
See This in the MSDN Library

Page Options

ASP.NET 2.0 Localization Features: A Fresh Approach to
Localizing Web Applications

Michèle Leroux Bustamante

IDesign Inc

October 2004

Updated April 2006

Applies to:

 Microsoft ASP.NET 2.0

 Microsoft Visual Studio .NET

 Microsoft Visual Studio 2005

 Localization

Summary: As companies reach out to other countries for business, creating global Web applications with

Microsoft ASP.NET is becoming more and more important. ASP.NET 1.1 supported creating localized Web

sites by means of the ResourceManager class. ASP.NET 2.0 makes it even easier to provide support for

multiple cultures and locales through improved runtime and tool support. (23 printed pages)

Download the source code for this article.

Contents

Introduction

Localization with .NET 1.x

Introducing New ASP.NET 2.0 Localization Features

Generating Local Resources

Global Application Resources

Implicit Localization Expressions

Explicit Localization Expressions

Localizing HTML Elements and Static Text

Resource Localization and Deployment

Runtime Resource Providers

Preferred Culture Selection

Conclusion

http://msdn.microsoft.com/library/en-us/dnvs05/html/asp2local.asp
http://www.idesign.net/
http://download.microsoft.com/download/b/5/a/b5aa6f45-56f6-4f29-ad49-04a62fa64de2/ASPNET20LocalizeFeatures.msi

Additional Resources

Introduction

The business community has been reaching international markets since the Internet as we know it began

in the mid-nineties. Not only do companies have a global Web presence through their corporate Web sites,

but an increasing number are also hosting and/or licensing enterprise Web applications that may

ultimately service customers all over the world. Preparing these Web sites and applications for localization

is a necessity since most clients prefer to conduct business in their own native language and cultural

environment. There is no question that this undertaking requires planning and effort, regardless of the

deployment model (smart clients, Web sites and applications, Web services), specifically in terms of

architecture and design. Effective development tools can influence that architecture for the better, but

strangely, advancements in the area of tools for Web application localization are still lacking. As a result,

many businesses resort to more traditional and cumbersome methods for localization that cost them

significant time and money.

The release of Microsoft ASP.NET 2.0 promises to shift the way Web developers approach localization, for

the better. The Microsoft Visual Studio .NET environment has expanded the developer toolbox, added new

runtime capabilities, and providing a rich new programming API specifically targeting localization

requirements. Now developers will be able to more quickly separate localizable content from their ASP.NET

pages, reduce their coding effort to access localized content, and extend the environment to meet

additional requirements while leveraging a consistent programming model. This whitepaper will take you

on a tour of the core features of the new and improved ASP.NET development experience for preparing

applications for localization.

Localization with .NET 1.x

The .NET Framework 1.x introduced a new architecture for localization that supports non-intrusive

incremental deployment of culture support by dropping in new satellite assemblies (or, resource-only

assemblies). This hub-and-spoke deployment paradigm allows developers to rely on the Common

Language Runtime to manage the accurate selection of localized content through the ResourceManager

class. One of the benefits of the ResourceManager is that it encapsulates a resource fallback mechanism

to find the culture of "best fit" based on the application's runtime culture setting, thus removing the need

for developers to write code to manage the process of loading the correct ResourceSet to retrieve

localized content.

Resources can be consumed by Windows or Web applications, but Visual Studio 2003 specifically makes it

easy for Windows developers to localize their Windows Forms. When a form's Localizable property is set

to true, resources are automatically generated for localizable form and control properties. Property

values are pushed to default resources for later translation, and code is generated to populate controls at

runtime from these resources, using a ResourceManager class instance. The ResourceManager

respects the CurrentUICulture setting for the executing thread, and attempts to find resources in the

ResourceSet matching that culture, otherwise resorting to the resource fallback process.

Figure 1. This illustrates a simple view of resource fallback for a UICulture set to es-EC. The

ResourceManager handles probing the es-EC satellite assembly for the requested key first, and

subsequently falls back to the neutral Spanish culture es, ultimately looking in the default

assembly resources for a value if still not found.

Note Read more about the resource fallback process here.

The .NET Framework also includes many culture-aware classes that respect CurrentCulture settings for

generating output such as formatted date, time, and currency values, further reducing the amount of

tedious work required of developers.

Note Read more about culture-aware classes from this MSDN reference.

