+SVG context, using available JavaScript tools and libraries.
The chapter also covers the advantages of adopting an OOD model. The goal is to get an insight
on how to build a rock solid, framed environment for your applications that can withstand browser
or specification inconsistencies, migrations and other traps. You will see that once you integrate
properly the concepts and definitions, you harness unlimited power in what you can make happen
in a browser. Consider SVG a powerful and complete library that you can access through the DOM
methods. Consider the DOM for what it is exactly, an Object Model, and although this may seem
anodyne, in reality when you are writing code you are building an abstract representation of it; you
are organizing its objects through representational objects. The keywords are: “architecture,” you are
designing a structure; “description,” you are describing the procedural works; “conducting,” you lead
the execution of the works. Also consider learning to sight-read JavaScript code like you sight-read a
newspaper. Off you go, you are in command, relaxed, ready to have lots of fun and satisfaction, while
impressing your boss, your client, or your teacher.

216 Building Web Applications with SVG

The tools that you will be using for the two applications you are going to study are Pergola, d3.js
(which we will refer to in this chapter as D3), and Polymaps. We will see how a well-written library is a
library that is specialized, and can be plugged into another to create or extend a framework.

About Pergola

Pergola is composed of a native SVG framework and libraries that run equally well in HTML. It defines
classes for creating widgets and system objects, libraries of SVG components, superclass prototype
methods, classes’ prototype extensions, and core utility functions. The core utility functions include
a universal SVG DOM helper—an interfacing function allowing the creation of any SVG element
with any attributes set, using SVG grammar and vocabulary, in one pass—and its sibling HTML DOM
helper. By adopting the concept of considering the implementations as existing libraries, Pergola
avoids the archaic approach of creating pseudo-classes of elements and primitives needing a propri-
etary pseudolanguage. The main purpose of Pergola is to allow the author to create web applications
and user interfaces of systemic type thanks to its built-in low level system logic and extended User
Events and Functions mechanisms.

The preceding image shows objects from the Pergola plug-in libraries. Markers, patterns, and
filters are functions, and the returned object is created and appended to the <defs> if it does not
exist. It is not created and appended at runtime. A shape definition is an object defining element and
geometry properties; the utility function pergola.use(object) allows you to use a shape definition, and
because only the geometry is defined for shapes, this leaves total control over paint attributes and
transformations, which are passed as object argument using SVG grammar and vocabulary. Thus, the
stroke-width attribute can be controlled independently of any uniform scaling.This sounds odd.

 CHAPTER 7 Building a Web Application: Case Studies 217

Pergola was created thanks to the experience acquired by the author during the development of
GEMï, a web operating system prototype, itself inspired by the author’s findings during an assignment
he had in 2004: the superposition of an SVG-based interface layer onto a SoC (System on Chip), where
the objective was to produce a visual debugger allowing engineers to trace the processes running
simultaneously in a chip; a preexisting program would feed the interface in providing code dump
and animated simulation for each process. The base requirement was a systemic interface showing
at runtime one timeline window with tape transport and scrubbing features, one global animation
window, and one global dump window. The user had the possibility of opening a dump window and
an animation window for each individual process.

At the end of the line the constitutive elements of GEMï were organized into a framework with
libraries. The entire rewriting of GEMï using Pergola served as a road test to see that the latter suc-
cessfully met the requirements that the author had set for it, and that it responded to the needs of
the developer in a real, complex situation.

All Pergola widgets and interface elements, some of which are shown in the following image, are
highly customizable by overriding prototype properties, including the interactive behavior of some
system objects, and their appearance can be configured globally through the skin engine, for acces-
sibility purposes, for example.

218 Building Web Applications with SVG

D3 Review

D3 stands for Data-Driven Documents. In a broad sense, D3 is a library specialized for producing
charts, but it’s also suitable for building an entire document from imported data, going beyond the
simple definition of a chart by extending the definition. If it is true that a developer with substantial
math skills can take full advantage of the library, the lambda developer will nevertheless find it useful
and accessible. It uses SVG as its primary rendering mechanism.

D3 can be used with Pergola “as is”; the official distribution is 1.27.1 at the time of this writing. The
example scripts require only very minor changes to avoid namespace collisions (because of the exam-
ples’ original design as stand-alone demonstrations, not because of Pergola or D3) when they run
together in the same application. The application demonstrates interactivity between the documents.

Polymaps

The version of Polymaps used here with Pergola to build a mapping application is 2.4.0. This version
was modified precisely to eliminate crossing of domains of competency (what the libraries are special-
ized for), as well as to make it compliant in a stand-alone SVG context.

Polymaps is very compact and agile, yet it provides an API that is likely to fulfill all your mapping
needs. In this respect it seems to outclass some of its competitors. Although it does not define carto-
graphic utilities, this can in fact be considered an asset in respect to the symbiotic nature that should
be, as we have seen, one of the essential characteristics of a library.

Interactive Multiple Documents Application

The first case study presented here is an application that groups multiple documents created with D3
into one single SVG or HTML+SVG document. The D3 example scripts used for this are:

■■ force.js (http://mbostock.github.com/d3/ex/force.html)

■■ worm.js (http://bl.ocks.org/1216850)

■■ clock.js (in the library’s package)

■■ stream.js (http://mbostock.github.com/d3/ex/stream.html)

Each example will be integrated into a fully featured window with transformation tools, using
Pergola.

The objective is to establish a level of interactivity among the different documents in the applica-
tion. If you take a look at the D3 example Force-Directed Graph, you can easily imagine an application
where you would be a click away from accessing the character diagrams of all of Victor Hugo's works,
not just Les Misérables—provided they were all available from a database. You could have more than
one diagram open for comparing. You could select the works from a pop-up list or from a menu, or

 CHAPTER 7 Building a Web Application: Case Studies 219

perhaps content updates or other events in one window could update the current content of Victor
Hugo's window using JSON. You will see that you do have the necessary tools at your disposal for
doing all that.

To begin, an SVG document loads the libraries and the scripts (you will see the HTML version later):

<?xml version="1.0" encoding="UTF-8" standalone="no"?>
<?xml-stylesheet href="style.css" type="text/css"?>
<!DOCTYPE svg PUBLIC "-//W3C//DTD SVG 1.1//EN" "http://www.w3.org/Graphics/SVG/1.1/DTD/svg11.
dtd">
<svg xmlns="http://www.w3.org/2000/svg" xmlns:xlink="http://www.w3.org/1999/xlink"
xmlns:ev="http://www.w3.org/2001/xml-events" version="1.1" baseProfile="full" width="100%"
height="100%" xml:space="preserve" zoomAndPan="disable" onresize="pergola.resize()">
 <title>Pergola windows— D3 multiple documents</title>

// Pergola
 <script xlink:href="../../pergola/pergola_min.es" type="text/javascript"/>
 <script xlink:href="config.js" type="text/javascript"/>
 <script xlink:href="../../pergola/lib/filters/filters.es" type="text/javascript"/>
 <script xlink:href="../../pergola/lib/markers/markers.es" type="text/javascript"/>
 <script xlink:href="../../pergola/lib/patterns/patterns.es" type="text/javascript"/>
 <script xlink:href="../../pergola/lib/shapes/shapes.es" type="text/javascript"/>
 <script xlink:href="../../pergola/lib/symbols/symbols.es" type="text/javascript"/>
 <script xlink:href="../../pergola/lib/cursors/cursors.es" type="text/javascript"/>
 <script xlink:href="../../pergola/lib/qtips.es" type="text/javascript"/>
 <script xlink:href="../../pergola/lib/msg.es" type="text/javascript"/>
 <script xlink:href="../../pergola/lib/skins/skins.es" type="text/javascript"/>
 <script xlink:href="../../pergola/c.es" type="text/javascript"/>

// D3
 <script xlink:href="../../pergola/extlib/d3-28b0e22/d3.js" type="text/javascript"/>
 <script xlink:href="../../pergola/extlib/d3-28b0e22/d3.geom.js" type="text/javascript"/>
 <script xlink:href="../../pergola/extlib/d3-28b0e22/d3.layout.js" type="text/javascript"/>
 <script xlink:href="../../pergola/extlib/d3-28b0e22/d3.time.js" type="text/javascript"/>

// D3 Examples
 <script xlink:href="stream_layers.js" type="text/javascript"/>
 <script xlink:href="stream.js" type="text/javascript"/>
 <script xlink:href=" clock.js" type="text/javascript"/>
 <script xlink:href=" force.js" type="text/javascript"/>
 <script xlink:href="worm.js" type="text/javascript"/>

</svg>

The order of the example scripts is irrelevant. We are going to start with stream.js.

encapsulating the Stream example
The first step is to define a Pergola window, the container for the stream document:

var streamWin = new pergola.Window("D3 Stream");

The preceding code line creates an instance of the Window class; it does not create the physical
window. In this phase, the instance goes through the prototype inheritance process and gets a name

220 Building Web Applications with SVG

property and a unique id (in the absence of the string parameter these will be generated XML names).
This technique of splitting the instantiation and the actual building of an object into two separate
calls offers multiple advantages: the second phase, the call to the build() method, can be executed
remotely or dynamically; instance properties and methods can be defined in between the two phases;
during the second phase, inherited properties can be overridden and the object can reference itself.
Experience proves that this technique helps avoid downstream interactivity chokepoints and enhances
code readability and maintenance.

The following image shows a Pergola window with its default settings, before it gets populated.

We can now define a simple interactive project where events from another window will change
the base color of the stream diagram and will update the transition. You can explore more interesting
ideas that use these techniques, but the goal here is to show how to apply the principle and methods
concretely, without the overhead of more complex processing. We will also implement some private
interactivity for this window: the user must be able to select a different type of diagram through a
menu, and update the transition through a tool button in the toolbar.

Taking a look at the original stream.js example, you will notice that the container element “#chart”
for the graph is assigned to the global variable vis:

var vis = d3.select("#chart")

A quick look at the other examples shows that the same variable name is used in some of them
with the same purpose, and the same goes for other variables. We would normally reflexively rename
each of those global variables with a unique name. But, come to think, we did say “Object Oriented
Development model”; we will turn those variables into properties of the streamWin window, and

 CHAPTER 7 Building a Web Application: Case Studies 221

therefore they will be protected. We will apply this change only to the D3 examples that we plan to
make interactive.

The second step is to append the diagram to the window, no longer directly to the element with
the ID chart, (which by the way does not exist in this environment). The goal here is not to learn the
structure and the API of the Window class. All you need to know is that each window instance assigns
a new pergola.ChildDoc instance to its childDoc property. This object, designed to host the window's
contents, defines an <svg> element referenced by the property port, and a <group> element refer-
enced by the property transformable. We have the options of appending static contents to port and
transformable contents to transformable. In fact, Pergola keeps a shadow copy of the DOM for most
critical objects: objects that are intended or likely to be manipulated.

Note While some have argued that shadowing the DOM may hurt performance, this is not
consistent with the experience of these authors and likely dates to a time when RAM was
less carefully managed by the browsers.

The new container for the diagram example is now streamWin.childDoc.transformable. We will of
course apply this change to all the D3 examples.

To append the contents, we have several methods at our disposal. The easiest and cleanest way is
by setting the property contains of the window object. This property can get a node or a function. We
then define a helper function as instance method and assign it to the property contains, which we will
define in the call to the build() method. The D3 example script is the body of the function.

The resulting coding sequence is:

1. Instantiation of the window object forceWin

2. Definition of the instance method contents as wrapper for the D3 example script

3. Construction of the window (call to the build() method)

Put into practice, this results in:

var streamWin = new pergola.Window("D3 Stream");
streamWin.contents = function () {
// D3 example script goes here.
};
streamWin.build({
 properties
 ...
 contains : function () {return this.contents();}
});

This will produce a Pergola window with its default settings. Here we could override a variety of
prototype properties that define the window's geometry, aspect, and options, as well as define new
instance properties that we plan to use. For example, if we wanted our window without the default set
of transformation tools, with a particular background color, and to start maximized, we would specify

222 Building Web Applications with SVG

 hasZoomAndPan : false,
 fill : value,
 isFull : true

For streamWin, the default settings are just fine. We will simply override its default position
and size.

Adding Interactivity to the D3 Stream Window
We will now prepare the interactivity for the stream.js script, which goes in the forceWin.contents
function. One of the interactivity objectives that we have set is to be able to change the stream type
of the chart. In the original example, stream layers are used. We add stream waves data:

this.data0 = d3.layout.stack().offset("wiggle")(stream_layers(n, m));
this.data1 = d3.layout.stack().offset("wiggle")(stream_layers(n, m));
this.data2 = d3.layout.stack().offset("wiggle")(stream_waves(n, m));

Note that the variables data0 and data1 (and the new data3) would be local variables once the
script becomes the body of the contents function, and there would not be any risk of collision with
variables with the same name declared in other scripts; but then they would no longer be available
globally, and activity driven from external objects would not be possible. By declaring them instead
as properties of the streamWin object, they can always be accessed. This will allow the interactivity to
be triggered by events taking place in another window or any other object in the interface.

