
Objective-C for 
Absolute Beginners  

iPhone , iPad and Mac Programming Made Easy

Learn Object-Oriented Progamming 
with Objective-C for iOS using Alice

Gary Bennett | Mitch Fisher | Brad Lees

Objective-C for 
Absolute Beginners  

iPhone , iPad and Mac Programming Made Easy

Learn Object-Oriented Progamming 
with Objective-C for iOS using Alice

Gary Bennett | Mitch Fisher | Brad Lees





   i 

Objective-C for Absolute 
Beginners 

iPhone, iPad, and Mac Programming 
Made Easy 

 

 

 

 

  

■ ■ ■ 

Gary Bennett 
Mitch Fisher 
Brad Lees 

 



ii 

Objective-C for Absolute Beginners: iPhone, iPad, and Mac Programming Made Easy 

Copyright © 2010 by Gary Bennett, Mitch Fisher, Brad Lees 

All rights reserved. No part of this work may be reproduced or transmitted in any form or by any 
means, electronic or mechanical, including photocopying, recording, or by any information 
storage or retrieval system, without the prior written permission of the copyright owner and the 
publisher. 

ISBN-13 (pbk): 978-1-4302-2832-5 

ISBN-13 (electronic): 978-1-4302-2833-2 

Printed and bound in the United States of America 9 8 7 6 5 4 3 2 1 

Trademarked names, logos, and images may appear in this book. Rather than use a trademark 
symbol with every occurrence of a trademarked name, logo, or image we use the names, logos, 
and images only in an editorial fashion and to the benefit of the trademark owner, with no 
intention of infringement of the trademark. 

The use in this publication of trade names, trademarks, service marks, and similar terms, even if 
they are not identified as such, is not to be taken as an expression of opinion as to whether or not 
they are subject to proprietary rights. 

President and Publisher: Paul Manning 
Lead Editor: Clay Andres 
Development Editor: Douglas Pundick  
Technical Reviewer: James Bucanek 
Editorial Board: Clay Andres, Steve Anglin, Mark Beckner, Ewan Buckingham, Gary Cornell, 

Jonathan Gennick, Jonathan Hassell, Michelle Lowman, Matthew Moodie, Duncan 
Parkes, Jeffrey Pepper, Frank Pohlmann, Douglas Pundick, Ben Renow-Clarke, Dominic 
Shakeshaft, Matt Wade, Tom Welsh 

Coordinating Editor: Kelly Moritz 
Copy Editor: Heather Lang and Tracy Brown  
Compositor: MacPS, LLC 
Indexer: BIM Indexing & Proofreading Services 
Artist: April Milne 
Cover Designer: Anna Ishchenko 

Distributed to the book trade worldwide by Springer Science+Business Media, LLC., 233 Spring 
Street, 6th Floor, New York, NY 10013. Phone 1-800-SPRINGER, fax (201) 348-4505, e-mail 
orders-ny@springer-sbm.com, or visit www.springeronline.com.  

For information on translations, please e-mail rights@apress.com, or visit www.apress.com.  

Apress and friends of ED books may be purchased in bulk for academic, corporate, or 
promotional use. eBook versions and licenses are also available for most titles. For more 
information, reference our Special Bulk Sales–eBook Licensing web page at 
www.apress.com/info/bulksales. 

The information in this book is distributed on an “as is” basis, without warranty. Although every 
precaution has been taken in the preparation of this work, neither the author(s) nor Apress shall 
have any liability to any person or entity with respect to any loss or damage caused or alleged to 
be caused directly or indirectly by the information contained in this work.  

The source code for this book is available to readers at www.apress.com.  

 

mailto:ny@springer-sbm.com
http://www.springeronline.com
mailto:rights@apress.com
http://www.apress.com
http://www.apress.com/info/bulksales
http://www.apress.com


   iii 

I would like to dedicate this book to my wife Stefanie and to my children, Michael, Danielle, 

Michelle, and Emily. Thank you for always supporting me when I decide to do crazy things like 

write a book.   

Also, I want to thank two of my friends, Mitch Fisher and Brad Lees, for co-authoring this book 

with me. They are two of the finest developers in the country, and are great friends. It was great 

being able to work with them again.  

—Gary Bennett 

 

I would like to thank all my family and friends who have patiently supported my work on this book. 

You know who you are. I would like to especially thank Lisa, Jade, Eric, and Patti for the long 

nights and forever-busy weekends that I was spending on this book and not with them. 

—Mitch Fisher 

 

I would like to thank my wife Natalie and my kids for the support and time they have given me to 

work on this book. I am also grateful for good friends who convince me to take on crazy 

endeavors. 

—Brad Lees 

 

 



iv 

 

Contents at a Glance 

■Contents at a Glance....................................................................................... iv 
■Contents .......................................................................................................... v 
■About the Authors ........................................................................................... x 
■About the Technical Reviewer........................................................................ xi 
■Acknowledgments......................................................................................... xii 
■Introduction.................................................................................................. xiii 
■Chapter 1: Becoming a Great iPhone/iPad or Mac Programmer ..................... 1
■Chapter 2: Programming Basics ................................................................... 13
■Chapter 3: It’s All About the Data .................................................................. 37
■Chapter 4: Making Decisions About…and Planning Program Flow .............. 57
■Chapter 5: Object Oriented Programming with Objective-C .......................... 81
■Chapter 6: Introducing Objective-C and Xcode.............................................. 97
■Chapter 7: Objective-C Classes, Objects, and Methods............................... 117
■Chapter 8: Programming Basics in Objective-C .......................................... 137
■Chapter 9: Comparing Data ......................................................................... 157
■Chapter 10: Creating User Interfaces with Interface Builder ...................... 175
■Chapter 11: Memory, Addresses, and Pointers ........................................... 199
■Chapter 12: Debugging Programs with Xcode ............................................ 219
■Chapter 13: Storing Information.................................................................. 237
■Chapter 14: Protocols and Delegates .......................................................... 257
■Index............................................................................................................ 263



   v 

 

 

Contents 

■Contents at a Glance....................................................................................... iv
■Contents .......................................................................................................... v
■About the Authors ........................................................................................... x
■About the Technical Reviewer........................................................................ xi
■Acknowledgments......................................................................................... xii 
■Introduction.................................................................................................. xiii
 
■Chapter 1: Becoming a Great iPhone/iPad or Mac Programmer ..................... 1

Thinking Like a Developer ......................................................................................................................................1
Completing the Development Cycle ........................................................................................................................4
Introducing Object Oriented Programming .............................................................................................................6
Working with the Alice Interface.............................................................................................................................8
Summary ..............................................................................................................................................................11
Exercises...............................................................................................................................................................11

■Chapter 2: Programming Basics ................................................................... 13
Taking a Tour with Alice .......................................................................................................................................13

Navigation Menu..............................................................................................................................................14
World Window..................................................................................................................................................15
Classes, Objects, and Instances in Alice..........................................................................................................17
Object Tree.......................................................................................................................................................18
Editor Area .......................................................................................................................................................18
Details Area......................................................................................................................................................19
Events Area......................................................................................................................................................19

Creating an Alice App—To the Moon Alice...........................................................................................................20
Your First Objective-C Program ............................................................................................................................26

Installing Xcode ...............................................................................................................................................27
Launching and Using Xcode.............................................................................................................................30

Summary ..............................................................................................................................................................35
Exercises...............................................................................................................................................................36

 



■ CONTENTS 

vi 

■Chapter 3: It’s All About the Data .................................................................. 37
Numbering Systems Used in Programming ..........................................................................................................37

Bits...................................................................................................................................................................37
Bytes ................................................................................................................................................................39
Hexadecimal ....................................................................................................................................................41
Unicode ............................................................................................................................................................42

Data Types ............................................................................................................................................................42
Using Variable and Data Types with Alice.............................................................................................................43
Data Types and Objective-C..................................................................................................................................50
Identifying Problems .............................................................................................................................................54
Summary ..............................................................................................................................................................56
Exercises...............................................................................................................................................................56

■Chapter 4: Making Decisions About…and Planning Program Flow .............. 57
Boolean Logic .......................................................................................................................................................57

Truth Tables .....................................................................................................................................................59
Comparison Operators .....................................................................................................................................61

Designing Apps .....................................................................................................................................................62
Pseudo-code....................................................................................................................................................62

Design Requirements............................................................................................................................................64
Flowcharting ....................................................................................................................................................67
Designing and Flowcharting an Example App .................................................................................................68
The App’s Design .............................................................................................................................................69
Using Loops to Repeat Program Statements ...................................................................................................70

Coding the Example App in Alice ..........................................................................................................................72
Coding the Example App in Objective-C................................................................................................................74
Nested If Statements and Else-If Statements.......................................................................................................77
Improving the Code Through Refactoring .............................................................................................................77
Moving Forward Without Alice..............................................................................................................................78
Summary ..............................................................................................................................................................79
Exercises...............................................................................................................................................................80

■Chapter 5: Object Oriented Programming with Objective-C .......................... 81
The Object.............................................................................................................................................................81
What Is a Class .....................................................................................................................................................82
Planning Classes...................................................................................................................................................83
Inheritance............................................................................................................................................................93
Why Use OOP? ......................................................................................................................................................94

Eliminate Redundant Code...............................................................................................................................94
Ease of Debugging...........................................................................................................................................95
Ease of Replacement .......................................................................................................................................95

Advanced Topics...................................................................................................................................................95
Interface...........................................................................................................................................................95
Polymorphism..................................................................................................................................................95

Summary ..............................................................................................................................................................96
Exercises...............................................................................................................................................................96

■Chapter 6: Introducing Objective-C and Xcode.............................................. 97
A Brief History of Objective-C ...............................................................................................................................97
Understanding C Language Basics .......................................................................................................................98



■ CONTENTS 

   vii 

Putting the “Objective” into Objective-C.............................................................................................................100
Introducing Xcode...............................................................................................................................................105
Starting Up Xcode ...............................................................................................................................................106
Creating Your First Project..................................................................................................................................107

Adding a New Class .......................................................................................................................................108
Building and Running the New Program........................................................................................................114

Summary ............................................................................................................................................................115
Exercises.............................................................................................................................................................116

■Chapter 7: Objective-C Classes, Objects, and Methods............................... 117
Creating an Objective-C Class ............................................................................................................................117

Declaring Interfaces and Instance Variables .................................................................................................119
Sending Messages (Methods)........................................................................................................................119
Working with the Implementation File ...........................................................................................................121
Implementing Methods ..................................................................................................................................123

Using Our New Class...........................................................................................................................................125
Overriding Default Behavior...........................................................................................................................132
Taking Class Methods to the Next Level ........................................................................................................133

Accessing the Xcode Documentation .................................................................................................................133
Summary ............................................................................................................................................................134
Exercises.............................................................................................................................................................135

■Chapter 8: Programming Basics in Objective-C .......................................... 137
Creating a Simple Command Line Tool...............................................................................................................138
Introducing Instance Variables ...........................................................................................................................140

Accessing Instance Variables ........................................................................................................................141
Using Getter and Setter Methods...................................................................................................................142

Introducing Properties ........................................................................................................................................144
Using Properties.............................................................................................................................................145
Understanding the Importance of Conventions..............................................................................................146

Creating the MyBookstore Program....................................................................................................................146
Using the NSMutableDictionary Class............................................................................................................148
Making Our Object Do Something..................................................................................................................149
Implementing Behavior..................................................................................................................................150
Cleaning Up Our Objects ................................................................................................................................153
Using the Bookstore and Book Objects..........................................................................................................154

Summary ............................................................................................................................................................156
Exercises.............................................................................................................................................................156

■Chapter 9: Comparing Data ......................................................................... 157
Introducing Boolean Logic ..................................................................................................................................157
Using Relational Operators .................................................................................................................................158

Comparing Numbers ......................................................................................................................................158
Using Boolean Expressions.................................................................................................................................163

Comparing Strings .........................................................................................................................................164
Comparing Dates ...........................................................................................................................................166
Combining Comparisons ................................................................................................................................168

Using the Switch Statement ...............................................................................................................................168
Grouping Variables Together ..............................................................................................................................170

NSArray..........................................................................................................................................................170



■ CONTENTS 

viii 

NSMutableArray.............................................................................................................................................171
NSDictionary ..................................................................................................................................................172
NSMutableDictionary .....................................................................................................................................172

Summary ............................................................................................................................................................173
Exercises.............................................................................................................................................................174

■Chapter 10: Creating User Interfaces with Interface Builder ...................... 175
Understanding Interface Builder .........................................................................................................................176
The Model-View-Controller .................................................................................................................................177
Human Interface Guidelines (HIGs) .....................................................................................................................179
Creating an Example iPhone App with Interface Builder ....................................................................................180

Using Outlets..................................................................................................................................................185
Implementing an Action.................................................................................................................................186
Using Interface Builder ..................................................................................................................................187
Document Window.........................................................................................................................................188
Library Window..............................................................................................................................................189
Inspector Window ..........................................................................................................................................190
Creating the View...........................................................................................................................................191
Connecting the Outlets and Objects...............................................................................................................192
Connecting Actions and Objects ....................................................................................................................193
Implementation File .......................................................................................................................................195

Broken Connections in Interface Builder ............................................................................................................196
Summary ............................................................................................................................................................198
Exercises.............................................................................................................................................................198

■Chapter 11: Memory, Addresses, and Pointers ........................................... 199
Understanding Memory.......................................................................................................................................200

Bits, Bytes, and Bases ...................................................................................................................................200
Understanding Memory Address Basics .............................................................................................................204
Requesting Memory............................................................................................................................................208

Working with Automatic Variables and Pointers............................................................................................208
Deallocating Memory ..........................................................................................................................................209

Using Special Pointers ...................................................................................................................................210
Managing Memory in Objective-C.......................................................................................................................212

Using the Retain/Release Model ....................................................................................................................212
Working with Implied Retain Messages.........................................................................................................214
Sending the dealloc Message........................................................................................................................215

If Things Go Wrong..............................................................................................................................................216
Summary ............................................................................................................................................................217
Exercises.............................................................................................................................................................218

■Chapter 12: Debugging Programs with Xcode ............................................ 219
Getting Started with Debugging..........................................................................................................................220

Setting Breakpoints .......................................................................................................................................220
Debugging Basics ..........................................................................................................................................222
Working with the Debugger Controls .............................................................................................................223

Debugging a Program .........................................................................................................................................224
Using the Step Controls .................................................................................................................................225
Looking at the Thread Window and Call Stack ..............................................................................................225
Debugging Variables......................................................................................................................................226



■ CONTENTS 

   ix 

Deleting Multiple Breakpoints........................................................................................................................230
Disabling Breakpoints....................................................................................................................................231
A Larger Call Stack ........................................................................................................................................231

Summary ............................................................................................................................................................234
Exercises.............................................................................................................................................................235

■Chapter 13: Storing Information.................................................................. 237
Storage Considerations.......................................................................................................................................237
Preferences.........................................................................................................................................................237

Writing Preferences .......................................................................................................................................238
Reading Preferences......................................................................................................................................239

Databases ...........................................................................................................................................................239
Storing Information in a Database ......................................................................................................................240
Getting Started with Core Data ...........................................................................................................................241
The Model ...........................................................................................................................................................242

Managed Object Context................................................................................................................................250
Setting Up the Interface ......................................................................................................................................250
Summary ............................................................................................................................................................255
Exercises.............................................................................................................................................................255

■Chapter 14: Protocols and Delegates .......................................................... 257
Multiple Inheritance ............................................................................................................................................257
Understanding Protocols.....................................................................................................................................258

Protocol Syntax..............................................................................................................................................259
Understanding Delegates....................................................................................................................................259
Next Steps...........................................................................................................................................................260 
Summary ............................................................................................................................................................261

■Index............................................................................................................ 263 



■ INTRODUCTION 

x 

About the Authors 

Gary Bennett is president of xcelMe.com. xcelMe teaches iPhone/iPad
programming courses online. Gary has taught hundreds of students how to
develop iPhone/iPad apps, and has several very popular apps on the iTunes Apps
Store. Gary’s students have some of the best-selling apps on the iTunes App Store.
Gary also worked for 25 years in the technology and defense industries. He served
10 years in the U.S. Navy as a Nuclear Engineer aboard two nuclear submarines.
After leaving the Navy, Gary worked for several companies as a software developer,
CIO, and President. As CIO, he helped take VistaCare public in 2002. Gary also co-
authored iPhone Cool Projects for Apress. Gary lives in Scottsdale, Arizona with his  

                                   wife Stefanie and their four children. 

Mitch Fisher is a software developer in the Phoenix, Arizona area.  He was
introduced to PCs back in the 1980s when 64K was a lot of memory and 1 Mhz
was considered a fast computer.  Over the last 25 years, Mitch has worked for
several large and medium-sized companies in the roles of software developer
and software architect, and had led several teams of developers on multi-million
dollar projects.  Mitch now divides his time between writing iOS applications
and server-side UNIX technologies. 

Brad Lees has more than 12 years’ experience in application development and
server management.  He has specialized in creating and initiating software
programs in real-estate development systems and financial institutions. His career
has been highlighted by his positions as information systems manager at The Lyle
Anderson Company; product development manager for Smarsh; vice president of
application development for iNation; and IT manager at The Orcutt/Winslow
Partnership, the largest architectural firm in Arizona. A graduate of Arizona State
University, Brad and his wife Natalie reside in Phoenix with their five children 



■ CONTENTS 

   xi 

 

About the Technical 
Reviewer 

James Bucanek has spent the past 30 years programming and developing 
microcomputer systems. He has experience with a broad range of 
technologies, from embedded consumer products to industrial robotics. 
James is currently focused on Macintosh and iPhone software 
development. When not programming, James indulges in his love of the 
arts. He earned an Associate’s degree from the Royal Academy of Dance in 
classical ballet, and occasionally teaches at Adams Ballet Academy. 

 
 
 
 
 

 
 
 
 
 
 
 
 
 

 

 

 
 
 

 
 
 

 
 



■ INTRODUCTION 

xii 

 

Acknowledgments 

We would like to thank Apress for all their help in making this book possible. Specifically, we 
would like to thank Kelly Moritz, our coordinating editor, for helping us stay focused and 
overcoming many obstacles. Without Kelly, this book would not have been possible.  

Special thanks to Douglas Pundick, development editor, for all his suggestions during the 
editorial review process to help make this a great book. Thanks to Heather Lang and Tracy Brown, 
the copy editors who made the book look great. 

We would also like to thank the Alice Community and Carnegie Mellon University for developing 
Alice and making learning object-oriented programming fun and easy! 



 

  xiii 

 

Introduction 

Over the last two years, we’ve heard this countless times: “I’ve never programmed before, but I 
have a great idea for an iPhone/iPad app. Can I really learn to program the iPhone or iPad?” We 
always answer, “yes, but you have to believe you can.” Only you are going to tell yourself you 
can’t do it.  

For the Newbie 
This book assumes you may have never programmed before. It is also written for someone who 
may have never programmed before using object-oriented programming (OOP) languages. There 
are lots of Objective-C books out there, but all of these books assume you have programmed 
before and know OOP. We wanted to write a book that takes readers from knowing nothing about 
programming to being able to program in Objective-C. 

Over the last two years we of have taught hundreds of students at xcelMe.com to be iPhone/iPad 
developers. We have incorporated what we have learned in our first two courses, Introduction to 
Object Oriented Programming and Logic along and Objective-C for iPhone/iPad developers, into 
this book. 

For the More Experienced 
There are lots of developers who programmed years ago or programmed in a non-OOP language 
and need the background in OOP and Logic before they dive into Objective-C. This book is for 
you. We gently walk you through OOP and how it is used in iPhone/iPad development. 

Why Alice: An Innovative 3D Programming Environment 
Over the years, universities have struggled with several issues with their computer science 
departments: 

■ High male-to-female ratios 

■ High drop-out rates  

■ Longer than average time to graduation 

One of the biggest challenges to learning OOP languages like Java, C++, or Objective-C is the 
steep learning curve from the very beginning. In the past, students had to learn at once the 
following topics: 



■ INTRODUCTION 

xiv 

■ Object-oriented principles 

■ A complex Integrated Development Environment (IDE) 

■ The syntax of the programming language  

■ Programming logic and principles 

Carnegie Mellon University received a grant from the U.S. government and developed Alice. Alice 
is an innovative 3D programming environment that makes it easy to create rich graphical 
applications for new developers. Alice is a teaching tool for students learning to program in an 
OOP environment. It uses 3D graphics and a drag-and-drop interface to facilitate a more 
engaging, less frustrating first programming experience. 

Alice enables the students to focus on learning the principles of OOP without having to focus on 
learning a complex IDE and Objective-C principles all at once. We get to focus on each topic 
individually. This helps readers feel a real sense of accomplishment as they progress. 

Alice removes all the complexity of learning an IDE and programming language syntax. It is drag-
and-drop programming. You’ll see it is actually fun to do, and you can develop really cool and 
sophisticated apps in Alice. 

After the OOP topic has been introduced and readers feel comfortable with the material, we then 
move into Xcode, where readers get to use their new OOP knowledge in writing Objective-C 
applications. This enables readers to focus on the Objective-C syntax and language without 
having to learn OOP at the same time. 

How This Book Is Organized 
You’ll notice that we are all about successes in this book. We introduce the OOP and Logic 
concepts in Alice and then move those concepts into Xcode and Objective-C. Most students are 
visual and learn by doing. We use both of these techniques. We’ll walk you through topics and 
concepts with visual examples and then take you step-by-step examples reinforcing these. 

Often we will repeat previous topics to reinforce what you have learned and apply these skills in 
new ways. This enables new programmers to re-apply development skills and feel a sense of 
accomplishment as they progress.  

The Formula for Success 
Learning to program is an interactive process between you and your program. Just like learning 
to play an instrument, you have to practice. You must work through the examples and exercises 
in this book. Just because you understand the concept, doesn’t mean you will know how to apply 
it and use it.  

You will learn a lot from this book. You will learn a lot from working through the exercises in this 
book. But you will really learn when you debug your programs. Spending time walking through 
your code and trying to find out why it is not working the way you want is a learning process that 
is unparalleled. The downside of debugging is it can be especially frustrating to the new 
developer. If you have never wanted to throw your computer out the window, you will. You will 
question why you are doing this, and whether you are smart enough to solve the problem. 
Programming is very humbling, even for the most experience developer. 

Like a musician, the more you practice the better you get. You can do some amazing things as a 
programmer. The world is your oyster. It is one of the most satisfying accomplishments you can 
have, seeing you app on the iTunes App Store. However, there is a price, and that price is time 
spent coding.  

Here is our formula for success: 



■ INTRODUCTION 

   xv 

■ Believe you can do it. You’ll be the only one who says you can’t do this. So don’t tell 

yourself that. 

■ Work through all the examples and exercises in this book. 

■ Code, code, and keeping coding. The more you code, the better you’ll get. 

■ Be patient with yourself. If you were fortunate enough to have been a 4.0 student who 

can memorize material just by reading it, this will not happen with Objective-C 

coding. You are going to have to spend time coding. 

■ DON’T GIVE UP! 

The Development Technology Stack 
We will walk you through the process of understanding the development process for your 
iPhone/iPad apps and what technology is needed. However, it is helpful to briefly look at all the 
pieces together: a sample iPhone app, in a Table View. See Figure 1. 

 

Figure 1. The iPhone/iPad technology stack 

Required Software, Materials, and Equipment  
One of the great things about Alice is it available on the three main operating systems used today: 

■ Windows 

■ Mac 

■ Linux 

The other great thing about Alice is it is free! You can download Alice at www.Alice.org. 

http://www.Alice.org


■ INTRODUCTION 

xvi 

Operating System and IDE 
Although you can use Alice on many platforms, the Integrated Development Environment (IDE) 
that developers use to develop iPhone/iPad apps Xcode, has to be an Intel-based Mac! The IDE is 
free and is available on your Mac DVD operating system. The operating system has to be 10.5 or 
later to develop iPhone apps, and 10.6 for iPad apps and iOS 4 apps. 

Software Development Kits 
You will need to download the iPhone/iPad IDE from Apple. This is available at 
http://developer.apple.com/iphone. You will need to register as an iPhone developer.  

When you are ready to upload your app to the iTunes App Store, you will need to pay $99/yr to do 
this.  

Dual Monitors 
It is highly recommended that developers have a second monitor connected to their computer. It 
is great to step through your code and watch your output window and iPad simulator at the same 
time on dual, independent monitors. Apple hardware makes this easy. Just plug your second 
monitor in to the display port of any Intel-based Mac, with the correct mini display port adapter, 
of course, and you’re able to have two monitors working independently from one another. See 
Figure 2. Note it is not required to have dual monitors. You will just have to organize your open 
windows to fit on your screen if you don’t. 

 

Figure 2. Dual monitors  

http://developer.apple.com/iphone


■ INTRODUCTION 

   xvii 

 

Book Forum 
We have developed an online forum for this book at http://forum.xcelme.com, where readers can 
go to ask questions of the authors while they are learning Objective-C. There you will find 
answers to the exercises and additional exercises to help you learn. 

See Figure 3. Readers can also access answers to exercises and discover helpful links to help them 
be successful iPhone/iPad develops and great amazing apps. So let’s get started! 

 

Figure 3. Reader Forum for accessing answers to exercise and posting questions for authors

http://forum.xcelme.com


■ INTRODUCTION 

xviii 

 



 

 

1 

1 

   Chapter 

Becoming a Great 
iPhone/iPad or Mac 
Programmer 
Now that you’re ready to become a software developer and have read the Introduction 

of this book, you need to become familiar with some key concepts. Your computer 

program will do exactly what you tell it to do, no more and no less. It will follow the 

programming rules that were defined by the operating system and programming 

language. Your program doesn’t care if you are having a bad day or how many times 

you ask it to perform something. Your program will do whatever you tell it to do. Often, 

what you think you’ve told your program to do and what it actually does are to different 

things.  

NOTE: If you haven’t already, take a few minutes to read the Introduction to this book. You will 
better understand why we are using the Alice programming language and how to be successful 
in developing your iPhone/iPad and Mac apps. 

Depending on your background, working with something absolutely black and white 

may be frustrating. Many times, programming students have lamented, “That’s not what 

I wanted it to do!” As you begin to gain experience and confidence programming, you’ll 

begin to think like a programmer. You will understand software design and logic, and 

you will experience having your programs perform exactly as you tell them to do as 

enormously satisfying.  

Thinking Like a Developer 
Software development involves writing a computer program and then having the 

computer execute the program. A computer program is the set of instructions that we 

1 



CHAPTER 1:  Becoming a Great iPhone/iPad or Mac Programmer 2 

want the computer to perform. Before we begin to write a computer program, it is

helpful to list the steps that we want our program to perform, in the order we want them

accomplished. This step-by-step process is called an algorithm.  

If we want to write a computer program to toast a piece of bread, we would first write an

algorithm. This algorithm might look something like this: 

1. Take the bread out of the bag. 

2. Place the bread in the toaster. 

3. Press the toast button. 

4. Wait for the toast to pop up. 

5. Remove the toast from the toaster. 

At first glance, this algorithm seems to solve our problem. However, our algorithm leaves

out many details and makes many assumptions, for example: 

1. What kind of toast does our user want? Does the user want white bread, wheat,

or some other kind of bread? 

2. How does the user want the bread toasted, light or dark? 

3. What does the user want on the bread after it is toasted: butter, margarine, honey,

or strawberry jam? 

4. Maybe the user wanted another kind of toast, like French toast or garlic toast,

which is prepared by means other than a toaster. 

5. Does this algorithm work for all your users in their cultures and languages? 

Now, you might be thinking we are getting too detailed for just doing a simple toast

program. Over the years, software development has the reputation of taking too long,

costing too much, and not being what the user wants. This reputation came to be

because computer programmers often start writing their programs before they have

really thought through their algorithms.  

The key ingredients to making successful applications starts with design requirements.

Design requirements can be very formal and detailed or a simple list on a piece of paper.

The importance of design requirements is they help the developer flesh out what the

application should do and not do when complete. Design requirements should not be

completed in a programmer’s vacuum but should be a collaboration between

developers, users, and customers.  



CHAPTER 1:  Becoming a Great iPhone/iPad or Mac Programmer 3 

NOTE: If you take anything away from this chapter, take away the importance of considering 
design requirements and user interface design before starting software development. This is the 
most effective (and cheapest) use of time in the software development cycle. Using a pencil and 
eraser is a lot easier and faster than making changes to code because you didn’t have others 
look at the designs before starting to program. 

Another key ingredient to your successful app is the user interface (UI) design. Apple 

recommends that you spend over 50% of the entire development process focusing on 

the UI design. The design can be simple pencil-and-paper layouts created using the 

iPhone Application Sketch Book by Dean Kaplan (Apress, 2009) or on-screen layout 

created with the Omni Group’s OmniGraffle software application with the Ultimate 

iPhone Stencil plug-in. Many software developers start with the UI design, and after 

laying out all the screen elements and having many users look at paper mock-ups, they 

then write out the design requirements from their screen layouts. 

Once you have done your best to flesh out all the design requirements, laid out all the 

user interface screens, and had the client(s) or potential customers look at your design 

and give you feedback, coding can begin. Once coding begins, design requirements 

and user interface screens can change, but the changes are typically minor and easily 

accommodated by the development process. See Figures 1–1 and 1–2. 

 

Figure 1–1. This is a UI mock-up of the Account Balance screen for an iPhone mobile banking app before 
development begins. This UI design mock-up was completed using OmniGraffle. 



CHAPTER 1:  Becoming a Great iPhone/iPad or Mac Programmer 4 

 

Figure 1–2. This screenshot shows a completed iPhone mobile banking application as it appeared on the iTunes 
App Store. This app is called Woodforest Mobile Banking. 

Completing the Development Cycle 
Now that we have our design requirements and user interface designs and have written 

our program, what’s next? After programming, we need to make sure our program 

matches the design requirements and user interface design and that there are no errors. 

In programming vernacular, errors are called bugs. Bugs are undesired results of our 

programming and must be fixed before released to the App Store. The process of 

finding bugs in our programs and making sure the program meets the design 

requirements is called testing. Typically, someone who is experienced in software 

testing methodology and who didn’t write the app performs this testing. Software testing 

is commonly referred to as Quality Assurance (QA). Figure 1–3 shows the complete 

software development cycle. 

NOTE: When an application is ready to be submitted to the iTunes App Store, Xcode gives the file 
an .app extension, for example, appName.app. That is why iPhone, iPad, and Mac applications 
are called apps.  We will use “program,” “application,” and “app” to mean the same thing 
throughout this book. 

During the testing phase, the developer will need to work with QA staff to determine why 

the application is not working as designed. The process is called debugging. It requires 



CHAPTER 1:  Becoming a Great iPhone/iPad or Mac Programmer 5 

the developer to step through the program to find out why the application is not working 

as designed. Figure 1–3 shows the complete software development cycle. 

 

Figure 1–3. The typical software development cycle 

Frequently during testing and debugging, changes to the requirements (design) need to 

occur to make the application more usable for the customer. Once the design 

requirements and user interface changes are made, the process begins over again.  

At some point, the application that everyone has been working so hard on must be 

shipped to the iTunes App Store. Lots of considerations are taken into account when 

this happens: 

 Cost of development 

 Competition 

 Stability of the application 

 Return on investment 

There is always the give-and-take between developers and management. Developers 

want the app perfect, and management wants to start realizing revenue from the 

investment as soon as possible.  If the release were left up to the developers, the app 

would never ship to the App Store. Developers would continue to tweak the app forever, 

making it faster, more efficient, and more usable. At some point, however, the code 

needs to be pried from the developers’ hands and shipped to the user, so it can do what 

it was meant to do. 



CHAPTER 1:  Becoming a Great iPhone/iPad or Mac Programmer 6 

Introducing Object Oriented Programming 
As discussed in detail in the Introduction to this book, Alice enables us to focus on 

object oriented programming (OOP) without having to cover all the Objective-C 

programming syntax and complex Xcode development environment in one big step. 

Instead, we can focus on learning the basic principles of OOP and using those principles 

quickly to write our first programs. 

For decades, developers have been trying to figure out a better way to develop code 

that was reusable, manageable, and easily maintained over the life of a project. OOP 

was designed to help achieve code reuse and maintainability while reducing the cost of 

software development. 

OOP can be viewed as a collection of objects in a program. Actions are performed on 

these objects to accomplish the design requirements. 

An object is anything that can be acted on. For example, an airplane, person, or 

screen/view on the iPad can all be objects. We may want to act on the plane by making 

the plane bank. We may want the person to walk or to change the color of the screen of 

an app on the iPad. Actions are all being applied to these objects; see Figure 1–4. 

 

Figure 1–4. These are two objects in an Alice application, a plane and aircraft carrier. Both objects can have 
actions applied—take off and landing for the plane and “turn to port” and “ahead flank” for the aircraft carrier. 

Like the play button in Alice, the Xcode integrated development environment (IDE) 
enables us to run our application from within our programming environment See Figure 

1–5. 



CHAPTER 1:  Becoming a Great iPhone/iPad or Mac Programmer 7 

 

Figure 1–5. This sample iPhone app contains UITableView objects. Actions such as “rotate left” or “user did 
select row 3” can be applied to this object. 

Actions that are performed on objects are called methods. Methods manipulate objects 

to accomplish what we want our app to do. For example, for our jet object in Figure 1–4, 

we might have the following methods: 

goUp 
goDown 
bankLeft 
turnOnAfterBurners 
lowerLandingGear 

For our iPhone application’s UITableView object in Figure 1–5, we could have the 

following methods: 

loadView 
shouldAutorotateToInterfaceOrientation 
numberOfSectionsInTableView 
cellForRowAtIndexPath 
didSelectRowAtIndexPath 

All objects have data that describes those objects. Our properties hold values that 

describe the state of the objects. This data is defined as properties. Each property 

describes the associated object in a specific way. For example, the jet object’s 

properties might be as follows: 

altitude = 10,000 feet 
heading = North 
speed = 500 knots 



CHAPTER 1:  Becoming a Great iPhone/iPad or Mac Programmer 8 

pitch = 10 degrees 
yaw = 20 degrees 
latitude = 33.575776 
longitude = -111.875766 

For our UITableView object in Figure 1–5, these might be our properties: 

backGroundColor = Red 
selectedRow = 3 
animateView = No 

An object’s properties can be changed at any time as our program is running, as the 

user interacts with the app, or as the programmer designs the app to accomplish the 

design requirements. The values stored in the properties of an object at a specific time 

are collectively called the state of an object. 

State is an important concept in computer programming. When teaching students about 

state, Gary asks them to go over to a window and find an airplane in the sky. He then 

asks them to snap their figures and make up some of the values that the plane’s 

property might have at that specific time. Those values might be 

altitude = 10,000 feet 
latitude = 33.575776 
longitude = -111.875766 

Those values represent the state of the object at the specific time that they snapped 

their fingers. 

After waiting a couple of minutes, Gary asks the students to find that same plane, snap 

their fingers again, and record the plane’s possible state at that specific point in time. 

The values of the properties might then be something like this: 

altitude = 10,500 feet 
latitude = 33.575665 
longitude = -111.875777 

Notice how the state of the object changes over time.  

Working with the Alice Interface 
Alice offers a great approach in using the concepts that we have just discussed without 

all the complexity of learning Xcode and the Objective-C language at the same time. It 

just takes a few minutes to familiarize yourself with the Alice interface and begin writing 

a program. 

The Introduction of this book describes how to download Alice. Once it’s downloaded, 

you need to open Alice. See Figure 1–6 



CHAPTER 1:  Becoming a Great iPhone/iPad or Mac Programmer 9 

 

Figure 1–6. It is worth your time to click on the Tutorial tab to familiarize yourself with the Alice application and 
user interface. Additionally, there are several great examples on the Examples tab. 

Alice has great tutorials and examples that are highly recommended for developers to 

work through, like the one shown in Figure 1–7. 



CHAPTER 1:  Becoming a Great iPhone/iPad or Mac Programmer 10 

 

Figure 1–7. An Alice tutorial describing the user interface 

Technically speaking, Alice is not a true IDE like Xcode, but it is pretty close and a whole 

lot easier to learn than Xcode. A true IDE combines code development, user interface 

layout, debugging tools, documentation and simulator/console launching for a single 

application; see Figure 1–8. However, Alice offers similar look, feel, and features to 

Xcode. This will serve you well later when we start writing Objective-C code.  

 

Figure 1–8. The Xcode integrated development environment (IDE)) with the iPad Simulator 



CHAPTER 1:  Becoming a Great iPhone/iPad or Mac Programmer 11 

In the next chapter, we will go through the Alice interface and write our first program. 

Summary 
Congratulations, you have finished the first chapter of this book. It is important that you 

have an understanding of the following terms, because they will be reinforced 

throughout this book: 

 Computer program 

 Algorithm 

 Design requirements 

 User interface 

 Bug 

 Quality assurance (QA) 

 Debugging 

 Object oriented programming (OOP) 

 Object 

 Property 

 Method 

 State of an object 

 Integrated development environment (IDE)  

Exercises 
 Write an algorithm for how a soda machine works, from the time when a coin is 

inserted until a soda is dispensed. Assume the price of a soda is 80 cents. 

 Write the design requirements for an app that will run the soda machine.  



CHAPTER 1:  Becoming a Great iPhone/iPad or Mac Programmer 12 



 

 

13 

13 

     Chapter 

Programming Basics 
This chapter will focus on the building blocks necessary to become a great Objective-C 

programmer. We are going to use the Alice user interface, write our first Alice program, 

explore some new OOP terms and write our first Objective-C program.  

NOTE: We want to introduce new concepts in Alice that later enable you to use these concepts in 
Objective-C. We believe this unique approach will help you learn the concepts quickly, without 
discouragement, and give you a great foundation to build on.  

Taking a Tour with Alice 
Alice’s 3D programming environment makes it easy to write your first program using 

some of the principles that you learned about in Chapter 1. First, you need to learn a 

little more about Alice’s user interface. When we first launch Alice, we are presented 

with a screen that looks like Figure 2–1. 

You can start with the default blue sky and green grass template or pick another 

template with different backgrounds. Feel free to explore and have fun. This is where we 

will spend most of our time and write our first Alice application.  

The Alice user interface is set up to help us efficiently write our applications. The user 

interface is very similar in form and function to the Xcode IDE. We will now explore the 

major sections of Alice. 

2 



CHAPTER 2:  Programming Basics 14 

 

Figure 2–1. Opening screen in Alice 

Navigation Menu 
The Navigation menu, shown in Figure 2–2, enables us to open and close files, set our 

application preferences, and view world statistics, text output, and the error console. We 

can also access example worlds and Alice help.  

NOTE: It is important that you save your program frequently when using Alice. If Alice crashes 
and you haven’t saved your work, you will lose all your code or changes since you last saved. 
Additionally, we recommend that you close Alice completely and reopen it when you want to 
open a new Alice program.  



CHAPTER 2:  Programming Basics 15 

 

Figure 2–2. This shows the Alice’s user interface’s main sections using the AlmostAllAboutAlice example 
included with Alice. Take some time to explore the user interface. You will see in this chapter how it compares 
with Xcode and how it will help us learn Objective-C. 

World Window 
The World window shows what our virtual world will look like when it runs. This window 

is similar to the iPhone/iPad simulator we will use later to run our apps. The World 

Window enables us to take advantage of Alice’s 3D user interface to model our 

application.  

In the World Window, we can move the camera around and place the camera where we 

want for the viewing prospective we desire. Moving the three arrow tools in Figure 2–3 

enables incredible flexibility for bringing our applications to life. 

It is important to learn how to move the camera around your world to get the view you 

want the users to see.  



CHAPTER 2:  Programming Basics 16 

 

Figure 2–3. Camera manipulation arrows to control the camera in World window. 

One of the most important Alice controls is the Add Objects control. See Figure 2–4. 

When we click the Add Objects button in the bottom-right corner of the World window, 

we launch the Alice’s Scene Editor. 

 

Figure 2–4. The Add Objects button in the World Window is outlined with a box and is one of the most important 
controls. This button will launch the Alice’s Scene editor and enable us to add objects to our Alice World. 

Take a minute to familiarize yourself with the Scene Editor, shown in Figure 2–5. The 

Scene Editor enables us to 

 Add objects to our world from the gallery. 

 Add objects to our world from the Internet. 

 Position the object in our world. 

 Adjust the camera for viewing our world. 



CHAPTER 2:  Programming Basics 17 

We will spend a lot of time adding objects and setting the camera in our worlds using 

the Scene Editor. 

 

Figure 2–5. Alice’s Scene Editor 

Classes, Objects, and Instances in Alice 
A group of objects with the same properties and same methods (actions) are called a 

class. For example, we could have a class called Airplane. In this class, we could have 

five objects: 

boeing747 
lockheedSR71 
boeing737 
citation10 
f18Fighter 

These objects are nearly identical. They are from the same Airplane class. They have 

the same methods: 

land() 
takeOff() 
lowerLandingGear() 
raiseLandingGear() 
bankRight() 
bankLeft() 



CHAPTER 2:  Programming Basics 18 

The only thing that differentiates the objects is the values of their properties. Some of 

the properties of the values might be 

wingLength = 20ft 
maxThrust = 200,000lbs 
numberOfEngines = 2 

In your world, you may have two objects that are exactly the same. You may want two 

Boeing 737s in your view. Each copy is called an instance. Adding an instance of an 

object class to our program is called instantiation. 