Although the deployment model of satellite assemblies, resource managers, and culture-aware classes are

http://msdn.microsoft.com/asp.net/reference/ui/default.aspx?pull=/library/en-us/cpguide/html/cpconPackagingDeployingResources.asp
http://msdn.microsoft.com/asp.net/reference/ui/default.aspx?pull=/library/en-us/cpguide/html/cpconDesigningGlobalApplications.asp

also applicable to ASP.NET applications, there is a lack of developer tools to integrate this model into the

programming paradigm of Web Forms. With Visual Studio 2003 and ASP.NET 1.1, generating resource

entries for Web pages, accessing those resources at runtime, and setting the correct culture for each

request requires manual effort. Thus, resources are not widely considered an integral part of the Web

application localization story. Localizing Web content traditionally leads to duplicating entire sites for

specific cultures, localizing static content in place, and writing custom code for any shared code base to

manage the retrieval of localized data sources. This approach is significantly improved with ASP.NET 2.0.

Note The following MSDN article discusses architectural approaches to localization for ASP.NET 1.1.

Introducing New ASP.NET 2.0 Localization Features

ASP.NET 2.0 builds on the foundation of .NET 1.x localization features, specifically improving workflows

and functionality available to Web developers. The following is a summary of design goals driving this new

generation of localization support:

Supply tools to support resource generation for Web applications.

Provide new declarative and runtime programming constructs for accessing resources.

Simplify the process of applying the correct culture to page requests and automating
ResourceManager instantiation.

Support XCOPY deployment and removal of the compile step for small business sites.

Support the enterprise developer with extensibility for all aspects of resource consumption and
management.

Ensure integrated support for new localization features throughout ASP.NET controls and other
applicable runtime components and adapters.

New features baked into Visual Studio 2005 and ASP.NET 2.0 simplify Web application localization by

providing tools to help extract localizable content from Web pages, providing more integrated runtime

support for resource consumption that complements the stateless request model, supplying modern

declarative constructs for binding resources to page output, and providing new ways to automate culture

selection for the round-trip. The following features specifically support these goals:

Strongly Typed Resources—At the core of the .NET Framework 2.0 release is support for
strongly-typed resources that provide developers with Intellisense and simplify code required to access
resources at runtime.

Managed Resource Editor—Visual Studio .NET 2.0 includes a new resource editor with better
support for creating and managing resource entries including strings, images, external files, and other
complex types.

Resource Generation for Web Forms—Windows Forms developers have already enjoyed the
benefits of automatic internationalization. Visual Studio 2005 will now support rapid internationalization
by automatically generating resources for Web Forms, user controls, and master pages.

Improved Runtime Support—ResourceManager instances are managed by the runtime and
readily accessible to server code through more accessible programming interfaces.

Localization Expressions—Modern declarative expressions for Web pages support mapping

http://msdn.microsoft.com/asp.net/reference/ui/default.aspx?pull=/library/en-us/dnaspp/html/aspnet-globalarchi.asp

resource entries to control properties, HTML properties, or static content regions. These expressions are
also extensible, providing additional ways to control the process of attaching localized content to HTML
output.

Automatic Culture Selection—Managing culture selection for each Web request can be
automatically linked to browser preferences.

Resource Provider Model—A new resource provider model allows developers to host resources
in alternate data sources such as flat files and database stores, while the programming model for
accessing those resources remains consistent.

These features are flexible enough to provide out-of-the-box support for small businesses that require

reliable and effective productivity-oriented solutions, yet still support the complex needs of large

organizations for numerous deployment architectures with added extensibility. At the heart of this new

model is an improved story for leveraging resources for Web applications that aligns with the Windows

Forms programming model, giving additional consideration to the development cycle and runtime

requirements of the Web. The following sections describe these new features in greater detail.

Generating Local Resources

.NET resources make it possible to selectively replace content for specific languages and cultural regions

so that the same code base can support multiple cultures. But there has been little incentive for

developers to invest in this path for Web applications since generating resources for Web pages required

significant manual effort. ASP.NET 2.0 provides a simple way to automatically generate resources for Web

pages while supporting a complex assortment of content agents including HTML elements and attributes,

static content, and server controls.

To generate resources for a particular Web Form, select Generate Local Resource from the Tools menu

in Visual Studio 2005. Local resources can be created for any page open in Design View (that includes

Web Forms, user controls, and master pages). This step automatically generates a default set of XML

resources (.resx) for the page, and places them in a dedicated subdirectory for local resources named

\App_LocalResources.

Figure 2. Web Forms, user controls, and master pages can all be internationalized from within

Visual Studio 2005. This particular view shows default resources generated for several pages.

Local resources are stored in .resx files whose naming convention links it to the page they service (see

Figure 2). For example, after generating resources for a master page named site.master, a new .resx file

appears in \App_LocalResources named site.master.resx. For a Web Form named default.aspx, the

generated resource is named default.aspx.resx.