Now we have more than two transition data sets. We set two properties to store initial origin and
destination of the transition:

this.transitFrom = this.data0;
this.transitTo = this.data1;

We will see later the construction of the menu for selecting the type of transition.

A note about property naming: All good programming books stress the importance of setting
explicit names for variables. This is even more important when working with complex objects like
windows, which may have a relatively large number of properties, many of which, being of a systemic
nature, are hidden to the user. A window object may very well have instance properties named from
and to (although it actually does not). Thus, not only transitFrom and transitTo are more explicit,
but the risk of name collisions is also minimized. Equally, it would be sensible to rename data0, for
example, to streamTransitionData0, or better, define a streamTransitionData array.

The other interactivity objective is to change the base color of the stream diagram and update the
transition. We are going to make sure that the activity in streamWin can be driven by any object in
the environment, and not just by the window designated for interaction in this example.

Extending the transition function, which now expects two parameters:

 CHAPTER 7 Building a Web Application: Case Studies 223

this.transition = function (destination, fill) {
/*
 * string.darken([f]) is a Pergola extension method of the String prototype.
 * string is any rgb format. f is any number between 0 and 1.
 * If f is omitted, it defaults to 0.5.
*/
 color = fill ? d3.interpolateRgb(fill, fill.darken()) : color;
// If the Pergola debugger is loaded and enabled we can check the
// state of our variables without stopping the script with alerts.
 $D({"fill" : fill, "shade" : fill.darken()});
 this.chart.
 data(function() {
 o.transitTo = o.transitFrom;
 return o.transitFrom = destination;
 })
 .transition()
 .duration(2500)
 .attr("fill", function() { return o.color(Math.random()); })
 .attr("d", area);
}

Notice how in the callback function passed as parameter to the data method, the keyword this is
not used. In the new execution context created by the function, the this value is not a reference to the
streamWin object. In our script, the this value (the streamWin object) will be assigned to the local vari-
able o (technically a property of the Activation object).

the transitions Menu
We are now going to define the menu through which users can select the transition type, either
Layers or Waves.

Simply setting the property menu in the call to the build() method will cause the window to create
a menu bar. The property menu gets an object whose properties define menu objects. For each menu
object, we define its title and items:

menu : {
 transitions : {
 title : "Transitions",
 items : {
 streamLayers : {
 string : "Stream Layers",
 active : true,
 check : true,
 exclusive : true,
 fn : function () {
 streamWin.transitTo = (streamWin.transitFrom == streamWin.data0) ?
 streamWin.data1 : streamWin.data0;
 }
 },
 streamWaves : {
 string : "Stream Waves",
 active : true,
 check : false,

224 Building Web Applications with SVG

 exclusive : true,
 fn : function () {streamWin.transitTo = streamWin.data2;}
 }
 }
 }
},

For each menu item, we can define: its initial state through the active property (redundant here
because it defaults to true); determine whether it has a check mark by setting the check property, and
control the initial display state (true or false); and whether its check mark acts like a radio button with
sibling items by setting the exclusive property; a User Function.

The following figure shows the “Transitions” menu, the tool button for updating transitions
(detailed in the next section) and the Pergola debugger active.

the transition tool Button
Now that users can select different transition types, we are going to add a tool button in the toolbar
to update the transitions. In the original D3 example, this was done by an HTML button, but in this
object-oriented environment, the type of interactivity we need could not be implemented through a
hard-coded anonymous button:

<button class="first last" onclick="transition()">

or would at least represent a complication. A tool button in Pergola is a subclass of Button. The
Window class allows a tool button or a group of tool buttons to be defined on the fly by setting
the tools property in the call to the build() method. Alternatively, you can add these at a later stage,
manually or dynamically, using the Window prototype method addTools(). This example uses the first
technique:

tools : {
 streamGroup : {
 separator : true,
 transition : {
 symbol : {
 symbol : pergola.symbols.transition,

 CHAPTER 7 Building a Web Application: Case Studies 225

 x : 6,
 y : 11
 },
 quickTip : {tip : "Apply transition"},
 ev : "mouseup",
 fn : function () {this.owner.transition(this.owner.transitTo);}
 }
 }
},

Pergola objects can be completely customized during instantiation by overriding geometric
and paint properties, or globally, for each individual class, in the skin file. Effects can be disabled or
overridden to implement accessibility extensions by developers with the right know how. Here too
it would be out of scope to customize a button; the default appearance and behavior are just fine.
We only add a symbol from the symbols library, a quick tip, an event, and the associated handler. In
this respect, it is interesting to note that the property ev can get an array of event types, and that the
property fn can get several formats including a string expressing the function name. The function
format is parsed and the function is then invoked through the prototype's handleEvent() method.

Note that the symbol used is not an SVG <symbol> element. It is a definition in the pergola
.symbols library, which in this particular case uses a marker reference from the pergola.markers library.
This symbol was defined ad hoc and added to the symbols library by the author, as a user.

The advantages in terms of flexibility, visualization, and maintenance offered by a pragmatic OOD
model are now beginning to become apparent.

Here is the complete D3 Stream code:

var streamWin = new pergola.Window("D3 Stream");

streamWin.contents = function () {
 var n = 20,
 m = 200,
 w = 960,
 h = 500,
 o = this,
 color = d3.interpolateRgb("#aad", "#556");

 this.data0 = d3.layout.stack().offset("wiggle")(stream_layers(n, m));
 this.data1 = d3.layout.stack().offset("wiggle")(stream_layers(n, m));
 this.data2 = d3.layout.stack().offset("wiggle")(stream_waves(n, m));
 this.transitFrom = this.data0;
 this.transitTo = this.data1;

 var mx = m - 1,
 my = d3.max(this.data0.concat(this.data1), function(d) {
 return d3.max(d, function(d) {
 return d.y0 + d.y;
 });
 });

D
ow

n
lo

a
d
 f
ro

m
 W

o
w

!
e
B
o
o
k

<
w

w
w

.w
o
w

e
b
o
o
k.

co
m

>

226 Building Web Applications with SVG

 var area = d3.svg.area()
 .x(function(d) { return d.x * w / mx; })
 .y0(function(d) { return h - d.y0 * h / my; })
 .y1(function(d) { return h - (d.y + d.y0) * h / my; });

 var vis = d3.select($C({element : "g", transform : "translate(" + 10 + "," + 40 + ")"}));
 this.chart = vis.selectAll()
 .data(this.data0)
 .enter().append("svg:path")
 .attr("fill", function() { return streamWin.color(Math.random()); })
 .attr("d", this.area);
 this.childDoc.transformable.appendChild(vis.node());

 this.transition = function (destination, fill) {
 color = fill ? d3.interpolateRgb(fill, fill.darken()) : color;
 this.chart.data(function() {
 o.transitTo = o.transitFrom;
 return o.transitFrom = destination;
 })
 .transition()
 .duration(2500)
 .attr("fill", function() { return o.color(Math.random()); })
 .attr("d", this.area);
 }
};

streamWin.build({
 x : 100,
 y : 100,
 width : 600,
 height : 420,
 menu : {
 transitions : {
 title : "Transitions",
 items : {
 streamLayers : {
 string : "Stream Layers",
 active : true,
 check : true,
 exclusive : true,
 fn : function () {
 streamWin.transitTo = (streamWin.transitFrom == streamWin.data0) ?
 streamWin.data1 : streamWin.data0;
 }
 },
 streamWaves : {
 string : "Stream Waves",
 active : true,
 check : false,
 exclusive : true,
 fn : function () {streamWin.transitTo = streamWin.data2;}
 }
 }
 }
 },
 tools : {

 CHAPTER 7 Building a Web Application: Case Studies 227

 streamGroup : {
 separator : true,
 transition : {
 symbol : {
 symbol : pergola.symbols.transition,
 x : 6,
 y : 11
 },
 quickTip : {tip : "Apply transition"},
 ev : "mouseup",
 fn : function () {this.owner.transition(this.owner.transitTo);}
 }
 }
 },
 contains : function () {return this.contents();}
});

If you run the code at this stage (http://www.dotuscomus.com/pergola/pergola_1.4.0/Examples/D3/
D3_step1_stream.svg), you will see a window with the stream example, where you can select transition
types from the menu and apply transitions by clicking the tool button, which is next to the transfor-
mation tools group.

A few considerations on design:

1. Some of the local variables (color, area, and vis) have not been declared as properties of the
streamWin object. This implies that the example works as long as the transition() function is
executed in the same scope—only if it remains nested within the contents() function. If you
needed to make the transition() function portable, for example by declaring it as a proto-
type method (or global function) rather than as an instance method, then the variables listed
above would have the value undefined in the function’s body, and the example would not
work. Therefore they would need to be declared as instance properties. As such, they could be
accessed from anywhere in the script, or dynamically from remote scripts.

2. In the original code you can see these two statements: vis.selectAll("path") and
d3.selectAll("path"), meant to refer to the same group of paths (the <visualization> elements).
This raises two problems, one minor and one critical. The first is that each time a transition
is launched the selection process is reexecuted, because the value returned by the selectAll()
method (the selected group of paths) in the first statement was not stored; the second is that,
by using d3.selectAll("path") instead of vis.selectAll("path") in the transition() function, any
path element that may have been added to the document, which is obviously the case in this
application, will be affected by the transition, resulting in a free “artistic” reinterpretation of
the works and of some interface elements. In the modified code we have then assigned the
reference to the property chart. In this respect, note that a reference to a DOM node (shad-
owing the DOM) is simply a pointer to a memory address.

3. To ensure dynamic interactivity and content updates, the pergola.Window constructor regis-
ters the DOMNodeInserted and DOMNodeRemoved events on the group referenced by the
childDoc.transformable property. Upon updates, the geometry of the relevant components of

228 Building Web Applications with SVG

the window is refreshed. The technique used in the original code (as well as in several other
examples) for appending the path elements throws a cascade of errors in IE9, because the
attempt to query the BBox of an element with no geometry, (for example, before setting the
d attribute), fails. Although this behavior can be seen as particularly zealous, the d attribute is
nevertheless “required” by the SVG specification. The code was then modified by deferring the
appending of the paths’ parent node (the <g> element), referenced by the vis object.

encapsulating the Force example
The same remarks made for the stream.js example apply. In particular, we need to declare the global
variables as properties of the window object forceWin, and to replace the container.

Before proceeding, the time has come to see the benefits of adopting an OOD model, as
mentioned in the introduction of this chapter, and how a different model, particularly one that
extensively leverages functional programming, could possibly constitute a bottleneck in terms of
interactivity design.

Designing software is a complex activity that involves, among other things, the anticipation of pos-
itive and negative effects that any constituent element or process of an entity can have on any other
element or process of that same entity, as well as on its environment. Functional programming can
provide terrific benefits: it is less bureaucratic, and hence smarter, and definitely a good performer.
But to use it at the front end of the developer’s interface is not the best method for opening commu-
nication channels, in that only experienced programmers can easily find their way through the jungle
of functions returning functions, which in turn return other functions, and so forth. Doing so requires
particular attention and certainly does not help with sight-reading (horizontal, vertical, and diagonal).

Going back to this precise case, we can see that the simple operation of declaring the variables as
properties of the forceWin object through the this keyword is not possible for the force.js example
because the function populating the diagram is called from a different execution context, and the
caller does not provide a this value that then references the global object. Unfortunately the notion
that this behavior is “wrong” seems to be widespread, but by the JavaScript specification, sections
10.4.3 and 11.1.1 (http://www.ecma-international.org/publications/files/ECMA-ST/Ecma-262.pdf),
this behavior is correct. For the same design considerations evoked in the previous section, we will
replace all local variables with properties of the forceWin object, and will use the same solution—that
of declaring a local variable that remains a valid reference in the scope chain as a property of the
Activation object: var o = this;.

We can then reassign the variables force, link, and node in the callback function like this: o.force =
d3.layout.force();.

Those objects will then be accessible from a different scope. Why not simply hard-code the
object’s name in the callback function? Because that is not good design; at some point we might
want the contents function to be multipurpose, a prototype method rather than an instance method.
That way we could have several concurrent instances of the force diagram with different data, or
a contextual instance that we could update dynamically with other data, which could be passed as

 CHAPTER 7 Building a Web Application: Case Studies 229

parameter, or better, assigned upstream to a property of the containing object, although this would
mean a complete redesign of the example. You can easily guess how this would give us the necessary
freedom and ability to explore all the many opportunities.