Object Tree 
The Object Tree (see Figure 2–6) enables us to view all the objects in our Alice world. 

Additionally, if the object has subparts, you can view these subparts by clicking the plus 

sign or collapse the subparts by clicking the minus sign.  

 

Figure 2–6. The Object Tree 

Many of the Alice worlds come with several built-in objects that we will need for our 

apps. The world in Figure 2–6 comes with the Camera, Light, and Ground objects.  

Editor Area 
The Editor Area, the largest area of the Alice interface, is where we write our code. With 

Alice, we don’t have to actually type code; we can drag and drop our code to 

manipulate our objects and properties.  



CHAPTER 2:  Programming Basics 19 

NOTE: Don’t forget the bottom of the Editor Area. The bottom contains a row of control and logic 
tiles for looping, branching, and other logical structures that we can use to control the behavior 
of our objects.  

Details Area 
The Details Area of the Alice interface contains the tabs for properties, methods, and 

functions that make up the object that is selected in the Object Tree.  

 Properties contain the specific information of our selected object 

(e.g., weight, length, and height). 

 Methods perform actions upon the object (e.g., take off and land). 

 Functions and methods are similar. In Alice, the difference between 

the two is that a method does not return a value. A function will return 

a value. 

Events Area 
The Events Area of the Alice interface contains a listing of all the exiting events used by 

our app and provides for the ability to create new events. Events are conditions that 

trigger our methods. Methods that react to these events are called event handlers. 

These methods are specifically designed to handle these specific events. When a 

specific event occurs, it triggers a signal the event handler receives and handles.  

Some examples would be the user touching a button on an iPhone. Touching or 

swiping, trigger events, and the methods that handle these events act on objects in our 

app. See Figure 2–7. 



CHAPTER 2:  Programming Basics 20 

 

Figure 2–7. Phonics Easy Reader 1, by Rock ’n’ Learn running on the iPad Simulator in the left landscape 
orientation. Tapping the “Read to me” or “Let me try” button triggers events that methods receive and act on—in 
this example, reading to the child or having the child read the words of a sentence.  

Creating an Alice App—To the Moon Alice 
We have covered some new terms and concepts, and now, it is time to do what 

programmers do—write code. It is customary for new developers to write a “Hello 

World” app as their first program. We will do something similar, but Alice makes it more 

interesting. We will then follow up our first Alice app with our first Objective-C app. 

This Alice app will have three objects on the screen, the lunar lander object and two 

astronauts. One astronaut will say, “The Eagle has landed.” The other astronaut will say, 

“That’s one small step for man, one giant leap for mankind.” 

Alice really makes apps like this easy and fun to do. Make sure you follow these steps: 

1. Click File and then New. 

2. Click the Template tab. 

3. Choose the Space Template, and click the Open button. See Figure 2–8. 

3



CHAPTER 2:  Programming Basics 21 

 

Figure 2–8. Select the Space Template. 

4. Now, we need to add our objects. Click Add Objects. It was the 

important button in the World window shown in Figure 2–4. 

5. In the Object Gallery, select the Space Class. 

6. Right-click the Lunar Lander to view some of the information of the 

object. See Figure 2–9. We can click “Add instance to world” to add 

our objects to our world, or we can drag and drop from the gallery to the 

world.  

NOTE: You can see in this example why an instance is a copy of an object. We are making a 
copy of the object and putting it in our world. Instantiation is a big word for the process of 
making a copy of our object.  



CHAPTER 2:  Programming Basics 22 

Figure 2–9. Viewing and adding objects to our world from step 6. 

7. Click the Astronaut class twice to add our two astronauts to our world.  

8. Use the Camera Adjustment and Objects Adjustment tools, outlined

in boxes in Figure 2–10, to achieve the look and perspective you desire. 

TIP: Sometimes when you add two objects, Alice places one object over the other. Drag the top
astronaut to the side of the other astronaut if this occurs. Your world should look like Figure 2–10. 



CHAPTER 2:  Programming Basics 23 

 

Figure 2–10. Use the Camera Adjust tool to control the user perspective of the world. Use the Object Adjustment 
tools to shape and orientate your objects in your world.  

9. At the top right corner are the Object Adjustment tools. Hover the 

mouse over each tile to discover what each tile tool will do to the object. 

Notice the Object Tree in Figure 2–10. The ground, lunarLander, 

astronaut, and astronaut2 objects are in the Object Tree. 

10. Click the Done button in the middle right of the screen. This will return 

us to the editor view. 

11. Click the left astronaut in the World window. Make sure the methods tab 

is selected in the Details Area. 

12. We are now going to make our astronauts say something. Remember 

actions to objects require methods. Drag the Astronaut2|turn tile from 

the Details Area to our Editor. Select turn left, 1/4 rotation from the 

parameter list. See Figure 2–11. When we run our app, the left astronaut 

will turn to their left one-quarter rotation and face the other astronaut.  



CHAPTER 2:  Programming Basics 24 

 

Figure 2–11. The left Astronaut methods and parameters. 

13. Let's do the same thing for the other astronaut. Click the right astronaut. 

Drag the Astronaut|turn tile from the Details Area to our Editor. Select 
turn right, 1/4 rotation from the parameter list.  

14. A parameter is the information a method needs to act upon the object. 

A method may need one or more parameters for a method. Click the 

right astronaut, and drag the Astronaut2|say tile to the editor, select 
other and then type The Eagle has landed. See Figure 2–12. 



CHAPTER 2:  Programming Basics 25 

 

Figure 2–12. Your editor should have these methods with the listed parameters.  

15. Click the right astronaut. Drag the astronaut|say tile to the editor, select 

other parameter and type That’s one small step for man. . .One giant 
leap for mankind. Our app should like Figure 2–12. 

16. Let's run our first program by clicking Play. If you have completed 

everything correctly, your app should look like Figure 2–13 when it runs. 

If not, you have some debugging to do.  

17. Save the app as toTheMoonAlice.a2w. We will be using this app later. 

Click File  Save World or File  Save World As. 



CHAPTER 2:  Programming Basics 26 

 

Figure 2–13. From the top portion of the World Running window, we can rerun our program, pause, resume, 
restart, stop, and take a picture of our app. We can also speed up or slow down our app depending on how slow 
or fast our application is running. 

Your First Objective-C Program 
Now that you have learned a little about OOP and have your first Alice program 

completed, it’s time to write your first Objective-C program and begin to understand the 

Objective-C language, Xcode, and syntax. First, we have to install Xcode. Xcode is the IDE 

that we use when developing Objective-C apps. It is the equivalent to Alice’s interface. 

If you haven’t already installed Xcode, you need to do that now. Unlike other commercial 

compilers that you have to buy, Xcode is included with the Mac operating system. As 

described in the Introduction to this book, you must use either Leopard or Snow 

Leopard on an Intel-based Mac to build iPhone apps. iPad apps require Snow Leopard. 

For the projects in this book, it doesn’t matter what version of Xcode or Mac hardware 



CHAPTER 2:  Programming Basics 27 

you are using. However, you may notice slightly different options available in Xcode than 

described in this book. 

Installing Xcode 
Follow these steps to install Xcode: 

1. Insert your operating system DVD, which may have come with your 

Mac. When you insert your DVD, you will see Mac OS X Install DVD 

window, as shown in Figure 2–14. 

 

Figure 2–14. Mac OS X Install DVD 

2. Click Optional Installs. You will then be presented with the Optional 

Installs window. See Figure 2–15. 



CHAPTER 2:  Programming Basics 28 

 

Figure 2–15. Optional Install Window. 

3. Click the Xcode.mpkg icon in Figure 2–15 to install the Xcode package.  

NOTE: This package has everything we need to write Objective-C and Mac apps. To be able to 
develop iPhone apps, you will need to apply for the iPhone Developer Program, pay $99, and 
download the iPhone SDK from Apple at http://developer.apple.com/iphone. You will 
not have to download the iPhone SDK for projects in this book, only if you want to write iPhone 
and iPad apps later. 

4. You will then be presented with the Xcode Installer; see Figure 2–16. 

The installer will walk you through the process of installing Xcode to 

completion. 

After installation, you can find the Xcode app under your Mac HD directory. See Figure 

2–17. We’re not sure why the installer doesn’t place it under Applications like other app 

installers, but Mac HD is where it is. Because you are going to be using Xcode a lot, 

save yourself some time and drag the app to your Dock where you can easily access it. 

http://developer.apple.com/iphone


CHAPTER 2:  Programming Basics 29 

 

Figure 2–16. Xcode Installer. 

 

Figure 2–17. The Xcode.app installation location. 



CHAPTER 2:  Programming Basics 30 

Launching and Using Xcode 
Now that we have everything we need to begin writing Objective-C applications, let’s 

get started. After launching Xcode, follow these steps: 

1. Click Create a new Xcode Project. See Figure 2–18. 

 

Figure 2–18. Creating our first Objective-C project. 

IMPORTANT: This is where many beginners get stuck depending on their version of Xcode and if 
they have the iPhone SDK installed. In Figure 2–19, you can see that we have the iPhone SDK 
installed. We also have the Snow Leopard version of Xcode installed. If you don’t have these 
installed, that is OK. Just navigate in the left pane of your template options to Applications and 
look for command line tool. 

2. Select Applications on the left side pane, and select the Command 
Line Tool template. See Figure 2–19. 



CHAPTER 2:  Programming Basics 31 

 

Figure 2–19. Select Command Line Tool. You may have to navigate to an equivalent screen with other versions of 
Xcode. The bottom line is to navigate to Command Line tool. 

3. Let's name our app HelloWorld, as shown in Figure 2–20. 

 

Figure 2–20. This is our first app, so we practically have to name it HelloWorld.  



CHAPTER 2:  Programming Basics 32 

Xcode does a lot of work for us and creates a directory with files and code ready for us

to use. That is what Xcode templates do—they save us a lot of time.  

We need to become familiar with the Xcode IDE. Lets look at three of the most often

used features (see Figure 2–21): 

Groups & Files section 

Editor section 

Build and Run button 

These sections should look similar to what we used in our Alice Interface. The Groups &
Files section contains files needed to build our apps. It will contain our classes,

methods, and recourses. 

The Editor section is the business end of the Xcode IDE, where our dreams are turned

into reality. The editor section is where we write our code. You will notice that as you

write your code, it will change colors. Sometimes, Xcode will even try to auto-complete

words for you. The colors have meanings that will become apparent as we use the IDE.

The editor section will also be the place where we debug our apps.  

NOTE: Even if we’ve mentioned it already, it is worth saying again. You will learn Objective-C
programming by reading this book. You will really learn Objective-C by debugging your apps.
Debugging is where developers learn and become great developers. 

The Build and Run button turns our code from plain text to a .app that our Macs,

iPhones or iPads know how to execute. With our Alice interface we used the play button

to run our Alice app. 

Figure 2–21. The first three items we will be using in Xcode are the Editor section, Groups & Files section, and
the Build and Run button (to compile and run our app). You can run the app right after creating the project by
clicking the Build and Run button and seeing “Hello World!” printed out to the console. 



CHAPTER 2:  Programming Basics 33 

To run our first program, simply click the Build and Run button. Xcode checks our code 

syntax, compiles our app, and if no errors are found, makes a .app file and runs it. This 

application runs in a console or terminal.  

When the app runs, it prints out “Hello World” to the console. Also, in the console 

window, we can see if the application terminated and why it terminated. In this case, it 

terminated normally. We can see this with the message, “Programmed exited with status 

value:0”, meaning our app didn’t crash. See Figure 2–22.  

 

Figure 2–22. Our app executing in the Debugger Console. 

Let’s modify our application to do what we did with our astronauts: 

1. Navigate to the HelloWorld.m file.  

2. Change lines 7 and 8 to be as shown in Figure 2–23. 

3. We are going to intentionally misplace a semicolon at the end line 8. 

This will cause a compiler error. 

4.  Click the Build and Run button. 

You can see that something went wrong when we try to compile and run our app. We 

have a compiler error, a red pointer, and the notices in the Xcode IDE denote this. See 

Figure 2–23. 

When we write Objective-C code, everything is important—even semicolons, 

capitalization, and parentheses. The collection of rules that enable our compiler to 

compile our code to an executable app is called syntax.  

NSLog is a function that will print out the contents of its parameters to the console.  



CHAPTER 2:  Programming Basics 34 

 

Figure 2–23. Our app with a syntax error caught by our Objective-C compiler 

Now, let’s fix our app by adding the semicolon at the end of line 8. Building and running 

the app will enable us to see the output to the debug console. See Figure 2–24. 

Feel free to play around and change the text that is printed out. Have fun! 



CHAPTER 2:  Programming Basics 35 

 

Figure 2–24. Our app compiled with no compiler errors and completion executed successfully with the output we 
wanted. 

Summary 
In this chapter, we have built our first Alice app. We also installed Xcode and compiled, 

debugged, and ran our first Objective-C app together. We also covered new OOP terms 

that are key for us to Objective-C.  

The terms that you should understand follow: 

 Classes 

 Objects 

 Methods 

 Parameters 

 Instances 

 Instantiation 

7



CHAPTER 2:  Programming Basics 36 

Exercises 
 Extend your toTheMoonAlice.a2w Alice app. Place another object of 

your choosing in the world and have the object say something to the 

two astronauts when they are finished speaking. 
 Extend your Objective-C HelloWorld.app by adding a third line of code 

that prints to the console any text of your choosing.  



 

 

37 

37 

   Chapter 

It’s All About the Data 
As you probably know, data is stored as zeros and ones in your computer’s memory. 

However, zeros and ones are not very useful to developers or app users, so we need to 

know how our program uses data and how data is stored on our computer.  

In this chapter, we will look at how data is stored on computers and how we can 

manipulate that data. Then we’ll write a fun Alice app illustrating data storage, and then 

write the same Alice app in Objective-C. So let’s get started! 

Numbering Systems Used in Programming 
Computers work with information differently than do humans. This section covers the 

various ways information is stored, tallied, and manipulated by devices such as your 

Mac, iPhone, and iPad.  

Bits 
A bit is defined as the basic unit of information used by computers to store and 

manipulate data. A bit has a value of either 0 or 1. When computers were first 

introduced, transistors and microprocessors didn’t exist. Data was manipulated and 

stored by vacuum tubes being turned on or off. If the vacuum tube was on, the value of 

the bit was 1, and if the vacuum tube was off, the value was zero. The amount of data a 

computer was able to store and manipulate was directly related to how many vacuum 

tubes the computer had.  

The first recognized computer was called the ENIAC. It took up more than 136 square 

meters and had 18,000 vacuum tubes. It was about as powerful as your handheld 

calculator. 

Today, computers use transistors to store and manipulate data. The power of a 

computer processor depends on how many transistors are placed on its chip or CPU. 

Like the vacuum tube, transistors have an off or on state. When the transistor is off, its 

value is 0. If the transistor is on, its value is 1. At the time of this writing, the A4 

3 



CHAPTER 3:  It’s All About the Data 38 

processor that comes on all iPhone 3GS, iPhone 4, and iPads has up to 149 million 

transistors. See Figure 3–1. 

 

Figure 3–1. Apple’s proprietary A4 processor  

Moore’s Law 
The number of transistors on your iPhone’s or iPad’s processor is directly related to your 

device’s processing speed, memory capacity, and the sensors (accelerometer, gyroscope) 

available on the device. The more transistors, the more powerful your device is. 

In 1965, the cofounder of Intel, Gordon E. Moore, described the trend of transistors in a 

processor. He observed that the number of transistors in a processor doubled every 18 

months from 1958 to 1965, and would likely continue “for at least 18 months.” The 

observation became famously known as “Moore’s Law” and has proven accurate for 

more than 55 years. See Figure 3–2. 



CHAPTER 3:  It’s All About the Data 39 

 

Figure 3–2. Moore’s Law  

NOTE: There is a downside to Moore’s Law, and you have probably felt it in your pocket book. 
The problem with rapidly increasing processing capability is that it renders technology obsolete 
quickly. So when your iPhone’s two-year cell phone contract is up, the new iPhones on the 
market will be twice as powerful as the iPhone you had when you signed up. How convenient for 
everyone!  

Bytes 
A byte is another unit used to describe information storage on computers. A byte is 

composed of 8 bits and is a convenient power of 2. Whereas a bit can represent up to 

two different values, a byte can represent up to 28 or 256 different values. A byte can 

contain values from 0–255. 



CHAPTER 3:  It’s All About the Data 40 

NOTE: In Chapter 12, we discuss in more detail Base-2, Base-10, and Base-16 number systems. 
However, it is necessary to have an introduction to these systems in this chapter to understand 
data types.  

The binary number system represents numerical symbols, 0 and 1. To illustrate how the 

number 71 would be represented in binary, we will use a simple table of 8 bits (1 byte) 

with each bit represented as a power of 2. To convert the byte value 01000111 to 

decimal, simply add the on bits. See Table 3–1. 

Table 3–1. The number 71 represented as a byte 

Power to 2 27 26 25 24 23 22 21 20
 

Possible value for “on” bit 128 64 32 16 8 4 2 1 

Actual bit 0 1 0 0 0 1 1 1 

To represent the number 22 in binary, turn on the bits that add up to 22 or 00010110. 

See Table 3–2. 

Table 3–2. The number 22 represented as a byte 

Power to 2 27 26 25 24 23 22 21 20
 

Possible value for “on” bit 128 64 32 16 8 4 2 1 

Actual bit 0 0 0 1 0 1 1 0 

To represent the number 255 in binary, turn on the bits that add up to 255 or 11111111. 

See Table 3–3. 

Table 3–3. The number 255 represented as a byte 

Power to 2 27 26 25 24 23 22 21 20
 

Possible value for “on” bit 128 64 32 16 8 4 2 1 

Actual bit 1 1 1 1 1 1 1 1 

To represent the number 0 in binary, turn on the bits that add up to 0 or 00000000. See 

Table 3–4. 

Table 3–4. The number 0 represented as a byte 

Power to 2 27 26 25 24 23 22 21 20
 

Possible value for “on” bit 128 64 32 16 8 4 2 1 

Actual bit 0 0 0 0 0 0 0 0 



CHAPTER 3:  It’s All About the Data 41 

Hexadecimal 
Often it will be necessary to represent characters in another format that is recognized by 

computers, a hexadecimal. You will encounter hexadecimal numbers when you are 

debugging your apps. Hexadecimal is a base-16 number system. It uses 16 distinct 

symbols, 0–9 to represent values zero to nine, and A, B, C, D, E, and F to represent 

values 10 to 15. For example, the hexadecimal number 2AF3 is equal, in decimal, to (2  

163) + (10  162) + (15  161) + (3  160), or 10,995. Figure 3–3 represents the ASCII 

table of characters. Because 1 byte can represent 256 characters, this works great for 

Western characters. For example, hexadecimal 20 represents a space. Hexadecimal 7D 

represents a “)”.  

 

 

Figure 3–3. ASCII Character 



CHAPTER 3:  It’s All About the Data 42 

Unicode 
Representing characters with a byte worked great for computers until about the 1990s,

when the personal computer became widely adopted in non-Western countries where

languages have more than 256 characters. Instead of a one-byte character set, Unicode

can have up to a 4 bytes character set.  

In order to facilitate faster adoption, the first 256 code points are indicial to the ASCII

character table. Unicode can have different character encodings. The most common

encoding used for Western text is called UTF-8. As an iPhone developer, you will

probably use this character encodings the most. 

Data Types 
Now that we’ve discussed how computers manipulate data, we need to cover a very

important concept called data types. Humans can generally just look at data and the

context in which it is being used to determine what type of data it is and how it will be

used. Computers need to be told how to do this. The programmer needs to tell the

computer the type of data that it is being given. For example 

2 + 2 = 4 

The computer needs to know that you want to add two numbers together. In this

example they are integers. You might first believe that adding these numbers is obvious

to even the most casual observer, let alone a sophisticated computer. However, it is

common for users of iPhone apps to store data as a series of characters, not a

calculation. For example, a text message might read 

"Everyone knows that 2 + 2 = 4"  

In this case we are using our previous example in a series of characters called a string.

A data type is simply the declaration to our program that defines the data we want to

store. A variable is used to store our data and is declared with an associated data type.

All data is stored in a variable, and the variable has to have a variable type. For example,

in Objective-C the following is variable declarations with their associated data types: 

int x = 10; 
int y = 2; 
int z = 0; 
char prefix = 'c'; 
NSString *submarineName  = @"USS Nevada SSBN-733"; 

Data types cannot be mixed with one another. You cannot do the following: 

z = x + submarineName; 

Mixing data types will cause either compiler warnings or compiler errors, and your app

will not run. 

Most data that you will use in your programs can be classified in three different types:

Booleans, numbers and objects. We will discuss how to work with numbers and object 



CHAPTER 3:  It’s All About the Data 43 

data types in the remainder of this chapter. In Chapter 4, we will talk more about 

Boolean data types when we write apps with decision-making. 

NOTE: Localizing your app is the process of writing your app so users can buy and use it in their 
native language. This process is too advanced for this book, but it is a simple one to complete 
when you plan from the beginning. Localizing your app greatly expands the total number of 
potential customers and revenue for your app without your having to rewrite it for each language. 
Be sure to localize your app. It is not hard to do and can easily double or triple the number of 
people who buy it. 

Using Variable and Data Types with Alice 
Now that we have learned about data types, let’s write an Alice app that that adds two 

numbers, prints out the value to the console, and then has a character object tell us the 

program is done. 

1. Open Alice and select File ➤ New World. 

2. Select the Grass template and click Open. See Figure 3–4.  

 

Figure 3–4. Choosing the Grass template 

Next we need to make our variables and select that data types.  

3. Click on “create new variable” at the top right of your editor. Name 

your first variable “firstNumber” and define the variable as shown 

Figure 3–5 The variable’s data type is a number. It is initialized with the 

value of 2 and is shown in the header section. 



CHAPTER 3:  It’s All About the Data 44 

 

Figure 3–5. Creating a new local variable 

It is always good programming practice to initialize our variables when they are 

declared.  

4. Create another variable called “secondNumber” as shown in Figure 3–

6. The variable’s data type is a number, is initialized with the value of 3, 

and is shown in the header section. 

 

Figure 3–6. Creating a second local variable 

5. Drag your variables from the header section to the program section, and 

increment each variable by 1. See Figure 3–7.  



CHAPTER 3:  It’s All About the Data 45 

 

Figure 3–7. Increment each variable by 1. 

Create a variable to hold the sum. Select Create new variable” and call your variable 

totalSum. See Figure 3–8. 

 

Figure 3–8. Creating the variable totalSum 

6. Add your two variables together. Drag the totalSum variable from the 

header section to the program section and set the value to math 

expressions as shown in Figure 3–9. The math expression will then 

populate the list box with the instance variables in your object and 

possible math expressions.  

7. Select firstNumber +.  

8. Select secondNumber. 



CHAPTER 3:  It’s All About the Data 46 

 

Figure 3–9. Setting the value to math expressions 

9. Print out the totalSum to the console. Drag the print tile from the bottom 

of the editor. Select totalSum as a parameter. See Figure 3–10. 

 

Figure 3–10. Selecting totalSum 



CHAPTER 3:  It’s All About the Data 47 

10. Add an object to our World. Click on Add Objects and then add any 

object of your choosing. We have selected a bunny. See Figure 3–11. 

 

Figure 3–11. Adding a bunny to our world 

We need to declare a variable that will contain a data type of type String. The variable 

will hold the string, “The program has terminated successfully.”  

11. Click on the “create new variable” button and create the bunnyDone 

variable of type String. See Figure 3–12. 

 

Figure 3–12. Creating the bunnyDone variable 



CHAPTER 3:  It’s All About the Data 48 

We want to assign a string to our bunnyDone variable. 

12. Drag the bunnyDone variable to the last line of our editor. Enter “The 

program has terminated successfully” as the last parameter. See Figure 

3–13. 

 

Figure 3–13. Entering the final parameter 

Now we want the bunny to announce that our app successfully completed running.  

13. Make sure you selected the Object in the object tree that you added to 

the to your world. Drag the “bunny say” tile from the bunny methods to 

your editor and select the variable bunnyDone as its parameter. See 

Figure 3–14. 

 

Figure 3–14. Selecting bunnyDone as parameter 

If we ran our app now, we would notice the bunny’s message would disappear quickly.  



CHAPTER 3:  It’s All About the Data 49 

14. Drag the “wait” function from the bottom of your editor to the last line of 

your code. The wait function takes one parameter, which is the number 

of seconds to pause the program. We’ve selected a three-second wait 

in our app.  

Now we are ready to play the app! You editor section should look like Figure 3–15. 

 

Figure 3–15. The editor section  

15. Press the play button and, if you’ve done everything correctly, your app 

should look like Figure 3–16 when it runs. The value of the variable 

totalSum is displayed to the console, and your bunny is announcing that 

your app ran successfully.  

 

Figure 3–16. The app has run successfully! 



CHAPTER 3:  It’s All About the Data 50 

Data Types and Objective-C 
Now that we have covered the principles of data types and have written an Alice app to 

help show how these principles apply, let’s write an Objective-C app that accomplishes 

what we just did in Alice. 

In Objective-C we have similar data types as we did with Alice. Some of the most 

frequently used data types for storing numbers are integers, doubles, floats, and longs. 

Table 3–5 lists many of the basic data types. Many of these will be covered in later 

chapters. 

Table 3–5. Objective-C basic data types 

Type Examples NSLog chars 

char ‘a’, ‘0’,’\n’ %c 

int 42, -42, 550 0xCCE0, 099 %i, %d, %x, %o 

unsigned int 20u, 101U, 0xFEu %u, %x, %o 

long int 13,-2010, 0xfefeL %ld, %lx, %lo 

unsigned long int 12UL, 100ul, 0xffeeUL %lu, %lx, %lo 

long long int 0xe5e5e5LL, 501ll %lld, %llx, %llo 

unsigned long long int 11ull, 0xffeeULL %llu, %llx, %llo 

float 12.30f, 3.2e-5f, 0x2.2p09 %f, %e, %g, %a 

double 3.1415, 3.1e-5l %f, %e, %g, %a 

long double 3.1415, 3.1e-5l %Lf, %Le, %Lg, %a 

id Nil %p 

Our Objective-C app will add two integers, display their sum to the console. The app will 

also display the text “The program has successfully terminated.” This will be fun and 

easy, so let’s get started. 

NOTE: In June 2010 Apple changed the way it names the versions of its operating systems for 
the mobile devices. Instead of iPhone 3.1 SDK or iPhone 3.2 SDK (iPad), Apple changed its latest 
version and naming convention to iOS 4. Additionally, some of the popular Apple insider sites are 
reporting that Apple is considering similar naming conventions for its Mac OS X operating system 
for the desktop and laptops. We mention this so you are not confused with the older and newer 
naming conventions that you may come across as you read development sites and books. 



CHAPTER 3:  It’s All About the Data 51 

1. As iOS developers, Xcode is where we make our living, so open up 

Xcode and create a new project. To do so, select File ➤ New project and 

select the options shown in Figure 3–17. 

 

Figure 3–17. Opening a new project 

NOTE: One of the most common issues new students have when creating a command line app is 
finding the project in their version of Xcode. Figure 3–17 shows Xcode Version 3.2 on Snow 
Leopard (10.6). Your version of Xcode may be newer or older, and menus and selections options 
may be different. So, look around in the File ➤ New project settings for the equivalent options. If 
you have difficulty finding these options, visit our forum for this book at forum.xcelme.com and 
go to this chapter. We will be happy to answer your questions.  

When created, your Xcode project should look like Figure 3–18. 



CHAPTER 3:  It’s All About the Data 52 

Figure 3–18. Your XCode project 

2. After you create the project, you need to open your source code file in

your editor. We named the project Chapter3, so open the Source

group, and we can access the Chapter3.m source file. Open the

Chapter3.m source file. 

If you haven’t seen “//” used in computer programming before, it enables the

programmer to comment his or her code. Comments are not compiled by our

applications and are used as notes for the programmer or, more important,

programmers who follow the original developer. Comments help both the original

developer and follow-up developer understand how the app was developed. 

Sometimes it is necessary for comments to span several lines or just part of a line. This

can be accomplished with the /* and the */. All the text between the /* and the */ are

treated as comments and are not compiled. 

First we need to declare and initialize our variables firstNumber and secondNumber. It
is good practice to always initialize variables when they are declared, or soon

afterwards.  

Increment the variables firstNumber and secondNumber by 1. We’ll print the sum of

firstNumber and secondNumber.  

3. Finally, we will print to the console, “The program has successfully

terminated.” See Figure 3–19. 

NSLog is a function that can take one or more parameters. The first parameter is

generally the string that is to be printed to the console. The @ symbol in front of the

string tells the compiler that this is an Objective-C type string and not a C++ string. The

@ symbol is typically used in front of all your strings for iPhone apps. If you don’t use 

the @ symbol, you will probably get a compiler error.  



CHAPTER 3:  It’s All About the Data 53 

%d tells the compiler that an integer will be printed and to substitute the value of the 

integer for the %d. See Table 3–6 for other NSLog formatting specifiers. Finally, our 

second parameter is the integer to be printed. 

NSLog is a very helpful function used by developers to test their codes execution.  

 

Figure 3–19. Printing to the console 

Figure 3–20 shows the completed executed output of our application.  

4. To compile and run your application, click on the “Build and Run” option 

for your toolbar. We can see values that we printed out the NSLog sting 

along with the notice at the end by the debugger that the apps 

execution completed successfully. 

NOTE: If your editor doesn’t have the same menus or gutter that you see in the previous 
screenshots, you can turn these settings on in the Xcode preferences. You can open the Xcode 
Preferences by clicking on Xcode menu in the menu bar and then selecting Preferences. You can 
also customize the toolbar by right-clicking on the toolbar itself and selecting “Customize 
Toolbars and Menus…”.  



CHAPTER 3:  It’s All About the Data 54 

 

Figure 3–20. Console log displaying the results of our Objective-C app 

Identifying Problems 
Believe it or not, your program may not run the way you thought you told it to. The 

process of hunting down problems with you app is called debugging. In order to track 

down bugs in our apps, we can set breakpoints and inspect our variables to see the 

contents. To do this, simply click in the left column of our code called the gutter, where 

the gutter is to set a breakpoint. See Figure 3–21. A breakpoint will stop our application 

from executing at that line and enable us to inspect our variables. 



CHAPTER 3:  It’s All About the Data 55 

 

Figure 3–21. Setting debugging “breakpoints” 

A blue pointer in the gutter of your editor denotes a breakpoint. When you run your 

application and your app hits a line of code that contains a breakpoint, your app will halt 

and display a blue line across the line of code with a breakpoint. See Figure 3–22. 



CHAPTER 3:  It’s All About the Data 56 

Additionally, you can inspect each variable by hovering over it with your mouse. 

 

Figure 3–22. Breakpoint detected! 

We will talk more about debugging your apps in Chapter 12.  

Summary 
In this chapter you learned about how data is used by our apps. You saw how to 

initialize variables and how to assigned data to them. We explained that when variables 

are declared they have a data type associated with them, and that only data of the same 

type can be assigned to variables.  

Finally, we showed you how to use variables in your first Alice app, and finished by using 

variables with an Objective-C app. 

Exercises 
 Write an Objective-C console app (Command-Line Tool) that multiples 

two integers together and displays the result to the console. 

 Write an Objective-C console app that squares a float. Display the 

resulting float in the console. 

 Write an Objective-C console app subtracts two floats with the result 

being stored in an integer. *Note that rounding does not occur. 



 

 

57 

57 

   Chapter 

Making Decisions 
About…and Planning 
Program Flow 
One of the cool things about being an iPhone/iPad and Mac developer is we get to tell 
the device exactly what we want it to do and the device will do it. The device will do it 
over and over again without getting tired. That’s because iPhone/iPads and Macs don’t 
care how hard they worked yesterday, and they don’t let feelings get in the way. These 
devices don’t need hugs. 

There is a downside to being developer: we have to think of all possible outcomes in our 
apps. Many students love having this kind of control, and like focusing on the many 
details of their apps. However, it can be frustrating having to handle so many details. As 
we mentioned in the introduction to this book, there is a price to pay for developing 
apps, and that price is time. The more time you spend developing and debugging, the 
better you will get with all the details and the better your apps will run. Everyone has to 
pay this price to a successful developer.  

Computers are black and white; there are no shades of gray. Our devices give results, 
and many of the results are based on true and false conditions.  

In this chapter we will learn about computer logic and controlling the flow of our apps. 
The processing of information and arriving at results is at the heart of all apps. Our apps 
needs to process data based on values and conditions. In order to do this, we need to 
understand how computers perform logical operations and execute code based on the 
information our apps have acquired. 

Boolean Logic 
Boolean logic is a system for logical operations. Boolean logic uses binary operators 
like AND, OR, and the unary operator NOT to determine if your conditions are met. Binary 

4 



CHAPTER 4:  Making Decisions About…and Planning Program Flow 58 

operators take two operands. Unary operators take one operand. AND and OR are binary 
operator and NOT is a unary operator. 

We just introduced a couple of new terms that can sound confusing. However, you 
probably use Boolean logic every day. Let’s look a couple of examples of Boolean logic 
with the binary operators AND and OR in a conversation parents sometimes have with 
their teenage children.  

"You can go to the movies tonight if your room is clean AND the dishes are put 
away." 

"You can go to the movies tonight if your room is clean OR the dishes are put 
away." 

Boolean operators result in a TRUE or a FALSE. In Chapter 3 we briefly introduced the 
Boolean data type. A variable that is defined as Boolean, can only contain the values, 
TRUE and FALSE.  

BOOL seeMovies = FALSE; 

In the first example above, the AND operator takes two operands, one on the left and one 
of the right of the AND. Each operand can be evaluated independently with a TRUE or 
FALSE.  

For the AND operation to yield a TRUE result, both sides of the AND have to be TRUE. In the 
example, the teenager has to clean his or her room AND have the dishes done. If either 
one of the conditions is FALSE the result is FALSE and no movies for the teenager.  

For an OR operation to yield a TRUE result, only one operand has to be TRUE or both 
conditions can be TRUE to yield a TRUE result. In the second example, just a clean 
bedroom would result in the ability to go to the movies.  

NOTE: Behind the scenes, your iPhone/iPad/Mac defines a FALSE as a 0 and a TRUE as a 1. To 
be technically correct, a TRUE is defined as any non-zero value. So a value of 0.1, 1, and 2 would 
be evaluated as a TRUE when evaluated in a Boolean expression.  

A NOT statement is a unary operator. It takes just one operand to yield a Boolean result. 
For example: 

"You can NOT go to the movies." 

This example takes one operand. The NOT operator, turns a TRUE operand to FALSE and a 
FALSE operand to a TRUE. Here the result is a FALSE. 

NOTE: Performing a NOT operation is commonly referred to as flipping-the-bit, or negating. 
Because TRUE is defined as a 1, a FALSE is defined as a 0, and zeros and ones are referred to 
bits. A NOT operation turns a TRUE to a FALSE and a FALSE to a TRUE, hence flipping-the-bit or 
negating the result. 



CHAPTER 4:  Making Decisions About…and Planning Program Flow 59 

AND, OR, and NOT are three very common Boolean operators. Occasionally, you need to 
use more complex operators. XOR, NAND, and NOR operators are common for iPhone/iPad 
and Mac developers.  

The Boolean operator XOR means exclusive or. An easy way to remember how the XOR 
operator works is the XOR operator will return a TRUE result if only 1 argument is TRUE 
not both. 

NAND and NOR mean NOT AND and NOT OR. After evaluating the AND or the OR arguments 
and result, simply flip-the-bit of the result. 

Truth Tables 
Let’s use a tool to help us evaluate all the Boolean Operators. A truth table is 
mathematical table used in logic to evaluate Boolean operators. They are helpful when 
trying to determine all the possibilities of a Boolean operator. Let’s look at some 
common truth tables for AND, OR, NOT, XOR, NAND, and NOR. 

In a AND truth table there are four possible combinations of TRUE and FALSE. 

 TRUE AND TRUE = TRUE 

 TRUE AND FALSE = FALSE 

 FALSE AND TRUE = FALSE 

 FALSE AND FALSE= FALSE 

Placing these combinations in a truth table results in Table 4–1.  

Table 4–1. A AND Truth Table 

A B A AND B 

TRUE TRUE TRUE 

TRUE FALSE FALSE 

FALSE TRUE FALSE 

FALSE FALSE FALSE 

AND truth table’s only produces a TRUE result if both of its operands are TRUE. 

Table 4–2 illustrates an OR truth table and all possible operands.  



CHAPTER 4:  Making Decisions About…and Planning Program Flow 60 

Table 4–2. A OR Truth Table 

A B A OR B 

TRUE TRUE TRUE 

TRUE FALSE TRUE 

FALSE TRUE TRUE 

FALSE FALSE FALSE 

A OR truth table produces a TRUE result if one or both of its operands are TRUE. 

Table 4–3 illustrates a NOT truth table and all possible operands.  

Table 4–3. A NOT Truth Table 

NOT RESULT 

TRUE FALSE 

FALSE TRUE 

A NOT flips-the-bit or negates the original operand’s Boolean value. 

Table 4–4 illustrates a XOR or exclusive-or truth table and all possible operands.  

Table 4–4. A XOR Truth Table 

A B A XOR B 

TRUE TRUE FALSE 

TRUE FALSE TRUE 

FALSE TRUE TRUE 

FALSE FALSE FALSE 

The operator XOR yields TRUE result if only one of the operands is TRUE. 

Table 4–5 illustrates a NAND truth table and all possible operands.  



CHAPTER 4:  Making Decisions About…and Planning Program Flow 61 

Table 4–5. A NAND Truth Table 

A B A NAND B 

TRUE TRUE FALSE 

TRUE FALSE TRUE 

FALSE TRUE TRUE 

FALSE FALSE TRUE 

Table 4–6 illustrates a NOR table and all possible operands.  

Table 4–6. A NOR Truth Table 

A B A NOR B 

TRUE TRUE FALSE 

TRUE FALSE FALSE 

FALSE TRUE FALSE 

FALSE FALSE TRUE 

The easiest way to look at the NAND and NOR operator is simply negate the result from 
the AND and OR truth tables, respectfully.  

Comparison Operators 
In software development, comparison of different data items is accomplished with 
comparison operators. These operators produce a logical TRUE or FALSE result. Table 
4–7 shows the list of comparison operators. 

Table 4–7. Comparison Operators 

 > greater than 

< less than 

>= greater than or equal to 

<= less than or equal to 

== exactly equal to 

!= not equal to 



CHAPTER 4:  Making Decisions About…and Planning Program Flow 62 

NOTE: If you’re constantly forgetting which way the greater than and less than sign goes, use a
crutch I learned in grade school: If the greater than and less than sign represent the mouth of an
alligator, the alligator always eats the bigger value. It may sound silly, but it works.  

Designing Apps 
Now that we’ve introduced Boolean logic and comparison operators, we can start
designing our apps. Sometimes is important express all or part of your app to others
without having to write the actual code.  

Writing out code helps the developer think out loud and brainstorm with other
developer’s sections of code that are of concern. This helps to analyze the problem and
possible solutions before coding begins. 

Pseudo-code  
Writing out code that is a high-level description of an algorithm we are trying to solve is
called pseudo-code. Pseudo-code does not contain the necessary programming syntax
for coding. However, it does express the algorithm that is necessary to solve the
problem at hand.  

Pseudo-code can be written by hand on paper or a whiteboard, or typed on a computer.  

Using pseudo-code, we can apply what we know about Boolean data types, truth
tables, and comparison operators. See Listing 4–1 pseudo-code examples: 

Listing 4–1. Pseudo-code examples using conditional operators in if-then-else code 

int x = 5; 
int y = 6;
isComplete  =  TRUE;
if ( x < y) 
{ 
    //in this example, x is less than 5  
    do stuff;
} 
else 
{ 
     do other stuff;
} 

if  (isComplete == TRUE)
{ 
     //in this example, isComplete is equel to TRUE 
     do stuff;
} 
else 
{ 
     do other stuff;
} 



CHAPTER 4:  Making Decisions About…and Planning Program Flow 63 

//another way to check isComplete == TRUE 
if (isComplete) 
{ 
     //in this example,  isComplete is TRUE 
     do stuff; 
} 
//Two ways to check if a value is false 
if  (isComplete == FALSE) 
{ 
     do stuff; 
} 
else 
{ 
      //in this example, isComplete is TRUE so the else block will be executed 
} 
//another way to check isComplete == FALSE 
if (!isComplete) 
{ 
     do stuff; 
} 
else 
{ 
      //in this example,  isComplete is TRUE so the else block will be executed 
} 
 

Often it is necessary to combine our comparison test. A compound relationship test is 
one or more simple relationship tests joined by either the && or the || (two pipe 
characters).  