The Visual Studio designer populates these resources by inspecting the page and its controls (ASP.NET

server controls, custom controls, and HTML controls with runat="server")—looking for properties

marked with the LocalizableAttribute:

C#

[Localizable(true)] public string Text { get {...} set {...} }

VB.NET

<Localizable(true)> Public Property Text() As String Get ... End Get

Set (ByVal value As String) ... End Set }

Localizable properties for each server control are automatically pushed to resources, with each property

identified by a unique key. This resource key includes a prefix that identifies the control and the property

name. Each property value is set to the control's default unless values are specified within the control

declaration. The following LinkButton declaration specifies a value for PostBackUrl and Text properties

in its declaration:

<asp:LinkButton id="lnkSelectCulture" PostBackUrl="selectculture.aspx"
runat="server" Text="Language Preference"></asp:LinkButton>

Figure 3 shows the resource entries generated for this LinkButton after generating local resources for its

host page (in the sample project, see cultureinfo.ascx). Resources are stored in the resource file (see

cultureinfo.ascx.resx) and exclude non-localizable properties such as PostBackUrl, by default.

Figure 3. Local resources are generated based on localizable properties for ASP.NET server

controls, custom server controls, and HTML controls that are run on the server

(runat="server")

When resources are generated, the control declaration is also modified to declaratively associate

properties with resource entries. Several new declarative expressions are recognized by the page parser

and they trigger code generation to populate control properties with resource values at runtime. In other

words, declarative expressions save you from typing the code.

Declarative localization expressions are a new construct to ASP.NET 2.0, resembling data binding

statements but specifically designed for accessing resources. These expressions come in two forms:

implicit and explicit. Implicit expressions are automatically inserted when local resources are generated,

and they support mapping multiple resource entries to a set of control properties in a single declaration.

Explicit expressions are declarations developers can add to further control page localization.

The following implicit expression, identified by meta:resourcekey, was generated for the previous

LinkButton declaration, and now specifies the resource key prefix for this control:

<asp:LinkButton id="lnkSelectCulture" PostBackUrl="selectculture.aspx"
runat="server" Text="Language Preference"
meta:resourcekey="lnkSelectCultureResource1" ></asp:LinkButton>

Resource entries for control properties that use the prefix lnkSelectCultureResource1 will be

automatically mapped to the appropriate control property at runtime. The value for each property in the

control declaration remains untouched, including those values pushed to resources. These default values

will appear in Design View to give context to the control within the page. When the page is parsed the

localization expression is used to generate code that applies resources to control properties. Developers

need not write code to instantiate a ResourceManager to access these local resources at runtime.

At runtime resource values take precedence but default values appear in Design View, even in the absence

of resources. This can be very helpful to Web designers, allowing them to view pages with content at

design time. Localized properties that appear in the Properties Window are also marked with special icons

indicating that their values are drawn from resources. Figure 4 shows an ASP.NET ImageButton control

that some properties are bound to global resources (indicated in blue) and others to local resources

(indicated in red). These icons also have tooltips indicating that the resource is bound. Property binding

through expressions will be discussed in greater detail in a later section.

Figure 4. Localized properties bound to localization expressions are easily spotted by a special

icon shown in the Properties Window view.

The discussion so far focused on generating local resources, which by default generates implicit

localization expressions and resources for localizable control properties. It is also possible to bind

properties to shared application resources. In addition, you can automate the generation of local resources

for non-localizable control properties, other HTML elements, and static content. This is achieved by

applying explicit localization expressions to those page and control elements. In other words, developers

can declaratively indicate what additional content should be localized so that it can be included with

resource generation for the page, or selectively draw from an alternate source.

Global Application Resources

Automatic generation of local resources for each page can lead to duplicate entries for common terms and

redundant translation efforts. Fortunately, ASP.NET 2.0 has an intrinsic reuse model with master pages

and user controls so that headings, menus, sidebars, and other sections of HTML can be shared among

Web forms. The fact that each master page, user control and Web form owns its own set of local

resources reduces resource duplication. Still, resource entries such as glossary items, error messages, and

functionality drivers such as directional attributes can be useful when consolidated and shared among all

pages, or even reused by multiple applications.

While local resources are generated automatically for each page through the designer, global application

resources are created manually. That means adding a new application resource (.resx) to the solution and

placing it in a dedicated directory specifically for global resources, \App_GlobalResources. This is

consistent with the method for generating resources for 1.x applications; however, a new resource editor

simplifies creating and editing those resource entries, and global resources are now strongly-typed with

Intellisense support which is very convenient during development. Global resources, like local resources,

participate in the new page parsing and runtime model for ASP.NET 2.0. They can be bound to control

properties using explicit localization expressions and a ResourceManager is automatically instantiated

and cached, removing the need for developers to manage this lifecycle to access resources at runtime.

