oft

Mic

BEST PRACTICES

SECOND
EDITION

. M. WRIGHT"S

|
|
|
|
|
|
4 _
W _
|
.. /ra“...u _
Q. |
| /./ |
SN
0 “ |
W RN
M. “ ,;// _
M/ﬁﬂ—“/ | //“
Fi M, _ L?
- m/ | _ff
O O //z“...n\\l_.llufr-
” ot
& .urwnx\ “.,..// _
S -
‘D _ /nxﬂ_ﬁ 2
Fal
D \m ///“ _ Y
s rO. N |
S D _
S e
N, / _ =
=~ G
[% ¢ |
ﬁ I jhes. |
/f <
o e e e e et

PUBLISHED BY

Microsoft Press

A Division of Microsoft Corporation
One Microsoft Way

Redmond, Washington 98052-6399

Copyright © 2011 by Microsoft Corporation

All rights reserved. No part of the contents of this book may be reproduced or transmitted in any form or by any
means without the written permission of the publisher.

Library of Congress Control Number: 2011931649
ISBN: 978-0-7356-6170-7

Printed and bound in the United States of America.
First Printing

Microsoft Press books are available through booksellers and distributors worldwide. If you need support related
to this book, email Microsoft Press Book Support at mspinput@microsoft.com. Please tell us what you think of
this book at http://www.microsoft.com/learning/booksurvey.

Microsoft and the trademarks listed at http://www.microsoft.com/about/legal/en/us/IntellectualProperty/
Trademarks/EN-US.aspx are trademarks of the Microsoft group of companies. All other marks are property of
their respective owners.

The example companies, organizations, products, domain names, email addresses, logos, people, places, and
events depicted herein are fictitious. No association with any real company, organization, product, domain name,
email address, logo, person, place, or event is intended or should be inferred.

This book expresses the author’s views and opinions. The information contained in this book is provided without
any express, statutory, or implied warranties. Neither the author, Microsoft Corporation, nor its resellers or
distributors will be held liable for any damages caused or alleged to be caused either directly or indirectly by
this book.

Acquisitions and Developmental Editor: Devon Musgrave
Project Editor: Valerie Woolley

Editorial Production: Curtis Philips

Copyeditor: John Pierce

Indexer: William Meyers

Cover: John Hersey

Download from Wow! eBook <www.wowebook.com>

Reader Acclaim for I. M. Wright's
“"Hard Code” Column

Any large organization is prone to fall prey to its own self-made culture. Myths
about how things should be or should be done turn into self-fulfilling prophecies.
Any such trend is surely terminal for any organization, but it is a rapid killer in a
technology company that thrives on perpetual innovation. Eric Brechner does an
incredible job at pulling out the scalpel and cutting deep into such organizational
fluff. He is also not shy at throwing a full punch—the occasional black eye being

an intended outcome. While some of the lingo and examples are somewhat more
appealing to the Microsoft insider, there is little in his wit and wisdom that shouldn't
become lore across the software industry.

—Clemens Szyperski, Principal Architect

Great article on dev schedules by “I. M. Wright.” It applies equally well to
infrastructure projects that my group is involved in.

—Ilan Puttergill, Group Manager

You're not getting any death threats or anything, are you?

—Tracey Meltzer, Senior Test Lead

This has got to be a joke—quite frankly, this type of pure absurdity is dangerous.
—Chad Dellinger, Enterprise Architect

Eric is a personal hero of mine—Ilargely because he’s been the voice of reason in
the Dev community for a very long time.

—Chad Dellinger, Enterprise Architect

Software engineers can easily get lost in their code or, even worse, in their
processes. That's when Eric’s practical advice in “Hard Code” is really needed!

—David Greenspoon, General Manager

I just read this month’s column.... | have to say this is the first time | think you are
pushing an idea that is completely wrong and disastrous for the company.

—David Greenspoon, General Manager

You kick ass Eric :) | was having just this conversation with my PUM and some dev
leads a few months ago. Great thinking piece.

—Scott Cottrille, Principal Development Manager

We really like these columns. They are so practical and, well, sane! | also love that
I can refer back to them when I'm trying to help a junior dev get up to speed and
they remember the column since they are usually so entertaining.

—NMalia Ansberry, Senior Software Engineer
Nice job, Eric. | think you really hit the nail on the head in this column. | think a

good message to give to managers is, “Don’t be afraid to experiment.” How things
really work is so different than idealized theories.

—Bob Fries, Partner Development Manager
I just wanted to let you know how much I love what you write—its intelligent,

insightful, and you somehow manage to make serious matter funny (in the good
way).

—Niels Hilmar Madsen, Developer Evangelist
We're going to be doing the feature cuts meetings over the next few weeks, and

your death march column was just in time. It's a good reminder of lessons that
were hard learned but somehow are still more easily forgotten than they should be.

—Bruce Morgan, Principal Development Manager
I wanted to let you know that | really appreciated and enjoyed all of your writings

posted on the EE site. Until, today, | read [“Stop Writing Specs”]. | have to say that |
strongly disagree with your opinion.

—Cheng Wei, Program Manager

Who are you and what have you done with Eric Brechner?

—Olof Hellman, Software Engineer

Eric, | just read the “Beyond Comparison” article you wrote and want you to know
how much | appreciate that you actually communicated this to thousands of people
at this company.... Thank you for your passion in managing and leading teams the
right way and then sharing the HOW part of that!

—Teresa Horgan, Business Program Manager

Contents at a Glance

OO NGOV, WNH

[
o

Project Mismanagement 1
Process Improvement, Sans Magic......................... 39
Inefficiency Eradicated. il 89
Cross Disciplinesttt it 125
Software Quality—More ThanaDream 149
Software Design If We Have Time 183
Adventures in Career Development 219
Personal Bug Fixing 269
Being a Manager, and Yet Not Evil Incarnate............... 315

Microsoft, You Gottalove It. 367

Table of Contents

FOreWord e e e xiii

Foreword to the First Edition.......... i it XV

Introduction e Xvii

How This Book Happened. i, xvii

Who Should Read This Book.o .. Xix

Organization of ThisBook. o i i, XX

How MicrosoftIsOrganized.ccoiiiiiiiinniiiiinnennnnn.. XX

Sample Tools and Documents.oiuiiiniiiniie i, XXi

System Requirements.ttt e Xxi

Errata & Book SUppOrt. oo e XXi

We Wantto Hear fromYou. i, xxii

Stay inTouch e xxii

1 Project Mismanagement...............c.oiiiiiiiiiniinnn.. 1

June 1, 2001: "Dev schedules, flying pigs, and other fantasies”........... 2
October 1, 2001: “Pushing the envelopes: Continued contention

overdevschedules” i 4

May 1, 2002: “Are we having fun yet? The joy of triage.” 8

December 1, 2004: “Marchingtodeath” 12

October 1, 2005: “To tell the truth” i 16

September 1, 2008: “l would estimate”. 21

May 1, 2009: “It starts with shipping”........ 26

September 1, 2009: “Right on schedule” 30

May 1, 2010: “Coordinated agility”, 34

What do you think of this book? We want to hear from you!

Microsoft is interested in hearing your feedback so we can continually improve our books and learning
resources for you. To participate in a brief online survey, please visit:

www.microsoft.com/learning/booksurvey/

vii

viii Table of Contents

2 Process Improvement, Sans Magic......................... 39

September 2, 2002: “Six Sigma? Oh please!” 40

October 1, 2004: “Lean: More than good pastrami”.................... 42

April 1, 2005: “Customer dissatisfaction” 49

March 1, 2006: “The Agile bullet” i .. 54

October 1, 2007: “How do you measure yourself?” 61

October 1, 2010: “You candependonme”coiiiiinn.. 68

November 1, 2010: “Am | bugging you? Bug Reports” 72

December 1, 2010: “There's no place like production” 78

February 1, 2011: “Cycle time—The soothsayer of productivity”......... 83

3 Inefficiency Eradicated., 89

July 1, 2001: “Late specs: Fact of life or genetic defect?” 20

June 1, 2002: “Idle hands” oottt e 92

June 1, 2004: “Thedaywe met”.ttt 97

July 1, 2006: “Stop writing specs, co-located feature crews” 99

February 1, 2007: "Bad specs: Who is to blame?” 103

February 1, 2008: “So far away—Distributed development” 108

December 1, 2008: “De-optimization” 112

April 1, 2009: “Your World. Easier”iiiiiiiiiiineann.. 116

April 1, 2011: “You have to make a decision”. 120

4 CrossDisciplines ... 125

April 1, 2002: “The modern odd couple? Devand Test” 126

July 1, 2004: "Feeling testy—The role of testers” 129

May 1, 2005: “Fuzzy logic—The liberalarts” 133
November 1, 2005: “"Undisciplined—What's so special about

specialization?” 137

January 1, 2009: “Sustained engineering idiocy” 140

May 1, 2011: "Test don't getnorespect”, 144

5 Software Quality—More ThanaDream 149

March 1, 2002: “Are you secure about your security?” 150

November 1, 2002: “Where's the beef? Why we need quality” 153

Table of Contents

April 1, 2004: “A software odyssey—From craft to engineering” 160
July 1, 2005: “Review this—Inspections” 164
October 1, 2006: “Bold predictions of quality”....................... 171
May 1, 2008: “Crash dummies: Resilience”............ 174
October 1, 2008: “Nailing the nominals” 179

6 Software Design If WeHave Time 183
September 1, 2001: “A tragedy of error handling”.................... 184
February 1, 2002: “Too many cooks spoil the broth—

Sole authority” e 186
May 1, 2004: “Resolved by design”o, 189
February 1, 2006: “The other side of quality—Designers

and architects” e 194
August 1, 2006: “Blessed isolation—Better design”................... 198
November 1, 2007: “Software performance: What are you

waiting for?” .. 202
April 1, 2008: "At your Service”.ottt e 206
August 1, 2008: "My experiment worked! (Prototyping)”.............. 210
February 1, 2009: “Green fields are full of maggots”.................. 214

7 Adventures in Career Development 219
December 1, 2001: “When the journey is the destination”............. 220
October 1, 2002: “Life isn't fair—The review curve”................... 222
November 1, 2006: “Roles on the career stage” 227
May 1, 2007: “Get yourself connected”. 230
September 1, 2007: “Get a job—Finding new roles” 234
December 1, 2007: “Lead, follow, or get out of theway” 239
July 1, 2008: "Opportunity inagorillasuit”. 244
March 1, 2010: “I'm deeply committed”.............. 247
April 1, 2010: “The new guy”ttt it 252
June 1, 2010: “Level Up”. . ..ot e 256
September 1, 2010: “Making the bigtime” 261

January 1, 2011: “Individual leadership”.................... 265

Table of Contents

8 Personal BUgFixingc.coiuiiiiiiiiii i, 269
December 1, 2002: “My way or the highway—Negotiation” 270
February 1, 2005: “Better learn life balance”...................... ... 273
June 1, 2005: “Time enough” it 277
August 1, 2005: “Controlling your boss for fun and profit” 284
April 1, 2006: “You talking to me? Basic communication”.............. 288
March 1, 2007: “More than open and honest” 292
March 1, 2009: “I'm listening”.ot 296
July 1, 2009: "The VP-geebees”ottt 299
December 1, 2009: "Don't panic”.oiiiiiii i i 304
August 1, 2010: “Imessed Up” it e 307
March 1, 2011: “You're no bargain either”........................... 311

9 Being a Manager, and Yet Not Evil Incarnate............... 315
February 1, 2003: “More than a number—Productivity”. 316
September 1, 2004: "Out of the interview loop”...................... 319
November 1, 2004: “The toughest job—Poor performers” 324
September 1, 2005: “Go with the flow—Retention and turnover”....... 328
December 1, 2005: “l can manage”coiiiii it i 333
May 1, 2006: “Beyond comparison—Dysfunctional teams” 337
March 1, 2008: “Things have got to change: Change management”341
June 1, 2009: “I hardly recognizeyou” i 346
October 1, 2009: "Hire's remorse”ottt 350
November 1, 2009: “Spontaneous combustion of rancid

Mmanagement” e e 353

January 1, 2010: “One to one and many tomany” 356

July 1, 2010: “Culture clash” i, 361

10 Microsoft, You Gottalovelt............................. 367
November 1, 2001: “How | learned to stop worrying and

lOVe reOrgS” . o oot 368

March 1, 2005: “Isyour PUM abum?”. oL, 371

September 1, 2006: “It's good to be the King of Windows”............ 375

December 1, 2006: “Google: Serious threat or poor spelling?” 381

Download from Wow! eBook <www.wowebook.com>

Table of Contents

April 1, 2007: “Mid-life crisis”t 385
November 1, 2008: “NIHilism and other innovation poison”........... 389
February 1, 2010: “Are we functional?”........, 394
GlOSSaNY . o ettt et e e e e e 399
INAEX .ot e e 403

xi

What do you think of this book? We want to hear from you!

Microsoft is interested in hearing your feedback so we can continually improve our books and learning
resources for you. To participate in a brief online survey, please visit:

www.microsoft.com/learning/booksurvey/

Foreword

If you want to know about etiquette, you turn to Miss Manners. If you're having trouble with
your love life, you might turn to Dear Abby. If you want to know what's going on at Microsoft
and how one bullhead named I. M. Wright approaches things, then this is a book for you.

I. M. Wright is also known around Microsoft as Eric Brechner.

Building software is a challenge. I've always considered it a creative team sport, one that
requires you to remember not only what worked in the past but what didn’t. When | worked
at Microsoft, Eric was my sounding board. When | got stuck or frustrated, he seemed to
know just what to say to help me. And sometimes | didn't even have to ask. Just when | had
reached the point where | knew | needed help, an I. M. Wright column would pop up that
addressed my concerns—issues that were common at Microsoft and at any software devel-
opment organization.

Having a copy of Hard Code is like having Eric just around the corner from your office.
Having trouble dealing with change? Eric has an answer. Does your team have low morale? |
bet Eric has a bit of advice for you. Quality issues plaguing your code? | know Eric can help.
Writing as |. M. Wright, Eric tackles the tough problems of software development in a light-
hearted way that makes you smile while making you think.

And Eric doesn't write just about the problems you're likely to encounter. He also highlights
lessons learned from the many successful practices he's seen as part of a company that builds
and releases products and services used by millions of people around the globe. This new
edition includes a gold mine of new advice and success stories—valuable nuggets that |
often make required reading for my customers. Hard Code is a rare gem, one that everyone
should have on his shelf.

Mitch Lacey

Consultant and former Microsoft employee
Mitch Lacey & Associates, Inc.

May 2011

xiii

Foreword to the First Edition

| was a regular reader of Eric Brechner’s columns, penned under the name I. M. Wright, when
| met him for the first time. It took me a moment to be sure that | was talking to the same
person, since Mr. Wright was notably opinionated, and the modest, polite, and friendly per-
son | was talking to seemed more like Clark Kent.

My favorite columns focused on the relationship between the technical and interpersonal
dynamics of people building software in teams at Microsoft. I'm often surprised, given
the amount of material that has been written about the company, how much of the story
remains untold.

Software engineering managers on large projects have three fundamental problems. First,
program code is much too easy to change. Unlike mechanical or civil engineering, where the
cost to make a change to an existing system involves actually wrecking something, software
programs are changed by typing on a keyboard. The consequences of making an incorrect
structural change to the piers of a bridge or the engines of an airplane are obvious even to
nonexperts. Yet experienced software developers argue at length about the risks of making
changes to an existing program, and often get it wrong.

Construction metaphors actually work quite well for software. Lines of program code can

be characterized along an axis of “foundation, framing, and trim,” based on their layer in the
system. Foundation code is highly leveraged but difficult to change without a ripple effect.
Trim is easier to change and needs to be changed more often. The problem is that after a
few years of changes, complex programs tend to resemble houses that have been through

a few too many remodels, with outlets behind cabinets and bathroom fans that vent into
the kitchen. It's hard to know the unintended side effect or the ultimate cost of any given
change.

The second fundamental problem is that the industry is so young that the right standards for
reusable software components really haven't been discovered or established. Not only have
we not yet agreed that studs should be placed 16 inches apart to accommodate either a hor-
izontal or vertical 4x8-feet sheet of drywall or plywood, we haven't really decided that studs,
plywood, and drywall in combination are preferable to some yet to be invented combination
of mud, straw, rocks, steel, and carbon fiber.

The final problem is really a variation of the second problem. The software components that
must be reinvented on every project must also be named. It's customary in the software
industry to invent new names for existing concepts and to reuse existing names in new ways.
The unspoken secret in the industry is that a nontrivial number of discussions about the best
way to build software actually consist of groups of people who use different names and
haven't the foggiest idea what each other is saying.

Xv

Xvi

Foreword to the First Edition

On the surface, these are easy problems. Create some standards and enforce them. In the
fast-paced world of high-volume, high-value, low-cost software, this is a great way to go

out of business. The reality is that software’s greatest engineering liability is also its greatest
strength. Ubiquitous software, running on low-cost personal computers and the Internet, has
enabled innovation at a breathtaking pace.

As Microsoft grew, the company didn't always have the luxury of researching the best engi-
neering practices and thoughtfully selecting the best qualities of each. The success of the
personal computer and Windows transformed the company from working on small proj-
ects in traditional ways to writing the book on the largest, most complex software ever
developed.

Microsoft faces a continuous struggle to create the optimal system that balances risk against
efficiency and creativity. Given the enormous complexity of some of our projects, these
efforts can be amazingly heroic. Over time, we've created specialists and organizations of
specialists, all devoted to the single hardest problem in the industry, “shipping.” We have
acquired folklore, customs, cultures, tools, processes, and rules of thumb that allow us to
build and ship the most complex software in the world. Being in the middle of this on a day-
to-day basis can be thrilling and frustrating at the same time. Eric’s columns are a great way
to share and learn with us.

Mike Zintel

Director of Development
Windows Live Core
Microsoft Corporation
August 2007

Introduction

For Bill Bowlus, who said, “Why don't you write it?"”
For my wife, who said, “Sure, I'll edit it.”

You've picked up a best practices book. It's going to be dull. It might be interesting, informa-
tive, and perhaps even influential, but definitely dry and dull, right? Why?

Best practice books are dull because the “best” practice to use depends on the project, the
people involved, their goals, and their preferences. Choosing one as “best” is a matter of
opinion. The author must present the practices as choices, analyzing which to use when for
what reasons. While this approach is realistic and responsible, it's boring and unsatisfying.
Case studies that remove ambiguity can spice up the text, but the author must still leave
choices to the reader or else seem arrogant, dogmatic, and inflexible.

Yet folks love to watch roundtable discussions with arrogant, dogmatic, and inflexible pun-
dits. People love to read the pundits’ opinion pieces and discuss them with friends and
coworkers. Why not debate best practices as an opinion column? All you need is someone
willing to expose themselves as a close-minded fool.

How This Book Happened

In April of 2001, after 16 years of working as a professional programmer at places such as
Bank Leumi, Jet Propulsion Laboratory, GRAFTEK, Silicon Graphics, and Boeing, and after 6
years as a programmer and manager at Microsoft, | transferred to an internal Microsoft team
tasked with spreading best practices across the company. One of the group's projects was a
monthly webzine called Interface. It was interesting and informative, but also dry and dull. |
proposed adding an opinion column.

My boss, Bill Bowlus, suggested | write it. | refused. As a middle child, | worked hard at being
a mediator, seeing many sides to issues. Being a preachy practice pundit would ruin my repu-
tation and effectiveness. Instead, my idea was to convince an established, narrow-minded
engineer to write it, perhaps one of the opinionated development managers | had met in my
six years at the company.

Bill pointed out that | had the development experience (22 years), dev manager experience (4
years), writing skills, and enough attitude to do it—I just needed to release my inner dogma.
Besides, other dev managers had regular jobs and would be unable to commit to a monthly
opinion piece. Bill and | came up with the idea of using a pseudonym, and |. M. Wright's
“Hard Code” column was born.

Xvii

xviii

Introduction

Since June of 2001, | have written 91 “Hard Code” opinion columns under the name “I. M.
Wright, Microsoft development manager at large” for Microsoft developers and their man-
agers. The tagline for the columns is “Brutally honest, no pulled punches.” They are read by
thousands of Microsoft engineers and managers each month.

The first 16 columns were published in the Interface internal webzine, with many of the top-
ics assigned to me by the editorial staff, Mark Ashley and Liza White. Doctored photos of the
author were created by me and Todd Timmcke, an Interface artist. When the webzine came
to an end, | took a break but missed writing.

| started publishing the columns again 14 months later on internal sites with the help of my
group's editing staff: Amy Hamilton (Blair), Dia Reeves, Linda Caputo, Shannon Evans, and
Marc Wilson. Last November, | moved all the columns to an internal SharePoint blog.

In the spring of 2007, | was planning to take a sabbatical awarded to me some years before.
My manager then, Cedric Coco, gave me permission to work on publishing the “Hard Code”
columns as a book during my time off, and Ben Ryan from MS Press got it accepted. The first
edition of this book was published later that year.

In addition to the people I've already mentioned, for the first edition I'd like to thank the
other members of the Interface staff (Susan Fairo, Bruce Fenske, Ann Hoegemeier, John
Spilker, and John Swenson), the other people who helped get this book published (Suzanne
Sowinska, Alex Blanton, Scott Berkun, Devon Musgrave, and Valerie Woolley), my manage-
ment chain for supporting the effort (Cedric Coco, Scott Charney, and Jon DeVaan), my cur-
rent and former team members for reviewing all the columns and suggesting many of the
topics (William Adams, Alan Auerbach, Adam Barr, Eric Bush, Scott Cheney, Jennifer Hamilton,
Corey Ladas, David Norris, Bernie Thompson, James Waletzky, Don Willits, and Mitch Wyle),
and Mike Zintel for being so kind in writing the foreword.

For the second edition, I'd like to highlight the crew of reviewers and long-time readers who
keep me from shoving my foot too deeply down my throat each month (Adam Barr, Bill
Hanlon, Bulent Elmaci, Clemens Szyperski, Curt Carpenter, David Anson, David Berg, David
Norris, Eric Bush, Irada Sadykhova, James Waletzky, J. D. Meier, Jan Nelson, Jennifer Hamilton,
Josh Lindquist, Kent Sullivan, Matt Ruhlen, Michael Hunter, Mitchell Wyle, Philip Su, Rahim
Sidi, Robert Deupree (Jr.), William Adams, and William Lees); James Waletzky, who wrote two
columns for my readers while | was on sabbatical; Adam Barr and Robert Deupree (Jr.), who
cajoled me into recording a podcast for my column and helped produce it; Devon Musgrave
and Valerie Woolley, who got the second edition published; my managers (Peter Loforte and
Curt Steeb) for supporting my efforts; Mitch Lacey for writing the second edition’s foreword;
and my wife, Karen, who stepped up to edit my columns when | left my editing staff to join
Xbox.com.

Download from Wow! eBook <www.wowebook.com>

Introduction Xix

Finally, I'd like to thank my transcendent high school English teacher (Alan Shapiro) and my
readers who are so generous with their feedback. And most of all Karen and my sons, Alex
and Peter, for making everything | do possible.

Who Should Read This Book

The 91 opinion columns that make up this book were originally written for Microsoft soft-
ware developers and their managers, though they were drawn from my 32 years of experi-
ence in the software industry with six different companies. The editors and | have clarified
language and defined terms that are particular to Microsoft to make the writing accessible to
all software engineers and engineering managers.

The opinions | express in these columns are my own and do not represent those of any of my
current or previous employers, including Microsoft. The same is true of my asides and com-
mentary on the columns and this introduction.

Organization of This Book

I've grouped the columns by topic into 10 chapters. The first six chapters dissect the software
development process, the next three target people issues, and the last chapter critiques how

the software business is run. Tools, techniques, and tips for improvement are spread through-
out the book, and a glossary and index appear at the end of the book for your reference.

Within each chapter, the columns are ordered by the date they were published internally
at Microsoft. The chapters start with a short introduction from me, as me, followed by the
columns as originally written by my alter ego, I. M. Wright. Throughout the columns, I've
inserted “Eric Asides” to explain Microsoft terms, provide updates, or convey additional
context.

The editors and | have kept the columns intact, correcting only grammar and internal refer-
ences. | did change the title of one column to “The toughest job—Poor performers” because
people misinterpreted the previous title, “You're fired.”

Each column starts with a rant, followed by a root-cause analysis of the problem, and end-
ing with suggested improvements. | love word play, alliteration, and pop culture references,
so the columns are full of them. In particular, most of the column titles and subheadings are
either direct references or takeoffs on lyrics, movie quotes, and famous sayings. Yes, | humor
myself, but it's part of the fun and outright catharsis of writing these columns. Enjoy!

XX

Introduction

How Microsoft Is Organized

Because these columns were originally written for an internal Microsoft audience, | thought a
short peek inside Microsoft would be helpful.

Currently, product development at Microsoft is divided into seven business divisions, which
correspond to our major product areas—Windows, Office, Windows Phone, Interactive
Entertainment (including Xbox), Server & Tools (including Windows Server and Visual Studio),
Dynamics, and Online Services (including Bing and MSN).

Each division contains roughly 20 independent product units or triads. The groups within
the divisions typically share source control, build, setup, work-item tracking, and project
coordination, including value proposition, milestone scheduling, release management, and
sustained engineering. Beyond these coordinating services, the product units or triads have
broad autonomy to make their own product, process, and people decisions.

A typical triad has three engineering discipline managers: a group program manager (GPM),
a development manager, and a test manager. A product unit has these three discipline man-
agers report to a product unit manager (PUM). Without a PUM, the triad managers report
within their disciplines to directors and eventually to the division president. The other engi-
neering disciplines—such as user experience, content publishing (for content such as online
help), build, and operations—might report into the product unit or be shared by the division.

People reporting into the discipline managers work on individual features by forming virtual
teams, called feature teams, made up of one or more representatives from each discipline.
Some feature teams choose to use Agile methods, some follow a Lean model, some follow
traditional software engineering models, and some mix and match.

How does Microsoft keep all this diversity and autonomy working effectively and efficiently
toward a shared goal? That's the role of the division's shared project coordination. For exam-
ple, the division value proposition sets and aligns what the key scenarios, quality metrics, and
tenets will be for all triads and their feature teams.

Introduction xxi

Sample Tools and Documents

The sample tools and documents identified in this book as Online Materials can be down-
loaded from the following page:

http://go.microsoft.com/FWLink/?Linkid=220641

Table of Online Materials

Tools Column Chapter

SprintBacklogExample.xls; “The Agile bullet” 2
SprintBacklogTemplate.xIt

ProductBacklogExample.xls; "The Agile bullet” 2
ProductBacklogTemplate.xIt

SpecTemplate.doc; “Bad specs: Who is to blame?” 3
SpecChecklist.doc

InspectionWorksheetExample.xls; “Review this—Inspections” 5
InspectionWorksheetTemplate.xlt;
Pugh Concept Selection Example.xls

InterviewRolePlaying.doc "Out of the interview loop” 9

System Requirements

The tools provided are in Microsoft Office Excel 2003 and Microsoft Office Word 2003
formats. The basic requirement for using the files is to have Word Viewer and Excel Viewer
installed on your computer. You can download both viewers from:

http.//www.microsoft.com/downloads/en/details.aspx?familyid=941b3470-3ae9-4aee-
8f43-c6bb74cd1466&displaylang=en.

Errata & Book Support

We've made every effort to ensure the accuracy of this book and its companion content.
Any errors that have been reported since this book was published are listed on our Microsoft
Press site at oreilly.com:

http.//go.microsoft.com/FWLink/?Linkid=220642.

If you find an error that is not already listed, you can report it to us through the same page.

If you need additional support, email Microsoft Press Book Support at
mspinput@microsoft.com.

Please note that product support for Microsoft software is not offered through the addresses
above.

http://go.microsoft.com/FWLink/?Linkid=220641
http://www.microsoft.com/downloads/en/details.aspx?familyid=941b3470-3ae9-4aee-8f43-c6bb74cd1466&displaylang=en
http://www.microsoft.com/downloads/en/details.aspx?familyid=941b3470-3ae9-4aee-8f43-c6bb74cd1466&displaylang=en
http://go.microsoft.com/FWLink/?Linkid=220642
mailto:mspinput@microsoft.com

xxii Introduction

We Want to Hear from You

At Microsoft Press, your satisfaction is our top priority, and your feedback our most valuable
asset. Please tell us what you think of this book at:

http://www.microsoft.com/learning/booksurvey

The survey is short, and we read every one of your comments and ideas. Thanks in advance
for your input!

Stay in Touch

Let's keep the conversation going! We're on Twitter: http.//twitter.com/MicrosoftPress

http://www.microsoft.com/learning/booksurvey
http://twitter.com/MicrosoftPress

Chapter 1
Project Mismanagement

June 1, 2001: “Dev schedules, flying pigs, and other fantasies”........

October 1, 2001: “Pushing the envelopes: Continued contention

overdev schedules” i e
May 1, 2002: “Are we having fun yet? The joy of triage.”.
December 1, 2004: “Marchingtodeath”,

October 1, 2005: “To tell the truth” i i

September 1, 2008: “l would estimate”. i i
May 1, 2009: “It starts with shipping”.......... ... i it iiiinann..
September 1, 2009: “Right on schedule”o ...
May 1, 2010: “Coordinated agility”,

My first column was published in the June 2001 issue of the Microsoft internal
webzine, “Interface.” | wanted a topic that truly irked me, in order to get into the
character of I. M. Wright. Work scheduling and tracking was perfect.

The great myths of project management still drive me crazy more than any other
topic:

1. People can hit dates (projects can hit dates, but people can't hit dates any
better than they can hit curveballs).

2. Experienced people estimate dates better (they estimate work better, not dates).

3. People must hit dates for projects to hit dates (people can't hit dates, so
if you want your project to hit dates you must manage risk, scope, and
communications, which mitigate the frailty of human beings).

In this chapter, I. M. Wright talks about how to manage risk, scope, and communi-
cations so that your projects are completed on time. The first two columns are
specifically about scheduling, followed by columns on managing late issues (what
we call “bug triage”), death marches, lying to cover issues, quick and accurate
estimation, managing services, managing risk, and coordinating large projects that
might use a mix of methodologies.

One last note: a great insight I've gained from many years at Microsoft is that

project management happens differently at different levels of scale and abstraction.

There is the team or feature level (around 10 people), the project level (between

.8

2 Chapter 1 Project Mismanagement

50 and 5,000 people working on a specific release), and the product level (multiple
releases led by executives). Agile methods work beautifully at the team level;
formal methods work beautifully at the project level; and long-term strategic
planning methods work beautifully at the product level. However, people rarely
work at multiple levels at once; in fact, years typically separate those experiences
for individuals. So people think effective methods at one level should be applied to
others, which is how tragedies are often born. The moral is: small tight groups work
differently than large disjointed organizations. Choose your methods accordingly.

—FEric

June 1, 2001: “Dev schedules, flying pigs,
and other fantasies”

A horse walks into a bar and says, “| can code that feature in two days.”
Dev costing and scheduling is a joke. People who truly believe such non-
sense and depend on it are fools, or green PMs. It's not just an inexact sci-
ence; it's a fabrication. Sure there are people out there who believe that
coding can be refined to a reproducible process with predictable sched-
ules and quality, but then my son still believes in the tooth fairy. The truth
is that unless you are coding something that'’s 10 lines long or is copied
directly from previous work you have no idea how long it is going to take.

Eric Aside Program Managers (PMs) are responsible for specifying the end user experience and
tracking the overall project schedule, among other duties. They are often seen by developers as
a necessary evil and thus are given little respect. That's a shame because being a PM is a difficult
job to do well. Nonetheless, PMs are a fun and easy target for Mr. Wright.

Richter-scale estimating

Sure, you can estimate, but estimates come on a log scale. There’s stuff that takes months,
stuff that takes weeks, stuff that takes days, stuff that takes hours, and stuff that takes min-
utes. When | work with my GPM to schedule a project, we use the "hard/medium/easy” scale
for each feature. Hard means a full dev for a full milestone. Medium means a full dev for two
to three weeks. Easy means a full dev for two to three days. There are no in-betweens, no
hard schedules. Why? Because we've both been around long enough to know better.

In my mind, there are no dates for features on a dev schedule beyond the project dates—
milestones, betas, and release. A good dev schedule works differently. A good dev schedule
simply lists the features to be implemented in each milestone. The "must-have” features go

June 1, 2001: “Dev schedules, flying pigs, and other fantasies” 3

in the first milestone and usually fill it. Fill is based on the number of devs and the “hard/
medium/easy” scale. The “like-to-have” features go in the second milestone. The “wish”
features go in the third milestone. Everything else gets cut. You usually don't cut the “wish”
features and half of the “like-to-have” features until the second week of the third milestone
when everyone panics.

Eric Aside Milestones vary from team to team and product to product. Typically, they range
from 6 to 12 weeks each. They are considered project dates that organizations (50-5,000 people)
use to synchronize their work and review project plans. Individual teams (3—10 people) might use
their own methods to track detailed work within milestones, such as simple work item lists, prod-
uct backlogs, and burn-down charts.

Risk management

This brings me to my main point. Dev costing and scheduling is not about dates or time. It is
about risk—managing risk. We ship software, whether it's a packaged product or web ser-
vice, to deliver the features and functionality that will delight our customers. The risk is that
we won't deliver the right features with the right quality at the right time.

A good dev schedule manages this risk by putting the critical features first—the minimum
required to delight our customers. The "hard/medium/easy” scale determines what is realis-
tic to include in that minimal set. The rest of the features are added in order of priority and
coherency.

Then you code and watch for features that go from harder to easier and from easier to
harder. You shuffle resources to reduce your risk of not shipping your “must-have” features
with high quality in time. Everything else is gravy and a great source of challenging but non-
essential projects for interns.

Eric Aside The irony is that while almost every engineer and manager agrees with ordering
"must-have” features first, few actually follow that advice because “must-have” features are often
boring. They are features such as setup, build, backward compatibility, performance, and test
suites. Yet you can't ship without them, so products often slip because of issues in these areas.

It is so important to shoot down the “feature dates” myth because devs working to meet
feature dates undermine risk management. The only dates that count are project dates,
milestones, betas, etc.—not feature dates. Project dates are widely separated, and there are
few of them. They are much easier to manage around. If devs believe they must meet a date
for a feature, they won't tell you when they are behind. “I'll just work harder or later, eh heh,
eh heh.”

Download from Wow! eBook <www.wowebook.com>

4 Chapter 1 Project Mismanagement

Meanwhile, you are trying to manage risk. One of your risk factors is an overworked staff.
Another is a hurried, poor-quality feature. Another is losing weeks of time when you could
have had two or three devs or more senior devs working on a tough issue. You lose that time
when your dev staff thinks their reviews revolve around hitting feature dates instead of help-
ing you manage the risk to the product’s critical features.

The customer wins

When you make it clear to your dev team that the success of the product depends on your
ability to manage the risk to critical features, everything changes. Sure, getting extra features
is a nice bonus, but the key is the focus on communicating risk areas and working together
to mitigate them.

When everyone understands the goal, everyone works better to achieve it. This also helps to
boost morale when the tough cuts are made, and it rewards mature decisions by junior staff.
In the end, our customers are the big winners because they get the features they really want
with the quality they expect, instead of the features that happened to make it at whatever
level of quality sufficed.

BTW, everything | said about dev scheduling applies equally well to test scheduling.

October 1, 2001: “Pushing the envelopes: Continued
contention over dev schedules”

Time to reply to comments about my June column: “Dev schedules,
flying pigs, and other fantasies.” Most comments were quite flattering,
but | won't bore you with just how right | am. Instead, allow me

to address the ignorant, incessant ramblings of the unenlightened,

yet effusive, readers of this column.

Eric Aside This was my first and only “mail bag” column, with responses to e-mail | received. |
continue to get plenty of “feedback” on my column, but once the column became popular the
number of new topic requests vastly outweighed the value of answering e-mail on a past topic.
However, looking back over this early column makes me wonder if Mr. Wright should empty the
mail bag again.

October 1, 2001: “Pushing the envelopes: Continued contention over dev schedules” 5

Software engineering is clearly ambiguous

I am incredulous at the supposition that development of a feature cannot and
should not be scheduled. The statements in the article accurately portray the
activity of “coding.” Unfortunately, this is what Jr. High schoolers do when they are
throwing together a VB app to decode messages to each other. We, on the other
hand, are supposed to be software engineers and not hackers.

—Incredulous ignoramus

| hear this kind of thing often, and it just needs to stop. Bank managers don't manage banks
and software engineers don't engineer software. They write software, custom software, usu-
ally from scratch, with no prior known measures of nominal operating range, tolerances, fail-
ure rates, or stress conditions. Sure, we have those for systems, but not for coding itself.

| went to an engineering school. Many of my friends were electrical, civil, aeronautical, or
mechanical engineers. Engineers work on projects in which the building blocks and construc-
tion process are well defined, refined, and predictable. While there is great creativity in put-
ting the building blocks together in novel ways to achieve an elegant design for a custom
configuration, even the most unusual constructions fall within the tolerances and rigor of
known qualities and behaviors.

The same cannot be said for software development, although many are trying to reach this
goal. The building blocks of software are too low level and varied. Their interactions with
each other are too unpredictable. The complexities of large software systems—such as
Windows, Office, Visual Studio, and the core MSN properties—are so far beyond the normal
scope of engineering that it is beyond hope to make even gross estimates on things like
mean-time-to-failure of even small function changes in those systems.

So for better or worse, it's time to get past wishful thinking and high ideals and return to
reality. We've got to accept that we are developers, not engineers. We simply cannot expect
the predictability that comes with hundreds or even thousands of years of experience in
more traditional engineering any more than we can expect a computer to do what we want
instead of what we tell it. We just aren't there yet.

Eric Aside Now, six years after | wrote this column, Microsoft measures mean-time-to-failure

of much of our software. In addition, methods are becoming available to treat programming as
engineering, which | describe in the later column, "A software odyssey—From craft to engineer-
ing,” in Chapter 5. Even so, | stand by this column as an accurate reflection of software develop-
ment as a field that has grown past its infancy but remains in its teenage years as compared to its
fully grown engineering brethren.

Chapter 1 Project Mismanagement

Believe half of what you see and none of what you hear

If I'm relying on another team/product group for a feature or piece of code, |
sure don't want to hear, “It should be done in this milestone.” | want dates. | need
specifics.

—In need of a date

| could write several columns on dependencies and component teams, and perhaps | will, but
for now I'll just discuss dependency dev schedules. First of all, if your dependency did have

a dev schedule, would you believe it? If you said, “Sure, what choice do | have?” start taking
Pepcid now before your ulcer develops. It's not only the dev schedule either. Don't believe
anything dependencies say—ever. If they are in the next room and tell you it's raining, check
your window first.

This doesn't mean you can't work with dependencies—you can, and it can be a great experi-
ence and a windfall for your team, product, and customers. You just must keep a close eye

on what's happening. Get regular drops and conduct automated testing of those drops. Get
their read/write RAID RDQs and watch their counts and problem areas. Send your PM to their
triage meetings. Get on their e-mail aliases.

Eric Aside Check the glossary for help with these bug-tracking references.

Basically, watch dependencies like a hawk; they are an extension of your team and your prod-
uct. The more you stay in touch and current, the better you will be able to account for short-
comings and affect changes. As for when features will be ready, you simply must rely on your
influence to up priorities and on your communication channels and private testing to know
when features are really ready.

Motivation: It's not just pizza and beer

Your general sentiments make more sense for early level planning of a project
than the final milestone before shipping. You need to address issues such as how
schedules are often used as management tools to drive performance of the team,
providing deadlines and time constraints to execute against.

—Can't find the gas pedal

First, let me reiterate, if you hold devs to features dates, they will lie and cheat to meet the
dates. They will lie about status, and they will cheat on quality and completeness. If you don't
want to experience either of these from your dev team, you need to come up with a bet-

ter motivational mechanism. I've used three different approaches in coordination with each
other to great effect.

October 1, 2001: “Pushing the envelopes: Continued contention over dev schedules” 7

First, at a basic level, there are the Richter-scale estimates themselves. My devs know that

| expect each feature to be done in roughly that amount of time. If a two-week task takes
two and a half weeks, that's probably okay. If it's taking much longer, there’s usually a good
reason and the dev will let me know. The lack of a good reason provides ample motivation.
However, because there’s no hard date, lying and cheating are rare.

The second motivational tool is finishing the milestone. This can be dangerous in that it can
invite shortcuts, but the overall effect is to encourage devs to work hard from the start and
to know when they are behind. The key difference between a feature date and a milestone
date is that the latter is a team date. The whole team works together to hit it. Therefore,
there is less individual pressure to cut corners. However, that still can happen, which leads me
to the last and most effective technique.

Eric Aside This notion of a self-directed team working toward a clearly defined common goal is
central to many agile techniques, though back in 2001 | didn't know it.

The last motivational tool that | use is by far the best. | make it clear to the team which fea-
tures are the must-ship features, the ones we must finish first. | tell them that everything else
can and will be cut if necessary. Unfortunately, the must-ship features are often among the
most mundane to code and the least interesting to brag about. So | tell my team that if they
want to work on the cool features, they must first complete and stabilize the critical features.
Then they will be rewarded by working on the less critical and far flashier stuff. This kind of
motivation is positive, constructive, and extremely effective. Works every time.