&& and || or spoken as logical-and and logical-or, respectfully. Pseudo-code in Listing  
4–2 illustrates logical-and and logical-or. 

Listing 4–2. Using && and || logical operators 

int x = 5; 
int y = 6; 
isComplete  =  TRUE; 
//using the logical and 
if ( x < y && isComplete == TRUE) 
{ 
    //in this example, x is less than 5 and isComplete == TRUE 
    do stuff; 
} 
if ( x < y || isComplete == FALSE) 
{ 
    //in this example, x is less than 5. Only one operand has to be TRUE for an OR  
 to result in a TRUE. 
   //See Table 4–2 A OR Truth Table 
    do stuff; 
} 
another way to test for TRUE 
if ( x < y && isComplete) 
{ 
    //in this example, x is less than 5 and isComplete == TRUE 
    do stuff; 
} 
another way to test for FALSE 



CHAPTER 4:  Making Decisions About…and Planning Program Flow 64 

if ( x < y && !isComplete) 
{ 
     
    do stuff; 
} 
else 
{ 
     // isComplete == FALSE 
     do stuff; 
} 

Design Requirements 
As discussed in Chapter 1, the most expensive process in the software development life 
cycle is writing code. The least expensive process in the software development life cycle 
is gathering the requirements for your application, yet this process is the most 
overlooked and least used process in software development.  

Design requirements usually begin by asking clients, customers, and or stakeholders 
how the application should work, what problems it should solve, and how the app 
should solve the problem. 

Requirements can include long or short narrative descriptions of the app, screen 
mockups, and formulas. It is far easier to open our word processor and change the 
requirements and screen mockups before coding begins than it is to modify an 
iPhone/iPad or Mac app. The following is the design requirement for one view of an 
iPhone mobile banking app. 

 View: Accounts View 

 Description: Display the list of accounts the user has. The list of 
Accounts will be in the following sections; Business Accounts, 
Personal Accounts and Car Loans, IRA and Home Equity Loans. 

 Cells: Each cell will contain the account name, last four digits of the 
account, available balance and present balance. 

A picture is worth a thousand words. Screen mockups are helpful to the developers and 
users to visualize how the views will look when completed. There are many tools that 
can be used to quickly design mockups; one of these tools is OmniGraffle. See Figure 
4–1 for an example of screen mockup used for design requirements using OmniGraffle. 



CHAPTER 4:  Making Decisions About…and Planning Program Flow 65 

 

Figure 4–1. Screen mockup for a mobile banking app using OmniGraffle and the Ultimate iPhone Stencil Plug-in. 

Many developers believe that design requirements take too long and are unnecessary. 
There is a lot of information presented on the Accounts screen in Figure 4–1. Lots of 
business rules can exist that determine how information is displayed to the user along 
with all the error handling when things go bad. Working with all the business 
stakeholders at the beginning of the development process was critical in getting the app 
right the first time.  



CHAPTER 4:  Making Decisions About…and Planning Program Flow 66 

Figure 4–2 is an example of all stakeholders being involved in the app’s development. All 
stakeholders were involved in every view from the beginning, eliminating multiple 
rewrites and application bugs.  

 

Figure 4–2. Woodforest Mobile Banking app as it appears on the iTunes Connect app store. Compare with the app 
requirements Accounts screen in Figure 4–1  

Additionally, Apple recommends that developers spend at least 50% of their 
development time on the user interface design and development.  

Another great tool for laying out your iPhone app’s look and feel on paper is Apress’s 
iPhone Sketch Book and Apress’s iPad Sketch Book. See Figure 4–3 

After design requirements are finalized, we can pseudo-code sections of the app to 
solve complex development issues. Another tool that developers often use to express 
code visually is flowcharting.  



CHAPTER 4:  Making Decisions About…and Planning Program Flow 67 

 

Figure 4–3. Apress’s iPhone Sketch Book Stencil and Apress’s iPad Sketch Book Stencil 

Flowcharting 
Flowcharting is a common method of diagramming an algorithm. The algorithm is 
represented as different types of boxes connected by lines and arrows. See Figure 4–4 

 

Figure 4–4. Example flowchart showing common figures and their associated names 



CHAPTER 4:  Making Decisions About…and Planning Program Flow 68 

Flowcharts should always have a start and a stop. Branches should never come to an 
end without a stop. This helps the developer to make sure all branches in their code are 
accounted for and cleanly stop execution. 

Designing and Flowcharting an Example App 
We have covered lots of information about decision making and program flow, so its 
time do what programmers do best, write apps! 

The app we have been assigned to write generates a random number between 0 and 
100 inclusive and asks the user to guess the number. The user has to keep guessing 
until the number is guessed. We can use any object from the Alice gallery to ask the 
user for their guess and we can also chose any world for our object be in. The object will 
provide a visual queue for each high, low and correct guess. The number that the user 
guessed is displayed to the console. When the user guesses the correct answer, the 
user is asked if they want to play again See Figure 4–5. 

 

Figure 4–5. An astronaut object asking the user to pick a number between 0 and 100 



CHAPTER 4:  Making Decisions About…and Planning Program Flow 69 

The App’s Design 
Using our design requirements, we will make a flowchart for our app. See Figure 4–6. 

 

Figure 4–6. Flowchart for guessing a random number app 

Reviewing Figure 4–6, we notice that as we approach the end of a block of logic in our 
flowchart, there are arrows that go back to a previous section of our flowchart and 
repeat that section until some condition is met. This is called looping, and enables us to 
repeat sections of programming logic, without having to rewrite that section of code 
over, and over until a condition is met. 



CHAPTER 4:  Making Decisions About…and Planning Program Flow 70 

Using Loops to Repeat Program Statements 
A loop is a sequence of program statements, which is specified once but can be 
repeated several times in succession. A loop can repeat a specified number of times 
(count-controlled) or until some condition (condition-controlled) occurs.  

In this section we’ll learn about count-controlled loops, condition-controlled loops. We 
will also learn how to control our loops with Boolean logic. 

Count-Controlled Loops 
A count-controlled loop is a loop that repeats a specified number of times. In Objective-
C and Alice this is a For Loop. A for loop has a counter variable. This variable enables 
the developer to specify the number of times the loop will be executed. See Listing 4–3. 

Listing 4–3. A count-controlled loop 

int i; 
for (i = 0; i < 10; i++) 
{ 
      //repeat all code in braces 10 times 
} 
....contine 

The loop in Listing 4–3 will loop 10 times. The variable i starts at zero and increments at 
the end of the “}” by one. The incrementing is done by the i++ in the for statement. i++ 
is equivalent to i = i +1. i is then incremented by 1 to 10 and then checked to see if it 
is less than 10. This for loop will exit when i = 9 and the “}” is reached.  

NOTE: It is common for developers to confuse the number of times they think their loop will 
repeat. If the loop started at 1 in Listing 4–3, the loop would repeat 9 times instead of 10 times.  

In Objective-C, for loops can have their counter variables declared in the for loop 
declaration itself. See Listing 4–4. 

Listing 4–4. Counter variable is initialized in for loop declaration. 

for (int i = 0; i < 10; i++) 
{ 
      //repeat all code in braces 10 times 
} 
....contine 

Occasionally, you will need to repeat just one line of code in a for loop. This can be 
accomplished by not using any {}. The first line of code encountered after the for loop 
declaration is repeated as specified in the for loop declaration. See Listing 4–5. 

Listing 4–5. Counter variable is initialized in the for loop declaration. 

for (int i = 0; i < 10; i++) 
      do this line of code 10 times; 
....contine 



CHAPTER 4:  Making Decisions About…and Planning Program Flow 71 

Condition-Controlled Loops 
Objective-C and Alice have the ability to repeat a loop until some condition changes. We 
may want to repeat a section of our code until a false condition is reached with one of 
our variables. This type of loop is called a while loop. A while loop is a control flow 
statement that repeats based on the given Boolean condition. A while-loop can be 
thought of as a repeating if statement. See Listing 4–6. 

Listing 4–6. An Objective-C while loop repeating  

BOOL isTrue = TRUE; 
while (isTrue) 
 { 
    //do something; 
     isTrue = FALSE; // a condition occurs that sometimes sets isTrue to FALSE 
 }; 
....contine 

The while loop in Listing 4–6 first checks if the variable “isTrue” is TRUE, which it is, so 
the {loop body} is entered, where the code is executed and eventually some condition 
is reached which causes isTrue to become FALSE. After completing all the code in the 
loop body, the condition, (isTrue), is checked again, and the loop is repeated again. This 
process is repeated until the variable isTrue is set to FALSE. 

Infinite Loops 
An infinite loop repeats endlessly, either due to the loop not having a condition that 
causes termination or having a terminating condition that can never be met.  

Generally, infinite loops can cause apps to become unresponsive and are a side effect 
of a bug in the code or logic.  

Listing 4–7. An example of on infinite loop 

x = 0; 
while (x  != 5) 
 { 
    do someting; 
    x = x + 2; 
 }; 
....contine 

Listing 4–7 is an example of an infinite loop caused by a terminating condition that can 
never by met. The variable x will be checked each iteration through the while loop, but 
will never be equal to 5. The variable x will always be an even number because it was 
initialized to zero and is incremented by 2 in our loop. This will cause the loop to repeat 
endlessly. See Listing 4–8. 

Listing 4–8. An example of an infinite loop caused by a terminating condition that can never be met 

while (TRUE) 
 { 
    do someting; 
}; 
....contine 



CHAPTER 4:  Making Decisions About…and Planning Program Flow 72 

Coding the Example App in Alice 
Now that we have our design requirements and flowchart completed, and understand
looping, we ready to write our Alice application. See Figure 4–7. 

Figure 4–7. Random number generator app 



CHAPTER 4:  Making Decisions About…and Planning Program Flow 73 

It is not possible to list the source code for this Alice program in one screenshot. 
However, printing out the source code in html, we can all the view the code.  
See Figure 4–8. 

 

Figure 4–8. Random number generator, complete program listing. 

Figure 4–8 shows the entire program listing for our random number generator code. 

NOTE: You can download the complete random number generator app at forum.xcelme.com. 
The code will be under the Chapter 4 topic. There is also a video showing how to drag and drop 
all the tiles within the While and If code blocks in Alice under this topic. 



CHAPTER 4:  Making Decisions About…and Planning Program Flow 74 

Coding the Example App in Objective-C 
Using our requirements and what we learned with our Alice app, let’s write our random 
number generator in Objective-C.   

Our Objective-C app will run from the command line as it asks the user to guess a 
random number.  

1. Open Xcode and start a New Project. Choose Command Line Tool and 

type Foundation. See Figure 4–9. 

 

Figure 4–9. Start a new Command Line Tool project 

2. Let’s call our project RandomNumber. See Figure 4–10. 

 

Figure 4–10. Naming the project RandomNumber 

Now we need to open the implementation file in the Source group. This is where we will 
write our Objective-C code.  



CHAPTER 4:  Making Decisions About…and Planning Program Flow 75 

3. Open the RandomNumber.m file. Delete the line of code: 

NSLog(@"Hello, World!"); 

4. Now we are ready to write our app. Start writing the code under 

// insert code here… 

See Figure 4–11. 

 

Figure 4–11. The editor is now ready to us to write our code. 

Following our Alice code, we will write our random number generator app. You will 
notice that most of the code is very similar to our Alice app. See Listing 4–9. 

Listing 4–9. Source code for the random number generator app.  

#import <Foundation/Foundation.h> 
int main (int argc, const char * argv[]) { 
NSAutoreleasePool * pool = [[NSAutoreleasePool alloc] init]; 
 
// insert code here… 
int randomNumber = 1; 
int userGuess = 1; 
BOOL continueGuessing; 
BOOL keepPlaying = TRUE; 
char yesNo = ' '; 
 
while (keepPlaying) 
{ 
       randomNumber = (random() % 101); 
       NSLog(@"The random number to guess is: %d",randomNumber); 
       continueGuessing = TRUE; 
       while (continueGuessing) 
       { 
              NSLog (@"Pick a number between 0 and 100.  "); 
              scanf ("%i", &userGuess); 
              fgetc(stdin);//remove CR/LF i.e extra character 
              if (userGuess == randomNumber)  
              { 
                     continueGuessing = FALSE; 
                     NSLog(@"Correct number!"); 
              } 
              //nested if statement 
              else if (userGuess > randomNumber) //an else if statement 
              { 
                     //user guessed too high 
                     NSLog(@"Your guess is too high"); 
              } 



CHAPTER 4:  Making Decisions About…and Planning Program Flow 76 

              else  
              { 
                     // no reason to check if userGuess < randomNumber.  
 It has to be. 
                     NSLog(@"Your guess is too low"); 
              } 
              //refactored from our Alice app. This way we only have to  
 code once. 
                     NSLog(@"The user guessed %d",userGuess); 
       } 
       NSLog (@"Play Again? Y or N"); 
       yesNo = fgetc(stdin); 
        
       if (yesNo == 'N') 
       { 
              keepPlaying = FALSE; 
       } 
        
} 
[pool drain]; 
 return 0; 
} 

There is new code that we haven’t discussed before in Listing 4–10. The first line of 
code that is new is: 

randomNumber = (rand() % 101); 

This line will produce a random number between 0 and 100. random() is a function that 
returns a random number. Although this will not generate a truly random number, it will 
work for this example. 

% is called the modulus operator. This operator returns the remainder of its two 
operands. In this case it’s the return value of the rand() divided by 101. 

The next line of new code is 

scanf ("%i", &userGuess); 

The function scanf reads a value from the keyboard and stores the value in userGuess.  

NOTE: The source code for this Objective-C project is available for download forum.xcelme.com. 
Additionally there is a short video explaining the source code and the project. 



CHAPTER 4:  Making Decisions About…and Planning Program Flow 77 

Nested If Statements and Else-If Statements 
Sometimes it is necessary to nest if statements. This means that we need to have if 
statements nested inside an existing if statement. Additionally, it is sometimes 
necessary to have a comparison as the first step in the else section of the if statement. 
This is called an else-if statement. 

Another line of code that is new to us is fgetc(stdin);//remove CR/LF i.e extra 
character. The function scanf can be difficult to work this. In this case scanf leaves a 
remnant in our input buffer that needs to be flushed so we can read a Y or N from the 
keyboard to determine if the user wants to play again. 

Improving the Code Through Refactoring 
Often after we get our code working, we examine the code and find more efficient ways 
to write our code. The process of rewriting our code to make it more efficient, 
maintainable, and improve readability is called code refactoring.  

As we were rewriting our code in Objective-C, we noticed that we could eliminate some 
unnecessary code. Our Alice code had this line repeated in the if-else statement. 

//refactored from our Alice app. This way we only have to code once. 
NSLog(@"The user guessed %d",userGuess); 

NOTE: As a developer, we have found the best line of code you can write is the line that you 
don’t write. Less code means less to debug and maintain.  

Press the Build and Debug icon in our Objective-C project and run our app. See Figure 
4–12. 



CHAPTER 4:  Making Decisions About…and Planning Program Flow 78 

 

Figure 4–12. The console output of the Objective-C random number generator app 

Moving Forward Without Alice 
We have used Alice to learn object-oriented Programming. It has enabled us to focus on 
OOP concepts without having to deal with syntax and a compiler. However, it is 
necessary to become more familiar with the specifics of the Objective-C language. Alice 
has served us well and we can now focus on using Objective-C and Xcode for the 
remainder of the book. 



CHAPTER 4:  Making Decisions About…and Planning Program Flow 79 

Summary 
In this chapter we covered a lot of important information on how to control our 
applications. Program flow and decision making are basic to every iPhone/iPad Mac 
App. Make sure you completed the Alice and Objective-C examples in this chapters. 
You might review these examples and believe you understand everything without having 
to write these apps. This will be a fatal mistake to you becoming a successful 
iPhone/iPad Mac developer. You must spend time coding these examples.  

The terms and in this chapter are very important. You should be able to describe the 
following: 

 AND 

 OR 

 XOR 

 NAND 

 NOR 

 NOT 

 Truth tables 

 Negation 

 All comparison operators 

 Application requirement 

 Logical and && 

 Logical OR || 

 Flowchart 

 Loop 

 Controlled loops 

 For Loop 

 Condition-controlled loops 

 Infinite loops 

 While loops 

 Nested if statements 

 Code refactoring 



CHAPTER 4:  Making Decisions About…and Planning Program Flow 80 

Exercises 
 Extend the random number generator app to print to the console how 

many times the user guessed before they guessed the correct random 
number. Both in Alice and Objective-C. 

 Extend the random number generator app to print to the console how 
many times the user played the app. Print this value when the user 
quits the app. Both Alice and Objective-C. 



 

 

81 

81 

   Chapter 

Object Oriented 
Programming with 
Objective-C 
Over the past 15 years or so, the programming world has been focused on the 

development paradigm of object oriented programming (OOP). Most modern 

development environments and languages implement OOP. Put simply, OOP will form 

the basis of everything you develop today. 

You may be asking yourself why we waited until Chapter 5 to present OOP using 

Objective-C if it is the primary development style of today. The simple answer is that it is 

not an easy concept for new developers. We will spend this chapter going into detail 

about the different aspects of OOP and how this will affect your development. 

Implementing OOP into your applications correctly will take some front-end planning. 

But you will save yourself a lot of time throughout the life of your projects. OOP has 

changed the way development is done. In this chapter, we will look at what OOP is. We 

will discuss what objects are and how they relate to physical objects we find in our 

world. We will also look into what classes are and how they relate to objects. We will 

also discuss steps you will need to take when planning your classes, and some visual 

tools you can use to accomplish this. When you have read this chapter and are working 

through the exercises, you will have a better understanding of what OOP is and why it is 

necessary to you as a developer. 

The Object 
As you learned in Chapter 2, objects are the basis of OOP. In order to better explain 

what a programming object is, we will first look at physical objects. A physical object 

can be anything around you that you can touch or feel. Take, for example, a television. 

Some characteristics of a television include type (plasma, LCD, or CRT), size (40 inches), 

5 



CHAPTER 5:  Object Oriented Programming with Objective-C 82 

brand (Sony, Vizio), weight, cost, and so on. Televisions also have functions. They can

be turned on or off. You can change the channel, adjust the volume, and change

brightness. 

Some of these characteristics and functions are unique to televisions and some are not.

For example, a couch in your house would probably not have the same characteristics

as a television. You would want different information about a couch, such as material

type, seating capability, and color. A couch might have only a few functions, such as

converting to a bed. 

Now let’s talk specifically about programming objects. An object is a specific item. In

programming, objects also have characteristics, but they are called attributes. In our

example, a TV object would have type, size, and brand attributes, while a Couch object

would have attributes such as color, material, and comfort level. Programming objects

also have functions, but they are called methods. Methods are the way that other

objects can interact with a certain object. For example, with the television, a method

would be any of the buttons on the remote control. Each of those buttons represents a

way you can interact with your television.  

In previous chapters, we have been using the example of the bookstore. A bookstore

contains many different objects. It contains book objects that have attributes such as

title, author, page count, publisher, and so on. It also contains magazines with attributes

such as title, issue, genre, and publisher. A bookstore also has some non-tangible

objects such as a sale. A sale object would contain information about the books

purchased, the customer, the amount paid, and the payment type. A sale object might

also have some methods that calculate tax, print the receipt, or void the sale. A sale
object does not represent a tangible object, but it is still an object and is very necessary

to creating an effective bookstore. 

Because the object is the basis of OOP, it is important to understand objects and how to

interact with them. We will spend the rest of the chapter describing objects and some of

their characteristics. 

What Is a Class 
We cannot discuss OOP without discussing what a class is. A class defines which

attributes and methods an object will have. 

A class is similar to a species in the animal world. A species is not an individual animal,

but it does describe many similar characteristics of the animal. In order to understand

classes more, let’s look at an example of classes in nature. The class of Dogs has many

attributes that all dogs have in common. For example, a dog may have a name, an age,

an owner, and a favorite activity. If we look at Figure 5–1, you can see the difference

between the class and the actual objects that are instances of the class. An object that

is of a certain class is called an instance of that class. 



CHAPTER 5:  Object Oriented Programming with Objective-C 83 

 

Figure 5–1. An example of a class and individual objects 

Planning Classes 
Planning your classes is one of the most important steps in your development process. 

While it is possible to go back and add attributes and methods after the fact (and you 

will definitely need to do this), it is important that you know which classes are going to 

be used in your application and which basic attributes and methods they will have. 

Spending some time planning your different classes is very important at the beginning of 

the process. 

Let’s look at the bookstore example and some of the classes we will need to create. 

First, it will be important to create a Bookstore class. A Bookstore class will contain 

information such as the bookstore name, address, phone number, and logo. By placing 

this information in a class rather than hard coding it in your application will allow you to 

easily make changes to this information in the future. Also, if your bookstore becomes a 

huge success and you decide to open up another one, you will be prepared, because 

you can create another object of class Bookstore. See Figure 5–2. 



CHAPTER 5:  Object Oriented Programming with Objective-C 84 

 

Figure 5–2. The Bookstore class 

We have also planned out the Customer class. Notice how the name has been broken 

into First Name and Last Name. This is very important to do. There will be times in your 

project when you may want to use only the first name of a customer, and it is hard to 

separate the first name from the last if you didn’t plan on being able to do so ahead of 

time. Let’s say you want to send a letter to a customer letting them know about an 

upcoming sale. You do not want your greeting to say, “Dear John Doe.” It would look 

much more personal to say, “Dear John.” See Figure 5–3. 

 

Figure 5–3. The Customer class 

You will also notice how we have broken out the address into its different parts instead 

of grouping it all together. We separated the Address Line 1, Address Line 2, City, State, 



CHAPTER 5:  Object Oriented Programming with Objective-C 85 

and ZIP. This is very important and will be used in your application. Let’s go back to the 

letter you want to send informing your customers of a sale in your store. You might not 

want to send it to all of the customers that live in different states. By separating the 

address, you can easily filter out those customers you do not want to include in your 

mailings. 

We have also added the attribute of Favorite Book Genre to the Customer class. We 

added this to show you how you can keep many different types of information in each 

class. This field may come in handy if you have a new mystery title coming out and you 

want to send an e-mail alerting customers who are really interested in mysteries. By 

storing this type of information, you will be able to specifically target different portions of 

your customer base. 

A Book class is also necessary in order to create our bookstore. We will store 

information about the book such as author, publisher, genre, page count, and edition 

number (in case there are multiple editions). The Book class will also have the price for 

the book. See Figure 5–3. 

 

Figure 5–4. The Book class 

We also added another class called the Sale class. This class in more abstract than the 

other classes we have discussed, because it does not describe tangible objects. You 

will notice how we have added a reference to a customer and a book to the Sale class. 

Because the Sale class will track sales of books, we will need to know which book was 

sold and to which customer. See Figure 5–5. 



CHAPTER 5:  Object Oriented Programming with Objective-C 86 

 

Figure 5–5. The Sale class 

Now that we have planned out the attributes of the classes, we will need to look at some 

methods that each of the classes will have. We will not add all of the methods now, but 

the more planning you can do at the beginning, the easier it will be for you down the line. 

Not all of your classes will have many methods, and some may not have any methods at 

all. For the time being, we will not add any methods to the Book class or the Bookstore 

class. We will focus on our other two classes. 

For the Customer class, we will add methods to list the purchase history of that client. 

There may be other methods that you will need to add in the future, but for now, we will 

add just that one. Your completed Customer class diagram should look like Figure 5–6. 

You will notice the line near the bottom separates the attributes from the methods. 

 

Figure 5–6. The completed Customer class 



CHAPTER 5:  Object Oriented Programming with Objective-C 87 

For the Sales class, we have added three methods. We added the Charge Credit Card, 

Print Invoice, and Checkout. For the time being, you do not need to know how to 

implement these methods, but you need to know that you are planning on adding them 

to your class. See Figure 5–7. 

 

Figure 5–7. The completed Sale class 

Now that you have finished mapping out the classes and the methods you are going to 

add to them, you have the beginnings of a unified modeling language (UML) diagram. 

Basically, this is a diagram used by developers to plan out their classes, attributes, and 

methods. Starting your development process with creating such a diagram will help you 

a lot in the long run. An in-depth discussion of UML diagrams is beyond the scope of 

this book. If you would like more information about this subject, smartdraw.com has a 

great in-depth overview of them. See Figure 5–7. 

www.smartdraw.com/resources/tutorials/uml-diagrams/ 

http://www.smartdraw.com/resources/tutorials/uml-diagrams


CHAPTER 5:  Object Oriented Programming with Objective-C 88 

 

Figure 5–8. The completed UML diagram for the bookstore 

Now that we understand the objects we are going to be creating, we need to create our 

first object. In order to do so, please launch Xcode. Click on File ➤  New Project. Select 

Application under Mac OS X on the left-hand side. One the right-hand side, select 

Cocoa Application. For now, make sure the Create Document Based Application and 

Use Core Data for Storage check boxes are unchecked. See Figure 5–9. 



CHAPTER 5:  Object Oriented Programming with Objective-C 89 

 

Figure 5–9. Creating a new project 

Go ahead and save your project. You can use the name “bookstore” or any other project 

name you want. Select the Classes Folder on the left-hand side of the screen and select 

File ➤ New File. See Figure 5–10. 

 
Figure 5–10. Selecting the Classes folder 



CHAPTER 5:  Object Oriented Programming with Objective-C 90 

From the pop-up window, select Cocoa Class under the Mac OS X header, and then 

click on Objective-C Class on the right-hand side. At the bottom of the screen, you will 

be given the opportunity to choose which class this will be a subclass of. We will not go 

into detail about that choice now; you can read about inheritance later in this chapter. 

For now, select SubClass of NSObject. See Figure 5–11. 

 

Figure 5–11. Creating a new Objective-C Class 

You will now be given the opportunity to name your class.  

NOTE: For ease of use and for understanding your code, remember that class names should 
always be capitalized in Objective-C. Object variables should always be lowercase.   

Let’s create our Customer class. Type in the class name (Customer), then click Finish.  

In your Classes folder, you should have two new files. One is called Customer.h and the 

other is called Customer.m. The .h file is the header file that will contain information 

about your class. The header file will list all of the attributes and methods in your class, 

but it will not actually contain the code related to them. The .m file is the implementation 

file, which is where you write your code. 



CHAPTER 5:  Object Oriented Programming with Objective-C 91 

Double-click on the Customer.h file and you will see the window shown in Figure 5–12. 

You will notice it does not contain a lot of information currently. The first part, with the 

double slashes ( // ) are all comments and are not considered part of the code. We will 

not go into more detail about the other portions of the header file, except to say that all 

of the attributes of a class need to be inside the braces ( {} ) of the @interface portion.  

 

Figure 5–12. Your finished class 

Now let’s add attributes to the header file. 

TIP: Attributes should always start with a lowercase letter. There can be no spaces in an 
attribute name. 

For the first attribute, First Name, we will add this line to our file. 

NSString* firstName; 

This creates a string object in our class called firstName. Because all of the attributes for 

the Customer class are strings also, we will just need to repeat the same procedure for the 

other ones. When all is complete, your @interface portion should look like Figure 5–13. 



CHAPTER 5:  Object Oriented Programming with Objective-C 92 

Figure 5–13. The Customer class interface 

Now that the interface portion is complete, we will need to add our method. Methods

need to go outside of the @interface portion, but still inside of the @interface portion of

the header file. 

NOTE: A string (NSString) is nothing more than a set of characters that we as humans can read.   

-(NSArray *) listPurchaseHistory;  

That is all that needs to be done in the header file to create our class. In the next chapter

we will go into more detail about the implementation file. See Figure 8-14. 



CHAPTER 5:  Object Oriented Programming with Objective-C 93 

 

Figure 5–14. The finished customer class header file 

Inheritance 
Another major quality of OOP is inheritance. Inheritance in programming in similar to 

how you inherit characteristics from your parents. You might have inherited your eye 

color or hair color from your mother or father. Objects can, in a similar way, inherit 

attributes and methods from their parent objects. In OOP, a parent object is called a 

superclass and a child object is called a subclass. 

In Objective-C, all classes created by a programmer have a superclass, which is similar 

to a parent object. The object will inherit characteristics from that parent object. The 

object is called a subclass of the parent object. In the examples in this chapter, all of our 

classes are subclasses of the NSObject. In Objective-C, most of the time, your objects 

will be subclasses of NSObject. We could, however, create a class of printed materials 

and use subclasses for books, magazines, and newspapers. Printed materials can have 

many things in common, so we could assign variables to the superclass of printed 

materials and not have to redundantly assign them to each individual class. By doing 

this, we further reduce the amount of redundant code that is necessary for you to write 

and debug. In our example, our class was a subclass of NSObject. In Figure 5–15, you 



CHAPTER 5:  Object Oriented Programming with Objective-C 94 

will see a layout for the attributes of a printed material superclass and how that will 

affect the subclasses of Book, Magazine, and Newspaper. The attributes of the Printed 

Material class will be inherited by the subclasses so there is no need to definte them 

explicitly in the class. You will notice that the Book class now has significantly fewer 

attributes. By using a superclass, you will significantly reduce the amount of redundant 

code in your programs. 

 

Figure 5–15. Attributes of the super- and subclasses 

Why Use OOP? 
Throughout this chapter we have discussed what OOP is and we have even discussed 

how to create classes and objects, but I think it is important to discuss why you want to 

use OOP principles in your development. 

If you take a look at the popular programming languages of the day, all of them will use 

the OOP principles at least to a certain extent. Objective C, C++, Visual Basic, C#, and 

Java all require the programmer to understand classes and objects to successfully 

develop in those languages. In order to become a developer in today’s world, you will 

need to understand OOP. But why use it? 

Eliminate Redundant Code 
By using objects, you will reduce the amount of code you will have to retype. Let’s say you 

create a mechanism to print a receipt and then your company decides to create an admin 

interface to allow employees to reprint a receipt. If you placed your code to print the 

receipt in the Sales object, you will not have to rewrite this code again. This not only saves 

you time, but often will help you eliminate mistakes. If you do not use OOP and there is a 



CHAPTER 5:  Object Oriented Programming with Objective-C 95 

change to the invoice (even something as simple as a graphic change), you have to make 

sure you make the change in your desktop application and the mobile application. If you 

miss one of them, you run the risk of having the two interfaces behave differently. 

Ease of Debugging 
By having all of the code relating to a book in one object, you know where to look when 

there is a problem with the book. This may not sound like such a big deal with a little 

application, but when your application gets to hundreds of thousands or even millions of 

lines of code, it will save you a lot of time. 

Ease of Replacement 
If you place all of your code in an object, then as things change in your application, you 

can change out objects and give your new object completely different functionality, but 

it can interact with the rest of the application in the same way as your current object. 

This is similar to car parts. If you want to replace a muffler on a car, you do not need to 

get a new car. If you have code related to your invoice scattered all over the place, it 

makes it much more difficult to change items about an object. 

Advanced Topics 
We have discussed the basics of OOP throughout this chapter, but there are some other 

topics that are very important to your understanding. 

Interface 
As we have discussed in this chapter, the way the other objects interact through each 

other is with methods. We discussed the header files created when you create a class. 

This is often called the interface because it tells other objects how they can interact with 

your objects. Implementing a standard interface throughout your application will allow 

your code to interact with different objects in similar ways. This will significantly reduce 

the amount of object specific code you need to write. 

Polymorphism 
Polymorphism is the ability of an object of one class to appear and be used as an object 

of another class. This is usually done by creating methods and attributes that are similar to 

those of another class. A great example of polymorphism that we have been using is the 

bookstore. In the bookstore, we have three similar classes: Books, Magazines, and 

Newspapers. If we wanted to have a big sale on all of our inventory, we could go through 

all of the books and mark them down, then go through all of the magazines and mark 

them down, and then go through all of the newspapers and mark them down. That would 

be more work then we would need to do. It would be better to make sure all of the classes 

s



CHAPTER 5:  Object Oriented Programming with Objective-C 96 

have a markdown method, then we could call that on all of the objects without needing 

know which class they were. This would save a bunch of time and coding. 

As you are planning out your classes, look for similarities and methods that might apply 

to more than one type of class. This will save you time and speed up your application in 

the long run. 

Summary 
We’ve finally reached the end of the chapter!  Here is a summary of the things that were 
covered. 

 Object-oriented programming (OOP) 

 We discussed the importance of OOP and the reasons why all 

modern code should use this methodology. 

 Object 

 You learned about objects and how they correspond to real-

world objects. We learned that many programming objects relate 

directly to real-world objects. You also learned about abstract 

objects that do not correspond to real world objects. 

 Class 

 You learned that a class determines the types of data (attributes) 

and the methods that each object will have. Every object needs 

to have a class.  It is the blueprint for the object. 

 Creating a class 

 You learned how to map out the attributes and methods of our 

classes. 

 We used Xcode to create a class file. 

 We edited the class header file to add our attributes and 

methods. 

Exercises 
 Try creating the class files for the rest of the classes we mapped out. 
 Map out an Author class. Choose the kind of information you would 

need to store about an author. 
 For the daring and advanced: 

 Try creating a superclass called PrintedMaterials. Map out the 

attributes that class might have. 
 Create classes for the other types of Printed Materials a store more 

carry. 



 

 

97 

97 

   Chapter 

Introducing Objective-C 
and Xcode 
For the most part, all computer languages perform the typical tasks that any computer 

needs to do—store information, compare information, make decisions about that 

information, and perform some action based on that decision. Objective-C is a language 

to make these tasks easier to accomplish and understand. The real trick with Objective-

C (actually the trick with any C language) is understanding the symbols and keywords 

used to accomplish those tasks. This chapter introduces you Objective-C and Xcode—

from Objective-C’s humble beginnings as an extension to the C language to using 

Xcode (a tool to build programs using Objective-C) to build programs. By the end of this 

chapter, you will understand what Objective-C is and know how to write a simple 

application using Xcode. 

A Brief History of Objective-C 
Objective-C is really a combination of two languages: the C language and a lesser-

known language called Smalltalk. Back in the 1970s, several very bright engineers from 

Bell Labs created a language they named C that made it easy to port their pet project, 

the UNIX operating system, from one machine to another. Prior to C, people had to write 

programs in assembly languages. The problem with assembly languages is that each is 

specific to its machine, so moving software from one machine to another was nearly 

impossible. The C language, created by Brian Kernighan and Dennis Ritchie, solved this 

problem by providing a language that wrote out the assembly language for whatever 

machine it supported, a kind of Rosetta Stone for early computer languages. Because of 

its portability, C quickly became the de facto language for many types of computers, 

early PCs especially. 

Fast-forward to the early 1980s, and the C language is on its way to becoming one of 

the most popular languages of the decade. Right around this time, an engineer from a 

company called Stepstone was mixing the C language with another up-and-coming 

language called Smalltalk. The C Language is typically referred to as a procedural 

6 



CHAPTER 6:  Introducing Objective-C and Xcode 98 

language, that is, a language that uses procedures to divide up processing steps. 

Smalltalk, on the other hand, was something entirely different. It was an object-oriented 
programming language. Instead of processing things procedurally, it used programming 

objects to get its work done. This new superset of the C language became known as “C 

with Objects” or more commonly, Objective-C. 

In 1985, Brad Cox sold the Objective-C language and trademark to NeXT Computer, Inc. 

NeXT was the brainchild of Steve Jobs, who had been fired from his own company, 

Apple Computer, that very same year. NeXT used the Objective-C language to build the 

NeXTSTEP operating system and its suite of development tools. In fact, the Objective-C 

language gave NeXT a competitive advantage with all of its software. Programmers 

using NeXTSTEP and Objective-C could write more-functional programs faster than 

those writing in the traditional C language. While the hardware part of NeXT computers 

never really took off, the operating system and tools did. Quite interestingly, NeXT was 

purchased by Apple Computer in late 1996 with the intention of replacing its aging 

operating system, which had been in existence since the first Macintosh was developed 

in 1984. Four years after the acquisition, what had been NeXTSTEP reemerged as Mac 

OS X—with Objective-C still at the heart of the system. 

Understanding C Language Basics 
Even though Objective-C integrates a great object-oriented language, at the heart of 

Objective-C is C. Here is the most basic “Hello World” program written in the C 

language: 

int main(void) 
{ 
  if (printf(“Hello World”) == 0) 
     { 
       return 0; 
 } 
 else 
 { 
  return 1; 
 } 
} 

Let’s dissect this a bit. Every program must start somewhere, right? Well, for Objective-

C and C, main is the name of the procedure (which is often called a function in C) that is 

called first.  

 int main(void) 

It must be called “main”, not “Main,” “MAIN,” or anything else. C and Objective-C are 

case-sensitive languages meaning that main and Main are entirely different names. 

Functions (and main is a function) all share the following syntax when they are declared: 

 return-type functionName ( argument-list ) 



CHAPTER 6:  Introducing Objective-C and Xcode 99 

Our first function, main, has the following: 

 A return type of int: int is just shorthand for “integer.” An integer is 

a 32-bit value that has a range from –2,147,483,648 to 2,147,483,647. 

That’s a pretty large range of values! So, the function, main, must 

return an integer value to the function that called it. 

NOTE: A type is a kind of data. Integer, character, and float are all different data types. In 
Objective-C, an object is its own unique type. 

 A function name of main: As mentioned previously, main is the 

starting point of any C or Objective-C program. If we were writing a 

different function, it could be named pretty much anything, as long as 

it starts with a letter. 

 An argument list of void: void is a special type; it represents, in this 

case, the fact that there are no arguments. 

The next line contains the character {. This is the opening brace symbol and is used to 

represent the beginning of series of steps, which is commonly referred to as a block of 

code. Every language has something like this, but in other languages, the opening of the 

block may either be implied or called BEGIN. In any case, the opening brace means that 

we are defining a block. 

The third line: 

if (printf(“Hello World”) != -1) 

actually has two parts. First, is the if keyword is a special command in the C and 

Objective-C languages that performs a test on something. To know what the if is 

testing, the next part is important: 

printf(“Hello World”) 

This is a standard C function that prints formatted information to the screen. Now, the 

printf function returns a value after it completes its job. Basically, the result from the 

printf is whether the function actually worked or not. If printf returns a value greater 

than 0, the procedure worked; otherwise, it didn’t. The printf function is being passed a 

single argument, that is, the string “Hello World”. A string is nothing more that a series 

of characters grouped together. 

Therefore, printf is called and returns a value, and the if statement compares that 

value with another.  

The second part of the statement is the not-equal sign (!=): 

!= -1) 

In C and Objective-C, an exclamation point is a logical not operator, so != means “not 

equal.” In this case, the if statement is comparing the return value from the printf 

procedure with the integer constant of –1. 



CHAPTER 6:  Introducing Objective-C and Xcode 100 

The forth, fifth, and sixth lines are as follows: 

    { 
       return 0; 
 } 

This section starts off with another brace symbol, which means that another block is 

starting. In this case, the first block that occurs after the if keyword represents the things 

for the program to do if the result of the if test is true. If the printf function call returns 0, 

the test for 0 will be true. If we replace the printf function with a return value of 0, if (0 == 
0) is a true statement. Last, the closing brace (}) represents the end of this block.  

However, if the test is not true, this block is completely ignored. Also notice that the line 

ends with a semicolon (;). This character is used in C and Objective-C to indicate that 

the end of a command. Why isn’t there one on the if statement? Well, the if statement 

is not finished being defined; the return statement represents the end of the true part of 

the if statement. 

To sum it up, in the function main, if the printf statement returns a value of 0, the block 

after the if is used and this function will return a value of 0. In the C Language, a 

returned integer value of 0 typically represents a good thing. No news is good news.  

Here’s the last part of the program: 

 else 
 { 
  return 1; 
 } 

The else keyword is optionally used along with any if keyword. The block that appears 

right after the else keyword represents the things to do if the test in the if statement is 

not true. If the return value from printf is something other than 0, the else block will be 

executed. 

Okay, that’s enough C language for now. Although the C Language is at the heart of 

Objective-C and very important, the “objective” part of Objective-C is used much more 

prevalently. 

Putting the “Objective” into Objective-C 
The majority of what makes Objective-C, well, objective, is its basis in Smalltalk. 

Smalltalk is a 100 percent object oriented language, and Objective-C borrows heavily 

from Smalltalk concepts and syntax. Here are few of the high-level concepts borrowed 

from Smalltalk. Don’t worry if some these terms seem unfamiliar; they will be discussed 

in later chapters (Chapter 8 covers the basics). 

 Pretty much everything is an object. 

 Objects receive messages. In this context, the object is sometimes 

known as the receiver, since it is receiving the message. 

 Objects contain instance variables. 



CHAPTER 6:  Introducing Objective-C and Xcode 101 

 Objects and instance variables have a defined scope. 

 Classes hide an object’s implementation. 

So how do these concepts translate to Objective-C? Well, for starters, an object in 

Objective-C is defined using two different sections: @interface and @implementation. 