Visual Studio 2005 includes a new Managed Resource Editor shown in Figure 3 and Figure 5. Figure 3

illustrates the resource strings editor, similar to the resource editor in Visual Studio 2003. Figure 5, on the

other hand, illustrates the list of pre-defined resource categories supported by the editor, including

strings, icons, and other image file types, audio file types, and other files including XML. Outside of these

predefined types supported by the resource editor it is also possible to programmatically insert other

complex types into resources. The underlying resource file is XML-based.

Figure 5. The new Managed Resource Editor provides integrated support for numerous

predefined data types, and supplies alternate views of resource data including thumbnail view

as shown here for the Images resource category.

When file-based resources such as images, sound, and XML files are inserted through the editor, they are

defined as ResxFileRef entries by default. For example, the following describes resource entries created

for an external image and XML file, respectively:

<data name="Spain" type="System.Resources.ResXFileRef,
System.Windows.Forms">
<value>..\Images\Spain.gif;System.Drawing.Bitmap, System.Drawing,
Version=2.0.0.0, Culture=neutral,
PublicKeyToken=b03f5f7f11d50a3a</value> </data> <data
name="supportedCultures" type="System.Resources.ResXFileRef,
System.Windows.Forms">
<value>..\Xml\supportedCultures.xml;System.String, mscorlib,
Version=2.0.0.0, Culture=neutral,
PublicKeyToken=b77a5c561934e089;Windows- 1252</value> </data>

The resource compiler resolves each file reference, and the runtime handles loading the referenced file

into a stream, converting it to the correct data type. In the case of images, the type is

System.Drawing.Bitmap, and XML is returned as a System.String by default. For pre-compiled Web

applications, resources are embedded in output assemblies. That means the actual files need not be

deployed with the site. Consistent with the new compilation model for ASP.NET 2.0 (see this article for

more details), resources and related files can also be deployed for full runtime compilation.

One of the noticeable benefits of global resources is that they are compiled into a strongly-typed class that

makes entries accessible directly by their resource key. For example, a global application resource named

Flags.resx is accessed as runtime type Resources.Flags. Intellisense is available through the intrinsic

Resources type, and if a type converter is available resource items are returned as their native data type.

In the case of Images, the data type is System.Drawing.Bitmap, as shown in Figure 6.

http://msdn.microsoft.com/asp.net/reference/ui/default.aspx?pull=/library/en-us/dnvs05/html/internals.asp

Figure 6. Global resources are compiled into strongly-typed resources and are accessible

through the intrinsic Resources object.

Image-based resources can be useful to Web control developers for encapsulating embedded graphics

used by the control, but are more generally useful to Windows Forms developers that can readily consume

the binary image format for display. Regardless, strongly-typed resources and Intellisense increase

productivity for accessing resources at runtime. For example, Figure 6 also demonstrates how a strongly-

typed Glossary resource makes it easy to retrieve named string values.

Both local and global resources can be accessed declaratively or programmatically in order to generate

localized content. These techniques will be discussed in the following sections.

Implicit Localization Expressions

As mentioned earlier, when local resources are generated it triggers modifications to control declarations

on the page. The default behavior is for an implicit localization expression to be added to server controls,

indicated by the parse-time attribute meta:resourcekey.

<asp:LinkButton id="lnkSelectCulture" PostBackUrl="selectculture.aspx"
runat="server" Text="Language Preference"
meta:resourcekey="lnkSelectCultureResource1" ></asp:LinkButton>

This expression specifies the expected prefix for all resource entries related to the control's properties—

thus the term implicit expression. Automatic resource generation only considers localizable properties, but

in reality any resource entry using this prefix followed by a valid property name will be bound to that

property in the compiled page code. In the above example, lnkSelectCultureResource1 is the resource

key prefix, and resource entries shown in Figure 3 use this prefix for each property that applies to the

same control instance (that is, lnkSelectCultureResource1.Text).

This declarative statement (meta:resourcekey) indicates to the ASP.NET page parser that it should

generate code to retrieve property values from default local resources. The resulting code ultimately uses

runtime methods for accessing resources, with the help of GetLocalResourceObject. In the sample code

provided, the compiled cultureinfo.ascx page contains the following code that creates and initializes the

LinkButton, lnkSelectCulture:

LinkButton button1 = new LinkButton(); base.lnkSelectCulture = button1;
button1.ApplyStyleSheetSkin(this.Page); button1.ID =
"lnkSelectCulture"; button1.PostBackUrl = "selectculture.aspx";
button1.Text = "Language Preference"; button1.Text =
Convert.ToString(base.GetLocalResourceObject(
"lnkSelectCultureResource1.Text"), CultureInfo.CurrentCulture);
button1.ToolTip = Convert.ToString(base.GetLocalResourceObject(
"lnkSelectCultureResource1.ToolTip"), CultureInfo.CurrentCulture);