Sinking on a date

Continued from the previous quote: [You also need to address] that schedules are
an absolute necessity for aligning the work of different functional areas (not just
Dev, but PM, QA, UE, Marketing, external partners).

—Brain out of alignment

If you really needed solid feature dates to synchronize disciplines and dependencies, no soft-
ware would ever ship. Of course, we do ship software all the time—we even shipped a huge
effort, Office XP, on the exact date planned two years in advance. Thus, something else must
be the key.

What really matters is agreeing on order, cost, and method, and then providing timely status
reports. The agreements should be negotiated across the disciplines, and the process for giv-
ing status should be well defined and should avoid blocking work.

B Order Negotiating the order of work on features is nothing new, although there are
some groups who never agree on priorities.

8 Chapter 1 Project Mismanagement

B Cost Negotiating cost is often done between the dev and PM. (For example, a dev
says, “If we use a standard control, it'll save you two weeks.”) But sometimes it’s left just
to the dev. It should also include test and ops.

B Method Negotiating the methods to be used is frequently done for PM specs, but it's
done less frequently for dev and test specs—to their detriment.

B Status reporting As for timely reporting of status, you really need check-in mail and/
or test release documents (TRDs) to keep PM, test, and ops aware of progress. Test
needs to use alerts for blocking bugs. And PM should use something like spec change
requests (SCRs) to report spec changes. (To learn more about SCRs, read "Late specs:
Fact of life or genetic defect?” in Chapter 3.)

If the different groups can plan the order of their work, know about how long it will take,
have confidence in the methods used, and maintain up-to-date status reports, projects hum.
Problems are found, risk is mitigated, and surprises are few. More importantly, no one is
pressured to do the wrong thing by artificial dates. Instead, everyone works toward the same
goal—shipping a delightful experience to our customers.

May 1, 2002: “Are we having fun yet? The joy of triage.”
Tell me if | don’t have this concept nailed...

Program managers want an infinite number of features in zero time, tes-
ters and service operations staff want zero features over infinite time, and
developers just want to be left alone to code cool stuff. Now, put the leads
of each of these disciplines with their conflicting goals in the same room,
shut the door, and give them something to fight over. What happens?
Triage!

Eric Aside As product development issues arise (such as incomplete work items, bugs, and
design changes), they are tracked in a work item database. Triage meetings are held to pri-
oritize the issues and decide how each will be addressed. This can be a source of conflict
(understatement).

It's amazing that blood doesn’t start leaking out from under the triage room door. Of course,
that's what solvents are for. But does it have to be a bloodbath? Most triage sessions are cer-
tainly set up that way. Some of the most violent arguments I've seen at Microsoft have hap-
pened behind the triage door. Is this bad, or is it “by design”?

War is hell

As anyone who's been through a brutal triage can tell you, it's not good. Rough triages leave
you battered and exhausted even if you win most of the arguments.

May 1, 2002: “Are we having fun yet? The joy of triage.” 9

Basically, dysfunctional triages go hand in hand with dysfunctional teams. They generate
bad blood between team members and often set a course of reprisals and unconstructive
behavior.

Why should this be? We encourage passion around here. We want people to fight for what
they believe and to make the right decisions for our customers. What's wrong with a little
healthy competition? Well, when it’s not little and it's not healthy, it's not good.

It's nothing personal
Bugs shouldn’t be considered personal, but they are.

B To the tester who found it, the bug represents the quality of his labor: “What do you
mean the bug isn't good enough to fix?"

B To the program manager who wrote the feature, the bug represents a challenge to her
design: “It breaks the whole idea of the feature!”

B To the service ops staff, the bug represents real and continuing work: “Yeah, you don’t
care about the bug; you're not the one who's going to have to come in at 3:00 A.M. to
reboot the server!”

Eric Aside Interesting note here about 3:00 A.M. reboots. Like most software service
companies, Microsoft is now moving away from service operations being on call 24/7.
Instead, we are designing services to automatically heal themselves (retry, restart, reboot,
reimage, replace). Service operations people, working regular business hours, simply swap
components on the automatically generated replacement list.

B To the developer, the bug represents a personal value judgment: “It's not that bad.”

Triage decisions should be based on doing what is right for our customers and for Microsoft,
not on personal feelings. Yet, because of the personal investment that each discipline places
on bugs, triage discussions get off track in a heartbeat.

Five golden rules of triage
How can you keep triage on track and constructive? Follow my five golden rules of triage:

1. Shut the door. Triage is a negotiation process, and negotiations are best held in pri-
vate. It is far easier to compromise, to bargain, and to be candid when the decision-
making process is confidential. It also allows the triage team members to present their
decisions as team decisions.

2. All decisions are team decisions. After a consensus is reached, it is no longer the
decision of individuals, but of the group. Everyone stands behind the choices as a

10 Chapter 1 Project Mismanagement

team—with no qualifications. A triage team member should be able to defend every
decision as if it were her own.

3. Just one representative per discipline. Triage must be decisive. Unfortunately, the
more people involved, the longer the process; the more personal feelings, the more
difficult it is to reach a conclusion. A single individual can make a decision the fastest,
but you need the viewpoints of each discipline to make an informed choice. So the best
compromise between decisiveness and discipline perspective is reached through hav-
ing one representative per discipline.

4. One person is designated to have the final say. If the team can’t reach consensus,
you need someone to make the call—ideally, this never happens. Personally, | prefer
the PM to have the final say because PMs are used to collaboration and realize the con-
sequences dictating decisions. They tend not to abuse the privilege. However, the very
threat that someone from another discipline (let alone the PM!) could impose his deci-
sion on the team is enough to drive people to consensus.

5. All decisions are by “Quaker” consensus. This is the most important rule. Regular
consensus implies that everyone agrees, but that bar is too high to meet for something
as difficult and personal as triage. “Quaker” consensus means that no one objects—the
team must work toward solutions that everyone can live with. This presents a far more
achievable and often more optimal outcome. (Note that "Quaker” simply refers to the
people who came up with this notion; it has no religious significance.)

Follow these five rules and your triage will become more cordial, constructive, and efficient.
However, there are some subtleties that are worth fleshing out.

The devil is in the details
Here are a few more details that can help your triage run more smoothly:

B [f your arguments are about people instead of bugs, change the focus to what's best
for the customer and the long-term stock price. This perspective takes personal issues
out of the discussion and puts the focus where it should be.

Eric Aside Throughout the columns, | talk about focusing on the customer and the busi-
ness, instead of on personal issues. You might wonder why you shouldn't just think about
the customer and leave the long-term stock price out of it. I'm sympathetic to this point of
view, but | also know that we don't get to serve the customer if we are no longer in busi-
ness. It helps to have a business plan that aligns our work to provide sustainable benefits
to our customers.

May 1, 2002: “Are we having fun yet? The joy of triage.” 11

B |f you need extra information about a bug or a fix, it's sometimes necessary to invite
someone from outside the triage team to join you, either by phone or in person.
Always complete your questioning and bid them farewell before you begin debating
your decision. Otherwise, confidentiality is broken and the decision may cease to be a
triage decision.

B |f you'd like to teach a member of your team about the triage process, invite him to join
a triage session, but instruct him to be a fly on the wall during discussions and stress
the confidential nature of the negotiating process.

It's hard to let go, isn't it?

If one or more of the triage members can't seem to let go of an issue, give them a small
number of “silver bullets.” The rule behind silver bullets is that you can use them at any time
to get your way, but when they are used, they are gone. When a person won't give in on an
issue ask, “Do you want to use one of your silver bullets?” If so, the team is bound to support
the decision. Usually the person will say, “Uh, no it's not that important,” and the team can
move on.

Eric Aside This triage column has produced a significant amount of controversy over the years,
particularly this paragraph about “silver bullets.” Some complain about using the term “bullet”
instead of “token,” but the primary complaint is that a critical team decision could be made by an
individual using his “silver bullet.” In practice, this never happens. Silver bullets help people prior-
itize by associating importance with a scarce resource. People who don't need the help don't use
their supply. Thus, if someone abused a silver bullet on a critical issue, there's always someone
else with spare tokens to counter. That said, I've never heard of this happening.

Finally, when it comes to resolving the triaged bugs in a database:

B Always use the "Triage” label to indicate that this was a triage decision.

B Always explain the thinking behind the triage team'’s decisions.

B Never resolve a bug (especially external bugs) unless that's the last time you want to
see it. Too often, teams resolve ship-blocking bugs as “external” or “postponed” when
what they mean is, “We don't want to deal with this bug now, we'll deal with it later.”
But because the bug is “resolved,” it falls off the “active” radar and the issue gets lost.

Eric Aside You can find my column on bug fields, priorities, and resolution values, called “Am |
bugging you? Bug Reports,” in Chapter 2.

12

Chapter 1 Project Mismanagement

Take care of the little things

Triage is arguably one of the most important duties that you perform as a team. Triage
health almost always directly corresponds to the health of the project and of the group.
The real beauty of this relationship is that making triage sessions more positive, productive,
and pleasant usually leads to the same change in your work and your team. But fixing triage
issues is much easier and involves fewer people than fixing entire team and project issues.

The best thing about improving your team'’s triage sessions is that when you get it right, it
can be the most fun that you have all day. When triage focuses on bugs instead of people
and consensus instead of carnage, the stress of the exercise comes out as humor instead of
aggression and frustration. Teams working well together often have triages that are filled
with wisecracks, inside jokes, twisted ironies, and hilarious misstatements. Make the right
adjustments to your triage techniques, and the laughter may be echoing down the halls.
Better keep the door shut.

December 1, 2004: “Marching to death”

Ever been in a project death march? Perhaps you are in one now. There
are many definitions of such projects. It basically comes down to having
far too much to do in far too little time, so you are asked to work long
hours for a long time to make up the difference. Death marches get their
name from their length, effort, and the toll they take on the participants.
(I apologize for how insulting this is to those whose relatives experienced
actual death marches in WWII; but unfortunately, software is full of insen-
sitive word usage.)

It's hard to fathom why groups continue to employ death marches, given that they are
almost certain to fail, sometimes spectacularly. After all, by definition you are marching to
death. The allure escapes me.

Stabs in the dark

Inept management continues to engage in death marches, so I'll take a few stabs at explain-
ing why.

Eric Aside Death marches are hardly unique to Microsoft, nor are they pervasive at Microsoft,
a fact | learned much to my surprise when | joined the company. Microsoft's reputation for long
hours preceded it when | joined the company in 1995. | was concerned because | had a two-
year-old boy and another child in the works, but my boss assured me that death marches were
not the rule. His word was true, yet there are isolated instances when management at Microsoft
and other companies still resort to this inane and arcane practice.

December 1, 2004: “Marching to death” 13

B Management is remarkably stupid. Managers choose to act without thinking
about the consequences. They take a simpleton’s approach: Too much work to do?
Work harder. At least managers can say they're doing something, even if it is probably
wrong.

B Management is incredibly naive. Managers don't know that a death march is
doomed to fail. Somehow they were either asleep for the last 25 years or never read
a book, article, or website. They assume that adding at least four hours a day and two
days a week will double productivity. The math works out—unfortunately, humans
aren't linear.

B Management is tragically foolish. Managers think that their team will be the
one to overcome the insurmountable odds. Rules and records were meant to be bro-
ken. They've got the best team in the world, and their team will rise to the challenge.
Apparently, they see no difference between outrunning a bull (hard) and outrunning a
bullet (impossible).

B Management is unconscionably irresponsible. Managers know that a death march
will fail, destroying their team in the process; but they do it anyway in an effort to be
worshiped as heroes. Managers reward this behavior with free meals, gold stars, and
high ratings, knowing that our customers and partners won't be screwed by the gar-
bage we deliver until after the next review period. | think these managers are the most
deserving of a verbal pummeling by Steve’s staff.

Eric Aside Steve refers to Steve Ballmer, our beloved Chief Executive Officer, who is a
strong advocate for work-life balance and practices it himself. I've met him several times
while he was cheering on his son at a basketball game or going out to a movie with his
wife.

B Management is unaccountably spineless. Managers know that the death march is
doomed, but they lack the courage to say “no.” Because they won't be held responsible
if they follow the herd, there is little consequence for these cowards. Sure, the project
will fail and their employees will hate them and leave, but at least they'll have war sto-
ries to share with their gutless, pathetic pals.

Many people have written about the ineffectiveness of software project death marches, but
somehow the practice continues. | can't reason with the foolish and irresponsible, but | can
enlighten the stupid and naive and give alternatives to the spineless.

14 Chapter 1 Project Mismanagement

A litany of failure

Some enlightenment for the ignorant: Death marches fail because they...

Are set up for failure. By definition you have far too much to do in far too little time.
Of course you fail.

Encourage people to take shortcuts. Nothing could be more natural than to find
cheap ways to leave out work when you are under pressure. Unfortunately, shortcuts
lower quality and add risk. That may be okay for small items and short time periods.

But those risks and poor quality bite you when the project drags on.

Don’t give you time to think. Projects need slack time to be effective. People need
time to think, read, and discuss. Without that time, only your first guess is applied. First
guesses are often wrong, causing poor design, planning, and quality, and leading to
dramatic rework or catastrophic defects later.

Don’t give you time to communicate. You could make a good argument that mis-
communication and misunderstanding are at the root of all evil. Even good projects
commonly fail because of poor communication. When people don't have spare time
and work long hours, they communicate less and with less effectiveness. The level of
miscommunication becomes an insurmountable obstacle.

Create tension, stress, and dysfunction. Congeniality is the first to go when the
pressure is on. Issues become personal. Accidents get amplified and misconstrued.
Voices get raised, or even worse, people stop talking.

Demoralize and decimate the workforce. All the bitterness, all the tension, and all
the long hours away from family and friends take their tolls on the psyche and relation-
ships. When the project inevitably fails to meet its dates and quality goals, people often
snap. If you're lucky, it just means switching groups at the end of the project. If you're
unlucky, it means leaving the company, divorce, health issues, or even life-threatening
addictions.

By the way, managers often confuse the long hours some employees ordinarily put in
with death marches. Death marches are an entirely different dynamic. The difference
is that a death march forces you to put in those hours. When people voluntarily put in
long hours, it's often because they love it. Such hours are full of slack time. There isn't
any tension or cause for taking shortcuts.

Eric Aside This is a critical point people often miss. Voluntary long hours are completely
different from death marches.

December 1, 2004: “Marching to death” 15

B Undermine confidence in the process. [t doesn't take a genius to realize that death
marches are a response to something going wrong. The message this sends to our
employees, customers, and partners isn't dedication, it's incompetence. Avoiding the
real issues and just working harder only undermine our corporate standing further.

B Don't solve the problem. Working longer hours doesn't solve the underlying prob-
lem that caused the project team to have far too much to do in far too little time. Until
the underlying problem is solved, no one should expect the project to do anything but
get worse.

B Reduce your options. When you've taken shortcuts, introduced poor designs and
plans, created dramatic rework and defects, randomized your messaging, encouraged
people to slit each other’s throats, demoralized the staff, undermined confidence in our
ability to deliver, and still failed to hit dates and quality goals—Ileaving all the original
issues unresolved—you have few options left. Usually this leads to dropping the quality
bar, slipping the schedule, and continuing the death march. Nice job.

The turning point

So, if you find yourself with far too much to do in far too little time, what should you do? On
a practical level, the answer is remarkably easy. Figure out why you've got far too much to do
and far too little time to do it.

The answer isn't, “Because those are the dates and requirements from management.” Why
are those the dates and requirements from management? What would management do

if you didn't hit certain dates or certain requirements? Would they slip the schedule? How
much? Would they cut? Which features? Are there more fundamental changes you could
make in the process or approach that would alter the dynamic? Tell management that your
goal is to hit the dates and requirements, but you have to plan for the worst case.

Then plan for the worst case. Build a plan that hits the worst acceptable dates with the least
acceptable features. If you are still left with too much to do for the available time, raise the
general alarm. Your project is dead in the water. If the worst-case plan is perfectly achievable,
focus all your efforts on achieving it. Message to your employees that doing more means a
review score of 3.5+, but doing less means a score below a 3.0.

Eric Aside The numbers refer to the old Microsoft rating system, which ranged from 2.5 to 4.5
(the higher the rating, the better the rewards). While a 3.0 was acceptable, most people pursued
and received a 3.5 or higher.

16 Chapter 1 Project Mismanagement

The road less traveled

What you've done is escaped from the death march and created slack time to improve. Your
team will likely go far beyond the minimum, but they will do so without taking shortcuts,
making poor decisions, or engaging in cannibalism. You will deliver what's needed on time
and build confidence with your partners and customers.

As reasonable as this sounds, it is hard to do on an emotional level. Planning for the worst
case feels like giving up. It feels weak and cowardly—like you can’t handle a challenge. How
ironic; in actuality, it is entirely the opposite.

Not facing the crisis is weak and cowardly. Pretending the worst won't happen is deceitful
and irresponsible. Show some guts. Face the facts. Be smart and save your partners, custom-
ers, and employees from the anguish at the end of the road. Come out on the other side with
value delivered and with your team, your life, and your pride intact.

Eric Aside On a recent nine-month project, my team had a critical service dependency take a
three-month slip toward the end of the project. My team went from having four months to com-
plete a major feature to one month. We could not slip the schedule, and we could not cut the
feature (both were already committed to partners). We didn’t go through a death march. Instead,
we moved into our dependency’s development environment and worked in parallel as they com-
pleted their service. This strategy not only recovered time but also reduced rework since we were
able to give feedback to the service team on very early builds. We shipped on time with great
customer reviews. It was difficult and people did work hard, but they also took time off and were
pressured only by the desire to ship a high-quality product and support their teammates. We
retained everyone after release.

October 1, 2005: “To tell the truth”

I cannot tell a lie—catchy phrase, but a children’s tale. Everybody lies
from time to time. Sometimes it's strategically leaving out details.
Sometimes it's not saying how you truly feel. Sometimes it's an out-and-
out fabrication. No matter the reason or circumstance—Ilying is deception,
pure and simple.

Some might rationalize this behavior as “white lies,” but it amounts to

the same thing: dishonesty. If someone catches me lying, no matter how
slight, | fess up immediately, sincerely, and remorsefully. When | was a kid,
| would perpetuate and cover up the deception. But I've since learned that covering it up

is far more damaging than the original offense. Most people, including me, aren't lying to
offend anyone; our motivation is pure expediency.

October 1, 2005: “To tell the truth” 17

Therein lies the core truth: deception is basically a quick and dirty way to avoid a problem.
How is this relevant to software development? Because by focusing on “when” and “why"
you or your team lie, you can pinpoint everything from quality issues to retention troubles to
increased productivity.

Suffer from delusions

Lying is one of a handful of valuable process canaries that can warn you of trouble. Why?
Because lying, cycle time, work in progress, and irreplaceable people hide problems. Long
cycle times and large amounts of work in progress hide workflow difficulties. Irreplaceable
people hide tool, training, and repeatability problems. Lying can hide just about anything.
Scrutinizing these process canaries exposes the problems and enables improvement.

Eric Aside | write about each of these process canaries in other columns: “Lean: More than
good pastrami” in Chapter 2, and “Go with the flow—Retention and turnover” in Chapter 9. As
for the five whys, like Lean, that concept comes from Toyota.

The key is getting to the root cause of the lie. One of the best ways to do this is to apply "The
five whys"—that is, ask "why” five times:

B Why you are lying? What pain are you hiding from?

B Why hide from that pain? What's the danger?

B Why would that happen? Is there a way to mitigate the danger?

B Why aren’t you mitigating the danger already? What actions do you need to take?

B Why are you just sitting there? Act!

To practice applying these ideas, let's go over some common examples of lying at work. We'll
apply the five whys to uncover the root cause and discuss how to fix it. Here are our foul
foursome of falsehoods:

B Perverting the meaning of the word “Done”
B Weaseling out of a tough review message
B Face-lifting progress reports for your clients and boss

B Denying rumors about a reorganization

Put a fork in me

Say your dev team is supposed to finish up feature development on Monday. On Monday,
you go through the team and everyone says, “I'm done.” Later, you find that more than half
the features are full of bugs and a quarter don't handle error conditions, accessibility, or

Download from Wow! eBook <www.wowebook.com>

18 Chapter 1 Project Mismanagement

stress. You could ask, “Why does my team stink?” But the better question is, “Why did my
team lie?” Let's ask the five whys:

B Why did my team lie about being done; what are they hiding from? They had a
deadline to meet, and not meeting it would drop their standing within the team. The
criterion for meeting the deadline was simply saying they were done.

B Why just say you're done and not mean it—what’s the danger? No one wants to
look bad. Unfortunately, there was no personal danger to saying, “I'm done.” So why
wouldn't they lie? The danger was to the team. That’s the real problem.

B Why would that happen; can you mitigate it? There was no verifiable team defi-
nition for “done.” This opened the door to deception. To mitigate it, you need a clear
definition, accepted by the team, with an objective means of verifying it has been met.

B Why don’t you have a clear definition of “done”? What more do you
need? When you agree on a definition and means of verification, you need to put
the tools in place. Say the definition is 60% unit test coverage with 95% of tests pass-
ing, along with a three-peer code inspection that finds 80% of the bugs. Now you
need to add code coverage and a test harness to your build for the unit tests, as well
as an inspection process with the appropriate time scheduled for the inspectors and
inspections.

B Why are you sitting there? Most of what you need is in Toolbox—aside from the
nerve to challenge the meaning of “done” in the first place. The key is to focus on the
cause of the deception, and then rectify the root of the problem.

Eric Aside Toolbox is a Microsoft internal repository for shared tools and code. It holds
tools that measure code coverage, run unit tests, and even calculate bug yields for code
inspections. Many of these internal tools make their way into Visual Studio, Office Online
Templates, and other shipping products.

Give me a straight answer

You manage a 4.0 performer you really value, and you've told her so. Your division runs a
calibration meeting, and your 4.0 performer drops to a 3.5 relative to her peers in the divi-
sion. It's easy to say to your employee, “Well, | thought you deserved a 4.0, but as you know,
the review system is relative and | can't always give you the rating you deserve.”

You're lying, not because what you are saying isn't true, but because you're leaving out your
role in the process. Again, let’s cover the five whys:

B Why leave out your responsibility; what are you hiding from? You like the
employee and don't want to be blamed.

October 1, 2005: “To tell the truth” 19

B Why hide from blame; what’s the danger? Your employee might not like you and
may leave the team.

B Why would that happen; can you mitigate it? You are the messenger, your
employee feels helpless, and you are no help. You can mitigate the impact by telling
your employee how to get the review score she wants.

B Why aren’t you already telling her; what more do you need? You need to know
why she got the 3.5 instead of the people who were awarded 4.0.

Eric Aside The process around differentiated pay based on performance is a com-
mon source of complaints across the high technology industry. Like the numerical rating
system, we've changed the process many times at Microsoft, but it's always been about
comparing your work to the work of others doing the same job at the same level of
responsibility. What managers should always do is understand and clearly articulate how
their employees can improve to compare more favorably.

B Why are yous sitting there? Find out what differentiated the 4.0 from the 3.5 per-
formers, and then tell your employee. She'll have clear guidance on how to improve
and be in control of that improvement. Sure, she'll still be unhappy, but at least you
helped her and she can do something about it.

Lipstick on a pig

Your team is falling behind on the schedule. You've got a ton of bugs and can't keep up. Your
clients and boss demand to know the status. Instead of a fair representation, you paint a rosy
picture in the hope that your team will be left alone long enough to catch up. Aside from
feeling bad about being a gutless slimeball, what should you do? Here are the five whys:

B Why the desperate move; what are you hiding from? You don't want to look bad
or have others interfere.

B Why hide from blame; what’s the danger? You're afraid your project will get cut or
transferred to someone else because of your perceived incompetence.

B Why would that happen; can you mitigate it? If your clients and boss get blind-
sided by your team slipping, they won't trust you to take care of it. You can mitigate the
problem by being transparent so that no one gets surprised, and by having a solid plan
to get on track, which earns you the confidence of your clients and boss.

B Why aren’t you already transparent; what more do you need? |It's a ton of work
to constantly collect status from your team and post it or send e-mail. Instead, post
your schedule and bug data directly on your SharePoint site, warts and all. Have your
team update it directly, right there for the world to see. Use charts to make progress
(or lack thereof) obvious. When it's posted, point your team to it. Everyone will get the
picture, and you'll be able to drive a plan to get on track.

20

Chapter 1 Project Mismanagement

B Why are you sitting there? None of this is hard. Transparency drives the right
behavior. It also drives trust, which really is the key asset to being successful.

Look at all these rumors

Rumors are flying around about another reorg. Your PUM has told you to keep it quiet; but
meanwhile, your team is getting randomized. Naturally, when the topic comes up at your
team meeting, you deny any knowledge of the reorg; instead, you remind folks of the evil of
rumors and that the team needs to focus on their deliverables. However, you are overcome
with guilt, dreading the day when your whole team realizes that you lied to their faces.

Eric Aside A Product Unit Manager (PUM) is the first level of multidisciplinary management at
Microsoft. PUMs are typically responsible for individual products, such as Excel, that are part of
larger product lines, such as Office. PUMs might also be responsible for significant components
of larger products, such as DirectX for Windows. Reorganizations, also known as reorgs, typically
start at the top levels of management and slowly work their way down over the following 9 to

18 months. | wrote more about reorgs in my column “How | learned to stop worrying and love
reorgs,” which appears in Chapter 10. PUMs are becoming a rare species at Microsoft as the com-
pany moves toward a functional organizational structure, as | describe in “Are we functional?,”
also in Chapter 10.

B Why deny the rumors; what are you hiding from? Basically, your boss told you to
deny them. You don't want your team randomized any more than your boss does.

B Why worry about randomization; what’s the danger? You're concerned your team
will get so caught up in the rumors that they'll fail to meet their commitments. In addi-
tion, some team members might even leave the group for fear of unwanted changes.

B Why would that happen; can you mitigate it? Most team members, particularly
the senior ones, know how bad reorgs can sometimes get. However, no one (including
you) knows if the reorg will really happen or how a reorg will actually turn out. So your
team’s concerns are without a strong base in fact.

B Why is your team still taking the rumors seriously; what more can you do? In
this case, the problem lies squarely with you. You are taking the rumors too seriously,
hiding what you know from your team. You should know by now that only roughly one
in three planned reorgs actually happens.

B Why are you sitting there? The solution is simple and obvious here: tell the
truth. "Yeah, I've heard lots of rumors too. We talk about them in our staff meetings.
However, the bottom line is that no one knows whether or not there really will be a
reorg until it actually happens. Most planned reorgs don’t happen, and we're going to
look pretty foolish missing our commitments because we were daydreaming.”

September 1, 2008: “I would estimate” 21
| want the truth

| make no judgments about whether or not people should always tell the truth. To do so
would be hypocritical and lead to awkward situations when my mother-in-law asks what |
think about her decorating.

However, we all work for the same company. You shouldn’t have to lie to your coworkers
about business issues. Lying hides problems that need exposure. If you're feeling the need
to lie, ask yourself why. Then ask again until you resolve what the real problem is. People
wonder about how they can deliver on the fourth pillar of Trustworthy Computing, “Business
Integrity.” Well, now you know.

September 1, 2008: “lI would estimate”

When I'm discussing challenges with fellow engineers, the first topic
that comes up isn't estimation—it’s career and people challenges. That's
why those issues are so rampant in these rants. However, "How do you
generate task estimates?” is always among the top non-moaning-about-
your-manager-or-mates topics. After all, estimation is predicting the
future. There are so many unknowns and unforeseen issues that it's impos-
sible to provide the accurate estimates demented despots demand. Isn't
it? It must be. Right?

Wrong. Estimation is among the most trivial tasks an engineer has to perform on a regular
basis. Get over yourself, it is. It's so easy that there are dozens of seemingly different meth-
ods that all give you remarkably accurate predictions of completion time. All those methods
come down to one simple concept—how long it took last time is how long it will take this
time. Nothing could be easier.

Yeah, you've got to understand the work well enough to compare it to previous work, but
that isn't too tough either. No, the real challenge isn't task estimation; the real challenge is
accepting the estimate. Estimation is easy; acceptance is hard.

Eric Aside There are many consultants, seminars, and training programs on estimation. I'm sure
they'd tell you that estimation is tricky and focus on techniques to avoid the many pitfalls. At the
end of the day, what really matters is believing the estimate. It's the hardest thing to do, yet it
has the most significant impact on accuracy.

22

Chapter 1 Project Mismanagement

No one would accept the program

Let's pretend for a moment that you actually keep track of how long it takes you in calendar
days to perform various tasks. (You do—the information is right there in your e-mail dates.)
Let's further imagine that you provided those previous times as estimates for doing similar
tasks today (you'd be quite accurate). What would the reaction be from your project leads
and managers? My guess: "“Oh come on, you've got to be kidding me!”

This is fun, so let's take it a step further. Let's say you told your project leads and managers
that your estimates were based on hard dates collected from your previous project. What
reasons would they give for not believing this hard data? Here's the big three:

B last time was different.
B You get faster the second time.

B Weird stuff happened last time.

Let's break down these feeble fallacies one at time.

It's a different kind of flying altogether

The first excuse your manager or project lead will have to reject your hard schedule data
from the previous project is that the previous project was different. Things have changed.
Perhaps the build system and tools have changed, the design change request process
changed, the requirements changed, management changed, or perhaps the moon is in a dif-
ferent position relative to Saturn this time.

Out of all those excuses, only two have a small chance of affecting your estimates—the tool
and process changes. Every other factor is superfluous with little or no impact to cycle time.

Even the tool and process changes would have to be extreme to noticeably affect the accu-
racy of your estimates. Tool changes would have to cut end-to-end build times by a factor of
five. Process changes would have to reduce the time of weekly activities by days. Otherwise,
the impact is just noise in the estimate.

Look, the more the world changes, the more it stays the same. Deal with it.

Eric Aside Let's say a task takes you two weeks, give or take a day or two. The tool or process
change would need to save you at least one full day every two weeks to matter.

September 1, 2008: “I would estimate” 23
I'm getting better

The second excuse to reject your hard schedule data from the previous project is that you
get better the second time around. The funny thing is that you do get better the second time
around. The problem is that you're not doing the same project (hopefully). The only things
that are the same are the tools, process, project scope, and the general task of software
engineering.

You should already be well versed in the general task of software engineering, so getting
better at the details of the previous project has no impact on the estimates for the next proj-
ect. Of course, if you're fresh out of school, then the second project will take less time than
the first.

If you did change tools and processes, your performance should actually be worse because it
will be your first time using them. That's okay if the changes are small or the benefits are big.
Just don't kid yourself about the impact.

You do want to compare the current project to a prior project with similar scope. The better
the match, the more accurate the estimate. The big differences between estimation tech-
niques are how they produce matches.

Oh no, not again

The final excuses your manager or project lead will have to reject your hard schedule data
from the previous project are all the “weird” things that happened last time. There was that
unexpected security patch, the feature that was far more complex than anticipated, the reor-
ganization and associated project reset, not to mention the snowstorm, and that earthquake,
yeah, the earthquake. There’s no way you should count the earthquake!

You count the frigging earthquake. There's always a surprise patch, feature, reorganization,
and natural disaster waiting for you over the course of a project. Always. Random events
happen, but their impact on the schedule isn't as unpredictable as the events themselves.
Thanks to Lyapunov's central limit theorem, their overall impact averages out. However long
it took last time is likely to be nearly the same this time. That is, as long as you don't pretend
this time will be different.

Same old wine

Okay, we've proven your project leads and managers are in denial. As a result, they force you
to make ridiculous estimates you don't believe, only to blame you later for missing them.

http://en.wikipedia.org/wiki/Lyapunov%27s_central_limit_theorem

24

Chapter 1 Project Mismanagement

We've shown that accurate estimates are almost trivial to make. The big question remains,
“How can you turn your trivial and accurate estimates into ones your project leads and man-
agers will believe?”

That's where task hours are so handy. Instead of making your estimates in calendar days, you
make them in task hours—the number of hours it would take if there were no earthquakes,
e-mail, or bathroom breaks. Without those distractions, your estimates look far smaller and
more reasonable, even though they're no different.

Task hour estimates are slightly harder to make because you don't have the data lying
around in your inbox. However, you can estimate task hours quickly, easily, and accurately
with a simple technique like planning poker (or it's more accurate and sophisticated sibling,
Wideband Delphi).

In planning poker, three or more engineers each estimate the same task privately around a
table. They all reveal their estimates simultaneously so no one exerts undue influence. If the
estimates match, you're done. If they differ, the high and low estimators explain themselves,
the group discusses their thinking, and then the process repeats until the estimates agree.
The process also surfaces assumptions before they become a problem.

Once you have believable estimates in task hours, the argument isn't about how long the
tasks will take. It's about how many hours you spend on task in a week. Even after subtract-
ing vacation, training, and big group meetings, most teams spend less than half of working
hours on task. The rest of their time is in meetings, answering e-mail, lunch breaks, and so
on. If your project leads and managers don't believe it, simply have the team spend two
weeks tracking their hours. The numbers don't lie.

Eric Aside Even after subtracting vacation days, training, off-site meetings, and other planned
nontask time, most engineering teams spend only about 42% of their time on task. You can
increase time on task by having days or afternoons set aside for no e-mail or meetings; having
feature teams co-located and self-directed, which reduces formal meetings, design mistakes,
and overall communication time; and by using methods like Scrum Sprints, which increase team
focus.

My current team uses “story points” instead of task hours. The concept is simple. You pick a point
count for an average-size task—say 8 points. You estimate other tasks relative to the average-
size task. Most teams use a chunking size for estimates—mine likes Fibonacci sizes (1, 2, 3, 5, 8,
13, 21, 34, ...). After several weeks, you calculate how many points the team was able to complete
per week. That's the team'’s velocity. You can update that velocity on a running basis and use it to
accurately convert story points to calendar days.

http://en.wikipedia.org/wiki/Planning_poker
http://en.wikipedia.org/wiki/Wideband_Delphi

September 1, 2008: “I would estimate” 25

Your results may vary

As | mentioned earlier, there's a certain amount of randomness or “variance” that asserts
itself over the course of a project. It averages out, but any one estimate has a chance of
being off by some standard deviation. That deviation is a percentage; it scales with the size of
the estimate. Thus, a two-day estimate will be accurate give or take a few hours, a two-week
estimate might be off by a couple of days (in either direction), and a three-month estimate
could be off by a couple of weeks.

As long as you avoid being overly optimistic, the randomness will even out. By the end of the
project, your project deviation will be about the same as the deviation from any individual
task. If you are overly optimistic ("It can’t take this long next time!") your deviations will keep
adding up, not averaging out.

The point is that there’s little point in estimating a two-day task to the minute or a three-
month task to the day. You just need order-of-magnitude estimates, like | talked about in my
very first column seven year ago, “Dev schedules, flying pigs, and other fantasies” earlier in
this chapter.

| want to believe

How would you estimate? Focus with your peers on understanding the tasks at hand and
their order of magnitude using a technique like planning poker or Wideband Delphi (poker
for well-understood tasks, Delphi for others). That's the easy part.

What truly matters in the end is believing and accepting your estimates, then scheduling
accordingly. As I've written about before, over-committing is foolish. What's worse is that
over-commitment can lead to "Marching to death.” (See this column earlier in the chapter.)
As | said then, death marches are a strong indicator of weak, cowardly, deceitful, and irre-
sponsible management.

Scheduling trouble is diabolical but completely avoidable. When you prioritize your work
properly, putting what's first first, you reduce pressure on your schedule. When you use your
estimates to drive realistic commitments, you can deliver reliably to your customers and part-
ners, build trust, and enhance your group’s and our company's reputation. Deriving good
estimates is easy. Trusting them and yourself is the challenge.

26

Chapter 1 Project Mismanagement

May 1, 2009: “It starts with shipping”

Call me “old school,” but | believe in shipping. Trying isn't enough.
Getting close isn't enough. Good ideas aren't enough. You've got to ship.

It used to be that Microsoft interviews started with, “What have you
shipped?” If you hadn’t shipped recently, “Why?” Why? Because you can't
deliver customer value if you don't deliver. You can't iterate and improve
without finishing an iteration. You can't get customer feedback without
customers.

People used to complain that promotions and rewards were dispropor-
tionally distributed to those who shipped. | say, “Absolutely, that's how it should be.” Does
this hurt quality? No, you set a high minimum quality bar and ship. Does it hurt innovation?
No, innovators have always risked an initial drop in pay to receive a big payoff should they
deliver.

Eric Aside Some people complain that the big payoff doesn't exist at Microsoft for innovative
ideas. Those people haven't shipped. The people who successfully ship innovative ideas are the
ones who become our organizational and technical leaders.

It all starts with shipping. This is particularly apt with services, where everything literally
starts with shipping, and where I'm focusing the rest of this column. Our critics claim that in
the new world of services Microsoft has forgotten how to ship. Perhaps, but Microsoft has
forgotten more about shipping than most companies will ever know. We just need some
reminders and reeducation, especially when it comes to services.

Eric Aside Does a focus on shipping drive death marches? No, death marches delay shipping.
As | wrote in “Marching to death,” death marches result from a lack of planning and courage. This
is particularly important to understand in the services world, where sustainable shipping is criti-
cal to long-term success.

Eric Aside By the way, | was criticized for the line “Microsoft has forgotten more about shipping
than most companies will ever know.” It's arrogant and makes it seem that Microsoft isn't will-
ing to learn new ideas about shipping. Absolutely, I. M. Wright is arrogant and proud of it. As for
the claim that Microsoft is unwilling to learn, many of our former competitors would disagree.
Microsoft has a track record of learning quickly and iteratively until we overtake. Some might
claim it's our size, but we haven't always been big. Some might claim it's our tactics, but tactics
aren’t enough. You've got to have the right product in the right channel at the right time. That
takes tenacity and teaching.

May 1, 2009: “It starts with shipping” 27

| offer you my service

How much about shipping services has Microsoft forgotten or not get, according to critics?
Not as much as they would have you believe, but enough to make you think. Let's go over
the herrings and the heartaches, mixed with a little happiness.

The red herrings:

B Services make you think about everything differently.

B Services center on data while packaged products center on functionality.
B Services have greater security concerns than packaged products.

B Services have serious issues with dependencies.

B Services demand higher quality and faster iterations than packaged products.
The heartaches (and happiness):

B Services run across hundreds of machines, not on a single client.
B Services must scale out automatically.

B Services are easier to switch than packaged products.

B Service upgrades hit everyone instantly.

B Services are living, changing things.

Let's break these down, starting with the red herrings.

What is that smell?

The first services red herring is a big one, "Services change everything.” As | addressed in “At
your service” (in Chapter 6), this is total bovine fertilizer. Services start and end with helping
customers achieve their goals, just like all products ever. You focus on the customer experi-
ence and what they hope to accomplish or you lose. End of story.

The next three red herrings—centering on data, security concerns, and dependency issues—
all apply just as well to shipping packaged products, though it may have taken us longer to
realize it. You can't expose data format changes to customers without chasing them away,
on the client or the server. There isn't a computer product or service today that isn’t vulner-
able to attack—you must secure them all. Finally, if you think external dependencies aren’t
problematic on the client, you clearly don't use many drivers. I'm not saying these aren't real
issues—I'm saying they aren’t new or specific to services.

The last red herring is among the most common concerns raised about why shipping services
differs from shipping packaged products—high availability and Internet time. Look, it's not
okay for packaged products to never work or require a reboot every time you use them; at

28

Chapter 1 Project Mismanagement

least it hasn't been for quite some time. The quality bar is no different for services, though
there are plenty of services that fail constantly.

As for Internet time, that hit packaged products a decade ago with the introduction of
Windows Update. And if you think that those patches are just security fixes, you haven't
been paying attention. More and more we are fixing all kinds of experience issues shortly
after customers report them, for services and packaged products. That's a great thing for
customers.

However, gradually improving the customer experience every month or every day isn't
enough. Both services and packaged products need to ship significant, orchestrated updates
to deliver breakthrough customer value. Facebook wasn’t going to gradually update itself
into Twitter any more than Vista would gradually update itself into Windows 7. You must
focus on what the customer is trying to accomplish, and sometimes that isn't a quick change.

Eric Aside The best way to learn how to ship is to do it early and often. Make every build a
shippable build. Build every day, and rebuild the entire system at least every week. Deploy regu-
lar tech previews and betas. Deploy regular incremental updates and fixes into production. Ship
early, ship often. Practice makes perfect.

There are too many of them

However, not everything about shipping packaged products applies to shipping services.
There are mental, process, and team adjustments that you need to make.

First and foremost is that services run across hundreds or thousands of machines dispersed in
multiple data centers worldwide. Sometimes functionality and data are replicated. Sometimes
functionality and data are specialized. Usually, it's a combination of both for scale and reli-
ability. Naturally, this presents design and synchronization problems, but plenty of books
have been written about that (read don't rediscover). The less obvious challenges are around
debugging and deployment.

Why is debugging a service so tough? Timing issues are killer given multiple threads on
multiple processors across multiple machines. Yikes! However, that's not even the toughest
challenge.