Put into practice, this gives:

var forceWin = new pergola.Window("D3 Force-Directed Graph");

forceWin.contents = function () {
 var w = 960,
 h = 500,
 fill = d3.scale.category20(),
 o = this;

// replace <svg> with <g> (BBox needed). Replace container.
 this.vis = d3.select(forceWin.childDoc.transformable)
 .append("svg:g");

// sets a stable BBox
 $C({element : "rect", width : w, height : h, fill : "none", appendTo : this.vis.node()});

 d3.json("miserables.json", function(json) {
 o.force = d3.layout.force()
 .charge(-120)
 .linkDistance(30)
 .nodes(json.nodes)
 .links(json.links)
 .size([w, h])
 .start();

 o.link = this.vis.selectAll("line.link")
 .data(json.links)
 .enter().append("svg:line")
 .attr("class", "link")
 .attr("stroke-width", function(d) { return Math.sqrt(d.value); })
 .attr("x1", function(d) { return d.source.x; })
 .attr("y1", function(d) { return d.source.y; })
 .attr("x2", function(d) { return d.target.x; })
 .attr("y2", function(d) { return d.target.y; });

 o.node = this.vis.selectAll("circle.node")
 .data(json.nodes)
 .enter().append("svg:circle")
 .attr("class", "node")
 .attr("cx", function(d) { return d.x; })
 .attr("cy", function(d) { return d.y; })
 .attr("r", 5)
 .attr("fill", function(d) { return fill(d.group); })
 .call(o.force.drag);

 o.node.append("svg:title")
 .text(function(d) { return d.name; });

 o.vis.transition()
 .duration(1000)

230 Building Web Applications with SVG

// register event on circle nodes
 for (var a in o.node[0]) o.node[0][a].addEventListener(
 "mousedown", xWindowinteractivity, false);

 o.force.on("tick", function() {
 o.link.attr("x1", function(d) { return d.source.x; })
 .attr("y1", function(d) { return d.source.y; })
 .attr("x2", function(d) { return d.target.x; })
 .attr("y2", function(d) { return d.target.y; });

 o.node.attr("cx", function(d) { return d.x; })
 .attr("cy", function(d) { return d.y; });
 });
 });
};

// handler for the "mousedown" event on circle nodes
function xWindowinteractivity(evt) {
 evt.stopPropagation;
 streamWin.transition(streamWin.transitTo, evt.target.getAttributeNS(null, "fill"));
}

forceWin.build({
 width : 600,
 height : 440,
 contains : function () {return this.contents();}
});

The mousedown event registered on the circle nodes (note that this can be done by registering
the event on the <container> element of the circles, as shown in Chapter 4) and the corresponding
handler, xWindowinteractivity(), interact with the D3 Stream window. The fill value of the circle that
was clicked is passed to the streamWin.transition() method, which obtains the darker shade of the new
transition color using the darken extension method of the String class—fill.darken(f)—which is specifi-
cally designed for rgb color strings in any format. This author never tried to darken other strings. The
base color and the shade are then passed to the d3.interpolateRgb() method, which expects upper
and lower color thresholds. When the user clicks any of the circles representing the characters in Les
Misérables, a new transition in the stream window is launched. It is interesting to see that the transi-
tion also applies from the current color to the color of the new group. A good exercise would be to
define individual transitions for each character, based on the traits and the role that he or she has in
the plot. Perhaps another type of chart could be more appropriate for this. D3 allows a theoretically
infinite variety of chart types. The work would then become academically interesting. It could also be
easily adapted for other scenarios.

To finish off the application, we add the two remaining D3 examples. Since we are not adding
any interactivity to them, we can just wrap the scripts in their respective contents functions with only
minor changes, basically skipping the outermost <svg> container, not needed in this scenario, and
small positioning tweaks. The worm.js example shows an animation controlled by the mousemove
event, and to ensure that the mouse coordinates and the resulting animation are consistent with the
window‘s position, this adaptation uses the pergola dragarea, which in this particular case is resized
and positioned to the window’s geometry through the pergola.dragarea.resize() method.

 CHAPTER 7 Building a Web Application: Case Studies 231

The worm.js example:

var wormWin = new pergola.Window("D3 Worm");

wormWin.contents = function () {
 var repCountTunnel = 200,
 repCountSpace = 100,
 mouse = [400, 400],
 zoom = 1,
 color = d3.scale.linear()
 .domain([0, repCountSpace])
 .interpolate(d3.interpolateHsl)
 .range(["hsl(250,100%,50%)", "hsl(180,100%,50%)"]),
 vis = d3.select(this.childDoc.transformable),
 node = vis.node();

var gradient = $C({
 element : "linearGradient",
 id : "worm-gradient",
 x1 : "0%",
 y1 : "20%",
 x2 : "20%",
 y2 : "100%",
 appendTo : vis.node()
 });
 $C({element : "stop", offset : "20%", "stop-color" : "green", appendTo : gradient});
 $C({element : "stop", offset : "50%", "stop-color" : "blue", appendTo : gradient});
 $C({element : "stop", offset : "100%", "stop-color" : "orange", appendTo : gradient});

 $C({element: "rect", width: w, height: h, fill: "none", appendTo: vis.node()});

// Code for static centroid created using principles of the SVG-Replicate project.
 var tunnel = d3.select($C({element : "g", transform : "translate(150 54)", fill : "none",
"stroke-width" : 4, "stroke-opacity" : .1, appendTo : vis.node()}))
 .selectAll()
 .data(d3.range(0, repCountTunnel, 1))
 .enter().append("svg:circle")
 .attr("r", function(d) { return d * .62 + 4})
 .attr("stroke", function(d) { return color(d); })
 .attr("transform", function(d) {
 return "rotate(" + d / 4 + ")”
 + “translate(" + (d * 1.45).trim(3) + "," + (d * -.4).trim(3) + ")";
 });

 var g = d3.select($C({
 element : "g",
 "stroke-width" : 5,
 "stroke-opacity" : .25,
 fill : "url(#worm-gradient)",
 appendTo : node
 }));

 var e = g.selectAll()
 .data(d3.range(repCountSpace))
 .enter().append("svg:ellipse")
 .attr("rx", function(d) { return (repCountSpace - d) * .8; })

232 Building Web Applications with SVG

 .attr("ry", function(d) { return (repCountSpace - d) * .5; })
 .attr("stroke", function(d) { return color(d); })
 .map(function(d) { return {center: [250, 250], angle: 30}; });

g.timer = pergola.Timer()
 .initialize({
 handle : this,
 callback : function (timer) {
 timer.count ++;
 timer.target.attr("transform", function(d, i) {
 d.center[0] += ((mouse[0] / zoom - d.center[0]) / (i + 10));
 d.center[1] += ((mouse[1] / zoom - d.center[1]) / (i + 10));
 d.angle += Math.sin((timer.count + i) / 10) * 3;
 return "translate(" + d.center + ") rotate(" + d.angle + ")";
 });
 },
 frequence : 25,
 target : e,
 count : 0
 });

 this.registerEvents(this.background.rect, "mouseover", function (evt) {
 var c = wormWin.childDoc,
 offsetX = c.absoluteX(c.port),
 offsetY = c.absoluteY(c.port);

 zoom = c.scaleFactor;
 pergola.dragarea.resize(offsetX, offsetY, c.width(), c.height());

 pergola.dragarea.activate({
 handle : wormWin,
 fn : function (evt) {
 var m = pergola.mousePoint(evt);
 mouse[0] = m.x - this.offsetX;
 mouse[1] = m.y - this.offsetY;
 },
 offsetX : offsetX,
 offsetY : offsetY,
 updateCoordinates : false
 });
 });
};

wormWin.build({
 x : 120,
 y : 120,
 width : 600,
 height : 420,
 fill : "black",
 minimized: true,
 contains : function () {return this.contents();}
});

 CHAPTER 7 Building a Web Application: Case Studies 233

This window starts minimized at runtime. Window objects create window tab instances. Per-
gola automatically creates a taskbar, which is the container for window tabs. This behavior can be
overridden.

Likewise, the clock.js example only receives minor tweaks, so we won’t discuss it here.

Improving the Application Design
What we have done so far seems quite good. But we have made a mistake that would be unthinkable
for an architect designing an apartment building: we forgot to build corridors.

Suppose that we have our four D3 examples and we plan to add other modular works. If you recall
the advantages of the split method for instantiation of classes, we can go further in the organization
of the work and separate the construction processes by first defining right off (or in a new file) the dif-
ferent works that we plan to use:

var clockWin = new pergola.Window("D3 Clock"),
 forceWin = new pergola.Window("D3 Force-Directed Graph"),
 streamWin = new pergola.Window("D3 Stream"),
 areaWin = new pergola.Window("D3 Worm"),

but also, for example:

 techDrawings = new pergola.Window("Technical Drawings"),
 svgEditor = new pergola.Window("SVG Editor");

This is what swings the communication portals wide open. Each of those components has now
access to the other objects, their prototype and their properties, and an object and its properties
(including methods) can be now referenced in expressions during the construction of another object,
independently from its ordinal position in the definitions. Remember this recommendation: organize
and define as soon as possible whatever can be organized and defined. That will help with your own
mental organization in keeping a copy of the code in a dedicated portion of your memory, which is a
key factor for maintenance. To not do that is like negligence, and there cannot be good design with
negligence.

But what if we were really planning to override properties of any of those objects? For example,
say that we need to override some properties of streamWin and perhaps define its data beforehand.
We can then set those properties before proceeding:

streamWin.color = d3.interpolateRgb("#aad", "#556");
streamWin.x = value;
streamWin.myProp = value;
streamWin.myMethod = function () {...};

and to organize this in a more elegant way, we have a utility function at our disposal for extending
classes, prototypes, or objects:

234 Building Web Applications with SVG

pergola.extend(streamWin, {
 color : d3.interpolateRgb("#aad", "#556"),
 x : value,
 myProp : value,
 myMethod : function () {...}
});

The target object (the first parameter) inherits those properties. Those that already exist are over-
ridden. The gain in clarity is flagrant, and that can be invaluable in terms of maintenance or analysis.

running in an htML and SVG Context
You will see now how easy it is to port your work to HTML. The document has the same structure
of the SVG document: you only need to define a <div> element as the container for the SVG work,
before the script tags:

<div id="svg" style="width: 840px; height: 620px;"></div>

Pergola organizes the canvas into layers stacked according to their systemic rank. In a stand-alone
SVG context, pergola.doc is a reference to document.documentElement. In an HTML context, we need
to override pergola.doc to point to an outermost SVG element. This is done in the configuration file
(config.js) that is bound to each project, by uncommenting these two statements:

pergola.container = document.getElementById("svg");
pergola.doc = $C({
 element : "svg",
 width : "100%",
 height : "100%",
 appendTo : pergola.container
});

The first statement assigns the new container. The second creates and appends the outermost SVG
element—here you can specify any attribute of the <svg> element ($C is a shortcut reference to the
universal DOM helper function pergola.createSVGElement(), which returns the requested element).

If the <div> container does not exist you can create one on the fly:

pergola.container = $html({
 element : "div",
 style : "margin : 40px; width : 840px; height : 620px;",
 appendTo : document.body
});

where $html is a shortcut reference to pergola.createHTMLElement(), the sibling function of create-
SVGElement. In this case, you do not need to set its ID, the element is already referenced by pergola
.container, and you will not need to use any selection method, either. There are several possibilities to
play with for the dimensions of the <svg> and <div> elements.

This concludes the first study. The referenced work (see the following image) is visible at http://
www.dotuscomus.com/pergola/download/pergola_1.4.0/Examples/D3/multiD3.svg.

 CHAPTER 7 Building a Web Application: Case Studies 235

Mapping Application

For this second case study, you will be using the same mechanisms. The principle is the same: to have
maps displayed in a window running as an independent application within an interactive environ-
ment. The focus here is specifically on mapping features and tools. The tools used for the mapping
application are Pergola, Polymaps, and Bing tiles. You will learn how to use GeoJSON objects, projec-
tions, and custom feature layers as well.

Here’s the code to initialize the mapping window:

var bingWin = new pergola.Window("Bing Maps");
bingWin.build({
 isFull : true,
 type : "map",
 mapWidth : 2048,
 mapHeight : 1536,
 fill : "#010413",
 ...,
 contains : function () {return this.mapMaker()}
});

The property type: "map" will produce a window with different behavior from a regular window.
The class’s prototype is extended with specific mapping properties and methods, and the behavior
of the transformation tools, including scrollbars, overrides the regular behavior by sending requests

236 Building Web Applications with SVG

rather than acting on the contained document’s viewport. The mapWidth and mapHeight values
should be equal to or greater than the screen dimensions, and in any case, should be multiples of 256.