Implicit localization expressions are applied to all server control declarations when local page resources

are generated. You can suppress this behavior by indicating that the control should not be localized using

this alternate syntax:

<asp:LinkButton id="lnkSelectCulture" PostBackUrl="selectculture.aspx"
runat="server" Text="Language Preference" meta:localize="false" >
</asp:LinkButton>

Individual control properties that are not considered important to your localization strategy can be

manually removed from local resources using the Managed Resource Editor shown in Figure 3 (remember,

all localizable properties are pushed to resources by default). This reduces the amount of code generated

by the page parser to apply local resource entries to control properties, since it will only reflect those

entries present in the page's default local resources. This also means that additional key values added to

localized resources will not be applied at runtime since no code is generated to do so.

Localization expressions such as this leverage the new Expression Builder feature to be released with the

.NET Framework 2.0. Implicit localization expressions save developers time by generating code from a

single declaration to populate all localizable server control properties. This removes a manual step

currently required for 1.x Web applications where typically custom data binding statements or custom

code is required to pull values from a localized resource or data source.

The next sections will review how additional resource generation can be automated for the localization of

static text and specific control properties including those that are not marked by LocalizableAttribute.

Explicit Localization Expressions

Although it is very handy to automatically generate resources for localizable control properties, developers

need a solution that will also support localizing specific property values and other blocks of content.

Explicit localization expressions provide a way to declaratively assign specific resource entries to server

control properties and other HTML elements. For example, the following ImageButton control declaration

uses an explicit expression to set its AlternateText property:

<asp:ImageButton id="btnIDesign" Runat="server"
ImageUrl="~/Images/idesignlogo.jpg" AlternateText='<%$ Resources:
MissionStatement %>' PostBackUrl="http://www.idesign.net" />

Explicit localization expressions follow this syntax:

<%$ Resources: [resourceType], resourceKey%>

In the above example, resourceType is omitted, which means the value for MissionStatement is drawn

from local page resources. This removes the need for the implicit assignment of bulk resource values to

control properties. The resourceKey value indicates the resource entry to pull. More importantly, you

may have additional resource entries that are not associated to a specific control property that you want

to apply declaratively.

Explicit expressions can also be generated through the Properties Window using the Expressions dialog

box shown in Figure 7. This dialog supports creating explicit expressions that bind control properties to

local or global resources.

Figure 7. Using the Expressions dialog developers can intuitively map resources to properties

and generate explicit localization expressions

With this dialog box, developers create explicit expressions through the Properties window just as they

would set other control properties. If the ClassName is omitted from Expression Properties (see Figure

7), a dropdown list of available local resource keys is presented (assuming those resource entries have

been created). Once again, this reduces the amount of work for developers in creating resource entries

and generating code to populate properties at runtime.

Note Explicit expressions cannot be created for those properties that already have resources mapped
through implicit expression. To access shared resources, the ClassName should indicate the name of a
valid resource file in the global resources directory. Unlike local resources, explicit expressions targeting
global resources do not automatically generate those resources. Luckily, the IDE has provided a little help
for generating global resources. When you add a new Assembly Resource File to the project, you will be
prompted to place it in the global resource directory, \App_GlobalResources. The directory will be created
for you if it does not yet exist for the project. You can also hook into extensibility features of the IDE to
further automate interaction with global resources, but that goes beyond the scope of this article.

Implicit and explicit localization expressions can be mixed so that specific properties are pulled from

shared resources, while other properties are pulled from local resources. The following example shows the

same ImageButton control declaration retrieving its AlternateText from a shared resource,

Glossary.resx, while all other properties are drawn from the local resource using implicit syntax:

<asp:ImageButton ID="btnIDesign" Runat="server"

ImageUrl="~/Images/idesignlogo.jpg" AlternateText='<%$
Resources:Glossary, MissionSatatement%>'
PostBackUrl="http://www.idesign.net"
meta:resourcekey="ImageButtonResource1" /></td>

The use of explicit localization expressions makes it possible to exercise granular control over which

properties are localized, from where. In the case where a control declaration includes both explicit and

implicit expressions, page resources are generated as follows:

Properties bound by explicit expressions that specify a shared resource are omitted from local
resource generation.

Properties bound by explicit expressions for local resources generate an entry for resourceKey if
it does not yet exist.

Remaining localizable properties that are not bound by explicit expressions generate an entry for
resourceKey.propertyName with the value specified in the control declaration, or the control's default
property value.