What's the first thing you do when debugging an issue? Analyze the stack, right? With ser-
vices the stack is split across servers and requests, making it nearly impossible to trace a spe-
cific user action. The good news is that there are new tools that help tie user actions together
across machines. The bad news is that this isn't the toughest challenge either. The toughest
challenge is that you're always debugging in the live environment. You don’t get symbols,
breakpoints, or the ability to step through code.

May 1, 2009: “It starts with shipping” 29

So let's recap. Debugging services means debugging nasty timing issues across multiple
machines with no stack, symbols, or breakpoints on live code. There's only one solution—
instrumentation—and lots of it, designed in from the beginning, knowing you'll soon be
debugging across live machines with no stack, symbols, or breakpoints.

They're multiplying too rapidly!

Solving debugging brings us to the other huge challenge—deployment. Deployment needs
to be completely automated and lightning fast. We're talking file copy installation, with fast
file copy. No registry, no custom actions, and no manual anything.

Why does deployment need to be so fast and simple? Two reasons:

B You're installing onto hundreds or thousands of machines worldwide while they are
live. Installation must work and work fast with zero human intervention ever. The slight-
est bit of complexity will cause failures. Remember, five minutes times 1,000 machines
equals three and a half days. It had better just work.

B The number of servers needs to grow and shrink dynamically based on load. Otherwise,
you are wasting hardware, power, cooling, and bandwidth in order to meet the high-
est demand. Because your scale depends on load, it can change any time. When it
changes, you need to build out more systems automatically and instantly.

The happiness around deployment is that Azure will do most of the heavy lifting for you (so
let it, don't reinvent). However, you still need to design your services to support file copy
installation.

Life is so uncertain

Enough of the challenges you can predict, how about the unpredictable ones? The services
landscape is in constant change. While some services are sticky because they hold your data
(like Facebook or eBay), many aren't sticky at all (like search or news). A few minutes of down-
time can cost you thousands of customers. Data compromise or loss can cost you millions

of customers. They'll just switch. Our competitors will be happy to accept them. It cuts both
ways, so you need to work hard to both welcome and keep new users.

When you update a service everyone gets the new version instantly, not over years. If there's
a bug that only one customer in a thousand experiences, then that bug will hit thousands of
customers instantly (law of truly large numbers). That means you need to resolve the issue
quickly or roll back. Either way, it's a bad idea to update a service on a Friday and a good
idea to have an emergency rollback button always at the ready.

Finally, it's important to realize that services are living, changing things. You'd think that
because the servers are all yours, with your image and your configuration, that it would be a

http://en.wikipedia.org/wiki/Law_of_Truly_Large_Numbers

Download from Wow! eBook <www.wowebook.com>

30

Chapter 1 Project Mismanagement

controlled environment—and it is until you turn on the switch. Once the server goes live, it
changes. The memory usage changes, the data and layout on the disks change, the network
traffic changes, and the load on the system changes. Services are like rivers not rocks. You
can't ship and forget services. They need constant attention. To make your life easier, bake
resilience in by automating the five Rs—retry, restart, reboot, reimage, and replace (though
replace may require human hands at some point).

The happiness that comes with these heartaches are customers willing to switch; an ideal
idea-testing platform because you can show customers different ideas and see which they
prefer on a daily basis; and the ability to ship now and find the tricky intermittent Heisenbugs
later (using your five Rs's resilience to keep up availability).

Back to basics

There you have it. Some food for thought mixed in with the old basics of writing solid code
that focuses on customers and their goals.

However, none of this is worth anything without shipping. Make shipping a priority and we
all win. Sure, the quality bar has gone up, but we're not kids selling lemonade anymore. We
need to ship quality experiences regularly, on both long and short time scales. We need to
ship on the Internet, on the PC, and on the phone. We need to serve our customers well and
delight them into sticking with us. It's a long journey, but it doesn't start until we ship.

September 1, 2009: “Right on schedule”

My older son can now drive. This adds two new worries to my life—how
ancient | feel and thoughts of my son in a ditch somewhere. To mitigate
the second worry, my wife and | enforce a curfew and insist that my son
call if he's running late. The other night, he arrived home 20 minutes late
without notice. My wife was furious that he was late. | was furious that he
didn't call.

Why didn't my son call to say he was running late? Because, like my wife,
he was focused on the schedule. He avoided facing conflict until he got
home. He said, "l got home as fast as | could"—presumably breaking numerous traffic regu-
lations along the way. My son completely missed the point. The purpose of the rules was to
mitigate risk, yet his response to them was to drive recklessly.

Software engineers do this all the time. They come up with a development schedule, unex-
pected issues come up, and they end up being late. Instead of informing their managers of
the delay, they avoid facing conflict, rush the work, sacrifice quality, and slip the schedule,

all with little control or visibility. It's the opposite of what managers should want, yet those
same managers insist on following the schedule precisely. Why? Because most managers and

September 1, 2009: “Right on schedule” 31

engineers don't distinguish between the two types of scheduling—meeting a commitment
and managing risk.

Eric Aside | love this particular column. It covers something critical and basic, yet widely misun-
derstood. | wish my family, my friends, my coworkers, and my community would all read it.

Those who understand binary and those who don’t
Yes, that's right. There are two types of scheduling and project management.

B Meet a commitment. You made a commitment to customers or partners, and you
must meet it at the quality and time period promised. Period.

B Manage risk. There is a mix of critical and desirable work. People can make bad
choices. Issues can arise. You must manage risk to ensure critical work gets done.

These two approaches to scheduling and project management often get confused. Why?

B They typically appear together. The overall project has commitments, but it is
made up of smaller tasks that require risk management.

B They both use dates. The difference is that dates for commitments are untouchable
and drive everything. Dates for risk management are simply checkpoints to make sure
work stays on track.

B They both are called scheduling. Most people simply don't know the difference.

B Meeting commitments is the only type most people are taught. From the time
kids enter school, they are exposed to inflexible due dates and commitments they must
meet. When they later learn project management, it is all about Gantt charts and mile-
stones, with some risk management thrown in as an aside.

B Managing risk is usually self-taught and informal. A small number of people are
formally taught risk management. Most of us learn it from peers in college as we juggle
large workloads. Instead of completing everything on time, we form workgroups, focus
on the critical work, and minimize the damage to our grades.

This tragic lack of understanding leads to horrible decisions, poor engineering, and schedul-
ing disasters. You need to know the difference and apply the right scheduling to the right
problems. Let’s start with meeting commitments.

That’s the only thing you'’re committed to

Meeting commitments is essential to working with partners, which in turn is essential to run-
ning most businesses. You can't coordinate work across internal dependencies or external
agreements without synchronizing on dates and deliverables. Because commitments cas-
cade, you must meet them or face catastrophe.

32

Chapter 1 Project Mismanagement

Say your daughter’s birthday is coming and you've promised her a new game she wants.
How would you feel if it wasn't delivered to you when promised? There is a chain of handoffs
between the developer, the manufacturer, the seller, and you that all must be met to ensure
your daughter’s happiness on her birthday.

Of course, this is much easier to do for web-based products, but the same problems come up
with handoffs between teams or departments. Delivering on commitments builds trust and
lasting relationships between partners. Missing commitments does the opposite. While many
software projects require little or no coordination across groups, running large and mature
projects typically involves meeting commitments, and thus formal project management
techniques.

Eric Aside To help make their commitments, companies typically use inventory, buffers, and
other forms of risk management for individual steps in the process. That's the whole point. You
use formal project management for meeting your high-level commitments and risk management
for properly completing the individual steps in your process.

Don’t you think it's a little risky?

Risk management is about making sure the critical work gets done properly, even in highly
variable environments. Scrum and Feature Crews are excellent examples of software devel-
opment practices that focus on risk management—in particular, the risk that you won't effi-
ciently ship value and quality to the customer.

As | pointed out in my very first column, “Dev schedules, flying pigs, and other fantasies,” dev
schedules and test schedules are in the risk-management category. All the feature dates are
checkpoints to mitigate risk. Only the small number of cross-group synchronization points
(major milestones) are commitments.

What matter in risk management are focus, order, and status—not precision. Focus on what's
important, do those items in priority order, and track the status as the situation changes.
Notice that hitting precise dates for tasks isn't important, so long as you finish the critical
tasks at the expected quality on time. Everything else can be cut.

That's why you must tell your engineers the same thing | told my son: “Coming home right
on time isn't important. Telling us you aren’'t coming home on time is.” You can only manage
the risks if you know about them. The dates are there only to alert you when plans need to
change.

Of course, you can't slip a critical task past a commitment date (a major milestone), and my
son can't stay out past 1:00 A.M. or his license will be suspended. But curfew is well before
then, as it should be, to avoid any chance of catastrophe.

http://en.wikipedia.org/wiki/Scrum_%28development%29
http://leansoftwareengineering.com/2009/04/07/feature-crews/
http://www.amazon.com/Wrights-Hard-Code-Pro-Practices/dp/0735624356/

September 1, 2009: “Right on schedule” 33

Eric Aside There are many popular risk-management techniques. Here are a few handy ones
for software development (many taken from prior columns):

1 Hold daily stand-up meetings—15-minute meetings to talk about progress, future work,
and blocking issues (called scrums in Scrum).

0 Assign a backup for all task assignments (partner less experienced folks with more experi-
enced folks).

1 Use buffers—set aside time for task fluctuations (personally, | never liked this practice; I'd
rather have a well-prioritized list with no intention of completing everything).
Under promise and over deliver—also known as setting appropriate expectations.
Establish a fallback plan—have a plan in mind in case a risky task fails, like cutting back the
feature or going back to the previous version.

1 Balance risk—keep the overall risk of your project at a constant state of “scary but not ter-
rifying” by adding and removing risk as things change. For example, if a team member has
a parent fall ill, your risk has increased, so you should cut a risky feature or reassign that
tough task you gave a junior engineer.

You pick the one right tool

So before you start working on a schedule, stop and think about what’s on it. Is it a set of
dates and deliverables you've committed to a partner? Or is it a set of tasks with various pri-
orities that you need to track and avoid messing up?

In the case of my son coming home by curfew, it was a task we didn't want him to wreck,
literally. Thus, we were doing risk management and the focus needed to be on giving timely
status as opposed to coming home at a precise time. Most software development tasks fit
that mold. You just want your engineers to tell you promptly if they are running late so you
can adjust. Precision is unnecessary and potentially counterproductive.

However, if you are running a large project with multiple teams and partnerships, then com-
mitments and synchronization are critical at a high level. The high-level schedule is full of
milestones and classic project management tools.

Just don't confuse the high-level schedule with the low-level tasks. If you treat the low-level
tasks like your high-level commitments, your engineers will take shortcuts and drive too fast.
Instead of managing risk, you might cause them to crash one of your critical tasks, which in
turn breaks your high-level commitments. Use the right tool for the right level. You'll sleep
better at night.

Eric Aside For more on combining traditional project management techniques with agile proj-
ect management techniques, read the next column, “Coordinated agility.”

34

Chapter 1 Project Mismanagement

May 1, 2010: “Coordinated agility”

I've been using Scrum for seven years and writing about it for the last
six. Scrum’s concept is fantastic—multidiscipline, self-directed teams iter-
ating on short scenarios (stories) in small batches from start to finish,
within short, fixed-length, continuous-improvement cycles. Given the suc-
cess many Microsoft teams have had with Scrum, it's stunning that such a
strong disconnect still exists between org-level project managers and
team-level Scrum engineers.

Many org-level project managers and middle managers believe Scrum is
chaotic, haphazard, dangerous nonsense that discourages planning. Many Scrum aficionados
believe project planning is wasteful, disruptive, unnecessary horse manure that serves only
to placate out-of-touch upper management with fantastical schedules. Well guess what? You
are both wrong, and far too smart to be so stupid as to assume the other is ignorant. And
yet, you are both so very ignorant.

Scrum is loaded with planning, and it efficiently tracks more data in more detail than any
other project management method I've seen at Microsoft (except for TSP, used by a few
teams). Likewise, high-level project planning is critical to successfully scoping, coordinat-
ing, and delivering any large-scale initiative. If you have limited vision, then Scrum alone

is fine. If you want to deliver lower quality and less customer value in more time than your
competitors, or if you want to micromanage every aspect of your limited scope, then project
planning alone is fine. If you have a bold vision with broad scope that you want delivered
efficiently with high quality and copious customer value, then you need a balance of both
high-level project planning and Scrum.

Eric Aside Feature Crews is an interesting variant of Scrum. This practice originated in Microsoft
Office. Like Scrum teams, feature crews are multidiscipline, self-directed teams iterating on short
scenarios (features) in small batches from start to finish. While they may have daily stand-up
meetings, feature crews don't typically follow the Scrum model of fixed-length sprints and highly
iterative planning. Nonetheless, feature crews have become a staple of many Microsoft teams
and effectively implement a lean software engineering process.

| respect your right to disagree with me

Why is there a disconnect between many org-level project managers and Scrum aficiona-
dos? | talked about the cause a few years ago in my introduction to this chapter on project
mismanagement:

Project management happens differently at different levels of scale and
abstraction. There is the team or feature level (around 10 people), the project level

http://en.wikipedia.org/wiki/Scrum_(development)
http://en.wikipedia.org/wiki/Team_Software_Process

May 1, 2010: “Coordinated agility” 35

(between 50 and 5,000 people working on a specific release), and the product level
(multiple releases led by executives). Agile methods work beautifully at the team
level; formal methods work beautifully at the project level; and long-term strategic
planning methods work beautifully at the product level. However, people rarely
work at multiple levels at once; in fact, years typically separate those experiences
for individuals. So people think effective methods at one level should be applied to
others, which is how tragedies are often born. The moral is: small tight groups work
differently than large disjointed organizations. Choose your methods accordingly.

You can't expect process-heavy, formal methods to work well for small teams, any more than
you can expect dynamic, emergent planning to work well for large organizations. To bridge
the gap between the two, you must understand the goals of each and what they need from
each other. Let's break it down.

Plans are nothing; planning is everything

The goals of high-level project planning (vision, architecture, schedule, and risk manage-
ment) are to:

B Set a compelling shared vision that aligns a large organization. Without a com-
pelling shared vision, your long-term success is left to chance. Sure, iterating with cus-
tomers can provide greatly appreciated incremental value, and even hint at long-term
value. But major advances are born of compelling shared visions.

B Establish interfaces between teams that enable the vision. A compelling vision
gives an organization a shared destination. Establishing interfaces between teams and
components provides an architectural roadmap to that destination. Sure, you could
drive from Seattle to New York without a map or highways—but it would take you a
long time to get there.

B Meet commitments to business partners. Big, established, successful companies
get that way through partnerships. If you are delivering a compelling vision with real
value, you'll want to involve your partners. That means commitments on both sides.
Real money is on the line.

B Reveal and resolve issues that could jeopardize those commitments. Any large
project with partnerships involves dependencies, risks, and coordination. There are
numerous ways the project could stall or fail, including greater than anticipated success
after launch. You must plan for success and failure. It's hard work to reveal and resolve
issues before they sabotage a project.

Project planners, architects, and middle managers need Scrum teams to align to the shared
vision, abide by their interfaces (or update them collaboratively), meet their commitments (or
update them collaboratively), and surface and mitigate issues as they arise.

36

Chapter 1 Project Mismanagement

| can take care of myself

Okay, we have a shared vision, interfaces, commitments, and a risk-mitigation plan. Now we
just need to follow them, right? What universe do you come from? In my universe, change is
the only constant, and progress happens one step at a time.

At a high level of abstraction, the plan might come together and make perfect sense, but at
a low level, details intercede. Variation and complexity surface as the details emerge. Project
planners, architects, and middle managers could try to micromanage these changes them-
selves through endless status and design meetings, adding tons of overhead, creating bottle-
necks, and grinding progress to a crawl. Or maybe they could trust the engineers closest to
the details to work through the problems.

Agile methods like Scrum adjust to emergent details and changing situations quickly and
effectively. They minimize work in progress and overhead in favor of working, customer-
focused solutions that meet project requirements. That doesn't mean Scrum teams don't
plan—it means they approach planning in an iterative manner as they take each step toward
the shared vision.

Scrum teams need project planners to set the vision, interfaces, and prioritized require-
ments and then get out of the way. So long as the vision is reached, the interfaces respected,
and the requirements met, project planners should be very happy. That self-directed Scrum
teams quickly resolve most of the issues themselves is something project planners and mid-
dle managers must learn, accept, and in time, embrace.

Eric Aside Many project planners and middle managers get nervous at the idea of trusting self-
directed teams. There are three effective ways of alleviating those fears:

1. Keep track of the data—Scrum surfaces loads of data around estimates, priorities, work in
progress, blocking issues, velocities, and completed work.

2. Have weekly or daily Scrum of Scrum meetings—15-minute meetings with all the Scrum
Masters to discuss blocking issues and review progress.

3. Set a ground rule for Scrum team decision making: any decision that impacts more than
two Scrum teams must be reviewed by the project team or architecture team.

So happy together

Project planners and Scrum engineers should embrace each other. (Group hug!) They com-
plement each other's work. Project planners give Scrum teams direction. Scrum teams allow
project planners to focus on the broad picture, while the Scrum teams provide detailed infor-
mation on their rapid, flexible, iterative progress toward high-quality, functioning, customer
scenarios.

May 1, 2010: “Coordinated agility” 37

Both project planners and Scrum engineers play critical roles on a project with a bold vision
and broad scope. Ignorance is no excuse for fear or rejection of each other’s work. The better
we understand each other’s roles and goals, the better we are able to deliver delightful and
innovative experiences to our customers.

Eric Aside What happens when you don't balance project planning and self-directed teams? At
a superficial level, Apple and Google provide interesting examples.

Apple is all about project planning from the top, with micromanagement down to the bottom.
The result has been bold vision for their products, but limited breadth for their business.

Google is all about self-directed teams with minimal management oversight. The result has been
a broad range of efficiently produced services, but those services are disjointed due to a lack of
shared vision beyond the company’s general mission.

This is an overly simplistic view to be sure, but an enlightening one nonetheless. Of course, Apple
and Google have been very successful, even with their limitations. Balancing solid project plan-
ning with efficient self-directed teams allows Microsoft to better compete with both.

Chapter 2
Process Improvement, Sans Magic

September 2, 2002: "Six Sigma? Oh please!”, 40
October 1, 2004: "Lean: More than good pastrami”........................ 42
April 1, 2005: “Customer dissatisfaction” 49
March 1, 2006: “The Agile bullet” i 54
October 1, 2007: “How do you measure yourself?” 61
October 1, 2010: “You candepend onme” ciiiiiiiiiiinennnn. 68
November 1, 2010: “Am | bugging you? Bug Reports” 72
December 1, 2010: “There’s no place like production”. 78
February 1, 2011: “Cycle time—The soothsayer of productivity”............. 83

I'm wrong, okay? | know nothing. Now calm yourself! Some people raise process
dogma to the level of religious fanaticism. My own pet theory about why relates to
superstition. B. F. Skinner noted that superstition arises when animals, like pigeons,
associate chance behaviors with desired results. People get locked into very
particular practices when by a combination of chance and skill they achieve great
outcomes.

Not that there’s anything wrong with that, | enjoy superstitious behavior as much
as anyone. But when people become inflexible in their application of methods, say
eXtreme Programming, superstition becomes counterproductive at best, divisive at
worst.

In this chapter, I. M. Wright analyzes a wide collection of process improvements
and techniques, minus the superstition. The first column was part of an Interface
issue focused on Six Sigma at Microsoft (many of the original “Hard Code” column
topics were set by the Interface editorial staff). This is followed by columns on
Lean software engineering, traceability of requirements, practical application of
Agile techniques, defining metrics that won't be gamed, managing dependency
relationships, good bug management, continuous deployment of services, and
reducing cycle time.

Excellent books have been written about many of these topics in far more depth
than | provide here. If I. M.’s presentation of these concepts doesn’'t match your
precise ideals, please forgive him. After all, he's not trying to be perfect, just right.

—Eric

39

40 Chapter 2 Process Improvement, Sans Magic

September 2, 2002: “Six Sigma? Oh please!”

I'm sorry. If you talk to me about yet another totally continuous quality
management improvement program, | might have a seizure. Now we're
experimenting with the Six Sigma problem-solving methodology.

In only five days over eight weeks, you can be trained as a Six Sigma Green
Belt. Or go for it all—in just four months become a Six Sigma Black Belt. |
think I'm going to hurl.

| just don't understand why we need buzz words and “Karate Kid" refer-
ences to apply good engineering practices to our problems. It's like senior
managers leave their brains, education, and experience at the door and get seduced into
thinking that the latest fashionable regurgitated metric analysis fluff will solve all the ills of
our unenlightened workforce.

Eric Aside I'm constantly confronting management in my columns. Along with PMs, managers
are one of I. M. Wright's favorite targets for ridicule. To their enormous credit, Microsoft manag-
ers have never taken it personally, and many are avid fans. Sure, my manager has occasionally
been asked if these columns are sufficiently constructive. But in 10 years of writing on fairly con-
tentious topics, I've never had a column censored or altered by management.

But | work at Microsoft under these managers, so | had to read the articles in this issue of

Interface focusing on Six Sigma and the material on the Six Sigma website, like it or not. Am
| blown off my feet? Please. Is the content filled with new and exciting ideas that will revolu-
tionize the way we produce our products? As if. Is there anything there of merit? Of course.

Egads! What sorcery is this?!

Six Sigma is a structured problem-solving system with a “toolbox” of techniques used to ana-
lyze and interpret issues for all kinds of business, development, and manufacturing processes.
The actual techniques themselves are nothing new—brainstorming, the five whys, cause

and effect diagramming, statistical analysis, and so on. These techniques have been used for
years to discover the root cause of issues in engineering and business.

The methodology is based on tried and true problem-solving principles that date way back:
define, measure, analyze, improve, control. This basic cyclic approach to quality improvement
is used in just about every product group at Microsoft during stabilization. Bugs are defined
(spec'd), measured (found and documented), analyzed (triaged), improved (fixed), and con-
trolled (regressed, prioritized, and triaged again).

September 2, 2002: “Six Sigma? Oh please!” 41

So why have a Six Sigma group? Why become a Green Belt? What's with having 20 full-time
Six Sigma Black Belts at the company?

Calling in the cavalry

Basically, in the heat of the moment we panic and forget all the engineering knowledge and
practices we have learned and know so well. That's everything we knew before the pressure
crushed us or we became so engulfed in the problem that we no longer could see the dead
tree for all the bugs.

So you call your local Green Belt, or bring in the big old Black Belt, and he reminds you of
what you should have been doing in the first place. However, because of the highly struc-
tured nature of the Six Sigma system, all the passion and personalities get removed.

Instead of placing blame or getting caught up in guesswork and blind alleys, the Six Sigma
folks look dispassionately at the real data and derive what's actually wrong and what can be
done to improve the problem. Then they leave you with a process to track your improvement
and control its effects.

Creating order out of chaos

Yes, anyone with a good engineering background could find the same problems and fix
them. Anyone who made it through interviews at Microsoft should have the intellectual
horsepower to figure out a solution to a problem. But sometimes when you're in it too deep
and tempers are flaring, you need an outside calm influence to help you get centered and
focused on doing the right things.

In addition, the Six Sigma folks get exposed to a wide range of techniques and best practices
from around the company. They can bring those experiences to your group and come up
with interesting solutions that may have escaped your notice.

Does this make me a Six Sigma booster? Nabh, | still think the idea of Green Belts and Black
Belts is goofy and that the methodology itself is recycled TQM and CQI. However, Six Sigma
is the process that Microsoft has chosen to experiment with—if there's a group that can
come in and help when problems get out of hand, that's a good thing to me.

Eric Aside While Six Sigma never quite took hold in product development at Microsoft, the
concept of having coaches and groups you can turn to in a pinch did. | used to be the manager
in just such a group.

42 Chapter 2 Process Improvement, Sans Magic

October 1, 2004: “Lean: More than good pastrami”

Ever walk through a public space, like an airport terminal or public park,
and get accosted by crazies trying to convert you or scare you or assault
your supposed ignorance? Get into a conversation with one of these peo-
ple and logic and reasoning become ludicrous. Everything to them is blind
faith and irrefutable truth. Even if you wholly agree with them, there is still
no room for questions or analysis. You must believe, you cannot question,
even in part.

This makes me sick. | mean truly physically sick. | was given a mind of my
own, and | fully intend to use it. Not just at parties and social occasions but on every subject
and dealing | have. Questioning why and understanding how are at the center of who | am.

You'd think my sensibilities would be the norm for software developers, who can't debug
what they don’'t understand. But the same zeal that some folks devote to religion, politi-
cal battles, and environmental concerns also gets directed by some developers toward
new development practices like eXtreme Programming (XP), Agile, and the Team Software
Process (TSP).

All things in moderation

| love many of the ideas and approaches advocated by these development paradigms. But
if | question a true believer why a certain thing is done or suggest a small change in a rule
or practice to better adapt it to my work, look out! It's like showing a ring of power to an
old hobbit—the fangs come out, the hair raises on end. For some developers, eXtreme
Programming and the Agile Manifesto have become a cult. For some developers, TSP is a
measure of allegiance—you're either with us or against us.

Well excuse me for being practical. Excuse me for using my head. Excuse me for doing some-
thing because it's useful instead of magic. | don't do things because “That's the way you must
doit." | do things because there’s a darn good reason why they work, and there are also
good reasons why working some other way fails.

Eric Aside There, | feel better. Often these rants that lead columns overstate my own feelings
on a subject, but not this time. There’s harmless superstition and then there’s lunacy. I'm not a
big fan of lunatics.

Waste not, want not

Which brings me to Lean. Ah yes, the title of the column. While there are many wonder-
ful things in XP, Agile, and TSP, there is at least one concept that they all have in common:

October 1, 2004: “Lean: More than good pastrami” 43

reduce wasted effort. That is the focus of Lean Design and Manufacturing, a concept from
Toyota that predates XP, Agile, and TSP by more than 30 years. While XP, Agile, and TSP
attack the problem of waste in different ways, we can better understand what each is doing
by using the Lean model.

So, at the risk of offending some zealots’ sensibilities, let's break it down. Lean focuses on
delivering as much value as possible to the customer with a minimum of wasted effort. It
accomplishes this by using a pull model and adopting continuous improvement. The pull
model means simply, “Don’t do work until it's needed.” This reduces unused, unnecessary,
and undesirable work. The continuous improvement is focused on reducing waste and creat-
ing a smooth-flowing stream of customer value.

Eric Aside Kudos to Corey Ladas who first introduced me to Lean, as well as Axiomatic Design,
Scrum, Quality Function Deployment (QFD), Set-Based Design, Kaizen, Pugh Concept Selection,
and who knows how many other great ideas. We worked together for two productive years, and
he's left my team with a hole that cannot be easily filled. He's got a Lean Software Engineering
website now with another great former team member, Bernie Thompson.

Lean defines seven types of waste that disrupt the flow of customer value:

B Overproduction
B Transportation
B Motion

B Waiting

® QOverprocessing
B |nventory

m Defects

These are obviously manufacturing terms, right? They can't possibly be relevant to software,
right? Oh, to be young and foolish. All seven of these sources of waste are directly related to
software development. I'll treat them like the seven deadly sins and talk about how XP, Agile,
TSP, and plain common sense can help.

Overproduction

The first deadly waste is producing more than you need. Like this never happens. Has a prod-
uct ever shipped without cutting features that were already spec'd and coded? Has a product
ever shipped without keeping features customers never use? Too complex, too general, too
extensible, too fancy, too redundant, too convoluted. Overproduction is a killer. It's an unbe-
lievable waste.

44

Chapter 2 Process Improvement, Sans Magic

XP solves this with short and tight iterations. It insists on constant contact with customers
and constant communication between developers. This ensures that everyone knows what
others are doing and the customer always thinks it's a good idea. As a result, almost all the
work that gets done is of value to the customer. Of course, the Microsoft customer is super-
sized, so many Microsoft teams have turned to Agile.

Agile is a collection of Lean practices, including XP. Because Agile is more of an alliance than
a specific technique, it provides a number of interesting approaches to development. One of
these is a project management practice called Scrum (named after the rugby term). Teams
meet with the customer’s representative regularly, usually every 30 days, to demonstrate
progress, reprioritize items, and make process improvements. As with XP, team members also
meet daily to keep tabs on each other’s progress and any blocking issues.

By reprioritizing work monthly and reorganizing work daily, a Scrum team tunes itself to only
what's important to the customer. Little work is wasted. By focusing on process improve-
ments at regular intervals, the value stream can be constantly optimized.

Go deep

Of course, you can use Scrum and XP poorly by making the customer wait for value while
you work on “infrastructure.” There is a fundamental premise behind quick iterations built
around regular customer feedback: develop the code depth first, not breadth first.

Breadth first in the extreme means spec every feature, then design every feature, then code
every feature, and then test every feature. Depth first in the extreme means spec, design,
code, and test one feature completely, and then when you are done move on to the next
feature. Naturally, neither extreme is good, but depth first is far better. For most teams, you
want to do a high-level breadth design and then quickly switch into depth-first, low-level
design and implementation.

This is just what Microsoft Office is doing with feature crews. First, teams plan what features
they need and how the features go together. Then folks break up into small multidiscipline
teams that focus on a single spec at a time, from start to finish. The result is a much faster
delivery of fully implemented and stable value to demonstrate for customers.

Eric Aside Naturally, the idea of feature crews isn't new. However, finding a way to implement
Lean software development within a huge live production environment like Office is a major
achievement. Keep in mind, Office is now a system of multiple desktop applications, server appli-
cations, and online services.

Depth first reduces overproduction by staying focused on work that can be used, rather than
on “infrastructure” that may never be leveraged or a little bit of everything that may never

October 1, 2004: “Lean: More than good pastrami” 45

stabilize. Another great method for depth-first development is Test-Driven Development
(TDD), but I'll save that for the overprocessing section.

Transportation

The second deadly waste is waiting for stuff to arrive. In manufacturing, this typically means
the transportation of parts. For software, it's the transportation of deliverables between
teams. There are three nasty sources of transportation issues: builds, branches, and e-mail.

B Builds The longer the build, the bigger the waste of time. Like | need to tell you
this. XP and Agile both insist on daily builds, a rule they may well have gotten from
Microsoft. For huge teams, a daily build has become a fantasy. Luckily, we have good
people working on the issue, but it's a big problem. Enough said.

B Branches | love Source Depot. It's been huge for the company. But the frigging
thing has become a pet elephant. Sure they're cute when they're a baby, but in a few
years you're constantly either feeding or shoveling, and your mobility suffers. While
branching is great, many large teams have taken to branching branches. So if you are
on branch A2.B3.C1 and your buddy with a key feature or fix is on branch A3.B1.C2,
your buddy needs to reverse integrate C2 into B1 then Bl into A3, and then you have

grass grow. The solution is one level of branching off your current release line, period.

Eric Aside Source Depot is the large-scale source control system Microsoft uses to man-
age hundreds of millions of lines of source code and tools, including version control and
branching.

B E-mail The last transportation nightmare is e-mail notification: PM telling dev and
test that specs are ready; dev telling test that code is ready; test telling dev it's blocked
on a bug; dev telling PM it's blocked on a design change; and, my personal favorite,
any kind of communication between a client and dependency or vendor, particularly
overseas. XP and Agile solve the e-mail notification problem by removing the roles and
having the team meet daily. For remote vendors and dependencies, this can't work.
For now, we must rely on automated notification where possible, Live Meeting where
reasonable, and clear e-mail that answers anticipated responses to reduce roundtrips
everywhere else.

Motion

The third deadly waste is spending time just finding stuff. On the manufacturing floor, it's
the wasted motions of robots and people. In the software world, it's time spent figuring out

Download from Wow! eBook <www.wowebook.com>

46

Chapter 2 Process Improvement, Sans Magic

what to do, where to go, and how to fix. Poor search technology is a great example of wasted
motion. So is untestable, unmaintainable, unmanageable code.

Using asserts and validating input help find bugs faster and reduce wasted motion. So do
design reviews, code reviews, code analysis, and unit testing. XP even suggests pair program-
ming, but personally, | think that wastes resources (except for devs learning a new code base).
TSP measures all your activities and defects, which allows you to study exactly how your time
is spent and significantly cut down on your wasted motion.

Eric Aside My team has since adopted pairing for creating new content in unfamiliar areas. It
works extremely well.

One particularly annoying and avoidable source of wasted motion is duplicating bug fix
information for code comments, Source Depot, Product Studio, and check-in mail. And
everyone wastes motion managing multiple copies of bugs and project schedule data. Tools
that make these things easier by entering the information once and automatically populating
it to all other places can go a long way toward reducing deadly motion sickness.

Waiting

The fourth deadly waste is waiting around for work. Transportation issues cover a big part of
waiting for builds, branch integrations, and timely communication. But there are plenty more
places to wait. The most common dead zone is caused by teams not agreeing on the priority
order of features or simply not following the predetermined order. That is, PMs writing specs

out of order so devs have to wait. Devs writing features out of order so testers have to wait.
Testers writing tests out of order so everyone has to wait.

XP, Agile, and TSP all force teams to decide on a priority order, get buy-off from the cus-
tomer or their representative, then work in that order until they decide to review the priori-
ties again. TSP is particularly rigorous in this way, but also can be less iterative about plans
without a flexible leader.

Another source of waiting is unstable code. As long as the code is unstable, the test team
has to wait, as do any other mechanisms you have for customer feedback. XP and Agile put a
premium on verifiably stable code, another essential element of the depth-first strategy.

Eric Aside Another form of waiting is for service environments to stabilize or unfreeze as the
result of new service deployments or other special events. The best way to avoid this wait time
is exposure control and continuous deployment, which | discuss later this chapter in “There's no
place like production.”

October 1, 2004: “Lean: More than good pastrami” 47

Overprocessing

The fifth deadly waste is over-engineering. You see this all the time in the form of producing
overly complex features, fine-tuning performance in areas that already perform adequately
or aren't the true bottleneck, and adding generalization or extensibility when it isn't required.
This waste is related to overproduction but focused on specific feature implementations.

The cure: Test-Driven Development (TDD). TDD is an XP and Agile technique for implemen-
tation design. As a side benefit, it provides unit tests with full code coverage. The process is
fairly simple:

1. Define your API or public class methods.

Eric Aside This is a point of contention between me and some members of the Agile
community: do you define your API or public class methods before writing unit tests or
after? Purists will say after; | say before. The difference is the amount of up-front design
and the nature of your relationship with outside groups that depend on your code. | tackle
up-front design in other columns, which when taken in moderation, | believe is essential to
success in projects with more than 100,000 lines of code.

2. Write a unit test for a requirement of the API or class.

3. Compile and build your program, and then run the unit test and ensure that it fails. (If it
passes, skip step 4.)

4. Write just enough code to make the unit test pass. (Also ensure that all previous unit
tests continue to pass.)

5. Repeat steps 2 through 4 until all API or class requirements are tested.

Naturally, after you get the hang of it, you can write unit tests for more than one require-
ment at a time; but when you first get started, try doing just one. It builds the right habits.

When you use TDD, you don’t write any more code than is absolutely required. You also
automatically get easily testable code, which usually correlates to strong cohesion, loose cou-
pling, and less redundancy—all very good things indeed. Oh, and did | mention you also get
unit tests with full code coverage? What's not to like?

Inventory

The sixth deadly waste is undelivered work product. This is related to cut features, but it also
includes the amount of work in progress. When you develop breadth first, all your work is in
progress until the code is complete and stable. All the completed specs, designs, and code
that are waiting to pass tests are inventory. Their value is not yet realized.

48

Chapter 2 Process Improvement, Sans Magic

Unrealized value is wasteful because you can't demonstrate the value to customers and
partners. You can't get their feedback. You can’t improve and optimize your customer value
stream. Of course, if product plans change, this unrealized inventory often becomes a huge
wasted effort.

The Lean pull model of working only on things as they are needed drives low inventory, as
demonstrated in Scrum and TDD. Scrum pays special attention to work in progress, tracking
it and working hard to minimize it. Scrum also leverages regular opportunities to improve
and optimize the way you deliver value. TDD has you implement code only as needed to sat-
isfy requirements, and no more.

Defects

The seventh deadly waste is rework. It's the most obvious one and the one I've ranted about
incessantly in the past (see Chapter 5, “Software Quality—More Than a Dream”). XP and
Agile get at reducing bugs and rework by a variety of techniques, not the least of which is
TDD, daily builds, continuous code reviews, and design reviews.

However, XP and Agile also reduce bugs in a more subtle way—by creating a structure where
you learn as you go. Using depth-first development, you figure out parts of the project step
by step before you've designed and coded the whole product. This prevents serious architec-
tural issues from remaining concealed until it's too late to adjust. Sound familiar?

Reducing defects is a specialty of TSP. Teams using TSP have dropped their bug rates by a
factor of a thousand from the industry average. | wrote in detail about the TSP defect predic-
tion, tracking, and removal approach in “A software odyssey—From craft to engineering” in
Chapter 5. While TSP isn't inherently lean, it doesn’t preclude depth-first development either.

Symbiosis

This brings me to the point where | get to infuriate the XP, Agile, and TSP true-believers.
There’s no reason why you can’t combine these techniques to be greater than the sum of
their parts. Use Scrum to drive a lean, depth-first, flexible, and optimized development
schedule. Use TDD to create a lean implementation. And use TSP to analyze your defects and
your work, which will result in vastly reduced bugs and wasted effort. While that may be her-
esy to some, it sounds like common sense to me.

Now if | could just find some good pastrami.

Eric Aside | grew up in New York. It's tough to find good pastrami in Redmond.

April 1, 2005: “Customer dissatisfaction” 49

April 1, 2005: “Customer dissatisfaction”

You always hurt the one you love. We must really love our customers.
We ship buggy code, though that’s not the big problem. We miss our
ship dates—not the big problem. We don't have a clear, broad, and pri-
oritized understanding of customer needs, but that’s not the big prob-
lem. We don't communicate to our customers well and with one voice,
but that’s not the big problem. We don't listen to our customers well and
then transfer that information to the right people; but again, that's not
the big problem. No, the big problem is that all too frequently we have
no idea when we are tormenting our customers and how badly we're
doing it until it's too late.

Eric Aside | am severely overstating the case here for dramatic effect. In fact, we do a very
good job of listening to our customers and integrating that value into our products. It's been

a huge competitive edge for Microsoft over the years. Regardless, our customers’ expectations
have risen as the software market has matured, so to keep our competitive edge we must con-
tinue improving. This column discusses the advantages of tracing every code change back to the
customers who needed or requested the change.

If we ship bug-free, high-quality code, but it wasn't what the customer wanted, then custom-
ers are dissatisfied. The same is true for shipping undesirable code on time. Even if we do
have a clear, broad, and prioritized understanding of customer needs, we still have to ship
code that meets those needs or the customer will be dissatisfied. Communicating well and
listening well aren’t enough. Nothing counts if we don't deliver what the customer wanted.

Ignorance is bliss

In fact, good communication and listening actually hurt us. Say we talk to some customers
and find out exactly what they want. The customers are pleased that we listened to them,
and they know that we know just what they need. Two years later, we deliver a solution that
falls short of their expectations. Uh oh. Now the customer is

B Disappointed because the product doesn’t perform as desired.
B Insulted because we wasted their time and raised, then dashed, their hopes.

B [ncensed because we broke our commitment to serve them. They may never trust us
again.

At least if we had ignored the customer, we could have excused the mistake. “We're ignorant
ninnies” could be our claim. Unfortunately, we did know, we did acknowledge, and we did
commit. Even if the commitment wasn't legal and contractual, it's a commitment nonethe-
less, and we broke it.

50

Chapter 2 Process Improvement, Sans Magic

Too much, too late

Think this doesn’t happen? You are so wrong. We break our commitments all the time. It's
amazing that we still have customers. Our salespeople talk to customers and tell them about
our plans. Our consultants visit customers and say they’ll work with product teams to enable
certain solutions. Our marketing and product planning people run focus groups and tell cus-
tomers, "We're working on it.”

Eric Aside When | say, “We break our commitments all the time,” | mean we fall short of the
ideal. We deliver what the customer requested but not what they really wanted or needed.
Customers don't know what they want till they see it. That's why many Agile methods focus on
iterative customer feedback. | use the word “commitment” because it has strong connotations for
Microsoft employees. It is too easy to let “little” problems persist in our products, yet it's those
little problems that cause big headaches for customers and | want engineers to feel that.

And we do work on it. Market opportunities drive our product plans and visions. But we
don't close the loop with customers until it's too late. Heaven forbid that when a customer
clicks a button in a working product, we should have time to rethink what we've done. Heck,
most of the time we've already gotten past code complete before customers touch the
product.

Eric Aside Let me promote betas and technical previews here, since | failed to mention them in
the original column (a significant oversight). Most Microsoft products use betas, but only one or
two and often late in the development cycle. However, a number of products are starting to use
technical previews and betas early and often—a practice | adore.

In fact, we're getting really good at closing the loop with customers after we ship. Watson
and SQM tell us all about the horrible experiences our customers are having with our shipped
products. It's a phenomenal step forward. We fix the bugs and ship again three months or
three years later, and Watson can show us if the annoying problems are gone.