To populate the map, the Window class defines the mapmaker() method, which we have assigned
to the property contains. For hardcore readers who may want more control, here is the code for
appending the map manually, as per the Polymaps documentation:

pergola.Window.current = bingWin;
var doc = bingWin.childDoc;
polymaps.origin = {x: bingWin.x + doc.x, y: bingWin.y + doc.y};
bingWin.map = polymaps.map(doc).
container(doc.transformable.appendChild($C({
 element : "svg",
 id : bingWin.id + "_tiles",
 width : bingWin.mapWidth,
 height : bingWin.mapHeight
})))
.add(polymaps.interact())
.add(polymaps.hash());

Note that since version 1.3.9, Pergola windows have a status bar that, in a window of type map,
displays center longitude and latitude by default, as well as some other information such as zoom
level and location longitude/latitude following a mouse click (zoom level only for a regular window).
This avoids the annoying side effect of precluding the use of the browser’s back button when display-
ing the longitude/latitude and zoom level in the browser’s address bar. Therefore, the Polymaps hash
feature is not used. Other user-defined information can be added to the status bar.

D
ow

n
lo

a
d
 f
ro

m
 W

o
w

!
e
B
o
o
k

<
w

w
w

.w
o
w

e
b
o
o
k.

co
m

>

 CHAPTER 7 Building a Web Application: Case Studies 237

the Menus
Through menus, the user will be able to do the following:

■■ Switch between different views

■■ Toggle layers on and off

■■ Go to different preset cities and places

■■ Select a zoom level

■■ Display a true longitude/latitude grid

■■ Select preferred units (kilometers, miles, or nautical miles)

The Views menu lets the user select three different views: Aerial, Aerial With Labels, and Road.
Here’s the code for the Views menu:

menu : {
 views : {
 title : "Views",
 items : {
 aerial : {
 string : "Aerial",
 check : false,
 exclusive : true,
 view : "aerial",
 fn : tileSource
 },
 aerialLabels : {
 string : "Aerial With Labels",
 check : true,
 exclusive : true,
 view : "aerialWithLabels",
 fn : tileSource
 },
 road : {
 string : "Road",
 check : false,
 exclusive : true,
 view : "road",
 fn : tileSource
 }
 }
 }
}

238 Building Web Applications with SVG

The initial display is “Aerial With Labels” because its check property is set to true.

The user function tileSource is in charge of switching scripts in order to request the appropriate
tiles for each view. It is a function closely associated with the request callback function.

The Polymaps development model does not adopt a typical JavaScript OOD model. In order to
facilitate communication with Polymaps, we define for the window the property views, an object
designed to store information about Polymaps' tile layers. Its properties are referenced by the view
properties of the corresponding menu items:

menu : {
 ...
},
views : {
 aerial : {},
 aerialWithLabels : {},
 road : {}
},
...

Remember that these are just definitions, and the order in which the properties of the window are
defined in the object literal passed as parameter to the window's build() method is irrelevant. It is just
convenient to analyze them thematically.

The Layers menu lets the user toggle layers on and off. You will learn how to build feature layers in
the “Adding Map Features” section of this chapter (you can skip ahead and read that first if you wish).

Of the four layers listed in this menu, the most interesting under different aspects is “Top 10
banana producing nations”:

 menu : {
 ...,
 layers : {
 title : "Layers",
 items : {
 ...,
 bananas : {
 string : "Top 10 banana producing nations",
 check : false,
 target : function () {
 return {
 layer : bingWin.layers.bananas,

 CHAPTER 7 Building a Web Application: Case Studies 239

 center : {lat : 10, lon : 100},
 zoom : 4,
 view : "aerial"
 }
 },
 fn : 'toggleLayer',
 separator : new pergola.Separator()
 },
 ...
 }
 },
 ...
}

Apart from the menu item (a pergola.MenuItem instance) prototype properties that we have
already met, we have assigned the property target. This is a user property, technically an instance
property. What does this mean exactly? It is a new property that we mean to process somewhere, in
our case in the user function fn. Its value is arbitrary, and we have assigned a function returning an
object containing data. Its properties define a world location, a zoom level and a view type, but the
property layer references an object that we haven‘t defined. Here's the code for the bingWin.layers
object:

layers : {
 ...,
 bananas : {
 feature : true,
 display : "none"
 },
 ...
},

Just like in the menu item views we were referencing the bingWin.views object, in the menu item
layers we reference the bingWin.layers object.

The Go Places menu defines random world locations:

 menu : {
 ...,
 go_places : {
 title : "Go Places",
 items : {
 venice : {
 string : "Venice",
 fn : function () {
 var c = pergola.Window.currentMap;
 c.centerMap({lat : 45.4351, lon : 12.3375});
 c.mapZoom(14);
 }
 },
 ...
 }
 },
 ...
}

240 Building Web Applications with SVG

The property pergola.Window.currentMap designates the active mapping window in a hypothetical
application containing more than one concurrent map instance.

Basically, all this does is use the Polymaps functions for centering and zooming. However,
Polymaps‘ zoom function is invoked through the prototype method of the Window class mapZoom(),
which also carries out other interface updating tasks. Likewise, the Polymaps’ center function is
invoked through the method centerMap() for the same purpose.

The Levels menu allows the user to set the zoom level:

menu : {
 ...,
 zoomLevel : {
 title : "Levels",
 hasZoomLevels : true,
 items : {
 z1 : {
 string : "1",
 check : false,
 exclusive : true,
 fn : function () {pergola.Window.currentMap.mapZoom(1);}
 },
 ...
 }
 },
 ...
}

The Grid menu allows the user to toggle the grid on and off (the original Polymaps grid is jagged
and buggy, and is replaced by a true longitude/latitude grid).

 CHAPTER 7 Building a Web Application: Case Studies 241

menu : {
 ...,
 grid : {
 title : "Grid",
 items : {
 grid : {
 string : "Grid",
 check : false,
 fn : function () {
 var map = bingWin.map,
 l = bingWin.layers.grid;
 l.display = l.display == "block" ? "none" : "block";
 if (!map.grid) {
 map.add(polymaps.grid());
 map.center(map.center());
 }
 map.grid.setAttributeNS(null, "display", l.display);
 }
 }
 }
 },
 ...
}

The user function fn creates the grid (and its layer) if it does not exist, and toggles the layer on and
off. This technique proves very useful for reducing the load on the DOM when building large applica-
tions. A user may never use the grid layer during a session; therefore, it is not necessary to create it at
runtime. The same technique is used for all the feature layers except the copyright static layer, which
needs to be shown up front. The cost of the test of existence is irrelevant.

The Unit menu is used to set the units for the measure tool:

menu : {
 ...,
 unit : {
 title : "Unit",
 items : {
 km : {
 string : "Kilometres",
 check : true,
 exclusive : true,
 fn : function () {bingWin.map.unit = "Km";}
 },
 ...
 }
 }
}

The conversions between units are made in the measure tool functions.

242 Building Web Applications with SVG

Adding Map Features
Before implementing features, a little theory. Implementing a custom feature on a map involves a
custom graphic, either scaled according to the map zoom level or not scaled. Paths showing itin-
eraries or polygons for delimiting areas, for example, are meant to be scaled, while objects used to
pinpoint a particular place or to show information about a particular region are just projected. Either
way, you can implement these features using GeoJSON objects.

A custom feature is commonly placed in its own layer, overlaid on top of the map. Recall how in
the previous section the property layers was defined in the call to the build() method of bingWin. That
object defines the feature layers used in the application, or more precisely in this mapping window.
They are copyright, bananas, polygons, lukangaRally, svgOpen2011, and grid. In these objects we have
stored information for the layers’ management. The property feature indicates whether the layer is
static (false) or a projection (true). The property display designates the initial state of the layer, and it
is updated dynamically. Note that the control of a layer is not necessarily in the Layers menu; “SVG
Open 2011” is in the Go Places menu, or could perhaps be in an external panel with check boxes.

GeoJSON
To give a quick overview, GeoJSON specifies an encoding format for geographical data. The second
part of the acronym stands for JavaScript Object Notation, an OOP writing technique. A GeoJSON
object may define a geometry, a feature, or a collection of features. A GeoJSON object can have any
number of properties. The geometry object must have the properties "type" and "coordinates", both
expressed as strings.

The property "type" can take any of the following values: "Point", "MultiPoint", "LineString",
"MultiLineString", "Polygon", "MultiPolygon", or "GeometryCollection".

The property "coordinates" takes an array, the structure of which is determined by the type of
geometry. The values are geographic coordinates (longitude and latitude units of decimal degrees).

Polymaps provides a GeoJSON parser where data is processed. The geographic coordinates are
converted into projected SVG Path data (in most cases), but for “Point” and “MultiPoint,” SVG Circle
is used. All path-based geometries are projected and scaled according to the zoom level of the map.
The scaling is not the result of an SVG transformation, hence strokes are not scaled. “Point” and
“MultiPoint” are just projected and keep their original size at different zoom levels.

Often you will want to use your own custom objects to pinpoint places on a map, and if you take
a look at some code examples, you will see that it can be quite a mission (nodes substitution, lengthy
code, etc.). To facilitate this task, the GeoJSON parser was extended with some Pergola facilities that
allow you to use any SVG object (artwork, shape, symbol, or clip art) either from a library or defined
on the fly, as well as SVG images containing PNG or JPG images, for the “point” property. The parser
is also enabled to process the “style” property for inline style, or more precisely, it just adds the style
attribute to the object passed to the Pergola DOM helper. It also determines the appropriate parent
node; therefore it is important to remember that the definitions of SVG elements are not calls to the
DOM helper, which expects the appendTo property. Thus, when, for example, you define elements

 CHAPTER 7 Building a Web Application: Case Studies 243

inline, you will use the same format of the libraries’ definitions: the object carries the SVG element’s
name and its legal attributes only.

To use this functionality, you define in the “geometry” object the property “elements” and,
if needed, a “scale” value. For example, the layer “Top 10 banana producing nations” uses the
pergola.symbols.banana. If set, scaling is applied to a <g> element created dynamically by the parser.
This transformation adds to transformations that you may define for a particular element by setting
the transform attribute.

The value of “elements” is an array of one or more objects, and each object defines an SVG primi-
tive element. Here’s the banana definition from the pergola.symbols library:

banana : [
 { element : "path", fill : "#FADC74", d : "..." },
 { element : "path", fill : "#E8B84D", d : "..." },
 { element : "path", fill : "#C89943", d : "..." },
 { element : "path", fill : "#B2BC4B", d : "..." },
 { element : "path", fill : "#537F37", d : "..." },
 { element : "path", fill : "#4C4822", d : "..." },
]

A symbol is constituted of as many elements as you need, and can reference patterns, gradients,
and filters. Here is an example of how you can use a Pergola symbol with the pergola.symbol() utility
function:

var myIcon = pergola.symbol.call({}, {
 symbol : pergola.symbols.banana,
 x : 100,
 y : 100,
 scale : 3,
 parent : Node
});

The preceding image shows a banana symbol with a scale factor of 3.

The procedure for using a symbol with a GeoJSON “geometry” object is simplified; you just need
to assign its reference to the “elements” property:

"geometry" : {
 "type" : "Point",
 "coordinates" : [coordinates],
 "elements" : pergola.symbols.banana,
 "scale" : "(...)",
}

244 Building Web Applications with SVG

This would show a banana at coordinates.

In the mapping application, the bananas are scaled according to the production classification and
text labels are also added (see the following image).

Here’s the method that builds the “Top 10 banana producing nations” layer:

m.bananas.toggleLayer = function (evt) {
 var target = this.target(),
 o = target.layer,
 currentMap = pergola.Window.currentMap;
// Force selection in menu Views
 currentMap.mapViewsToggle(target.view);

// Build the layer if it doesn't exist
 if (!o.container) {
 var banana = pergola.symbols.banana,
 node,
 features = [],
 prod = [
 {coordinates : [79, 18], tag : "INDIA (1) 26.2 M t"},
 {coordinates : [122, 13.62], tag : "PHILIPPINES (2) 9 M t", scale : "(.94)"},
 ...
];
/*
 * Using Pergola's String prototype extension method width() to compute the text
 * width and assign the result to the property "width" for each object in "prod".
*/
 for (var a in prod) prod[a].width = prod[a].tag.width("10px");

 CHAPTER 7 Building a Web Application: Case Studies 245

 function tag(i) {
 return [
 {element : "rect", x : .5, y : -15, width : prod[i].width, height : 12, fill :
"url(#quickTipGrad)", stroke : "#808080"},
 {element : "text", x : 4, y : -5.5, "font-size" : "7pt", "pointer-events" : "none",
textNode : prod[i].tag}
];
 };
 function geometry(i, obj) {
 var scale = (obj == banana) ? prod[i].scale : 0;
 return {
 "geometry" : {
 "type" : "Point",
 "coordinates" : prod[i].coordinates,
 "elements" : obj,
 "scale" : scale,
 }
 };
 };

 for (var i in prod) {
 features.push(geometry(i, banana));
 features.push(geometry(i, tag(i)));
 }
 currentMap.map.add(polymaps.geoJson(o).features(features));
 }
 currentMap.centerMap(target.center);
 currentMap.mapZoom(target.zoom);
 currentMap.showMapFeatureLayer(o);
}

Note that although this function is an instance method of the menu item “Top 10 banana produc-
ing nations,” this does not mean that the menu builds the layer. It is simply a convenient place to put
the layer code instead of defining an extra helper function that would be executed exactly zero or
one time. If you were to define such a function, the best place would be in the bingWin.layers
.bananas object:

bananas : {
 feature : true,
 display : "none",
 build : function () { layer's code }
}

The access would then be bingWin.layers.bananas.build(). However, this would be to the detriment
of readability of the window’s definitions.