As mentioned earlier, when the page is parsed, code is automatically generated from these declarations to

draw property values from the local or global resources. In the above example, the resulting code creates

an ImageButton control and sets its AlternateText property from the global Glossary resource, and

remaining localizable properties are set by local page resources:

ImageButton button1 = new ImageButton(); button1.ID = "btnIDesign"; //
other initialization code button1.AlternateText = (string)
base.GetGlobalResourceObject("Glossary", "MissionStatement");
button1.ImageUrl = (string)
base.GetLocalResourceObject("ImageButtonResource1.ImageUrl");
button1.ToolTip = (string)
base.GetLocalResourceObject("ImageButtonResource1.ToolTip");
button1.Visible = (bool)
base.GetLocalResourceObject("ImageButtonResource1.Visible",
typeof(Control), "Visible");

Note You should always use implicit expressions to map local page resource entries to control
properties. This includes non-localizable properties for which entries can be manually generated. Use
explicit expressions to specify global resource values.

Localizing HTML Elements and Static Text

Generating resources for server control properties is made easy with implicit and explicit localization

expressions. But, to prepare a page for localization, consideration must also be given to other content

such as the HTML page title, directional attributes, and static content. Localization expressions can also be

applied to the @Page directive and other sections of HTML to declaratively indicate other areas for

localization prior to generating page resources.

HTML Controls

HTML Controls cannot participate in the benefits of implicit or explicit expressions unless they are run on

the server (runat="server"). Once marked as server controls, local resources are automatically

generated for the control's localizable properties. Consistent with ASP.NET and custom server controls,

HTML server controls can also be bound to implicit or explicit expressions, the latter of which can be

generated through the Expressions dialog mentioned earlier.

HTML elements found in the page header can also be declaratively bound to resources, which can be

useful for page titles and style sheet links. In fact the HTML page title element is special because it is also

a Page property that can be set through the @Page directive. By default, an implicit expression is

assigned to each page when local resources are generated:

<%@ Page Language="C#" CodeFile="Default3.aspx.cs" Inherits="_Default"
Culture="auto" meta:resourcekey="PageResource1" UICulture="auto" %>

A resource is generated with the key PageResource1.Title, using the value of the <title> element as

default. The <title> element can override this implicit resource mapping using an explicit expression. The

following example demonstrates a page title that draws from global resources instead of local page

resources:

<head runat="server"> <title><asp:Literal runat="server" text='<%$
Resources: PageResource1.Title %>' /></title> </head>

Normally, the default page title will be held in the master page, and content pages will (or, should) only

override this setting if your site demands a custom title for every page.

Directional Attributes

Improved support for directionality settings has been added through the provision of a new Direction

property, supported by controls such as the <asp:Panel>. Using a shared resource that indicates overall

directionality for the application, based on culture, default "LTR" direction can be indicated in a global

resource, and overrides to this value based on culture can specify "RTL."

Localization resources are not supported in the <html> tag, however you can supply a rendering

statement that draws resources from the appropriate resource type as shown here:

<html dir='<% =GetLocalResourceObject("Direction")%>' > ... </html>

A panel can also be used to affect directionality of contained controls:

<asp:panel runat="server" direction='<%$ Resources: Direction %>'> ...
</asp:panel>

For more information related to directional support in Visual Studio .NET please visit

http://www.microsoft.com/middleeast/msdn/arabicsupp.aspx#22.

Static Text

Localization expressions are useful for setting control properties and other HTML elements; however,

many Web pages being readied for localization already contain significant blocks of static content

intermixed with ASP.NET controls. A new ASP.NET Localize control is provided to mark static content as

localizable, so that it can be included in resource generation. If a meta:resourcekey is specified prior to

issuing the command to generate resources, the key specified in the control will be used as the prefix (this

applies to other controls as well):

<asp:Localize id="welcomeContent" runat="server"
meta:resourcekey="welcome">Welcome!</asp:Localize>

In this example, a new local resource entry is generated for the Text property of the Localize control,

with the resource prefix "welcome" (welcome.Text). To explicitly populate static text from a global

resource, the Text property can be assigned by an explicit localization expression:

<asp:Localize id="welcomeContent" runat="server" text='<%$ Resources:
Glossary, welcomeText%>'>Welcome!</asp:Localize>

Consistent with other scenarios, these declarative statements are parsed into code that requests resources

to set control properties, in this case the Text property. Any HTML markup that appears within the

declaration of this control will be included in the resource generation, which can complicate the translation

process so it is best to avoid including markup.

The significance of the Localize control over its base class, the Literal control, is that it is treated like a

Literal control at runtime; however, the designer ignores it and allows developers to directly edit static

content in Design View (unlike the Literal control, which is bound by a container in Design View).