Eric Aside Watson is the internal name for the functionality behind the Send Error Report dia-
log box you see when an application running on Microsoft Windows crashes. (Always send it; we
truly pay attention.) SQM is the internal name for the technology behind customer experience
improvement programs for MSN, Office, Windows Vista, and other products, which anonymously
aggregate customer usage patterns and experiences. (Please join when you install our software;
it lets us know what works and what doesn't.)

But what about the problems that cause us to break our commitments, throttle our business
opportunities, and shred what little trust we still have with our customers? How do we detect
those before we ship? How do we prevent those from happening?

April 1, 2005: “Customer dissatisfaction” 51

Agile delusions

By now the Agile fanatics out there are screaming, “Use Agile methods!” Yeah, well try meet-
ing weekly or monthly with 100 million customers. It's not as easy as it looks. I'm not saying
it's a bad concept, I'm saying you're hallucinating.

Sure, you can have the PM or product planner stand in for the 100 million customers, but the
chances of them representing all those customers accurately are similar to you winning the
lottery. It happens, a lot of people play that game, but you don't want to build your business
or your retirement on those odds.

You need a direct connection back to the customer that closes the loop, like the connection
we have with Watson. Any code you write should map back to a specific customer request,
market opportunity, business need (like TwC), or customer issue (like a Watson bucket). That
way, if a specific question comes up or you want regular feedback on your progress, you
know who of the 100 million customers to call.

Eric Aside In fact, we don't have a direct connection back to the customer with Watson—the
information we get is anonymous and aggregated. What we do have is a direct connection to
the customer’s problem. Each “Watson bucket” represents and stores a customer issue that thou-
sands, sometimes millions of customers have experienced. So we don't know who to “call” with a
Watson issue, but we can figure out what their problem was. Trustworthy Computing (TwC)—the
Microsoft initiative on security, privacy, reliability, and sound business practices—has produced
tremendous gains for our customers from Watson data.

Retracing your steps

So how can you tie a specific customer request to a line of code? For bugs, we've come close
to doing this, but what about feature development? To figure this out, you must retrace your
steps:

B Why are you writing that code? What was the requirement or feature?
B Where did that requirement or feature come from? What was the customer scenario?

B Where did that customer scenario come from? What was the market opportunity or
customer engagement?

B Who wrote that market opportunity or ran that customer engagement? What is her
e-mail alias?

If you can't trace the work back to a customer, then you're hopelessly caught up in guess-
work about what the customer really wanted. Traceability is the key to any hope of satisfying
our customers.

52

Chapter 2 Process Improvement, Sans Magic

There's more where that came from

But that’s just the beginning. Like all great pivot points, traceability resolves far more than
the immediate need of a relevant customer contact:

B Traceability allows our customers to check on the status of their issues and solutions.
Customers can do this somewhat today when they check the status of an error or crash
because we now have backward traceability, from servicing to product development.
Forward traceability, from product definition to product development, is rewarding for
us and for customers.

B Traceability helps us prioritize and make tradeoffs, as well as get the features right.
Because traceability can connect us with the business impact of our changes, we can
intelligently decide the appropriate number of resources to apply to a feature or
change.

B Traceability helps us architect solutions, determine dependencies, and organize proj-
ects. This is the most unexpected advantage to me. With traceability, you can know
what customer scenarios drove what feature development. So you can know how fea-
tures are related. This determines the right architecture and dependencies, and with
them, the appropriate way to organize the project. Amazing.

Of course, without traceability, the customers have no idea if their needs will be met and
when; the product group has no idea what the real business impact will be, and therefore
can only guess at tradeoffs; and each group has no idea why they need one feature or
another and how they depend on each other. So our lives become an intertwined chaotic
catastrophe.

Eric Aside Again, I'm overstating the problem for effect, but I'm not overstating the benefits of
traceability. | admit it openly. I'm in love with traceability.

The right tool for the job

So how do you get traceability? Ideally, we'd have a tool that traces scenarios and require-
ments the same way we track bugs and crashes:

B Salespeople and consultants could use the tool to document customer requirements,
scenarios, and commitments.

B Marketing people and product planners could use the tool to submit market opportu-
nities, link them to customer engagements, and define key cross-product scenarios.

B Product planners and PMs could use the tool to consolidate requirements; track dupli-
cates; link related scenarios across products; and draft product-level scenarios, require-
ments, and feature specs.

April 1, 2005: “Customer dissatisfaction” 53

B Product groups could use the tool to triage feature requests and track their progress
through design and implementation.

B Test teams could relate test cases and bugs to scenarios so that the team could easily
see the impact of issues.

B The originators of customer requirements could track progress on their requests, be
contacted by product teams to clarify issues or contribute feedback, or contact product
teams to update requirements when situations change.

Duct tape and baling wire

Some groups are actually trying to use Product Studio for traceability, but it's not the full
solution yet. Until we have the right tools in place, there are still ways to trace customer
requirements and scenarios throughout your entire design:

Eric Aside Product Studio is our internal work-item tracking database. We productized it as
part of Microsoft Visual Studio Team System. In the five years since this column was published,
most Microsoft divisions have moved to Team Foundation Server (TFS) to track their projects. We
are finally close to realizing traceability as I've outlined it here.

B When you write a market opportunity document, link to the related customer engage-
ment documents and ensure those documents have contact information. Include your
own contact information in the market opportunity document as well.

B When you create a high-level scenario, link to the related market opportunities and
customer engagements, and again include your contact information.

B When you write a feature spec, requirements list, or product scenario, link to the
related high-level scenarios, requirements, market opportunities, and customer
engagements. Be specific about which documents relate to which features—don't just
create a laundry list.

B When you create design documents, link to the specs and other supporting documents.
Again, don't create one long list of references—Ilink to specific information as much as
possible. You may even want to pull out specific contacts.

B When you are making tradeoffs or reviewing work, trace all the way back through the
links to the people who know. Contact the true source.

Customer satisfaction

Today, we run our business like a child’s game of "telephone.” Each person tells the next what
he thought the customer said she wanted. Each step along the way twists and distorts the
message. By the time we ship, the customer doesn’t even recognize what she asked for. (This

54 Chapter 2 Process Improvement, Sans Magic

may remind you of the classic cartoon in which the customer wants a tire swing hung from a
tree, but instead gets a tree on stilts with a hole in the middle.)

As the product changes and develops, you need to check back with customers to ensure that
you're making the right decisions. Equally important is the ability for customers to check with
you whenever their requirements or scenarios change. Without a closed loop, this just isn't
possible.

Traceability closes the loop, but you have to be aware of what to do and remain diligent. Any
breakdown along the way risks breaking a commitment. But getting it right means getting
the customer just what he needed every time. And that is a reward well worth the effort.

March 1, 2006: “The Agile bullet”

I'm having a tough time with a decision; maybe you can help. | can't
quite decide who is more nauseating: people who use “Agile” methods
and wonder why Microsoft can’t adopt Agile across the company, solving
every ill we face; or people who think the Agile fad amounts to retreaded
foolishness preached by ignorant academics to free developers from any
sense of responsibility. It's a toss-up; | get the same squeamish feelings in
my gut listening to either of them.

Eric Aside This is one of my favorite columns because of the overwhelming love-hate reaction
it evoked, often from the same person. Though imperfect, it's a fairly balanced overview of the
topic.

Let's get two things straight right now:

B If you think Agile methods fix all that is wrong with how we build products, you are, in
fact, a fool. Employing thousands of people to build highly complex and deeply inte-
grated software that hundreds of millions of customers depend on is hard. No one in
the world, including those clever folks in the Agile Alliance, knows as much about the
task as we do. Not everything we are doing is wrong, and not everything Agile pro-
fesses is right for our needs.

B If you are an anti-Agile curmudgeon who thinks Scrum is an acronym for a System
of Clueless Reckless Untested Methods, you are as much a fool and just as ignorant.
Dismissing anything thoughtlessly for whatever reason is prejudicial and unprofes-
sional. Grassroots movements, like Agile, are always grounded in some fundamental
truths that can be used to benefit our teams and customers. Those notions may not
always fit our business directly, but fundamental truths have a way of applying them-
selves to any situation when you stop to understand them.

March 1, 2006: “The Agile bullet” 55

Eric Aside Agile has really been a grassroots effort at Microsoft, led by a wide collection
of individuals and small teams throughout the company.

It's time to expel the myths around Agile methods and explain how to use the innovative
thinking behind these methods to our advantage.

Enemy of the truth

First, let's break down the Agile myths...

Myth #1: Agile = eXtreme Programming (pair programming, Scrum, Test-Driven
Development, user stories, or some other Agile method). Agile methods are
actually a collection of software development practices that share a common set of
defining principles but are otherwise unrelated and at times contradictory. You can
learn more about what Agile really is from the Agile Alliance.

Myth #2: Agile methods can’t work for large groups. This statement is absurd.
Agile is a collection of disparate methods. Some of those methods won't work for large
groups, some will, and some can if you get creative. You have to study the specific
method in question before jumping to inane conclusions.

Myth #3: Agile methods can work for large groups. The Agile philosophy values
“customer collaboration over contract negotiation” and “responding to change over
following a plan.” Customer collaboration is tough with over 100 million customers.
Contract negotiation is essential to manage cross-team dependencies. (See "My way
or the highway—Negotiation” in Chapter 8.) Following a plan is required for busi-
ness commitments because partners get touchy when millions of dollars are involved.
Applying Agile methods to large-scale projects requires you to be flexible and creative
to deal with these issues.

Myth #4: Agile means no documentation. The Agile philosophy values “work-
ing software over comprehensive documentation.” Many Agile zealots read this and
say, “Yay, no documentation!” If you think the world ends where your hallway ends,
you don't deserve a cut of revenue generated beyond your walls. The Agile philoso-
phy states, “While there is value in the items on the right, we value the items on the
left more.” In other words, working software is valued more than documentation,
but essential documentation is still valuable for customers, partners, and cross-group
dependencies.

Myth #5: Agile means no up-front design. The Agile philosophy values “respond-
ing to change over following a plan.” Many Agile zealots misinterpret this to mean, "No
need to think or plan; the design will just emerge!” Emerge from what—a radioactive
sewage dump? The point is to value responding to change over taking your original
plans too seriously—it's not to jump off a cliff and see what happens next.

56

Chapter 2 Process Improvement, Sans Magic

B Myth #6: Agile means no individual accountability. The Agile philosophy values
“individuals and interactions over processes and tools” and “responding to change over
following a plan.” Many terrified managers think this means zero accountability. In fact,
Agile has an interesting twist in this area. Agile makes the individual accountable to the
team and the team accountable to management. Accountability is strongly empha-
sized, but the extra level of indirection allows Agile teams to be more efficient, resilient,
and...well,...agile.

B Myth #7: Scrum is an acronym. This is a silly myth, but it drives me crazy. Scrum is
one of the best-known and most widely practiced Agile methods, but it is not an acro-
nym. Scrum is named after the rugby term that describes when the teams get together,
arms latched in a circle, trying to obtain possession of the ball. It also is the name of
the daily standup meeting used by Scrum teams. At Microsoft, we've been using a
form of Scrum for decades—well before the term existed. It is one of the simplest Agile
methods and the closest to what many Microsoft teams already practice. More on
Scrum later.

Get the rules straightened out

Talking about Agile in the abstract makes for entertaining debate, but applying it is where
the action is. Because we've established that Agile is actually a collection of software devel-
opment practices, the question remains, “Which ones work well in large-scale projects?”
Many people have thought and written about this question—but many people don't write
this column. Before | give my opinion, some ground rules...

B No change for change’s sake. If a team is already working well by all the mea-
sures the business cares about, there’s no need to change. Change is costly no matter
how nice the result might be. You should change only to eventually improve. So if no
improvement is needed, no change is needed.

B Don't get carried away. If change is needed, don’t change everything at once. Have
feature teams pick one or two improvements each and see how that goes. Not every
team needs to change simultaneously, and not every team needs to change identically.
Of course, if you are changing a central service, like the build system, then all teams will
eventually need to adopt it. But even those kinds of changes can be either spread out
or made transparent to individual teams. The idea is this: try a little, learn a little, and
then try a little more.

m Differentiate between the project level and the feature level. The biggest
area where people get confused—particularly with Agile methods—is differentiat-
ing between the project level and the feature level. At the project level, you need firm
dates and firm agreements between teams. At the feature level, you...well actually,...
whatever. That's the bizarre idea many managers fail to understand—your team can hit
whatever date you care to set; the question is only what features you end up including.

March 1, 2006: “The Agile bullet” 57

As long as the project-level plan can be tracked and followed, your feature teams
should choose whatever method allows them to be the most effective.

Eric Aside This is a power-packed paragraph. One caveat: groups generally work better when
the small teams within them are using similar methods. The methods needn't be identical, but
teams will work best together if they have the same pacing. Otherwise, coordination and com-
munication get muddled between teams because they have different expectations around
timing.

Ready for something different?

So you're thinking about trying Agile—or perhaps you just want to placate the Agile maniacs
in your group with Scrum snacks to go with the hypnotic Kool-Aid the maniacs are drinking.
What should you try, and how can you best integrate it into common practices? There are a
large number of Agile methods, so I'll address only the most popular ones: Scrum, eXtreme
Programming, Test-Driven Development, pair programming, user stories, refactoring, and
continuous integration.

First, there are two methods that we've been using for more than a decade at Microsoft:
refactoring and continuous integration. Refactoring is simply reorganizing your code without
changing what it does. Refactoring is used to break up complex functions (spaghetti code) or
to add new functionality to existing code—Ilike changing a class that reads CSV files into an
abstract class that could read CSV or XML files. Continuous integration is the philosophy of
always integrating new code into regular, ideally daily, full builds so that everyone can test it.

Let the man speak

Next are user stories, which are like a combination of scenarios and one-page specs. The idea
of user stories is to provide just enough information to be able to estimate what it would
take to implement and test the functionality specified.

The difficulty with user stories is that they are supposed to be written by the user. Many
Agile methods assume that the user can regularly hang around with the feature team.
Unfortunately, that presents a problem when you've got 100 million users.

Like it or not, we need proxies for users. Groups like marketing, product planning, user expe-
rience, sales, and support can play that role. Their findings can be codified in value proposi-
tions and vision documents that draw from a broad collection of user research. However, as
those broad visions and end-to-end scenarios are broken down, we can still use the concept
of user stories at the feature level to provide just enough documentation to estimate the
implementation and verification of a feature set.

58

Chapter 2 Process Improvement, Sans Magic

You complete me

Pair programming involves two people sharing a desk and a keyboard and coding together.
The idea is that as one person is typing, the other is seeing the bigger picture and catching
suboptimal design or implementation. The pair switches off from time to time. While two
heads are better than one, they also cost twice as much. I'd rather see the two heads be put
to better use in design and code inspections. However, pair programming is great for get-
ting people up to speed in new code bases by pairing developers familiar and unfamiliar with
the code.

Eric Aside My team has since adopted pairing for creating new content in unfamiliar areas. It
works extremely well.

Aside from refactoring and continuous integration, Test-Driven Development (TDD) and
Scrum have proved to be the easiest and most effective Agile methods applied at Microsoft.
As | described in my column on Lean engineering (earlier in this chapter), in TDD you start
with a class definition of functions or methods and then write unit tests for the public func-
tions and methods before you write the code. It is an iterative procedure, in which you are
writing only a few unit tests and a little code at a time. The technique is popular because it
gives developers the unit test code coverage they need while producing a minimal, yet high-
quality, implementation design.

It's also more fun to write the tests first. When you write the code first, the unit tests are a
pain to retrofit and will only give you bad news—not exactly reinforcing. When you write
unit tests first, it's easy to fit the code to the tests and you feel vindicated when tests pass.

Eric Aside While | agree with many practitioners that TDD's true purpose is exceptional imple-
mentation design, the benefits of positive reinforcement for unit testing cannot be overstated.

TDD can be used in conjunction with pair programming by having one developer write a few
tests and the other implement enough code to make the tests pass, switching off from time
to time. Finally, TDD gives developers a clear sense of when they are done with the imple-
mentation: when all requirements have tests and those tests pass.

A bit extreme

eXtreme Programming is a whole development methodology. It combines user stories, pair
programming, TDD, refactoring, continuous integration, and a bunch of other practices into
a coherent set. It is ideally applied by small teams working closely with their customers.

March 1, 2006: “The Agile bullet” 59

eXtreme Programming relies a great deal on team knowledge and direct customer interac-
tion, using almost no documentation. This is great if your team is isolated and your custom-
ers are down the hall, but that's not exactly common at Microsoft. Our situation would be
tragic if not for the billions of dollars we earn every year. However, as I've already mentioned,
many of the individual methods used within eXtreme Programming apply nicely to our prod-
uct development.

Are you ready for some rugby!

The last and perhaps most misunderstood Agile method I'll cover is Scrum. Aside from peo-
ple confusing Scrum with eXtreme Programming (which doesn't really use Scrum) or thinking
that Agile equals Scrum (huh?), the most bewildering part of Scrum is all the strange terms
associated with it: Scrum Masters, backlogs, burn-downs, sprints, and even pigs and chickens.
It's enough to scare any manager away. Big mistake.

For better or worse, Scrum was invented by a person who enjoys funny names and stories.
The practice itself is neither complicated nor contentious. So, aside from refactoring and con-
tinuous integration, Scrum is the closest Agile method to what we've been doing internally
for years, with a few significant improvements.

Let's start by mapping some of the confusing terms. Scrums are daily stand-up meetings,
Scrum Masters are feature team organizers, backlogs are feature or work-item lists, burn-
downs are graphs of remaining work, sprints are mini milestones, and pigs and chickens are
entrepreneurial farm animals (long story, cute joke).

None of these concepts are new, but Scrum does introduce some big improvements:

B The daily stand-up meetings in Scrum are highly organized and collect useful data. The
team organizer (Scrum Master) simply asks all the team members what they accom-
plished since yesterday (and how long it took), what they are working on until tomor-
row (and how much is left to do), and what's impeding progress.

Eric Aside Tracking how long it took is my team’s small contribution to Scrum at
Microsoft. By adding this information to the burn-down data (how much is left to do), you
can produce fantastic cumulative flow diagrams, measure time on task and work in prog-
ress, and better estimate team capacity. Typical time on task is around 42% for production
teams; 30% for teams focused on communication—like mine—and as much as 60% for
co-located feature teams.

B The data collected at scrums is entered into a spreadsheet or database. From the
spreadsheet, you can analyze time on task, completion dates, work in progress, plan
changes, and a whole host of project issues. One of the most popular graphs is a burn-
down chart that plots time vs. total work remaining.

60

Chapter 2 Process Improvement, Sans Magic

Online Materials Sprint Backlog (SprintBacklogExample.xls; SprintBacklogTemplate.xIt)

B The Scrum Master is an independent force on the team. It's best if he or she isn't even
part of the group, but often that's not realistic. The Scrum Master has permission to
keep meetings short and cut through the crud.

B The feature list or schedule is called the Product Backlog, and the work-item list or
schedule is called the Sprint Backlog. By keeping these two lists separate, management
can focus on the work they want done (the Product Backlog) while the team focuses on
the work at hand (the Sprint Backlog). Typically once a week, the Scrum Master meets
with management (for example, at the weekly lead’s meeting) and updates status,
ensuring everything stays on track.

Online Materials Product Backlog (ProductBacklogExample.xls;
ProductBacklogTemplate.xIt) and Sprint Backlog (SprintBacklogExample.xls;
SprintBacklogTemplate.xIt)

B Sprints, the mini milestones, are fixed in length. They are over when the specified num-
ber of days is over—typically around 30 days.

Eric Aside In the six years since writing this column, I've been part of teams that used
1-week sprints, 2-week sprints, and 30-day sprints. Right now, my team uses 2-week
sprints, which are my favorite. Two weeks is short enough not to require much overhead—
everything can be tracked on a whiteboard. However, two weeks is long enough to get
serious work completed. I'm now looking forward to trying Kanban and being on almost a
continuous sprint, but that's another story.

B After every sprint, the feature team reviews its work with management (nice change,
huh?); discusses what went well and improvements for the next sprint (a wee bit bet-
ter than waiting a year or decade until the post-ship postmortem); and plans and re-
estimates the work items for its next sprint (the plan and estimates changed? No way!).

By using daily, weekly, and monthly feedback mechanisms, Scrum allows teams to work effi-
ciently and resiliently in a changing environment. By collecting a little key data, Scrum allows
teams and management to know how teams are operating and to spot issues before they
become problems. By separating the feature list owned by management from the work-item
list owned by the feature team, Scrum allows teams to direct themselves and stay focused. It
drives accountability to each member within the team and to management outside the team.

October 1, 2007: “How do you measure yourself?” 61
The more you know

Not all Agile methods are for everyone, and many won't work on big Microsoft projects. But
Scrum, Test-Driven Development, refactoring, and continuous integration are being used

by many Microsoft teams with great effects. Pair programming and user stories are being
applied to a lesser degree, but they can be effective in the right situations. As long as you
don't get carried away and start forcing Agile down your team'’s throat, there’s a great deal to
be gained by applying these methods.

Eric Aside Managers have forced methodology changes down engineers' throats almost every-
where I've been employed. It never works, even for something popular like Scrum. Managers can
suggest, support, and subsidize behavioral change, but they should never coerce it.

To learn more, search for Agile methods on our internal network or on the web. Also watch
for new courses on Agile methods coming in spring 2006. If everything is going great on
your team, then don't change a thing. But if you'd like to see a little higher quality or bet-
ter feature-team project management, you owe it to yourself to take some antacid and give
Agile a try.

October 1, 2007: “How do you measure yourself?”

At Microsoft, we can execute, but can we think? When billions of dol-
lars are on the line, you better not be guessing about decisions. A decade
ago, our products weren't guesses; they were enhanced impersonations of
our competitors’ successful products. We won by outdoing those ahead
of us.

Now we lead in many areas, and without competitive targets, brain-chal-
lenged teams rely on guesswork. Their mantra: code cool stuff and hope
that customers find something they like. Their results: a disorganized mess
with little value or uptake.

Thankfully, enlightened teams don't guess. They rely on data Microsoft gathers from research
and directly from customers to determine real points of customer pain and delight and then
enhance our products accordingly. Without that data and feedback, we'd be hopeless. Yet
just mention using data to drive how we build our products and you'll be lucky to leave the
room with your body intact.

62

Chapter 2 Process Improvement, Sans Magic

There is no try

If great teams use data to remove guesswork from what we build, why does guesswork domi-
nate how we build it? Today's software development process is all about guts and glory. “Best
practices” are conventional wisdom, processes are tribal knowledge, and many self-righteous
Agile methods are loaded with dogma instead of data. Why?

Eric Aside My favorite Agile methods, like Scrum and Test-Driven Development (TDD), are
loaded with data. TDD data is more subtle—the percentage of requirements with passing tests.

Don't tell me there is data out there that proves certain methods are effective. I'm not talk-
ing about someone else’s data, I'm talking about yours. How do you know your team is using
the right methods with the right results before all the bugs arrive? How do you know if you're
any better than yesterday? Why aren't you using data throughout to find out?

Maybe it's because software development is a creative process or a craft that can't be mea-
sured. Maybe measurements are faulty or easily gamed. Maybe there’'s so much data that
you could use it to justify anything. Or maybe frightened fanatics are foolishly focused on
regressive rationalizations of their suspect superstitions. They are too scared to measure and
too ignorant to know how.

Well giving it your best shot on tried and true methods isn't good enough. Not with this
much money and this many people’s lives and livelihoods on the line. Being clueless about
using the right metrics the right way is no way to go through life, buddy. Fortunately, you
don’t have to be in premed to understand it.

Is there a problem here?

| hear you saying, "You sick man, don’t you know metrics are evil? Don't you know hollow-
headed managers will use them to pit you against your peers, and your team against other
teams doing different work? Don't you know they just get gamed, while real progress and
real customers suffer?” Yeah, | know. We've already established you don’'t know anything
about using measures properly. But since you brought it up, let's break down your objections:

B Software is a creative craft that can’t be measured. As | talked about in “A soft-
ware odyssey—From craft to engineering” (in Chapter 5), craft is fine for tables and
chairs, but it's not good enough for bridges, pacemakers, and software people depend
upon. Regardless, you've missed the point. Lesson 1: Don’t measure how, measure
what.

October 1, 2007: “How do you measure yourself?” 63

B Measurements are faulty and easily gamed. Others put this as, “You get what you
measure.” If you measure lines of code, people write lots of bad code. If you measure
bugs fixed, they create more bugs to fix. Lesson 2: Don’t measure intermediate out-
comes, measure desired end results.

B There's enough data to justify anything. Computers produce lots of data, and
software development happens on computers. However, all that data is useless if it
presents more questions than it answers, regardless of how pretty the graphs might
look. Lesson 3: Don’t just collect data, use measures to answer key questions.

B Managers will use data against you. Managers are notoriously lazy. Why apply
thought if numbers tell you what to do? Good measures don't tell you what to do,
because good measures don’'t measure how (remember lesson 1?). Lesson 4: Don't
use measures that make your decisions, use measures that tell you a decision is
needed.

B Managers will make unfair comparisons. Managers are notoriously clueless. From
their perch at 10,000 feet, software is software and bugs are bugs; all subtly is lost.
Focusing on desired end results helps, but it's not enough to avoid improper compari-
son. Lesson 5: Don’t compare raw measures, use baselines and exemplars that
provide needed context.

Eric Aside My friends at Google and startups might claim, “This is easy. Get rid of managers.”
Nice try. Replace "managers” with “executives” or “product owners,” and you've got the same
issues.

Now let’s follow the lesson plan.

What's going on?
Lesson 1: Don't measure how, measure what.

People hate being forced to work a particular way. Sure, they like pointers and suggestions.
They can live with constraints and requirements, but no one wants to be an automaton.

Once anyone starts doing a task, they are sure to find ways to do it better. Forcing people

to work your way, instead of their own, is guaranteed to hit a point where your way is worse
than theirs. This leads to feelings of frustration on their part, and feelings of resentment, stu-
pidity, and disrespect toward you.

Measuring how you want something done is equivalent to telling people how to do it. That
sets you up as an idiot people resent and disrespect. | don't recommend it.

Download from Wow! eBook <www.wowebook.com>

64

Chapter 2 Process Improvement, Sans Magic

Instead, measure what you want accomplished and leave the how to the intelligent human
beings doing the work. Say you want a scenario to work. Instead of measuring spec comple-
tion, function points, or bugs remaining (all hows), break down the scenario into segments
and measure how many segments and segment transitions work as desired. Ideally, you'd
have a customer be the judge, but an independent tester would suffice.

In the end you'll thank me
Lesson 2: Don’t measure intermediate outcomes, measure desired end results.

Metrics get gamed. We all know it; most of us have done it. Why? Because managers manage
metrics. If you don't hit your metrics your manager is going to emerge from his or her cave
and annoy you. That makes the goal "hitting your metrics” not "hitting your goals.”

How do you avoid the trap of hitting metrics instead of goals? Two ways:

B Don't use metrics; be dumb and happy.

B Make hitting your goals and your metrics equivalent.

Think about your team’s goals. What are they really? What outcomes do you want as a team?
What are you trying to accomplish? Measure that desired end result. Then it won't mat-

ter how the team hits those metrics (within reason), because hitting them is just what you
wanted.

Eric Aside Read that paragraph again. It's amazing how many people don't get this.

| want to know right now

Hold on a second, a panicked manager has a question: “If | only measure end results, how
will we ever get there?!?” That's actually a good question. No one successfully develops soft-
ware without iteration—take a small step forward, check if you're on the right track, then
take another step. How can you check if you're on track if you're only measuring the end
result?

There are two approaches to iterative feedback that still focus on desired end results:

B Make every iteration produce end results. This is the best approach and a funda-
mental concept of Agile methods. By producing customer value each iteration, you can
regularly check with customers to see if you're on track. Your metrics should enhance
this effort by measuring end results the customers want (such as usability, complete-
ness, and robustness).

October 1, 2007: “How do you measure yourself?” 65

B Apply predictive measures that tightly correlate to desired end results. This
approach isn't quite as good because correlation is never perfect. However, some end
results can't be measured accurately till the end, so using predictive measures is nec-
essary (for examples, read “Bold predictions of quality” in Chapter 5). If you must use
predictive measures, always back them up with measures of the real results to be sure
you are getting what you want.

Then make your choice
Lesson 3: Don't just collect data, use measures to answer key questions.

Software development, by its very nature, produces tons of data—build messages, test
results, bug data, usability research, complier warnings, run-time errors and asserts, schedul-
ing information (including burn-down charts), source control statistics, and on and on. Being
software engineers, you've probably piped this data into various reporting packages and
produced endless charts and graphs. Well, good for you.

Actually, is it good for you? No, no it isn't. Too much information is just as bad as not enough.
In a crowded mall, you don’t hear more conversations, you hear nothing at all. Your brain
treats everything as noise and blocks it out. The same thing happens with too much data.

Collect all the data you want, but don't throw it in people’s faces. Instead, think carefully
about the desired end results you want. What key attributes do you care about? Some peo-
ple call these Critical to Quality (CTQ) metrics or Key Performance Indicators (KPIs). You want
a small, focused mixture of specific and generic CTQs.

Some CTQs will be specific to your product. Say you're working on wireless networking. A
desired end result is a quick and lasting connection, so your CTQs would be time to connect
and average time till connection failure.

Some CTQs will be generic to software development. Say you're lean minded (and | hope you
are). You'd care about minimizing cycle time. Your CTQ would be time to complete a scenario
as desired from start to finish. Say you're engineering-quality minded (and | hope we all

are). You'd care about solid, stable code. Your CTQs would be a predictive measure, like code
churn or complexity, and an actual measure, like Watson hits.

Eric Aside Watson is the internal name for the functionality behind the Send Error Report dia-
log box you see when an application running on Windows crashes. (Always send it; we truly pay
attention.)

http://blogs.msdn.com/eric_brechner/archive/2006/10/01/october-1-2006-bold-predictions-of-quality.aspx

66

Chapter 2 Process Improvement, Sans Magic

We are in charge

Lesson 4: Don’t use measures that make your decisions, use measures that tell you a
decision is needed.

| think the biggest fear any employee has when it comes to metrics is being treated like a
number. | wrote about the pitfalls of this in my column “More than a number—Productivity”
(see Chapter 9). If your review and rewards come down to a formula, something is seriously
wrong.

The same goes for all decisions. If the decision comes down to a formula, then all thinking
and consideration are absent and we become servants to our processes and tools. That is
backward. Processes and tools work for us, we don't work for them.

Luckily, if you follow the previous lessons, measuring only your desired end results, your
management can't use the measures to make decisions. Yes, if you consistently missed your
team’s desired results, management could make you suffer, and you'd deserve it. However,
because all management has are the end results, they wouldn't know why you missed the
results or who or what was responsible. They'd have to investigate, understand, and analyze.
They'd have to think before coming to a conclusion.

Great metrics tell you you've got a problem. They can’t and shouldn't tell you why. Root
cause analysis requires careful study. If people say the easy answer is in a metric, both they
and the metric are lying.

A girl's gotta have her standards

Lesson 5: Don’t compare raw measures, use baselines and exemplars that provide
needed context.

Wait, a panicked engineer has a question: "Okay, so we measure a great end result, like
completed scenarios, and our feature team has half the number of scenarios completed as
another team. Now our manager is demanding we work harder and longer, even though
our scenarios were broader and far more complex. Using the ‘right’ metric is only causing us
grief!” That's a fair point. I've got good news and bad news.

The good news is that the manager is actually trying to fix a real problem (the right metric
helped). The bad news is that the manager didn’t consider what the problem was. Instead

of analyzing the root cause of the problem (complex and broad scenarios), the manager is
assuming the problem is lazy engineers. You need to help your manger by providing context.

The easiest and best forms of context are baselines and exemplars.

B Baselines tell you what to expect from a metric. The first time you get an end
result, its measure is the baseline. From that point forward, you know if you are getting

October 1, 2007: “How do you measure yourself?” 67

better or worse by comparison with the baseline. Your manager can't be surprised
your scenarios are broad and complex if your baseline already established that fact.
Baselines are extraordinarily handy for tracking improvement.

B Exemplars tell you how good your results could be. The best result achieved
for a measure is the exemplar. It doesn’t matter how it was achieved or which team
achieved it. The difference between your results and the exemplar is your opportunity
to improve. “But what if they cheated to get scenarios done faster?” If done meets the
quality and compliance bar, then they didn’t cheat. They just found a better way. “But
what if our scenarios are broader and more complex?” Well, you should break them
down and simplify. Remember, you are measuring desired end results. If you really
care about delivering value to customers in fast, small chunks, you need to keep your
chunks fast and small. Exemplars are priceless for spotting your biggest improvement
opportunities.

A unique perspective on the world

So, now you know what and how to measure and the differences between good and bad
metrics. You also know ignoring metrics leaves you happy but dumb. Ignoring metrics turns
software development into guesswork and leaves your success to chance. | believe the polite
word for such irresponsible behavior is “foolishness.”

However, you've probably also noticed that good metrics that measure only desired end
results are not generic. You can't simply use the same ones for every project. Sure, there

are some engineering quality and efficiency results you always want (like being productive,
secure, robust, and responsible), but other results around performance, usability, and overall
customer value depend on your desired scenarios and the customer’s needs.

This means that putting the right measures in place isn't trivial. It requires some thinking

as a team to decide what you really care about for this release and how you'll know you've
reached your goals. Then you'll need to make those measurements part of your iteration and
feedback process from the beginning to always know you're moving in the right direction.
Heresy, right? Actually working toward known goals? Maybe I'm the fool to think we'd be so
sensible.

Eric Aside Personally, | believe the test discipline plays a huge role in defining and tracking
metrics. They tend to love data and look at using software from the customer’s perspective. The
key is for test to focus on measuring desired end results, not create more charts and noise.

68 Chapter 2 Process Improvement, Sans Magic

October 1, 2010: “You can depend on me”

We're getting into the end game before a big release, and I'm already
tired of people whining about unstable and overdue dependencies. Of
course they are unstable and overdue, what planet are you from?

Yeah, yeah, a package should only depend upon packages that are more
stable than it is (the Stable Dependencies Principle). I've pushed this prin-
ciple countless times. Yet when you work for a big ambitious technology
company like Microsoft, no one wants to wait for cool technology to stabi-
lize before coding against it—at least no executive I've ever met.

That means your dependencies are unstable and likely running late. It's not the fault of the
teams you depend upon, and it's not going to be much better next time. Tough luck—quit
whining and deal with it. Don't know how? | figured.

Eric Aside This is the first of a series of four process improvement columns | wrote in five
months, after not writing any for three years. Why the hiatus and then sudden flood of thoughts?
Because seven months prior to this column | switched back into a product group as the develop-
ment manager for the Xbox.com websites. | had been training development experts, leads, and
managers for a while, but now | was back doing it myself.

Upon returning to being a development manager, my first columns were about either coming up
to speed in a new role or topics that were on my backlog and still fresh in my mind. Once | was
on the job for six months, all the annoying inefficiencies started grating on me, and | returned to
focusing on engineering improvements.

Amongst our weaponry are
There are five methods of dealing with unstable dependencies.

1. Convert them from hard dependencies to soft dependencies or knowledge
dependencies.

Over communicate and project manage the heck out of them.
Get as close as possible to them personally, physically, logistically, and logically.

Automate ingestion of their work for you and testing of their work for them.

i & W N

Create multirelease plans, stable interfaces, realistic schedules, and a vision that leads
instead of chases.

Hold on, that last method is a pipe dream—there are four plausible methods of dealing with
unstable dependencies. Let's break them down.

http://www.objectmentor.com/resources/articles/stability.pdf

October 1, 2010: “You can depend on me” 69

Eric Aside Unstable and overdue dependencies are avoidable by creating multirelease plans,
stable interfaces, realistic schedules, and a vision that leads instead of chases. The teams at
Microsoft (and elsewhere) that have figured this out live better lives and deliver great, depend-
able experiences on a predictable schedule.

These thoughtful teams sacrifice a little bit on timely innovation. However, keep in mind that
Apple is widely considered a highly innovative company, yet Apple’s innovations don't uti-
lize bleeding-edge technology. Instead, they craft innovative new experiences from proven
technology.

| think your brain is going soft

A hard dependency is one that you literally can't ship without. If it fails, you fail. A soft
dependency is a dependency with a fallback position. If it fails, you can still ship with reduced
functionality.

Unstable hard dependencies are a recipe for panic followed by disaster. You want to convert
them to soft dependencies by agreeing to a fallback plan. Typically, fallback plans involve
shipping with a previous version of the dependency, reducing functionality, taking ownership
of the dependency’s module, or some combination.

Fallback plans are wonderful psychologically. They remove the fear and uncertainty around
failure. Everyone knows what will happen, and it doesn’t involve bloodshed—only lackluster
reviews and a less compelling release. Everyone is still motivated to deliver something great.
With raw fear off the table, people collaborate and problem-solve far better.

Taking a snapshot of your partner’s code converts a hard or soft dependency to a knowledge
dependency. You aren't actually dependent on the other team for anything but its knowl-
edge and past experience.

Knowledge dependencies are underutilized—they don't get the respect they deserve.
Just because your team may not want to take on any hard or soft dependencies doesn't
mean you can't take advantage of the knowledge and experience of people who've done
something similar before. | talked about this in “NIHilism and other innovation poison” in
Chapter 10.

Failure to communicate

When you are dealing with overlapping and overcommitted schedules, like when you're
working on almost any project ever, you need to over communicate to your partners and
project manage them. It doesn’t matter how reliable they are or how well coordinated you
appear to be. Assumptions will be made, and important details will get missed. You need to
say everything to everyone regularly and repeatedly, and track every deliverable.

http://blogs.msdn.com/b/eric_brechner/archive/2008/11/01/nihilism-and-other-innovation-poison.aspx

Chapter 2 Process Improvement, Sans Magic

You'd think all this extra communication would become noise, but it doesn't when handled
properly—with regular face-to-face meetings, item tracking (think Product Studio or TFS),
and formal e-mail for plan changes.

B Regular face-to-face meetings (once a week or so) are great for coordinating small
changes, fixing issues that arise, and doing all-important sanity checks. A sanity check
is five minutes spent validating high-level assumptions. (“We're still getting these key
deliverables in two weeks, right? You're still gainfully employed, right?”)

B [tem tracking in a work-item database, like Product Studio, TFS, or any number of other
commercial packages, is perfect for tracking resolution of bugs and work items across
teams. Share the database queries you use with your partners so that everyone sees the
same status.

B When your or your partners’ plans change, everyone needs to know. Start with a formal
e-mail to everyone involved (Scrum Masters, leads, managers, and directly impacted
team members). If any work items have been dropped, changed, or added, update the
work-item database accordingly. Follow up at the next face-to-face meeting with a full
description of what changed and why it changed. This would appear to be obvious, but
one person’s big change is another person’s minor detail. That's why you also do sanity
checks.

Eric Aside Clearly this extra communication and project management is extra work. So is every-
thing else in this column. The extra work typically hits program managers and testers the hard-
est, but developers are also impacted. The amount of extra work is proportional to the type of
dependency (hard, soft, or knowledge) and the level of associated chaos. Plan accordingly.

We two are one
The easiest way to stay in close contact and resolve issues quickly is to practically join teams.

B Personally Get to know your partners personally. Meet together, socialize together,
and truly understand each other. A good working relationship helps in all sorts of ways.
You become committed to each other’s success.

B Physically Sit with your partners physically. The whole team probably won't fit, but
having one or two individuals spending significant time in your partners’ space will do
wonders for catching issues early on both sides.

B Logistically Tie yourself to your partners logistically. When they deploy, you deploy.
When they beta, you beta. When they ship, you ship. Staying in sync will save you
oodles of trouble—trust me on this.

October 1, 2010: “You can depend on me” 71

Eric Aside Being flexible and agile really pays off in this case. Using short iterations and
always being ready to ship not only helps you minimize work in progress and reduce tech-
nical debt, it also helps you stay synchronized with your partners’ releases.

B Logically Engage with your partners’ tools, work-item databases, and source code.
The deeper you know what's really going on in their work, the better you'll foresee,
understand, and resolve issues.

Eric Aside Even if your partners haven't finalized their interfaces, a starter interface can often
help you get an early jump on development and testing. You can write your own emulator, use
an early drop from your partners, and otherwise code and test against the upcoming interface in
advance of receiving the final version.

It's totally automatic

One critical engagement with your partners’ tools is around handoffs. Before they deploy a
new version, they should run a set of build verification tests YOU WROTE—only you know
what you are expecting from your partners. After they deploy a new version, you should run
a set of ingestion tools THEY WROTE—only they know all the moving parts, tricky ordering,
and special steps necessary.

The build verification tests you wrote should quickly check that the new version works the
way you intend to use it. Writing these tests can be a bit tricky because you have to under-
stand your usage patterns, and you have to author the tests in their test system. Of course, all
that effort is well worth it when every handoff works as expected.

The ingestion tools they wrote should give you all you need to use the new version. This
should include setup, libraries, content, configuration, and validation. Writing these ingestion
tools shouldn't be wasted effort since they help your partners as much as they help you. That
said, all the effort is well worth it when they don't spend two days after every handoff get-
ting your systems functioning again.