Note that most of the code of the toggleLayer function is for serializing the banana objects and
text labels. In terms of GeoJSON, you will simply retain the “geometry” objects returned by the
geometry function.

D
ow

n
lo

a
d
 f
ro

m
 W

o
w

!
e
B
o
o
k

<
w

w
w

.w
o
w

e
b
o
o
k.

co
m

>

246 Building Web Applications with SVG

Adding tools
Besides the transformation tools that are set by default (if not overridden) for every window instance,
the Window class adds a measure tool and a navigation help tool for window instances of type “map,”
as shown in the following image.

In the previous application, you saw how to add a tool in the call to the build() method by setting
the tools property. You also learned that tools can be added at a later stage through the addTools()
prototype method. Here is an example of how to add a custom tool with this technique:

bingWin.addTools({
 group1 : {
 separator : Boolean,
 myTool : {
 symbol : {
 symbol : symbol,
 x : 4,
 y : 4
 },
 exclusive : true,
 quickTip : "...",
 ev : "mouseup",
 fn : function () {...}
 }
 }
});

 CHAPTER 7 Building a Web Application: Case Studies 247

Window tools can have radio button behavior. You should always set the exclusive property to
true for tools of this type—tools that cannot function simultaneously—or you will get strange results.
Selection of an exclusive tool causes exclusive siblings (tools of the same window) to be deselected.
It also temporarily disables mouse events on the map, while keyboard navigation remains active. To
deselect, the tool must send a notification to the window object by calling the prototype method
toolInit():

bingWin.toolInit(evt, this)

If your tool is exclusive, the above must be the first line in your user function; if the tool is added
dynamically and the window object’s name is not known, you can use this.owner in its stead.

the Complete Code
var bingWin = new pergola.Window("Bing Maps");
bingWin.build({
 isFull : true,
 type : "map",
 mapWidth : 2048,
 mapHeight : 1536,
 fill : "#010413",
 menu : {
 views : {
 title : "Views",
 items : {
 aerial : {
 string : "Aerial",
 check : false,
 exclusive : true,
 view : "aerial",
 fn : tileSource
 },
 aerialLabels : {
 string : "Aerial With Labels",
 check : true,
 exclusive : true,
 view : "aerialWithLabels",
 fn : tileSource
 },
 road : {
 string : "Road",
 check : false,
 exclusive : true,
 view : "road",
 fn : tileSource
 }
 }
 },
 layers : {
 title : "Layers",
 items : {
 lukanga : {
 string : "Lukanga Swamp Rally",

248 Building Web Applications with SVG

 check : false,
 target : function () {
 return {
 layer : bingWin.layers.lukangaRally,
 center : {lat : -14.46, lon : 27.3125},
 zoom : 11
 }
 },
 fn : 'toggleLayer'
 },
 polygons : {
 string : "Polygons",
 check : false,
 target : function () {
 return {
 layer : bingWin.layers.polygons,
 center : {lat : 37.7590, lon : -122.4191},
 zoom : 14
 }
 },
 fn : 'toggleLayer'
 },
 bananas : {
 string : "Top 10 banana producing nations",
 check : false,
 target : function () {
 return {
 layer : bingWin.layers.bananas,
 center : {lat : 10, lon : 100},
 zoom : 4,
 view : "aerial"
 }
 },
 fn : 'toggleLayer', formats)
 separator : new pergola.Separator()
 },
 copyright : {
 string : "Copyright",
 check : true,
 target : function () {return bingWin.childDoc.copyright;},
 fn : function () { formats)
 if (!this.target()) return;
 var l = bingWin.layers.copyright;
 l.display = l.display == "block" ? "none" : "block";
 this.target().setAttributeNS(null, "display", l.display);
 }
 }
 }
 },
 go_places : {
 title : "Go Places",
 items : {
 paris : {
 string : "Paris",
 fn : function () {
 var c = pergola.Window.currentMap;
 c.centerMap({lat : 48.8553, lon : 2.3456});

 CHAPTER 7 Building a Web Application: Case Studies 249

 c.mapZoom(16);
 }
 },
 rome : {
 string : "Rome",
 fn : function () {
 var c = pergola.Window.currentMap;
 c.centerMap({lat : 41.9030, lon : 12.4664});
 c.mapZoom(14);
 }
 }
 ,
 tokyo : {
 string : "Tokyo",
 fn : function () {
 var c = pergola.Window.currentMap;
 c.centerMap({lat : 35.6429, lon : 139.8098});
 c.mapZoom(11);
 }
 },
 newyork : {
 string : "New York",
 fn : function () {
 var c = pergola.Window.currentMap;
 c.centerMap({lat : 40.7050, lon : -74.0093});
 c.mapZoom(11);
 }
 },
 sydney : {
 string : "Sydney",
 fn : function () {
 var c = pergola.Window.currentMap;
 c.centerMap({lat : -33.8654, lon : 151.2102});
 c.mapZoom(12);
 }
 },
 venice : {
 string : "Venice",
 fn : function () {
 var c = pergola.Window.currentMap;
 c.centerMap({lat : 45.4351, lon : 12.3375});
 c.mapZoom(14);
 }
 },
 riodejaneiro : {
 string : "Rio De Janeiro",
 fn : function () {
 var c = pergola.Window.currentMap;
 c.centerMap({lat : -22.9389, lon : 316.7979});
 c.mapZoom(12);
 }
 },
 buenosaires : {
 string : "Buenos Aires",
 fn : function () {
 var c = pergola.Window.currentMap;
 c.centerMap({lat : -34.6570, lon : 301.6016});

250 Building Web Applications with SVG

 c.mapZoom(11);
 },
 separator : new pergola.Separator()
 },
 northAmerica : {
 string : "North America",
 fn : function () {
 var c = pergola.Window.currentMap;
 c.centerMap({lat : 42.37, lon : 268.07});
 c.mapZoom(3);
 }
 },
 india : {
 string : "India",
 fn : function () {
 var c = pergola.Window.currentMap;
 c.centerMap({lat : 18.832, lon : 78.734});
 c.mapZoom(5);
 }
 },
 wEurope : {
 string : "Western Europe",
 fn : function () {
 var c = pergola.Window.currentMap;
 c.centerMap({lat : 46.588, lon : 5.938});
 c.mapZoom(5);
 }
 },
 patagonia : {
 string : "Patagonia",
 fn : function () {
 var c = pergola.Window.currentMap;
 c.centerMap({lat : -50.570, lon : -70.977});
 c.mapZoom(7);
 }
 },
 antartica : {
 string : "Antartica",
 fn : function () {
 var c = pergola.Window.currentMap;
 c.centerMap({lat : -79.1, lon : -10.5});
 c.mapZoom(2);
 },
 separator : new pergola.Separator()
 },
 svgOpen2011 : {
 string : "SVG Open 2011",
 target : function () {
 return {
 layer : bingWin.layers.svgOpen2011,
 center : {lat : 42.36131, lon : -71.08124},
 zoom : 17,
 view : "road"
 };
 },
 fn : 'toggleLayer'
 }

 CHAPTER 7 Building a Web Application: Case Studies 251

 }
 },
 zoomLevel : {
 title : "Levels",
 hasZoomLevels : true,
 items : {
 z1 : {
 string : "1",
 check : false,
 exclusive : true,
 fn : function () {pergola.Window.currentMap.mapZoom(1);}
 },
 z2 : {
 string : "2",
 check : false,
 exclusive : true,
 fn : function () {pergola.Window.currentMap.mapZoom(2);}
 },
 z3 : {
 string : "3",
 check : false,
 exclusive : true,
 fn : function () {pergola.Window.currentMap.mapZoom(3);}
 },
 z4 : {
 string : "4",
 check : false,
 exclusive : true,
 fn : function () {pergola.Window.currentMap.mapZoom(4);}
 },
 z5 : {
 string : "5",
 check : false,
 exclusive : true,
 fn : function () {pergola.Window.currentMap.mapZoom(5);}
 },
 z6 : {
 string : "6",
 check : false,
 exclusive : true,
 fn : function () {pergola.Window.currentMap.mapZoom(6);}
 },
 z7 : {
 string : "7",
 check : false,
 exclusive : true,
 fn : function () {pergola.Window.currentMap.mapZoom(7);}
 },
 z8 : {
 string : "8",
 check : false,
 exclusive : true,
 fn : function () {pergola.Window.currentMap.mapZoom(8);}
 },
 z9 : {
 string : "9",
 check : false,

252 Building Web Applications with SVG

 exclusive : true,
 fn : function () {pergola.Window.currentMap.mapZoom(9);}
 },
 z10 : {
 string : "10",
 check : false,
 exclusive : true,
 fn : function () {pergola.Window.currentMap.mapZoom(10);}
 },
 z11 : {
 string : "11",
 check : false,
 exclusive : true,
 fn : function () {pergola.Window.currentMap.mapZoom(11);}
 },
 z12 : {
 string : "12",
 check : false,
 exclusive : true,
 fn : function () {pergola.Window.currentMap.mapZoom(12);}
 },
 z13 : {
 string : "13",
 check : false,
 exclusive : true,
 fn : function () {pergola.Window.currentMap.mapZoom(13);}
 },
 z14 : {
 string : "14",
 check : false,
 exclusive : true,
 fn : function () {pergola.Window.currentMap.mapZoom(14);}
 },
 z15 : {
 string : "15",
 check : false,
 exclusive : true,
 fn : function () {pergola.Window.currentMap.mapZoom(15);}
 },
 z16 : {
 string : "16",
 check : false,
 exclusive : true,
 fn : function () {pergola.Window.currentMap.mapZoom(16);}
 },
 z17 : {
 string : "17",
 check : false,
 exclusive : true,
 fn : function () {pergola.Window.currentMap.mapZoom(17);}
 },
 z18 : {
 string : "18",
 check : false,
 exclusive : true,
 fn : function () {pergola.Window.currentMap.mapZoom(18);}
 },

 CHAPTER 7 Building a Web Application: Case Studies 253

 z19 : {
 string : "19",
 check : false,
 exclusive : true,
 fn : function () {pergola.Window.currentMap.mapZoom(19);}
 },
 z20 : {
 string : "20",
 check : false,
 exclusive : true,
 fn : function () {pergola.Window.currentMap.mapZoom(20);}
 },
 z21 : {
 string : "21",
 check : false,
 exclusive : true,
 fn : function () {pergola.Window.currentMap.mapZoom(21);}
 }
 }
 },
 grid : {
 title : "Grid",
 items : {
 grid : {
 string : "Grid",
 check : false,
 fn : function () { formats)
 var map = bingWin.map,
 l = bingWin.layers.grid;
 l.display = l.display == "block" ? "none" : "block";
 if (!map.grid) {
 map.add(polymaps.grid());
 map.center(map.center());
 }
 map.grid.setAttributeNS(null, "display", l.display);
 }
 }
 }
 },
 unit : {
 title : "Unit",
 items : {
 km : {
 string : "Kilometres",
 check : true,
 exclusive : true,
 fn : function () {bingWin.map.unit = "Km";}
 },
 mi : {
 string : "Miles",
 check : false,
 exclusive : true,
 fn : function () {bingWin.map.unit = "mi";}
 },
 nmi : {
 string : "Nautical Miles",
 check : false,

254 Building Web Applications with SVG

 exclusive : true,
 fn : function () {bingWin.map.unit = "nmi";}
 }
 }
 }
 },
 views : {
 aerial : {},
 aerialWithLabels : {},
 road : {}
 },
 layers : {
 copyright : {
 feature : false,
 display : "block"
 },
 bananas : {
 feature : true,
 display : "none"
 },
 polygons : {
 feature : true,
 display : "none"
 },
 lukangaRally : {
 feature : true,
 display : "none"
 },
 svgOpen2011 : {
 feature : true,
 display : "none"
 },
 grid : {
 feature : false,
 display : "none"
 }
 },
 contains : function () {return this.mapMaker()}
});

Summary

This concludes the second case study. The referenced work is visible at http://www.dotuscomus.com/
pergola/pergola_1.4.0/Examples/BingMaps/BingWindow.svg.