The @interface section defines what messages the object can respond to as well as any 

instance variables the object will be using. The @implementation section contains the 

actual code to the various messages in the @interface section.  

Why is there a split between the interface and implementation? Well, an Objective-C 

object is defined only once within a program. However, it might be used in may different 

areas of that program. Where the object is used, the program simply reads in, or 

imports, the interface; it would be inefficient if the code to that object needed to be 

replicated every time it was used. 

NOTE: It is common convention to have an object’s interface stored in a .h file and the 
implementation stored in a .m file. Both files are named after the object. So, if a Library object 
is to be defined, its interface would be in Library.h and its implementation would be in 
Library.m (remember that names are case-sensitive). 

Let’s look at a simple example of the complete definition of an Objective-C object, 

called HelloWorld. 

Here’s the interface file (HelloWorld.h): 

 

And this is the implementation file (HelloWorld.m): 

 

1 
2 
3 
4 
5 
6 
7 
8 
9 

#import <Foundation/Foundation.h> 
 
@interface HelloWorld : NSObject 
{ 
} 
 
- (void)printGreeting; 
 
@end 

10 
11 
12 
13 
14 
15 
16 
17 
18 
19 

#import “HelloWold.h” 
 
@implementation HelloWorld 
 
- (void)printGreeting 
{ 
   NSLog(@”Hello World!”); 
} 
 
@end



CHAPTER 6:  Introducing Objective-C and Xcode 102 

In the preceding example, an object, HelloWorld, is being defined. This object only has

one message defined—printGreeting. What do all of these strange symbols mean?

Using the line numbers as a reference, we can review this code line by line. 

Line 1 contains a compiler directive, #import <Foundation/Foundation.h>. In order for

this little program to know about certain other objects (i.e., the NSObject on line 3), we

need to have the compiler read other interface files. In this case, the Foundation.h file

defines the objects and interfaces to the Foundation framework. This framework

contains the definition of most of the non–user-interface base classes of the iPhone and

Mac OS X systems. What is important here is that we have a definition to the NSObject
object. On line 3 is the actual start of our object with the line @interface HelloWorld :
NSObject. HelloWorld is the object, but what does : NSObject mean? Well, the colon (:)

after our object’s name indicates that we plan to derive additional functionality from

another class. In this case, NSObject is that class. HelloWorld is now a subclass of

NSObject. 

NOTE: Why the name NSObject and not just Object? Well, recall that Mac OS X actually
started out as a port from the NeXTSTEP system? “NS” is an abbreviation for NeXTSTEP and is
used in many of the base objects in Mac OS X and iPhone OS— NSObject, NSString,
NSDictionary, and so on. 

Lines 4 and 5 simply contain the { and } characters. This block is used to define

instance variables that are used by the object, but the HelloWorld class is simple

enough that instance variables are not necessary. Later, in Chapter 9, there will be

examples where instance variables are defined and used. 

Line 7 contains a message definition for this object: - (void)printGreeting. When

you’re defining a message, that line must start with either a + or - character. In the case

of the HelloWorld object, we are using - to indicate that this message can be used after
the object is created. A + character is used for messages that can be used before the

object is created. The remainder of the message, (void) printGreeting, represents the

return value of the message. In this case, the value (void) is followed by the actual

message name, printGreeting. 

In line 9, @end indicates that the definition of the object’s interface is complete. 

That’s the complete description of the interface of the HelloWorld object—not a whole

lot here. More complicated objects simply just have more messages and more instance

variables. 

For the implementation, the source code is stored in a different file, HelloWord.m. For

starters, line 10 starts with the statement #import "HelloWorld.h". This simply allows

our object to know its own interface. While the separation of the interface and

implementation files might seem a little odd at first, this convention is very consistent in

Objective-C programming. Whenever an object is to be used, simply include its

interface. Also, the import indicates "HelloWorld.h" in quotation marks, not

<HelloWorld.h> alone. What’s the difference? Quite simply, doing an import of a file in 



CHAPTER 6:  Introducing Objective-C and Xcode 103 

quotation marks (e.g., "HelloWorld.h") indicates that the compiler is to look in the local 

project to find the file, whereas the import of <Foundation/Foundation.h> indicates to 

the compiler that the file is located in some global area for all projects. The easy way to 

remember is that if you created the file, use the double quotation marks. If not, use the 

angle brackets (< and >). 

Line 12 is the start of the implementation of the object:  

@implementation HelloWorld  

Line 14 is the definition of the object’s message, printGreeting. It looks identical to the 

message definition in the interface file. The only difference here is that code is being 

defined that implements the printGreeting message. 

Lines 15–17 form the block of code that implements the message printGreeting. For 

this simple message, the function NSLog is called. This base-level function simple takes 

in a formatted NSString object and outputs the result to the console. The NSString class 

is an Objective-C class that implements behavior of a string of characters. Why have a 

class for this? For one, it gives the framework a consistent object for representing a 

string. Plus there is a lot of functionality in NSString that can be used to manipulate, 

compare, and convert the actual data. 

NOTE: The term class is used to represent, generically, the definition or type of an object. An 
object is what is created from the class. For example, an SUV is class of vehicle; a class is a 
blueprint of sorts. A factory builds SUVs. The results are SUV objects that people drive. You can’t 
drive a class, but you can drive an object built from a class. 

The NSString object is specified here in a shorthand method. The @"Hello World!" is a 

way of quickly declaring an NSString object. The at sign (@) is the symbol used to 

indicate that the string specified is an NSString object. 

Line 19 indicates to the compiler that the definition of the implementation section is 

finished. 

But wait, there is more. Now that we have a new Objective-C class defined, how is it 

used? Here is another piece of code that uses the newly created class, the main 

program (myprogram.m): 

 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 

#import “HelloWold.h” 
 
int main(void) 
{ 
   HelloWorld* myObject = [[HelloWorld alloc] init]; 
   [myObject printGreeting]; 
 
   [myObject release]; 
   return 0; 
} 



CHAPTER 6:  Introducing Objective-C and Xcode 104 

In this new file, the program first starts by including the HelloWorld.h file, which allows 

this piece of the application access to the HelloWorld object. 

You saw a code like line 22 in our previous C example. Remember, every C Language 

and Objective-C program must have a main function. 

Line 24 is a complicated one. It defines and instantiates the HelloWorld class. You first 

see the text HelloWorld* myObject. This defines a variable named myObject of the type 

HelloWorld, which is our new class. The asterisk (*) is used to represent a pointer to the 

object. This notation basically means that we don’t want the object here; we just want a 

way to get to it, or a pointer to where it is. Think of this like a person who gives you a 

business card. You have the card, not the actual person. But the business card is a way 

of getting in touch with the person. 

NOTE: Instantiation makes a class a real object in the computer’s memory. A class by itself is not really 

usable until there is an instance of it. Using the SUV example, an SUV means nothing until a factory builds 

one (instantiates the class). Only then can the SUV be used. 

The next part of the line is [[HelloWorld alloc] init]. This is a nested call. The 

innermost bracketed instructions are executed first, so [HelloWorld alloc] is called 

first. Wait a second; we never defined the message alloc, so how is this going to work? 

Well, when HelloWorld was defined, it was defined as a subclass of NSObject. Another 

way to explain this relationship is to cal that NSObject is the parent class of HelloWorld. 

When we send the alloc message to the HelloWorld object, the system knows that 

HelloWorld doesn’t know that particular message, so it automatically passes the 

message to the parent class.  

Once [HelloWorld alloc] is called, the return value is a pointer to the newly allocated 

object (allocation means that we use part of the computer’s memory to store 

something). But we’re not done yet. The remaining part of the nested statement, the 

init message, gets executed next: [[HelloWorld alloc] init]. Now, init simply does 

some base-level initialization of the object. The final return from all of this is a pointer to 

the new object, which is the HelloWorld object. 

NOTE: In Objective-C, whenever objects are sent messages, the code must be within square 
brackets, [ and ]. 

Now that we’ve created a new object, it can be used. Line 25, [myObject 
printGreeting], puts our object to use. In this piece of code, we use our newly 

instantiated object by sending it a message printGreeting. The program will output the 

text HelloWorld!. 

Line 27 sends another message to our object—the release message. This message tells 

the system that this program is finished using the object and to release any system 

resources associated with it. 



CHAPTER 6:  Introducing Objective-C and Xcode 105 

Line 28 returns the value 0 to the caller of our main function. This indicates a successful 

execution. 

Line 29 ends the code block and the program. 

NOTE: Messages can also accept multiple arguments. Consider, for example, [myCarObject 
switchRadioBandTo:FM andTuneToFrequncy:104.7];. The message here would be 
switchRadioBandTo:andTuneToFrequency:. After each colon, the argument values are 
placed when a message is actually sent. You might also notice that these messages are named 
in such a way as to make interpreting what they actually do easy to understand. Using helpful 
message names is an ideal convention to follow when developing classes, because it makes 
using the classes much more intuitive. Being consistent in naming messages is also key. 

Introducing Xcode 
Up to this point, we’ve basically played being the computer in explaining how to build an 

Objective-C application. Now, we’ll use the tools that all iPhone and Mac OS X 

developers use to develop all kinds of programs. Xcode is supplied free of charge to any 

Mac user. In fact, Xcode is included with the Snow Leopard (Max OS X 10.6) DVD. If 

you’re not using Snow Leopard, Xcode can be downloaded from Apple’s developer site 

located at http://developer.apple.com. You’ll first need to sign up for a free base 

account. Once you’re signed up, simply access the Mac Dev Center and download 

Xcode. At the time of this writing, Xcode 3.2.2 is the most current release.

http://developer.apple.com


CHAPTER 6:  Introducing Objective-C and Xcode 106 

Starting Up Xcode 
Xcode, by default, is installed in the /Developer/Applications folder right from the main 

hard drive (Macintosh HD if you’re using the default hard drive label); it is not installed in 

the user’s home directory. 

When you first open Xcode, you’ll see the screen in Figure 6–1. 

 

Figure 6–1. Xcode opening screen 

Figure 6–1 a great screen to always keep visible at the launch of Xcode. Until you are 

more comfortable with Xcode, keep the Show this window when Xcode launches 

check box checked. This window allows you to select the most recently created 

projects, access the developer documentation (that’s the Getting started with Xcode 

icon), and quickly link to Apple’s developer web site. Regardless of which document set 

is chosen, all have a wealth of information for both beginning and advanced users. 

We are going to start a new project, so click the Create a new Xcode project icon. 

Whenever you want to start a new iPhone or Mac OS X application, library, or anything 

else, use this icon. Once a project has been started and saved, the project will appear in 

the Recent Projects list on the right-hand portion of the display.



CHAPTER 6:  Introducing Objective-C and Xcode 107 

Creating Your First Project 
For this first Xcode project, we’re going to choose something very simple. Make sure 

that a Mac OS X application is chosen. Then ensure that Command Line Tool is 

selected, as shown in Figure 6–2. 

 

Figure 6–2. Choosing a new project from a list of templates 

Our first project is going to be a simple application that doesn’t require the complexities 

of a graphical interface. Next, ensure that Foundation is chosen in the Type drop-down. 

This option gives the application access to the main foundation framework that contains 

objects like NSObject, NSString, and so forth. At this point, simply press the Return key 

or click the Choose. . . button at the bottom of this window. 

Xcode responds to the new project request by asking where the new project should be 

placed and what its name should be. It doesn’t matter where the project is stored as 

long as its somewhere within the current user’s home directory (because of permission 

issues). After choosing the location, type a project name of My First App. Then, click the 

Save button or simply press the Return key. 

Once the new project name and location have been established, Xcode starts creating 

the necessary base files for the project. Once that is completed, Xcode display the main 

screen, where we will do all of the editing and debugging, and in our case, viewing of the 

output from our program (see Figure 6–3). The pane on the left lists all of the files that 

are associated with our project. The pane on the right is multipurpose but is generally 

used for editing the source code from the project. When you’re first starting a project, it 

displays all of the main files that make up the project—the framework, the source files, 

and more.  



CHAPTER 6:  Introducing Objective-C and Xcode 108 

 

Figure 6–3. The main Xcode window or project window 

There is quite a bit of information on this page. Note the toolbar of icons at the top of the 

window. The toolbar is completely customizable, but the default that Xcode provides is 

perfectly fine. 

First, open a list of the project files by clicking the gray triangle right next to the My First 
App icon in the Groups & Files pane. You will see a list of groups displayed as folders. 

These are not directories on a disk, simply names that group different sets of files. This 

is extremely helpful, especially with larger projects. 

Adding a New Class 
The first group is Source. Click its gray arrow to reveal its files and then select the My 
First App.m source file (see Figure 6–4). Next, press Shift+ +E (or select View ➤  
Zoom Editor In). This reserves the entire right pane for the editor. The editor pane now 

shows the boilerplate application that Xcode created for us when we first created the 

project. There is some code shown for what is called an NSAutoreleasePool, which is 

used to manage object memory. For now, we’re going to add in the HelloWorld object 

discussed earlier. But first, simply delete the line: 

 ‘NSLog(@”Hello, World!”);’ 

We’re going to insert our own code here that will, in effect, do the same thing using an 

Objective-C object that we create. You can also save the file here by using +S (or File 

➤  Save). 



CHAPTER 6:  Introducing Objective-C and Xcode 109 

 

Figure 6–4. Fully zoomed editor 

Once you’ve modified the code, your screen should look a lot like what’s pictured in 

Figure 6–4. Next, we’re going to add a new file to our project. Start this process by 

selecting a new file by pressing +N (or File ➤  New File. . .). 

This will bring up the New File dialog shown in Figure 6–5. We are going to create a Mac 

OS X Objective-C class that is a subclass of NSObject. The screen highlights the choices 

that are needed. 

Press Return or click the Next button to display the next dialog to name the new 

Objective-C class (see Figure 6–6). Type HelloWorld.m as the file name. Make sure the 

Also create “HelloWorld.h” check box is checked. The location on your screen will be 

different than the one shown; just leave the location unchanged from its default. Now, 

simply press the Return key or click the Finish button in the dialog. 



CHAPTER 6:  Introducing Objective-C and Xcode 110 

 

Figure 6–5. New File dialog 

 

Figure 6–6. Specifying the file name and location in the New File dialog 



CHAPTER 6:  Introducing Objective-C and Xcode 111 

NOTE: The Add to Project drop-down should already be set to My First App. This tells Xcode 
which project to add the new files to. The Targets check box and list show which executables 
these new files will be associated to. This allows Xcode to know about its dependencies. This 
means that Xcode will know that the program that is being built (My First App) needs these files. 
Now that you now know all this, in most circumstances, it will not be necessary to change 
anything other than the file name. 

Your main screen should look like Figure 6–7. The HelloWorld.h file with the object’s 

@interface section is now in the editor’s main window. 

 

Figure 6–7. The project with the new object’s interface in the editor 

This code should look familiar from the examples earlier. There are a few differences 

however. First, a lot of text starts with double slash characters (//). Double slashes 

indicate a comment, so any text on the same line appearing after // is considered a 

comment. Comments don’t do anything but help in explaining what’s going on in the 

code. 

Next, the line with @interface has the beginning brace ({) attached to the end of the line. 

The C and Objective-C languages are both very free form, so the braces don’t have to 

be on separate lines like in our earlier examples. After the ending brace (}) but before 

@end, add the following line: 

 - (void)printGreeting; 



CHAPTER 6:  Introducing Objective-C and Xcode 112 

This specifies our message that the HelloWorld object will respond to. The @interface
section (please note that this is just the interface section and not the entire file) should

now look like this (leave the #import statement): 

@interface HelloWorld : NSObject { 

} 

- (void)printGreeting; 

@end 

If you want, you can save the file now by pressing +S (or selecting File ➤  Save). If you

forget to save, don’t worry; the system will save all our changes whenever we build and

run of the application. 

Next, click the HelloWorld.m file in the project. The file should look like the one shown in

Figure 6–8. 

Figure 6–8. The boilerplate HelloWorld.m file 

Now, we need to add the code to the message we placed in the @interface section. In

the @implementation section, before the @end, place the following code: 

- (void)printGreeting { 

 NSLog(@"Hello World!");

} 



CHAPTER 6:  Introducing Objective-C and Xcode 113 

This should also look familiar from our earlier examples. This code makes the 

printGreeting message actually work. The updated implementation file should look like 

this: 

@implementation HelloWorld 

 

- (void)printGreeting { 

 NSLog(@"Hello World!"); 

} 

 

@end 

Okay, we have created an interface and an implementation file. To use the new class, 

we need to instantiate the HelloWorld object in the main application. Click the My First 
App.m file in the Groups & Files pane. Add the following code right after the comment // 
insert code here...: 

 HelloWorld* myObject = [[HelloWorld alloc] init]; 

 [myObject printGreeting]; 

 [myObject release]; 

Again, this code should look very familiar, since it present in the example earlier in this 

chapter. Next, we need to import the HelloWorld object. Add the following line after 

import of the Foundation.h file: 

#import "HelloWorld.h" 

Now this part of the program can use the HelloWorld object, because it now knows 

about the object’s interface. The My First App.m code should look something like this: 

#import <Foundation/Foundation.h> 

#import "HelloWorld.h" 

 
int main (int argc, const char * argv[]) { 

    NSAutoreleasePool * pool = [[NSAutoreleasePool alloc] init]; 

 

    // insert code here... 

    HelloWorld* myObject = [[HelloWorld alloc] init]; 

    [myObject printGreeting]; 

    [myObject release]; 

  

    [pool drain]; 

    return 0; 

} 

This should look very similar to our earlier example. Obviously, the NSAutoreleasePool is 

something new, and the main function looks a little different.  

 int main (int argc, const char * argv[]) 



CHAPTER 6:  Introducing Objective-C and Xcode 114 

While its not important to our little program, the preceding two variables are passed as 

arguments to main. These arguments hold information about anything passed to this 

program from the command line. They can be completely ignored for now. In fact, if you 

simply change the line to look like our example, int main (void), the program will still 

execute normally. 

Building and Running the New Program 
Now, it’s time to build and run our program. We do so by clicking the Build and Run 

icon in the top toolbar of Xcode. If you haven’t saved any of the files, you will be 

presented with the dialog shown in Figure 6–9 before building can proceed. 

 

Figure 6–9. The “Save before building?” dialog is shown only if there are unsaved files. This is one of the few 
ways to perform a “save all” operation in Xcode. 

Click the Save All button, and the build will start. If the steps in this example were 

followed correctly, you should see something like Figure 6–10. If there were errors, go 

back and review the code to make sure that the various pieces of code match the 

examples outlined in this chapter. 



CHAPTER 6:  Introducing Objective-C and Xcode 115 

 

Figure 6–10. The resulting output of your first Objective-C program! 

This view is the debugging view. The important thing to see here is the output from the 

HelloWorld object. The bottom pane of the display contains the program’s output. The 

output we are interested is actually in bold, so we can see it easily: 

2009-10-19 15:25:04.195 My First App[5223:a0f] Hello World! 

The date, time, and other information is just standard NSLog information that is printed 

before the actual output; NSLog is a system logging function after all. You can get back 

to the original view by pressing +0 (that’s command + zero), or by selecting the 

Project ➤  Project (yep, you read that right) menu option. 

Summary 
Well, this chapter covered a lot of information—from the origins of the C and Objective-

C languages to actually writing, building, and running your very own program. The 

examples were very simple, but hopefully, they’ve whetted your appetite for more 

complex applications using Objective-C and Xcode. In later chapters, you can expect to 

learn more about object-oriented programming as well as more about what Objective-C 

can do. Pat yourself on the back, because you’ve learned a lot already. Here is a 

summary of the items presented in this chapter: 

 The origins and brief history of the Objective-C language 

 A simple C language program, HelloWorld 

 An Objective-C version of that same program 

 The @interface and @implementation sections of a program 



CHAPTER 6:  Introducing Objective-C and Xcode 116 

 An introduction to Xcode, including entering and compiling the 

HelloWorld.m source file 

Exercises 
 Play around with compiling. Change the text “Hello World!” to 

something more interesting; maybe print your name instead. 

 Add a new method. Right now, printGreeting is the only method in 

the program. Try adding the new method printTheMeaningOfLife and 

have it print something different than printGreeting. 

 Create a third method that calls the printGreeting method and then 

the printTheMeaningOfLife method. Modify main so that this new 

method is called. 



 

 

117

117 

   Chapter 

Objective-C Classes, 
Objects, and Methods 
If you haven’t already read Chapter 6, please do so before reading this one, because it 

provides a great introduction to some of the basics of Objective-C. This chapter 

embellishes that foundation a bit more. Coming out of this chapter, you can expect to 

have a greater understanding of the Objective-C language and how to use the basics to 

write simple programs. For Mitch personally, the best way to learn is take small 

programs and write (or rewrite) them in Objective-C just to see how the language works. 

This chapter will cover in more detail what composes an Objective-C class and how to 

interact with Objective-C objects via methods. We will use a simple radio station class 

as an example of how an Objective-C class is written. This will hopefully impart an 

understanding of how an Objective-C class can be used. This chapter also teaches you, 

by example, how to think out a design for objects that are needed to solve a problem. In 

this chapter, we’ll cover how to create custom objects as well as how to use existing 

objects provided in the Foundation classes. 

If you’re coming from a C-like language, you’ll find that Objective-C has several 

similarities. And, as described in Chapter 6, Objective-C’s roots are firmly planted in the 

C Language. This chapter will extend Chapter 6’s topics and bake in some of the 

concepts described in Chapter 8. 

Creating an Objective-C Class 
Chapter 6 introduced some of the common elements of the Objective-C language, so 

let’s quickly review them: 

 @interface: This keyword is used to define an interface to new 

Objective-C class. This is written in an .h, or header, file. 

7 



CHAPTER 7: Objective-C Classes, Objects, and Methods 118 

 @implementation: This keyword is used to define the actual code that 

implements the methods defined in the interface. This is written in an 

.m, or Objective-C class, file. 

 Methods: These are names defined in the @interface section of a 

class and implemented in the @implementation section in the .m file.  

This chapter will go into more detail of the different components of an Objective-C class.  

As explained in Chapter 6, an Objective-C class consists of an interface and a 

corresponding implementation. For now, let’s concentrate on the interface. At the most 

basic level, the interface of a class tells us the name of the class, what class it’s derived 

from, and what messages the class understands. Here is a sample of the first line from 

a class’s interface: 

@interface RadioStation : NSObject 

In the preceding example, the class name is RadioStation. The colon (:) after the class 

name indicates that the class is derived from another class; that is, the RadioStation 

object inherits functionality from the NSObject class. Put another way, in our sample, 

the RadioStation class is derived from the NSObject class. 

TIP: If your object is not inheriting from any other foundation class always inherit from 
NSObject. Without it, your class will be worthless. NSObject provides the base functions that 
make new objects behave correctly.  

Once the class name is defined, the rest of the interface file contains the main guts of 

the class; see Listing 7–1. 

Listing 7–1. An Interface File, RadioStation.h 

 

 

 
 
 
 

 
 
 
 
 

1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

11 

12 

13 

14 

15 

16 

17 

18 

19 

20 

21 

@interface RadioStation : NSObject 

{ 

 NSString* name; 
 double frequency; 
 char  band; 
} 

 

+ (double)minAMFrequency; 

+ (double)maxAMFrequency; 

+ (double)minFMFrequency; 

+ (double)maxFMFrequency; 

 

 

- (id)initWithName:(NSString*)name 

  atFrequency:(double)freq; 
- (NSString *)name; 

- (void)setName:(NSString*)newName; 

- (double)frequency; 

- (void)setFrequency:(double)newFrequency; 

 

@end 

Interface Declaration, 
Instance Variables 

Class Methods 

Instance 
Methods 



CHAPTER 7: Objective-C Classes, Objects, and Methods 119 

Declaring Interfaces and Instance Variables 
An Objective-C class is defined by its interface. Since objects, for the most part, are 

communicated with using messages, the interface of an object defines what messages 

the object will respond to. Lines 1–6 start the definition of the class’s interface by 

defining its name (sometimes called the type) and the inherited class. Next, there is a 

block, defined within the braces ({ and }). This block is used to define variables that are 

used by the instance of this class. These are called instance variables. 

Whenever the RadioStation class is instantiated, the resulting RadioStation object has 

access to these variables. Furthermore, these variables are only for a specific instance. 
If there are ten RadioStation objects, each object has its own variables independent 

from the other objects. This is also referred to as scope, in that the object’s variables 

are within the scope of each object. 

Sending Messages (Methods) 
Every object has methods. In Objective-C, the common concept to interact with an 

object is sending an object a message: 

 [myStation frequency]; 

The preceding line will send a message to an instance of the RadioStation class named 

myStation. In our example, myStation is referred to as the receiver, since it receives the 

message. The message is used to select which method will be called within the object. 
These method names that appear in a message, like the preceding one, are called 

selectors. Since a message selects the method based on the name, for all practical 

purpose, a message and a method name are synonymous. 

If the class does not understand a message, that message is passed to the parent 

object, in this case, NSObject. If that parent object doesn’t understand the message, the 

message is passed to its parent and so on up the chain until the message is either found 

or not. This behavior is called dynamic binding, which means the method is found at 

runtime instead of compile time. Dynamic binding allows an Objective-C program to 

react to changes while the program is running. This is one of the huge advantages 

Objective-C has over other languages. 

Messages can also have parameters passed along with them, for example: 

 [myStation setFrequency: 104.7]; 

The message is setFrequency:. The colon indicates that the message needs a 

parameter. Messages can have several parameters, as in the following example: 

 myStation = [[RationStation alloc] initWithName:@"KZZP" atFrequency: 104.7]; 

In the preceding example, the message we’re interest in is 

 initWithName:atFrequency: 

In this case, the message consists of two parameters: the station name and its 

frequency. What’s interesting about Objective-C compared to other languages is that 



CHAPTER 7: Objective-C Classes, Objects, and Methods 120 

the methods basically are named parameters. If this were a C++ or Java program, the 

call would have been: 

 myObject = New RadioStation("KZZP", 104.7); 

While a RadioStation object’s parameters might seem obvious, having named 

parameters can be a bonus, because they more or less state what the parameters are 

used for or what they do. Here are some examples: 

[NSDictionary dictionaryWithContentsOfFile: filename]; 
[myString characterAtIndex: 1]; 
[myViewController willRotateToInterfaceOrientation: portrait duration: 60]; 

Using Class Methods 
A class doesn’t have to be instantiated to be used. In some cases, classes have 

methods that can actually perform some simple operation and return a value. These 

methods are called class methods. In Listing 7–1, the method names that start with a 

plus sign (+) are class methods—all class methods must start with a + sign. 

Class methods have limitations. One of the biggest is that none of the instance 

variables can be used. Well, technically Xcode allows instance variables to be coded in a 

class method. The code will compile with a warning, but accessing or using the 

instance variable does nothing—just don’t do it. Being unable to use instance variables 

makes sense since we haven’t instantiated anything. A class method can have its own 

local variables within the method itself but can’t use any of the variables defined as 

instance variables.  

A call to a class method would look like this: 

 [RadioStation minAMFrequency]; 

Notice that the call is very similar to how a message is passed to an instantiated object. 
The big difference is that instead of an instance variable, the class name itself is used. 
Class methods are used quite extensively in the Mac OS X and iPhone OS frameworks. 
They are used mostly for returning some fixed or well-known type of value or to return a 

new instance of an object. These types of class methods are sometimes referred to as 

factory methods, since, like a factory, they create something new—in this case, a new 

instance of a class. Here’s a factory method example: 

1. [NSDate timeIntervalSinceReferenceDate]; // Returns a number 
2. [NSString stringWithFormat:@"%d", 1000]; // Returns a new NSString object 
3. [NSDictionary alloc];            // Returns a new uninitialized NSDictionary 

object. 

All of the preceding messages are class methods being called. 

Line 1 simply returns a value that represents the number of seconds since January 1, 

2001, which is the reference date. 

Line 2 returns a new NSString object that has been formatted and has a value of 1000. 

Line 3 is a form that is very commonly used, because it actually allocates a new object. 
Typically, the line is use not by itself but in a line like this: 



CHAPTER 7: Objective-C Classes, Objects, and Methods 121 

 myDict = [[NSDictionary alloc] init]; 

The preceding call is a compound call. The [NSDictionary alloc] class method 

returns a new NSDictionary object. That object is then sent the init instance method, 

which is used within a class to initialize itself, such as setting up instance variables. The 

init function then returns the new object back to the caller. 

Where are the class variables? Well, the Objective-C specification doesn’t have any 

class variables per se. Some consider static variables that are declared outside of the 

interface block to be class variables. The problem is that an instance of that class, and 

even other classes, have access to them as well. For all practical purposes, Objective-C 

does not have any class variables. 

Using Instance Methods 
Instance methods (lines 13–19 in Listing 7–1) are methods that are only available once a 

class has been instantiated, for example: 

 

 

 

 

Lines 3 and 4 send a message to the RadioStation object: line 3 calls the method to set 

the frequency, and line 4 retrieves it. The frequency is stored with the object in the 

frequency instance variable. Furthermore, instance methods have access to the 

instance variables defined in the interface declaration section of the class. All instance 

methods must start with a hyphen (-); this easily denotes them from class methods, 

which use a plus sign. 

Working with the Implementation File 
Now that you’ve seen what an interface file looks like, let’s take a look at the 

implementation file. First, the interface file had an .h extension, RadioStation.h for 

example. The implementation file has an .m extension, like RadioStation.m as shown in 

Listing 7–2.  

Another important thing to note is that the interface and implementation files have the 

same name (excluding the extension). This convention is used universally: while there is 

nothing preventing an interface and an implementation file from having different names, 

having different names can cause much confusion, and tools like Xcode won’t work as 

well. For example, the Xcode key sequence Command + up-arrow (  + ) moves 

between implementation and interface file, and it will not work if the two file names are 

not the same. 

1 
2 
3 
4 
5 
6

RadioStation *myStation;       // This declares a variable to hold the 
RadioStation Object. 
myStation = [[RadioStation alloc] init]; // This creates a new object and puts 
it in my variable. 
[myStation setFrequency: 104.7];   // This sets the frequency of the myStation 
object



CHAPTER 7: Objective-C Classes, Objects, and Methods 122 

Listing 7–2. Part of Our Implementation File 

  

When Xcode creates a class, it creates a very rudimentary stub of an implementation

file. Listing 7–2 starts with two #import statements. An #import statement tells the

compiler to read in the specified file, because the compiler needs to know about certain

predefined things. For example, in our interface file, the RadioStation class is a

subclass of NSObject. The NSObject class needs to be defined for the program to

compile successfully. In our case, line 1 imports the Cocoa.h file. This file (which

imports many other files as well) defines the NSObject class for our program. 

Although there is an NSObject.h file that could be imported instead, one of our instance

variables defined in the interface file is an NSString class. Therefore, we need to import

NSString.h. But because NSString.h is also imported with Cocoa.h, it’s a lot easier to

just import everything in the Cocoa framework with one #import statement. It takes a

just a microsecond longer to compile and doesn’t affect the final application’s

performance; plus, we won’t have to worry if we change our RadioStation class to

require another class, like NSDctionary. 

The second #import statement reads in our interface file for the class. As the compiler

goes through our implementation (.m) file, it needs to know what class it is implementing,

and the interface file provides all the information that it needs. 

1 

2 

3 

4 

5 

6 

7 

8 

9 

10

11

12

13

14

15

16

17

18 

#import <Cocoa/Cocoa.h>

#import “RadioStaion.h” 

@implementation 

+ (double)minAMFrequency { 

 return 520.0; 

} 

+ (double)maxAMFrequency { 

 return 1610.0; 

} 

+ (double)minFMFrequency { 

 return 88.3; 

} 

+ (double)maxFMFrequency { 

 return 107.9;

} 

Import of interface
files and header files. 

Start of implementation 

Methods 



CHAPTER 7: Objective-C Classes, Objects, and Methods 123 

NOTE: Look at the #import statements: one uses angle brackets (< >) and the other uses plain 
double quotation marks (" "). The difference is a file that is in the angle brackets indicate a 
system-level file and are located using a predefined path that Xcode automatically sets up for our 
project. Any file that has double quotation marks is searched for in the current project. In our 
example, the RadioStation.h interface file is part of our project, so we use double quotation 
marks, whereas the Cocoa.h file is a system file and uses the angle brackets. 

Implementing Methods 
Listing 7–2 is a very simple example, but it demonstrates what many methods look like 

in a class. First of all, if we look at the implementation and interface files for one of the 

class methods, we can see the similarities. The following line is from the interface file:  

+ (double)minAMFrequency; 

We can see it is a class method because it starts with a plus sign. The next item 

(double) is the type of value the method will return, in our case, a double. The next part 

in the interface file is simply the name of the method, minAMFrequency.  

The following line is from the implementation file: 

+ (double)minAMFrequency { 

 return 520.0; 

} 

 This line represents an implementation of the method defined in the interface. The word 

“implementation” indicates that the function is coded here. It looks nearly identical to 

the interface file but now contains a block with some code in it rather than simply ending 

with a semicolon. 

In our example, our implementation of the minAMFrequency class method simply 

performs a return of numeric value (a double) of 520.0. 

Generally, a class has a definition of a method in an interface file and the actual code of 

the method in an implementation file. 

Now, we will look at the implementation of an instance method (see Listing 7–3). The 

big differences between an instance method and a class method are that instance 

methods have the option to use the instance variables defined in the interface file; plus, 

instance methods are only available once the class has been instantiated. 

Listing 7–3. An Implementation of an Instance Method 

 
 
 
 
 

1 

2 

3 

4 

5 

6 

7 

8 

9 

- (id)initWithName:(NSString *)newName atFrequency:(double)newFreq { 

 self = [super init]; 
 if (self != nil) { 
  name = newName; 
  frequency = newFrequency; 
 } 
 

 return self; 
} 



CHAPTER 7: Objective-C Classes, Objects, and Methods 124 

Listing 7–3 is the implementation of one of the instance methods of our radio station 

class. It is an initialization method that accepts a new station name and frequency. 
Many OS X and iPhone OS classes have similar initialization instance methods. Instead 

of simply initializing the class and then individually setting various values, many class 

initialization methods allow special initialization or, in our case, multiple values to be 

passed on initialization. 

In our example, line 1 is the interface to our method, and it contains two parameters, the 

newName and newFrequency variables. To use this method, the caller would simply do the 

following: 

 RadioStation myStation = [[RadioStation alloc] initWithName:@"WOW FM" 
                     atFrequency: 102.5]; 

This method is also defined to return an id value. An id is a generic object, and all 

Objective-C objects are of type id, just like the class RadioStation is an object. Now, 

look at the rest of the implementation.  

Line 2 references two special variables that we don’t have to define anywhere. The 

keyword self is used to mean “this instance of this class,” so line 2 is assigning “this 

instance of this class” the value returned from the use of the second special variable: 

super init. The keyword super is short for “superclass,” which can be thought of as 

“the parent of my class.” Any initialization type of a method will typically start with 

something that looks similar to line 2. 

Why is line 2 even necessary? Well, if we have an object that is derived from another 

object (remember, the class is declared as RadioStation : NSObject), we need to tell 

the parent object to initialize itself. The parent will do the same by telling its parent to 

initialize itself and so on up the chain to the topmost object. If another class used ours 

as a parent, our code would also have to eventually get an init call so RadioStation 

can be initialized. This is standard convention in the real world of Objective-C. A class 

needs to tell its parent to initialize when the class is created, and it needs to tell its 

parent to deallocate itself whenever the class is going away. 

Line 3 checks to see if the [super init] call worked or not. If it worked, the value of 

self will be something other than nil, which is a value that effectively means “not 

initialized.”  

Lines 4 and 5 set up the instance variables to the values passed into this method. 

Line 8 returns self to the caller. Just like the call to [super init], our initialization 

function needs to return the new object back to the caller. 



CHAPTER 7: Objective-C Classes, Objects, and Methods 125 

Using Our New Class 
We’ve created a simple RadioStation class, but by itself, it doesn’t accomplish a whole 

lot. In this section, we will create the Radio class and have it maintain a list of 

RadioStation classes. Let’s start up Xcode (see Figure 7–1) and create a new project 

named RadioSimulation. 

 

Figure 7–1. Open Xcode, so you can create a new project. 

Make sure you choose a Mac OS X application, and select the Command Line Tool 
template, as shown in Figure 7–2. Also ensure that Foundation is chosen for the type. 



CHAPTER 7: Objective-C Classes, Objects, and Methods 126 

 

Figure 7–2. Selecting a template in the New Project window 

At this point, you should see the screen shown in Figure 7–3. 

 

Figure 7–3. The main Project window 



CHAPTER 7: Objective-C Classes, Objects, and Methods 127 

Now, let’s add in our new objects. First, we’ll create our RadioStation object. Open the 

Source group in the Groups & Files pane, right-click the Source group, and select New 
File… as shown in Figure 7–4. 

 

Figure 7–4. Adding a new file 

The next screen, shown in Figure 7–5, asks for the new file type. Simply choose 

Objective-C class from the Mac OS X group. Make sure that the Subclass of drop-

down is set to NSObject. Then click Next. 



CHAPTER 7: Objective-C Classes, Objects, and Methods 128 

 

Figure 7–5. Selecting the new file type 

Now, the dialog shown in Figure 7–6 will be displayed to prompt you for the new file 

name. Change untitled.m to RadioStation.m. Make sure that the “R” and “S” are 

capitalized. While the file and class names technically don’t need to be the same, it’s 

the established convention, and thus the way to avoid confusion. 

 

Figure 7–6. Giving the new file a proper name  



CHAPTER 7: Objective-C Classes, Objects, and Methods 129 

As shown in Figure 7–6 ensure that the Also create “RadioStation.h” check box is 

checked (this box is normally checked by default). 

Our project window should now look like Figure 7–7. 

 

Figure 7–7. Our newly created file in the project window 

Click the RadioStation.h file, and press  +  + E (Shift + Command + E) to expand 

the source code window. Pressing  +  + E a second time will return to the split 

view. Notice that the stub of our new RadioStation class already present. Now, fill in 

the empty class to look like Listing 7–1, our RadioStation interface file.  

The RadioStation.h file now defines the instance variables, class methods, and instance 

methods of our new class. Let’s move on to the implementation file.  

The implementation file we’ll use here has been simplified a bit from our example several 

pages ago but will work perfectly for our radio station simulation. Click the 

RadioStation.m file, and let’s put code to our class as shown in Listing 7–4. 



CHAPTER 7: Objective-C Classes, Objects, and Methods 130 

Listing 7–4. 

#import "RadioStation.h" 
 
@implementation RadioStation 
 
+ (double)minAMFrequency { 
 return 520.0; 
} 
 
+ (double)maxAMFrequency { 
 return 1610.0; 
} 
 
+ (double)minFMFrequency { 
 return 88.3; 
} 
 
+ (double)maxFMFrequency { 
 return 107.9; 
} 
 
- (id)initWithName:(NSString *)newName atFrequency:(double)newFreq { 
 self = [super init]; 
 if (self != nil) { 
  name = [newName retain]; 
  frequency = newFreq; 
 } 
 return self; 
} 
 
- (NSString *)description { 
 return [NSString stringWithFormat:@"Name: %@, Frequency: %.1f", name, 
frequency]; 
} 
 
- (void)dealloc { 
 [name release]; 
 [super dealloc]; 
} 
@end 

We will come back to a few items in Listing 7–2 and explain them further in a moment. 
However, with the RadioStation class defined, we can now write the code that will 

actually use it. From the main project window, click the RadioSimulation.m file. Listing 

7–5 shows the default contents of the RadioSimulation.m file, which holds our main 

function and is where the program starts executing. 



CHAPTER 7: Objective-C Classes, Objects, and Methods 131 

Listing 7–5. 

#import <Foundation/Foundation.h> 
 
int main (int argc, const char * argv[]) { 
 NSAutoreleasePool * pool = [[NSAutoreleasePool alloc] init]; 
 
 // insert code here... 
 NSLog(@"Hello, World!"); 
 [pool drain]; 
 return 0; 
} 

Now, add the following highlighted code right after the comment that says:  

 // insert code here…,  

Delete the text that says “Hello World!”, as shown in Listing 7–6. 

Listing 7–6. 

 // insert code here... 
NSMutableDictionary* stations = [[NSMutableDictionary alloc] init]; 
 RadioStation* newStation; 
  
 newStation = [[RadioStation alloc] 
      initWithName:@"Star 94 FM" atFrequency:94.1]; 
  
 [stations setObject:newStation forKey:@"WSTR"]; 
 [newStation release]; 
  
 NSLog(@"%@", [stations objectForKey:@"WSTR"]); 
  
 [stations release]; 

Don’t worry if you can’t remember the details of NSMutableDictionary from Chapter 6, 

we’ll get to that more in Chapter 10. For now, you just need to know that it’s a class 

provided by Mac OS X and the iPhone OS that offers a mechanism to store objects in a 

list with a key that can be used to retrieve that object. In our example, we are using the 

key @"WSTR", because these just happen to be the stations call letters. The key can be 

anything unique to items in a list, so it just seemed appropriate to use the call letters of 

the station in our example. 