Eric Aside We are finally putting some of these tools in place on my team. It's so much better.

72

Chapter 2 Process Improvement, Sans Magic
No whining!

Even in the best of circumstances there are always surprises in any development cycle. Being
flexible, using short cycles to react faster, and communicating well with partners, customers,
and within your own team does wonders for dealing with the unexpected.

What isn't constructive is blaming your partners for costly mistakes, even if they were at fault.
We're all human and mess up occasionally. We win and lose together. If you can't handle the
problem or didn't know about it in time, then you're at fault too. You all can improve your
communication and issue management next time—the issue will recur.

For all the headaches and heartaches that unstable dependencies can cause, they also can
be exciting, build a larger sense of team, and bring faster, broader, and bolder innovation to
customers.

Don't play the victim. Create fallback plans, over communicate, integrate your teams, and
automate quality handoffs. You can be part of something big if you embrace the challenge.

November 1, 2010: “Am | bugging you? Bug Reports”

Some developers hate seeing bugs. They think bugs indicate a failure
on their part—that their code seemed perfect until bugs were found.
These developers are called "amateurs.” Real developers know the only
reason you haven't found bugs is that you haven’t looked.

| love seeing bugs. It's better for me to see them than for my customers to
see them. What | hate seeing are poorly written bug reports—misleading
or generic titles, unclear or missing reproduction steps, exaggerated pri-
ority, overstated severity, and inappropriate, cowardly, and poorly docu-
mented resolutions.

Why can’t people write decent bug reports? It's not like a decent report is longer or much
harder to write than a lame report. It's not like clear definitions for everything in a bug report
don't exist. Ah, but those definitions do vary and sometimes conflict from team to team.
What are the right definitions to use for everything in a bug report? I'm glad you asked.

Eric Aside Every piece of software ever written has hundreds or thousands of bugs, depend-
ing on its size and complexity. Some bugs are innocuous, like “I'd prefer the close button to be
wider.” Some bugs are misunderstandings, like “It wouldn't let me use an obscene name for my
gamer tag.” And some bugs are nasty issues that must be fixed no matter what, like exposing
personal information. Since bugs are often found by people outside the development team, bug
reports must be written and tracked to closure—typically using a work-item tracking database,
like Product Studio (a legacy MS tool) or Team Foundation Server.

November 1, 2010: “Am | bugging you? Bug Reports” 73

Bug dissection
All bug reports have the same basic set of information.

B Title A short description of the issue

B Assignment Who's taking care of the issue at the moment
B Repro steps The steps necessary to reproduce the problem
B Priority The urgency and importance of the issue

B Severity The fallout from the issue

® Resolution How the issue was resolved

There are a bunch of other fields that are helpful in reproducing the issue and understanding
the root cause, but the basic set is short and simple. Let's cut through the controversy and lay
out the rules for each field.

Title and assignment

The title of a bug should be a terse, one-line description of the issue that is specific enough
to identify that issue uniquely, making bug report searches and identification easy. “The
screen blanks when you hit the Cancel button” is a poor title. “Blank screen after canceling
avatar editor” is a great title. The second version is shorter, yet provides more specific context
around where and when the issue occurs.

When you create a new bug report, you must assign it to someone to resolve. However,
unless you are part of the development team, you shouldn't assign the bug to an individual,
even if you know the whole team personally. Instead, assign the bug to the team. This is typi-
cally done by specifying the area or team in the bug report and accepting the default assign-
ment. The default assignment is typically “Active” or “Triage.” You don’t know better. Trust
the team to know who should work on the issue.

Eric Aside There are some groups that want all bugs assigned to individuals. This ensures no
bugs are ignored. However, even those teams must check for bugs assigned to Active or Triage
to ensure they aren't missed. After all, people outside the team don't know what other values
to use.

As a general rule, all bugs should be assigned to individuals or groups that will check them regu-
larly. Since most triage teams meet daily, I've always liked the idea of assigning bugs to Active or
Triage as a default.

74

Chapter 2 Process Improvement, Sans Magic

Repro steps

There is nothing more frustrating than a bug report without a decent repro (reproduction
steps). It's like your significant other telling you, “You know what you did!” with no further
explanation. Now | know | messed up and have no way to correct it. Terrific.

Repro steps should be short and sweet—the minimal set that triggers the issue. You should
also include the build number (typically a separate field), the environment you used (the ver-
sion of the operating system, browser, and any other relevant details), and any preparation
necessary (like signing into Xbox.com with a gold account).

Sometimes you aren’t sure how you triggered the bug because it's intermittent or associ-
ated with a weird state. In this case, provide the build number, environment, and setup, then
describe the circumstances, acknowledging that precise repro steps aren't clear.

Eric Aside We have many internal tools, like Watson and Autobug, that generate bug reports
automatically. Naturally, these tools have some limitations in producing repro steps, but they can
often still supply stack traces, build numbers, environment information, and other details that
help isolate issues.

After describing the minimal repro, you must indicate what you expected to happen
(“Expected”), followed by what actually happened ("Actual”). All repro steps should have
these three sections—the setup, the expected results, and the actual results. That way some-
one reading the bug report knows exactly what went wrong and how to reproduce it.

Often a picture or video tells a thousand words. There are many tools to create screen cap-
tures of both stills and compressed videos. Attaching these files to a bug report can be the
difference between a properly fixed issue and an elusive one.

Eric Aside It's annoying to see a bug report with 15 repro steps when the issue can be repro-
duced in 4 steps. Not only are 4 steps shorter and easier to understand, but they also allow the
developer and the tester to close the bug far faster. It takes less time to reproduce the bug, less
time to determine the cause (fewer possibilities), and less time to verify the issue has been fixed.

Priority

There are endless arguments over the meaning of the Priority field, a value that typically
ranges from 0 to 3. Surely you have better ways to spend your time. Instead, let's lay out a
few simple rules, and then define priority based on those rules.

B Priority should never have to be adjusted once properly set, unless the bug itself
changes character. If priority 1 means “fix this sprint or milestone” and priority 2 means
“fix next sprint or milestone,” then you've got to change the priority of bugs at the end

November 1, 2010: “Am | bugging you? Bug Reports” 75

of every sprint or milestone. Not only is that a waste of time, but it updates the “last
changed date” on the bug, an act that causes the loss of important information.

B Priority should be easy to assign and differentiate. You don't want the team spending a
bunch of time arguing over the priority of every bug. It should be obvious, both when
writing the bug report and when reading it.

B Priority should be memorable and actionable. No one should have to ask, “What was
pri 2 again?” No one should have to question what needs to be done for each priority
level.

Based on these three rules, here are priority definitions that serve well.

Priority Description Timeframe

Pri 0 A CRITICAL failure that requires URGENT You can use the bathroom after you
attention that doesn't have a known resolve the issue or find a workaround.
WORKAROUND. This is a blocking bug.

Pri 1 A CRITICAL failure that requires URGENT Must be resolved in the current sprint or
attention. milestone.

Pri 2 A CRITICAL failure. Must be resolved before release.

Pri 3 A failure or suggestion. Should be resolved before release.

Pri 0 issues typically block testing, deployment, or some other time-sensitive work. Given the
seriousness of pri 0 bugs, you can't submit them and expect something to happen. You must
send mail to the individual or team and then call or walk over and talk to them until someone
is actively working on resolving the issue. If a viable workaround is found, pri 0 bugs should
be changed to pri 1.

Eric Aside Teams do vary their definitions of priority. Some start at pri 1 instead or pri 0. Some
break the rules | listed at the start of this section or have a separate field to indicate a block-
ing bug.

If you open a bug in a different team'’s work-item database, be sure to use their definitions. The
definitions typically pop up in a tooltip or help screen.

Severity

Severity is even simpler than priority, yet it's also often misused. Severity refers to the fallout
of the issue, NOT how important it is. The definitions are:

B Severity 1 The issue causes a CRASH or customer data LOSS
B Severity 2 The issue causes a MALFUNCTION that inhibits action
B Severity 3 The issue causes an INCONVENIENCE or unfinished LOOK

76

Chapter 2 Process Improvement, Sans Magic

Please note that severity is independent of priority—in other words, severity has nothing

to do with priority. A priority 1 bug is more important than a priority 2 bug, regardless of
severity. Displaying offensive content is severity 3 but priority 1. Crashing when a user does a
forced reboot is severity 1 but priority 3. Nothing makes you the subject of engineer ridicule
like claiming a noncrashing bug is severity 1 just because it's high priority. You sound like

an idiot.

Resolution

One of the most important and most often misused fields in a bug report is Resolution—the
indicator of what was done to resolve the issue. Resolving a bug means you are no longer
concerned about the issue and you don't plan any further work once the bug originator veri-
fies that the resolution closes the bug.

If the issue requires more work before you release, even if it's not the responsibility of your
team, then the bug should remain active and assigned to one of your team members to
track.

Here are the possible values for the Resolution field in alphabetical order:

B By Design The bug report describes the intended behavior. It works as designed.

B Duplicate The bug has the same cause and nearly the same user experience as an
earlier reported bug. Never resolve an older bug as a duplicate of a newer bug—
regardless of how much nicer the newer bug report is—unless you like making enemies
of the originator and losing the “first-seen” date.

B External The bug is caused by something outside your control AND you can release
without the bug being fixed. If you can't release without having someone outside your
group fix the issue, then the bug should remain active and assigned to someone in
your group to track, linking to the issue on the other team.

B Fixed The bug is fixed. My favorite resolution.

B Not Repro You couldn’t get the bug to recur in the build and environment noted.
Saying "It works on my machine” doesn't cut it—check with the originator first when-
ever possible.

B Postponed You won't fix this bug in this release. Postponed is for the same gutless
slackers who say they'll start writing unit tests tomorrow. Real engineers leave the bug
active and use a Fix By field in the bug report to indicate a future release when they
truly intend to fix the issue.

November 1, 2010: “Am | bugging you? Bug Reports” 77

B Won't Fix You won't fix the bug ever. My second favorite resolution—it shows you
have enough experience to know when a bug simply isn’t worth fixing, usually because
the fix causes more trouble than the bug itself.

When you resolve a bug, you must provide a description as well as fill in the Resolution field.
That description is important. You get fewer arguments about resolutions, understand the
issue better upon recurrence, and protect yourself and the company if the issue later makes
headlines. This happened to an old team of mine once—we saved the company millions in
penalties when our resolution description for an offensive content bug proved our lack of
malice.

When a bug is resolved, it is automatically assigned to the person who opened it. If that per-
son isn't on the team, the bug should be assigned to another team member who can verify
the resolution with the originator of the bug. You can't always count on people outside the
team to validate a resolution in a thorough and timely manner. Of course, if the resolution
isn't satisfactory, the bug should be reactivated.

Eric Aside | first defined resolutions for my development team 10 years ago. Looking back at
that mail, the definitions here still stand.

Keep it simple

There are many other fields in a bug report. | mentioned using the Build and Environment
fields to capture reproduction information and the Fix By field to indicate when a bug will be
addressed. There are also fields to track root cause, how the bug was discovered, area of the
product or service where the bug occurred, potential security impact, and countless other
variations of information.

When setting bug report requirements, demand no less than what you need and no more
than what you'll use. Requiring more than necessary will cause people to complain and stop
submitting bug reports—neither of which serves you or your customers well.

By keeping bug reports easy to write and easy to read, you encourage people to submit clear
bug reports for the issues they find. Using bug templates that prefill some fields also helps.
There's no better gift to our engineers and the customers we care about than a well-written
bug report that averts an issue before it ever reaches our users.

78 Chapter 2 Process Improvement, Sans Magic

December 1, 2010: “There’s no place like production”

As much as | love Microsoft, and as many advantages as we have as a
company in the intelligence of our people, the breadth of our products,
and the boldness of our vision, there are times when people here are frig-
ging clueless. It's not everyone—Microsoft is a wildly diverse company.
But there’s just enough ignorance to drive you insane.

A great example of nerve-racking naiveté surrounds our service environ-
ments. My current team has separate environments for development,
check-in testing, scenario testing, stress testing, cross-division integration,
partner integration, certification, and production. That's eight different environments—and
we're planning to build out a preproduction environment next year. Here's the punch line of
this pathetic joke: even with all these environments, there are a ton of issues and scenarios
that can only be exposed in production.

Why are we being so witlessly wasteful? Because we can afford it (good situation but bad
reason), and because there are so many old-school enterprise engineers who don't under-
stand the most basic truth about services: there’s no place like production. These engineers
conjure requirements for testing and integration environments based on hard-won lessons
from business software, yet they fail to fathom their folly. Close your eyes, tap Ctrl-Alt-Delete
together three times, and think to yourself, “There’s no place like production. There's no
place like production. There's no place like production.”

Eric Aside Even though | wrote this column recently, it has become among my most influential
and commonly quoted columns at Microsoft. I've seen e-mail threads from multiple divisions at
director levels discussing the notions at length or simply stating “There’s no place like produc-
tion.” It warms my heart.

How did | get here?

What kind of fools build out and maintain useless environments? The kind who got burned
building enterprise software.

Large businesses rely on enterprise software—it's got to work or they won't buy it. Once they
buy it, they own it. You don't get to fix enterprise software anytime you want. That's right,
not even with security patches.

Remember, enterprise paychecks depend on having the software run smoothly. Software
changes represent risk to an enterprise business. If the software doesn't work, work well, and

December 1, 2010: “There's no place like production” 79

continue working well, enterprise businesses aren’t buying it. And they’ll tell you when they
are darn well ready to accept a patch.

An entire generation of Microsoft engineers learned the hard way that you can't release soft-
ware until the code is fully tested. There are no “retries” in enterprise software.

Enterprise engineers heave at the thought of releasing code that hasn't been fully vetted into
production environments. They'd burst into convulsions if they understood the real truth
about services.

Surely, you can't be serious?
What is the real truth about software services? There's no place like production.
Let's break down these myths about testing and integration environments one at a time.

B If your check-in tests pass in one environment, they’ll pass in all environ-
ments. Okay, that one obviously is wrong, but here's what's worse. It's not difficult to
write critical check-in tests that pass in production but fail everywhere else (like tests of
broad fan-out or database mirroring). Instead of kidding yourself, write a small set of
automated sanity checks that developers can run quickly in their development environ-
ment before they check in.

B You need a separate environment to test scenarios before integrating code with
partners. There are two reasons people believe this—they don't want unstable code
to break their partners’ code, and they don't want their partners’ unstable code to
block testing. The first reason is perfectly rational—you need a test environment to
do preliminary acceptance and stress testing, especially for critical components. The
second reason is laughable—like your partners are actually going to maintain your test
environment in some working state. They won't. They can't. (More below.)

B You can’t use production for stress testing. Why not? Are you worried production
will fall over? Wouldn't you want to know? Isn't that the whole point? Wouldn't it be
great to watch that happens in a controlled way and back off as needed? Hello?

B You need integration environments to check cross-division scenarios prior to
release and provide preproduction access to external partners. Assume cross-
division scenarios worked perfectly prior to production. Assume external partners
signed-off in a separate environment before release. Do you now have quality assur-
ance? No. None. Scenarios don't work the same in production, where there are more
machines, different load conditions, different routing and load balancing, different
configurations, different settings, different data and certificates, different OS setups

80 Chapter 2 Process Improvement, Sans Magic

and patches, different networking, and different hardware. You'll catch some integra-
tion issues, but not enough to make this enormous expense worthwhile.

Eric Aside Does a virtual cloud environment, like Azure, take care of these issues? No,
it only resolves the different OS setups and patches and different hardware. It helps a bit
with the other issues, but only production is production.

B You need a protected certification environment. Why do you certify products in
advance? Because you want to ensure they’ll work in production. Oh wait.

Let's recap. There's no place like production. You need a development environment to run
a small set of automated check-in tests, a test environment to run preliminary acceptance
and stress testing to help avoid catastrophic failures, and production. Anything more is
superfluous.

Eric Aside It's nice for your partners to provide “one-boxes” for you to use with your dev and
test environments. One-boxes are preconfigured virtual machines that run the services you
depend on in a compressed image. Of course, one-boxes are nothing like production.

Then it's hopeless

“Wait a minute! We can't throw untested code at customers. They'll plotz! And don't get me
started about exposing prerelease, uncertified, partner code. Have you lost your mind?!” Shut
up and grow up. There's no place like production. The problem becomes configuring pro-
duction to permit the testing and certifying of prerelease code.

The solution is called “continuous deployment.” The concept is simple: deploy multiple builds
to production, and use custom routing to direct traffic as desired. It's like a source control
system for regulating services instead of source files. That it isn't built into Azure and other
cloud systems is inconceivable.

There are a variety of different approaches to continuous deployment, which basically differ
in regard to the sophistication of the deployment system and custom routing. However, con-
tinuous deployment can be quite simple to achieve.

The toughest part is dealing with data, which must function properly across multiple builds.
However, if a service is designed to handle at least one rollback after a new build is deployed,
even if that new build introduces new data, then that service will function well in a continu-
ous deployment environment.

Download from Wow! eBook <www.wowebook.com>

December 1, 2010: “There's no place like production” 81

Eric Aside You also need to worry about variations of settings across builds. This is a little tricky,
but not too bad. Ideally, your settings aren’t changing all the time.

If new builds depend on new versions of the .NET Framework or the operating system, those
have to be hosted on new machines—just as you'd have to do without continuous deployment.

As for data and schema changes, | do NOT recommend having multiple databases. Instead, try
to keep all schema changes to row, column, and table adds without any existing row, column, or
table changes or deletions. As | mention earlier, you'd need to do this even if you didn't use con-
tinuous deployment.

When you must make significant changes to the schema, the proven technique is to plan out two
releases.

0 In the first release, create a version that understands the old and new schemas and can

handle both (no significant new functionality, just the ability to handle both schemas).

1 In the second release, once the first stabilizes and is solid, ship a version that depends on

the new schema. Now, if there are any problems, you've got a safe rollback.

How do | work this?

How can you use continuous deployment for integration testing, partner testing, stress test-
ing, and certification? Let's run through those.

Integration testing You deploy your new build to production but set the custom
routing to direct traffic only from your engineering team to the build. (The default is no
routing at all.) The rest of the world continues to see your last release. This technique

is called "exposure control.” Now your team can test against real production with real
production data and real production load using a build not exposed to customers.

Eric Aside You'll need good diagnostics to analyze any failures you see in production.
That's true with or without continuous deployment.

Partner testing Partners deploy their new builds to production but set the custom
routing to direct traffic only from their engineering teams to their builds. The rest of
the world sees no change. Now partners can test against your production services with-
out anyone seeing their new work, including their competitors.

Stress testing You deploy your new build to production and test it out. Once veri-
fied, you use exposure control to increase the live traffic to your new build by incre-
ments—first 1%, then 3%, then 10%, then 30%, then 100%. You monitor service health
throughout the process. If your services ever show signs of trouble, you capture the
data and route traffic back to your last release (instant rollback).

Certification Partners deploy their new builds to production and test them. Once
the builds are verified, partners use exposure control to direct the certification team

82

Chapter 2 Process Improvement, Sans Magic

to their new builds. The certification team certifies their builds in production, before
customers or competitors see their new work. Once the builds are certified, partners
can choose when to direct live traffic to their new builds.

B Beta bonus! You deploy a beta build. Once it's verified, you use exposure control to
direct beta users to the beta build.

B Experimentation bonus! You deploy a variation of your current build. Once it's
verified, you use exposure control to direct half the live traffic to your current build
and half to the new variation. You utilize the differences you see in usage patterns to
improve your services.

B Auto-rollback bonus! After you direct all live traffic to your new build, you leave the
previous release in place. You connect your health checks to the exposure control. Now
if your health checks ever indicate trouble, your exposure control automatically and
almost instantly redirects traffic back to your previous release—day or night.

We're not in Kansas anymore

Microsoft engineers learned a great deal from our move into enterprise software a decade
ago. Unfortunately, those lessons have misdirected our recent service efforts, driving us to
build out extraneous environments in the name of service quality.

Maintaining extraneous environments drains our bandwidth, power, and hardware budgets
and dramatically burdens our engineers, without providing real quality assurance. This needs
to stop, and thankfully it is stopping as teams adopt continuous deployment.

With continuous deployment, you get service quality without the added costs. You also bag
a bunch of bonus benefits to help you improve your services and better serve your internal
and external partners.

There was a time when software development was done without source control systems.
Now such a notion is not only laughable, it's unconscionable. Continuous deployment pro-
vides a similar capability for services. Someday soon we'll look back and wonder how anyone
ever worked without it.

Eric Aside Currently, Bing and the Ads Platform have the only production implementations of
continuous deployment I'm aware of at Microsoft. Amazon has one of the best-known systems in
the industry.

My team is currently building a very simple form of continuous deployment. It uses an on-
machine IIS proxy to provide exposure control to multiple versions of the same roles on the same
machine.

From the perspective of the engineering team, we still deploy the same roles to the same
machines as we always have. The difference is that those machines now host multiple versions of
the roles, with exposure control directing the traffic we want to the version we want. Sweet!

February 1, 2011: “Cycle time—The soothsayer of productivity” 83

February 1, 2011: “Cycle time—The soothsayer
of productivity”

Nothing infuriates me more than wasted time and wasted effort. I'm
not talking about training, reorgs, moves, morale events, or vacations.
Those at least have the potential to be valuable in your life. I'm talking
about build time, integration time, unused specs, incomplete features,
blocking issues, excessive and persistent bugs, and over-engineered code
and processes. You know—hours and days you'll never get back.

| broke down all this real waste years ago in my column “Lean: More than
good pastrami” (earlier in this chapter). While | provided examples and
suggested solutions for individual areas, | didn't really map the path to a better life for your
particular team. Every situation is different. You need a path that discovers your most harmful
waste, drives your team to resolve it, and rewards your team with a visceral sense of relief.

In manufacturing, the secret path to success is reducing inventory. Inventory hides your
manufacturing issues. As you reduce inventory, problems appear. You fix the issues and then
reduce inventory further. Gradually, your waste is eradicated, and your efficiency soars. In
software development, the secret path to success is reducing cycle time. The shorter you
make the time between concept and completion, the more roadblocks you face that have
little to do with actual engineering. Fixing those problems unleashes productivity. Let me
show you the way to free your engineering soul.

Eric Aside Many readers missed the point of this column, thinking it applied only to websites
and web services. While a website was my example, shortening cycle time applies equally well to
packaged products like Microsoft Office. The one difference is that for websites and services that
release monthly or more often, a cycle is the time between releases. For packaged products or
online services that release annually or less often, a cycle is the time to complete a feature from
start to finish.

Many engineers question why techniques like reduced cycle time, co-location, early bug cor-
rection, and other lean concepts make a difference. To me this is surprising, because these same
engineers don't question why optimizing inner loops, avoiding disk I/O, and trapping faults at
their source all help software performance. If you don't see the connection you really should get
out more.

What's done is done

The first step to shortening your development cycle time is determining how long your cycle
takes. For services, it's the time between releases. However, for packaged products, shorten-
ing time between releases often can't be supported by the market. Thus, a better definition
of a cycle is the time between starting detailed specification of a feature and having that fea-
ture completed. What does it mean to complete a feature? There's the rub.

84

Chapter 2 Process Improvement, Sans Magic

You've got to define “done” for your features and for release of your services. Here are the
definitions my team uses. We insist that the first four be done for every feature and the sec-
ond four for every release. We release the Xbox.com sites every four weeks—and we LOVE IT!

“Done” for every feature:

All updated designs and code are reviewed
All automated tests written and passed

No ship-stopping bugs

 w nhpH

All monitoring and health checks in place (feedback tools for packaged products)
“Done" for every release:

1. All localization and world readiness completed

2. Full test pass completed successfully

3. All quality areas signed off and partners signed off
4

. All necessary release documentation completed

As you attempt to shorten the time between starting and finishing work, it's these eight
“done” criteria that expose issues. Let’s briefly discuss the common problems that arise and
how to respond.

If you build it

This first requirement for “done,” reviewing updated designs and code, only saves time, so
let's talk about automated tests—unit tests, component tests, stress tests, acceptance tests,
system tests, fault injection tests, and so on. Developers and testers should share in writing
these tests. Who writes which tests varies by team. As they attempt to shorten cycle time,
most teams struggle with their test harnesses and the time it takes to run the tests.

When it comes to reducing cycle time, you've got to distinguish between tests that run
quickly and often and tests that run slowly and infrequently. Any tests that fall in the middle
need to pick a side and be rewritten or refactored.

While it's nice to have one test harness, you can get away with two—one for fast and reli-
able check-in tests and one for full test passes. If you've got such a big team that even quick
check-in tests take more than 10 to 20 minutes, then you've probably got a large enough
team to invest in test prioritization and parallelization technology.

Likewise, if you've got such a large codebase that it takes more than 10 to 20 minutes to
rebuild, then you've probably got a large enough team to invest in a highly parallelized
build lab and build dependency logic. Remember, build, test, and check-in form software
development'’s inner loop. Anything done to speed up your development inner loop creates
a huge multiplier to overall productivity.

February 1, 2011: “Cycle time—The soothsayer of productivity” 85

As for code branches, you never want to be more than one branch deep from the main
branch. Integration is expensive, and each branch level adds another integration layer. Think
about it. Say you were building personalized laptops. Having the distinctive components go
through customs would crush your delivery schedule. Every branch level is like another cus-
toms station between your fixes and features and the main branch.

Roaches check in, but they don't check out!

Cleaning up a large bug backlog before release can really slow down cycle time. Bugs take
progressively longer to fix the longer you wait. Design and code reviews plus automated
testing will help (as will refactoring spaghetti code and switching to test-driven develop-
ment). Regardless, what really matters is finding and fixing bugs early. Short cycle times
demand immediate bug fixing.

No matter what you do, you'll still have bugs—we are human. Some of those bugs will be
very difficult to find and fix, which will slow you down. The good news is that an architecture
that is resilient to failure can alleviate the need to fix the toughest bugs—the intermittent
ones. Resilient architectures allow you to collect data on these stubborn, sporadic slip-ups
and fix them once they are finally understood.

Eric Aside | wrote more about resiliency in one of my more controversial columns, “Crash dum-
mies: Resilience” (see Chapter 5).

How am | doing?

Monitoring and health checks are often treated as afterthoughts. This amateur-hour action
increases the time needed to track down customer issues, which lengthens cycle time. This
is just as true with designing and implementing customer feedback tools for packaged
products.

Monitoring and health checks need to become forethoughts, designed in from the start.
Consider why you are building your feature, and ask how you'll know if it is performing as
envisioned. That will tell you exactly how to monitor its use and inquire about its health.

All this data and your quick cycle times enable fast feedback loops and constant improve-
ment. Be sure to spend time during every cycle reflecting on what you can do better in your
product and with your engineering team. My feature teams and leads do this twice every
release (every two weeks).

Eric Aside Making monitoring and health checks a forethought is my team’s most recent addi-
tion to the “"done” list. Poor monitoring and insufficient health checks caused us to stumble in the
fall, while we watched a partner team of ours shine in the same area.

http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=962984
http://blogs.msdn.com/b/eric_brechner/archive/2008/05/01/crash-dummies-resilience.aspx
http://blogs.msdn.com/b/eric_brechner/archive/2008/05/01/crash-dummies-resilience.aspx

86

Chapter 2 Process Improvement, Sans Magic
Sign me up

We already talked about automation for full test passes, and localization processes are quite
refined and fast at Microsoft, so the next area that typically causes trouble is sign-off. Quality
areas (security, privacy, and so on) should be addressed and bugs fixed by all engineers as
part of normal feature work. However, sign-off on these areas, as well as partner sign-off, can
really slow down cycle time.

Even though quality is the responsibility of every engineer, sign-off works best if one engi-
neer is assigned to shepherd each quality area through its process. Those engineers become
the team specialists in their areas, a nice career opportunity for them that provides cross-
group scope.

Since team specialists deal with their quality areas all the time, sign-off requirements and
activities are far faster and easier for them than for other team members. In addition, team
specialists develop relationships across the team and with corporate specialists in their area,
which also speeds the process and provides growth for the entire team.

Eric Aside Another thing we did in Xbox.com to reduce cycle time is co-locate feature teams
(including contingent staff and vendors where applicable). That gave us a 20+% increase in pro-
ductivity (as measured by the size and number of features completed over a release).

How about a few more details

Using many of the techniques I've described, my team has managed to reduce the cycle time
for our production releases from a few times a year to every four weeks. It's fantastic! Before
| get into all the advantages we are seeing, let me cover two topics people often question.

How do you develop features or architecture changes that take longer than four
weeks? There are two basic approaches: horizontal and vertical.

B The horizontal approach is to work on the large change a layer of the stack at a time.
For example, first make the schema change, then ship the new service, then write the
new model, then the new controller, and finally the new view. Each layer can ship within
a four-week cycle.

B The vertical approach is to break the large change into smaller slices of functionality.
You then complete each vertical slice end-to-end within a four-week cycle. If the slices
lead to a disjointed user experience, you hide the slices from users until enough of
them are complete.

B People often use a combination of horizontal and vertical techniques. Unfortunately,
the horizontal approach often leads to over engineering of layers and hampers iterative

February 1, 2011: “Cycle time—The soothsayer of productivity” 87

feedback. | much prefer the vertical technique, using the horizontal approach only as a
last resort.

How do you handle sustained engineering? Sustained engineering fixes usually take
about a month from identification through testing and release. Since we ship every four
weeks, sustained engineering is just part of our regular work. There are no sustained engi-
neering releases except in the most unusual of cases, and more importantly, there is
no special sustained engineering team. We are in it together—we all feel the pain of our
mistakes and the joy of our advances.

Life is good

Now that we've been releasing every four weeks for the last six months, we're really feeling
the benefits.

B Much of the overhead that engineers complain about is gone. We had to
remove it to succeed.

m Slipping is manageable. If a feature misses a release by a week or two, it still goes
out within a month.

B Releases aren’t scary or crazy anymore. We do them all the time, and you can
cause only so much trouble in four weeks.

B Our team gets more done in less time. We're faster because of the streamlining
that frequent releases demand.

B We serve our customers well, and they notice. Our dramatically improved
response times to issues and feedback is greatly appreciated by our customers.

While there is pain involved in any change, shortening cycle time provides the immediate
gratification of less overhead and quicker results. The team loves it, and | love it.

In the future, we want to be able to ship in one or two days, like some of our competitors
(who are probably laughing at my team'’s long, four-week cycles). We don't plan to release
that quickly all the time, but being able to do so will mean being even more streamlined.
Once you start down this path, you get hooked on having so little between you and your
customers, and that is a great place for everyone.

Eric Aside Why did we move the Xbox.com team to four-week cycles? Because several mem-
bers of the leadership, including me, knew it was the best way to improve our team’s productivity
and customer quality. Trimming cycle time and work in progress is an old technique from Lean
Manufacturing, which dates back to the 1930s.

http://en.wikipedia.org/wiki/Lean_manufacturing
http://en.wikipedia.org/wiki/Lean_manufacturing

Chapter 3
Inefficiency Eradicated

July 1, 2001: “Late specs: Fact of life or genetic defect?”.................... 90
June 1, 2002: “Idle hands” it e 92
June 1, 2004: "Theday we met”ottt ittt 97
July 1, 2006: “Stop writing specs, co-located feature crews” 99
February 1, 2007: “Bad specs: Who is to blame?” 103
February 1, 2008: “So far away—Distributed development” 108
December 1, 2008: “De-optimization”ccoviiiiiiiiiiiann.. 112
April 1, 2009: "Your World. Easier”.ttt 116
April 1, 2011: “You have to make adecision”........... 120

As | described in “Lean: More than good pastrami” in Chapter 2, waste and evil are
close companions in the work environment. Nowhere is that more evident than

in group communications, a popular target of these columns, or in the proper use
of unstructured time between projects. These areas affect whole teams, not just
individuals, so their impact is multiplied.

Specification documents (specs) and meetings hold a special place of honor in

my museum of horrors. | guess that’s because engineers spend so much time in
meetings, often talking about specs. While I'd love to simply banish both from the
world as we know it, meetings and specs do serve a purpose. The trick is to focus on
that purpose and slice away all the excess.

In this chapter, I. M. Wright describes strategies for eliminating common
inefficiencies. The first column deals with last-minute spec changes. The second
tackles appropriate use of slack time in between projects. The third focuses on
minimizing meeting malaise. The fourth tries to eliminate specs entirely. The fifth
attempts to at least make specs shorter and simpler. The sixth solves distributed
development. The seventh demonstrates how to properly optimize group work. The
eighth demonstrates how to use checklists and single-piece flow to improve your
processes. The last column advocates for decision making even under ambiguous
circumstances.

90

Chapter 3 Inefficiency Eradicated

Other columns have plenty more to say about group communications—everything
from cross-team negotiation to dealing with nontechnical folks. Still others talk
about actions individuals can take to improve their lot. But this set strikes at the
core of what groups can do to make the best use of their limited time.

—Eric

July 1, 2001: “Late specs: Fact of life or genetic defect?”

You‘ve hit code complete, you're burning the bugs, when what
arrives in your Inbox? Look, oh joy, it's a new spec! Punt it, right? But
wait, it's a key feature that you figured was spec-less, or as we often like to
say, “The code is the spec.”

Eric Aside A feature is code complete when the developer believes all the

code necessary to implement the feature has been checked into source con-
trol. Often this is a judgment call, but on better teams it’s actually measured
based on quality criteria (at which point it's often called “feature complete”).

Of course, test is now furious because they didn't get the spec earlier and feel “out of the
loop,” it's too late, the code doesn’'t match, and they haven't tested it. Dev is upset because
feature work was supposed to be finished, test is now mad at them for coding the “wrong”
thing, there's a ton of rework to do, and what's worse, dev has been caught coding an
improperly documented feature. It gets even more pleasant as people argue over the new
spec, find holes, make changes, and basically churn the code to death at the very time it
should be stabilizing.

For every change, churn, churn, churn

An extreme example, perhaps, but it's happened, probably more than once. Even if they
aren't that late, specs often are incomplete or aren't reviewed and inspected in time for dev
to start work.

So what happens? Churn, and lots of it. Dev starts coding too early. The spec has issues, so
the code has issues. Someone points these out, ad hoc meetings are held, someone gets left
out, the code is reworked, whoever was left out finds something else wrong, there are more
ad hoc meetings, and so it goes.

What can be done about this? Some folks might say, “PMs are scum, persecute them till they
produce.” Even for me, that seems harsh. Specs come in late; it's a fact of life. The question is
how you deal with it. I've seen a few different approaches.

July 1, 2001: “Late specs: Fact of life or genetic defect?” 91

Eric Aside | know eXtreme Programming buffs out there are yelling, “Get a room!” (a team
room). | make the same argument in a later column, “Stop writing specs, co-located feature
crews.” However, Microsoft is a fairly diverse environment. Not every team can co-locate, and
dependencies often make documentation a must, so we need more than one solution.

Hallway meetings

The first approach is the hallway meeting. A dev finds holes in the currently available spec
and sees a PM passing by. A hallway meeting commences; some issues are worked out. The
dev goes happily back to her desk thinking she now knows the right thing to do. The PM
goes back to his office thinking the code will reflect what he wanted. Maybe they are think-
ing the same thing, maybe not. Maybe test and ops would agree with the solution, maybe
not. Maybe they thought of everything, maybe they didn't. Maybe this is the best way to
handle changes, maybe monkeys will fly out of my... well, you get the idea.

Committee meetings

A second approach is the committee meeting. It goes by other names on other teams, but

it's basically a leads’ meeting to discuss spec changes. Often they're held on a regular basis,
and the group of leads gets together to talk about holes or problem areas in the specs and
work out solutions as a group. The lead PM writes up the results and mails them out to the
whole team.

The good news: committee meetings include the right folks, come to final decisions, and
then document and communicate those decisions to the team. The bad news: committee
meetings are a frigging nightmare. They are long, painful, and exhausting. They use up huge
cycles of critical resources. They block progress and form the worst kind of bottleneck—self-
inflicted and self-perpetuating.

Spec change requests

The approach | like most is the spec change request (SCR), also known as a design change
request (DCR) with a twist. It's a combination of the committee meeting and hallway meet-
ing with a few key differences. You start with an idea of how you'd like to change or add to
a spec. Maybe you arrived at the idea on your own, maybe through a hallway conversation,
maybe through a leads’ meeting.

Regardless of whether you're the PM, dev, test, or ops, you write up the idea in an e-mail with
the subject line “SCR: <affected spec> - <short description of change>." You end the e-mail
with these words in bold, “Unless there are strong objections, this is now considered
spec.” Then you send it to the PM, dey, test, and ops folks who are most directly affected by

92 Chapter 3 Inefficiency Eradicated

the change. A few days later, after adding whatever alterations are suggested by peers, you
send it to the rest of the team and track it with other SCRs in RAID and/or a public folder.

The key is that the change is documented and reviewed but does not block progress.
Objections are almost always the exception, not the rule. The dev can proceed whenever she
likes, trading risk of objections against time. Typically, a dev waits till the SCR is sent to the
full team after the initial alterations.

Prevention is the best cure

Of course, the best thing is for a spec not to be late in the first place or at least for it not to
blindside you. That's where T-I-M-E Charting can help. In T-I-M-E Charting, the first spec lays
out the design of the entire project. Not simply a requirements document, not a set of mini-
specs, but a high-level spec of the project much like a high-level architecture document a
dev lead might write. It should lay out what functions and Ul the project will have and how
they will act together, leaving details for later specs. All future specs and features should be
referred to by the first high-level spec.

Now dev, test, and ops can make plans that account for all future features. They can make a
better integrated product that feels smoother to the user. PMs can also use the first spec to
schedule the rest of the specs, hitting the high-priority ones first, without worrying about
missing something or surprising someone. It's an idea whose T-I-M-E has come (couldn’t
resist).

Eric Aside Totally Inclusive Mutually Exclusive (T-1-M-E) Charting, from Donald Wood, never
quite caught on in the form that a peer of mine, Rick Andrews, originally envisioned it. However,
value propositions, vision documents, cross-product scenarios, and thoughtfully designed proto-
types now serve the same purpose.

June 1, 2002: “Idle hands”

Your dev team hit zero bug bounce (ZBB) two weeks ago, and sud-
denly you realize—you've hit a lull. Any dev who has hit ZBB on a box
product knows about the lull. If your team is on Internet time, feel free to
stop reading now. (Wait a minute, where did you find the time to read that
first sentence? Get back to work!)

June 1, 2002: “Idle hands” 93

Eric Aside Zero bug bounce (ZBB) describes the first moment in a project when all features are
complete and every work item is resolved. This moment rarely lasts. Often within an hour a new
issue arises through extended system testing, and the team goes back to work. Nevertheless, ZBB
means the end is predictably within sight.

BTW, my team now works on Internet time, and we still manage to have monthly morale events
and do our share of reading and innovating. Our secret—lean and agile baby! Read about it in
Chapter 2.

ZBB marks the team shift from being blocked by dev to being blocked by test. (Being
blocked by PM has no transition.) After handling the initial wave of new bugs the first couple
of weeks after shipping, most dev teams enter “hurry up and wait” mode, pouncing on new
bugs when they arrive and otherwise just wondering what to do.

The crazy, scary part is that the lull can sometimes last from ZBB until the first milestone of
the next version. That could be months on big projects! A dev manager’s hands are always
full, so it's easy to forget that two-thirds of the team members are idle, and you know what
they say about idle hands—well, it's not good.

Baby did a bad bad thing
Here are a few very bad things that idle devs often do:

B Poach bugs. After ZBB, your team should be in lockdown, which means that all bugs
go through triage before a fix is even considered. Idle devs sometimes sit by their desks
hitting F5 on RAID (now Product Studio) waiting for a bug to appear. When they don't
see one, they check the active bugs headed for triage, find a juicy one, and start dig-
ging. Before you know it, they've got a fix and are looking to sneak it in. That's poach-
ing, and no self-respecting dev should do it.

Eric Aside In software engineering, bugs have traditionally meant mistakes in the code.
However, internally we use the term “bug” to refer to anything we want to add, delete, or
change about the product. Externally, people generally call these “work items,” some of
which may be code mistakes. | prefer the term “work item” so that | know which "bugs” are
really bugs.

Who knows if the triage team will accept that bug? Who knows if the dev fixed the
right bug, as opposed to a larger or smaller related bug? Investigate potential show-
stoppers—sure. Poach—never.

B Fix bugs that are not logged. Okay, a bug made it through triage and you are fixing
it. You notice other bugs nearby, often related to the original. No one has logged them
yet, but what the heck. There you are in the code; the bugs are right in front of you.

94

Chapter 3 Inefficiency Eradicated

right there!

Your team performs code reviews to prevent this evil nonsense. In these days of
trustworthy computing, the team should code review every check-in throughout the
project. During lockdown, you should code review every change with three sets of eyes
(the dev and two other people). As for the other bugs that you find—log, triage, and
track them.