Resource Localization and Deployment

New declarative statements, automatic generation of page resources, and the presence of strongly-typed

global resources collectively make it much easier for developers to prepare Web applications for

localization. Default resources stored in the \App_LocalResources and \App_GlobalResources directories

(local and global resources, respectively) can be translated to supported cultures, their translated versions

copied to the same directory as its source. Naming conventions for translated resources follow the same

rules as with 1.x. The culture code is part of the translated .resx filename. Figure 8 shows the expanded

view of a sample project with page resources translated to Spanish, French, and Italian.

Figure 8. Consistent with 1.x resource naming conventions, .resx files should be named

according to culture code.

.NET Framework 1.x applications are typically shipped with localized satellite assemblies, but a new set of

deployment options exists for ASP.NET 2.0:

1. The ASP.NET 2.0 runtime continues to support the traditional deployment model where the \bin
directory contains local assembly dependencies, and subdirectories per supported culture contain
satellite (resource-only) assemblies.

2. ASP.NET 2.0 supports site pre-compilation which treats Web pages (that is, pages, user controls,
and master pages), their local resources, and their code separation files as a single unit,—

compiling them into deployable assemblies. Global resources are also pre-compiled into
assemblies. Any referenced resource entries, such as images or XML files, are also compiled into
assembly components. Simply put, the pre-compilation of an ASP.NET 2.0 Web application
becomes a binary drop that provides a higher level of protection for source files through
encapsulation.

3. ASP.NET 2.0 also supports dynamic runtime compilation for all source files. That means that Web
content, supporting code files, other source code, resources (local and global), and other
supporting application files can all be deployed in raw source format. The runtime compiler is
then responsible for parsing pages and generating assemblies on the fly through a build provider
model. This model provides the greatest amount of flexibility, but is primarily useful only for
lightweight Web applications that are frequently changing, and do not require a higher level of
source-code security and assembly version control.

In the case of options 2 and 3 the ASP.NET 2.0 compiler automatically compiles .resx source files found in

the \App_LocalResources and \App_GlobalResources directories into assemblies. In the case of option 3,

local resources are compiled prior to page compilation, the first time the page is accessed, or when the

page source or its .resx file has been modified. Because there is a build provider for .resx, they can be

deployed without a compile step.

As mentioned in option one, backward compatible support for 1.x assemblies, neutral resources, and

associated satellite assemblies still exists. This deployment model does is not compatible with localization

expressions, nor are these resources accessible through the default runtime resource provider model. If

this is a required feature, you can leverage custom expression builders and/or resource providers to

integrate alternate resource sources, including 1.x resource assemblies.

Runtime Resource Providers

To work with a ResourceManager in ASP.NET 1.x applications, it was necessary to instantiate the

ResourceManager in code, prior to the execution of data binding statements or other mechanisms that

retrieved values from resources. ASP.NET 2.0 automatically instantiates resource managers as needed,

when local and global resources are accessed, removing the need to write code to manage this process.

By using declarative statements to populate control properties and HTML elements with resource values,

no code need be written to generate a fully localized page!

A default ResourceProviderFactory is responsible for instantiating resource providers for local and

global resources at runtime, and at design time through the associated designer factory. Developers can

write code to access values in local resources using GetLocalResourceObject, exposed through the

Page object:

if (this.Context.User.Identity.IsAuthenticated) mnuLogin.Text =
GetLocalResourceObject("Login"); else mnuLogin.Text =
String.Format(GetLocalResourceObject("LogoutUser",
this.Context.User.Identity.Name);

This can be used to override declarative localization expressions when runtime decisions are necessary for

resource-dependent HTML output. To access global resources, the Page object exposes a different

method:

string cultures =
(string)this.GetGlobalResourceObject("supportedCultures");

For global resources, it is more likely developers will leverage Intellisense and strongly-typed resource

access, shown here retrieving an XML resource stored as a String type:

string cultures = Resources.Cultures.supportedCultures;

Ultimately, GetLocalResourceObject and GetGlobalResourceObject gain access to the appropriate

resource through the configured resource provider. Therefore, if a custom resource provider is created to

access resources in alternate stores, these methods would be able to retrieve from those stores through

GetGlobalResourceObject.

Preferred Culture Selection

Traditionally with 1.x ASP.NET applications, two key approaches were considered for the selection of

culture for each request. For applications that duplicated the entire site in a culture-specific subdirectory,

the <globalization> element in web.config indicated which culture and UI culture should be used by the

runtime thread requesting resources from those subdirectories:

<system.web> <globalization culture="es-ES" uiCulture="es">
</system.web>

For applications that used a single code-base, these declarative settings are not useful. Instead, runtime

code is necessary to manually set the culture for each request thread, so that the culture can be

dynamically chosen for each user making the request. The user's preferred culture can be collected from a

database profile, from an HTTP cookie, or from the Web browser's language settings. In either case,

setting the request thread's UI culture determines which localized resources the ResourceManager will

draw from at runtime, and the culture setting affects culture-aware formatting as mentioned earlier.