The authors hope that these studies will have achieved their purpose: demonstrating how well-
designed libraries that define a consistent OOD model and that provide a clear and well-organized
structure allow works of this type to be defined efficiently, while also producing compact files, which
helps with ease of maintenance, readability, and debugging. This is possible thanks to the judicious
use of the DOM and SVG DOM interfaces, which you are encouraged to study in depth. Integration of
these concepts will help you gain a command of such coding practices.

http://www.dotuscomus.com/pergola/pergola_1.4.0/Examples/BingMaps/BingWindow.svg
http://www.dotuscomus.com/pergola/pergola_1.4.0/Examples/BingMaps/BingWindow.svg

 255

simple example, 9–10
text along Bézier curve, 13

Apache Batik project, 207–208
appendChild() method, 128
arcs, elliptical, 47–48, 48
arithmetic operator, 182, 184
ASV plugin. See Adobe SVG Viewer (ASV) plugin
attributeName attribute, 91
attributes

categories, 22
changing via scripting, 103–108
defining style of shapes, 33
setting, 146

averaging images, 181–184

B
Backus-Naur Form (BNF), 49
baseFrequency parameter, 164, 174
Batik project, 207–208
begin attribute, 134
beginElement() method, 132–134
bevel value, 34
Bézier curves, 64

creating shapes using, 42–46
cubic, 45, 46, 49
defining paths, 126
equidistant positioning points along, 8–9
example graphic, 32
oscillation, 128
quadratic, 42–46, 49
smooth, 46–47, 49
SVG-Edit tool, 206
text along, 13, 64–65

Bézier (Q) command, 42, 49
bingWin object, 239, 242, 245

Index

Symbols
3D drawing and animation, 17, 209

A
absolute path coordinates, 49
absolute value, 24
accessibility, 3, 27, 83–84
a command, 48
A command, 48
addEventListener() method, 140
add() function, 111, 114, 139
Adobe Dreamweaver IDE, 210
Adobe Illustrator application, 4

creating rectangle, 201–203
SVG support, 201

Adobe SVG Viewer (ASV) plugin, 4, 146, 192, 208
downloading, 5
history of, xv–xvi

<animateColor> element, 94
<animate> element, 107, 133, 152

begin="G.click" attribute, 98
controlling width and height, 91
text following path, 13
with color names, 94

animate() function, 107
<animateMotion> element, 96

begin="0;indefinite" attribute, 134
fill="freeze" attribute, 134

<animateTransform> element, 93, 94, 112, 114
animation. See also declarative animation; scripting;
SMIL (Synchronized Multimedia Integration Language)

clip paths, 11
clock, 14–15
concentric circles, 16
reflected gradients with transparency, 13–14

bitmaps

256 Index

bitmaps
example graphic, 32
importing, 11
overlaying with text, 62
referencing, 50
zooming, 2

Bloom Filter, 196–197
blurring images, 147–149, 152–153, 159

horizontally, 148–149
vertically, 148–149, 159

BNF (Backus-Naur Form), 49
Bostock, Mike, 193
bounding boxes, 126–128
browsers

Chrome
animation support, 90
rollovers, 106
SVG support, 4

declarative animation support, 90
filter support, 146
Firefox, 106

D3 library examples, 193
declarative animation support, 90
measuring unrendered objects, 124
SMIL animation support, 208
SVG support, 4

Internet Explorer
appending path elements, 228
filter support, 146
putting SVG in HTML, 137
SVG support, 4
Test Drive website, 84

Konqueror, 4
Opera, 106

animation support, 90
SVG support, 4

Safari, 111
animation support, 90
rollovers, 106
SVG support, 4

SMIL animation support, 208

C
Cartesian plane, 23
cartography tools

carto:net, 200
OpenStreetMap project, 213
Pilat, 206
Polymaps, 200

Cascading Style Sheets. See CSS (Cascading Style
Sheets)
c command, 49
C command, 49, 54
centering text and graphics, 130–131
chaining filters. See filter chaining
checkerboard pattern, 184–185
Chrome browser

animation support, 90
rollovers, 106
SVG support, 4

<circle> element, 22, 34–35, 37
circles

concentric, 16
radii, 34–35

class attribute, 81–82
client-side graphics, 3
<clipPath> element, 11, 12
clip paths

animating, 11
clipping, 12
example, 75–77
inserting ellipses into, 75
inserting gradients into, 74
intersecting, 11–13
overview, 73
vs. masks, 77

clipping, 11, 73–75. See also clip paths
clock example, 14–15
clock.js script, 218, 233
cloneNode() method, 109, 112, 114
cloning nodes, 111–112
ClosePath (Z) command, 41, 49
cobblestones example, 17–18
color bands

cobblestones example, 18
in linear gradient, 69
ripple example, 16

colors. See also color bands; gradients
attribute for, 34
changing

gradually, 94
via scripting, 104, 118–122
with <feColorMatrix> filter, 149–153
with fill attribute, 24–25

default, 33
HSL (hue, saturation, and lightness), 66
inverting, 155–156
mapping to graph data, 196–197
names, 66

 drawing tools

 Index 257

quantization of (posterization), 67, 153–155
random, 111
RGB (red, green, blue), 66
rotating, 150–151, 152
strokes, 33
text, 62
used in masks, 77

combining
filters. See filter chaining
layers, 180–181

concentric circles, 16
convolution filter, 158–159
coordinates, 23

relative vs. absolute, 49
"coordinates" property, 242
CorelDRAW application, 4, 201
Creative Commons Public Domain license, 83
cropping, simulating with gradients, 73–75
Cruz, Jon, 204
CSS (Cascading Style Sheets), 80–82

CSS3
media queries, 82
new features, 83

cubic Bézier curves, 45, 46, 49
curves, ellipses following, 95–96. See also Bézier
curves
cx attribute, 24, 28, 34, 95
cy attribute, 24, 28, 34, 95, 114

D
d3.js (Data-Driven Documents), 193–195, 218

colors, 196–197
creating HTML tables, 194–195
interactive multiple documents application,
218–234
ordinal scales, 196
quantitative scales, 195
stream.js interactivity, 222–223

Dailey, David, xxi, 209
Danilo, Alex, xiv–xv
darken mode, <feBlend> element, 180–181
dash-array attribute, 105
dash arrays, 93
dash-offset attribute, 93
Data-Driven Documents. See d3.js (Data-Driven
Documents)
d attribute, 228

debugging, 192
declarative animation

duration, 91
motion along path, 95–96
multivalued interpolation, 96–98
oscillation and rotation, 91–95
overview, 89–91
repetition, 91
<replicate> element, 209–210
user interaction, 98–100
with user interaction, 98–100

default values, 33
<defs> element, 118

defining paths, 65, 126
<pattern> element inside of, 55
stored content, 52

deleting
content, 117–118
objects, 129

desaturating images, 149
desynchronization, 93
dictionaries, retrieving definitions from, 141
diffuse lighting effect, 175–177
digital elevation maps, 17
dilation of transparency, 157
discrete attribute, 153, 155
distortion, 16
<!doctype html> statement, 137
document.documentElement, 109
documentElement property, 138
Document Object Model. See DOM (Document
Object Model)
Dojo library, 201
DOM (Document Object Model), 20, 81

and getElementsByTagNameNS() method,
115–116
finding objects within, 103–105
nodes, 104
removing content, 117–118
shadowing, 221

DOM inspector, 192
DOMNodeInserted event, 227
DOMNodeRemoved event, 227
drawing tools

Adobe Illustrator, 4
crawling text, 13
creating rectangle, 201–203
SVG support, 201

CorelDRAW, 4, 201

D
ow

n
lo

a
d
 f
ro

m
 W

o
w

!
e
B
o
o
k

<
w

w
w

.w
o
w

e
b
o
o
k.

co
m

>

258 Index

drawing tools (continued)

Inkscape, 4, 58, 83, 204–205
Mugeda, 206
Pilat, 206
Scour, 205
SVG Drawing Tool, 207
SVG-Edit, 206
SVG Editor, 206
SVG support, 4
Xara X, 201

Dreamweaver IDE, 210
drop shadows, 162
dur attribute, 91
dx attribute, 64
dy attribute, 64
dynamic random landscape example, 6–8

E
editors for SVG, 5
Elder, Eric, 207
elements

reusing, 51
semantic, 84

elevation maps, 17
<ellipse> element, 35
ellipses

animated
motion along path, 95–96
rotation and oscillation, 91–95

following curve, 95–96
inserting into clip paths, 75
intersecting, 47–48
radii, 28, 35
restricting bitmap to elliptical region, 73–75
subsets, 47–48

elliptical arcs, 47–48, 48
<embed> element, 136, 137
end tags, 22
equidistant positioning points along Bézier
curve, 8–9
erosion of transparency, 157
evenodd value, 34, 40, 77
event (evt) parameter, 105
evt.currentTarget object, 112
evt.target object, 112
Ext.draw module, Sencha library, 201
extension tools

Apache Batik project, 207–208
FakeSmile project, 209

<replicate> element, 209–210
SmilScript project, 208

ext.js. See Sencha library

F
FakeSmile project, 209
<feBlend> element, 180–181
<feColorMatrix> element, 149–151

converting bright pixels to transparent, 157
filter chaining, 152–153
hueRotate parameter, 150
using with <feComponentTransfer>, 155, 156
using with <feTurbulence>, 169–170, 173

<feComponentTransfer> element, 153–157,
169–170, 172
<feComposite> element, 181–184
<feConvolveMatrix> element, 158–159
<feDiffuseLighting> element, 175–177
<feDisplacementMap> element, 16, 184–185

warping, spherical, 188–190
warping with simple gradient, 186–187
warping with turbulence, 187

<feFlood> element, 161
<feGaussianBlur> element

stdDeviation parameter, 147–148
using with <feComponentTransfer>, 156
varying granularity, 157

<feImage> element, 160, 162–163
using with <feDisplacementMap>, 189
using with <feMergeNode>, 179

<feMergeNode> element, 162, 177–179
<feMorphology> element, 157
<feImage> element, 189
<feOffset> element, 148, 160, 161–162, 189

using with <feDisplacementMap>, 189
Ferraiolo, Jon, xiii–xiv
<feSpecularLighting> element, 175–176
<feTile> element, 160, 162–163
<feTurbulence> element, 163–164

adjusting chroma, 169–174
baseFrequency parameter, 164
numOctaves parameter, 164
removing transparency channel, 166–167
seed parameter, 165–166
two layers of turbulence, 167–169
type parameter, 165
using with <feComposite>, 183
warping, 185, 187
woodlike texture, 173–175

 gradients

 Index 259

fill attribute, 24, 34
CSS overriding, 82
"freeze" value, 99
gradients applied to, 68
<text> element, 61

fill.darken(f) method, 230
fill="freeze" attribute, 134
fill-opacity attribute, 29, 34
fill-rule attribute, 34, 40
filter chaining, 177

<feBlend> element, 180–181
<feColorMatrix> element, 152–153
<feComposite> element, 181–184
<feDisplacementMap> element, 184–190
<feFlood> element, 161
<feMerge> element, 177–179
<feOffset> element, 161–162

<filter> element, 146
filters

browser support for, 146
combining, 177

<feBlend> element, 180–181
<feComposite> element, 181–184
<feDisplacementMap> element, 184–190
<feMerge> element, 177–179

<filter> element, 146
filter primitives

<feColorMatrix> element, 149–152, 157
<feComponentTransfer> element, 153–157
<feConvolveMatrix> element, 158–159
<feGaussianBlur> element, 147–148, 157
<feMorphology> element, 157

for ripples, 16
lighting effects, 175–176
restricting size of, 148
utility filters. See also <feTurbulence> element

<feFlood> element, 161
<feImage> element, 160, 162–163
<feOffset> element, 160, 161–162, 189
<feTile> element, 160, 162–163

Firefox browser
D3 library examples, 193
declarative animation support, 90
history of SVG support, 4
measuring unrendered objects, 124
number of attributes left in DOM, 106
SMIL animation support, 208

fl (large-arc-flag), 47, 48
font family, 61
force.js script, 218

forceWin.contents function, 222
forceWin object, 221, 228
<foreignObject> element, 136
fractalNoise value, 165
"freeze" value, fill attribute, 99
Frost, Jon, xxi
functions, JavaScript

activating from mouse click, 102–103
purpose of, 103

G
gamma attribute, 155
<g> element, 50–51, 103, 112
GEMï, 217
GeoJSON, 242–245
geometrical attributes, 22, 192
geometry object, 242–245
getAttributeNS() method, 113–115
getBBox() method, 122, 125
getElementById() method, 104
getElementsByTagNameNS() function, 115
getPointAtLength() method, 128–130
getSVGDocument() method, 137–141
getTotalLength() method, 128–130
global variables, protecting, 127
Google Chrome browser. See Chrome browser
Go Places menu, mapping application case
study, 239–240
GPS, Pilat tool, 206
gradients

applying to paths, 67–69
cobblestone example, 18–19
defined, 67
example, 10–11
file sizes, 67
linear, 67–69, 86
opacity, 70–75

simulating cropping or clipping, 73–75
weaving example, 73

proposal for new, 17
putting into clip paths, 74
radial, 14, 67–69

restricting rectangular bitmap to elliptical
region, 73–75

reflected, 13–14
simulating cropping or clipping, 73–74
stops, 16, 18
warping with simple, 186–190