Click the Build and Debug button on the Xcode menu bar (see Figure 7–8) to build and 

run your program.  

 

Figure 7–8. The Xcode menu bar 



CHAPTER 7: Objective-C Classes, Objects, and Methods 132 

If there are errors, a red stop sign will appear on the offending code lines. Check the

program with the source listing, and fix the issues (or just download the project from the

Apress web site). If everything goes well and there are no compilation errors, Xcode will

switch to the Debug view shown in Figure 7–9. The bold text in the output window

should show the name of the station and its corresponding frequency. 

Figure 7–9. In the Xcode debugging window, the bottom pane is the program’s output. 

The important output to notice is what we asked our program to print: 

RadioSimulation[2353:a0f] Name: Star 94 FM, Frequency: 94.1 

This line is generated through the description method that was coded in the

RationStation.m file. This is the part of the code that needs a little more explanation. 

Overriding Default Behavior 
Our RadioStation class contains a method called description, and it appears only in

the implementation file, not the interface file. We could have defined the method in the

interface file, but we left out the method just to demonstrate a few points. First,

Objective-C is a dynamic message passing system. You can pass any message to any

object. Sometimes, objects will respond; sometimes, their parent will respond, and

sometimes, you will get a runtime error because none of the objects knows the

message.  

In our case, we are overriding a method that exists in the NSObject class. Whenever a

program uses a string formatting function like NSLog and %@ is specified, the object is 



CHAPTER 7: Objective-C Classes, Objects, and Methods 133 

permitted to print information about itself. In this case, the NSLog method calls the 

object’s description method to get that information. If we did not implement a 

description method, the NSObject class would have eventually handled the message. 
But the point here is that we are intercepting a message that is sent from the NSLog 

function and handling it in our class instead of ignoring it. In more advanced programs, 

overriding messages become more of a standard, although it appears to be an 

exception here. 

If we did not override the description method, the program would still run, but the output 

would not be what we expected: 

RadioSimulation[2483:a0f] <RadioStation: 0x100108df0> 

What is displayed if we don’t create our own description method is actually the 

hexadecimal value that is the pointer of the object (Chapter 12 offers more information 

on pointers). For now, it's fine to just consider it gibberish!  

Taking Class Methods to the Next Level 
In our program, we’ve not at all taken advantage of the class methods for RadioStation, 

but this chapter does describe what a class method is and how it is used. Use that 

knowledge to try a few of the exercises mentioned at the end of this chapter. Just play 

around with this simple working program by adding or changing class or instance 

methods to get an idea of how they work. 

Accessing the Xcode Documentation 
We cannot emphasize enough the wealth of information provided in the Xcode 

Developer Documentation dialog. When Xcode is opened, the Help menu will appear 

in the main menu (see Figure 7–10). This is where the Developer Documentation window 

can be opened. 

 

Figure 9-10. The Xcode help menu 



CHAPTER 7: Objective-C Classes, Objects, and Methods 134 

Once opened, the search window can be used to look up any of the documentation, 

including NSDictionary class documentation, as shown in Figure 7–11. 

 

Figure 7–11. The developers' documentation window 

There are several different things to discover about this class, but in Figure 7–11, the 

arrow is pointing to two areas that are most important in this chapter. Take the time to 

look at the Class Methods and Instance Methods sections to see what the 

NSDictionary class can do. 

Summary 
Here we are at the end of another chapter. Once again, congratulate yourself for being 

able to single handedly stuff your brain with a lot of information. Here is a summary of 

what was covered in this chapter: 

 

 Objective-C classes review 

 Interface files 

 Instance variables 

 Class methods 

 Instance methods 

 Dynamic binding 

 Implementation files 

 Defining the methods interface in the interface file and putting 

code to that interface in the implementation file 



CHAPTER 7: Objective-C Classes, Objects, and Methods 135 

 Limitations when using class methods instead of instance 

methods 

 Initializing the class and making use of the instance variables 

 Making use of our new RadioStation object 

 Overriding the description method 

Exercises 
 Add more radio stations to the Radio dictionary. What happens if a 

new station is added that has the same dictionary key as an existing 

one? 

 Modify the RadioStation class using the instance variable that will 

indicate if the station is AM or FM (hint: you’ll need to change the 

initWithName:Frequency: method to accept a new parameter for the 

radio band). 

If you are feeling bold, you can try these exercises too: 

 Update the RadioStation class to validate if the frequency set is in the 

proper range once the AM or FM designation has been set. To make 

things simple, if the designated frequency is too high for the given 

band, set the frequency to the maximum of that band. For example, if 

the band is AM and the frequency is 2000.0, set the frequency to 

1620.0. 

 Using the Xcode documentation, find a way to iterate through the list 

of items in the NSMutableDictionary (hint: you need to enumerate the 

list of objects in the dictionary).  



CHAPTER 7: Objective-C Classes, Objects, and Methods 136 

  



 

 

137

137 

   Chapter 

Programming Basics in 
Objective-C 
Objective-C is a very elegant language.  It mixes the efficiency of the C language with 

the object-oriented goodness of Smalltalk.  This combination was introduced in the mid-

1980s and is still powering the fantastic applications behind the iPhone and Mac OS X.  

How does a language that is over 20 years old stay relevant and useful after all of that 

time?  Well, some of its success has to do with the fact that the two languages that 

make up Objective-C are very well tested and very well designed.  Another reason is 

less obvious; the various frameworks available for the iPhone and Mac OS X make 

developing full-featured applications much easier.  These frameworks benefit from the 

fact that they have been around for a while, which equates to stability and high 

functionality. Last, Objective-C is highly dynamic. While we won’t be focusing on this in 

this chapter, the dynamic nature of Objective-C provides a flexibility not found in many 

compiled languages.  With all of these great features, Objective-C and the 

corresponding frameworks provide an excellent palette from which a masterpiece can 

be created! 

This chapter will introduce some of the more common concepts of Objective-C, such as 

properties and instance variables, and will touch on memory management.  This chapter 

will also introduce you to a straightforward objective—create a simple project that that 

consists of a Book object and the ability to store many of these objects into a Bookstore 

and then give the bookstore the ability to list the books, add new books, and remove 

existing books. 

This does sound like a lot to accomplish, but Objective-C and the Foundation framework 

provide a wealth of other objects and methods to help us to accomplish this with ease.  

Initially, this project will start as a Command Line Tool project.  All this means is that we 

are not going to be doing anything visually complicated at this point.  If you’re among 

the eager beavers who just collectively released a sigh of disappointment, there is hope.  

A later project will take the existing objects that will be created here and hook them into 

a simple user interface using the iPhone emulator. 

8 



CHAPTER 8:  Programming Basics in Objective-C 138 

Creating a Simple Command Line Tool 
First things first, let’s start by creating the base application project.  We start by opening 

Xcode and creating a new Command Line Tool project.  While a command line tool is 

not as fun as, say, a simple iPhone application, the purpose of this initial project is to 

introduce some basic ideas before moving on to something more complicated.  In this 

program, we will create a few simple objects for what is to become our bookstore 

program: a Book object and the Bookstore object itself.  You will learn what an instance 

variable is and how to get and set the value of one.  Last, we’ll put our bookstore 

objects to use, and you’ll learn how to make use of objects once we’ve created them.  

Fire up Xcode, and start by creating a new project, as shown in Figure 8–1. 

 

Figure 8–1.  Creating the initial project using the Foundation framework 

Click the Choose button, and name the project MyBookstore.  This will create the 

boilerplate Bookstore project, as shown in Figure 8–2. 



CHAPTER 8:  Programming Basics in Objective-C 139 

 

Figure 8–2.  The Source listing of the boilerplate project 

From the project’s Groups & Files pane, right-click (or control-click) the Source group 

and click Objective-C class to add a new class.  Make sure that the class is a subclass 

of NSObject, as shown in Figure 8–3. 

 

Figure 8–3. Adding a new Objective-C class to the Bookstore project 



CHAPTER 8:  Programming Basics in Objective-C 140 

Click the Next button, and name this new object Book.m.  Make sure that the “B” in 

Book.m is capitalized, as shown in Figure 8–4.  Also make sure that the Also create 
“Book.h” check box is checked (it normally is); this option creates our interface file. 

 

Figure 8–4.  Part of the dialog for creating the new Book object 

Click the Finish button to add the new object to the project.  At this point, there should 

be a Book.h and a Book.m file in the Groups & Files pane.  Clicking the Book.h file should 

reveal something like the following: 

 

Lines 1–7 are all just comments about the file.  Of course, line 5 will have a different 

name and date than the one shown here.  The real meat of the code is from line 9 

onward.  We first #import the Foundation header file.  This file, for the most part, simply 

contains the interface declarations of base Foundation framework.  Our new object 

starts at line 11.   

Introducing Instance Variables 
Our object is simply called Book and is a subclass of NSObject.  True, we have an object, 

but it doesn’t store anything at this point.  In order for this class to be useful, it needs to 

be able to hold some information, which is done with something called instance 
variables.  When an object is used, it has to be instantiated.  Once the object is 

instantiated, it has access to its instance variables.  These variables are available to the 

1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

11 

12 

13 

14 

15 

16 

17 

18 

// 

//  Book.h 

//  MyBookstore 

// 

//  Created by Mitch Fisher on 10/25/09. 

//  Copyright 2009 __MyCompanyName__. All rights reserved. 

// 

 

#import <Foundation/Foundation.h> 

 

@interface Book : NSObject { 

 

} 

 

@end 

 



CHAPTER 8:  Programming Basics in Objective-C 141 

object as long as the object stays in scope.  Scope defines the context in which an 

object exists.  In some cases, an object’s scope may be the life of the program.  In other 

cases, the scope might be just a function or method.  It all depends on where the object 

is declared and how it’s used.  Scope will be discussed more in a bit.  For now, lets add 

some instance variables to our Book class to make it more useful. 

 

This is the same Book object from before, but now, there are three new instance 

variables placed inside the brackets, lines 12–14.  These are all NSString objects, which 

means that they can hold text information for our Book object.  So, the Book object now 

has a place to store title, author, and description information. 

Accessing Instance Variables  
Now that we have some instance variables, how can we use them?  How are they 

accessed?  As you learned in previous chapters, Objective-C objects respond to 

messages.  Unfortunately, simply declaring an instance variable doesn’t necessarily give 

us access to it.  There are two ways to access these variables.  One way is, of course, 

within our Book object.  The second way is from outside of the object—that is, another 

part of the program that uses the Book object. 

If we are writing the code for a method within our Book object, accessing an instance 

variable is quite simple.  For example, you could simply write the following: 

 title = @"Test Title"; 

Of course, the preceding line is written within the Book class.  Outside of the object, the 

title instance variable is not visible at all. Of course, outside objects need to be able to 

access these instance variables as well.  To accomplish this, you need to create two 

types of methods: a getter and a setter.  A getter is a method that returns the value of 

something in the object, typically an instance variable like the author variable from the 

Book object.  A setter is a method that updates or sets that instance variable.  Let's take 

1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

11 

12 

13 

14 

15 

16 

17 

18

// 

//  Book.h 

//  MyBookstore 

// 

//  Created by Mitch Fisher on 11/1/09. 

//  Copyright 2009 __MyCompanyName__. All rights reserved. 

// 

 

#import <Cocoa/Cocoa.h> 

 

@interface Book : NSObject { 

 NSString* title; 

 NSString* author; 

 NSString* description; 

} 

 

@end 



CHAPTER 8:  Programming Basics in Objective-C 142 

a look at the traditional getter and setter methods that were common before the

introduction of Objective-C 2.0 back in 2007. 

NOTE: Technically you can access a public instance variable by using the syntax of object-
>variable.  However, with the arrival of properties, this syntax is not necessarily recommended
or common. 

Using Getter and Setter Methods  
Here is the Book object’s header (.h) file, which contains the Book’s interface definition. 

The two methods declared on lines 9 and 10 are the getter and setter methods

respectively.   Conventionally, the getter method is named the same as the instance

variable.  In our example, we are fetching the title of a book object so our getter method

is simply title.  It is defined to return an NSString object to the caller. 

The setter object is named by convention to setInstanceVariableName.  So for our

example, the setter method is named setTitle.  Notice that the instance variable

name’s first character uses an uppercase letter; this is also part of the standard

convention. 

NOTE: A naming convention called camel case (or CamelCase) uses an uppercase letter to
distinguish different words in a method, variable, or class name. The text is suggestive of a
camel, since the uppercase letters tend to form humps. It makes the label easier to read.  For
example, stringWithContentsOfURL is much easier to read than
stringwithcontentsofurl. The camel case convention is used extensively through the
Foundation frameworks for all types of labels (e.g., class and method names).   

Now, the word “convention” has been mentioned several times.  Objective-C does not

require that a method be named anything specific.  However, since most applications

follow the guidelines we discussed, the convention becomes the de facto standard. 

Knowing this becomes very important when the topic of properties is discussed in a bit.  

1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

#import <Cocoa/Cocoa.h> 

@interface Book : NSObject { 

 NSString* title; 

 NSString* author; 

 NSString* description;

} 

- (NSString*)title;                    // Getter  method

- (void)setTitle(NSString* newString); // Setter Method 



CHAPTER 8:  Programming Basics in Objective-C 143 

For now, however, we are going to manually write a getter and a setter method so that 

they can be better understood. 

First, the getter—this is the simplest of the methods to implement: 

 

In the preceding example, the method title simply returns the local instance variable 

called title.   Remember that to access the method, the syntax [object title] is 

used. 

It might seem that the instance variable and the method name might somehow get 

confused.  Because an instance variable is accessed completely differently from a 

method name, the Objective-C runtime environment doesn’t have a problem with 

instance variable and method names that are the same. 

Now, here is the setter: 

 

This example is a little more complicated than out getter method, although it doesn’t 

have to be.  In our setter example, there is a check to see if the newTitle has a length 

greater than 0 before assigning the string.  Clearly, our setter code doesn’t want the 

current title to be blank. 

The benefit of a setter method is that the object can perform some validation logic on 

the parameters before accepting the value.  If the object were to allow direct access to 

the instance variable, either this type of validation would have to be everywhere or there 

would be no validation at all and the object’s title could potentially be set to something 

invalid (like a blank title!). 

Now, it is not necessary to always create a getter and/or a setter for every instance 

variable.  A good example of this might simply be an object that represents today’s date.  

There is no need to set it, just retrieve it, so there would only be a getter method. 

The needs of the object and variables will dictate how the getter and setter methods are 

built.  If a getter gets the value and the setter sets a value, it’s going to take a lot of 

coding to simply write all the getters and setters in an object, especially if there are 

many instance variables.  Fortunately, Objective-C 2.0 introduced a way to reduce this 

burden with minimal effort on the programmer’s part.  These features in Objective-C 2.0 

are called properties. 

NOTE: Objective-C 2.0 was introduced in 2006 and is included in Xcode 3.0 and later. 

1 

2 

3 

- (NSString *)title { 

 return title; 

} 

1 

2 

3 

4 

5 

- (void)setTitle (NSString* newTitle) { 

 if ([newTitle count] > 0) { 

  title = newTitle; 

      } 

} 



CHAPTER 8:  Programming Basics in Objective-C 144 

Introducing Properties 
When we created instance variables for the Book object, we manually created the 

methods that could be used to access these variables. Now that you know how to do 

this manually, let’s look at how to take advantage of something called properties.  A 

property is a shorthand way of having the compiler create functions to get and/or set 

the value of an instance variable.  As you learned earlier, instance variables are generally 

not accessible from outside of the object itself, so having methods to get and set these 

variables becomes essential. 

The following is the interface (header) file to the Book object that we created earlier.  

Let’s see what it takes to have the Objective-C compiler create our getters and setters 

for us. 

 

 

Lines 17–19 show the property declarations for the instance variables.  Properties are 

not required for all instance variables, just the ones we want to expose to the world.  In 

the example, however, we are creating properties for all of our instance variables. 

A property starts with a @property directive.  This tells the Objective-C compiler to build 

us the automatic getter and/or setter.  Whether it is a getter and or setter is included in 

the declaration.  Let’s dissect this code: 

@property1 (retain)2 NSString* title3; 

1 
2 
3 
4 
5 
6 
7 
8 
9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 

// 
//  Book.h 
//  MyBookstore 
// 
//  Created by Mitch Fisher on 11/1/09. 
//  Copyright 2009 __MyCompanyName__. All rights reserved. 
// 
 
#import <Cocoa/Cocoa.h> 
 
@interface Book : NSObject { 
 NSString* title; 
 NSString* author; 
 NSString* description; 
} 
 
@property (nonatomic,retain) NSString* title; 
@property (nonatomic,retain) NSString* author; 
@property (nonatomic,retain) NSString* description; 
 
@end 



CHAPTER 8:  Programming Basics in Objective-C 145 

1. This is the property directive. 

2. The parenthesis and the comma-separated keyword contained therein 

are completely optional.  In our particular case, we are specifying 

retain.  This tells the Objective-C compiler to build the setter so that the 

object is automatically retained when an assignment is made.  Second, 

a retain directive will automatically send a release message to the 

object before it is replaced with the new value.  Many other options can 

be included here; one is readonly, which tells the compiler to only 

create a getter, not a setter, and thereby prevents the instance variable 

from being set external to the object. 

3. Last, NSString* title, is the instance variable declaration.  It must 

include the type and, of course, the instance variable name. 

This defines half of the property.  What’s that you say, “Only half?  What else is 

missing?”  Well, the second half of the @property is declared in the implementation (.m) 

file. 

 

 

This is the implementation file to the Book object.  Line 12 is significant, because it is the 

second half of what is required to complete our property.  This part is much simpler than 

the interface file.  All that is necessary is to use the @synthesize keyword and provide a 

list of one or more property names.  There can be many property names specified on a 

@synthesis statement, and there can be many @synthesize lines too.  It’s all a matter of 

personal preference. 

Now that we’ve created three different properties, how are the properties used? 

Using Properties 
Once a property has been specified in both the interface and implementation files, using 

properties are very straightforward and simple.  First, the syntax changes a bit.  Let’s 

look at a traditional setter: 

[myBookObject setTitle:newTitle]; // Traditional setter 

1 
2 
3 
4 
5 
6 
7 
8 
9 
10 
11 
12 
13 
14 

// 
//  Book.m 
//  MyBookstore 
// 
//  Created by Mitch Fisher on 11/1/09. 
//  Copyright 2009 __MyCompanyName__. All rights reserved. 
// 
 
#import "Book.h" 
 
@implementation Book 
@synthesize title, author, description; 
 
@end 



CHAPTER 8:  Programming Basics in Objective-C 146 

Here is an example of sending a set message to set some the title to our book object—

like we said, pretty straightforward.  However, when using properties, things change: 

myBookObject.title = newTitle; // Setter example 

Some things are very important to note.  For starters, the object access is not within 

brackets ([ ]).  Second, the method is no longer called setTitle; it’s just title.  

Internally, there is still a setTitle method; it’s just hidden.  Why is this important?  Well, 

if we create our own explicit setTitle method, our new method will be called rather that 

the compiler-created one.  This may or may not be the behavior we specifically want. 

For the getter, things look remarkably familiar: 

NSString* title = myBookObject.title;  // Getter example  

The getter is also called title.  The significance here is that how the object’s property is 

accessed determines whether the getter or setter is called. 

One last big difference is that the syntax to access a property now uses a period (.) 

between the object and the method.  This is necessary because the brackets are gone, 

so the period distinguishes between using a property and sending a message to an 

object. 

Understanding the Importance of Conventions 
As mentioned earlier, there is a convention to naming a getter and a setter.  While these 

naming guidelines are not strictly enforced, the value of understanding the convention 

comes in handy when using properties.  Here is our previous example: 

 

If we create a property like @property title and pair that with the @synthesize keyword, 

the compiler will generate two methods—one named title as the getter and one called 

setTitle as the setter.  However, if we provide our own setter and name it according to 

the convention (like the preceding code), the compiler won’t generate its own. 

 myBookObject.title = newTitle; // Call the custom setter 

The preceding code will call our own custom setter instead of the standard one.  The 

same would be true had we written our own getter method.  Now, let’s continue with the 

Bookstore application. 

Creating the MyBookstore Program 
With the understanding of instance variables and properties, we are going to now 

venture forth to create the actual bookstore program.  The idea is simple enough—

create a class called Bookstore that will be stocked with Book objects.   

1 

2 

3 

4 

5 

- (void)setTitle (NSString* newTitle) { 

 if ([newTitle count] > 0) { 

  title = newTitle; 

      } 

} 



CHAPTER 8:  Programming Basics in Objective-C 147 

From the project’s Groups & Files pane, right-click (or control-click) the Source group 

and click Objective-C class.  Make sure that the class is a subclass of NSObject, as 

shown in Figure 8–5. 

 

Figure 8–5. Adding a new Objective-C class to the Bookstore project 

Click the Next button and then name this new object Bookstore.m, as shown in Figure 

8–6. 

 

Figure 8–6. Adding a new Objective-C class to the Bookstore project 

The Xcode window should look something like the one shown in Figure 8–7. 



CHAPTER 8:  Programming Basics in Objective-C 148 

 

Figure 8–7. The Bookstore object added into the project 

The Bookstore class that has been added will be used to store all the Book objects.  To 

do this, there needs to be something that allows these Book objects to be stored and 

retrieved easily.  Fortunately, Mac OS X and the iPhone OS have existing classes that 

will do this; they’re called NSDictionary and NSMutableDictionary. 

Using the NSMutableDictionary Class 
The NSMutableDictionary class is a type of dictionary, based on another class called 

NSDictionary.  Both these classes are used to conveniently and efficiently retrieve 

information associated with some arbitrary key.  In a physical dictionary, the key is the 

word that we’re looking for, and the information stored at that key is the definition of the 

word.  So, an NSMutableDictionary and NSDictionary pattern themselves with the real-

world thing (or object). 

What exactly does this mean?  You now know what a dictionary is, so how is the 

NSMutableDictionary different from an ordinary NSDictionary?  The short answer: it’s 

really not that different. 

There are two important terms to know about classes to understand the difference: 

“immutable” and “mutable.” With a mutable class, the data can be modified; in an 

immutable class, the data is set permanently (the life of the object that is).  When 

dealing with data objects, you must determine how the object data can be modified.  

For example, an NSString class represents a string value, but it cannot be changed.  

Once the value is set, that’s it.  There is another version of that class called the 

NSMutableString.  Because NSMutableString is a mutable class, the data can be 



CHAPTER 8:  Programming Basics in Objective-C 149 

modified.  In other words, a program can reassign, concatenate, and otherwise alter the 

data in an NSMutableString. 

Let’s add the NSMutableDictionary class to our bookstore object.  In our implementation 

file, we are going to add the following items highlighted in bold. 

 

On line 2, we are simply declaring the instance variable of the bookstore variable called 

myBookstore.  We also declare the property so that the variable will have an automatic 

getter and setter method defined for it. 

In the property declaration on line 5, there is the code (retain).  This option informs the 

compiler to generate the getter and setter in a specific way.  The retain keyword is used 

so that the setter will use the retain-and-release memory management mechanism when 

assigning values (see Chapter 12). 

Making Our Object Do Something 
Now that a skeleton object has been created, it needs to do something.  For our simple 

program, the Bookstore object will do the following: 

 Add new Book objects. 

 Remove existing Book objects. 

 Print the inventory of books in the bookstore to the screen. 

These are very basic functions; the Bookstore object can, of course, be expanded to do 

much more.  However, for the purposes of this chapter, this should be enough. 

For starters, let’s add some new instance methods to our Bookstore class.  Here is an 

excerpt from the interface file, Bookstore.h: 

 

 

We have the init method, which initializes our Bookstore object; this is just standard 

convention.  The remaining method names should be self-explanatory.  

1 
2 
3 
4 
5 

@interface Bookstore : NSObject { 
 NSDictionary* myBookstore; 
} 
 
@property (retain) NSDictionary* myBookstore; 

1 
2 
3 
4 
5 

- (id)init; 
- (void)printInventory; 
- (BOOL)addBook:(Book *)newBook; 
- (BOOL)removeBookWithTitle:(NSString *)whichTitle; 
- (void)dealloc; 



CHAPTER 8:  Programming Basics in Objective-C 150 

Implementing Behavior 
Now that we have an interface file, let’s write some code that will give the Bookstore 

class some life. 

 

 

You see the standard stuff in the beginning here.  Our implementation file needs to 

include its interface on line 1.  Without it, our implementation file would have no clue 

what methods we are defining!  Line 4 represents the implementation part of the 

property for the Bookstore object.  The original @property was declared in the interface 

file, Bookstore.h. 

Lines 6–9 initialize our object.  For the most part, these lines contain just the standard 

stuff: initialize your parent and return self.  The biggest change here is that we are now 

initializing the Bookstore instance variable—myBookstore—on line 8.  Notice that the 

bookstore is only initialized if self is valid, that is, when it is not nil.  The code is just a 

precaution but generally a good practice.  The reality is that if [super init] returns nil, 

there are bigger issues at hand. 

 

This method is what adds a book object into the NSMutableDictionary class, the 

myBookstore instance variable (line 15).  The following message 

 setObject:forKey: 

is sent to the NSMutableDictionary object to basically add an object to the dictionary.  In 

our case, the object is the book, and the key is the book’s title.  Why do we need a key?  

Well, the key allows us to retrieve the book by a unique name.  In this case, the key is 

simply the title of the book. 

It’s important to note that a dictionary must have unique keys.  In this example, this 

means that it is not possible to have two different book objects associated with the 

same key.  If a call to setObject:forKey: is called and that key already exists in the 

dictionary, the dictionary will remove the old object and replace it with the new one. 

1 
2 
3 
4 
5 
6 
7 
8 
9 
10 
11 
12 

#import “Bookstore.h” 
 
@implementation Bookstore 
@synthesize myBookstore; 
 
- (id)init { 
 self = [super init]; 
 if (self != nil) { 
     myBookstore = [[NSMutableDictionary alloc] init]; 
 } 
 return self; 
} 

14 
15 
16 
17 
8

- (BOOL)addBook:(Book *)newBook { 
 [myBookstore setObject:newBook forKey:newBook.title]; 
 return YES; 
} 



CHAPTER 8:  Programming Basics in Objective-C 151 

NOTE: NSDictionary and NSMutableDictionary store information using what is commonly 
referred to as key-value pairs.  You can think of it like this: 

 Name = Ernest Hemingway 

Here, the data, Ernest Hemingway is associated with a label Name.  Using a concept like this 
within something like the NSDictionary allows the program to look up data using a known key 
like Name.  However, keys must be unique within a specific dictionary. 

When newBook was added to the dictionary, the dictionary automatically sends a retain 

message to the newBook object.  This tells the program that the object is still in use.  

Now, we have two references to the newBook object: one when the newBook was 

allocated and a second when it was added to the dictionary. 

Since there really needs to be only one reference to the newBook object at this point, 

we’ll need to release this reference in the program eventually.  In a later program, you’ll 

see the call to the addBook: method followed by a release of the new object.  While the 

retain-and-release mechanism takes a while to grasp, it’s a very flexible and efficient 

way of managing memory. 

The following method is called to remove the book from the dictionary: 

 

The NSMutableDictionary class has a simple method for removing an item.  Line 21 

demonstrates the removeObjectForKey: method.  All that is required is the key for the 

object that is to be removed from the dictionary.  Unfortunately, there is no return value 

from the removeObjectForKey: method, so there is no way to determine if an object was 

removed or not.  A better way implementing this function would be as follows: 

 

The big difference in this method is the new line 21.  The if statement calls the 

objectForKey: method.  This dictionary method will return the object for the specified or 

nil if the key was not found in the dictionary.  While this code does require some 

additional processing (the object is looked up twice if it’s found), the advantage it has is 

that it can now return YES if the object was found and removed or NO if the object was 

not found.  This method could then inform the user if the remove operation failed or was 

successful.   

20 
21 
22 
23 
24 
25 
26 
8

- (BOOL)removeBookWithTitle:(NSString *)whichTitle { 
 if ([myBookstore objectForKey:whichTitle] != nil) { 
     [myBookstore removeObjectForKey:whichTitle]; 
     return YES; 
 } 
 return NO; 
} 

20 
21 
22 
23 
5

- (BOOL)removeBookWithTitle:(NSString *)whichTitle { 
 [myBookstore removeObjectForKey:whichTitle]; 
 return YES; 
} 



CHAPTER 8:  Programming Basics in Objective-C 152 

TIP: Notice that we are returning YES or NO and not TRUE or FALSE; this is simply

another example of a coding convention.  While YES is analogous to TRUE and NO

to FALSE in Apple’s SDK, the convention is to use YES and NO for clarity.  If TRUE

and FALSE were substituted, the code would work exactly the same.   

This last method, as the name implies, prints the inventory of books that are present in

the dictionary.  There is an interesting difference here from what is present in most other

C-type programs. This big difference is line 30.  Instead of the standard for loop, there

is a for...in loop (or for...in feature, as its called in the Objective-C manual).  This

special for loop is specific to Objective-C 2.0 and above.  It provides a quick way to

iterate through a list of items—in our case, this list is the myBookstore dictionary.   

The way that the for...in loop works is quite simple.  Line 30 looks like this: 

for (NSString* key in myBookstore) 

For each item in the myBookstore dictionary, the key NSString will be set to the key of

that item.  If there are five entries in the dictionary, the for...in feature will loop five

times, and each iteration will have a new value for key corresponding to one of the five

entries in the dictionary.  The process of going through each key in a list or dictionary is

called enumeration. 

NOTE: Documentation for the for...in feature can be found under “Using Fast

Enumeration” in the Objective-C 2.0 Programming Language manual available

directly from Apple’s developer site. 

Line 31 retrieves the Book object given the key we assign in the for...in loop.  The

program doesn’t check for a nil value here, since we have an actual key from the

dictionary and the setObject:forKey: method will not accept nil as an object to

associate with a key. 

The remaining lines, 32–34, simply output the book’s information in a log format to the

screen: 

       Title: Objective-C for Absolute Beginners 
      Author: Bennett, Lees and Fisher 
 Description: iPhone and Mac Programming Made Easy 

28
29
30
31
32
33
34
35
36 

- (void)printInventory { 
 Book *book; 

for (NSString* key in myBookstore) { 
book = [myBookstore objectForKey:key];
NSLog(@"      Title: %@ ", book.title);
NSLog(@"     Author: %@ ", book.author); 
NSLog(@"Description: %@ ", book.description); 

 }
} 



CHAPTER 8:  Programming Basics in Objective-C 153 

The typical date and time stamp that appears on each line is omitted so that the 

meaningful output can be shown here (the lines are too long otherwise).  

Cleaning Up Our Objects 
One of the last methods in the Bookstore implementation file is to clean up everything.  

While this method isn’t called explicitly, it is called internally by the system when 

cleaning up objects.  It’s the dealloc method and should be present in every 

implementation file. 

 

Line 40 sets the myBookstore property to nil.  One of the great things about properties 

is that, whenever you assign a value to a property that is defined with the retain option 

like the following, any existing object stored in the property is sent a release message 

before the instance variable is reassigned: 

 @property (retain) NSDictionary* myBookstore; 

Conversely, when a property is assigned, the object being assigned is sent a retain 

message.  So, in our program, setting the property to nil on line 40 is equivalent to the 

following: 

 [myBookstore release]; 

It doesn’t matter if the object is explicitly released or the property is set to nil (or even 

another object).  In both cases, the myBookstore instance variable will be released.  The 

release method you choose is a matter of taste and exposure to the convention.  To 

some people, the fact that the release is implied seems to hide too much functionality. 

The good thing is that either will work.  In our case, we are the only user of the 

myBookstore NSMutableDictionary.  Releasing it will cause the NSMutableDictionary to 

release all of its objects in turn. 

Line 41 tells the parent of this class to deallocate itself as well, and so on up the chain of 

objects.  This call to dealloc is equivalent to the call to [super init] whenever the 

object is first created. 

38 
39 
40 
41 

- (void)dealloc { 
 self.myBookstore = nil; 
 [super dealloc]; 
} 



CHAPTER 8:  Programming Basics in Objective-C 154 

Using the Bookstore and Book Objects 
Now that we have created the Bookstore and Book objects and added some methods to 

do something with the bookstore object, we need a place to actually use the Bookstore 

object.  First, select the MyBookstore.m file from the Xcode project, which is shown in 

Figure 8–8. 

 

Figure 8–8. This stub was generated automatically and doesn’t do much at all. 

The main function, which is the start of the program, doesn’t do too much at this point.  

To make use of the Bookstore object, we need to change main. 

i



CHAPTER 8:  Programming Basics in Objective-C 155 

 

 

Here is the new main. Lines 6–18 were added to make use of the Bookstore object. Line 

6 declares and allocates the Bookstore object and assigns it to the local variable called 

theBookNook. 

Line 8 calls the addBook: method on the Bookstore object.  This method requires one 

parameter: the Book object to add. 

Lines 9–15 allocate a new Book object and assign it a title, author, and description.  

Notice that there is no intermediate object to store the Book object first.  The new object 

is being passed directly into the addBook: method.  If you recall, the addBook: method 

does an explicit release on the passed in Book object once its added to the dictionary.  

Because this is the case, we don’t need to store it, simply allocate and forget about it; 

the Bookstore class is now managing the memory of its Book objects. 

Line 16 calls the printInventory method.  This method will enumerate all the books in 

the dictionary (our one book) and print each book to the screen using the NSLog function. 

Line 17 calls the removeBookWithTitle: method.  This should remove the book from the 

Bookstore.  Considering the title we used to remove the book is the same title we used 

to create the book, there is little chance of this failing. 

Just for grins, line 18 calls the printInventory method again.  Nothing should print, 

because the Bookstore is now empty. 

Line 19 cleans up the theBookNook Bookstore object by releasing it. 

1 
2 
3 
4 
5 
6 
7 
8 
9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
 

#import <Foundation/Foundation.h> 
#import "Bookstore.h" 
 
int main (int argc, const char * argv[]) { 
    NSAutoreleasePool * pool = [[NSAutoreleasePool alloc] init]; 
    Bookstore* theBookNook = [[Bookstore alloc] init]; 
    NSString * newTitle = @”A Farwell To Arms”; 
    Book *newBook = [[Book alloc] 
                        initWithTitle:newTitle 
                               author:@”Ernest Hemingway” 
                          description:@"The story of an affair “ 
                                       “between an English nurse “ 
                                       ”and an American soldier " 
                                       "on the Italian front “ 
                                       “ during World War I."]]; 
 
    [theBookNook addBook: newBook]; 
    [newBook release]; 
  
    [theBookNook printInventory]; 
    [theBookNook removeBookWithTitle:newTitle]; 
    [theBookNook printInventory]; 
    [theBookNook release]; 
    [pool drain]; 
    return 0; 



CHAPTER 8:  Programming Basics in Objective-C 156 

Summary 
We’ve finally reached the end of this chapter!  Here is a summary of the things that were 

covered. 

 Using instance variables: Instance variables are variables that are 

defined in the interface file of the class and are accessible once the 

class has been instantiated. 

 Working with properties: Properties are shorthand ways of created 

getters and/or setters.  Getters and setters get or set the values of an 

instance variable. 

 Storing data with NSMutableDictionary: This Foundation class 

introduced you to the ability to store data that’s accessible by a 

predefined key.  

 Looping with for...in: This feature offers a new way to iterate 

through an enumerated list of items. 

 Building a simple program: We built a simple Bookstore program that 

had the ability to add, remove, and print a dictionary of books. In 

creating the Bookstore program, you learned how to 

 Allocate and use objects. 

 Use the NSLog function to print information to the screen. 

Exercises 
 Add more books to the bookstore using the original program as a guide. 
 Enhance the Book class so it can store another attribute, an ID (or 

ISBN) number for example.  
 Add a new method to the Bookstore class that will provide an interface 

to find a book (or books) by author or title. 
 Fix the addBook: method so that it checks to see if a title is already in 

the dictionary.  If the title already exists, don’t add it, and return NO. 
 Add a new method to the Bookstore class that will update a specific book. 
 Change the printInventory: method so that if there are no books in 

the dictionary, it will print a message like “The bookstore is empty.” 
If you’re daring, try these more advanced ideas: 

 Change the Bookstore object so that, instead of storing individual Book 

objects, it stores NSArray arrays of books.  After all, a good bookstore 

has more than one of each book, right? 

 Modify the printInventory method so that it also displays the 

quantity-on-hand (using the NSArray count method). 



 

 

157

157 

   Chapter 

Comparing Data 
In this chapter, we will discuss one of the most basic and frequent operations you will 
perform as you program: comparing data. In our bookstore example, you may need to 
compare book titles if your clients are looking for a specific book. You may also need to 
compare authors if your clients are interested in purchasing books by a specific author. 
Comparing data is a common tasks for developers. Many of the loops you learned about 
in the previous chapter will require you to compare data to know when your code should 
stop looping. 

Comparing data in programming is like using a scale. You have one value on one side 
and another value on the other side. In the middle you have an operator. The operator 
determines what kind of comparison is being done. Examples of operators are “greater 
then,” “less than,” or “equal to.” 

The values on either side of the scale are usually variables. We learned about the 
different types of variables in Chapter 3. In general, the comparison functions for 
different variables will be slightly different. It is imperative to become very familiar with 
the functions and syntax to compare data, as this will form a basis for your 
development. 

For the purpose of this chapter, we will use an example of a bookstore application. This 
application will allow users to log in to the application, search for books, and purchase 
them. We will try to relate the different ways of comparing data to how it would be used 
in this type of application. 

Introducing Boolean Logic 
At the heart of any comparison is Boolean logic. With Boolean logic, there can only be 
one of two answers: yes or no. The following are some good examples of Boolean 
questions that you will use in your applications: 

Is 5 larger than 3? 

Does “now” have more than 5 letters? 

Is 6/1/2010 later than today? 

9 



CHAPTER 9:  Comparing Data 158 

In order to start using these types of questions in your programs, you will first need to 
become familiar with the different relational operators available to you in the C and 
Objective-C languages. We will cover those first. After that, we will look into how 
different variables can behave with these operators. 

Using Relational Operators 
Objective-C supports the standard algebraic operators with only one real change: In the 
Objective-C language, as in most other programming languages, the equal to operator is 
made by two equal signs (==). Table 9–1 shows the different operators available to you 
as a developer. 

Table  9–1. Objective-C Operators 

Operator Description 

== Equal to 

> Greater than 

>= Greater than or equal to 

< Less than 

<= Less than or equal to 

!= Not equal to 

 

NOTE: A single equal sign is used to assign a value to a variable. Two equal signs are needed to 
compare two values. 

Comparing Numbers 
One of the difficulties developers have had in the past was dealing with different data 
types in comparisons. Objective-C helps us out with that. In Objective-C, you can 
compare any two numeric data types without having to typecast (typecasting is still 
sometimes needed when dealing with other data types, and we cover it later in this 
chapter). This allows a developer to write code without worrying about the data types 
that need to be compared.  

In our application, there are many ways in which we will need to compare numbers. For 
example, let’s say that our bookstore offers a discount for people who spend over $30 in 



CHAPTER 9:  Comparing Data 159 

a single transaction. We will need to add the total the person is spending and then 
compare it to $30. If it is larger than $30, we will need to calculate the discount. See the 
following example. 

float totalSpent; 
int discountThreshhold; 
int discountPercent; 
 
discountThreshold=30; 
discountPercent=0; 
totalSpent=calculateTotalSpent(); 
 
if(totalSpent>discountThreshold) { 
 discountPercent=10; 
} 

Let’s walk through the code. First we declare our variables. As we discussed in Chapter 
3, if the number can contain decimals, we should declare it as a float rather than an int. 
We know that the discountThreshold and the discountPercent will not have a decimal in 
them, so we can declare them as ints. In this example, we assume we have a function 
called calculateTotalSpent that will calculate the total spent in this current order. We 
then simply check to see if the total spent is larger than the discount threshold; if it is, 
we set the discount percent. Also, notice that it was not necessary to tell the code to 
convert the data when comparing the different numeric data types. This is all handled by 
Objective-C. 

Another action that requires the comparison of numbers is looping. As discussed in 
Chapter 4, looping is a core action in development and many loop types require some 
sort of comparison to know when to stop. Let’s take a look at a For loop. 

int numberOfBooks; 
numberOfBooks=50; 
 
for (int y = 1; y <= numberOfBooks; y++) { 
     doSomething(); 
}  

In this example, we iterate through the total number of books we have in the bookstore. 
The for statement is where the interesting stuff starts to happen. Let’s break it down. 

int y=1; 

This portion of the code is declaring y as an int and then assigning it a starting value of 
1.  

y<=numberOfBooks; 

This portion is telling the computer to check to see if our counting variable y is less then 
or equal to the total number of books we have in our store. If y becomes larger than the 
number of books, the loop will no longer run. 

y++ 

This portion increases y by 1 every time the loop is run. 