Eric Aside There's a great Calvin and Hobbes cartoon in which Calvin magnanimously
opens the front door to let out a fly, only to allow three more back inside in the process.
That's why you study and triage every bug toward the end of a project. Once my team
changed the value of a single parameter a month before we released. A week later testers
across the company noticed that all applications froze whenever you opened the CD tray.
Eventually, we traced it back to the seemingly innocuous parameter, and reverted the
change. You just never know.

Fix postponed bugs. Naturally, you shouldn't be fixing postponed bugs before RTM,
but should you fix them while planning the next version? Uh, no. During the project,
the team judges which bugs will have the most impact on our customers and must

be fixed—Dbut you have no way of verifying that these were the correct choices until
you ship. After release, you no longer have to guess. Product Support Services (PSS),
Watson, and Microsoft Consulting Services (MCS) will tell you. Candidly. Use the post-
poned bugs as a reference to understand why these bugs weren't fixed originally. But
don't second-guess your real customers. Go to the source to fix the bugs that are really
affecting your users.

Rewrite “yucky” code. Devs hate "yucky” code. It's embarrassing, unreadable, and
unmaintainable. So when they have some extra time on their hands, devs will often
say to themselves, “Gee, | don't have a spec, so | can't write anything new. How about
| rewrite that yucky code | hate instead.” They know that they could do better given a
second chance, and they will. Devs will write much better code the second time, and
more clearly, with far fewer bugs than the first time they wrote it.

Unfortunately, the rewrite will actually have more bugs than the current yucky code has
today because of all the months, even years, of testing and fixes that the yucky code
received after it was first written.

Sometimes a rewrite is necessary to make the code more performant, scalable, reliable,
secure, or adaptable to new technology. In that case, make the rewrite a feature, and
then spec and schedule it like you would any other feature. Otherwise, don't be a fool
and regress a ton of nasty bugs while adding no value to your customers.

Download from Wow! eBook <www.wowebook.com>

June 1, 2002: “Idle hands” 95

Eric Aside This goes for refactoring too, as much as | hate to say it. Even if the refactor-
ing is computer generated, you just never know. This doesn't mean you shouldn't refactor
or rewrite code, regularly. It means you shouldn’t do so arbitrarily. Decide and commit to
it as a team, be sure sufficient unit tests are in place to minimize the introduction of new
bugs, and do it right.

B Wage wars over coding style. Talk about the ultimate dev team time suck—arguing
over white space, braces, and Hungarian have to be in the top five. Keep this in mind:
using a consistent coding style has great benefits to the maintainability and quality of
your code base, but the specific style your team chooses makes little difference. You are
the dev manager; pick one and go with it. Who said this was a democracy?

Tell me what | must do

Enough of the dark side of idle time. What can your dev team focus on that's constructive
during quiet times?

Naturally, your test team will insist that devs find bugs during the time before RTM, but most
devs are terrible at finding bugs, even in someone else’s code. Your PM team will insist that
devs spend all their time reading and reviewing specs after RTM, but that won't keep a dev
team happy, engaged, and motivated.

So what can a dev do during the lull? Here are a few ideas:

B Analyze your bugs. Look for patterns in the bugs that your team fixed during the
past product cycle. What were the common mistakes for individuals and for the team?
What can each member of the team focus on next time to produce a better product?

B Write tools for your group. While devs aren't often great at finding bugs, they are
pretty terrific at writing tools to help find bugs. They can also write tools to smooth
out processes, like check-in, setup, build, and prop. Instrumenting code or writing a
good harness can go a long way toward promoting good feelings with the test team.
Naturally, you should check the Toolbox website first to see if a tool that meets your
needs already exists.

B Make your PM happy by working on prototypes of design ideas. Writing proto-
types is great; just don't write them in your usual code base. Try a different language
or at least a separate build. The big mistake with making prototypes within the normal
code base is that PMs and upper managers start thinking that the code is almost ready
to ship, when in fact there are often all kinds of issues with localizing, platform depen-
dence, logo issues, roaming, performance, security, and compatibility. Confusing pro-
totypes with shipping code can mess up schedules as well as expectations. In contrast,
writing a prototype in another language can be a great learning experience. Speaking
of which...

96

Chapter 3 Inefficiency Eradicated

Eric Aside It's been said before but bears repeating, “Don't ship prototype code.” It
doesn't save time, it costs time. Just don't do it. Prototypes are for learning—that’s all. In
addition to writing prototypes in another language, | used to hook the escape key to an
abort call. That way, if my boss ever got too excited watching a demo, I'd hit the escape
key, watch it crash, and then point out, “Of course, it's not exactly ready to ship.” For more
on prototyping see “My experiment worked! (Prototyping)” in Chapter 6.

B Learn new technologies or skills. Folks always complain that they don't have

enough time to learn new technologies or skills and that they can’t get the training
they need to move up. Well, the quiet times are perfect for this. Don't let the opportu-
nity pass you by.

Talk to research. Right after ZBB is the perfect time to talk to the research team. It's
early enough to adopt some new technology and quiet enough to learn about it and
figure out what you can use. By the time you ship and begin planning the next release,
you could have a prototype ready with all the risks resolved and really wow your team.
In addition, you and your research contact can plan new areas of research work that
will be ready for future products. This is so valuable and easy to do.

Write a patent disclosure or white paper. When else do you have the time to
reflect and write about what you've done? If a dev on your team has come up with a
novel idea that added a nice or significant touch to your product, then have your dev
write a patent disclosure. It's easy, short, and a huge morale boost. Go to the Patent
Group home page for more details. If you want to document information or share

an idea with other teams, write a white paper. It's relatively easy to do and can bring
respect and influence to the author and your team.

Reflect on your career. Last but not least, these quiet dev times are ideal for exam-
ining your career status. Are you where you want to be? Is your career moving in the
right direction? Are you ready for a new challenge? What do you need to do to stay
engaged and motivated? If upon reflection you feel that you need to make a change,
the earlier you put the wheels in motion, the better off you'll be.

Waste not, want not

Far too frequently, time spent between versions is wasted needlessly, often on tasks that
harm instead of help. With just a little thought and consideration, your dev team can be
improving themselves, the product, their outlook, and the entire group without getting into
any mischief. Don't pass up this opportunity for you and your team. Plan for your downtime
and keep the momentum moving forward.

June 1, 2004: “The day we met” 97

June 1, 2004: “The day we met”

Quit wasting my time. Would you, could you, PLEASE quit wasting my
time? Maybe if | jump across the table and duct tape your mouth shut, |
could take action instead of sitting here incredulously while you incinerate
60 minutes of my life. How does calling a meeting give people license to
act like you're worthless? If time is money, most meetings are a market
collapse. | am so tired of people who could sooner drive a bus off a cliff
than run a decent meeting.

Well I'm not going to take it anymore. If you force me into a meeting
room, be prepared for me to call you on any stunts you try to pull. You waste my time, and
I'll ensure yours gets torched with it. Don't like it? Don't test me. What am | going to call you
on? Listen up, ‘cause here it comes...

Why are we here?

The first question I'll interrupt your self-serving soirée with is, “Why are we here?” What was
the point of us getting together? Was there a reason? If you haven't made that reason clear
to everyone, we all probably think it's something different and will chase our tails for the
allotted time, accomplishing nothing. | don’t know—maybe send an agenda and the docu-
ments that we're going to discuss in advance? Thanks.

If you did make the point of the meeting clear, I'm probably reminding you to stick to the
point! | don't care if there are 50 other meetings with 50 other decisions to make, topics to
cover, or bits of information to share. I'm in this meeting now, and | darn well want to at least
bury this one. If someone wants to talk about something else, let him put on his own show
after we're done.

Eric Aside How do you politely cut off someone trying to switch topics? My favorite approach
is to say, "Let’s get closure on this topic first, then we'll focus on your topic.” Typically, after you
close on the first topic everyone will want to leave. The interrupter will have to schedule a sepa-
rate meeting with the right people (much better). Should the interrupter insist that closure on his
topic is necessary first, discuss why that is the case (which actually focuses on the original topic).
If the interrupter is right, your meeting is premature and should be rescheduled. No one will
mind leaving.

What are we trying to do?
My next question will be, “"What are we trying to do?”

B Are we trying to reach a decision? Great, let’s decide and skip the idea generation,
status checks, and rumor mill.

98

Chapter 3 Inefficiency Eradicated

B Are we trying to share information (like a status meeting)? Great, then get
through the information list and stop trying to make decisions or solve problems.

B Are we trying to generate ideas? Great, then capture everyone’s ideas and stop cri-
tiquing or judging what’s possible. At the end, pick the best idea and be done with it.

The point is that combination meetings are ineffective and wasteful. Know why you are all
there and what you are trying to accomplish. If you need to switch contexts, be deliberate
about it, and let everyone know that the rules have changed. Otherwise, you'll waste every-
one's time, spin endlessly, and eventually have to meet again. When you do, don't bother
inviting me; I'm not coming.

Eric Aside A common special case of this issue is bringing up design issues at Scrum meet-
ings. Scrum meetings are about sharing information, not generating ideas or making decisions.
Nothing derails a Scrum meeting like a design discussion. However, because design discussions
are worthwhile, we keep a list of discussion topics on the whiteboard during the scrum. When the
Scrum meeting is complete, whoever wants to can stay and participate in the design meeting.

Why are they here?

Okay, so we've got a reason for meeting and we know what we're doing. Now why are they
here? You know—the people who don't belong here. The people who are asking the unnec-
essary questions, who are repeating other people’s points, who have to speak up just to say
they agree. Why are those people here?

The length of a meeting is directly proportional to the number attending, and | doubt that
the relationship is linear. You should invite only those who NEED to be there.

B Trying to reach a decision? Invite the decision makers. Everyone else can find out
later via e-mail. All the necessary decision makers can't attend? Cancel the meeting.
NOW! Otherwise, you'll have to recap the whole meeting again when everyone can
attend.

B Status meeting? |Invite the people who will share their status. Everyone else can find
out later via e-mail. Some status people can’t make it? | guess they're slackers.

B Brainstorming meeting? Invite a few creative, open-minded people who'll make the
meeting successful. Everyone else can find out later via e-mail.

Sometimes you must invite a few others who are key to the meeting's success: facilitators,
mediators, cheerleaders. But that's it. If too many others are signed up to attend, cancel the
meeting. (You can tell how many people plan to attend because when folks accept a for-
warded meeting, you receive the confirmation.)

July 1, 2006: “Stop writing specs, co-located feature crews” 929

Try booking a small room; it dissuades uninvited guests. Try scheduling the meeting for just
30 minutes—it makes folks show up on time and keeps the meeting moving. You can say it's
a "working meeting” and even use information rights management (IRM) to prevent forward-
ing the appointment if necessary.

Why am | hearing this now?

For important topics, you don't want to surprise key players. No one likes to be rushed in
making critical decisions, and no one wants to be uninformed about critical areas. If you
need the meeting to go smoothly, talk to the key players beforehand. You can discover the
issues, negotiate a compromise, and get everyone on the same page in advance. Then the
meeting becomes a mere formality. This is a good practice for every decision meeting, but it
is time-consuming. For critical decisions, it is a critical step.

What are the next steps?

So the meeting is done, finished, kaput, right? Wrong! Meetings are like Hollywood horror
show zombies. They come back to life and eat those who remain. Determine the next steps,
and document them in e-mail. That is the way to make dead meetings stay dead.

Address the e-mail to all attendees and cc: everyone affected by the outcome. Include a
short meeting summary of the decisions made, information shared, or ideas generated. Then
list the next steps specifying who does what, when. Now, finally you can move on in safety.

See, it's not so hard to respect people’s time. Meetings are costly in so many ways. Of course,
they are necessary for strong group communications. But if you run them, run them well.
Everyone will appreciate it, and you'll get more done.

July 1, 2006: “Stop writing specs, co-located
feature crews”

I'm not a Program Manager (PM). I've never been a PM. I'm not likely to
ever become a PM. It's nothing personal against program managers. I've
known great ones | count among my friends. | certainly have no right to
tell PMs how to do their jobs.

That said, PMs should stop writing specs. Period. They are wast-

ing my time; they are wasting my group’s time; and they are wasting
the company’s time. You can almost hear the sound of quiet residual
crunching as spec termites chew away at company and customer value.
It makes me nauseous.

100

Chapter 3 Inefficiency Eradicated

It's not just PMs though. Developers need to stop writing dev specs. Testers need to stop
writing test specs. The madness must stop. The waste must stop. We must regain our senses
and take back our productivity, along with our sanity.

Eric Aside This column was easily among my most contentious in terms of response. As you can
see in the next paragraph, | guessed it would be. The biggest misunderstanding about my mes-
sage was the difference between formal and informal documentation. | argue that co-located,
cross-discipline teams need only informal documentation, like photos of whiteboards stored on a
wiki with some minimal commentary. Teams divided by distance or discipline need formal docu-
mentation, like detailed specifications.

Have you lost your mind?

“Surely you can't be serious?” | hear my conscientious readers say. "You've been preaching
quality (see "Where's the beef” in Chapter 5) and design (see “Resolved by design” in Chap-
ter 6) for years. You've been telling devs not to act before they have the spec and not to code
before they've thought through the design. Are you saying you were misguided, or even,
perhaps, wrong?” No, of course not.

Feature teams must understand the user experience before they create it, and devs must
understand the internal design enough to explain it with a straight face to peers before they
implement it. But neither of those steps requires formal written documentation.

Why do we have formal written specs? Customers don't need them. Marketing and product
planning groups don’t need them. Even content publishers and product support get limited
use from specs. So who needs these wanton wonders of waste? To find out, throw specs away
and see who screams.

Therein lies a dilemma

If we no longer had specs, devs and testers would cry, “How am | supposed to know what
the code should do?” Tell them to discuss it with PMs and they’'d holler, “PMs don’t just hang
around my office all day. | need specs written down. | need to review them, change them,
and update them.”

Ah yes, there's the rub. Not that devs and testers need to review, change, and update specs,
but that PMs don't hang around to discuss the user experience, implementation, and test
strategy all day. Well, what if they did?

What if PMs stayed all day in the same open area surrounded by whiteboards with devs and
testers who were working on the same feature set? Would we still need formal written specs?
Wait, | hear more screaming.

July 1, 2006: “Stop writing specs, co-located feature crews” 101

Special needs

Without formal written specs, teams that depend on features from other teams would pro-
test, "How are we supposed to use your code if we don't know how it works?” Good point.

If PMs are hanging around the feature team all day, they can't also be on call with all the
downstream teams, and we can't fit everyone into the same team room. However, down-
stream teams don’t need a spec—they need a mini-SDK, which component teams should be
providing anyway, and which adds great value.

Without formal written specs, the compliance police would bark, “Where's the <insert your
favorite bureaucratic suppository here> document?” Another good point. The compliance
police keep us out of harm's way. It's an important if thankless job, and they often require
formal written documentation to do it. However, the compliance police don't need a spec
either. They need complete compliance documentation, which often has different informa-
tion in a different form than a spec.

Eric Aside Who are these “compliance police”? They are regular engineers who focus on key
areas Microsoft must ensure are correct in our products, such as security, privacy, world readi-
ness (no inappropriate euphemisms or references), and compliance with all applicable laws and
regulations. Examples of typical documentation they require include threat models (security),
privacy statements, and licensing terms.

In both cases, you don’t need formal written specs. Instead, you need specialized documen-
tation that is easier to write because it's not open-ended.

| don't recall

So do we still need formal written specs? | can't remember all the cases, so let's recap:

B PMs spend their days in the team room discussing the user experience, implementa-
tion, and test strategy with the feature team.

B The team writes mini-SDKs for downstream teams.

B The team fills out required compliance documentation.
It's good that | wrote that down. Oh wait, that's a problem.

People are forgetful. You've got to write ideas down, particularly when you are constantly
switching between projects. Naturally, if a feature takes months from start to finish you
might even have people leave the team and lose the information entirely.

102

Chapter 3 Inefficiency Eradicated

Stick to one thing

But what if you worked on only one feature at a time? Then it wouldn’t take as long, and
you wouldn’t be switching between projects. There would be little chance of anyone leaving,
and remembering ideas would be much easier. You'd just need to capture whatever was on
the whiteboards with a digital camera and paste it into a wiki, Word document, or OneNote
notebook.

It's like having specs, only without the mind-numbing tedium. That leaves you more time to
think and collaborate at the whiteboard, and less time at your desk pushing pixels and words
around.

Okay, you keep the feature team in close quarters with lots of whiteboards. You work on one
feature at a time till it's done, documenting your decisions with a camera. You write specially
targeted documents that add value downstream. This sounds like Lean software develop-
ment (which you can read more about in the article “Lean: More than good pastrami” in
Chapter 2). Bingo! That's what you get when you cut out the waste.

You ready?

Very few teams could stop writing formal specs tomorrow. They haven't adopted the feature
crew concept of working on one feature at a time from start to finish, and they aren't co-
located in a team room with whiteboards.

However, that's starting to change. Groups are co-locating because it's faster and easier to
get work done. Groups are forming feature crews because you get higher quality faster and
leave behind less incomplete work. Take those trends, put them together, and you can kiss
specs goodbye forever. It's more than a dream; it's a homecoming to simpler days, but with
the wisdom gained by years of hard-fought experience.

Eric Aside My first tricky project as development manager for the Xbox.com team was to co-
locate the six Scrum teams, including removing the cubical walls within each team room. Those
six teams had been operating on the same big release for Kinect and Windows Phone for several
months before the office shuffle, and several months after the shuffle. The timing and all the
team velocity data that Scrum provides made this a great opportunity to measure the impact of
co-location. The four-week average velocity for five of the six teams increased between 20% and
63% (the sixth team was releasing a beta and halted new development). That 20% increase is like
getting an extra day a week of productivity and still having a two-day weekend. The team that
increased 63% (that's three extra days a week!) also decreased the size of their stories, left stories
unassigned so that the first available person could pick them up, and increased cross-discipline
pairing for stories with many unknowns. The only documenting the teams did was maintaining
OneNote notebooks and completing the essential compliance work.

February 1, 2007: “Bad specs: Who is to blame?” 103

February 1, 2007: “Bad specs: Who is to blame?”

Specs, by and large, are terrible. Not only PM specs, but dev and test
specs too. By terrible, | mean difficult to write, difficult to use, and difficult
to maintain. You know, terrible. They are also incomplete, poorly orga-
nized, and inadequately reviewed. They've always been this way and they
aren't getting better.

I'd love to blame PMs for this, partly because | enjoy it, but mostly because
they are the leading source of awful specs. However, the facts don't sup-
port blaming PMs. Everyone writes bad specs, not just PMs. Even PMs who
occasionally write good specs, mostly write poor ones. And good specs are still difficult to
write and maintain, regardless of who authors them.

If PMs aren't to blame for shoddy specs, who is? Management would be an easy target—
another group I'd enjoy blaming. It's true that some organizations, like the Office division,
traditionally produce better specs than others. So clearly management has a role. However,
Office has changed management many times over the years, so the cause must be deeper
than the people in charge.

It's a setup

It's clear that the blame falls squarely on the spec process—how we write specs and the tools
we use to write them. The process is cumbersome, difficult, and tedious. The templates are
long, intimidating, and complex to the point of being intractable. Basically, we've made writ-
ing good specs as hopeless as winning a marathon in a fur coat and flip-flops.

Anal anachronistic alarmists will say, “The spec process is absurdly dysfunctional for a reason.
All template elements and process steps are needed to avoid past catastrophes.” See, you
never have to worry about too much bureaucracy from on high when there’s plenty down
low where it counts.

Dysfunctional processes always come from the best of intentions. The trouble is that the
original goal and intent was lost somewhere along the way. Revive the goal and intent, and
new and better ways to achieve it will present themselves.

Eric Aside | worked in Boeing research for five years. Not all, but most of the bureaucracy
there seemed to come from the top. I've been at Microsoft for 16 years. Not all, but much of the
bureaucracy here seems to come from the bottom. We are free to act independently at the low-
est levels. Sometimes that means we're given enough rope to choke ourselves.

104

Chapter 3 Inefficiency Eradicated

Communication breakdown

The goal of all PM, dev, and test specs is to communicate design and design decisions to
people across time and location. We want to make that communication easy and robust, with
plenty of feedback and quality checks.

In case you missed it, those were four separate requirements:

® FEasy
® Robust
® Feedback

B Quality checks

Each requirement can be satisfied with a different solution. The approach, “We'll just add
more sections to the spec to cover all requirements,” is as idiotic as, “We'll just add more
methods to the class to cover all requirements.” Instead, let's take on the requirements one at
atime.

Keep it simple and easy

The spec needs to be easy to write, understand, and maintain. It should use standard nota-
tion, like UML, for diagrams and common terminology for text. It shouldn’t try to be too
much or say too much.

The simpler the format the better. The generic spec template in the Engineering Excellence
Handbook has 30 sections and three appendices. The superior Office spec template has 20
sections. Both are far too complex.

A spec needs to have three sections plus some metadata:

B Requirements Why does the feature exist? (Tied to scenarios and personas.)
B Design How does it work? (Pictures, animations, and diagrams are especially useful.)

B Issues What were the decision points, risks, and tradeoffs? (For example,
dependencies.)

B Metadata Title, short description, author, feature team, priority, cost, and status.

That's it. The status metadata could be a workflow or checklist, but that's the limit of the
complexity.

“But what about the threat model? What about the privacy statement? The instrumentation
or the performance metrics?” | can hear you demanding. Get a grip on yourself. Those items

February 1, 2007: “Bad specs: Who is to blame?” 105

are quality checks I'll talk about soon. The spec structure itself is simple, with no more or less
than it needs. It's easy to write and easy to read.

Online Materials Spec template (Spec template.doc)

Make it robust

The spec needs to be robust. It must verifiably meet all the requirements, both functional
requirements and quality requirements. "How?"” you ask. What do you mean, "How?!?" How
would you verify the requirements in the first place? You'd write a test, right? Well, that's
how you write a robust spec. In the first section, when you list functional and quality require-
ments, you include the following:

Unique Priority Functional or Short description Related scenario(s) Test(s) that verify
ID quality the requirement
has been met

If you can't specify a test to verify a requirement, then the requirement can’t be met, so drop
it. Can't drop it? Then rewrite the requirement till it's testable.

Eric Aside | believe there is a basic equivalence in solid designs between tests and require-
ments. Every requirement should have a test. Every test should stem from a requirement. This
results in clear, verifiable requirements; more comprehensive tests; consistent completion criteria
(all tests pass = all requirements met); and better designs because test-driven designs are natu-
rally simpler, more cohesive, and more loosely coupled.

Get feedback

The more eyes that see a spec before it's implemented, the better it will be and the less
rework it will require. You want feedback to be easy to get and easy to give. At the very least,
put draft specs on SharePoint, using change tracking and version control. Even better, put
drafts on a wiki or a whiteboard in the main area for the feature team.

How formal does your process, feedback, and change management need to be? As | dis-
cussed in a previous column (“Stop writing specs, co-located feature crews” earlier in this
chapter), the degree of formality necessary depends on the bandwidth and immediacy of the
communication. People working on the same feature at the same time in the same shared
workspace can use very informal specs and processes. People working on different features
at different times in different time zones must rely on highly formal specs and processes.

106 Chapter 3 Inefficiency Eradicated

Regardless, you want the spec to be fluid till the team thinks it's ready. How will you know it's
ready? It's ready when the spec passes inspection by the test team using the quality checks.

Check that quality is built in

Here is where our current specs go farthest off base. Instead of adding security, privacy, and
a host of other issues as quality checks, groups add them as separate sections in the spec.
This is a disaster, and here’s why:

B Specs become bigger and far more complicated.
B Authors must duplicate information across sections.
B Bottom sections get little attention, causing serious quality gaps.

B Designs become incomprehensible because their description is spread across multiple
sections.

B Mistakes and gaps are easy to miss because the whole picture doesn't exist in one
place.

B Updates are nearly impossible because multiple sections are affected by the smallest
change.

Instead, the quality checks that apply to every spec are kept in a list everyone can reference.
The first few checks will be the same for every team:

v Are the requirements clear, complete, verifiable, and associated with valid scenarios?
v Does the design meet all requirements?

v Have all key design decisions been addressed and documented?

The next set of quality checks is also fairly basic:

v Have all terms been defined? v Are there issues with compatibility?

v Are security concerns addressed? v Are failures and error handling
addressed?

v Are privacy concerns met? v Are setup and upgrade issues covered?

v Is the Ul fully accessible? v Are maintenance issues addressed?

v/ s it ready for globalization and v Are backup and restore issues met?

localization?

v/ Are response and performance expecta- v Is there sufficient documentation for
tions clear and measurable? support to do troubleshooting?

v Has instrumentation and programmabil- v Are there any potential issues that affect
ity been specified? patching?

February 1, 2007: “Bad specs: Who is to blame?” 107

A team may also add quality checks for their product line or team that reflect particular qual-
ity issues they commonly face.

Online Materials Spec checklist (Spec checklist.doc)

The key is that the design section describes the feature completely, while the quality checks
ensure nothing is missed. Yes, that means the "How" section could get pretty big to cover all
the areas it needs. But those areas won't be rehashes of the feature specialized for each qual-
ity requirement (security for the dialog, privacy for the dialog, accessibility for the dialog).

Instead, the areas will be the feature’s logical components (the API, the dialogs, the menus).
Duplication is removed, each feature component is described as a whole, and all the quality
requirements are incorporated into the design in context.

Eric Aside In an interesting and funny coincidence, the day after this column was published,
Office simplified their spec template to a single design section and a published quality checklist.
While | couldn’t claim the credit for the change, | did feel vindicated.

What's the difference?

With all those checks and tests added, you might ask if I've simplified specs at all. Here are
the big changes:

B The number of sections is reduced to three (Requirements, Design, and Issues).
B Designs are described completely in one section.

B All functional and quality requirements can be verified.
I've also talked about opportunities to make specs less formal and easier to understand.

Who's to blame for bad specs? We all are, but bad specs are mostly the result of bad habits
and poor tools. By making a few small changes and using vastly simplified templates, we
can improve our specs, our cross-group communication, and our cross-discipline relations.
Altogether, that can make working at Microsoft far more productive and pleasant.

108 Chapter 3 Inefficiency Eradicated

February 1, 2008: “So far away—Distributed
development”

If you are a software geek, like me, being the product support tech-
nician for your friends and family comes with the territory. While it's
painful to watch your family struggle with software, particularly if you
helped write it, at least you can tell them, “Back off, I'm a computer scien-
tist,” and repair whatever is wrong. Sure, you'll cringe as you undo their
failed “fixes,” but in time you'll set things straight. That is, if you live
nearby.

If your mom lives a thousand miles away, the call might sound more like this:

Mom: Honey, they changed my password and now my e-mail doesn’t work.
Me: Okay, log on to your computer and open Outlook.

Mom: Using what password?

Me: Use whatever password you normally use.

Mom: Not the new e-mail one, just my old one.

Me: Yes. Then open Outlook.

Mom: Where do | type in the password?

Me: On the main screen where you click on your name and then type a password.
Mom: What main screen?

Me: Wait, can you just open Outlook right now?

Mom: Yes, I've got it open, but you told me to log on.

[Another hour like this moving through menus, dialog boxes, and buttons...]

This experience is far better if you can get a tool like Remote Assistance to work, but getting
that up and running behind firewalls and routers can be equally entertaining. What should
be a five-minute fix becomes an hour of acute aggravation. This order of magnitude multi-
plier for time and trouble comes into play any time you work across time and distance, which
brings us to the topic of distributed development.

Doesn’t anybody stay in one place anymore?

It's becoming far more common to run development for one project across global loca-
tions. While the added diversity and talent should be a huge advantage, the results are often

February 1, 2008: “So far away—Distributed development” 109

frustration, delays, and disconnects in quality and functionality. Why? It's due to the big, bad
Bs—bandwidth, boundaries, and being there.

There’s insufficient bandwidth for clear communication and fast network access to central
services. The boundaries between project work at the different locations are poorly defined,
causing additional communication, conflicts, calamities, and cleanup. And because the differ-
ent teams are separated, the one-on-ones, drop-ins, hallway conversations, and other daily
human interactions you get from being there don't occur.

With all this trouble you might wonder why we bother with distributed development. No,
you fool, it's not the money. Engineering salaries and costs are converging for many roles
in China and India, and distributed development adds overhead. The real reasons for dis-
tributed development stem from the talent and the markets. The computer science talent
pool in Brazil, Russia, India, and China is growing at nearly 20% per year and had 1.5 times
the number of software engineers in all of the United States by 2010. They can't all move
to Redmond, and we wouldn’t want them to because their home markets are critical to our
success.

So if you're running a team, you'd better learn how to deal with the big, bad Bs. Let's break
them down.

| get so tired when | have to explain
The first big, bad B is bandwidth—bandwidth between people and between computers.

Clear communication between people and teams is critical to success, as I've said many
times before. The amount of information that is communicated between two people in the
same room far exceeds that between people over video teleconference (VTC), which in turn
exceeds Live Meeting, which exceeds the telephone (as shown in the exchange with my
mother), which exceeds IM, which exceeds e-mail. In other words, e-mail is incredibly lame as
a communication vehicle, so naturally it's the most popular.

Eric Aside Using the Microsoft Roundtable device with Live Meeting (now Lync) is now as good
if not better than VTC. If you haven't tried Roundtable yet, you are missing out on some cool
technology. It automatically centers on whoever is talking in a natural, seamless manner.

Actually, people use e-mail because it's convenient, asynchronous, and works across time
zones. Unfortunately, because e-mail has such little bandwidth, the communication is poor
and often several round trips are needed to gain comprehension and answers. Because of
time zone differences, a round-trip often takes a day; thus e-mail communication proceeds
at a glacial pace. Bandwidth between computers can also be quite slow, which means quick
source control, file, or database operations in Redmond may take hours overseas.

http://thinkweek2/Fall2007/Site/Details/Details.aspx?subId=1582

110 Chapter 3 Inefficiency Eradicated

How do you beat the big, bad bandwidth issue? There are only two ways—increase the
bandwidth or cut down on the necessary communication.

B You can increase the bandwidth by using higher bandwidth communication tools, like
VTC and Live Meeting. These work even over low network bandwidth lines. However,
the tools are synchronous, so you must reserve overlapping work time for communica-
tion with distributed team members. That means if you're in Redmond and other team
members are in China, you should reserve 4-5 P.M. Pacific Time every day for sched-
uled and impromptu meetings with your peers in China.

Eric Aside Live Meeting has now been combined with Office Communicator in a new
Microsoft product called Lync. It's really cool to have IM, video and audio messaging,
IP phone, conference calling, and Live Meeting all in one Office-connected app. Yeah, |
sound like a marketer, but it is pretty sweet.

B You can cut down on necessary communication by crafting far more careful e-mails.
Mitigate questions and confusion by providing additional information and answering
common questions in advance. It will take you a bit longer to write e-mail this way, but
it won't take you days, which is how long the communication will take otherwise.

B You can cut out the need for a whole class of e-mails and phone calls by keeping a
SharePoint wiki with project information. Fill it with how-to topics, discussion archives,
checklists, documents, and project mail, schedule, and status. Any time a new team
member arrives at any location, assign them to update the site with improved instruc-
tions or missing documentation.

B You can also cut down on necessary communication by creating clear project boundar-
ies between the work that is happening at different locations. Isolate local communica-
tion, including caching of source control and databases. Then you need cross-group
communication only when people or information cross boundaries. That brings me to
the next big, bad B.

Doesn’t help to know that you're just time away

The second big, bad B is boundaries—boundaries between work at different project
locations.

If you've never worked on distributed projects or teams before, you might foolishly think
that distributed groups are all just one happy team. It's this kind of naive thinking that
causes managers to allow individual team members to work alone from remote locations.
Remember, being ignorant, naive, and foolish is just one step from being stupid.

A project team residing in three separate sites is not one happy team; it's three potentially
happy teams working on one potentially successful project. By team | mean a group of indi-
viduals with a common understanding working in unison toward a common goal.

Download from Wow! eBook <www.wowebook.com>

February 1, 2008: “So far away—Distributed development” 111

Because of the bandwidth issues | described earlier, you cannot hold and maintain a com-
mon understanding and work in unison unless you are likely to pass by your teammates on
the way to the restroom. That's why shared collaborative spaces are the best. That's also why
teams that are split across floors experience many of the same problems as teams split across
continents.

To run a successful distributed project, you must create clear boundaries between the dis-
tributed teams to provide enough isolation to allow them to work independently with only
minimal coordination; the clearer the boundaries the better the result. | talk about this more
in my column “Blessed isolation—Better design” in Chapter 6.

Eric Aside Establishing clear boundaries between the distributed teams doesn't prohibit inter-
action outside those boundaries. You can still do cross-team design and code reviews, planning,
and brainstorming. Teams can help each other resolve issues and generally engage with each
other. What clear boundaries do is keep teams from blocking and interfering daily. Instead, high-
bandwidth communication is necessary perhaps only once a week, and cross-team activities
become nice to have instead of must have all the time.

Typically, boundaries are architectural and isolate components, but they could be boundar-
ies between versions or responsibilities. You could also have distributed teams focus on local
market scenarios. Treat each distributed team like a dependency or a vendor and you'll be
on the right track. This doesn't add unnecessary overhead; that communication overhead is
there regardless. Instead, it reduces unnecessary conflicts, catastrophes, and cleanup.

But if your teams are isolated, how do you keep that sense of unity and sharing as you drive
toward common goals? That's where the last big, bad B comes into play.

It would be so fine to see your face at my door

The third big, bad B is being there—being there to create the human bonds necessary to
achieve real cooperation and connection.

Making the best use of limited bandwidth and clear boundaries will mitigate much of the dif-
ficulties with distributed development. However, you are still one group of people working
on the same project with the same goals. There are important relationships you must main-
tain between teams, peers, and reporting structures that require a human face. Being there is
important.

VTC and other live-presence tools can help. You should use them regularly for one-on-ones
and meetings, perhaps not every time but at least once per month. Remember to reserve the
overlap time between locations for these functions.

Of course, nothing can replace actual human contact, so plan to have everyone visit with
each other at least twice a year. Plan one visit in October for the company meeting and

112

Chapter 3 Inefficiency Eradicated

performance reviews, and plan a second visit in February or March for budgeting and fiscal
year planning. Don't visit for a few days; visit for a week or two. Have morale events, one-on-
ones, and training sessions, as well as planning and review meetings. Make the most of your
time together.

A number of teams do rotations or exchanges. In these cases, team members from one loca-
tion spend three months, or even six months, with team members in another location. It can
be a swap or an assignment. These rotations provide tremendous knowledge transfers while
creating understanding, empathy, and connection across the groups.

One last thought.... Sometimes giving the illusion of being there can be very effective at
maintaining relationships and improving communication. Some companies have tried con-
tinuous video feeds of common areas. A cheaper and fun solution that’s been effective at
Microsoft involves big pictures and even life-size cutouts of team members placed in high-
traffic areas. As people leave meetings or walk the halls thinking about the project, they see
one of these cutouts and are reminded to include that person or team in the conversation.

Where are you when the sun goes down?

With a little effort, you can make distributed development work for your projects and teams.
Soon the sun may literally never set on your team. The advantages for you and Microsoft are
enormous.

The diversity of experience, culture, and ideas might initially cause discomfort for you and
your group, but over time it will make you better, your group better, and your products and
services better. Your work will be more relevant in more markets for more people, and you
will learn and grow in the process. Take the time to beat the Bs and you, your group, and
your work will become worldly wonders.

December 1, 2008: “De-optimization”

Why? Why! Why do managers make stupid decisions that cause dev-
astating churn and tawdry results? And it's not just managers, though
they are particularly proficient at promoting poor performance—archi-
tects, leads, and individual contributors flood the lives of their teams with
wasteful, useless, misdirected activities, leaving us even less opportunity to
deliver real value. What reason is there for this farce? Simple. We are opti-
mizing—optimizing our obsolescence.

What kind of idiot optimizes their own undoing? The ordinary kind. You
do it, your friends do it, and your boss does it. It's all those good intentions that pave the

December 1, 2008: “De-optimization” 113

way to disaster. We optimize the wrong behavior to achieve the wrong results. It's wrong and
avoidable, but hey, why think when you can cause mayhem with so little effort?

You want answers?

Let me save you some trouble and reading by giving you the answer first—optimize for
desired results. It sounds simple and obvious, but people pervert that goal in so many
imaginative ways that | better break it down word for word.

B Optimize Measure how good you are now, analyze how you could be better, alter
your approach, and then measure again. Microsoft is great at optimizing, but we mea-
sure what's handy rather than what matters. So, we optimize for the wrong result. You
can read more about this in my column “How do you measure yourself?” in Chapter 2.

B For Have a purpose. Optimizing for the sake of optimizing is purely self-gratification—
don't do it in public. Instead, be deliberate about your purpose. Think it through. Know
what you are doing. Be a professional. Wake up.

B Desired Focus on what you want, not what you don’t. This is a common trap. People
optimize around the problem instead of the solution. Bureaucracies and slow software
are built upon this misdirection. They focus on controlling people or code to prevent
the wrong behavior. Their focus should be on making the right behavior fast and easy,
and then catching the exceptions.

B Results Never optimize a step or algorithm in isolation. Instead, optimize the end
result you seek. We have all experienced the impact of local versus global optimization.
It kills our efficiency and innovation; it’s killing our planet. Yet over and over again, peo-
ple can't see beyond the problem at hand to consider the outcome they're truly after.

Can you recognize when you are de-optimized? Let’s run through some examples and check.

Eric Aside | realize it's a little confusing to talk about optimizing both code issues and people
issues in the same column. | couldn’t resist because the number of similarities is startling. If it's
easier for you, just think about whichever problem you prefer.

| think | can handle this

How do you handle run-time errors in your code? How fast does your code run when no
errors arise? Is it a smooth or bumpy ride for error-free operation? The fastest, simplest path
through your code should be the 80% case, not the 20% case. However, that doesn’t mean
you shortchange error handling; you just don't optimize around it. Trust that your code will
run error-free, making it run fast. Verify it was error-free, ensuring the right result. Trust but
verify.

http://blogs.msdn.com/eric_brechner/archive/2007/10/01/how-do-you-measure-yourself.aspx

114

Chapter 3 Inefficiency Eradicated

Likewise, how do you handle people and process errors? Do you check their every move? Do
you have people do it your way, jump through hoops, and fill out redundant forms to ensure
they aren't cheating? Or do you trust people to do the right thing—clearing the desired path
of obstructions, and later verify that work was done properly? Trust but verify.

My altruistic readers, including managers, might claim that they do trust their coworkers.
Really? How did you react the last time something went wrong? Did you quickly fix the root
cause and move on, or did you start an inquisition randomizing your team for days or weeks?
Do you micromanage or do you delegate? Do you specify every step or do you specify the
result? Trust is hard. Luckily, you're being paid.

Déja vu
How decoupled and cohesive is your code? Are the classes, functions, and functionality all

intertwined and unmanageable, or are they independently testable and separable, each
piece having its own purpose and task to perform?

Well-architected and layered code is far easier to test, maintain, and enhance. However, it
doesn't perform quite as well as tightly coupled code. It's a tradeoff. If you optimize purely
for speed, you eventually get unmaintainable spaghetti code. If you optimize purely for
architecture, you can't be competitive in performance. How do you strike the right balance?

Most teams don't strike a balance between architecture and performance—they ride a
rollercoaster:

1. The team starts with a nice architecture. It works great, and everyone feels good.

2. They optimize it for performance. Now it works better—the original team clearly wasn't
as sophisticated.

3. The code is unmanageable, it can't be enhanced, and performance has hit boundaries,
so the team painfully refactors the code. Now it's manageable again and everyone is
happy—the prior team clearly were neophytes.

4. The performance isn't competitive, so the team optimizes again for performance. Now
it's competitive again—the prior team clearly had lost its way.

5. Now the code is unmanageable, so return to step 3.

There's another variation—the code is so twisted that the team can't fathom refactoring.
Their product cycle keeps getting longer, and the code keeps getting slower, requiring more
memory and processing speed. That's a popular variation.

The right approach is to optimize for desired results—performant code that's easy to main-
tain and enhance. Instead of just measuring the speed (easy), you measure the speed and the
code complexity. You seek the optimal balance of both. If you're really sophisticated, you'll

December 1, 2008: “De-optimization” 115

also measure team health and customer satisfaction indicators, seeking a balance of all four.
Wow, that's almost like running a business.

The beat of a different drummer

Let’s try one more subtle example—product team structure. It's a war zone out there
between traditional product development and the upstart Agile adherents. Who's right? Who
cares! Never optimize around a step in isolation—optimize for desired results.

The desired result is delivering the most customer value in the shortest time. Remember, cus-
tomer value is not measured by feature count; it's measured by delivering delightful end-to-
end scenarios with high quality.

So how do you deliver high value quickly? You apply the Theory of Constraints (TOC). TOC
says that the fastest way a project can accomplish anything is constrained by the slowest
step. Say your user experience, content publishing, and operations teams are shared and can
scale to your needs; your PM team can spec an average of four features in a month; your
development team can code two features in a month; and your test team can validate three
features in a month. There’s not much point in your PM team going full speed, is there?

Yet managers will push the PM team to keep writing specs the dev team can’t process—opti-
mizing locally instead of globally. Adding people to speed up the dev team doesn’t work
either (note The Mythical Man-Month and the economy)—again, the focus is too narrow.