Grapher project

260 Index

Grapher project, 207
graphics. See images
graphs

drawing, 19–20
Raphaël library, 199–200

grayscale, converting images to, 149
Grid menu, mapping application, 240–241
group (<g>) element, 50–51, 103, 112
grouping images, 50–51

H
Harrington, Bryce, 213
h command, 48
H (HorizontalTo) command, 48
Hirtzler, Michel, 58, 206
histograms, remapping, 153
horizontal blurring, 148–149
horizontal lines, 48
horizontal streaking, 164
HSL (hue, saturation, and lightness), 66
HTML

form element replication, 209
legacy libraries, 192

Dojo, 201
jQuery, 200
Sencha, 201

messages between SVG and, 135–142
porting work to, 234–235

HTML5
addition of SVG, xvi, 3
borrowing ideas from SVG, 145
improving usability via media queries, 82
insertion of SVG in, 141–142
semantic elements, 84

HTML-Kit software, 211
hueRotate parameter, 150, 152–153
hue, saturation, and lightness (HSL), 66

I
IAN Symbol Library, 83
id attribute, 104
identity attribute, 155
IDEs (integrated development environments)

Adobe Dreamweaver, 210
HTML-Kit, 211
Oxygen, 210

<iframe> element, 136

IGN cartography, 206
Illustrator application. See Adobe Illustrator
application
<image> element

attributes
clip-path, 12
xlink:href, 50

reusing, 12
syntax, 50

images
averaging, 181–184
bitmaps

example graphic, 32
importing, 11
overlaying with text, 62
referencing, 50
zooming, 2

blurring, 147–149, 152
centering, 130–131
changing colors, 149–154
clipping, 11
combining two layers, 180–181
converting from RGB to partial
transparency, 178–179
converting to grayscale, 149
converting to partial transparency, 178–179
desaturating, 149
drop shadows, 162
grouping, 50–51
intersecting, 181–184
inverting colors, 155–156
oversaturating, 152
photographic negative effect, 156
pinpointing map locations with, 242–245
posterization, 153–155
referencing, 50
reusing, 51
reusing within patterns, 149
ripples over, 16
rotating colors, 152
rotating color values, 150–151
sharpening, 158–159
thinning and thickening, 157
tiling, 163
warping

spherically, 188–190
with simple gradients, 186–187
with turbulence, 187

 element, 135
importing images, 11

 logo, SVG

 Index 261

InkML, 209
Inkscape application, 4, 58, 204–205

Open Clipart Library, 83
using with Scour, 205

in operator, 183
interactive multiple documents application, 218–219

design improvement, 233–234
forceWin object encapsulation, 228–233
interactivity, 222–223
porting to HTML, 234–235
stream encapsulation, 219–222
Transitions menu, 223–224
Transition Tool button, 224–227

Internet Explorer browser, 111
appending path elements, 228
clip paths, 11, 12
filter support, 146
history of SVG support, 4
putting SVG in HTML, 137
SMIL animation support, 208
Test Drive website, 84

Internet Protocol Television (IPTV) applications, 4
interpolation

between paths, 17
multivalued, 96–98

intersecting
clip paths, 11–13
images, 181–184

inverting colors, 155–156
IPTV (Internet Protocol Television) applications, 4

J
James, George, 213
JavaScript. See also scripting

animating concentric circles, 16
clock example, 15
drawing graphs, 19–20
dynamic random landscape example, 6–8
functions

activating from mouse click, 102–103
purpose of, 103

in <script> tag, 102
messages between SMIL and, 132–135
use with Bézier curves, 8–9

jQuery library, 200
jQuery.svg.js plug-in, 200
JSVGCanvas Java component, Batik, 208

K
KDE desktop environment, 4
Konqueror browser, 4

L
landscape example, 6–8
large-arc-flag (fl), 47, 48
lastOne.parentNode group, 121
lastOne variable, 119, 121
Layers menu, mapping application, 238–239
layout, adjusting, 82
l command, 48
legacy HTML libraries, 201
length value, 33
lens effect, 188–190
letters, reusing, 65
Leunen, David, 209
Levels menu, mapping application, 240
libraries

legacy HTML, 192
Dojo, 201
jQuery, 200
Sencha, 201

native SVG, 192
carto:net, 200
D3, 193–198
Pergola, 198–199
Polymaps, 200
Raphaël, 199–200

licensing, 83
lighten mode, <feBlend> element, 180–181
lighting effects filters, 175–176
lightness, 66
linear attribute, 153, 155
linear gradients, 67–69, 86
linear scales, 195
<line> element, 37–38
lines, 32–33

horizontal, 48
shapes at end of, 34
vertical, 48

L (LineTo) command, 39, 48
logarithmic scales, 195
logo, SVG, 85, 86

Maddox, Jerrold

262 Index

M
Maddox, Jerrold, 4
mapmaker() method, 236
mapping application case study, 235–237

complete code, 247–252
custom features, 242
GeoJSON, 242–245
menus, 237–241

Go Places menu, 239–240
Grid menu, 240–241
Layers menu, 238–239
Levels menu, 240
Unit menu, 241
Views menu, 237–238

tools, 246–247
maps, elevation, 17
mapZoom() function, 240
masks, 75–77
mathematical functions, 32
matrix command, 80
McCormack, Cameron, xv–xvi, 207–208
m command, 48
media queries, 82, 86
metadata elements, 84
microdata elements, 84
Microsoft Internet Explorer. See Internet Explorer
browser
mime type, 22
Minksy, Marvin, 67
miter value, 34
M (MoveTo) command, 39

complex shapes, 40–42
parameters and instruction, 48

mobile phones, SVG on, 4, 90
monochromatic points, 67
mousedown event, 112, 114
mouseover event, 106
MoveTo command. See M command
Mozilla Firefox browser. See Firefox browser
<mpath> element, 64–65
Mugeda drawing tool, 206
multiply mode, <feBlend> element, 180–181
multivalued interpolation, 96–98

N
namespace, 22–23
naming variables, 222
NaN value, 192

native libraries
carto:net, 200
D3

colors, 196–197
creating HTML tables, 194–195
ordinal scales, 196
quantitative scales, 195

Pergola, 198–199
Polymaps, 200
Raphaël, 199–200

negative image effect, 156
networks, drawing, 19–20
Neumann, Andreas, 200
nodes, 104

changing text within, 107–108
cloning, 111–112
evaluating, 113–115
setting references to, 127

nonzero value, 34, 40
normal mode, <feBlend> element, 181
“not a number” error, 114
numOctaves attribute, 164

O
<object> element, 136–138, 211
OCAL (Open Clipart Library), 83, 212
offset attribute, 69
onend attribute, 132–134
onmousedown attribute, 114
onmouseout event, 106
OOD (object-oriented development) model, 215,
220, 228
opacity. See also stop-opacity attribute

contributed to by RGB values, 151
fill-opacity attribute, 29, 34
gradients, 70–75

simulating cropping or clipping, 73–75
weaving example, 73

stroke-opacity attribute, 29, 33
in CSS, 81
overriding, 53

transform commands used with, 79–80
Open Clipart Library (OCAL), 83, 212
Open Layers library, 206
OpenStreetMap project, 213
Opera browser, 106

animation support, 90
clip paths, 11, 12

 quantize scales

 Index 263

filter support, 146
SVG support, 4

ordinal scales, D3, 196–198
oscillation, 91–95
overlaying bitmaps with text, 62
oversaturating images, 152
Oxygen IDE, 210

P
packing, 124–126
paint attributes, 22
paragraphs, reusing, 65
parentNode property, 115
parseInt() method, 121
<path> element, 38–40

C command, 54
cobblestone example, 18
s command, 54
subcommands, 39

paths, 38–39. See also clip paths
applying gradients to, 67–69
clip

animating, 11
clipping, 12
example, 75–77
inserting ellipses into, 75
inserting gradients into, 74
intersecting, 11–13
overview, 73
vs. masks, 77

compound, 42
crossing itself, 40
fill properties, 40
interpolating between, 17
motion along, 95–96, 98–100
relative vs. absolute coordinates, 49
text on, 13–14, 64–65

<pattern> element, 18, 52, 55, 151
patterns

creating, 52
example, 10–11
reusable, 52–58
tile, 52, 163
using images within, 149

PDF format, converting to from SVG, 208
pedigree visualization, 197–198
pen movements, 38–39, 42
Pergola, 198–199, 216–217

defining windows, 219–221
DOM shadowing, 221
interactive multiple documents application,
218–234
mapping application, 235–252
tool buttons, 224

pergola.createHTMLElement() function, 234
pergola.createSVGElement() function, 234
pergola.symbol() utility function, 243
pergola.use(object) utility function, 216
Perlin turbulence function, 163
Peto, Chris, 206
Phillips, Jon, 213
photographic negative effect, 156
Pilat application, 206
pixel-based approach, 2
pointer-events attribute, 100, 128
points attribute, 35
polygons, 35–36

random in polynomial time, 207
transitioning between, 97

polylines, 35–36
Polymaps application, 218, 235
Polymaps library, 200
pond ripples, 16
positioning

ellipses along curve, 95–96
points along Bézier curve, 8–9
text

attributes for, 61
on paths, 13, 64–65

via scripting, 122–127
with translate command, 77

posterization (color quantization), 67, 153–155
power scales, 195
presentation attributes, 22, 33
preserveAspectRatio attribute, 131
properties, naming, 222
proportional value, 24
Protovis library, 193

Q
Q (Bézier) command, 42, 49
q command, 49
quadratic Bézier curves, 42–46, 49
quadratic splines, 44
quantile scales, 195
quantitative scales, D3, 195
quantize scales, 195

D
ow

n
lo

a
d
 f
ro

m
 W

o
w

!
e
B
o
o
k

<
w

w
w

.w
o
w

e
b
o
o
k.

co
m

>

radial gradients

264 Index

R
radial gradients

example, 67–69
reflected, 14
restricting rectangular bitmap to elliptical
region, 73–75

radii, 34
radio button behavior, 247
random landscape example, 6–8
Raphaël library, 199–200
r attribute, 22, 24
rectangles, 34

creating with Adobe Illustrator, 201–203
creating with Inkscape, 204–205
restricting to elliptical region, 73–75

<rect> element, 104, 111, 112
attributes, 28
measuring screen, 126

Rect node, 104
recursive call mechanism, 129
referencing images, 50
reflected gradients, 13–14
regular attributes, 22
relative path coordinates, 49
removeAttributeNS() method, 118
removing content, 117–118
repeatCount attribute, 91, 98
<replicate> element, 209–210

cobblestones example, 17–18
simulating digital elevation maps, 17

restricting extent of filters, 148
reusing

elements, 51
images within patterns, 149
patterns, 52–58
text, 65

RGB (red, green, blue), 66, 151, 153–155, 178–179
ripples, 16
Root.removeChild() function, 118
rotate="auto" attribute, 95
rotate command, 54, 79
rotation, 91–95

illusion of, 184
of color values, 150–151, 152
simulating 3D, 17

round value, 34
rx attribute, 34, 93
ry attribute, 34, 35, 93

S
Safari browser, 111

animation support, 90
rollovers, 106
SVG support, 4

saturation, 66
scalability of SVG, 2
Scalable Vector Graphics. See SVG (Scalable Vector
Graphics)
Scalable Vector Graphics Working Group (SVG
WG), xiii, xvi, 84
scale command, 78
Schepers, Doug, xvii–xviii, 208
Schiller, Jeff, xvii
SCION (Statechart-to-ECMAScript Compiler), 207
s command, 49, 54
S command, 46, 49
Scour drawing tool, 205
screen coordinates. See coordinates
screen mode, <feBlend> element, 180–181
scripting. See also DOM (Document Object Model)

adding content to document, 109–111
cloning nodes, 111–112
evaluating nodes, 113–115
finding object and changing attributes, 103–108
JavaScript

animating concentric circles, 16
clock example, 15
drawing graphs, 19–20
dynamic random landscape example, 6–8
functions, 102–103
messages between SMIL and, 132–135
in <script> tag, 102
use with Bézier curves, 8–9

messages between HTML and SVG, 135–142
messages between SMIL and JavaScript, 132–135
points on curves, 128–129
positioning using, 122–127
simple example, 102

<script> tag, 102
seed attribute, 165–166
self-terminating tag, 22
semantic elements, 84
Semantic Notepad, 84
Sencha library, 201
setAttribute() method, 104, 111
setAttributeNS() method, 104
<set> element, 99, 106, 111
setTimeout loop, 16

 SVG WG (Scalable Vector Graphics Working Group)