CHAPTER 9:  Comparing Data 160 

Creating an Example Xcode App 
Now let’s create an Xcode application so we can start comparing numeric data.  

1. Launch Xcode. From your hard drive, go to Developer  Applications folder. Drag 

it to the Dock, as we will be using it throughout the rest of this book. See Figure  

9–1. 

 

Figure  9–1. Launching Xcode 

2. Click on Create a New Xcode Project.On the left-hand side of the resulting 

window, under Mac OS X, select Application. Then select Command Line Tool. In 

the Type drop-down menu, select Foundation, and then click Choose. See Figure  

9–2. You will then be prompted to choose a name for your project. We used 

Comparison as the name, but you can choose whatever name you want. 

Note: Xcode Projects by default are saved in the Documents Folder in your user home. 



CHAPTER 9:  Comparing Data 161 

 

Figure  9–2. Creating a new project 

Once the new project is created, you will see the standard Xcode Window.  

3. Select the expand arrow next to the Source folder to expand it. You will see two 

files, Comparison_Prefix.pch and Comparison.m. The actual names will change 

depending on the name you used when creating the project. For the purpose of 

these examples, we are only going to be focusing on the Comparison.m file. 

4. Double-click on that file and you will see the following code: 

#import <Foundation/Foundation.h> 
 
int main (int argc, const char * argv[]) { 
    NSAutoreleasePool * pool = [[NSAutoreleasePool alloc] init]; 
 
    // insert code here... 
    NSLog(@"Hello, World!"); 
    [pool drain]; 
    return 0; 
} 



CHAPTER 9:  Comparing Data 162 

At this point, we are only going to concern ourselves with the line of code that begins
with NSLog. It has one basic purpose: to print information to the console. Before we
change any of the code, let’s run our application to see how it works. 

5. Click on the Build and Run button in the menu or select Build and Run from the

Build menu.  

6. It will appear as if nothing happened. To see the result, click on the menu Run 

Console (or press the Shift-Command R buttons). You will be presented with the a

window similar to Figure  9–3. 

Figure  9–3. Debugger console 

Most of the information in this window will mean very little to you. The most important
line is the bold section that actually shows the output of your application. The first part
of the line shows the date, time, and name of the application. The “Hello, World!” part
was generated by the NSLog line we looked at before. 

7. Go back to the application and open the comparison.m file.  

8. Go to the beginning of the line that begins with NSLog. This is the line that is

responsible for printing the “Hello, World!” section. We are going to comment out

this line by placing two backslashes ( // ) in front of the line of code. Commenting

out code tells Xcode to ignore it when it builds and runs the application. Code

that is commented out will not run. 

9. Once you comment out the line of code, you will no longer see the line in bold if

you run the program, because the application is no longing outputting any line. 



CHAPTER 9:  Comparing Data 163 

10. In order for the application to output the results of our comparisons, we will have 

to add one line.  

NSLog(@"The result is %@", (6>5 ? @"True" : @"False")); 

11. Place this line into your code. This line is telling your application to print out “The 

result is.” Then it will print “True” if 6 is greater than 5, or “False” if 5 is greater 

than 6.  

Because 6 is greater than 5, it will print out True. 

You can change this line to test any of the examples we have put together thus far in 
this chapter, and all of the examples we will do further on. 

Let’s try another example. 

int i=5; 
int y=6; 
NSLog(@"The result is %@", (y>i ? @"True" : @"False")); 

In this example, we created an integer and assigned its value to 5. We then created 
another variable and assigned the value to 6. We then changed the NSLog example to 
compare the variables i and y instead of using actual numbers. When you run this 
example, you will get the following result: 

 

Figure  9–4. NSLog output 

We will now explore other kinds of comparisons, and then we will come back to our 
application and test some of them. 

Using Boolean Expressions 
A Boolean expression is the easiest of all comparisons. Boolean expressions are used to 
determine if a value is true or false. False is defined as 0 and true as non-zero. For 
example: 

int j; 
j=5; 
if(j) { 
 some_code(); 
} 

This will always evaluate to true, because j is equal to 5 and is not 0 or null. 

int j; 
j=0; 
if(j) { 
 some_code(); 
} 



CHAPTER 9:  Comparing Data 164 

If we change the value of j, this will evaluate to false, because j is now 0. This can be 
used with BOOL and number variables.  

int j; 
j=0; 
if(!j) { 
 some_code(); 
} 

Placing an exclamation point in front of a Boolean expression will change it to the 
opposite. This line now asks “if not j,” which in this case is true, because j is equal to 0. 

Let’s look at an example related to the bookstore. We have a frequent buyer’s club that 
entitles all members to a 15% discount on all books they purchase. This is easy to 
check. We simply set the variable clubMember to TRUE or YES if they are a member 
and FALSE or NO if they are not. The following code will apply only the discount to club 
members: 

int discountPercent; 
BOOL clubMember; 
 
clubMember=FALSE; 
discountPercent=0; 
if(clubMember) { 
 discountPercent=15; 
} 

Comparing Strings 
Strings are a very difficult data type for most C languages. In ANSI C (or standard C), a 
string is just an array of characters. Objective-C has taken the development of the string 
even further and made it an object called NSString. As an object, there are many more 
properties and methods available to us when working with them. Fortunately for us, 
NSString has many methods for comparing data, which makes our job much easier. 

While developing for the Mac and the iPhone, you will be able to use both NSStrings 
and standard C strings. For the purposes of this book, we will be focusing on comparing 
the NSString objects. If you have C type strings in your application, they will need to be 
converted to NSStrings to use to code included in this book. Fortunately, for us, this 
conversion is very simple. 

char *myCString; 
NSString *myNsstring; 
 
myCString=”testing a string”; 
myNsstring= [NSString stringWithUTF8String: myCString]; 

The first two lines are code you have seen before. They are your variable declarations. 
You are declaring a standard C string called myCString and a NSString called 
myNsstring. The third line is just a simple initiation of your standard C string. We are just 
assigning a value to it.  



CHAPTER 9:  Comparing Data 165 

The last line is where everything happens. You are assigning your NSString object to be 
equal to creating a new NSString object with the value coming from a UTF8string and 
passing it the standard C string we created. Once you have all of your standard C 
strings as NSStrings, we can take advantage of the powerful comparison features 
provided to us by the class. 

Let’s look at another example. In it, we will compare passwords to see if we should 
allow a user to login in. 

NSString *enteredPassword, *myPassword; 
 
myPassword=@”duck”; 
enteredPassword=@”Duck”; 
bool continueLogin=NO; 
 
if([enteredPassword isEqualToString:myPassword]) { 
 continueLogin=YES; 
} 

The first line just declares two NSStrings. The next two lines initialize the strings. 
Remember, before you use any objects they need to be initialized. In your actual code, 
you will need to get the enteredPassword string from the user. These lines use a 
shortcut. Notice the @ symbol before the C style string. The @ symbol creates a new 
NSString from the C style string that follows it.  

The next line if the part of the code that actually does the work. We are sending a 
message to the enteredPassword object asking it if it is equal to the myPassword string. 
The method always needs to have an NSString passed to it. The example code will 
always be false, because of the capital on the enteredPassword versus the lowercase on 
the myPassword.  

NOTE: If you need to compare two NSStrings regardless of case, you would simply use the 
caseInsensitiveCompare method instead of the isEqualToString. 

There are many other different comparisons you might have to perform on strings. For 
example, you may want to check the length of a certain string. This is easily done. 

NSString *enteredPassword; 
NSString *myPassword; 
myPassword=@"duck"; 
enteredPassword=@"Duck"; 
bool continueLogin=NO; 
 
if([enteredPassword length] > 5) { 
 continueLogin=YES; 
} 

This code checks to see if the entered password is longer than 5 characters. 

There will be other times when you will have to search within a string for some data. 
Fortunately, Objective-C makes this very easy to do. NSString provides us with a 
function called rangeOfString, which allows you to search within a string for another 



CHAPTER 9:  Comparing Data 166 

string. The function rangeOfString only takes one argument, which is the string for which 
you are searching. 

NSString *searchTitle, *bookTitle; 
searchTitle=@"Sea"; 
bookTitle=@"2000 Leagues Under the Sea"; 
 
if([bookTitle rangeOfString:searchTitle].location !=NSNotFound) { 
addToResults; 
} 

This code is very similar to other examples we have looked at. This example takes a 
search term and checks to see if the book title has that search term in it. If it does, it 
adds it to the results. The can be adapted to allow users to search for specific terms in 
your book titles, authors, or even descriptions. 

NOTE: All string searches are case sensitive by default. If you want to search inside of a string 
regardless of the case, you can change the above call from  

[bookTitle rangeOfString:search_title]  

to  

[bookTitle rangeOfString:search_title options:NSCaseInsensitiveSearch]. 

For a complete listing of the methods supported by NSString, see the Apple 
Documentation at http://developer.apple.com/mac/library/documentation/cocoa/ 
reference/Foundation/Classes/NSString_Class/Reference/NSString.html 

Comparing Dates 
Dates are a fairly complicated variable type in any language. This is mostly due to the 
amount of functionality in the date classes. Objective-C used to use the 
NSCalendarDate class, but recently it has been deprecated for a more up-to-date 
NSDate. The new NSDate has a lot of nice methods to make comparing dates easy. We 
will focus on the compare function. The compare function returns an 
NSComparisonResult, which has three possible values: NSOrderedSame, 
NSOrderedDescending, NSOrderedAscending. 

NSDate *today = [NSDate date]; 
 
//Sale Date as of 9/4/2010 
NSDate *saleDate = [NSDate dateWithString:@"2010-0 9–04 04:00:00 -0700"]; 
 
NSComparisonResult result; 
bool saleStarted; 
 
result=[today compare:saleDate]; 
 
 if(result==NSOrderedAscending) { 

http://developer.apple.com/mac/library/documentation/cocoa


CHAPTER 9:  Comparing Data 167 

  //Sale Date is in the future 
  saleStarted=NO;  
 } else if(result==NSOrderedDescending) { 
  //Sale Date is in the past 
  saleStarted=YES; 
 } else { 
  //Sale Date and Today are the same 
  saleStarted=NO; 
 } 

That seems like a lot of work for comparing some dates. Let’s walk through the code 
and see if we can make sense of it.  

NSDate *today = [NSDate date]; 
NSDate *saleDate = [NSDate dateWithString:@"2010-0 9–04 04:00:00 -0700"]; 

Here we declare two different NSDate objects. The first one, named “today,” is initialized 
with the system date. The second one, named “saleDate,” is initialized with a date in the 
future. We will use this date to see if this sale has begun. We will not go into detail about 
the initialization of NSDates, but they can be initialized using the dateWithString function 
similar to as we showed above. 

NSComparisonResult result; 

The results of using the compare function of an NSDate object is an 
NSComparisonResult. We have to declare one of these to capture the output from the 
compare function. 

result=[today compare:saleDate]; 

This simple line runs the comparison of the two dates. It places the resulting 
NSComparisonResult into the variable called “result.” 

if(result==NSOrderedAscending) { 
//Sale Date is in the future 
 saleStarted=NO;  
} else if(result=NSOrderedDescending) { 
//Sale Date is in the past 
 saleStarted=YES; 
} else { 
//Sale Date and Today are the same 
 saleStarted=NO; 
} 

Now we need to find out what value is in the variable result. In order to accomplish this, 
we perform an “if” statement comparing result to the three different options for the 
NSComparisonResult. The first line finds out if the sale date is greater than today. This 
means that the sale date is in the future, and thus the sale has not started. We then set 
the variable saleStarted to No. The next line finds out whether the sale date is less than 
today. If it is, then the sale has started and we set the saleStarted variable to Yes. The 
next line just says Else. This captures all other options. We know, though, that the only 
other option is NSOrderedSame. This means that the two dates are exactly the same, 
and thus the sale is just beginning. 



CHAPTER 9:  Comparing Data 168 

There are other ways that you may use to compare an NSDate objects. Each of the 
methods will be more efficient at certain tasks. We have chosen the compare method 
because it will handle most of your basic date comparison needs. 

NOTE: Remember that an NSDate holds both a date and a time. This can affect your 
comparisons with dates as it not only compares the date but the time. 

Combining Comparisons 
Many times something more complex than a single comparison is needed. This is where 
logical operators come in. Logical operators enable you to check to more than one 
different requirement. For example, if we have a special discount for people who are 
members of our book club and who spend over $30. We can write one statement to 
check that: 

float totalSpent; 
 int discountThreshhold; 
int discountPercent; 
BOOL clubMember = TRUE; 
 
discountThreshhold=30; 
discountPercent=0; 
totalSpent=calculateTotalSpent(); 
 
if(totalSpent> discountThreshhold&& clubMember) { 
 discountPercent=15; 
} 

We have combined two of the examples from above. The new comparison line reads as 
follows: If totalSpent is greater than discountThreshold and clubMember is true, then we 
set the discountPercent to 15. In order for this to return True, both of the items need to 
be true. || can be used instead of && to signify “or.” We can change the line above to 
this: 

if(totalSpent> discountThreshhold|| clubMember) { 
 discountPercent=15; 
} 

Now this reads: If totalSpent is greater than discountThreshold or clubMember is true, 
then set the discount percent. This will return True if either of the options are true. 

You can continue to use the logical operations to string as many comparisons together 
as you need. In some cases, you may need to group comparisons together using 
parentheses. This can be more complicated and is beyond the scope of this book. 

Using the Switch Statement 
Up to this point, we’ve had several example of comparing data by simply using the if 
statement and/or the if/else statements. 



CHAPTER 9:  Comparing Data 169 

if (some_value == SOME_CONSTANT) { 
    ... 
} else if (some_value == SOME_OTHER_CONSTANT) { 
    ... 
} else if (some_value == YET_SOME_OTHER_CONSTANT) { 
    ... 
} 

If the need to compare a specific ordinal type to several constant values is needed, there 
is a different way that can simplify the comparison code: the switch statement. 

NOTE: An ordinal type is a built-in C data type that can be ordered. Examples are int, long, char, 
BOOL. These data types are typically referred to as Ordinal Data types. 

The switch statement allows for comparison of one or more constant values against the 
ordinal data type. This is important to understand. The switch statement does not allow 
for the comparison of the ordinal type to a variable. Here is an example of a proper case 
statement: 

char value; 
value = ‘d’; 
 
switch (value) { // The switch statement followed by a begin brace 
case ‘a’:     // Equivalent to if (value == ‘a’) 
   ...        // Call functions and put any other statements here 
after the case. 
   ... 
break;     // This indicates that this is the end of the “case 
‘a’:” statement. 
case ‘b’: 
    ... 
    ... 
break; 
case ‘c’:    // If there is a case without a break, the program continues to 
execute. 
case ‘d’:    //  So, in this case, if value is a ‘c’ or a ‘d’, this 
code will be executed. 
    ... 
    ... 
break; 
default:  // Default is optional and is only used if there is no 
case statement 
   ...  // for ‘value’. So, if value was equal to ‘x’, the default part 
of the switch 
   ...  // statement will be executed since there is no “case ‘x’:” 
present. 
break; 
}  // End of the switch statement. 

The switch statement is a very powerful one that simplifies and streamlines comparisons 
of an Ordinal type to several possible constants. That said, this is also the limiting factor 
of the switch statement. It is not possible, for example, to use the switch statement to 
compare an NSString variable to a series of string constants. This is because an 



CHAPTER 9:  Comparing Data 170 

NSString value is not an Ordinal type. Also, the switch statement must compare an 
ordinal type to a constant. It is not possible to write: 

switch (value) { 
case variable: //case must be a constant, not a variable. 
   ... 
break; 

While it does seem that these are severe limitations to the switch statement, the switch 
statement is still a very powerful statement that can be used to simplify certain if/else 
statements.  

Grouping Variables Together 
Objective-C has given us ways to group our like information together into one single 
variable. These variables are called container variables because they hold other 
variables. We will examine 4 different container classes that exist in Objective-C and will 
be used quite frequently in your development. 

NSArray 
1. Many different programming languages have a container called an array. An array 

allows you to store multiple variables in an ordered fashion. Retrieving data from an 
array is usually done by knowing the index of the item you want to retrieve. Objective-
C has improved the standard array and given us the NSArray and the NSMutableArray. 

2. An NSArray is an ordered list of objects. An NSArray can contain different variable 
types, but in the beginning you will probably be storing data of the same variable 
types. Creating an NSArray is a very simple process. 

NSArray *bookList = [NSArray arrayWithObjects:@"Moby Dick", @"Frankenstein", @"Tom 
Sawyer”, nil]; 

We’ll start by creating a new NSArray called booklist. We then set bookList equal to a 
new NSArray with three string objects, Moby Dick, Frankenstein, and Tom Sawyer. The 
nil at the end just tells the code that you are done creating the array. 

NOTE: nil cannot be added to a container variable. If you want to add a empty object, simple add 
[NSNull null]. 

Once you have created your NSArray, you are not able to modify the code in any way. 
You cannot add an item, you cannot remove an item, and you cannot sort the list. These 
are major limitations of the NSArray class. 

Getting information out of an NSArray is very simple. The most useful way to get 
information out of an NSArray is using a for loop. The following code is an example to 
take our bookList and get the information out of the NSArray. 

NSArray *bookList = [NSArray arrayWithObjects:@"Moby Dick", @"Frankenstein", @"Tom 
Sawyer”, nil]; 



CHAPTER 9:  Comparing Data 171 

int count; 
count= bookList.count; 
for(int y=0;y<count;y++) { 
 NSLog(@"Book Title  is %@", [bookList objectAtIndex:y);   
} 

Let’s step through the code. The first line creates the for loop. It also creates a new 
NSString called book for each object in the bookList array. Notice we use the [booklist 
objectAtIndex:y] to get the string we stored in the array at the index of y. The next line 
just prints the contents of each book variable out to the NSLog. The Sample output from 
this would be: 

Book Title is Moby Dick  
Book Title is Frankenstein  
Book Title is Tom Sawyer  

NOTE: NSArrays begin counting the index starting at 0. For example, the first item is 0, the 
second item is 1 and so on. 

NSMutableArray 
An NSMutableArray is very similar to an NSArray. The main difference is that an 
NSMutableArray allows the contents of the array to be modified. This means that now 
you can add, remove or sort the contents of the array. 

Let’s first start by declaring an NSMutableArray. 

NSMutableArray *bookList = [NSArray arrayWithObjects:@"Moby Dick", @"Frankenstein", 
@"Tom Sawyer”, nil]; 

This code is very similar to the declaration of a standard NSArray. The only piece of info 
changed is the variable type. As a bookstore, if we were to get in a new book, we could 
simply add it to the array. 

[bookList addObject:@”Huckleberry Finn”]; 

All this code is doing is sending a message to our bookList array to add a new string 
object with the text of Huckleberry Finn. This object will be added at the end of the 
array. You can use the method insertObject:atIndex: to place new objects at different 
places in the array. 

For example, if you wanted to insert “Huckleberry Finn” at the beginning of the list, you 
could use the following code: 

[bookList insertObject:@”Huckleberry Finn” atIndex:0]; 

Removing an object from an NSMutablearray is an easy process. Using the code we 
used to iterate through the NSArray, we can change the line to have it remove the items 
from the array. 

NSMutableArray *bookList = [NSArray arrayWithObjects:@"Moby Dick", @"Frankenstein", 
@"Tom Sawyer”, nil]; 



CHAPTER 9:  Comparing Data 172 

int count;
count=bookList.count;
for(int y=0;y<count;y++) { 
    [bookList removeObject:[booklist objectAtIndex:y]];
} 

If you wanted to sort your NSMutableArray, you could use the following line. This will
place the items in alphabetical order. 

[bookList sortUsingSelector: @selector( caseInsensitiveCompare: )]; 

NSDictionary 
The main difference between an NSArray and an NSDictionary is how the information is
stored. When creating an NSArray, you merely list the items in order you want them
stored. When creating an NSDictionary, you list the items, but you also have to add a
key for each of the items. Retrieving information from an NSArray and NSDictionary is
also different. In an NSArray, items are retrieved by their index number. In an
NSDictionary, objects are retrieved by their keys. 

Let’s create an NSDictionary. We are going to create an NSDictionary which is going to
contain information about a book. We will then be able to query the dictionary for
information such as book author or title. 

NSDictionary *book; 
book = [NSDictionary dictionaryWithObjectsAndKeys: 
             @"Herman Melville", @"Author",  
             @"Moby Dick", @"Title",  
 nil]; 
In this code, we start out by declaring a NSDictionary called book.  We then assign
objects and keys to each of the items we want in the dictionary.  Remember that the nil
tells the compiler that we are done with our dictionary. 
Retrieving information from an NSDictionary is an easy process. If you wanted to get the
Author from the NSDictionary you could use the following code. 
[book objectForKey: @“Author”] 

NSMutableDictionary 
The NSMutableDictionary is similar to the NSDictionary except for the fact
that the NSMutableDictionary can be modified. Let’s start out by creating
an NSMutableDictionary and then we will add another key and object to it. 
NSMutableDictionary *book; 
book = [NSDictionary dictionaryWithObjectsAndKeys: 
             @"Herman Melville", @"Author",  
             @"Moby Dick", @"Title",  
 nil]; 

[book setObject: @"Adventure" forKey: @"Genre"]; 

The final line adds a new string objects that can be accessed by using the key Genre. 



CHAPTER 9:  Comparing Data 173 

Summary 
We’ve reached the end of the chapter! Here is a summary of the things that were 
covered. 

 Comparisons 

 Comparing data is an integral part of any application. 

 Relational operators 

 You learned about the six standard relational operators and how 
each is used. 

 Integers 

 Integers are the easiest pieces of information to compare. You 
learned how comparing integers will be used in your programs 
and how to implement it. 

 Example 

 You created a sample application where you could test your 
comparisons and make sure you are correct in our logic. 

 You learned how to change the application to add different types 
of comparisons. 

 Boolean 

 You learned how to check Boolean values. 

 Strings 

 You learned how strings behave differently from other pieces of 
information you have tested. You learned some of the pitfalls of 
comparing strings. 

 Objects 

 You learned how difficult it can be to compare objects and that 
care must be taken to make sure you are getting the response 
you desire. 



CHAPTER 9:  Comparing Data 174 

Exercises 
 Modify the example application to compare some string information. It 

can either be in the form of a variable or a literal. 

 Create a loop in your application to display a number using the 
methods you learned in the Boolean portion of the chapter. 

 Write an Objective-C app that determines if the following years are 
leap years: 1800, 1801, 1899, 1900, 2000, 2001, 2003 and 2010. 
Output should be written to the console in the following format: “The 
year 2000 is a leap year”, or “The year 2001 is not a leap year.” 



 

 

175

175 

   Chapter 

Creating User Interfaces 
with Interface Builder 
Interface Builder is an application that enables iPhone/iPad and Mac developers to 

easily create their user interfaces using a powerful graphical user interface. It provides 

the ability to build user interfaces by simply dragging objects from Interface Builder’s 

library to your app’s user interface.  

Interface Builder stores your user interface design in one or more resource files, called 

XIBs. These resource files are set to interface objects and their relationships. Changes 

that you make with your user interface are automatically synchronized with Xcode.  

To build a user interface, you simply drag objects from Interface Builder palette library 

onto your view. Actions and Outlets are two key components of Interface Builder that 

help us streamline development processes.  

Actions that our objects trigger in our views when events fire are connected to our 

targets (object methods) in the app’s code. Outlets (pointers) declared in our object’s 

interface file are connected to specific instance variables. See Figure 10–1. 

NOTE: At the time of this writing, Xcode 4 is currently in beta version. We the authors are under a 
non-disclosure agreement with Apple and can’t talk much about the new features. However, as 
the beta stands now, everything in the book will be applicable when Xcode 4 becomes available 
to all developers.  

10 



CHAPTER 10:  Creating User Interfaces with Interface Builder 176 

 

Figure 10–1. Interface Builder with the 4 main windows displayed 

Understanding Interface Builder 
Interface Builder is responsible for the memory management of the objects it creates for 

iPhone and iPad apps. This relieves the developer of having to keep track of allocating 

and releasing memory if the developer used Interface Builder to create the object.  

Interface Builder saves the user interface file as a bundle that contains the interface 

objects and relationships used in the application. These bundles have the file extension 

“NIB.” With version 3.0 of Interface Builder, a new XML file format was used and the file 

extension changed to XIB. However, developers still call these files “NIB” files, when 

speaking the file name. 

Unlike most other graphical user interface applications, NIBs are often referred to as 

freeze-dried because they contain the archived objects themselves and are ready to run. 

The XML file format is used to facility storage with source control systems like 

Subversion, Perforce, and CVS.  

In the next section, we’ll discuss an app design pattern call Model-View-Controller. This 

design pattern enables developers to more easily maintain code and reuse objects over 

the life of our apps. 



CHAPTER 10:  Creating User Interfaces with Interface Builder 177 

The Model-View-Controller 
Model-View-Controller (MVC) is the most prevalent design pattern used in iPhone/iPad 

development, and learning about it will make your life as a developer much easier. MVC 

is used in software development and is considered an architectural pattern. 

Architectural patterns describe solutions to software design problems that developers 

can use in their code. The MVC pattern is not unique to Apple OOP developers; it is 

being adopted by many makers of IDEs, including those running on Windows and Linux 

platforms. 

Software development is considered an expensive and risky venture for businesses. 

Frequently, apps take longer than expected to write, come in over budget, and don’t 

work as promised. There was a lot of hype with OOP that companies would realize 

savings if they adopted its methodology, due to the reusability of objects along with 

easier maintainability of the code. Initially, this didn’t happen. 

As engineers looked at why OOP wasn’t living up to these expectations, they discovered 

a key shortcoming with how developers were designing their objects: developers were 

frequently mixing objects together in such a way that, as the application matured, 

moved to different platforms, or hardware displays changed, the code became difficult 

to maintain. 

Objects were often designed so that, if any of the following changed, it was difficult to 

isolate the objects that were impacted:  

 Business rules  

 User interfaced  

 Client-server to Internet-based  

Objects can be broken down into three task-related categories:  

1. Models: Business objects 

2. Views: User interface objects 

3. Controllers: Objects that communicate with both the Models and the Views 

As objects are categorized in these groups, apps can be developed and maintained 

easier over time. The following are examples of objects and their associated MVC 

category for an iPhone banking application: 

Model  

 Account balances 

 User encryption 

 Account transfers 

 Account login 



CHAPTER 10:  Creating User Interfaces with Interface Builder 178 

View 

 Account balances table cell 

 Account login spinner control 

Controller 

 Account balance view controller 

 Account transfer view controller 

 Logon view controller 

The easiest way to remember and classify your objects in the MVC paradigm is the 

following: 

Model: Unique business or application rules or code that represents the real world 

View: Unique user interface code 

Controller: Anything that controls or communicates with the Model or View objects 

Figure 10–2 represents the MVC paradigm.  

 

Figure 10–2. MVC paradigm 



CHAPTER 10:  Creating User Interfaces with Interface Builder 179 

Xcode and Interface Builder do not force developers to use the MVC design pattern. It is 

up to the developer to organize their objects in such a way to us this design pattern. 

Human Interface Guidelines (HIGs) 
Before you get all excited and start designing cool user interfaces for your app, you 

need to learn some rules. Apple has developed one of the most advanced operating 

systems in the world with iOS 4. Additionally, Apple’s products are known for being 

intuitive and user-friendly. Apple wants users to have the same experience from one app 

to the next.  

In order ensure a consistent user experience, Apple provides developers guidelines on 

how their apps should look and feel. These guidelines, called the human interface 

guidelines (HIGs), are available for the Mac, iPhone, and iPad. You can download these 

docs at http://developer.apple.com. See Figure 10–3. 

   

Figure 10–3. Apple’s human interface guidelines (HIGs) for iPhone, iPad, and Macs 

NOTE: Apple’s HIGs are more than recommendations or suggestions. Apple takes them very 
seriously.  

The following are the top reasons apps are rejected on Apple’s iTunes App store 

1. App crashes 

2. Violation of the (HIGs) 

3. Uses Apple Private APIs 

4. Doesn’t function as advertised on iTunes App Store 

You can read, learn, and follow the HIGs before you develop your app, or you can read, 

learn, and follow the HIG after your app gets rejected by Apple and you have to rewrite 

all or parts of it. Either way, all iOS developers become familiar with the HIGs.  

http://developer.apple.com


CHAPTER 10:  Creating User Interfaces with Interface Builder 180 

Many new iOS developers find this out the hard way, but if you the follow the HIGs, your 

iOS development will be a more pleasurable experience.  

Creating an Example iPhone App with Interface 
Builder  
Let’s get started by building an iPhone app that generates and displays a random 

number. See Figure 10–4. This app will be similar to the app we created in Chapter 4, 

but we’ll see how much more interesting the app becomes with an user interface (UI).  

  

Figure 10–4. Completed random number generator app 

1. Create a New Project. Make sure you select a View-based Application for the 

iPhone. See Figure 10–5. 



CHAPTER 10:  Creating User Interfaces with Interface Builder 181 

 

Figure 10–5. Create an iPhone View-based Application 

2. Name your project “RandomNumber.” See Figure 10–6. 

 

Figure 10–6. Naming our iPhone project 

3. Expand your groups in the Group & Files pane. See Figure 10–7. 



CHAPTER 10:  Creating User Interfaces with Interface Builder 182 

Figure 10–7. Source files  

Although we only have one controller in this project, it’s good programming practice to 

make your MVC groups at the beginning of your development.  

4. Right-click on Classes in the Groups & Files pane, then select Add > New Group. 

See Figure 10–8. 



CHAPTER 10:  Creating User Interfaces with Interface Builder 183 

 

Figure 10–8. Creating new groups 

5. Create a Models Group, Views Group, and Controllers Group.  

6. Drag the RandomNumberViewController.m and .h file the Controllers Group. 

Having these groups reminds you to follow the MVC design pattern as you 

develop your code, so you don’t just throw all your code in the controllers. See 

Figure 10–9. 

Developers have found it helpful to keep their XIB files with their controllers as their 

projects grow. It is not uncommon to have dozens of controllers and XIB files in your 

project. Keeping them together helps keep everything organized.  



CHAPTER 10:  Creating User Interfaces with Interface Builder 184 

 

Figure 10–9. MVC groups with Controller and XIB files organized 

7. Open the RandomNumberViewController.h file. 

8. Create one instance variable and two methods. The instance variable displays the 

random number, and methods will seed the random number generator and create 

a random number. We will also use the @property and @synthesize to create the 

getter and setter methods for the random number that we will display. See Figure 

10–10. 



CHAPTER 10:  Creating User Interfaces with Interface Builder 185 

 

Figure 10–10. Code listing for RandomNumberViewController.h 

Using Outlets 
There is one instance variable declared of type UILabel:. 

IBOutlet IBOutlet UILabel *randNumber; //instance variable 

As are reminder, outlets (pointers) are declared in our object’s interface file are 

connected to specific instance variables. 

There is also a declaration that is probably new to you. It is called an IBOutlet and is 

commonly referred to as an outlet. Outlets signal your controller that this instance 

variable is a pointer to another object that is set up in Interface Builder. IBOutlet will 

enable Interface Builder to see the outlet and enable you to connect the variable to the 

object in Interface Builder.  

Using the analogy of an electrical wall outlet, these instance variables outlets are 

connected to objects. Using Interface Builder we can connect these instance variables 

to the appropriate object. 

Because Interface Builder will be accessing randNumber outside the object, we need to 

provide the setter and getter methods for randNumber: 

@property (retain,nonatomic) IBOutlet UILabel *randNumber; //getter and setter methods 



CHAPTER 10:  Creating User Interfaces with Interface Builder 186 

We used retain, so we will need to release the memory allocated for this instance 

variable in the Implementation file. 

Implementing an Action 
We mentioned at the beginning of this chapter that actions, which our objects trigger in 

our views when events fire, are connected to our targets (object methods) in the app’s 

code. 

Our RandomNumberViewController object has two methods: 

(IBAction)seed:(id)sender; 

and 

(IBAction)generate:(id)sender; 

Methods can be triggered by user interface objects, also known as events, called 

Actions. 

You can now save this header file. 

NOTE: If you do not save your header file, you will not see your changes when you go to Interface 
Builder to connect your outlets and actions. It is common for developers to forget to do this. So 
when you go to Interface Builder and you don’t see an outlet or an action that you declared in 
your header file, you will know what you forgot to do.  



CHAPTER 10:  Creating User Interfaces with Interface Builder 187 

Using Interface Builder 
The most common way to launch Interface Builder and begin working on your view 

is to double-click on the XIB file related to the view in the Group & Files pane. In 

this case it is, RandomNumberViewController.xib. See Figure 10–11.  

 

Figure 10–11. Launch Interface Builder and double-click on the XIB file for the view 

When Interface Builder launches, two windows are displayed: the Document window for 

the XIB and its view. See Figure 10–12. 



CHAPTER 10:  Creating User Interfaces with Interface Builder 188 

 

Figure 10–12. The Document window and its View window 

At the top left of the Document window, you can select the different view modes. In 

Figure 10–12, the Document window is in Detail mode. 

Document Window 
The Document window shows all the objects that our view contains. Some examples of 

these objects are: 

 Buttons 

 Labels 

 Text fields 

 Web views 

 Map views 

 iAd 

 Picker views 

 Table views 

NOTE: If you can’t find the Document window in Interface Builder, simply click on Window > 
Document from the Interface Builder main menu. 



CHAPTER 10:  Creating User Interfaces with Interface Builder 189 

Library Window 
The Library window is where all the fun happens. It’s a smorgasbord of cool objects that 

you can drag and drop into the View window.  

 To open the Library window, click on Tools > Library in the main menu. 

See Figure 10–13. 

 

Figure 10–13. The Library window 

The Library window is divided into the following four sections: 

 Controllers 

 Data views 

 Inputs and views 

 Windows, views, and bars 



CHAPTER 10:  Creating User Interfaces with Interface Builder 190 

Inspector Window 
The Inspector window enables you to tweak your control to make your objects behave the 

way you want. The Inspector window has four tabs across the top. See Figure 10–14. 

 View attributes 

 View connections 

 View size 

 View identity 

 

Figure 10–14. The Inspector window 

To open the Inspector window, click on the blue inspector icon in the top menu of the 

Document window. Refer to Figure 10–12. 



CHAPTER 10:  Creating User Interfaces with Interface Builder 191 

Creating the View 
Our random number generator will have three objects in the view: one label and two 

buttons. The label shows the random number that is generated, one button will generate 

the seed, and the other button will generate the random number. 

1. Drag a Label from the Library window’s Inputs & Values section to the View 

window. 

2. Drag two rounded rect buttons from the Library window to the View Window.  

3. Click on the top button and label the button Seed Random Number.   

4. Click on the bottom button and label it Generate Random Number. See Figure 

10–15. 

 

Figure 10–15. Placing objects in the view 



CHAPTER 10:  Creating User Interfaces with Interface Builder 192 

Connecting the Outlets and Objects 
To connect the objects to the outlets and actions, it is best to have the Document and

View windows close together.  

To Connect the randNumber outlet to the label:  

Right-click on the File’s Owner icon in the Document window. In the outlet section of the pop-up 

window, drag from the randNumber open circle icon to the Label icon in the View window, and 

release. See Figure 10–16. 

Figure 10–16. Connect the randNumber outlet to the Label object 

When you release, the pop-up window will populate the randNumber outlet with the

objects information. See Figure 10–17. 

Figure 10–17. The randNumber outlet is connected to the Label object 

When you are connecting your outlet and actions to the objects in the view, Interface

Builder will not let you connect the outlet and actions to the wrong type. If you declared

an UILabel in your interface file, you will not be able to connect it to a UITextView object.  



CHAPTER 10:  Creating User Interfaces with Interface Builder 193 

NOTE: If you made a mistake and want to change your connection, simply click on the X icon 
next to the object name to delete the connection. Refer to Figure 10–17. 

Connecting Actions and Objects 
Now you need to connect your actions to your round rect button objects.  

Right-click on the File’s Owner icon in the Document window.  

In the Received Actions section of the pop-up window, drag from the Generate: Open 

circle icon to the Generate Random Number button in the View window. See Figure 10–18. 

 

Figure 10–18. Connecting the Generate: action to the button object 

When you release, another pop-up will display with the events that object can generate. 

Select Touch Up Inside. See Figure 10–19. 

The Touch Up Inside event is fired to your connected method via the controller’s action, 

when the user taps in the button on your iPhone. 



CHAPTER 10:  Creating User Interfaces with Interface Builder 194 

 

Figure 10–19. All events associated with the round rect button object 

Connect the Seed: action to the Seed Random Number Generator by right-clicking on 

the File’s Owner icon and dragging it from the Seed: open circle icon to the Seed 

Random Number Generator round rect button. Then select the Touch Up Inside event. 

See Figure 10–20. 

 

Figure 10–20. Connecting the Seed: action 

Great, all of our actions and outlets have been connected in Interface Builder. Go ahead 

and quite Interface Builder now. 

NOTE: If you don’t save your changes in Interface Builder, they will not be detected by the 
compiler, and you will not see the changes when you run your app. 



CHAPTER 10:  Creating User Interfaces with Interface Builder 195 

Implementation File 
All that is left now, is to complete the code for our outlet and actions in the 

implementation file for the controller.  

Open RandomNumberViewController.m and remove all the commented methods in 

green for readability.  

Complete the code in Listing 10–1. 

Listing 10–1. Outlet and actions 

#import "RandomNumberViewController.h" 
 
@implementation RandomNumberViewController 
 
@synthesize randNumber;//getter and setter methods (i.e. accessor) 
 
 
- (void)viewDidUnload { 
 // Release any retained subviews of the main view. 
 // e.g. self.myOutlet = nil; 
 self.randNumber = nil;// set outlets to nil with the view gets unloaded 
} 
- (IBAction)generate:(id)sender 
{ 
 // Generate a number between 0 and 100 inclusive 
 int generated; 
 generated = (random() % 101); 
 [randNumber setText:[NSString stringWithFormat:@"%i",generated]]; 
} 
 
- (IBAction)seed:(id)sender 
{ 
 srandom(time(NULL)); 
 [randNumber setText: @"Generator seeded"]; 
} 
 
- (void)dealloc { 
 [randNumber release]; 
 [super dealloc]; 
} 
 
 
@end 

There is a method we should examine a bit further: [randNumber setText: The method 

setText: sets the UILabel value in your view. The connections you established in 

Interface Builder from your outlet to the Label object does all the work for you. 

That is it!  



CHAPTER 10:  Creating User Interfaces with Interface Builder 196 

To run your iPhone app in the iPhone simulator, click on Build and Debug and your app 

should launch in the simulator. See Figure 10–21. 

 

Figure 10–21. The completed random number generator app running in the iPhone Simulator 

To seed the random function, tap on Seed Random Number Generator and then,  

to generate the random number, tap on Generate Random Number Generator. 

Broken Connections in Interface Builder 
If you change or delete an outlet instance variable name or action in your interface file 

without modified the XIB file, this may cause your application to crash. The compiler 

may not throw a warning when this occurs. 

To detect and fix these problems after you have modified or deleted an action or outlet 

in the interface file, open the XIB in Interface Builder. It should not have a warning 

triangle in the bottom right of the Document window. Refer to Figure 10–12. 

If an outlet or action has been deleted or modified in the interface file, an orange triangle 

will appear at the bottom right of the Document window. To see what is causing the 

error, click on the orange triangle to view the error(s). See Figure 10–22. 



CHAPTER 10:  Creating User Interfaces with Interface Builder 197 

 

 Figure 10–22. Detecting Interface Builder warnings 

To find the offending actions or outlets, right-click on the File’s Owner, and look for the 

yellow warning triangle(s). See Figure 10–23. 

To fix the warning, simply delete the connection and connect the correct outlet or 

action, if applicable. 



CHAPTER 10:  Creating User Interfaces with Interface Builder 198 

   

Figure 10–23. Finding and fixing Interface Builder warnings 

Summary 
Great job! Interface Builder saves a ton of time when creating our User Interfaces. You 

have a powerful set of objects to use in your application, with a minimum of coding. 

Interface Builder handles many of the details you would normally have to deal with. 

You should be familiar with the following terms: 

 NIB and XIB files 

 Model-View-Controller (MVC) 

 Architectural pattern 

 Human interface guidelines (HIGs) 

 Outlets 

 Actions 

Exercises 
 Extend the random number generator app to show a date and time in 

a Label when the app starts. 

 After showing a date and time label, add a button to update the data 

and time label with the new time. 



 

 

199

199 

   Chapter 

Memory, Addresses, and 
Pointers 
Computers, just like you and me, need a place to work and store things. Think of 

computer memory like space on a desk, for example. Someone who needs to work on 

many projects at once needs to have enough desk space to place all the papers and 

documents so they can be quickly and easily accessed. If the desk space is too small 

for the number of projects being juggled, some projects may have to be filed back into 

drawers so they can be quickly pulled back once there is more space on the desk. 

Making sure the desk space is used efficiently also very important. 