The right solution is to pace the PM and test teams to the dev team. Put in buffers to account
for variability between features, but never have the PM and test teams outpace the dev team.
This TOC strategy is called Drum-Buffer-Rope. Because it's hard to precisely predict the dev
team’s pace, you constrain the size of buffers, avoiding too much work in the dev team's
queue should the situation change.

This is why feature crews work so well. You're optimizing for the desired result—working
scenarios. In feature crews—an approach from Office—PM, dev, and test team members tie
themselves to one piece of a scenario at a time till it's completely tested and integrated. They
can't get ahead of each other. Versions of Scrum and eXtreme Programming work the same
way. It's not the combined teams that are essential (though communication is easier); it's

the pacing of work together that optimizes the delivery of complete, high-quality customer
value.

Eric Aside A reader pointed out that often the key constraint in software development is com-
munication bandwidth. The best way to increase communication bandwidth is to co-locate
teams and have them work together end-to-end on features. This same approach also works to
improve pacing, as | mentioned above. Some of my Scrum teams are also switching to a Kanban
model, which directly applies Drum-Buffer-Rope in a simple and intuitive manner.

http://en.wikipedia.org/wiki/Theory_of_constraints
http://en.wikipedia.org/wiki/The_Mythical_Man_Month
http://www.agilemanagement.net/Articles/Weblog/VarianceandDrum-Buffer-Ro.html
http://en.wikipedia.org/wiki/Scrum_(development)
http://en.wikipedia.org/wiki/Extreme_programming

116 Chapter 3 Inefficiency Eradicated
Don't panic

It's so easy to get caught up in the immediate and optimize around the issues directly in
front of your face, instead of the ones you actually care about. People do it all the time—

| guess we're programmed instinctively that way. That's a perfectly good reason to optimize
the wrong behavior for the wrong results, but it's a poor excuse.

You should know better, and if you don't, you have no right to draw a paycheck. Consider the
result you desire to achieve, think it through, measure a balance of factors, and optimize as a
whole. It's not that difficult. We attempt it every day as we balance our lives. The key is to be
deliberate rather than to juggle; to plan rather than panic. You can do it if you simply keep
your sights on the finish line.

April 1, 2009: “Your World. Easier”

During difficult economic times like these, people tend to whine less
about common complaints that now seem trite. Mostly, I'm relieved
not to hear how much e-mail is in Ingrid's Inbox, how Brian broke the
build again, and how Suresh’s service schedule slipped successive sprints.

However, it's during difficult days that we should patch plaguing problems.
When are you going to be more motivated to mend malignant maladies?
Surely, no additional alliteration is advisable.

A surprising number of common issues can be solved using two simple
techniques—single-piece flow and checklists. There's a ton of behavioral and process theory
behind why these simple methods are effective. The point is that they are effective, and you
and your team are less effective without them.

All too easy

Take Ingrid’s Inbox. Like most Inboxes, Ingrid's is overflowing. She spends tons of time on it,
yet it only gets bigger. She constantly loses track of mail, discovers mail, and revisits mail. It's
hopeless.

Ingrid would have her mail under control if she followed single-piece flow. Single-piece flow
tells her to handle one piece (one message) at a time till it's done. By "done” | mean she’ll
never look at that message again (except to answer a related message).

Here's how it works. Each time Ingrid reads an e-mail message she takes one of four actions:

1. She deletes the message (my favorite).

2. She files it away in a folder.

April 1, 2009: “Your World. Easier” 117

3. She forwards the message to someone else and then deletes or files it.

Eric Aside How do you ensure follow-up to an important forwarded message? | use one
of two approaches.

0 | put my forwarded mail into a special folder for more intensive attention. The
message stays there until | get a response or send a reminder (the reminder then
moves to the special folder). | use this technique when there isn't a specific or critical
deadline.

1 | move my forwarded mail into my calendar, where it becomes an appointment to
remind the recipients to reply or to close out the issue. | use this technique when
there is a specific or critical deadline.

4. She answers the message and then deletes or files it.

That's it. She never opens a message and then leaves it in her Inbox. By the end of each day,
every day, her Inbox is empty. She never misses a mail message, loses a message, or revisits a
message.

Single-piece flow is efficient because it removes overhead and rework. There's overhead
every time you context-switch to look at a new message, and there’s rework when you reread
a message. In single-piece flow, overhead is minimized and rework is eradicated.

Eric Aside Sure, there are exceptions to the read-it-once rule, but they account for less than 5%
of the mail | get in a day. Even those e-mail messages get filed in a special folder for more inten-
sive attention. | also use Inbox rules to prefilter mail from discussion groups.

If you're wondering how to get started and don't want to just delete all the mail in your Inbox,
follow these steps:

1. Take mail you are actively working on right now and move it into a special folder.

2. Create folders for your remaining mail that correspond to your obligations and interests.
3. Search your Inbox for mail that fits each folder and move that mail into the folder.

4. Go through your special folder and clear out 90% of it using single-piece flow.

Now you are on your way.

Déja vu—all over again

Brian keeps breaking the build. You can punish Brian till he's afraid of checking in code regu-
larly, but doing so only causes other problems.

A better solution is to give Brian a checklist. Checklists are wildly misunderstood, improperly
developed, and underutilized. Regrettably, well-meaning, compulsive people list everything

118

Chapter 3 Inefficiency Eradicated

possible Brian should check before he submits code to the build. That's not only a waste of
time, it's also ineffective.

Brian’s checklist should list only common causes of build breaks (less than one page’s
worth). It should be in Brian's sight when he submits code. The goal is to be quick, easy, and
effective.

Too long or complex, and Brian won't follow it. Too short, and it's not effective. Luckily, most
mistakes are common mistakes. Thus, all the team needs to do is collect a list of the common
or critical causes for build breaks and turn that into a checklist. The same is true for design
review lists, code review lists, and all checklists.

Remember to update your checklists as your failure patterns change, or they will become
stale. Checklists prevent common errors and promote good habits. Any structured, manual
process you follow should have a simple checklist—unless you like being Brian the build
breaker.

Eric Aside You may have battles deciding what goes in a checklist. You shouldn’t. Remember,
you list what the data says are the common or critical failure points, not everything that ever
happened.

For example, | added a checklist to my e-mail signature several months ago, which | check and
then delete before | send every mail. It lists the two mistakes I've made for years, but haven't
made since:

1 Check the Cc and Bcc lines for undesired aliases

1 Ensure the subject line is accurate

Slip sliding away

Suresh’s software squad slipped their schedule on successive sprints. Bad news for a service—
or any project. Is it time to work weekends? No. Is it time to slap the squad silly? No. Is it time
for single-piece flow and checklists? Yes.

Suresh’s squad is made up the usual way—a few PMs, including a service engineer; a bunch
of developers; and a similar-size bunch of testers. The PMs write specs, the developers code
them, and the testers test them. The squad is using Scrum-like sprints with a nicely prioritized
backlog of features.

Unfortunately, the PMs are creating specs faster than the specs can be implemented. They
waste time and effort on specs that change or are cut before they see daylight. The develop-
ers and testers jump from feature to feature as they get blocked. Nothing is in sync. Nothing
gets finished. The schedule slips incessantly. In retrospectives, all Suresh’s squad talks about is
unblocking people.

April 1, 2009: “Your World. Easier” 119

Even though Suresh’s squad is using Scrum-like sprints, they aren’t using single-piece flow.
They aren't splitting into cross-discipline teams, with each team working on one feature at a
time till it's done. They don't even have a checklist that defines done. It's doomed.

Once they create feature teams that spec, code, and test one feature at a time (sometimes
called feature crews) and a checklist that defines done, there's a chance for progress. The
single-piece flow removes blocking issues because everyone is working on the same prob-
lem. Instead of jumping ahead, the checklist keeps the team honest, motivating them to work
together, finish, and stay focused. Now the team doesn’t waste time context switching and
can tell how long it really takes to complete a feature, leading to confident scheduling and
higher quality finished products and services.

Eric Aside Many people wonder what to do with feature crew PMs once they finish specing, or
developers once they hit code complete. For PMs, there are two solutions—be part of multiple
feature crews or be prepared to work with dev and test peers on problem solving and develop-
ment. For developers, the right solution is to work with the test team on tools, automation, unit
tests, and component tests.

There's another clever solution written up by a former Microsoft employee, Corey Ladas. He calls
it Scrumban, and you can read about it on his and Bernie Thompson'’s Lean Software Engineering
site (leansoftwareengineering.com/ksse/scrum-ban/).

Our two weapons are

So there you have it—single-piece flow and checklists. Two enormously useful, remarkably
simple, and yet woefully underutilized techniques for managing workload and building qual-
ity software.

Single-piece flow and checklists can be applied to individuals, small teams, and large divi-
sions. They aren't controversial when used pragmatically, and have years of documented case
history supporting their effectiveness.

Sure, you could create a whole grassroots movement around single-piece flow and checklists,
but that seems a bit overblown for such simple ideas. Maybe you should just use them wisely.
Enjoy the time you get back and the improvement in your results. The best things in life are
often the most basic and simple.

Eric Aside James Waletzky has an amusing blog entry with a few checklist references, entitled
"Checklist? We don't need no stinking checklist!” (http://go.microsoft.com/FWLink/?Linkid=219829).

http://leansoftwareengineering.com/ksse/scrum-ban/
http://go.microsoft.com/FWLink/?Linkid=219829

120 Chapter 3 Inefficiency Eradicated

April 1, 2011: “You have to make a decision”

What's worse—a flawed decision or no decision? That’s easy. Decisions
keep a business moving. An imperfect decision might move your business
slightly in the wrong direction, but at least it will be moving. Make a few
adjustments, and you're back on track.

Making no decision brings business to a halt. Even if you make a great
decision during the delay, the time needed to regain momentum will leave
you far behind. Like boulders and trains, groups of people have inertia. It
takes great effort to get them going, so it's better to keep them moving
forward and adjust, rather than halt progress and restart.

Unfortunately, leaders often don't have enough information to make a clear decision. What
do you call leaders who are indecisive when dealing with ambiguity? Incompetent, inef-
fective imposters. They are losers, not leaders. If you want to lead, you better know how to
make good decisions with partial data.

I'm the decider

Before discussing making decisions with incomplete data, | should point out that being a
decisive dunce is no better than being an ineffective imposter. Decisive dunces make deci-
sions quickly (good), but without clear thinking or cause (bad). This results in random or
backward progress and an exasperated team. Having too little information is no excuse for
being arbitrary or clueless.

Instead, you want to inform yourself as much as time will allow and then make your decision
based on context and experience. How much time do you have? Only until the point your
team becomes blocked. How do you apply context and experience? Develop a consistent
framework for making your decisions that helps you spot patterns, and then rely on your
well-informed intuition to make the best choice.

This is easier to describe with examples. Let's talk about hiring decisions, product tradeoffs,
and triage decisions.

Eric Aside If you want more time to make decisions, then plan ahead. Map your business
rhythm to a calendar, and begin your decision making early in anticipation of events.

If you want better data to make decisions, then put measurements in place, utilize business intel-
ligence, and be better informed.

Both strategies for better decisions require forethought. Don't like a vacuum? Fill it.

April 1, 2011: “You have to make a decision” 121
To hire or not to hire

I've been an “as appropriate” for a decade, meaning that | am the last interviewer on an
interview loop. My role is to make the final hiring decision about the candidate. Sometimes
that decision is very easy because the prior interview comments are compelling in one direc-
tion or another and they fit my personal assessment of the candidate well.

However, the hiring decision is often difficult. The prior interview feedback is mixed and
inconclusive. For an interview, | have at most one hour to gather information directly from
the candidate. In addition, the recruiting team and hiring manager are blocked awaiting the
results of my interview, so | have only an hour or two to decide.

To make the best possible decision, | follow the same routine each interview. | prepare before
the interview by reading the candidate’s resume, checking out any online content it refer-
ences, and reading the prior interview feedback. | look for patterns in the comments that
might indicate the root cause(s) of concerns. Then | interview the candidate with the goal of
confirming the root cause(s) and determining whether or not the concerns can be overcome.

Now I've collected all the facts | possibly can without significantly delaying the offer. I've
done the analysis, and my intuition is informed. How do | put this all together? | step back
and let my intuition guide me. After all the analysis, and all my years of experience, what
decision seems right?

As Malcolm Gladwell points out in Blink (www.gladwell.com/blink/index.html), an informed
intuition is an exceptional instrument. I'm not talking about judging a candidate from a quick
glance. I'm talking about learning all | can and then, instead of focusing only on the indi-
vidual details, stepping back and looking at the candidate as a whole with everything | know
about her and the other candidates I've met. That's hard to do consciously—your informed
intuition can be your guide.

Eric Aside Even if | did take time to call every reference, bring the candidate back for more
interviews, and do a background search online, my decision might not be much better. As
Gladwell also points out, sometimes the extra analysis and second guessing is worse because you
start to ignore your overall assessment and cumulative experience in favor of individual facts.

If I'm still undecided about a candidate, the decision is easy—don't hire the candidate. You
always want to feel confident about the candidate’s potential for success for the sake of the can-
didate, the team, and the company.

Now consider the alternative

Product tradeoffs can be very difficult to make. There are often many opposing viewpoints,
but there's rarely conclusive data. Great data from telemetry and web services can make a
huge difference, but data informs—it doesn't decide (necessary, but not sufficient). You must

http://www.gladwell.com/blink/index.html

122

Chapter 3 Inefficiency Eradicated

make the call quickly based on the data and your collective experience or risk losing your
market position.

The individual decision may be about a user story, an architectural approach, or even a
development tool. Regardless, there will be pros and cons for each choice. First, use your
value proposition, architecture principles, or other relevant framework to clarify your options.
If you still have a number of valid choices, you can quickly analyze your tradeoffs by using
one of my favorite tools, Pugh Concept Selection—a fancy name for a simple technique.

(I described it briefly in “My experiment worked! (Prototyping)” in Chapter 6.)

In Pugh Concept Selection, you make a table in which the rows are choices and the columns
are decision criteria. (Excel is perfect for doing this.) The result is like a pros and cons table
with a twist. Instead of indicating which choices meet the criteria best on some absolute
scale, you pick one choice as your default and give it zeros for all criteria. Then you rate all
the other choices relative to your default choice. If a choice is better than the default for a cri-
terion, you put a +1 in that row and column. If a choice is worse, you fill in -1, and if it's about
the same, you fill in 0. Add up all the columns, and you have the rating for each row. Now
you can see how all the choices compare.

Eric Aside You can weight criteria (columns) differently to indicate what's most important.
Typically, people use power series for weights (1, 3, 9). To determine the sum of a row, you
multiply its ratings (-1, 0, +1) by their associated weights and add them together. The Excel
SUMPRODUCT function does this nicely. You'll find a sample spreadsheet (Pugh Concept
Selection Example.xlsx) in the online materials.

Filling out the table of choices as a group can be fun and insightful. You learn a great

deal about what the tradeoffs between choices really are and what you care about most.
However, Pugh Concept Selection won’t make your choice for you (though it could reject a
bunch). While one option might get the best score, there are likely several top options worth
considering.

Once the table of choices is complete and you've talked through the results and insights
gained, it's time to make a decision. That's when you throw out the table and rely on your
newly informed intuition. The analysis is necessary and instructive, but it's your experience
and overall context—your intuition—that can take that analysis and sense the right decision.

Eric Aside "But won't your decision contain bias?” You bet it will, just like every decision you
ever make in your life. Being well informed and considering all reasonable alternatives helps you
remove as much bias as possible. However, your final decision will always reflect your unique
perspective.

April 1, 2011: “You have to make a decision” 123

Tell me why

When you are managing product issues toward the end of a cycle, there are many issues to
cover, so decisions must be made quickly. In addition, you are usually making those decisions
in a group of at least three people representing different interests, so you must reach a con-
sensus in which no one objects.

Eric Aside At Microsoft, this decision-making process is called triage. It can be one of the most
divisive activities in the development cycle if done improperly.

How can you quickly convince three or more people to agree with confidence about impor-
tant issues? You need three things:

B The root of the issue Without knowing the root cause, you can't apply your past
experience to the problem with confidence.

B The scope of the issue Without knowing how many customers and partners are
impacted and how they are impacted, you can't judge the benefit of acting.

B The risk of the issue Without knowing the risks involved, you can't balance the costs
against the benefits.

Once you've understood these three things, which every late-stage issue report should con-
tain, you've informed your collective intuition. Now the group decision makers can depend
upon their visceral reaction to a suggested resolution. Of course, that's no guarantee you'll
agree. For more on my framework for these kinds of tense group decisions, read my column
“Are we having fun yet? The joy of triage” in Chapter 1.

Wait, there’'s more

“But what if more information arrives later that significantly changes your thinking?” No
problem. We want to make a decision that lets us move forward, not necessarily a perfect
decision. The way we gain insight and experience is to try, receive feedback, adjust, and try
again.

That's no reason to change decisions constantly, however. To maintain your forward momen-
tum, you should iterate, making slight adjustments as you go. Yet occasionally there are
enough new internal insights or external expectations to suggest a substantial course correc-
tion. That's okay—it's what makes our lives interesting and our business engaging.

Eric Aside You can read more about what happens when managers constantly change their
minds in “Spontaneous combustion of rancid management” in Chapter 9.

http://www.amazon.com/Wrights-Hard-Code-Best-Practices/dp/0735624356

Download from Wow! eBook <www.wowebook.com>

124

Chapter 3 Inefficiency Eradicated

Each time you analyze new information, your intuition becomes smarter. You get more expe-
rience and a better perspective. You make better decisions. Keep an open mind, listen well
to customers and contrarians, apply a consistent framework, and trust your well-informed
instincts. Don't wait to be certain. Decide, iterate, and constantly lead your team closer to

its goals.

Chapter 4
Cross Disciplines

April 1, 2002: “The modern odd couple? Devand Test”.................... 126
July 1, 2004: “Feeling testy—The role of testers” 129
May 1, 2005: “Fuzzy logic—The liberal arts” 133
November 1, 2005: “Undisciplined—What's so special

about specialization?”. e 137
January 1, 2009: “Sustained engineering idiocy” oL, 140
May 1, 2011: "Test don't get norespect” iiiiiniiinnenn.. 144

Software development, when done well, requires a broad skill set. You need to
truly understand the customer and the business. You need strong user experience
design skills and knowledge of usability (even for APl work). You need engineering
design skills, software development skills, software testing skills, and tremendous
familiarity with the target platform, which could be a server farm.

Sure, you might have all those skills, but how good are you at talking to yourself?
If you lack that skill, you'll likely miss important aspects of product development. If
you're great at talking to yourself, that could lead to even more serious problems.
In all, you are better off developing an appreciation and knack for working well
with others.

In this chapter, I. M. Wright tackles relationships between developers and other
disciplines. The first column describes the symbiotic relationship with test. The
second delves deeper into the role of testers. The third column deals directly with
the Achilles Heel of most engineers: how to interact with nontechnical people. The
fourth questions why and when different disciplines are necessary. The fifth covers
the contentious concerns of sustained engineering. The last column pleads the case
for a senior test staff commensurate with development and program management.

I spent the first half of my life wondering why people couldn’t be more like
computers. I've spent the second half being thankful they aren't. Sure, I still get
frustrated at times with people who don't think the way | do, but my life is more
interesting and my solutions are more creative thanks to the diversity of people that
surround me. It's part of why | love the “Hard Code” column; the response is never
predictable or boring.

—Eric

125

126 Chapter 4 Cross Disciplines

April 1, 2002: “The modern odd couple? Dev and Test”

Is there a more classic love/hate relationship than the one
between developers and testers? (Okay, maybe between developers
and program managers, but | digress.) As a developer, you either see
testers as nagging or persistent, nitpicky or thorough, obnoxious or
passionate, unsophisticated or customer-focused, doomsayers or
cautious.

The same could be said for how testers view developers: brilliant or
geniuses, dedicated or hard-working, creative or inventive—uh yeah,
right. If the truth be told, testers often think as poorly of developers as we do of them.

Many teams are far from reaching parity and mutual respect between these disciplines. Some
steroid-sucking developers out there might respond, “That's fine—lead, follow, or get out of
the way. If the test team can't keep pace, can't stand toe to toe, can't flex their own muscle,
then they should step aside and avoid the oncoming dev machine.”

Big words from small minds. It's time to tear this twisted testosterone tale apart, piece by
piece, and reveal how real developers should be working with the greatest allies they have:
testers.

How do | love thee? Let me count the ways

So why do development teams often treat their test teams as second-rate and unworthy of
respect and cooperation? I'll break down the reasons, one at a time:

m All testers really wish they were developers; therefore, developers must be
better. Any ridiculous generalization like this can't be true. Not all testers wish they
were developers. Some do, certainly, but others want to be golf pros, racecar drivers,
product unit managers, program managers, parents, priests—you name it. Some even
want to be great testers.

The real disgrace about this myth is that it shows how insecure some developers really
are. A developer who is truly proud of his work and accomplishments wouldn’t need to
feel that development is a superior discipline.

B Testers are not as smart as developers. Taken as a corollary to the previous fallacy,
this is often voiced as, “If testers were as smart as developers, they'd be developers.”
Again, bull excrement at the most basic level.

However, even fair-minded people will point out that testers often aren’t required to
have the same level of education as developers. Black-box testers, in particular, are fre-
quently hired with little or no technical experience. To me, this is purely a case of the
chicken versus the egg—there simply isn't enough external training for testers.

April 1, 2002: “The modern odd couple? Dev and Test” 127

Eric Aside Black-box testing treats the product as a black box. You don't have any access
or knowledge of the internal workings, so you probe it like a customer would—you use it
and abuse it till it breaks. Microsoft has been steadily moving toward white-box testing,

in which you use exposed instrumentation to automatically and systematically test every
aspect of the product.

Many people inside the company are working hard to correct this inequity through
initiatives like the Readiness at Microsoft Program (RAMP) and the Test Lead program.
Even a few universities and local community colleges have begun offering courses in
testing. But until colleges and universities create standardized bachelor’s and master’s
degree programs in this important discipline, testers won't find quality opportunities to
learn more about their field through higher education.

Does this lack of educational opportunity mean that most testers are not smart? Of
course not. There are strong and weak testers just as there are strong and weak devel-
opers. That's all.

B Testers wouldn’t have much to do without developers. The idea that without
developers, testers would have nothing to test leads some people to think that devel-
opers are better. (Of course, the fact that developers often generate plenty of work in
the form of bugs leads many people to think that developers are worse.) Nonetheless,
is every upstream discipline considered inherently stronger than the downstream coun-
terparts who depend on them? It is harder to direct a movie than to run the projector,
but then again, it's easier to dig up a diamond than to cut and polish it.

It really comes down to the complexity of the work, and testing products and func-
tionality well is easily as difficult as writing the stuff in the first place. Many of the hard
theoretical coding problems have been solved, but many of the hard theoretical testing
problems are still waiting for answers.

B There aren’t as many strong test teams as there are strong development teams
at Microsoft. Based on this presumption, developers might extrapolate that their
discipline must be better than testers in general. This is a bad assumption and poor
pretext for not doing all that you can do to grow your test team and strengthen your
whole group in the process. Testing is not as mature a discipline as development. Using
this as an excuse to act condescendingly toward testers only serves to lower a devel-
oper’s maturity level rather than raise a tester’s.

Necessary evil or priceless partner?

We can't ship a product without testing it. Think of the three worst bugs that testers found in
your code last cycle and you'll know what I'm saying. What many developers haven't realized
yet is how well you can ship a product with the test team’s support.

128

Chapter 4 Cross Disciplines

Unfortunately, for many groups, testing remains a necessary evil rather than an integral
priceless partner. | know that there are developers out there chiding me saying, “Integral
priceless partner, as if! Test is what they've always been: monkeys that bang on the code till it
breaks and then whine about it till we fix it.”

If that's the way you treat them, then that's what your testers will be. However, there's an
alternative approach.

A man’s got to know his limitations

It starts with understanding three principal areas where development falls short: writing per-
fect code, understanding RAID holistically, and working within the customer's environment.

No developer writes bug-free code; even if there are no logic bugs, there may be behavior
bugs. No developer lives and breathes RAID; he just uses it as a tool. No developer com-
monly works in the customer’s environment; he works on big machines with tons of memory,
processing power, and disk space. Developers also have high privileges, fast networks, the
latest operating system and patches, and no legacy code—and they work in their native lan-
guage. Basically, developers are hopelessly out of touch with what is necessary to move the
product from their desk to the customer’s.

So guess who's holding the safety net and providing the balancing pole for developers as
they cross the tightrope between code complete and release? That's right, it's your testers.

Testers find both the logic and behavior bugs; they live and breathe RAID; they know where
you stand and how much work needs to be done; their computers run all the time in the cus-
tomer's environment and in all the different languages, platforms, and configurations. Testers
can tell you how many bugs you need to fix each week without guessing. They know where
the problem areas are and can give you gut and metric readings of how far you need to go.

You complete me

Developers can make you say, “Wow!" But testers will save your behind and make you proud
of your development efforts.

If you treat your test team like trash, trash is likely what you'll ship and trashy is likely how
you'll feel. If you prefer a smooth release and want to ship a great product, make your test
team your ally.

The key is for you and your development team to understand and appreciate all that the test
team offers you. They cover the areas that you can’t or don't want to do. They keep you on
schedule and on track. They keep you honest and represent the customer’s perspective.

July 1, 2004: “Feeling testy—The role of testers” 129

Tell testers how valuable they are to you. Tell them how they can help both your teams ship

a great product. Do everything that you can to support them, and they will come through
for you.

Eric Aside | really can't say enough about my respect and appreciation for the test discipline.
In the nine years since | wrote this column, some nice strides have been taken at creating parity
between dev and test in all areas, but there’s still far more we can do, as | discuss in a later col-
umn in this chapter, “Test don't get no respect.” As for managers and PMs, | admire and respect
them too, but since I live under the darkening shadow of their every whim, forgive me for not
stroking their egos.

By the way, if you're already making the test team a valued partner, it's time to do the same
with service operations. The same arguments apply, so why not trade in your pain and frus-
tration for synergy and success?

July 1, 2004: “Feeling testy—The role of testers”

I've been carping on code construction quality quite a bit lately. One
of the five key methods of removing bugs early is unit testing. (The others
are design, design review, code review, and code analysis, like PREfast.)
Doing comprehensive unit testing has drawn dubious disbelief from some
devs | meet: “Isn't testing a job for testers?” “If devs write the [unit] tests,
what's left for testers to do?”

Eric Aside PREfast is a static analysis tool for the C and C++ programming languages that iden-
tifies suspect coding patterns that might lead to buffer overruns or other serious programming
errors. Though initially used only internally, it shipped as part of Microsoft Visual Studio 2005.

First of all, unit tests are usually focused on isolated components, and testers cover far more
than component testing. Their tests include boundary coverage, structural coverage, path
coverage, black- and white-hat testing, and a host of system-wide and scenario-based test-
ing, just to scratch the surface.

No, first of all, what the heck do you care if there's nothing left for testers to do anyway?
Since when have you abandoned your responsibility to check your own work? Is passing on
crappy code some kind of perverse form of charity to you? Do you not give a flying fork
about doing your job? Have you no decency or pride?

Eric Aside When | wrote this column, | initially got stuck for a “second of all” paragraph, so |
reread the first “First of all” paragraph. Suddenly, the “No, first of all” paragraph flowed out faster
than | could type it. That's always a good thing.

130

Chapter 4 Cross Disciplines

Unit testing drives better implementation design; more testable code; fewer regressions,
build breaks, and BVT failures to debug; and better overall construction quality.

Advanced protection

In my article called “Where's the beef? Why we need quality” (see Chapter 5), here’s what |
said about a dev’s responsibility to write instrumentation and unit tests:

NQ, this is not a tester’s job. Test's job is to protect the customer from whatever you
miss—despite your best efforts. The testing team is not a crutch on which you get
to balance your two tons of lousy code. You should be embarrassed if test finds a
bug. Every bug that they find is a bug that you missed, and it better not be because
you were lazy, apathetic, or incompetent.

However, in fairness to the devs that actually care enough about their peers to consider the
impact of unit testing on test jobs, | should discuss more about the role of testers in protect-
ing our customers and how testing may actually evolve if and when devs finally get their acts
together.

A change will do you good

In “The modern odd couple? Dev and Test” (which appeared earlier in this chapter), | pointed
out three primary ways testers protect our customers:

B Finding bugs we miss.
B Living and breathing quality metrics (mostly from Product Studio).

B Running tests in the customer’s environment as opposed to the developer’s
environment.

Devs writing unit tests doesn't change any of these roles for testers.

But testing is changing nonetheless. Almost all new test hires are expected to know how to
write automation code and white-box tests. The more cynical among us may think that there
is a secret plan to eliminate testers after all tests are automated. However, the real reason

for enhanced automation resides in the time it takes to run all the necessary tests to pass an
urgent security, privacy, or reliability update, or even to just validate a build. As teams try to
push quality upstream, automated tests are essential to ensure construction quality before
check-in.

That brings us to the next key turning point. As the quality of your code at check-in increases,
how testers perform their role changes. Note that their role is the same—find missed bugs,
analyze quality metrics, and run in the customer’s environment. It's how they do it that's
different.

July 1, 2004: “Feeling testy—The role of testers” 131

The twilight zone

Right now finding bugs in checked-in code is akin to spotting a coffee shop in Seattle—they
are hard to miss. Sure, you write a test plan and test cases to exhaust all the different possi-
bilities. But the expectation is always, “Just run the application, the bugs are sure to be there.”

As teams push quality upstream, finding bugs after check-in becomes more difficult. At first,
teams simply test buddy drops as part of their check-in criteria. A number of teams are doing
this now, including some in established groups such as Windows and Office.

Eric Aside A buddy drop is a private build of a product used to verify code changes before
they have been checked into the main code base. That way the impact of unstable code on other
teams is minimized. Developers share the private build only with their “buddies"—that is, their
teammates.

But as dev teams begin to use disciplined practices and measurements to predict and control
their bug counts, the number of bugs found in a buddy drop should plummet by a factor of
a thousand. Thus, the typical Microsoft team of 15-20 devs that produces 3,000-5,000 test
bugs per year would instead produce 3-5 test bugs per year. When buddy builds get that
solid, test needs to learn some new tricks. (I talk about how some teams have achieved these
low bug counts using cool software engineering principles in “A software odyssey—From
craft to engineering,” which appears in Chapter 5.)

Commander Data

Remember, test’s role is to protect customers by finding bugs that devs miss, analyzing qual-
ity metrics, and running in the customer’s environment. In a world where code handed to
test has only a handful of total bugs, the challenge is to take test’s three responsibilities to
the next level.

With such low bug rates, testers should no longer be able to easily find bugs in isolated
components or common configurations. Instead, they need to focus on full customer system
scenarios and realistic customer configurations, further leveraging their unique customer
perspective. While test teams do this a fair amount today, it likely will become their primary
focus in the future.

The other key change is in analyzing quality metrics. For devs to get low bug rates, they must
collect quality data from the beginning of design, through compile and build, and then use
it to know what mistakes they are making, how best to find them, and when they can confi-
dently say they've found 99.9% of them. Someone outside of dev needs to be checking the
dev’s assumptions, ensuring that the data is reliable and accurate, keeping devs honest and
customers protected. Of course, that's the ideal job for test.

132

Chapter 4 Cross Disciplines

A side effect of this rigorous dev process is that test will have far more quality data, in far
greater detail, than they've ever had from Product Studio. The more data you have, the more
there is to analyze and discover. You can almost hear testers salivating.

Eric Aside Most good testers | know are data fanatics. A perfect afternoon for them is spent up
to their eyeballs in Excel spreadsheets analyzing data in different ways.

While devs will do some analysis, this is really a showcase area for testers that entails

B Conducting in-depth statistical studies.
B Noticing key weak spots and trends.

B Finding new ways to improve quality or efficacy even further.

Testers can become the quality process and analysis kings in this new world.

It's quite cool—I assure you

When devs graduate to engineers, testers can start leveraging comprehensive data and
process analysis to assure quality. In others words, test becomes quality assurance. Quality
control testing doesn't go away, but quality assurance grows into a major role. This same pat-
tern has happened in other industries and is due to happen to software. If we don't make it
happen, we will get beat.

So sure, most of this seems like a pipe dream now. Even though some teams are starting to
see this level of quality engineering, it's a long way from being part of our largest systems
(like Windows). But if your team is beginning to make headway, or if you know forward-
looking testers who want to lead the next wave of software quality, suggest that they start
learning about in-depth statistical data and process analysis. It could prepare them to take
our game to a whole new level.

Eric Aside While we haven't yet gone from five thousand bugs down to five for our large com-
plex projects, the focus on quality assurance and data is now happening in a number of divisions.
One particularly interesting case is Bing. Bing changes daily (and | don’t just mean the back-
ground picture). If test were trying to do pure quality control, the test matrix would be astound-
ing. Instead, Bing test does quality control in key areas and spot checks for quality assurance in
the rest. That includes intense aggregate data analysis, where a substantial portion of Bing engi-
neering is directed.

May 1, 2005: “Fuzzy logic—The liberal arts” 133

May 1, 2005: “Fuzzy logic—The liberal arts”

All my life, I've lived among the willfully ignorant—people who might
consider knocking wood a silly superstition, yet have no idea how their TV
works, how planes fly, or how phones connect. To them, it's all magic. They
make up their own mythologies and rituals for getting technology to
function. Then these neophytes have the gall to tell you to turn off the
lights before you reboot or it won't work.

Before | graduated from college, | had the perfect solution for deal-

ing with these naive fools. | simply avoided and ignored them. Hanging
around with techies was right in my comfort zone. That is until | married a “fuzzy"—a liberal
arts major. All of a sudden, learning to communicate with the technologically superstitious
became enlightened self-interest. We've been together for 20 years now, and I'm beginning
to get the hang of it.

Eric Aside Oh, the grief | got for this column (along with tons of praise). The grief was from
techies who were private fuzzies and fuzzies who love technology. Both hated the stereotypes |
drew. (Also, people who weren't fuzzy or techie, like art designers, felt left out of the discussion.)
As | say below, “Naturally, I've over-generalized here.” People are often too polite or hesitant to
discuss contentious issues loaded with ambiguity. | over-generalize in every column to bring out
salient points and drive dialogue.

It takes all kinds

Why should interacting with the ignorant be any concern of yours? Why not leave the fools
to the foolish? I've got three reasons: coworkers, managers, and customers.

Sure, we hire folks for their technical savvy, but we all know that there are people who get

it and people who tread water. For every one PM or manager who gets it, there are 5 to 10
who don't. There are a lot of PMs and managers at Microsoft. Any improvements you want to
make to your products or practices need to go through them. If you can't communicate with
PMs and managers effectively, | hope your geek past has sufficiently prepared you for a life
of frustration.

Eric Aside Many PMs and managers come from the techie ranks. At one point, they under-
stood all the details and took nothing for granted. However, over time it becomes expedient to
let go of the details and think more about nontechnical aspects and the “big picture.” The world
becomes fuzzy. Yes, I'm guilty of this myself.

As for customers, well, we don't get to choose. Customers are customers, and the inability to
effectively speak to a customer is career limiting. As | mentioned in my column “Customer

134

Chapter 4 Cross Disciplines

dissatisfaction,” which appears in Chapter 2, talking to customers is the key to making the
right choices for critical product decisions. Customers don't like to be patronized or made to
feel small or stupid. | suppose managers and PMs are the same way.

You've got to understand fuzzy folks. You've got to appeal to their best judgment in a way
that makes sense to them, makes them feel smart and in control. The alternatives aren't
pleasant.

They're not like us

Liberal arts majors are not like us. It isn't just the schools they attended or the classes they
took. It's a whole different way of looking at the world that you need to truly grok (a word
that might not be familiar to them).

As luck would have it, I've spent the last 20 years trying to understand fuzzy logic. I've dis-
covered some key differences you need to internalize:

B Liberal arts majors believe rules are rules. Techies believe rules aren’'t meant to be
followed blindly; they are meant to be analyzed and understood, then used or altered
as needed. Fuzzies believe rules are meant to protect you, and they simply must be
obeyed. Even worse, a fuzzy's version of the rules may not match yours. Just remember,
if you plan to question or break any perceived rules in front of a fuzzy, you'd better be
prepared to explain why it's safe and have an authority figure to back you up. Why?
Because...

B Liberal arts majors respect authority. Techies typically don't respect author-
ity, though they do respect achievement. So it might not occur to you that manager
approval is that big a deal—but it is to a fuzzy. The good news is that most fuzzies con-
sider techies authorities on technology, so they'll believe most anything you say in your
area of expertise. Try not to abuse that advantage. Fuzzies may be different, but that
doesn't mean they are stupid or foolish.

Eric Aside At this point, you might be saying, “Wait a minute, fuzzies have been breaking
rules and disrespecting authority for years.” They have when they feel justified. In everyday
life, fuzzies tend to prefer obedience to uncertainty. Techies prefer to rely on their own
reason and logic to determine the rules and authority.

B Liberal arts majors don't tinker. Techies love to tinker; fuzzies avoid tinkering.
Tinkering is breaking the rules. It feels risky and unsafe. This difference in attitude is
subtle but very important. Fuzzies won't just try stuff. They won't right-click, press and
hold, or try different menu items just to see what happens. So don’t expect fuzzies to
experiment unless they truly know it is safe. Likewise, don't expect a fuzzy to approve a
change unless it's well worth the risk and has a safe abort.

Download from Wow! eBook <www.wowebook.com>

May 1, 2005: “Fuzzy logic—The liberal arts” 135

B Liberal arts majors assume everything is simple. Techies know nothing is simple
because techies focus on the details. Fuzzies focus on the larger picture where every-
thing is simple, and if it isn't, it should be. Neither view is wrong. Everything you do
should be conceptually simple and easy to explain at a high level, or chances are good
that it will collapse under its own weight. Yet, the devil is in the details. Simple is hard
for technical folks who thrive in the details. But...

B Liberal arts majors don’t care about the minutiae. Techies love the minutiae; often
it's the best part of a project. However, because fuzzies focus on the larger picture, tiny
details only confuse the issues at hand. Therefore, if you are describing your idea or
project to a fuzzy, you must leave out the minutiae and articulate the simple, high-level
concepts and requirements behind your work. Otherwise, you'd better be prepared for
no support, and rightfully so. Fuzzies aren’t simpletons who need to be babied. They
are integrators who will tie your work into everything else going on, if you can provide
a clear and simple picture of how your work fits in.

B Liberal arts majors are not concerned with purity. Techies love purity. To them,
it is beauty and grace. Purity washes away all the ugly tidbits, leaving the simple core
truth of the problem. Unfortunately, all this escapes your typical fuzzy. Fuzzies don't
care about the ugly details in the first place. They expect things to be pure and simple.
Telling a fuzzy that you've found an elegant, simple solution is likely to get a response
like, “Yeah, | should hope so, what did you have before?” If you want to convince a
fuzzy to adopt your elegant architecture, don’t argue the purity. Instead, talk to them
about the customer or business benefits it provides like more reliability and easier
maintenance.

B Liberal arts majors care about feelings and appearances. Techies typically don't
even realize that feelings and appearances exist. It took my wife years of pointing out
the importance of these things before | started understanding them. Fuzzies care
tremendously about feelings and appearances. | know that seems stupid and counter-
productive, but there just isn't any way around it, so don’t bother arguing. Instead,
when you propose an idea or plan to a fuzzy, be sure to consider how people will
feel about it (assume that everyone is a fuzzy, which is how fuzzies think). Will anyone
need to save face? Are you crossing into other people's territory? Are you contradict-
ing someone in authority? You don't need to solve all these issues, but you do need to
think about them and point them out to fuzzies. They will be impressed by how per-
ceptive you are and then help you solve the people issues.

Naturally, I've over-generalized here. Not all liberal arts majors have these traits any more
than all techies have the opposite traits. But you can’t assume everyone thinks the way you
do. Just putting your preconceived notions on hold can go a long way toward achieving clear
communication.

136

Chapter 4 Cross Disciplines

Getting past security

One of the more important implications of these qualities that make liberal arts majors dif-
ferent is that they tend to surround and protect people in authority. Because fuzzies respect
authority and care about feelings and appearances, including their own, they can't let just
anyone talk to a senior manager or key customer contact. You've got to work through them.
Sneaking past the fuzzy security may be fun and effective the first time, but when they real-
ize what happened, the literary lynch squad will be offended and won't forget it.

Luckily, there are ways to soft-talk your way through. Explain why it's important to talk to
the customer or manager. Allow the fuzzy to introduce you and set the stage (appearances,
rules). Collect your issues and bring them all at once so the customer’s or manager’s time

is respected and appreciated (feelings, respect for authority). Unless you are asked directly,
leave out all the gritty details and cool design (minutiae, purity). Give the customer or man-
ager clear choices of action (simplicity).

Management will love you; the customer will love you; and the crack fuzzy security force will
love you.