 Index 265

setTimeout() method, 107
Seurat, Georges, 67
shadowing the DOM, 221
shapes, 36–38. See also paths

circles
concentric, 16
radii, 34–35

color, 34
complex, 40–42
ellipses

animated, 91–96
following curve, 95–96
inserting into clip paths, 75–76
intersecting, 47–48
radii, 28, 35
restricting bitmap to elliptical region, 73–75
subsets, 47–48

lines, 32–33
horizontal, 48
shapes at end of, 34
vertical, 48

polygons, 35–36, 207
polylines, 35–36
rectangles, 34

creating with Adobe Illustrator, 201–203
creating with Inkscape, 204–205
restricting to elliptical region, 73–75

spirals, 48
sharpening images, 158–159
skewX command, 79
skewY command, 79
SmilScript project, 208
SMIL (Synchronized Multimedia Integration
Language). See also declarative animation

Bézier curve oscillation, 128–130
clock example, 15
messages between JavaScript and, 132–135
overview of, 3
use of term, 90

smooth Bézier curves, 46–47, 49
Sodipodi, 213
specular lighting effect, 175–176
spherical transforms, 188–189
spherical warping, 188–190
spirals, 48
splines, quadratic, 44
Squiggle viewer, Batik, 208
startOffset attribute, 13, 65
Statechart-to-ECMAScript Compiler (SCION), 207
stdDeviation parameter, 147–148, 157

stitching Bézier curves, 45–46
stop-color attribute, 69
<stop> element, 69
stop-opacity attribute, 70–75

simulating cropping or clipping, 73–75
weaving example, 73

stops
cobblestones example, 18
in linear gradient, 69
ripples example, 16

Strazzullo, Domenico, xxi, 198
stream.js script, 218, 219–223
streamWin object, 220–223, 227, 233
streamWin.transition() method, 230
stroke attribute, 33
stroke-dasharray attribute, 33, 93
stroke-linecap attribute, 34, 36
stroke-linejoin attribute, 34, 36
stroke-opacity attribute, 29

in CSS, 81
overriding, 53
values, 33

strokes
color, 33
width, 33, 128

stroke-width attribute, 33
SVG Drawing Tool, 207
SVG-Edit drawing tool, 206
SVG Editor program, 206
<svg> element

viewBox attribute, 130–131
xmlns=”http://www.w3.org/2000/svg” attribute/
value, 22–23

SVG Interest Group, 84, 85
SVG logo, 85, 86
SVG namespace, 22–23
SVG (Scalable Vector Graphics)

advantages of, 3–4
browser support, 4
messages between HTML and, 135–142
scalability of, 2
vector-based approach of, 2
viewing, 5
wide use of, 4–5
writing, 5–6

SVG Viewer (ASV) plugin. See Adobe SVG Viewer
(ASV) plugin
SVG Web, xvi
SVG WG (Scalable Vector Graphics Working
Group), xiii, xvi, 84

sweep-flag (fs)

266 Index

sweep-flag (fs), 47, 48
synchronization, 93
Synchronized Multimedia Integration
Language. See SMIL (Synchronized Multimedia
Integration Language)

T
table attribute, 153, 155, 156
tags

beginning and end, 22
self-terminating, 22

t command, 49
T command, 46, 49
text

along Bézier curves, 64–65
artistic effects, 62–63
color, 34, 62
drop shadows, 162
overlaying on bitmaps, 62
positioning

attributes for, 61
on paths, 13, 64–65
with <tspan> element, 63
with dx and dy attributes, 64

properties, 64
reusing, 65

text editors, 5
<text> element, 60–63, 112

attributes, 61, 64
running text, 13

text node, 115
<textPath> element, 13, 64–65
3D drawing and animation, 17, 209
tiles, 18–19, 52
tiling images, 163
time display example, 14–15
<title> element, 27
transform attribute, 54
transforms

matrix command, 80
rotate command, 79
scale command, 78
skewX command, 79
skewY command, 79
spherical, 188–189
translate command, 77
used with other style effect, 79–80

transition() function, 222, 227

translate command, 77, 78
transparency, 25. See also opacity

converting RGB image to, 178–179
dilating, 157
erosion, 157

<tref> element, 65
triangular tiling, 18–19
<tspan> element, 117

dx and dy attributes, 64
purpose of, 63

T.textContent code, 108
turbulence. See <feTurbulence> element
turtle graphics, 38
tutorial page on book’s website, 6
type parameter, 165
"type" property, 242

U
underlayer group, 111
Unit menu, mapping application, 241
usability, enhancing using media queries, 82
<use> element

attributes, 51
filter applied to, 149
in simple animation example, 9
purpose of, 51
reusing <image> element, 12–13

utility filters
<feFlood> element, 161
<feImage> element, 160, 162–163
<feOffset> element, 160, 161–162, 189
<feTile> element, 160, 162–163
<feTurbulence> element, 163–164, 187

baseFrequency parameter, 164
numOctaves parameter, 164
seed parameter, 165–166

V
values, absolute and proportional, 24
values attribute, 91
v command, 48
vector-based approach, 2
vector images, referencing, 50
vertical blurring, 148–149, 159
vertical lines, 48
Vertical (V) command, 48
viewBox attribute, 130–131

 zooming

 Index 267

Views menu, mapping application, 237–238
visibility attribute, 101
VML (Vector Markup Language), 199
V (Vertical) command, 48

W
Wang, Lucas, 206
warping

spherical, 188–190
with simple gradients, 186–187
with turbulence, 187

weaving example, 73
web application case studies, 215–216

D3, 218
interactive multiple documents application,
218–219

design improvement, 233–234
forceWin object encapsulation, 228–233
interactivity, 222–223
porting to HTML, 234–235
stream encapsulation, 219–222
Transitions menu, 223–224
Transition Tool button, 224–227

mapping application, 235–237
complete code, 247–252
GeoJSON, 242–245
map features, 242
menus, 237–241
tools, 246–247

Pergola, 216–217
Polymaps, 218

WebKit, 208
width of strokes, 33
Wikimedia Commons, 83, 212
Wikipedia, 83, 212
Window class, 219, 221, 224
Winter, André, 200
woodlike texture, 173–174
word wrapping, 64
worm.js script, 218, 231–233
wrapping words, 64
writing SVG, 5–6

X
x1 attribute, 33
x2 attribute, 32
Xara X drawing tool, 201
x attribute

<rect element>, 28, 34
<text> element, 61
<tspan> element, 63

xlink:href attribute, 50, 51
XML, 210
XMLHttpRequest security restrictions, 193
xmlns attribute, 23
XSLT, 210

Y
y1 attribute, 33
y2 attribute, 32
y attribute

<rect element>, 28, 34
<text> element, 61

Z
Z (ClosePath) command, 41, 49
z command, 95
zooming, 2, 239–240

About the Authors

DAVID DAILEY was born and raised in Albuquerque, NM, receiving his bach-
elor's degree from the University of New Mexico and his doctorate from the
University of Colorado. Having taught mathematics, psychology, and comput-
er science at the Universities of Wyoming, Tulsa, and Alaska, he later moved
east with appointments at Vassar, Williams, and Bay Path College, before
settling in at Slippery Rock University in Pennsylvania where he is Professor of
Computer Science teaching mainly in areas of web programming. He is mar-
ried, has four children, and enjoys creating art, food, music, and games.

JON FROST is a seasoned developer who has worked with SVG for more
than a decade. The SVG applications he has developed include interactive
web applications and dynamic reports. He dreamt up and collaborated on the
books Learn SVG: The Web Graphics Standard and Building Web Applications
with SVG.

DOMENICO STRAZZULLO , founder and editor-in-chief of SVG magazine, is
the author of both the Pergola JavaScript library for SVG and the open-source
GEMï web operating system.

D
ow

n
lo

a
d
 f
ro

m
 W

o
w

!
e
B
o
o
k

<
w

w
w

.w
o
w

e
b
o
o
k.

co
m

>

	Introduction
	Chapter 1: SVG Basics
	The What, Why, and Where of SVG
	The What
	The Why
	The Where

	Getting Started: A Simple Overview
	Viewing SVG
	Writing SVG

	Thirteen Examples That Show the Capabilities of SVG
	Example 1: Dynamic Random Landscape Drawn with JavaScript and SVG
	Example 2: Equidistant Positioning Points along a Bézier Curve
	Example 3: Simple Animation (Just 38 Lines of Markup
and No Script)
	Example 4: Use of Gradients and Patterns
	Example 5: Intersecting Clip Paths
	Example 6: Animated Text Crawling Along a Bézier Curve
	Example 7: Animated Reflected Gradients with Transparency
	Example 8: Clock with Impressionist Tinge
	Example 9: Using a Filter to Create Pond Ripples over an Image
	Example 10: Using <replicate> to Simulate Digital Elevation Maps
	Example 11: Non-Affine Cobblestones
	Example 12: Triangular Tiling
	Example 13: A Web Application for Drawing Graphs (Networks)

	Diving In: A Step-by-Step Approach to Building a Simple SVG Document
	Intermission and Analysis
	Screen Coordinates

	Summary

	Chapter 2: Creating and Editing SVG Graphics
	Creating Basic Vector Shapes
	Lines
	Brief Review of SVG Presentation Attributes
	Rectangles
	Circles
	Ellipses
	Polylines and Polygons
	Creativity with Basic Shapes

	Paths in SVG
	<path> Subcommands: M and L
	Fill Properties: nonzero and evenodd

	An Example of Building Complex Shapes
	Quadratic Bézier Curves: The Q Subcommand
	Bézier Curve Example
	Creating Smooth Curves: The S and T Subcommands
	Elliptical Arc Example
	Relative vs. Absolute Path Coordinates

	Accessing and Reusing Graphics
	Referencing Vector and Bitmap Images
	The Group Element
	The <use> Element

	Creating Patterns
	Case Study: Designing a Reusable Pattern
	Adding Basic Shapes

	Summary

	Chapter 3: Adding Text, Style, and Transforms
	Adding and Positioning Text
	The <text> Element
	The <tspan> Element
	Making Adjustments with dx and dy
	Text and Shapes on a Path: <textPath> and <mpath>
	The <tref> Element

	Working with Colors in SVG
	Named Color Values
	HSL
	RGB

	Creating Gradients in SVG
	Applying Gradients to a Path

	Clipping and Masking with SVG
	Details of Transforms
	The translate Command
	The scale Command
	Skewing: The skewX and skewY Commands
	The rotate Command
	The matrix Command
	Adding Style Using CSS
	Using Media Queries to Enhance Usability
	Additional Capabilities of CSS3

	Vector Graphics, Symbol, and Button Libraries
	Accessibility
	Semantic Elements and Features

	Case Study: A Simple SVG Web Interface
	Summary

	Chapter 4: Motion and Interactivity
	Declarative Animation with SVG
	Getting Started
	Motion Along a Path
	Multivalued Interpolation
	Interacting with Animation

	Scripting SVG
	Getting Started with JavaScript and SVG
	Using Script to Find an Object and Change Its Attributes
	Adding New Content to an SVG Document
	Cloning Nodes
	Evaluating Nodes (getAttribute)
	SVG DOM
	Measurements
	Messages Between SMIL and Script
	Passing Messages Between HTML and SVG

	Summary

	Chapter 5: SVG Filters
	The Basic <filter> Element
	The Basic Primitives
	<feGaussianBlur>
	<feColorMatrix>
	<feComponentTransfer>
	<feMorphology>
	<feConvolveMatrix>

	Utility Filters
	Simple Utility Filters
	<feFlood> and <feOffset>
	<feImage> and <feTile>
	<feTurbulence>
	numOctaves

	Lighting Effects
	Ways of Combining Filters
	<feMergeNode>
	<feBlend>
	<feComposite>
	<feDisplacementMap>

	Summary

	Chapter 6: SVG Tools and Resources
	Libraries
	SVG Native JavaScript Libraries
	D3: Data-Driven Documents
	Pergola
	Raphaël
	Polymaps
	carto:net

	Legacy HTML Libraries
	jQuery
	Dojo
	Sencha

	Drawing Tools and Utilities
	Adobe Illustrator
	Inkscape
	Scour
	SVG-Edit

	Other Useful Tools
	Mugeda
	Pilat
	SVG Editor
	SVG Drawing Tool
	Grapher
	SCION

	Extension Tools
	Batik
	SmilScript and FakeSmile
	<replicate>

	Integrated Development Environments
	Oxygen
	Adobe Dreamweaver
	HTML-Kit
	Other Useful Information
	Other Tools That Support SVG

	Miscellaneous
	Wikimedia and Wikipedia
	The Open Clip Art Library
	The OpenStreetMap Project

	Summary

	Chapter 7: Building a Web Application: Case Studies
	About Pergola
	D3 Review
	Polymaps
	Interactive Multiple Documents Application
	Encapsulating the Stream Example
	Adding Interactivity to the D3 Stream Window
	The Transitions Menu
	The Transition Tool Button
	Encapsulating the Force Example
	Improving the Application Design
	Running in an HTML and SVG Context

	Mapping Application
	The Menus
	Adding Map Features
	GeoJSON
	Adding Tools
	The Complete Code

	Summary

	Index