Dealing with a computer’s memory is one of the more complicated areas of 

programming. Why is this the case? Surely these problems have been solved by now, 

right? Well, yes and no. Some languages have taken the approach to remove the need 

for programmers to manage memory at all. Some internal magic (and a little something 

called garbage collection) handles all the management of how memory is used and 

released when it is no longer being used. The negative side to this approach is that 

garbage collection does not give the programmer the ultimate say-so on how the 

memory should be used in all cases. Why is this important? Generally speaking, the 

issue is performance. With full control of memory management, the programmer also 

has full control over the performance (or lack thereof) of the program. 

This chapter will introduce the ideas of working with the memory of the Mac, iPhone, or 

iPad. Working with memory on any device has its challenges. For example, the iPhone 

and iPad, being smaller devices, have less memory to work with, which means that it is 

important that their memory is used efficiently. Fortunately, Objective-C provides 

mechanisms that keep managing memory from being a chore. You will learn about how 

to allocate and deallocate memory as well as about the retain/release (or reference 

counting) model of memory management. 

11 



CHAPTER 11:  Memory, Addresses, and Pointers 200 

Understanding Memory  
While many people may have associated computer memory with that of the human 

brain, I prefer to compare computer memory to physical space that you, as a person, 

have to work. You are like the computer’s CPU, the part that actually processes 

information and does something with it. The more space you have to work, the easier it 

is to organize things and the quicker you can actually accomplish your tasks. Of course, 

we all reach that place where, no matter how much more space, we get we won’t be 

able to work any faster. 

To a computer, memory is the workspace where certain programs (or parts of programs) 

as well as data are stored.  On the Mac, iPhone, and iPad, the most basic unit of 

memory is a byte. If you think of memory as nothing more than a grid of boxes, a byte 

would simply be a single box. 

 

Figure 11–1. Bytes are like a row of boxes. 

Of course, there are generally billions of these boxes, or bytes, of memory in a typical 

modern computer. While it does seem like a vast, almost limitless amount, memory is 

the most important resource that a computer has at its disposal. Only programs that 

reside in memory can be executed; only data loaded from disk can be inspected or 

acted on. Also, on the iPhone or iPad, there is much less memory than on a typical PC 

or Mac computer. A certain degree of memory conservation is always a good practice. 

Okay, so memory is like a grid of boxes that each holds a byte of information. What 

good is it at this point? How does the computer put each byte in its place and how does 

it pull it back out? Certainly, if my garage was full of boxes, I would have a very difficult 

time figuring out where, for example, all of my old video games were stored. A computer 

has exactly the same problem, so it goes about solving that problem in a very organized 

way. Before we go into how the computer solves this problem, you need to understand 

the basics of units of memory and addresses.  

Bits, Bytes, and Bases 
In Figure 11–1, each box represents one byte, or memory space. Each byte can hold a 

total of 8 bits. A bit is simply a number that can be either a zero or a one—off or on.  It is 

this sequence of zeros and ones that give the byte its value. These zeros and ones 

represent a binary numeral system; that is, each digit can have a maximum of two 

values, zero or one. This is sometimes referred to as base-2 numbering system (verses 

the base-10 or decimal numbering system that we all use in our every day lives). Before 



CHAPTER 11:  Memory, Addresses, and Pointers 201 

we get into more specifics of memory, it’s very important that you understand the 

numbering systems that are typically used on modern computer hardware. 

NOTE: Modern computers use 8 bits per byte.  In the early days of computing, different 
manufacturers of computers sometimes had different byte sizes.  For example, Control Data 
Corporation’s CDC-6000 often used 12-bit bytes for display codes, and the DEC PDP-10 operated 
on bit fields, so a “byte” could be anything from 1 bit to 36 bits.  IBM, with its popular 
System/360, set the standard on the 8-bit byte as did the microprocessors of the 1970s. 

Generally speaking, people use base-10 numbering for pretty much everything; from 

money to measurements, base-10 is the standard. However, in the realm of the modern 

computer, the base-10 system is rarely used. Instead, the computer typically uses base-

2 (binary) or base-16 (hexadecimal). 

NOTE: Base-8, commonly referred to as octal, is also used but is not as common as 
hexadecimal. 

Converting Base-10 (Decimal) to Base-2 (Binary) 
A typical everyday number may look like this: 1101. Now, most people would consider 

this number to be “one-thousand, one-hundred, and one.” However in base-2 

numbering, this number would represent the decimal number 13. Let’s look at how this 

can be. 

As shown in Figure 11–2, in base-10 numbering, each digit represents a power of 10; 

that is, each column increases by a power of 10 (10, 100, 1000, etc.) right-to-left. We 

add the 1000s column (103), 100s column, and the 1s column to get 1,10110 (the 

subscript means “base-10”). 

103 102 101 100 

1 1 0 1 

Figure 11–2. Base-10 numbering system 

Now, let’s look at the same number in base 2 in Figure 11–3. 

23 22 21 20 

1 1 0 1 

Figure 11–3. Base-2 numbering system 

In base-2 numbering (shown in Figure 11–3), the columns all increase by a power of 2 (2, 

4, 8, 16, 32, etc.) right-to-left. We add 8, 4, and 1 to reach a value of 1310 (in base-2 that 



CHAPTER 11:  Memory, Addresses, and Pointers 202 

is).  Also note that a series of 4 bits, which represents half of a byte, is typically referred

to as a nibble. 

Of course, it was mentioned earlier that eight bits (numbered 0 to 7) make up a byte.

Figure 11–4 shows an example of an entire byte consisting of 8 bits. To get the value,

add up all of the columns as follows: 

128 + 16 + 8 + 4 + 1 = 15710 

Bit 7 . . . Bit 0 

128 64 32 16 8 4 2 1 

1 0 0 1 1 1 0 1 

Figure 11–4. An entire byte showing base-2 and base-10 values. 

Using Base-16 (Hexadecimal) Numbering  

The last base that is worthy of mentioning, used quite ubiquitously

in modern computers, is the base-16, or the hexadecimal,
numbering system. In base-2, each digit can have one of two

values, 0 and 1. In base-10, each digit can have one of ten values,

0–9. In base-16, each digit can have one of 16 values, 0–F. Yes, you

read that correctly; the last value is F. To represent 16 values in a

single column, it became necessary use letters to represent values.

In the case of base-16, the numbering goes from 0 through 9 and  

A through F. It takes two hexadecimal (hex for short) digits to

represent a single byte; each hex digit represents 4 bits as show  

in Figure 11–5. 

Upper Nibble  Lower Nibble 

Bit 7   . . .   Bit 0 

128 64 32 16  8 4 2 1 

 1 0 0 1  1 1 0 1 

9  D 

Figure 11–5. On the left, two nibbles make a byte. A simple hex to decimal conversion chart appears on the right. 

So the hex number 9D is equal to the binary number 10011101, which is equal to the

decimal number 157.  As shown in Figure 11–5, a byte can be any value between 0000

0000 and 1111 1111 (base-2), which is 0xFF in hex. 

Hex Dec 

0 0 

1 1 

2 2 

3 3 

4 4 

5 5 

6 6 

7 7 

8 8 

9 9 

A 10 

B 11 

C 12 

D 13 

E 14 

F 15 



CHAPTER 11:  Memory, Addresses, and Pointers 203 

NOTE: In “0xFF,” the “0x” that precedes the “FF” is used in programming to indicate that the 
number is a hex number.  While FF seems obvious, because there are only letters, a number like 
“10” is less clear, is it 10 or 16?  Well, 0x10 makes it clear. 

Hexadecimal takes some getting used to, but learning it is time well spent. This is 

because when dealing with memory, pretty much everything is expressed in 

hexadecimal. Just like in base-10, each numeric column is an exponentially larger that 

the previous, as shown in Figure 11–6.  

0010 0001 1010 0010 

163 162 161 160 

2 1 A 2 

 Figure 11–6. A 16-bit hexadecimal number 

In base-10, each column is 1, 10, 100, 1000, and so on. In hexadecimal, the columns are 

base-16, so you have 1, 16, 256, 1024, and so on—each column is a multiple of 16. 

However, once you understand hexadecimal, you may want to express the number in 

decimal as well. Figure 11–7 is an example of how a 16-bit hexadecimal number is 

converted to a decimal one. 

2 1 A 2 

2 x 163 1 x 162 10 x 162 2 

2 x 4096 1 x 256 10 x 16 2 

8,192 256 160 2 

Figure 11–7. Converting a 16-bit hex number to decimal 

If we add all of our columns together we will have our answer: 

8,192 + 256 + 160 + 2 = 8,610 

So 0x21A2 equals 8,610. 

Figure 11–7 represents a 16-bit number. Calculating 32- and 64-bit numbers means just 

simply increasing the columns to the left. 

TIP: If you find yourself calculating 32- and 64-bit values a lot, just use the calculator on the Mac 
(in the Programmer view) or spend a few bucks and buy a scientific calculator that can do hex. 



CHAPTER 11:  Memory, Addresses, and Pointers 204 

We hope you haven’t been scared off. Understanding computer memory at its lowest 

level is actually not that bad, and it’s something that won’t be necessary all the time. 

The important thing is to remember is that when dealing with memory, it may be 

necessary to understand binary (Base-2), decimal (Base-10), and hexadecimal (base-16) 

values. This will become clearer when debugging an application, as discussed in 

Chapter 12. 

Understanding Memory Address Basics 
Memory, just like buildings on a street, has addresses, except that, in some ways, 

memory addressing is much simpler. Earlier in this chapter, we mentioned that 

computer could solve a problem of keeping track of boxes of old video games in a 

garage—virtually of course.  The first part of this process is to be able to keep track of 

certain locations in memory, called addresses. From a program’s perspective, these 

addresses are stored into variables for later reference. 

Memory in a computer is a linear set of bytes (or boxes) that store information. If you 

were to simply start labeling these boxes as 1, 2, 3, 4, and so on, you would have a set 

of boxes starting at 1 and end with some very large number. These numbers are referred 

to as a memory address.  

Figure 11–8 provides a simple example of addressing memory.  

 

Figure 11–8. A simple example of addressing. 

If each block is one byte the first byte starts at address 0x1000 and ends at 0x1037. 

Remember that the “0x” that precedes the number indicates that the number, in this 

case, the address, is expressed in hexadecimal. So address 0x1000, for example, is 

really 4096 and not 1000. The number 0x1000 represents the start of our memory 

example. At this location is the letter “A”.  Also in the example is the letter “Z”. The value 

of “Z” is located at the memory address of 0x1019. The address 0x1000 is an example 



CHAPTER 11:  Memory, Addresses, and Pointers 205 

of a simple 16-bit address. A 32-bit iPhone address would look like 0x03C06D80. A 64-

bit address would be double the 32-bit size. 

NOTE: If our program were given access to the memory in Figure 12-8, it would store the 
starting point of the memory, 0x1000, into a variable.  This variable is commonly referred to as a 
pointer, since the value of the variable (the address 0x1000, which is just a number) points to 
the data we are interested in, like an arrow on a map. 

Another way to think of this grid of memory is to consider it an array. If you recall, an 

array is declared like the following: 

In this example, a variable has been declared as an array. The array size is 56 characters 

in length, the exact same size as our example in Figure 11–8. Whenever a variable is 

declared as an array, like myArray, the variable resolves to an address, or pointer. Just 

for argument’s sake, let’s assume that myArray has an address of 0x1000, just like our 

grid in Figure 11–8.  If you were to look at the variable myArray, it would have a value of 

0x1000. Remember, the value of an array resolves to an address. So how do we access 

the memory in the array? 

 char myArray[56]; 

NOTE: In C and Objective-C, all arrays are zero-based.  This means that the first element in the 
array is at element zero, not one.  An array of 30 elements would start at element 0 and end at 
element 29.  Element 30 is outside of the bounds of the array 

Since C and Objective-C use zero-based arrays, if the program need to access the first 

element in the array it would be done like the following: 

 char letterA = myArray[0]; 

In this case, letter would be set to the first element in the array, which would be the 

letter “A” (using Figure 12-8 as the array). What’s really happening under the hood is that 

the computer is simply using the array index and adding it to the address. Again, if the 

address is 0x1000, adding 0 result in a new address of 0x1000, which is where the letter 

“A” resides.  

 char letterZ = myArray[25]; // or myArray[0x19] if you 
                                  // getting into this hex thing! 

In the preceding example, letter would be set to the value at element 25, which is the 

letter “Z.” The computer adds 25 (0x19) to the base address of 0x1000, resulting in a 

value of 0x1019. This is where the letter “Z” is. Remember, arrays are zero-based so “Z” 

is at element 25 because “A” started at element 0; “Z” is still the twenty-sixth element 

(using natural numbers, or counting numbers, that start at one). 

Using the brackets ([ ]) after a pointer makes it very simple to access elements within 

that array of memory. There is a different way to do this that will yield the same result. 



CHAPTER 11:  Memory, Addresses, and Pointers 206 

This example will hopefully help the understanding of pointers and addresses even 

more. 

Listing 11–1. Using Pointers 

 

In Listing 11–1, line 3 declares a new array. The brackets ([ ]) are empty because we’re 

assigning the array a value of the alphabet. In this case, since we provide the values, the 

compiler knows what size the array is going to be. So, our new array is just like Figure 
12-8, the first value at element 0 is the letter “A,” and the last value at element 25 (0x19) 

is the letter “Z.” myArray is a pointer, and it points to memory that has the alphabet in it. 

Line 4 declares a variable that is a pointer. aPointer is a pointer to data of type char, if 
line 4 were int *aPointer, then aPointer would be a pointer to data of type int. In out 

case, we’ll keep it as char. Remember, a pointer is just an address, and an address is 

just a number. 

On line 5, the program is declaring a character variable. We’ll be using this variable to 

store data from the array. 

Line 7 looks a little strange but what it’s doing is assigning the aPointer variable, the 

value of myArray.  As mentioned previously, a variable that is an array always resolves to 

a pointer. So, myArray is a pointer, which is an address, which is just a number. That 

number is assigned to aPointer. The program is not copying the array to aPointer; its 

just setting the value of aPointer to what myArray is. At this point in the program, myArray 
and aPointer both have the same value.  

Line 8 adds 25 to the address of myArray and returns the value that is 25 bytes into the 

array, which results in the letter “Z.” 

Line 9 adds 2 to the value of aPointer. Remember, aPointer is equal to myArray. aPointer 
+ 2 now points to the letter “C.” If this seems a little off mathematically, remember zero-

based arrays: 

 aPointer+0 points to “A” 

 aPointer+1 points to “B” 

 aPointer+2 points to “C” 

Hopefully, you are getting used to zero-based arrays. Line 9 also makes use of the 

dereference operator, the asterisk (*), more about this in the next section. 

1 
2 
3 
4 
5 
6 
7 
8 
9 
10 
11 

int main(void) 
{ 
    char myArray[] = “ABCDEFGHIJKLMNOPQRSTUVWXYZ”; 
    char *aPointer; 
    char letter; 
 
    aPointer = myArray; 
    letter = myArray[25];   //  letter == ‘Z’ 
    letter = *(aPointer+2);  // letter == ‘C’ 
    letter = aPointer[3];     // letter == ‘D’ 
} 



CHAPTER 11:  Memory, Addresses, and Pointers 207 

Line 10 is equivalent to line 8. Both myArray and aPointer are pointers, and both point to 

the same memory, so the array operator works. 

Using the Dereference Operator 
Line 9 looked a little different from the other lines, so let’s examine it a little closer: 

 letter = *(aPointer + 2); 

First, let’s consider what’s inside the parenthesis:  

aPointer + 2 

This should be pretty straightforward: we are adding 2 to the pointer aPointer. If 

aPointer was 0x1000, the resulting value would be 0x1002. The pointer now points to 

the letter “C.” Using a pointer this way is very different from using the brackets in line 8 

or 10. We’re manually adjusting the pointer so that it results in a new value. Next, we 

need to ask the computer, “What does the pointer point to?” With the array operator on 

line 8 and 10, that question is implied, and the program responds. But when we simply 

change an address by adding, subtracting, or whatever, the program needs to explicitly 

ask this question.  This is where the asterisk (*) comes into play. 

Using an asterisk in front of a pointer dereferences the address and returns what value 

the pointer is pointing to. So, if our pointer is 0x1000 and at 0x1000 is stored the letter 

“A,” we can get to the letter “A” by dereferencing the pointer. *(0x1000) would return 

the letter “A” if our example was pointing to real memory (don’t actually do this because 

0x1000 is not a real address, just an example is used to simplify the problem!). 

Remember, a pointer is an address, and an address is just a number. The asterisk asks 

the computer to return what stored at the address rather than to return the address 

itself. 

NOTE: In most common programming the programmer rarely gets to tell the system, for 
example, at location 0x1000 is our data.  The reason for this is that memory is virtualized.  
Virtualized memory allows more memory to be used than is physically present on the machine 
(Vitual memory is out of scope of this book).  Because of this, the operating system manages 
where the data is stored.  As a result, the computer tells the program where its memory is, rather 
than the program telling the computer.  Regardless, the concept is the same. 
 
When developing software at the hardware or device driver level, using hard-coded addresses is 
much more common.  Typical programs in Mac OS X or iOS will never use hard-coded 
addresses. 



CHAPTER 11:  Memory, Addresses, and Pointers 208 

Requesting Memory 
In modern operating systems, the program requests memory, and the operating system 

complies by returning a pointer to the requested memory. In C and Objective-C, a 

pointer is declared by preceeding the variable name with an asterisk (*), for example: 

char *theData; 
NSString *theString; 

Don’t confused the asterisk here with the dereference operator. Only when declaring a 

variable does the asterisk identify the variable as a pointer. 

Here are some more examples of requesting memory: 

1. char data1[100]; 
2. char *data2 = malloc(100); 
3. NSString *myString = [[NSString alloc] init]; 

In example 1, memory is allocated in the form of an array declaration. The program now 

has a pointer (data1) that points to 100 bytes of memory. In C, any variable that is 

declared as an array is referenced as a pointer. 

Example 2 is a little more complex. data2 is declared as a pointer to a char data type. 

We can tell it’s a pointer because the variable name is preceded by an asterisk. The next 

part of the line is malloc(100), which is a standard C library function call. This function 

allocates the requested amount memory and returns a pointer to it. In our example, 

malloc is passed the value 100. This requests that 100 bytes be allocated. When the 

function returns, data2 contains a pointer to the 100 bytes of memory. 

Example 3 is a more traditional Objective-C type memory allocation. First, the program 

declares a pointer to an NSString class named myString. Next, the following code is 

executed: [[NSString alloc] init]. This will allocate the necessary memory for the 

object and return a pointer to it. 

In all these examples, memory is requested from the operating system and returned to 

the program via a pointer, even in example 1—except example 1 is just a little different 

from the rest. 

Working with Automatic Variables and Pointers 
Any variable created within a function or block is considered an automatic variable, or 

auto-variable. In our previous examples, example 1 allocates 100 characters as an 

array. It does so automatically since, as you learned, all variables are auto-variables by 

default. Because we define all the space up front via an array declaration, all of this 

memory is managed automatically for us. Examples 2 and 3 are also auto-variables but 

they allocate just enough space to hold a pointer to memory—that’s all. Recall that a 

pointer is just a variable that holds an address to memory; it’s not the memory itself. So, 

char* data2 and NSString *myString are really just variables that hold a number, which 

represents an address to memory. 



CHAPTER 11:  Memory, Addresses, and Pointers 209 

TIP: Think of pointers this way: a pointer is like a ticket to a concert the allocated memory is like 
the seat.  The ticket has the information on how to get to the seat.  If the ticket card is discarded 
(or lost), the ability to find the seat is also lost.  However, the seat (allocated memory) still 
remains. 

Examples 2 and 3 are auto-variables that hold the “ticket” to the memory, not the 

memory itself (see Figure 11–9).  This means that, when the function exits and the 

variables go out of scope, the pointers to the memory will be lost; the “ticket” is lost. The 

problem with this is that the program needs to also release, or deallocate, the memory 

that the pointer points to before it is lost. The manually allocated memory does not go 

out of scope with the pointer; allocated memory is global to the program and doesn’t 

get released until the program exits.  

 

 

 

 

Figure 11–9. A pointer is not the memory itself. 

What’s very important to remember is that memory that is manually allocated must be 

deallocated at some point and depending on how the memory is used. Some memory 

might be allocated at the start of the program and doesn’t have to be released until the 

program exits. However, the most common memory allocations happen many, many 

times throughout the life program, and it becomes critical that the associated memory 

be deallocated as soon as the object is no longer being used. 

Deallocating Memory 
When a program allocates memory, it needs to ensure that it’s released, or deallocated, 

once the program is finished using the memory. Using the examples again, example 2 

allocates memory with the malloc command. When the program is finished with that 

memory, it needs to be deallocated. Failing to deallocate memory is a common 

programming mistake and goes by the descriptive name of memory leak. 

To prevent memory leaks (which eventually lead to program crashes), allocated memory 

must be managed with care. Listing 11–2 shows the code could look when properly 

deallocating memory for examples 2 and 3.  

         Pointer                          Memory 
 

                                                  0x1000 0x1000 



CHAPTER 11:  Memory, Addresses, and Pointers 210 

Listing 11–2. Memory Allocation and Deallocation  

 

 

In Listing 11–2, data2 is allocated on line 3. This type of allocation is plain old standard 

C  and is not typical in an Objective-C program, but its still very important to know and 

understand. 

Line 4 declares and allocates an Objective-C object, NSString. 

Line 7 deallocates the block of memory allocated from line 3. 

Line 8 sets the pointer to NULL. This is a good practice that is going to be explained in 

the next section. 

Line 9 releases the object that was allocated on line 4. The release message is a 

request to deallocate the object. The reason that release message is a request to 

deallocate memory has to do with the mechanism of how memory is managed for 

Objective-C objects. This mechanism is referred to as the retain/release model, or 

sometimes as reference counting. Reference counting makes using memory a little 

more efficient, because it allows the objects to know when it should be deallocated. It’s 

a slightly better mechanism than completely managing memory manually. 

Line 10 is equivalent to line 8. Objective-C pointers can be set to NULL but its much 

better to set the pointer to nil. A nil object in Objective-C has a special meaning and 

can actually respond to a message. NULL does not have that same property. 

Using Special Pointers 
As you’ve learned, a pointer is just a number that represents an address to memory. 

There are two special pointers that are worth mentioning. They really aren’t pointers per 

se, but they represent an empty pointer—a pointer that doesn’t point to anything. These 

two pointers are NULL and nil. NULL is nothing more than zero, zilch, nada. Since 

pointers are just numbers that represent an address, an address of 0, or NULL, 

represents a pointer that logically points to nothing. Using an address of zero is a 

convention that modern computers use; computers do not allow any program to store 

something at the address 0 which makes using NULL to represent an empty or 
unused piece of memory much more meaningful. This is important to know because if 

memory allocation fails, the resulting pointer returned is NULL. NULL is also useful to 

1 
2 
3 
4 
5 
6 
7 
8 
9 
10 
11 

int main(void) 
{ 
    char *data2 = malloc(100); 
    NSString *myString = [[NSString alloc] init]; 
    …  // standard “doing-stuff” ellipse 
    … 
    free(data2);  // Deallocate the 100 bytes 
    data2 = NULL; 
    [myString release];  // I’m done using this string. 
    myString = nil; 
} 



CHAPTER 11:  Memory, Addresses, and Pointers 211 

indicate that the pointer is no longer valid or is simply empty. This is true for all of 

standard C. Here’s how NULL can be used to initialize a pointer:  

 char *data = NULL; 

It should also be used in comparisons like the code fragment in Listing 11–3. 

Example 11–3. Using NULL to Verify and Clear a Pointer 

 

In Listing 11–3, line 2 checks to make sure that the malloc function worked by checking 

the pointer with NULL. If the pointer is not NULL, the allocation worked, and the program 

can use the returned value. The memory is then deallocated on line 4 and set to NULL on 

line 5 to indicate that the pointer is no longer pointing to anything. 

When we are dealing with Objective-C objects, the equivalent of NULL in Objective-C is 

nil. Like NULL, nil is a special pointer to nothing. However, in the case of Objective-C, 

nil is actually an empty object. Since Objective-C is heavy on sending messages to an 

object, an empty pointer should respond to message sent to it, even if that pointer is 

empty—the nil empty object fulfills this purpose. Listing 11–4 is a sample code 

fragment that is similar to the standard C version. 

Listing 11–4. Using nil to Verify and Clear an Objective-C Pointer 

 

TIP: Using the ticket metaphor for deallocated memory, here is something to watch out for:  If a 
ticket is a pointer to a seat in a theater, what happens when the show is over?  Well, the ticket 
still points to that same seat, but it isn’t valid anymore; the show is over.  The same is true with 
memory.  If the memory that a pointer points to is deallocated, that memory is now free to be 
used by another memory allocation.  However, the pointer still points to that old memory.  It’s 
important to clear the pointer so it isn’t mistakenly used. The practice of checking to see if the 
pointer is not NULL before using it paired with the practice of setting a pointer to NULL or nil 
when the object is deallocated is a “best practice” that should be strictly followed. 

1 
2 
3 
4 
5 
6 
7

char *data = malloc(100); 
if (data != NULL) { 
    // Do something with the memory.  It’s valid. 
    free (data);   // Deallocate the memory, we’re done with it. 
    data = NULL;  // Set the pointer to NULL indicating that its empty. 
} 

1 
2 
3 
4 
5 
6 

NSString *data = [[NSString alloc] initWithUTF8String: “Hello World!”]; 
if (data != nil) { 
    // Do something with the memory.  It’s valid. 
    [data release];   // Deallocate the memory, we’re done with it. 
    data = nil;  // Set the pointer to NULL indicating that its empty. 
} 



CHAPTER 11:  Memory, Addresses, and Pointers 212 

Managing Memory in Objective-C 
As mentioned earlier, Objective-C handles allocated memory in a slightly different way

than most applications written in standard C. Recall that the Objective-C system uses

something called the retain/release model. With this model, memory that has been

allocated by an object gets counted every time the application that is interested in the

memory sends a retain message to the object. At various stages of the application, the

program indicates that it’s finished using the memory and sends a release message.

When the number of releases equal the number of retains, the memory associated with

the object is finally deallocated. Let’s see how this model looks like in practice. Listing

11–5 is a very basic example. 

Listing 11–5. Allocating an Objective-C Object 

In this example, Line 3 allocates a new string object using alloc. This line is actually very

important in this situation; the reason will be explained in a bit. So line 3 created the new

string. As its created, the Objective-C system automatically sends a retain message to

the object. At this point, the myString variable points to an object that has one retain so

far. 

Line 5 issues a release to the myString object. The release subtracts one from the

current retain count (which is 1). As mentioned before, once the retain count reaches

zero, the object is deallocated. So, once Line 5 has finished, the myString variable

points to deallocated memory. 

Line 6 sets our original variable to nil to indicate that the pointer is empty. 

Using the Retain/Release Model  
The process of retaining and releasing memory is something that Objective-C uses

extensively to manage memory. The alternate name of this process, reference counting,

is a little more descriptive, because the process of retaining and releasing memory is a

way of counting how many times the memory has been retained rather than. released.

Note the term “memory” is used here generically. Memory management in Objective-C

allocates memory for objects instead of just blocks of memory. The Objective-C base

class NSObject, which most Objective-C objects are derived from, keeps track of the

retain count. 

1 
2 
3 
4 
5 
6 
7 

int main(void)
{ 
    NSString* myString = [[NSString alloc] initWithUTF8String: “Hello World!”]; 
    // Code to do something with the string… 
    [myString release]; 
    myString = nil;
} 



CHAPTER 11:  Memory, Addresses, and Pointers 213 

NOTE: If you are looking for exactness, the NSObject protocol group actually defines the 
reference counting messages.  NSObject implements that protocol. 

So far, things sound fairly simple: for every retain, there needs to eventually be a 

release. This doesn’t sound too tricky, right? Well, it’s not always straightforward to 

know when an object is retained. Consider the example in Listing 11–6. 

Listing 11–6. A Retain Count  

 

Looking at Listing 11–6, the retain counts of the dict and today objects are shown. The 

dict object looks pretty normal: it has a retain count of 1 whenever the object is created. 

The same is true for the today object on line 2. 

At line 4, things look a little odd. For some reason the today retain count is now 2. What 

happened? Well, if we look closely at the NSMutableDictionary documentation for the 

setObject: forKey: method, we see, in the documentation for the setObject: part of 

the message, and the anObject parameter is the value for the key and that “the object 

receives a retain message before being added to the receiver.” 

According to the documentation, before an object is added to the dictionary, the object 

is sent a retain message. This is why today had a retain count of 2.  

Why does the dictionary do this? Well, the answer is quite simple. If we add an object to 

the dictionary, the dictionary should be responsible for it now; we basically handed it 

over to that class. We can release any local variables to objects we added to the 

dictionary. The dictionary now becomes the owner of the objects. To ensure this, the 

NSMutableDictionary class sends all of the data it stores a retain message so that the 

system knows that someone is using that object. 

Since dict is managing the object, line 5 is used to release our object. The dictionary 

still has the same memory that the today object has; we’ve just told the system that 

we’re finished with it. Had the dictionary object not sent a retain message, line 5 would 

have actually deallocated the message. The rule is pretty simple: Once the retain count 

of an object reaches zero by way of a release, the object is sent a dealloc message, 

and the memory to that object is actually deallocated. 

Line 6 is a simple convention to indicate we’re finished with the pointer. 

Line 7 removes the object by way of the key “TODAY”. When an object is removed from a 

dictionary, the object is automatically sent a release message. At this point, the object 

that today used to point to is sent a release message. Since this now makes the retain 

1 
2 
3 
4 
5 
6 
7 
8 

NSMutableDictionary *dict = [[NSMutableDictionary alloc] init];  dict retainCount = 1 
NSDate *today = [[NSDate alloc] init];       today retainCount = 1 
 
[dict setObject: today forKey: @”TODAY”];       today retainCount = 2 
[today release];          today retainCount = 1 
today = nil; 
[dict removeObjectForKey: @”TODAY”];       today deallocated 
[dict release];           dict deallocated 



CHAPTER 11:  Memory, Addresses, and Pointers 214 

count of the object zero, the object is also sent a dealloc message to deallocate its 

memory. 

Line 8 simply sends a release message to the dict object. This will deallocate the 

memory of the object, since nowhere else is the object retained. 

Working with Implied Retain Messages 
How do we know which objects need to be released and which don’t? The answer 

basically falls under the rule of object ownership.  If an object is created that has alloc 

or new in the message name, you own the object, and it, therefore, needs to be released 

once the program is finished using it. There are other examples but no hard and fast rule 

unfortunately. Properly deallocating memory takes an understanding of the objects and 

what messages result in an explicit retain. 

While an object can be sent an explicit retain message, in the examples so far there 

isn’t one retain, because there are automatic or implied retain messages. For example, 

whenever the message setObject: forKey: is sent to the dictionary object, the object 

we add is automatically sent a retain message. As mentioned previously, whenever we 

are allocating an object a retain is implied: 

 NSMutableDictionary *dict = [[NSMutableDictionary alloc] init]; 

Other calls are not so obvious, for example: 

 NSDate* today = [NSDate date]; 

In this case, alloc was not called, but we get a new NSDate object. The key is to read 

the Apple Developer Documentation on the NSDate class and the date class method that 

states that the method will return a new date object. 

The key is that the return value is a new date object. Because it’s a new object, it 

receives an implied retain. The program could just have also been written like so: 

NSDate* today = [[NSDate alloc] init]; 

This code would yield the exact same results. The difference is that, in the second 

example, we are explicitly allocating the memory. Based on the Objective-C memory 

management rules, if we explicitly use a method that begins with alloc or new or 

contains the word copy, or if we send the object a retain message, we are then 

responsible for releasing the allocated memory. If we don’t specifically deallocate that 

memory, the Objective-C system will automatically release the memory. While it’s nice 

to have the system automatically release memory on your behalf, it’s inevitable that you 

will eventually have to deallocate your own objects. 



CHAPTER 11:  Memory, Addresses, and Pointers 215 

Sending the dealloc Message 
Under normal circumstances, your program should never send a dealloc message to 

another object. There are some rare exceptions. One of these is when handling the 

dealloc message itself. You will be dealing with the dealloc message only for objects 

you create. Listing 11–7 is a snippet of code that shows how a typical dealloc message 

is coded. Every object that you create should implement a dealloc message. 

Listing 11–7. A Typical dealloc Implementation 

 

Listing 11–7 is strictly an example, and the instance variable names are completely 

fabricated. 

Line 3 sets an instance variable to nil. Not only is this common practice but also, in our 

example, the instance variable is a property. If it were created with the retain keyword 

like this: 

 @property(retain) NSDate* iVar1 

Setting the property to nil automatically sends a release message to whatever object 

iVar1 was pointing to first. It’s a very clean way to release an object. 

Line 5 shows how a nonproperty instance variable would be released.  We’ve used this 

method in many of our examples so far. 

Line 7 is one of the rare cases in which you would send a dealloc message to an object. 

In this case, the program is telling its parent (the superclass) to deallocate itself. The 

parent would end up doing the same, sending a dealloc to its parent and so on until the 

base object is finally deallocated. Also note that [super dealloc] is the last thing the 

method does—it’s not a good idea to deallocate the parent class and then continue to 

do more things. 

Dealing with the retain/release model will take some time to get used to but overall is a 

fairly straightforward system of managing memory. Here’s a word of caution though: 

even though our examples talked about the retainCount method of an object, do not 

rely on this value. Since you have no idea what parts of the framework have an interest 

in your objects, the retain count could be higher than you expect. However, knowing 

about the retainCount is beneficial in troubleshooting a potential memory leak. Continue 

to practice working with the retain/release model, and make sure that you read the 

developer documentation when sending or receiving objects so that you know how the 

object in question is being handled. 

1 
2 
3 
4 
5 
6 
7 
8 
9 
10

- (void)dealloc 
{ 
    self.iVar1 = nil;    // If we had instance variables, make sure they are 
deallocated. 
                           // This instance variable was a property (Chapter 10) 
    [iVar2release];   // Another example.  We release an instance variable that we 
                           // were using – it wasn’t a property. 
   [super dealloc];// We finally tell our parent to deallocate itself.  This is one of the 
                           // rare times dealloc will be called explicitly. 
} 
     



CHAPTER 11:  Memory, Addresses, and Pointers 216 

If Things Go Wrong 
Allocating memory either through the standard C mechanisms or the Objective-C object 

allocation methods works most of the time. However, the programmer cannot assume 

that allocating an object or allocating memory works all the time. When memory 

allocation fails it’s generally a sign that bigger problems are at hand, and the program 

may not be around too much longer (it will crash because of memory issues). However, 

even though the program may be getting into a bad state because it can’t allocate 

memory, the program should ignore the signs. Here are some conventions that are used 

to test if memory allocation has failed: 

 

In this standard C example, if the malloc function fails, a NULL pointer is returned. Recall 

that NULL pointer is nothing more than a pointer that points to location 0x00000000. 

Memory never starts at this location, so NULL can be used to indicate a bad memory 

allocation. 

In Objective-C, there are two main areas that we need to perform validity checks. Here’s 

the first:  

 

In this example, we try to create an object, but we check to see if the pointer returned is 

nil or not. Recall that a nil object is basically a default empty object used as a 

placeholder to mean “empty,” or “nothing.” Don’t confuse this with an empty MyObject, 

because that it is not. 

The second validity check only applies to objects we’ve created. This check is done in 

the init method of the class: 

 

 

1 
2 
3 
4 
5 
6 
7 
 

int main(void) 
{ 
    char *data2 = malloc(100); 
    if (data2 == NULL) {// Malloc returns NULL (0x00000000) if allocation fails. 
        // Application has detected a major failure. 
    } 
} 

1 
2 
3 
4 
5 
6 
 

int main(void) 
{ 
    MyObject* obj = [[MyObject alloc] init]; 
    if (obj) {   // If the object is valid…. 
        // Application has detected a major failure. 
} 

1 
2 
3 
4 
5 
6 
7 
8 
 

- init 
{ 
    self = [super init]; 
    if (self != nil) { 
        // Do object initialization here on a valid self object. 
    } 
    return self; 
} 



CHAPTER 11:  Memory, Addresses, and Pointers 217 

In this example, in the object’s init method, the program explicitly tests to see if self 

returns a value that is not nil. If self is not nil, things are OK, and the method can 

continue initializing the object. The method then returns self, which can be either nil or 

not. The important thing to note here is that we are testing to ensure that the call to 

[super init] works before preceding to work on self. 

Summary 
We’ve covered quite a bit in this chapter. Hopefully, you now have a clearer 

understanding of how memory, addresses, and pointers work. In this chapter, we 

covered the following: 

 Defining “memory”  

 Using base-2, base-10, and base-16  

 Defining and using memory addresses 

 Defining and using pointers 

 Defining and using the dereference operator  

 Allocating memory 

 Using auto-variables are and watching out for pitfalls so as not to 

cause a memory leak 

 Deallocating memory and preventing memory leaks, including using 

the dealloc method 

 Using the special pointers NULL and nil  

 Managing memory using Objective-C and its retain/release model  

 Detecting when things go wrong with memory allocation. 

This chapter definitely covered a lot of ground, but congratulate yourself on making it 

through. Understanding how memory works on a Mac, iPhone, iPad, or any computing 

device is very important. 



CHAPTER 11:  Memory, Addresses, and Pointers 218 

Exercises 
 In the following memory space, how large is the memory block?  What 

is the address of the very last byte in this block of memory? 

 

 Using the code from Listing 12-1, try to determine what these 

statements will do and why: 

 *(aPointer + 2) = ‘1’; 

 (aPointer + 2) = ‘1’; 

 Look at the Apple developer documentation for the method addObject 

in the NSMutableArray class. 

 What differences are there between the addObject method of the 

NSMutableArray class and the NSMutableDictionary class’s 

addObject:forKey: method? 

 How would using an NSMutableArray change, if at all, the code in 

Listing 11–1 



 

 

219

219 

   Chapter 

Debugging Programs with 
Xcode 
Xcode is fantastic! Not only is this tool provided free of charge from Apple’s developer 

site but it is actually really, really good! Aside from being able to create the next great 

Mac OS X, iPhone, or iPad app, Xcode has a fantastic debugger built right into the tool. 

So, what exactly is a debugger? First of all, let’s get something straight – programs do 

exactly what they are written to do. Sometimes, what is written isn’t exactly what the 

program is really meant to do. Sometimes, this means that the program crashes or just 

doesn’t do something that is expected. Whatever the case, when a program doesn’t 

work as planned the program is said to have bugs. The process of going through the 

code and fixing these problems is the process known as debugging. 

There is still some debate as to the real origin of the term “bug,” but one well-

documented case from 1947 involved Grace Hopper, a Naval reservist and programmer 

at the time. Hopper and her team were searching for a problem with the Harvard Mark II 

computer. One of her associates found a moth in the circuitry that was causing the 

problem with one of the relays. She was later quoted as saying, "From then on, when 

anything went wrong with a computer, we said it had bugs in it."1 

Regardless of the origin, the term has stuck and programmers from all over the globe 

use debuggers, like Xcode, to help find bugs in programs (people are the real 

debuggers. Debugging tools help the programmer locate the problem. No debugger, 

whatever the name might imply, fixes problems all on its own).  

This chapter will highlight some of the more important features of the Xcode debugger 

and how to use them. Once you are finished with this chapter, you should have a good 

enough understanding of the Xcode debugger and of the debugging process in general 

to allow you to search for and fix the majority of program issues. 

                                            

1 Michael Moritz, Alexander L. Taylor III, and Peter Stoler, “The Wizard Inside the Machine,” Time Vol. 123 No. 

16: pp. 

12 



CHAPTER 12:  Debugging Programs with Xcode 220 

Getting Started with Debugging 
If you’ve ever watched a movie in slow motion just so you can catch a blooper or detail 

that you can’t see when the movie is played at full speed, you’ve used a tool to do 

something a little like debugging. The idea that playing the movie frame-by-frame will 

reveal the detail you are looking for is the same sort of idea that we will apply to 

debugging a program. With a program, sometimes it becomes necessary to slow things 

down a bit to see what’s happening. The debugger allows us to do this with two main 

features: setting a breakpoint and stepping through the program line by line—more on 

these two features in a bit. Let’s first look at what how to get to the debugger and what 

it looks like. 

First, we need to load an existing program. Our examples in this chapter use the 

MyBookstore project from Chapter 10, so open Xcode and load the MyBookstore 

project. 

Second, make sure that the Debug configuration is chosen, as shown in Figure 12–1. 

Debug is the default selection, so you’ll most likely not have to change this. This step is 

important, because if the configuration is Release, debugging will not work at all! 

 

Figure 12–1. Selecting the Debug Configuration 

While we won’t discuss Xcode configurations in this book, just know that, by default, 

Xcode provides both a Release and a Debug configuration option for any Mac OS X or 

iPhone OS project you create. The main difference as it pertains to this chapter is that a 

release configuration doesn’t add in any program information that is necessary for 

debugging an application, whereas the debug configuration does. 