Making things happen

If you want to drive engineering improvements on your team, you'll need to convince the
fuzzies. This isn't easy because improvement means change, change means breaking the
rules, and rules are rules. However, you can be an effective driver for change by following this
simple strategy:

B First, describe the problem you're trying to solve. Use statistics to make it sound hor-
rible. (It probably is horrible, but fuzzies respect the authority of numbers.) Don't
cheat—use real metrics. You want the problem to seem horrible to prove that the cur-
rent rules are unsafe and need to change.

B Next, describe what conditions the solution must satisfy to keep the project and team
safe—for instance, a rollback strategy, conditional compilation, policy settings, regular
reviews, or manager approval. Don't just make this up; think about people’s concerns.
You must do this before you describe your solution or else you'll get battered by every
fuzzy's apprehension. Remember, change has feelings associated with it.

B Now, describe your solution. Talk about how it meets the safety conditions (which
you've previously worked out). Then talk about how it leaves the project in better
shape. Suggest statistics that will demonstrate the results (like a percentage drop in
regressions or pri 1 bugs or shorter stabilization times). Remember to keep it high level
and simple. The statistics are particularly important because there's no other authori-
tative way to prove you've improved. To avoid the statistics being gamed, always use
team instead of individual measures. Be sure to have a celebration when your new rules
allow you to meet your goals.

November 1, 2005: “Undisciplined—What's so special about specialization?” 137
Better together

It's easy to be cynical about liberal arts majors, or about anyone who thinks or works differ-
ently than you do. But different approaches bring out different values. Ultimately, we all ben-
efit. It's mushy, but true.

By learning to appreciate the balance that fuzzies bring to our techie world, you can become
far more effective. Understand your differences, adjust your approach, tune your message,
and respect your audience. In the end, you'll have everything to gain and nothing to lose.

Eric Aside Since | left Microsoft's Engineering Learning and Development organization, my wife
has been editing my columns for me each month. Even though we're quite different as people,
we still make a great match. | can honestly say after 26 years together and 22 years of marriage
that it's never been better.

November 1, 2005: “Undisciplined—What'’s so special
about specialization?”

Why do we have testers? Why do we have PMs? Why do we have differ-
ent disciplines at all? Isn’t it wildly inefficient? Why don't we just have
engineers who do whatever is necessary to ship quality products that
delight our customers? Are programmers incapable of understanding cus-
tomer needs or executing tests to verify their work? Of course not.

Eric Aside My introduction to this chapter talks about how important it is to have a team of
people with a diversity of skills working together on a project. That doesn’t mean those people
need to be specialized into different disciplines with mutually exclusive responsibilities.

Yet, we somehow perpetuate these dysfunctional disciplines that create barriers, miscommu-
nication, and conflict—also known as dependency death; handoff hell; black holes of blame;
suffocating, senseless signoffs; and monotonous, mind-numbing meetings. Are we so inse-
cure that everyone has to be “special”?

It's not just ridiculous, it's counterproductive. Devs and testers wait for PM specs, PMs and
testers wait for code, and PMs and devs wait for test runs. Sure, there is always other work
to do; but if everyone chips in on everything, then everyone is focused on the top priorities,
everyone is a customer advocate, and everyone contributes to quality. It's the team way. It's
the agile way. It's old school and it's new school. It's nirvana. What's not to like?

138 Chapter 4 Cross Disciplines
Days of future past

Microsoft didn't always have PMs and testers. We started out in nirvana and yet we strayed
from paradise. Why? I've talked to old timers about it. Basically, not everyone wanted to
do certain tasks, some people were better than others at certain tasks, and some impor-
tant tasks weren't getting covered. There was a need, and people started to specialize and
fill gaps.

Of course, that was long ago. The market was different, our situation was different, and

we were less experienced. But if we went back to everyone doing everything, would his-
tory repeat itself, and would people specialize once more? Is there a fundamental principle
at work?

Unfortunately, yeah, there is. Specialization is unavoidable and essential.
Before you get too excited one way or another, let me make two points:

1. The need for specialization is subtle; it doesn't always apply.

2. I'mright.

Take it to the limit

How do | know I'm right? Because of a great trick | learned on my high school math team.
(Okay, I'm a dork. Let's move on.) Here's the trick: when you need to understand a broad
problem, consider the extremes. In our case, the problem is optimal software development
role structure. The extremes are coding an interview question and coding Windows Server.

When coding an interview question, you can do everything yourself. You get to know the
customer (the interviewer), understand the requirements, spec the solution, code it, test
it, and ship it. If you can’t, you don't get hired. The moral of the story is that at the simple
extreme, there's no need for specialization.

Coding Windows Server requires many more developers. But do some need to specialize?
Absolutely, there are parts of the code that are way too complicated for more than a hand-
ful of devs to understand. But do you also have to specialize in customer design and testing
(either quality assurance or control)? Absolutely, but that's harder to see because the scope
of Windows Server is so big. Allow me to present far smaller example: an Xbox football game.

Football is a science

Coding an Xbox football game requires more than one developer. Again, specialization could
be essential because of the computer graphics components, the Al components, the statisti-
cal components, and so on. But let's skip to the PM and test areas. Do you need specialists
there? Absolutely, but not at the tiny feature level.

November 1, 2005: “Undisciplined—What's so special about specialization?” 139

Writing a football game requires you to know every detail about football: every rule, every
play, every formation, every team, every stadium, every player and salary, and on and on.
However, not everyone on the dev team needs to know all those things. In fact, most don't
need to know any of them. They've got other things to worry about, like computer graphics
and Al. But someone needs to know—the game designer.

Someone needs to verify the results of the game. This person must be an expert video game
player and football player who knows everything about how the game could be played and
should be played. The complexity level is enormous, but it's at a different level of detail than
the implementation. The developers who write the code operate at a much lower level of
detail. Even the dev architect deals with a different slice of the complexity. But someone must
verify the results at the user level—the game tester.

Windows Server is far more complex than an Xbox football game. There are hundreds, if

not thousands, of different experiences that must be completely understood, designed,

and tested at the customer’s level of abstraction. I'd love to say that our engineers have big
enough brains to keep all the details straight at every level of abstraction, and that they
become refined experts about multiple, entire business models, module decomposition, and
detailed implementation, but that's flat out absurd. The moral of the story is that at the com-
plex extreme, specialization is unavoidable and essential.

Eric Aside This is the part that's lost on many Agile practitioners. Probably because there aren't
many Windows-scale products that make the case for specialization so clear cut. Again, | return
to the knowledge | gained that projects need to be managed differently at different levels of
scale and abstraction. What goes for the hundreds or thousands of engineers at the product level
doesn't make sense at the five-to-eight-engineer feature level.

The space between

So, what have we learned? At the simple extreme, specialization is superfluous. At the com-
plex extreme, specialization is essential. Thus, the question isn't, “Should we have specializa-
tion?” The question is, "At what level of complexity or abstraction do we need specialization?”

| claim that specialization is a waste of time at the detailed feature level. Devs should under-
stand the requirements of the detailed feature (the spec, scenarios, and personas), then
design it, unit test it, and code it. Testers and PMs stay out of specing and testing at the
detailed feature level. If devs aren’t doing their jobs at that level of detail, then they aren’t
doing their jobs.

| further claim that specialization is essential at the product level. We need PMs to really
understand the customers inside-out, arrange communication between them and the team,
and keep the team focused on the ball. We need testers to ensure the customer will be
delighted. Not that the product just works, but that it works the way the customer needs and
wants it to work.

140 Chapter 4 Cross Disciplines

Stuck in the middle with you

The big argument, then, is where to draw the line in between? When do you stop need-
ing the separate disciplines? Can devs design and test dialogs or APIs? How detailed do you
need to go before PMs and testers are overkill and counterproductive? Personally, | think it
depends.

Where to draw the line depends on the product. If it's a familiar product with an intuitive
purpose, then you probably don't need many specialists. If it's an unusual product with an
obscure purpose, at least to engineers, then you need more specialists. Complexity naturally
adds to the burden and requires more specialty.

In the end, you should avoid specialization whenever possible. It adds a tremendous burden
and drives dysfunction. If you have jobs anyone can do, like check the build or fetch pizza,
then everyone should help do them. Anything less is selfish, egotistical, and unprofessional.

When you do need specialists, accept and embrace them. Give them the opportunity to
learn, grow, and lead. Our success depends on it. Just don't let it go to their heads. Work to
avoid the pitfalls and barriers by using shared spaces, constant communication, and a focus
on teamwork and team ownership. Remember: the team comes first, and pizza doesn't fetch
itself.

Eric Aside | talk about the impact of inappropriately combining development and test teams
later in this chapter in “Test don't get no respect.”

January 1, 2009: “Sustained engineering idiocy”

Plumbing channels waste water into a series of larger and larger
pipes till it is expelled. That's because sewage flows downstream, which
explains the quality of goods that test, operations, and sustained engi-
neering teams receive. After all, they are downstream of design and
development.

I've written about pushing quality upstream for testers in “Feeling testy—
The role of testers” (early in this chapter) and making services resilient to
failure for operations using the five Rs in “Crash dummies: Resilience” (see
Chapter 5.) Like most engineers, I've neglected sustained engineering (SE), also known as the
engineering sewage treatment center. No, on second thought, that analogy implies that what
we release to customers has been cleansed. SE is more akin to environmental cleanup after
an oil spill—thankless, difficult, and messy.

January 1, 2009: “Sustained engineering idiocy” 141

Imagine what must go through the minds of those cleanup crews as they wash oil from the
feathers of seabirds. Naturally, there's empathy for the birds (customers). There's frustration
at the inevitability of mistakes that lead to tragedy (buggy software). And there’s a palpable
desire to have the jackasses who caused the spill be forced to take your place (the engineers
who let the bugs slip by).

Eric Aside You take risks writing a controversial opinion column, and people can get hurt. That
was certainly the case this time. Although | had three SE team managers review this column in
advance to catch inaccuracies and unintended slights, many members of SE teams were deeply
offended by it. Reading it again, | can easily see why. Not only did | question how SE folks should
work, but | compared their jobs to sewage treatment and disaster recovery.

As obvious as those slights seem in hindsight, they weren't caught. Perhaps my reviewers knew
that | was a big supporter of SE and wouldn't dream of insulting the engineers involved. My
intent was to empathize with how SE teams are put into a thankless and difficult situation, not to
devalue them myself. Unfortunately, good intentions don't reverse the harm done.

Here's part of what | wrote to an SE director who had thoughtfully expressed his concerns:
"Thank you for pointing out this embarrassing, unintended, and damaging oversight on my
part. Please know that | have nothing but admiration for your team and SE teams in general. It is
my hope that by holding the core engineering teams more accountable for the quality of their
designs and work that your jobs and our customers will greatly benefit.”

You make the call

Should the engineers who design, construct, and test the code be the same engineers who
fix the bugs found after release? This is the quintessential question of SE.

If the engineers who built the release fix the post-release bugs, you typically get better
fixes, the engineers feel the pain of their mistakes, and the fixes can be integrated into the
next release. Then again, the next release may not happen because its engineers are being
randomized.

If you have a dedicated SE team you build up knowledge of the code base outside the core
engineering team, you can potentially pay a vendor to sustain old releases, and you don't
distract or jeopardize progress on new releases. Then again, SE teams get little love, their
fixes can be misinformed, you duplicate effort, and the core engineering team isn't held
accountable for their mistakes.

Tough call, huh? Nope, not at all. While both models can work, having the engineers who
build the release also fix post-release bugs is far better. Only idiots believe a lack of account-
ability leads to long-term efficiency and high quality. Of course, the world is full of idiots, but
| digress.

142

Chapter 4 Cross Disciplines

Someone’s got to take responsibility

Yes, a dedicated SE team can work, but long term it will only cause grief for team members
and customers. Why? Because you can mitigate post-release fixes distracting the core team,
but you can’'t mitigate the problems with a dedicated SE team.

Let's go through those dedicated SE team problems again.

B Little love What would it take for the dedicated SE team to be appreciated as much
as the core engineering team? A disaster, right? And what would it take on a day-to-
day basis? Nonstop disasters. In other words, the conditions for loving the SE team are
undesirable.

B Misinformed fixes To get a fix right, recognizing all the implications of changes, you
need to deeply understand the impacted portion of the code base. Let's fantasize that
the core engineering team has that level of depth. The core team is always considerably
larger than the SE team. The SE team has no hope of truly appreciating the impact of
fixes. Reality is only worse. Sure you can have the SE team consult with the core team,
but doing that all the time defeats the purpose.

B Duplicate effort Whenever you have two teams fixing issues in the same code you
duplicate effort, by construction. You've got two teams learning the same code, debug-
ging the same code, changing the same code, and testing the same code. There’s no
getting around it, unless you neglect to incorporate the fixes into the next release,
which is even worse.

B Accountability for mistakes The whole point of the dedicated SE team is to avoid
derailing the core engineering team, protecting them from dealing with fixes. The core
team doesn't correct its mistakes in the old code and doesn't know how to prevent
those mistakes from recurring in the new code. What's worse is that there's no rein-
forcement of good and bad behavior. Conscientious heroes don't get to write more
quality code, while careless villains fix past mistakes. Thus, we can never expect to
improve. A great recipe for joyful competitors and sorrowful customers.

What do | do now?

In contrast, there's plenty you can do to avoid jeopardizing future releases while the core
engineering team fixes prior mistakes. Let’s run through the relentless, randomizing requests
and resolve them.

B Triviality How do you avoid wasting the core team’s time with issues that aren’t
software bugs or have trivial workarounds? You have a small dedicated team triage the
issues. Note that this team isn't a development team. It's purely an evaluation team

January 1, 2009: “Sustained engineering idiocy” 143

that determines which issues are worth fixing. That way, only worthwhile work is passed

onto the core team.

B Prioritization How do you balance bugs fixes for the last release with work on the
new release? You have the dedicated evaluation team prioritize the fixes. There are

four buckets: immediate fix (the rare “call the VP now" issue); urgent fix (next scheduled

update); clear fix (next service pack or update); and don't fix. These buckets send clear
signals to the core team about which bugs to fix at what time.

B Unpredictability How do you make inherently unpredictable post-release issues

easy for the core team to schedule around? You make them regular events. Deploy one
update per month. The urgent fixes each month are queued up by the evaluation team.

The core team sets aside the necessary time each month and the fixes are designed,
implemented, tested, and deployed on a predictable schedule. This is just as good for
customers as it is for the core engineering team. Everyone likes predictability.

In addition, the evaluation team can create virtual images for easy debugging by the core
team, improve the update experience for customers, and reflect customer needs and long-
term sustainability features back into future releases.

Eric Aside Many readers thought | was advocating elimination of SE teams. In fact, | wanted to
keep SE teams but reduce their size and have them focus on issue evaluation and prioritization.
These smaller SE teams also need to provide the orchestration and system support necessary to
make SE run smoothly. They should design the right customer-centric fixes for the critical issues
they find. They should prioritize those issues appropriately and drive for their customer resolu-
tion. However, the smaller SE teams shouldn't be the people fixing the bugs. That responsibility
should go to core engineering team members so that they completely understand the issues
they create and will know to avoid them going forward.

This won't hurt a bit

See, it's not that complicated. You save on staff. You get better fixes. You catch similar issues

in advance. You achieve predictability. And you ensure the core engineering team is account-

able for quality and learns from its mistakes. All it costs is a relatively tiny dedicated team to
manage the monthly update process by evaluating and prioritizing issues. Even that team
feels valued as a result of its differentiated and important role and its direct engagement
with solving customer problems.

Yes, sewage flows downstream and no one likes cleaning it up. However, by putting some
simple processes in place, you can reduce the sewage and have those responsible mop up
the mess. To me that smells like justice.

144

Chapter 4 Cross Disciplines

Eric Aside What do you do if you are stuck on a dedicated SE team and are experiencing little
love, misinformed fixes, duplicate effort, and no accountability from the core team? Here are a
few ideas:

1 Create a rotational program with the core team. Everyone spends a month or two a year
on the SE team. It's not ideal, but I've already established that point.

1 Measure your efficiency and effectiveness, perhaps by the average time to resolve issues
for each bucket, the regression rate, team morale, and customer acceptance of fixes (a bal-
anced scorecard). Optimize, publish your results, and show the core engineering team how
great work gets done.

I You ship updates once a month—celebrate once a month.

May 1, 2011: “Test don’t get no respect”

I love Microsoft. We've been together happily for many years. If
you've been in a healthy long-term relationship, then you know what this
means—there are things about Microsoft that make me curse, stomp, and
spit. I've learned to tolerate them, but they still make me cringe.

A prime example is our disrespect for critical disciplines like testing. The
test discipline is one of the two largest engineering disciplines at Microsoft
and one of three key engineering triad disciplines. How can we not grant
testers the same respect and opportunities we give the other two engi-
neering triad disciplines—program managers (PMs) and developers? Perhaps our history
provides the answer.

Microsoft was started by developers and run by developers for years. We're now run by a
former program manager of sorts, so PMs receive begrudging respect. Developers can't
draw and have no sense of style, so designers are becoming appreciated. Developers hate
writing, so content publishing is at least considered necessary. Localization and media are
magical things that just appear in the build. But test? Developers believe testing is easy, if not
remedial, so developers think testers are beneath them.

Eric Aside Please note that I'm not giving any of these disciplines proper credit for all the work
they do. I'm merely listing the superficial ways they are often viewed by developers.

It's a different kind of flying altogether

Since developers think testing is easy compared to development, they think they can do
a tester’s job. After all, isn't that the cool, agile way? Aren’t we all just software engineers?
Yeah, and everyone would get along if we just gave peace a chance. Don't be naive.

May 1, 2011: “Test don’t get no respect” 145

Developers can verify that their individual components work as specified in isolation (unit
testing). They have much more trouble verifying that their components work as a system,
outside of isolation and spec. Why? Tunnel vision. Developers design and write their code for
a certain purpose. That's the way developers think about it—as they should.

Real-world testing must verify that the code works appropriately when it's used in ways that
defy all logic and purpose. To test code properly, you need to completely forget how and
why it was written and instead think about how it might be used in arbitrary and even insidi-
ous ways. Developers don't think that way—they can't think that way and still develop with
purpose. Testers do think that way. That's why we need testers.

That's easy!

Even though the test discipline is essential for high-quality software, some groups still con-
sider converting all their testers to developers, expecting the combined development team
to write all tests—it's a great way to get more developer headcount! The teams that actually
go through with this change experience the following problems:

B They lose their test leads and leaders The former development leads tend to lead
the combined engineering teams. (I talk about why in the next section.) This relegates
the former test leads to individual contributor roles (ICs), and they usually don't take
this reduction in responsibility well and leave. The former top test ICs also tend to
leave—after all, clearly their skill set is not appreciated, no matter what sparkly purple
lipstick the management team might put on this pathetic pig of a plan.

B They lose their testers After the test leads and leaders go, the former test ICs
gravitate toward a development mindset. They gravitate there because testers get no
respect, they are calibrated against developers even if they continue to work differently
as testers, and they can see there's no career growth in test. After all, their role models
left the team. Now the only path up is through development.

B Team morale drops, especially among the testers Losing team members and team
leaders impacts morale. The most impacted are the testers still clinging to their disci-
pline, who lose their role models, their self-identity, and their solid reviews. (Even great
apples get bad reviews in an orange grove.)

B Their code quality is initially higher and then gradually drops The quality
improves initially because developers suddenly realize they've lost their safety net
and actually start writing unit tests, doing design and code reviews, and paying atten-
tion to those build warnings. (Of course, developers should have been doing this all
along.) However, after a while, the system and boundary errors start creeping in and
building up. No one is looking for them, so they are discovered by the wrong kind of
testers—customers.

Combining development and test makes sense at the unit level (such as Test-Driven
Development). This practice can also work at the component level for well-understood and

146

Chapter 4 Cross Disciplines

well-factored components on teams that also have strong QA. However, combining devel-
opment and test doesn't make sense at the system level. | talked about this at length in
“Undisciplined—What's so special about specialization?” earlier in this chapter.

| just can't get enough

The lack of respect for testers is most apparent in leveling and career development.
Depending on where they work in the company, testers are ranked one to three levels below
developers and PMs. In other words, the test counterpart to a PM and developer—who are
all working on the same project with the same scope—uwill tend to be a full career stage
below his or her peers. Unbelievable!

“Yeah, but testing isn't as difficult as development and program management,” says the dim
developer. Really? Try it sometime. Try writing automation that works every time, even as
developers alter configurations and data. Try performing penetration testing that closes gaps
that foil sophisticated hacks. Try producing injection testing that discovers failure modes,
system testing that finds sneak conditions, or end-to-end scenario testing that validates the
billion-dollar bets we make. And I'm just scratching the surface.

“Yeah, but our test team isn't that advanced—they don't do all those things.” Exactly! We
don’t value the test discipline enough to advance our testing capability to the same levels as
PM and development.

Testing is frigging hard! We need great people to do it well, and then we need to pay,
develop, and expect them to be world class. Our treatment of the test discipline is astonish-
ing and pathetic. Believe or not, it used to be even worse, until senior test leaders from across
the company started tracking the numbers and driving promotions.

Yes, it's true that testers do different jobs from PMs and developers. But we can't design and
construct complex systems and think that testing those systems will be any less complex. You
get what you pay for, and by spending less on testing we create imbalance. We sacrifice qual-
ity, productivity, and efficiency as a result. The sacrifice in quality is obvious. The sacrifice in
productivity and efficiency comes from incomplete and fragile testing that results in higher
error rates, more rework, and higher support and sustained engineering costs.

Eric Aside The refrain | hear when | complain about our commitment to testing is, “Yeah, but
Google and Amazon have far fewer testers.” Amazon carefully tests the systems that matter, like
billing and account management. Google does endless analysis of its search results.

As for Microsoft, we are in a broader business than Amazon or Google. We are a platform com-
pany and an enterprise company. Our customers expect more from us. Quality is a differentia-
tor and a necessity. Yes, products and services that aren’t critical or sensitive and are updated
monthly don’t require the same in-depth testing as mission-critical products and services that
span years between releases. While we don't need perfection in all things, we do need the right
quality in the right products.

Download from Wow! eBook <www.wowebook.com>

May 1, 2011: “Test don’t get no respect” 147

The world just wants us to fit in

It's bad enough to give up quality, productivity, and efficiency by expecting less from our
testers than we do from their PM and developer counterparts. What's worse is that lowering
expectations sends a clear message that to get ahead, a tester needs to become something
else. This philosophy is nothing short of irresponsible and tragic.

B |owering expectations for testers is irresponsible because some of our most challeng-
ing engineering problems involve testing—testing in production; testing many-core,
highly parallel systems; testing one thousand plus machine services; testing globally
distributed cloud services; testing secure and private cloud systems; testing hybrid pro-
cedural and functional languages; testing natural user interfaces; and on and on.

B |owering expectations for testers is tragic because we send a message that testing is
not a legitimate career path, when in fact it is a robust career path to the highest engi-
neering stages for both test managers and test ICs. Instead of following this path, test-
ers abandon their discipline to do something else, often with mixed results.

By expecting less from our testers, we are encouraging them to move away from a career
they love—one that is essential to Microsoft’s success and offers tremendous opportunity—
and toward a career not of their choice that may inhibit their growth. It is a travesty.

Eric Aside Microsoft recently announced changes to its compensation plans that increase the
base salary for most engineers, including testers. That's wonderful and I'm grateful. Investing in
our test discipline is a separate matter. It is choosing to be just as sophisticated in testing as we
are in program management and development.

Executives might reasonably ask, “Why would we increase our spending in testing? What's the
return on investment?” While | believe a strong financial return exists, I'd turn that statement
around. If we want to save money, why don't we decrease how much we pay developers by a
couple of levels? Because our quality and innovation would suffer. Why would they suffer? Our
products are platforms with wide and varied usage that require sophisticated engineering to
orchestrate and improve—and test.

Tell me what it means to me

At a time when we should be investing in test, we continue to demean the discipline. We
have great leadership at the highest levels within the test discipline, but far too few testers
join these ranks each year. Even though test is far behind PM and development, they receive
a smaller promotion budget. (The promotion budget is equal in proportion to the other dis-
ciplines, but that proportion is a distortion because of the higher salaries in PM and develop-
ment.) Only a handful of test ICs and test managers reach the principal and partner stages to
serve as role models.

148 Chapter 4 Cross Disciplines

How can we allow a critical and central engineering discipline to be so disrespected and
damaged? Are we that vain or foolish to think testers aren't really needed or the problems
aren't really that difficult?

Eric Aside As you might imagine, this column struck a nerve at Microsoft. Leaders from across
the company told me how polarizing this was on their teams. People either loved it or hated

it. The reasons varied and covered every aspect. I'm pleased with the open dialogue, and I'm
pleased with all the stories people passed on about changes they've made or are making to
improve the situation. However, we've got a long way to go as a company and industry.

It's time we put our money where our priorities are and push testing to the next stage. We
hire the best—Ilet’s challenge them accordingly. Let's lay out the test career path all the way
through to vice president and technical fellow. Let's start aggressively recognizing the talent
we have and developing the talent we need. Testing deserves our respect—our customers,
our partners, and our business depend upon it.

Eric Aside What can you do to help if you aren't a test or multidisciplinary leader?

1 Accept and appreciate that the test mindset and skillset are different from development,
yet their problems are equally complex and critical to our product quality.

0 Write high-quality code from the beginning by using design and code reviews, code anal-
ysis (like PREfast and FxCop), and thorough unit testing, all of which allow testers to focus
on their unique value of providing quality assurance and exposing system issues develop-
ers wouldn't normally detect.

1 Encourage your test team to hire great full-time testers who focus on the truly challenging
test problems we face—problems that when solved will improve the quality of our prod-
ucts, our testing, and our testers.

BTW, | could write a similar column on service engineers, who are even less understood than
testers.

Chapter 5
Software Quality—More Than
a Dream

March 1, 2002: “Are you secure about your security?”.
November 1, 2002: “Where's the beef? Why we need quality”
April 1, 2004: “A software odyssey—From craft to engineering”............
July 1, 2005: “Review this—Inspections”. iiiiiiiiin...
October 1, 2006: “Bold predictions of quality”
May 1, 2008: “Crash dummies: Resilience” iiiiiia..
October 1, 2008: “Nailing the nominals”

Some people mock software development, saying if buildings were built like
software, the first woodpecker would destroy civilization. That’s quite funny, or
disturbing, but regardless it's misguided. Early buildings lacked foundations. Early
cars broke down incessantly. Early TVs required constant fiddling to work properly.
Software is no different.

At first, Microsoft wrote software for early adopters, people comfortable replacing
PC boards. Back then, time to market won over quality, because early adopters
could work around issues, but they couldn’t slow the clock. Shipping fastest meant
coding quickly and then fixing just enough to make it work.

Now our market is consumers and the enterprise, who value quality over the
hassles of experimentation. The market change was gradual, so Microsoft’s initial
response was simply to fix more bugs. Soon bug fixing was taking longer than
coding, an incredibly slow process. The fastest way to ship high quality is to trap
errors early, coding it right the first time and minimizing rework. Microsoft has
been shifting to this quality upstream approach over the time I've been writing
these columns. The first major jolt that drove the company-wide change was a
series of Internet virus attacks in late 2001.

In this chapter, |. M. Wright preaches quality to the engineering masses. The first
column evaluates security issues. The second analyzes why quality is essential and

150

how you get it. The third column explains an engineering approach to software that

dramatically reduces defects. The fourth talks about design and code inspections.
The fifth describes metrics that can predict quality issues before customers

149

150 Chapter 5 Software Quality—More Than a Dream

experience them. The sixth focuses on techniques to make software resilient. And
the chapter aptly finishes by emphasizing the five basics of software quality.

While all these columns provide an interesting perspective, the second one,
“Where’s the beef? Why we need quality” stands out as an important turning point.
When | wrote it few inside or outside Microsoft believed we were serious about
quality. Years later, many of the concepts are taken for granted. It took far more
than an opinion piece to drive that change, but it’s nice to call for action and have
people respond.

—FEric

March 1, 2002: “Are you secure about your security?”

I know security is serious sh*t. | know that every time some hacker half-
wit exploits a small code or configuration imperfection in a system that he
could never dream of writing himself, the dung beetles in the press will
feed off this excrement with gleeful abandon, telling our customers that
our code stinks—simply because some pockmarked malicious pipsqueak
managed to manipulate two lines of code, out of a million, into an illegal
perversion. | know this.

Microsoft has millions of lines of legacy code, huge farms of networked
servers, and hundreds if not thousands of external partners and dependencies. Each of these
has the potential to be the next victim of vile, vindictive, vacuous, vessels of vomit whose
mothers still wash their clothes. But which items should we focus on securing first?

Eric Aside Ah, the good old days when hackers were just misguided youth trying to make a
name for themselves or fighting the powers that be. These days, hacking is big business—either
preventing it, tracking it, or engaging in it for organized crime. In retrospect, my anger at the
early hackers was misplaced. The world isn't a place where you can just hope everyone plays
nicely. The early hacker wake-up call set us on the proper path of writing secure solid code.

Beware the swinging pendulum

Some people say that every possible vulnerability must be corrected. That's commendable—
but crazy. We can't get so paranoid that our products become unusable.

When | worked at Boeing, people assigned to “black projects” worked in buildings with no
windows, were disconnected from the network, and every night removed their disk drives
and locked them in a vault. With all these protective measures, these projects were still con-
sidered vulnerable.

March 1, 2002: “Are you secure about your security?” 151

Even the biggest security hawks probably don't think our customers should be required to
blacken their windows, stay off the web, and remove their disk drives. However, we must raise
the security bar far higher than in the past and require accountability for it from top to bot-
tom in our organizations. The key is to remember that this is all about delivering a trustwor-
thy and delightful experience to our customers.

Other people say that we only need to focus on securing our firewalls, protocols, and com-
mon language runtime. They assume that if these are secure, we have nothing to worry
about. This is ignorant and downright dangerous thinking.

Writing Secure Code (Microsoft Press, 2002) by Michael Howard and David LeBlanc (@ must
read) has an entire chapter on writing secure .NET code, which references almost all of the
other 15 chapters. This chapter explains that vulnerabilities are not limited to buffer overruns,
insecure protocols, and unguarded ports. Even if these items were the only attack points,
firewalls, secure protocols, and managed code wouldn't be enough protection from mali-
cious data.

Eric Aside | refer to the first version of Writing Secure Code in this column. The column was
written shortly after the first version was published. Naturally, later versions of the book have
even more useful information. Also, Michael Howard has a great Kiwi accent.

Do the right thing

Of course, the right thing to do is to consider every possible vulnerability and rank each in
terms of the risk to the customer. Finding vulnerabilities is not as hard as it sounds. By break-
ing your web or client application into components and interfaces, you can quickly spot
potential issues and classify them with the STRIDE model. By searching your code for danger-
ous APIs (Appendix A in Writing Secure Code), properly restricting permissions, and check-
ing inputs, you can find a ton of easy pickings—the kind that hackers look for. Although a
deeper evaluation is necessary to catch more subtle issues, these simple steps will give you a
great head start.

Eric Aside STRIDE is a mnemonic device to help people remember the different kinds of secu-
rity threats: spoofing, tampering, repudiation, information disclosure, denial of service, and
elevation of privilege. Writing Secure Code has all the details.

Next you have to assess the risk of each vulnerability. A vulnerability that allows hackers to
discover how we keyword clip art is less critical than one that allows hackers to discover a
customer’s private data. There is a higher probability that a vulnerability will be exploited if
you can copy a hack from a website and change a couple of values in the script, as compared
to a hack that must be tuned to each instance, requires detailed knowledge of the code, and

152

Chapter 5 Software Quality—More Than a Dream

must be written in a low-level language. The more critical the effects, the higher the risk; the
lower the probability of exploitation, the lower the risk. Divide the criticality by the chance
and you've got your risk assessment. (Table 2-2 in Writing Secure Code details this process.)

You're only as secure as your weakest link

Computing security risks sounds simple enough, but how do you calibrate acceptable risk
across a big product like Windows? First, your team has to agree on definitions of the critical-
ity and chance ratings. The commonly suggested range for each is from one to ten, where a
criticality of ten is highly critical and a chance of ten is highly unlikely.

Next, calibrate these ranges according to your group's agreed-upon sense of importance. Is
getting read-only database access to product catalog data a criticality rating of two or eight?
What about the same access to user data? If you need to write custom COM code to exploit
a vulnerability, is it assigned a chance rating of four or nine? What if that code can be writ-
ten in VBScript? (One very helpful standard for risk assessment of interfaces can be found in
Table 14-1 in Writing Secure Code.)

Eric Aside These days, Microsoft security experts have written custom templates in Team
Foundation Server (TFS) that automatically map vulnerability types to priority and severity values
for security bugs. These custom TFS templates are used internally by big teams to further nor-
malize and simplify the bug tracking process.

After your group has standard definitions of criticality and chance, a high-level triage or war
team can set a balanced risk bar across the organization. We already use this process to settle
differences between component teams working on large products and to set a consistent
quality bar. The same can and should be done for security issues.

Eric Aside To differentiate low-level product and feature triage from high-level product-line
triage, we have a variety of funny internal names: war room, box triage, and yber-triage, to name
a few. Personally, | could do without the war references.

Lead, follow, or get out of the way

So are you on board with responding to the security challenge? Do you hate the idea of a
group of arrogant, asocial peons pushing us around?

Perhaps you are thinking that these loser lawbreakers should be kept off the Net, and that
pandering alarmist reporters and editors should have a sense of decency, fairness, and
responsibility, not make heroes of hackers and not vilify Windows beyond all other plat-
forms and systems. Perhaps you are thinking that if these hacking incidents were taken

November 1, 2002: “"Where's the beef? Why we need quality” 153

with the proper perspective, then maybe we wouldn’t all be going through this fire drill.
Unfortunately, this is the world we live in, fair or unfair, true or exaggerated.

Let's face it. No one likes being hacked and few of us praise hackers for their creativity and
civic service. But letting snidely, sniffling, scurvy scum have control over the hearts, minds,
and computers of our customers is completely shameful.

Sure Linux, Oracle, Sun, IBM, and AOL have as many, if not more, security problems than
we do. But as BrianV says, “We are the leader in this industry and we have to lead!” Nothing
short of a full commitment is acceptable.

Eric Aside Brian Valentine (BrianV) was the senior vice president of the Windows division at the
time. Nearly a decade later, security is baked into all our products and services. It is a way of life
we all accept, appreciate, and strive to understand.

November 1, 2002: “Where's the beef? Why we need
quality”

This month, Interface focuses on the lessons that we learned from
security pushes around the company. What about the lessons that we
haven't learned? What about the dumb things we are still doing?

Eric Aside Interface is the name of the Microsoft monthly internal webzine
in which my opinion columns first appeared. The webzine published its last
issue in February 2003.

The security fire drill exposed more than security holes in our software. It further exposed the
shoddiness of our work and left many folks wondering what the next fire drill will be. Guesses
include: privacy, availability, supportability. How about quality? Anyone heard of quality?
What the heck happened to quality???

Check-in time on most dev teams is like amateur hour. The kind of garbage that passes as a
first cut is pathetic, and fixing it later is like signing our own death certificate. Why? Because
we won't fix problems before release that are too superficial, too complex, or too obscure.
We won't fix bugs before release that are found too late or simply not discovered until after
we ship.

So what, right? We've been shipping this way for years. What is true this year that wasn't
before? Oh my, where to begin...

154

Chapter 5 Software Quality—More Than a Dream

Eric Aside Much of what | wrote about here nine years ago has changed. That doesn’t mean
we are yet where we want to be. However, we've radically increased the amount of unit testing,
automated testing, code review, and code analysis we perform both before code gets checked
into the main source tree and before we ship. These days we can actually use weekly builds

for mission-critical internal tasks and day-to-day work, and daily builds to make incremental
improvements to production services.

Things have changed

First of all, today we are trying to sell into markets that require turnkey solutions—that is, you
turn the key and it works. These markets require turnkey solutions because the associated
customers do not have the expertise to work around the problems. So if it doesn’t work right
away, we have to fix it right away.

We have entered two major turnkey markets: consumer products and the enterprise. If you're
smart, you're wondering how our competitors have succeeded in these markets.

For the consumer market, our competitors have kept their products small and simple. That
way there aren't many failure modes; and if they do fail, the product can quickly restart and
recover. We are selling products with far more complexity, and functionality. However, this
means we have more failure modes. To stay competitive, our products need to be better with
fewer failures and they need to restart and recover faster.

For the enterprise market, our competitors have supplied armies of support personnel and
consultants. For many competitors, this is the biggest part of their business—they actually
make money on their complexity and failures. When their products collapse, our competitors
immediately dispatch their own squadron of people to fix the problems and keep the enter-
prise up and running.

We don't follow this business model. We sell less expensive products in high volume and
provide minimal support in an effort to maximize profits. However, this means that we can't
afford to break as often and that we must quickly fix or recover from the few failures that we
do have.

Eric Aside Our “minimal” support has expanded significantly as the Internet provides new mod-
els for support, but Microsoft is still a volume software and services provider.

Good enough isn't

The second way things have changed for us as a company is that our key products are now
good enough. Actually, feature-wise our key products—Office and Windows—have been
good enough for years.

November 1, 2002: “"Where's the beef? Why we need quality” 155

Being good enough means that we've got all the features that our customers need, or at
least those that they think they need. This hurts us two ways:

B People stop upgrading to the next version. After all, the current version has everything
that they think they need and upgrading is painful and expensive.

B Any software copycat can create a viably competitive product by just referring to our
widely distributed, online, fully automated specifications (the products themselves). If
the copycat does a better job, making the software more reliable, smaller, and cheaper
(say like Honda did to Chrysler), then we've got a big problem.

Think it can’t happen? It already has. (Does Linux ring a bell?) Linux didn't copy Windows; it
just ensured that it had all the good-enough features of a Windows server. Right now there
are developers working on Windows-like shells and Office-like applications for Linux. Even if
they fail, you can bet someone will eventually succeed in developing a superior product—as
long as we leave the quality door open.

We can't afford to play catch-up with our would-be competition. Detroit has been fighting
that losing battle for years. We must step up and make our products great before others
catch us.

The good news is that we have some time. Other commercial software companies big
enough to copy Office or Windows are poorly run and are way behind us in the PM and test
disciplines. The open-source folks lack the strategic focus and coordination that we have;
they rely on a shotgun approach hoping to eventually hit their target. We can beat all com-
petitors if we raise our quality bar—ensuring fewer failures, faster restart, and faster recov-
ery—and if we focus on our key customer issues.

Hard choices

But as anyone can tell you, nothing comes for free. If we focus more on quality, something
else has to give. At a high level, the only variables that we control are quality, dates, and
features. For projects with fixed dates, quality means fewer features. For projects with fixed
features, quality means adding time to the schedule.

Eric Aside Actually, | don't completely believe this anymore. I've seen great efficiency gained
by removing waste from the system (as you can see in “Lean: More than good pastrami” in
Chapter 2) and fixing problems early. While it might not be enough to give the company sum-
mers off, | believe it is enough for high quality not to cost us features or time. Yes, it's not as
quick as the early days when the quality bar was low, but compared to our recent long stabiliza-
tion periods, doing it right the first time is as fast if not faster.

156

Chapter 5 Software Quality—More Than a Dream

Before you balk at this thought process, BillG has already made our choices clear in his article
about trustworthy computing:

In the past, we've made our software and services more compelling for users
by adding new features and functionality and by making our platform richly
extensible. We've done a terrific job at that, but all those great features won't
matter unless customers trust our software.

The only question is: Are you going to follow through?
There are three principal areas to focus on to improve the quality of our products:

B Better design and code
B Better instrumentation and test

B Better supportability and recovery

Let's break them down one at a time.

Time enough at last

Few developers wouldn't love more time to think through their code and get it right the first
time. The trouble is finding the time and having the self-discipline to use that time wisely. So,
what would you do if you had more time? As a manager, | would spend more time with my
people discussing design decisions and reviewing code.

Two key design issues I'd emphasize are simplicity and proper factoring:

B Simplicity Keeping the design simple and focused is key to reducing unintended
results and complex failures.

B Proper factoring This helps keep each piece of the design simple and separable from
the others. It also makes it easier to enforce a sole authority for data and operations,
and to maintain and upgrade code.

Eric Aside Test-Driven Development (TDD) accomplishes both these results for implementation
design. You can take a similar approach to TDD for component design as well, though the tests
are sometimes no more than thought experiments.

I'd also give devs extra time by pairing them to work on each feature task. This serves to

B Double the time that each dev has to do the work because you schedule the same task
length as if one dev were assigned.

B Allow for peer reviews of designs and code.

B Provide each feature with a backup dev in case the primary dev becomes unavailable.

November 1, 2002: “Where's the beef? Why we need quality” 157

To help my devs apply self-discipline, I'd

Schedule completion dates for dev specs (also known as design docs and architecture
docs).

Make each backup dev as responsible for feature quality as the primary developer is.

Measure regression rates and build-check failures to use as feedback on quality at
check-in. (Sure, these measures are imperfect, but what did you want? Bugs per line
of code?)

Eric Aside These days I'd use churn and complexity measures instead of regression rates. See
“Bold predictions of quality” toward the end of this chapter for more.

Checking it twice

It's never enough to think that you have the code right; you've got to know. Check it from
the inside with instrumentation and from t