ASP.NET 2.0 introduces a new feature to automate culture selection at runtime based on Web browser

preferences. The @Page directive, which also supports culture and UI culture settings, can be used to

indicate that a particular page should be run based on the browser preferences:

<%@ Page UICulture="auto" Culture="auto">

The web.config file for the application can also apply this setting for the entire application:

<system.web> <globalization culture="auto:en-US" uiCulture="auto:en">

</system.web>

The colon after auto allows you to specify a default culture in the event HTTP headers are not available.

Since culture must be set to a specific culture, the example above shows en-US as the culture.

The end result is that the runtime automatically detects the ACCEPT_LANG header sent by the browser,

and sets the thread very early in the page lifecycle to the first language in the user's language preference

list. If a profile is also stored for application users, or if users can select a specific culture through the site,

developers must write code to override the auto setting handled by the runtime. One technique for this is

demonstrated in the sample code.

Conclusion

It is imperative to define a globalization strategy early in the development lifecycle, in order to more

quickly accommodate demands for future product releases that can reach global markets. These new

localization features for ASP.NET 2.0 will make it easier for developers to follow through on a strategy to

localize an application, while reducing the overhead of the development cycle. Automatic generation of

page resources and a new Managed Resource Editor make creating resources for Web applications more

natural. Declarative localization expressions make it possible to ensure all necessary page elements are

localized and assist with the automatic generation of appropriate page resources. A new runtime model

means developers can have the option to no longer compile satellite assemblies, instantiate resource

managers, and set the request thread according to culture. Ultimately, this makes for a strong case in

shipping Web applications with a single code base, which ultimately reduces costs and efforts associated

with delivering a localized solution.

Additional Resources

Resource Fallback Process

Developing World-Ready Applications

Globalization Architecture for ASP.NET 1.x

ASP.NET Directional Support

ASP.NET 2.0 Internals

My web log: www.dasblonde.net (RSS on Globalization)

http://msdn.microsoft.com/asp.net/reference/ui/default.aspx?pull=/library/en-us/cpguide/html/cpconPackagingDeployingResources.asp
http://msdn.microsoft.com/asp.net/reference/ui/default.aspx?pull=/library/en-us/cpguide/html/cpconDesigningGlobalApplications.asp
http://msdn.microsoft.com/asp.net/reference/ui/default.aspx?pull=/library/en-us/dnaspp/html/aspnet-globalarchi.asp
http://msdn.microsoft.com/asp.net/reference/ui/default.aspx?pull=/library/en-us/dnvs05/html/internals.asp
http://www.dasblonde.net/

IDesign

About the author

Michèle Leroux Bustamante is Chief Architect of IDesign Inc., Microsoft Regional Director for San Diego,

Microsoft MVP for XML Web Services and BEA Technical Director. She has over a decade of development

experience development applications with VB, C++, Java, C# and VB.NET and working with related

technologies such as ATL, MFC and COM. At IDesign Michele provides training, mentoring and high-end

architecture consulting services, focusing on Web services, scalable and secure architecture design for

.NET, interoperability and globalization architecture. She is a member of the International .NET Speakers

Association (INETA), a frequent conference presenter, conference chair of SD's Web Services track, and is

frequently published in several major technology journals. Michele is also Events Director for IASA

(International Association of Software Architects), Web Services Program Advisor to UCSD Extension. Her

book, Windows Communication Framework (O'Reilly) is available online at www.thatindigogirl.com, and

will be published in 2006. Reach her at mlb@idesign.net, or visit www.idesign.net and

www.dasblonde.net.

Top of Page

http://www.idesign.net/
http://www.thatindigogirl.com/
mailto:mlb@idesign.net
http://www.idesign.net/
http://www.dasblonde.net/

	Page Options
	ASP.NET 2.0 Localization Features: A Fresh Approach to Local
	Contents
	Introduction
	Localization with .NET 1.x
	Introducing New ASP.NET 2.0 Localization Features
	Generating Local Resources
	Global Application Resources
	Implicit Localization Expressions
	Explicit Localization Expressions
	Localizing HTML Elements and Static Text
	HTML Controls
	Directional Attributes
	Static Text

	Resource Localization and Deployment
	Runtime Resource Providers
	Preferred Culture Selection
	Conclusion
	Additional Resources