Setting Breakpoints 
To see what’s going on in a program, we need to make the program pause at certain 

points that we as the programmer are interested in. A breakpoint allows us to do this. In 

Figure 13-2, we’ve set a breakpoint on line 14 of the program. To do this, simply place 



CHAPTER 12:  Debugging Programs with Xcode 221 

the mouse cursor over the line number (not the program text but the number “14” to the 

left of the program text), and click once. 

 

Figure 12–2. Our first breakpoint 

We can also remove the breakpoint by simply dragging the breakpoint to the left or right 

of the line number column and then dropping it. In Figure 12–3, the breakpoint has been 

dragged to the left of the column. During the drag-and-drop process, the breakpoint will 

turn into a puff of smoke. 

 

Figure 12–3. The breakpoint disappears in a puff of smoke 

Setting and deleting breakpoints are pretty straightforward tasks. There are other ways 

to delete breakpoints, but this way is the most entertaining! 



CHAPTER 12:  Debugging Programs with Xcode 222 

Debugging Basics 
Set a breakpoint on line 14 like in Figure 12–2. Next, as shown in Figure 12–4, click the

Build and Debug button to compile the project and start running it within the Xcode

debugger. 

Figure 12–4. The Build and Debug button in the Xcode toolbar 

Once the project builds, the debugger will start; the screen will change to the debugging

view, and the program will stop execution on line 14, as shown in Figure 12–5. 

Figure 12–5. The Debugger view with execution stopped on line 14 

The debugger view looks a lot different from the project view. Let’s go over the different

parts of the debugger shown in Figure 12–5. 

1. Project/debug page: These two buttons switch between the project
and debugger views.  You can change to the project view while the
program is being debugged, but the debugging controls change slightly. 

2. Debugger controls:  The debugging can be stopped, restarted,
continued, or stepped through.  The stepping controls are used most
often. 

B) Debugger Controls 
A) Project/Debug Page 



CHAPTER 12:  Debugging Programs with Xcode 223 

Working with the Debugger Controls 
As mentioned previously, once the debugger starts, the view changes. What appears are 

the debugging controls (item B in Figure 12–5). The controls are fairly straightforward 

and are explained in Table 12–1. 

Table 12–1. Xcode debugging controls 

Control Description 

 

Clicking the Tasks button will stop the execution of the program. If the 

iPhone or iPad emulator is running the application, it will also stop as if 

the user pressed the Home button on the device. The Xcode project will 

stay in the debugger view. To get back to the regular text view, click the 

project button at the top-left of the project window (see item A in Figure 

12–5. 

 

If the program is stopped at a breakpoint, the Continue button will 

appear next to the stop sign. Clicking this causes the program to 

continue execution. The program will continue running until it ends, the 

stop sign is clicked, or the program runs into another breakpoint. While 

the program is running, this icon will turn into a Pause button, and 

clicking it will cause the application to effectively stop as if on a 

breakpoint wherever it is. 

 

When the debugger stops on a breakpoint, clicking the Step Over button 

will cause the debugger to execute the current line of code and stop at 

the next line of code. If the debugger encounters a breakpoint while 

stepping over code, the debugger will go to the breakpoint instead of 

skipping over it. In Figure 12–5, clicking this icon will cause the debugger 

to the next line, line 15. 

 

Clicking the Step Into button will cause the debugger to go into the 

specified function or method. If we clicked this control, the debugger 

would go into the addBook method in Figure 12–5. This is very important if 

there is a need to follow code into specific methods or functions. Only 

methods for which the project has source code can be stepped into. 

 

The Step Out button will cause the current method to finish executing, 

and the debugger will go back to the caller. Using Figure 12–5 as an 

example, if we were to step into line 14 and then immediately click Step 
Out, the addBook method would finish executing, and the debugger would 

then stop on line 15, effectively finishing the current functions and 

stepping back out. 



CHAPTER 12:  Debugging Programs with Xcode 224 

Debugging a Program 
Your debug console should look very similar to Figure 12–6. The cursor should be 

positioned in the text editor on line 14, which is where our breakpoint was set.  

 

Figure 12–6. The debug window 

Here is a description of the various panes: 

1. Thread list: This pane shows all the threads that are executing.  There is 
always at least one thread, which is our application.  This is where the 
call stack is viewed (more in ‘Looking at the Thread Window and Call 
Stack’ section ). 

2. Variable: All of the variables currently in scope are displayed in this 
pane. 

3. Text: This is the text editor that is seen in the project view.  Hovering the 
mouse over variables will show their contents.  To a limited extent, the 
code can be changed while the program is being debugged. 

4. Output: Program output, like the output from NSLog, is displayed here.  If 
the program encounters a failure, the system may also display 
information in this window. 

B) Variables A) Thread List 

C) Text Editor 

D) Output 



CHAPTER 12:  Debugging Programs with Xcode 225 

Using the Step Controls 
To practice using the step controls, let’s step into a function. As the name implies, the 

Step Into button follows program execution into the method that is highlighted. Click 

the Step Into button at the top of the screen; this will cause the debugger to go into the 

addBook method. The screen should look like Figure 12–7. 

 

Figure 12–7. Stepping into the addBook method 

It’s important to note that the not only is the debugger in the Bookstore object but the 

debugger has also moved to the Bookstore.m file (we used to be in the MyBookstore.m 

file). 

The control Step Over continues execution of the program but doesn’t go into a 

method. It simply executes the method and continues to the next line. Step Out is a little 

like the opposite of Step Into.  If the Step Out button is clicked, the current method 

continues execution until it finishes. The debugger then stops on the very next line after 

the method call. For example, if the Step Into button is clicked on the line shown in 

Figure 12–6. and then the Step Out button is clicked, the debugger will return to the 

MyBookstore.m file on line 15—the line after the method call. 

Looking at the Thread Window and Call Stack 
As we mentioned earlier, the thread window displays the current thread (there is only 

one in our program) but it also displays the call stack. If we look at the difference 

between Figure 12–6. and Figure 12–7 as far as the thread window goes, we can see 



CHAPTER 12:  Debugging Programs with Xcode 226 

that Figure 12–7 now has the addBook method listed, because main calls the addBook 

method. 

Now, the call stack is not simply a list of functions that have been called; rather, it’s a list 

of functions that are currently being called. That’s a very important distinction. Once the 

addBook method is finished and returns (line 24), addBook will no longer appear in the call 

stack. You can think of a call stack almost like a breadcrumb trail. The trail shows us 

how to get back to where we started. 

Debugging Variables 
Not only are the variables listed in the top-right window but their details are easily visible 

by and hovering the mouse over variables you wish to know more about, as shown in 

Figure 12–8. 

 

Figure 12–8. Hovering over the newBook variable reveals much information. 

Moving the mouse over the newBook variable reveals its information. This variable is a 

local variable passed into the function. It can also be seen in the top-left Variable 

window. If this variable were to be expanded, it would show the same information that 

we can see by hovering. 

The information that is pertinent in the newBook are the NSCFString variables. To simplify 

things, just know that NSCFString (Core Foundation String) is still the NSString classes 

we used in building the Book class. The “Core Foundation” is simply the base library of 

classes that Apple provides the programmer. The information to the far right (red colored 

text in the debugger) is the actual string information being passed in to this method. 

When a variable’s contents change, the debugger highlights the variable’s new contents 

in red. Since this is a new variable being passed into the addBook method, the values are 



CHAPTER 12:  Debugging Programs with Xcode 227 

new and red. For values that are unchanged, the debugger leaves the values’ colored 

black. 

Clicking the Value part of the variable (the information at the far right) will allow you to 

actually modify the contents of the variable. This is sometimes useful if it becomes 

necessary to force a certain condition to test. Here is a simple example. 

First, Click the Tasks stop sign to stop debugging the application. Next, change the 

addBook method to what appears in Figure 12–9. We are making the return value of the 

method a variable instead of hard-coding the value YES. 

 

Figure 12–9. Updated addBook method 

Lines 23 and 25 have been added to the addBook method as shown in Figure 12–9. Next, 

set a breakpoint on line 25, as shown in Figure 12–10. 



CHAPTER 12:  Debugging Programs with Xcode 228 

 

Figure 12–10. Breakpoint set on the addBook method 

Setting the breakpoint on line 25 will cause the debugger to stop right before we return 

the value to the caller. Let’s run the program now and see how we can modify a variable. 

Click Build and Debug to build the app and start the debugger. Our first stop will be in 

the main function on the MyBookstore.m file as shown in Figure 12–11. 

 

Figure 12–11. Our first breakpoint 

At this point, we could click Step Into to go into the addBook method, or we can simply 

click Continue to continue running the program. Since we added the second breakpoint 

in the addBook method, continuing the program will simply cause the debugger to break 

at the next breakpoint, which just happens to be where we want to be (see Figure 12–

12). Go ahead and click Continue. 



CHAPTER 12:  Debugging Programs with Xcode 229 

 

Figure 12–12. Stopped at line 25 with the mouse hovering over the rc variable 

The debugger will stop on line 25 of the addBook method. Next, move the mouse over 

the rc variable to display the quick view of the variable and its value. We can see that 

the value is YES. To change the value of the variable, move the mouse over the value of 

the variable (YES) and left-click once. The value of the variable will open into an entry 

field and allow you to change the value of the variable, as shown in Figure 12–13. 

 

Figure 12–13. Changing a variable’s value 

Change the value to NO (use capital letters, because the debugger is case-sensitive) and 

then press Enter. Looking closely at the Variable window (it might take a little scrolling of 

the window) you can see that the value of rc has indeed changed to NO, and it has 

changed to the color red, indicating that the value has changed as shown in Figure 12–14. 



CHAPTER 12:  Debugging Programs with Xcode 230 

 

Figure 12–14. The updated rc variable’s value 

Now, when the addBook method returns, it will be returning NO to the caller instead of YES. 

In our case, the caller doesn’t use the return value, so changing it from YES to NO will 

have no effect to the caller. This exercise was just to show how to change the value of a 

variable. 

Deleting Multiple Breakpoints 
Before we continue to the next section, let’s delete the existing breakpoints. Earlier in 

this chapter, you learned that dragging and dropping a breakpoint to the left or right of 

the line number column would delete the breakpoint. However, if we have many 

breakpoints, this process will take too much time. Plus, once we put breakpoints all over 

our code, we might actually miss one. There is another way of deleting a breakpoint with 

which it’s possible to delete more than one at a time. 

First, press  + 0 (Command + zero) to return to the normal project view. In the Groups 
& Files pane, find the Breakpoints group and expand it. There will be two types of 

breakpoints: Project Breakpoints and Global Breakpoints, as shown in Figure 12–15.  

 

Figure 12–15. The project view showing project breakpoints 



CHAPTER 12:  Debugging Programs with Xcode 231 

Expand the Project Breakpoints Option. At this point, there should be two breakpoints 

listed: one in the main() function and the other in the addBook: method. Simply 

Command-click (press  and click the mouse button) each breakpoint, and right-click 

any of the breakpoints. This will bring up a context menu that will allow you to delete 

only those breakpoints that have been selected, as shown in Figure 12–16.  

 

Figure 12–16. Context menu used to delete the breakpoints 

Once you’ve finished, the two breakpoints are now deleted. You can use this trick on 

any number or any specific breakpoint that you want to remove. 

Disabling Breakpoints 
We’ve talked about adding and deleting breakpoints, but there is a third option: 

disabling a breakpoint. It is sometimes handy to disable a breakpoint instead of deleting 

it, especially if you plan to put the breakpoint back in the same place again. Disabling a 

breakpoint is actually quite simple. Just click the existing breakpoint, and the breakpoint 

will turn from a dark blue color to a very faded blue. The debugger will not stop on these 

faded breakpoints, but they remain in place so that they can be conveniently enabled as 

well as act as a marker to an important area in the code. To enable a disabled 

breakpoint, simply click once on the disabled breakpoint. 

A Larger Call Stack 
Up to this point, the thread window, which also contains the call stack, has been pretty 

empty. At most, in our little program, you’ve seen only two entries. We’re going to introduce 

a small bug into our program. Not only will this bug present a real problem for the program, 

but you’ll also be able to see what a longer call stack looks like. Add [myBookstore 
anUnknownMessage] to the program (Bookstore.m) file, as shown in Figure 12–17. 



CHAPTER 12:  Debugging Programs with Xcode 232 

Figure 12–17. A bug has been added to our program. 

This code is a bug is because neither the myBookstore object nor any of its parent

objects implement the message anUnkownMessage. In fact, when the program is

compiled, a warning message will be flagged on line 41—just a warning message, not an

error. Let’s click Build and Debug for this updated program and examine the results. 

TIP: Since Objective-C is dynamic, an object may be able to respond to a message that is not
defined in any interface file. This is why this particular line is a warning and not an error. 

Unsurprisingly, the program doesn’t run very will. In fact, the program aborts due to an

uncaught exception. Here is where a debugger becomes invaluable. Notice now, as

shown in Figure 12–18, that our call stack has a lot more information than you’ve seen

up to this point. The text edit area has a lot of unintelligible numbers and letters, which is

very typical whenever the debugger stops in a part of the program that we don’t have

any source code to (i.e., stuff we didn’t write). 



CHAPTER 12:  Debugging Programs with Xcode 233 

 

Figure 12–18. A well-populated call stack 

At this point, the call stack in the thread window shows a lot of functions that are 

unfamiliar which is because these are system level functions and not from our code. 

Scroll down in the call stack until something from our program can be seen. 

If you scrolling down the call stack, you see that the only messages that are 

recognizable from our program are main() and -[Bookstore printInventory]. main() is 

the entry point to our program, which then sends the printInventory message to our 

Bookstore object, theBookNook.  

Click the line in the call stack that contains -[Bookstore printInventory] listed (line 11). 

As Figure 12–19. shows, the debugger highlights the line in the program that is being 

executed. From this, we know that our program is sending a message to theBookNook 

object. Somewhere in the printInventory method, things have gone awry. 



CHAPTER 12:  Debugging Programs with Xcode 234 

 

Figure 12–19. Here is what caused the program to fail. 

The final piece of this puzzle is on line 8 of the call stack: the system is calling the 

doesNotRecognizeSelector: method on NSObject (in an earlier chapter, you learned that 

a selector and a method are, for all practical purposes, the same thing). This message is 

sent to NSObject (the parent of the Bookstore class) whenever, as you can probably 

guess, the message is not recognized by our object or its parents. An exception is 

thrown, and since we are not handling exceptions (nor have we even discussed what an 

exception is!), the program simply aborts. To the user, the program simply disappears 

from their iPhone, iPad, or Mac. I’m sure you’ve personally seen this happen once or 

twice! 

In our particular case, the bug is easily resolved by simply removing the line  

[myBookstore anUnknownMessage] from the Bookstore.m file. Not all bugs are as simple 

to fix that way, unfortunately. Debugging programs takes patience and practice. The 

more you play with the Xcode debugger, the better you will get at finding and fixing bugs 

and the more you will understand what the Xcode debugger has to offer—which is a lot! 

Summary 
In this chapter we covered the high-level features of the Xcode debugger that freely 

available from Apple. Regardless of price, Xcode is an excellent debugger. Specifically, 

in this chapter, you learned the following: 

 The origins of the term “bug” and what a debugger is  

 The high-level features of the Xcode debugger. 

 Breakpoints 

 Stepping through a program 



CHAPTER 12:  Debugging Programs with Xcode 235 

 Using the debugging controls  

 Tasks (stop sign) 

 Restart and Continue (Pause) 

 Step Over 

 Step Into  

 Step Out 

 Working with the various debugger views 

 Threads (call stack) 

 Variables 

 Text editor 

 Output 

 Looking quickly at a variable and changing its value 

 Adding a bug to watch how the debugger handled the problem 

Exercises 
 Our addBook method has been set up to use a variable to return its 

return value.  Modify the calling function so that if the return value is 

NO, an error message is printed (hint: use the NSLog function to print the 

error message). 

 Restart the program and step through the code. Practice stepping 

into, stepping out of, and stepping over these methods.  Stop and 

start the application as many times as necessary. 

 Experiment with breakpoints. Set them in the MyBookstore.m file as 

well as the Book.m and Bookstore.m files. 



CHAPTER 12:  Debugging Programs with Xcode 236 

 



 

 

237

237 

   Chapter 

Storing Information 
As a developer, you will run into many different situations where you will need to store 

data. Users will expect your application to remember many things each time you launch 

it. In previous chapters, we discussed the Book Store app. With this app, users will 

expect your application to remember all of the books in the bookstore and default 

database location. Your application will need a way to store this information, retrieve it, 

and possibly to search and sort this data. Working with data can sometimes be difficult. 

Fortunately, Apple has provided methods and frameworks to make this process easy. 

In this chapter, we discuss two different formats in which data will need to be stored. 

We will start by discussing saving preferences for the Mac and the iPhone, and then 

move on to using a SQLite database in our application to store and retrieve data. 

Storage Considerations 
There are some major storage differences between the Mac and the iPhone, and these 

will affect how you work with data in each environment. Let’s start by first discussing the 

Mac and how you will need to develop for it.  

On the Mac, by default, applications are stored in the Applications folder. Each user has 

his or her own home folder where preferences and information related to that user are 

stored. Not all of the users will have access to write to the application folder or the 

application itself. 

On the iPhone, we do not need to deal with different users. There are some other factors 

to consider with the iPhone, though. Every application on the iPhone is in own “sand 

box.” This means that files written by an application can only be seen and used by that 

individual application. This makes for a more secure environment on the iPhone, but it 

also presents some changes in the way we work with data storage. 

Preferences 
There are some things to consider when deciding where to store certain kinds of 

information. The easiest way to store information is with the preferences file, but this 

13 



CHAPTER 13:  Storing Information 238 

method has some downsides. One, all of the data is both read and written at the same 

time. If you are going to be writing often or writing large amounts of data, this could take 

time and slow down your application. As a general rule, your preference file should never 

be larger than 100K. If you start to fall into that category, consider using Core Data as a 

way to store your information. The preference file is really nothing more than a 

standardized file and accompanying classes and methods to store application specific 

choices. A preference would be, for example, the sorting column and direction 

(ascending/descending) of a list. Anything that is generally customizable within an app 

should be stored in a preference file. 

Writing Preferences 
Apple has provided developers with the NSUserDefaults class that makes reading and 

writing preferences very easy on the iPhone and Mac OS X. The great thing is that, in 

this case, you can use the exact same code for the iPhone and Mac OS X. The only 

difference between the two implementations is the location of the preference file.  

NOTE: For Mac OS X, the preference file is named com.yourcompany.applicationname.plist and 
is location in the /Users/username/Library/Preferences folder. On the iPhone, the preference file 
is located in your application bundle in the Library/Preferences folder. 

All you need to do to write preferences is to obtain an NSUserDefaults object. This is 

done with this line 

NSUserDefaults *prefs = [NSUserDefaults standardUserDefaults]; 

This instantiates the object prefereces, which you can now use to set preference values. 

Next you need to set the preference keys for the values you would like to save. Because 

we have been working with a bookstore example all along, we will continue to do that. 

As a bookstore, you might want to save a username or password in the preferences. 

You also might want to save things such as a default book category or recent searches. 

The preference file is a great place to store this type of information. 

Also, on the iPhone, it is often necessary to save your current state. If a person is using 

your application and then gets a phone call, when they are done, you want to bring them 

back to the exact place they were before they left your application. 

Once you have instantiated the object, you can just call setObject forKey to set an 

object. If we wanted to save the username of sherlock.holmes, we would just call the 

following line of code 

[prefs setObject:@"sherlock.holmes " forKey:@"username"]; 

You can use setInteger, setDouble, setBool, setFloat, and setURL instead of setObject 

depending on the type of information you are storing in the preferences. Let’s say you 

store the number of books a user wants to see in the list. Here is an example of using 

setInteger to store this preference. 

 [prefs setInteger:10 forKey:@"booksInList"]; 



CHAPTER 13:  Storing Information 239 

Once you have set all of your preferences, you will need to tell the app to write them. 

You can do this by using the synchronize function. This function should be called 

automatically after a certain period in your application, but we prefer to make sure it gets 

saved and call it after any change: 

 [prefs synchronize]; 

With just four lines of code, we are able to create a preference object, set two 

preference values, and then write the preference file. It is all very easy and clean. Here is 

all of the code together: 

NSUserDefaults *prefs = [NSUserDefaults standardUserDefaults]; 
[prefs setObject:@"sherlock.holmes " forKey:@"username"]; 
[prefs setInteger:10 forKey:@"booksInList"]; 
[prefs synchronize]; 

Reading Preferences 
Reading preferences is very similar to writing preferences, and is just as easy. Just like 

writing, the first step is to obtain the NSUserDefaults object. This is done in exactly the 

same way as it is in the writing: 

NSUserDefaults *prefs = [NSUserDefaults standardUserDefaults]; 

Now that we have the object, we are able to access the preference values that are set. 

For writing, we use the setObject syntax; for reading, we use the stringForKey function. 

In the writing example, we set preferences for username and for the number of books in 

the list to display. We can read those preferences out by using the following simple lines 

of code 

NSString *username = [prefs stringForKey:@"username"]; 
NSInteger booksInList = [prefs integerForKey:@"booksInList "]; 

Notice what we do in each of these lines. We start out by declaring the variable 

username, which is an NSString. This variable will be used to store the preference value 

of username. We then just assign it to the value of the preference username. You will 

notice that in the read example we do not use the synchronize function. This is because 

we have not changed the values of the preferences, and therefore we do not need to 

make sure it is written to disk.  

Databases 
We have discussed how to store some small pieces of information and retrieve them at 

a later point. What if you have more information that needs to be stored? What if you 

need to search this information or put it in some sort of order? These kind of situations 

call for a database. 

Let’s start by discussing what a database is. A database is a tool for storing a significant 

amount of information in a way that is easily searched or retrieved. Many applications 

you use in your daily life are based on databases of some sort. Your online banking 

application retrieves your account activity from a database. Your supermarket uses a 



CHAPTER 13:  Storing Information 240 

database to retrieve prices for different items when you are checking out. A simple 

example of a database is a spreadsheet. You may have many columns and many rows 

in your spreadsheet. The columns in your spreadsheet represent different pieces of 

information you want to store. In a database, these are considered attributes. The rows 

would be different records in your database. 

Storing Information in a Database 
Databases can be an intimidating subject for a developer. Many people will think of 

enterprise database servers such as Microsoft SQL Server or Oracle. These applications 

can take time to set up and require constant management. For most developers, a 

database system like Oracle would be overkill. Apple has included a small compact 

database engine on the Mac and iPhone. SQLite will provide you with a lot of flexibility 

with storing information for your application. It stores the entire database in a single file. 

It is fast, reliable, and easy to implement in your application. The best thing about the 

SQLite database is that there is no need to perform any installation of software. Apple 

has taken care of that for you. 

SQLite, however, does have some limitations that you should be aware of as a 

developer. 

SQLite was designed to be used as a single user database. You will not want to use 

SQLite in an environment where more than one person will be accessing the same 

database. This could lead to data loss or corruption. 

In the business world, databases can grow to become very large. It is not surprising for 

a database manager to handle databases as large as 500GB, and in some cases 

databases can become much larger than that. SQLite should be able to handle smaller 

databases without any issues, but you will begin to see performance issues if your 

database starts to get too large. 

SQLite lacks some of the backup and data restore features of the enterprise database 

solutions. 

For the purposes of this book, we will focus on using SQLite as our database engine. If 

any of the mentioned limitations are a problem for the application you are developing, 

you may need to look into an enterprise database solution, which is beyond the scope of 

this book. 

Apple has worked to iron out a lot of the challenges of database development. As a 

developer, you will not need to become familiar with SQL, as Apple has taken care of 

the direct database interaction for you. Apple has created a framework called Core Data 

that makes interacting with the database much easier. Core Data has been adapted by 

Apple from a NeXT product called Enterprise Object Framework, and it will handle all of 

the database interaction for you. Working with Core Data is a lot easier than interfacing 

directly with the SQLite database. Directly accessing a database via SQL is beyond the 

scope of this book. 



CHAPTER 13:  Storing Information 241 

Getting Started with Core Data 
Let’s start by creating a new Core Data project. Open Xcode and select File ➤ New 
Project. To create a Mac OS X Core Data project, select Application from the left-hand 

menu underneath the Mac OS X header. In the options, be sure to check both Use Core 

Data for Storage and Create Document-Based Application. See Figure 13–1. 

 

Figure 13–1. Creating a new project 

Click on the Choose button when done. The next screen will allow you to decide where 

to save your poject and the name you want to use. For the purposes of this chapter, we 

will use the name Bookstore. Once you are done with that, your new project will open. It 

will look similar to a standard application, except that now you will have a Models folder.  



CHAPTER 13:  Storing Information 242 

The Model 
If you click on the triangle next to the folder, you will see a file called

MyDocument.xcdatamodel. This file will contact information about the data you want

stored in the database. Double-click on the Model file and it will open. You will see a

window similar to to the one shown in Figure 13–2. 

Figure 13–2. The blank model 

The window is divided into three sections. One the top left you have your entities. In

database terms, these are your tables. In more common terms, these are your objects or

the items you want to store in the database. The top right window contains the

attributes. Attributes are pieces of information about the entities. For example, a book

can be an entity and the title of the book would be a attribute of that entity. The bottom

window will show you all of your entities and allow you to create relationships across

your entities. 



CHAPTER 13:  Storing Information 243 

Let’s create an entity. Click on the plus sign in the bottom left corner of the top left 

window, or select Design ➤ Data Model ➤ Add Entity from the menu. See Figure 13–3. 

 

Figure 13–3. Adding a new entity 

On the right hand side, you will now have the option to name the entity. We will use the 

name Book for this entity. It is generally considered good practice to capitalize your 

entities’ names. 

Now let’s add some attributes. Because we are describing details of a book, we will 

store the title, author, price, and year published. Obviously in your own applications, you 

will want to store more information such as publisher and page count, among others, 

but we want to start out simple. Click on the plus sign in the bottom left of the top center 

pane, or select Design ➤ Data Model ➤ Add Attribute, as shown in Figure 13–4. If you do not 

see the option to add an attribute, make sure that you have selected the Book entity on 

the left-hand side. 

 

Figure 13–4. Adding a new attribute 

You will be given several options relating to your attribute. Let’s call this attribute “title.” 

Unlike entities, Atribute names should be lowercased. For now, uncheck the check box 

next to Optional and check the check box next to Indexed. Here’s an explanation of the 

choices you see: 

Optional: This check box decides whether an attribute can be blank. All 

books should have a title, so we will not allow this to be optional. 



CHAPTER 13:  Storing Information 244 

Transient: Checking this check box will cause data in this field not to be 

stored in the database. This is used for values that you want reset every 

time the data is read or the application is launched. We need to store 

the book’s title, so we will not select this. Transient data are generally 

data that can be calculated. For example, having a list of purchase 

amounts stored in the database is fine, but the total of all those 

purchases is something that can be calculated, so it shouldn’t be stored 

in the database. 

Indexed: This is a database term. When an attribute is indexed, two 

things happen. One, search speed on that attribute is increased 

dramatically. Two, the database size is increased slighly. For future 

expansion of this app, we will check this box to increase search speed. 

A database index is much like an index to a book. Finding a topic in the 

index and then going to the page in the book is much faster than having 

to read through the book page by page trying to find the information. An 

index improves database performance in the same way. 

Now we will need to select a data type. Selecting the correct data type is very important. 

It will affect how your data is stored and retrieved from the database. The list has 12 

items in it and can be very daunting. We will discuss the most common options and, as 

your become more familiar with Core Data, you can experiment with the other options. 

The most common options are String, Integer 32, Float, and Date. For the title of the 

book, select String. 

String: This is the type of attribute used to store text. This should be 

used to store any kind of information that is not a number or a date. In 

this example, the book title and author will be strings. 

Integer 32: There are actually three different integer values possible for 

the attribute. Each of the integer types only differ in the minimum and 

maximum values possible. Integer 32 should cover most of your needs 

when storing integer without being overkill on the amount of storage. An 

integer is a number without a decimal. If you try to save a decimal to an 

integer, the decimal portion will be truncated. In this example, the year 

published will be an integer. 

Float: A float is a type of attribute that can store numbers with decimals. 

A double is another type of attribute and is similar to a Float. It differs in 

the minumum and maximum values, similar to the integers. A float 

should be able to handle any values you will need. In this example, we 

will use a float to store the price of the book. 

Date: A date attribute is exactly what it sounds like. It allows you to 

store a date and time and then perform searches and lookups based on 

dates and times. We will not use this type in this example. 

Now let’s create the rest of the attributes for the book. Select String for the type. Now 

add Price. Make it not optional, not transient, and indexed. It should be a float. Now add 

year published. For two-word attributes, it is standard to make the first word lowercase 



CHAPTER 13:  Storing Information 245 

and the second word initial capped. For example, an ideal name for year published 

would be something like yearPublished. Make it optional, not transient, and indexed. 

Select Integer 32 as the attribute type. Once you have added all of your attributes, you 

screen should look like Figure 13–5. 

NOTE: Attributes names cannot contain spaces. 

 

Figure 13–5. The finished book entity 

NOTE: If you are used to working with databases, you will notice that we did not add a primary 
key. A primary key is an arbitrary field (usually a number) that is used to uniquely identify each 
record in a database. In Core Data databases, there is no need to create primary keys. The 
framework will manage all of that for you. 

Now we have finished the Book entity. Let’s add an Author entity. It would be nice to be 

able to select the Author from a drop-down menu rather than having to enter author 

information every time. Add a new entity and call it Author. To this entity, add lastName 

and firstName, both strings. Once this is done, you should have two entities in your 

relationship window. Now we need to add the relationships. Click on the Book entity, 



CHAPTER 13:  Storing Information 246 

then click on the plus sign in the bottom left of the attribute area. Select Add 

Relationship, as seen in Figure 13–6. 

 

Figure 13–6. Adding a new relationship 

You will now be given the opportunity to name your relationship. We usually give a 

relationship the same name as the entity to which is points. Type in “author” as the 

name. From the drop-down menu, select Author. Currently we do not have an inverse 

relationship, so leave that alone for now. The To-Many Relationship check box can be a 

little more complicated. To determine if you need to select it, ask yourself how many 

authors a book can have. If the answer is one and only one, then you do not need to 

check this box. For the purposes of this project, we will assume there can only be one 

author per book, so we will leave it unchecked. 

The Delete Rule drop-down can be a little complicated. If you delete a book, what would 

you like the system to do with the author record? Nullify means that the relationship is 

deleted only and the author remains in the system. Cascade means that the relationship 

will be deleted and the author record will be deleted. Deny means that the system will 

not allow you to delete a record with an author. For this project, we will use Nullify, the 

default. 

Now we have created one half of our relationship. To create the other half, click on the 

Author entity. Now click the plus sign and select Add Relationship. We will use the entity 

name that we are connecting to as the name of this relationship, so we will call it 

“books.” We will add an “s” to the entity name because an Author can have many 

books. Under Destination, select Book, and under Inverse, select the relationship you 

made in the previous step. For the To-Many Relationship, we will assume that one 

author can write many books, so check it. We will leave the Delete Rule on Nullify. Your 

model should now look like Figure 13–7. 

NOTE: Sometimes in Xcode, when working with models, it is necessary to hit the tab key for the 
names of entities, attributes, and relationships to update. This little quirk can be traced all the 
way back to WebObjects tools. 



CHAPTER 13:  Storing Information 247 

 

Figure 13–7. The final relationship 

Now we need to tell our code about our new entity. To do this, select the Book or the 

Author entity and then select File ➤ New File. Under Mac OS X, select Cocoa Class, and 

then select Managed Object Class, as we see in Figure 13–8. 



CHAPTER 13:  Storing Information 248 

 

Figure 13–8. Adding the Managed Objects to your project 

Select the storage location and add it to your project. You should not need to change 

any of the defaults on this page. Then click Next. Check the box next to your entities 

and click Finish. See Figure 13–9. 



CHAPTER 13:  Storing Information 249 

 

Figure 13–9. Adding our entities to your project 

You will notice that four files have been added to your project. Book.h and Author.h 

contain the header information about your book, and Book.m and Author.m contain the 

actual implementation. These files are fairly simple, as Core Data will do most of the 

work with them. You should also notice that, if you go back to your model and click on 

Book, it will have a new class. Instead of an NSManagedObject, it will have be a Book 

class. 

Let’s look at the contents of some of Author.h. 

#import <CoreData/CoreData.h> 
 
@class Book; 
 
@interface Author :  NSManagedObject   
{ 
} 
 
@property (nonatomic, retain) NSString * firstName; 
@property (nonatomic, retain) NSString * lastName; 
@property (nonatomic, retain) NSSet* books; 
 
@end 
 
 
@interface Author (CoreDataGeneratedAccessors) 
- (void)addBooksObject:(Book *)value; 
- (void)removeBooksObject:(Book *)value; 
- (void)addBooks:(NSSet *)value; 
- (void)removeBooks:(NSSet *)value; 
 
@end 



CHAPTER 13:  Storing Information 250 

You will see that the file starts out including the Core Data framework. This is necessary 

in each of these files in order to allow Core Data to manage your information. Further 

down, you will see the three attributes you created with the mode. Finally, under the 

interface, you will see there are now methods for adding and removing books from the 

author. In this project, you will not need to directly access these methods, but if you go 

more in-depth with Core Data, they will be invaluable. 

Managed Object Context 
We have created a managed object called Book. The nice thing with Xcode is that it will 

generate the necessary code to manage these new data object. In Core Data, every 

managed object should exist within a Managed Object Context. The context is 

responsible for tracking changes to objects, undo operations, and writing the data to the 

database. In this example, we will not have to write code to create or manage the Object 

Context, but as you explore using Core Data in your own projects, you will need to be 

aware of it. For now, the base funtionality of what is provided with the generated classes 

will work fine for our example. 

Setting Up the Interface 
In the Resources folder in your project, you should have a MyDocument.xib. Double-

click on this file and Interface Builder should open with a window. If there is text in the 

window that says “Your document contents here”, select and delete it. On the left-hand 

side of Interface Builder, you should have a library window. If you do not have this 

window, to go Tools ➤ Library and it should appear.  

Scroll down to find the Tab View. Drag the tab view to your document window. Resize it 

to take up most of the screen. Double-click on one tab and change the name to Books. 

Double-click on the other and change the name to Authors. See Figure 13–10. 



CHAPTER 13:  Storing Information 251 

 

Figure 13–10. Creating the interface 

Click on the Books tabs and scroll down in the Library to the the category of Library ➤ 

Cocoa ➤ Object Controllers ➤ Core Data. Within the Core Data category, you should see a 

Core Data Entity. Drag that to your window. You will be prompted to select your object. 

Traverse through your project and select Book. Click Next. See Figure 13–11. 



CHAPTER 13:  Storing Information 252 

Figure 13–11. New Core Data interface 

You will now be promted to decide on the type of interface for your Core Data object.

We suggest selecting Master/Detail View, as it is the most complete. Check all of the

boxes to create a Search Field, Detail Fields, and Add/Remove. Click Next. See Figure

13–12. 



CHAPTER 13:  Storing Information 253 

 

Figure 13–12. Customizing the Core Data interface 

Now you will be given the option to select the attributes you want to include in your 

application. Check all of them for the purposes of this project. Once selected, click 

Finish. See Figure 13–13. 



CHAPTER 13:  Storing Information 254 

 

Figure 13–13. Selecting the attributes to include in the interface 

Your window will now be populated with an inteface to your Core Data application. It will 

be divided into two sections. You have a list section at the top with a search button 

above it. You also have a bottom section that will allow you to edit the values of the 

entity.  

Go ahead and repeat the same steps for the Authors tab. You will then have two 

different tabs, each with a similar interface on them. 

Quit Interface Builder and, in Xcode, click on the Build and Run button. This should 

launch your application. Click on the Authors tab and add a new author. Now go to the 

Books tab and add a book. You should see your author’s name in the drop-down list. 

You should be able to add books and sort them by clicking on the column titles. You 

can also go into Interface Builder and make changes to the layout of the window and the 

individual items. We will cover more about Interface Builder in a later chapter. 



CHAPTER 13:  Storing Information 255 

Summary 
We’ve finally reached the end of the chapter! Here is a summary of the things that we 

covered. 

 Preferences 

You learned to use NSUserDefaults to save and read preferences from 

a file, both on the iPhone and a Mac OS X computer. 

 Database 

You learned what a database is and why using one can be preferable 

to saving information in preferences. 

You learned about the database engine Apple has provided on the 

Mac and iPhone, and the advantages and limitations of this database 

engine. 

 Core Data 

Apple provided a framework for interfacing with the SQLite database. 

This framework makes the interface much easier to use.  

 Book Store Application 

You created a simple Core Data application. 

You used Xcode to create a data model for your Book Store 

application. You learned how to create a relationship between two 

different Entities. 

You used Interface Builder to create a simple interface to your Core 

Data model. 

Exercises 
 Add more fields to the Book entity. Try adding publisher, pages, and 

ISBN number. 

 Change the layout of the Book tab. Reorder the columns. Make the 

title column first. 

 Add a default value to the author’s first and last names. 

 For the daring and advanced: 

 Add a new entity to store the publisher of the book. Change the 

interface to allow the user to select the Publisher from a drop-down 

menu similar to Author. 

 Add a new interface to allow the author’s full name to be shown in the 

drop-down menu. 



CHAPTER 13:  Storing Information 256 

 

x



 

 

257

257 

   Chapter 

Protocols and Delegates 
Congratulations, you have acquired the skills to become an iOS developer! However, 

there are two additional topics that iOS developers need to understand to be successful: 

protocols and delegates. It is not uncommon for new developers to get overwhelmed by 

these topics, so we thought it best to introduce the foundation topics of the Objective-C 

language first and conclude this book with protocols and delegates.  

Multiple Inheritance 
We discussed object inheritance in Chapter 1. In a nutshell, object inheritance means 

that a child can inherit all the characteristics of its parent. See Figure 14–1. 

  

Figure 14–1. Typical Objective-C inheritance 

14 



CHAPTER 14:  Protocols and Delegates 258 

Java and C++ have a feature called multiple inheritance. Multiple inheritance enables a 

class to inherit behaviors and features from more than one parent. See Figure 14–2. 

However, problems can arise with multiple inheritance because it allows for ambiguities 

to occur. Because of this, Objective-C does not implement multiple inheritances. 

Instead, it implements something called a protocol. 

 

Figure 14–2. Multiple inheritance 

Understanding Protocols 
Apple defines a protocol simply as a list of methods declarations, unattached to a class 

definition. The methods listed for protocols are suppose to be implemented by you. For 

example, these methods that report user actions for the mouse could be placed into a 

protocol. See the following example: 

- (void)mouseDown:(NSEvent *)theEvent; 
- (void)mouseDragged:(NSEvent *)theEvent; 
- (void)mouseUp:(NSEvent *)theEvent; 

Any class that wanted to respond to mouse events could adopt the protocol and 

implement its methods. 



CHAPTER 14:  Protocols and Delegates 259 

Protocol Syntax 
The interface example for a protocol is 

 @protocol WebServiceDelegate 

- (void)connetionURL; 

- (void)connectionComplete; 

@end 

The implementation file for this protocol example would be 

@interface MyClass : SomeSuperClass < WebServiceDelegate > 
@end 

Any object that wants to implement the WebServiceDelegate protocol would include  

< WebServiceDelegate > after object definition.  

It is not uncommon for iOS developers to have multiple protocols for their objects. This 

adds real power to your objects when needed.  

@interface MyClass : UITableViewController  <CLLocationManagerDelegate, WebService, 
UITextFieldDelegate, UITextViewDelegate, UITableViewDataSource>  
{ 
} 

This example illustrates the power of delegates. MyClass is able to handle all methods 

from CLLocationManagerDelegate, WebService, UITextFieldDelegate, 
UITextViewDelegate, and UITableViewDataSource. 

This means that MyClass is able to use all the methods in these protocols. This includes 

the following: 

 GPS information 

 Our custom web services  

 Text field handling 

 Table view handing 

The methods from these protocols are called delegates methods. 

Understanding Delegates 
Delegates are helper objects. They enable us to control the behavior of our objects. The 

methods listed in the protocol become helpers to our MyClass.  

We can now use these methods in our object. For example, including the 

<CLLocationManagerDelegate> protocol in our MyClass enables our object to get notified 

by the iPhone’s GPS of our new location. The following example shows the method that 

we will include and define inside our object’s implementation file:  

- (void)locationManager:(CLLocationManager *)manager didUpdateToLocation:(CLLocation 
*)newLocation fromLocation:(CLLocation *)oldLocation  



CHAPTER 14:  Protocols and Delegates 260 

{ 
…… 
} 

The locationManager delegate method automatically gets called as our GPS location 

changes, allowing your code to process the new and old coordinates. Listing 14–1 is an 

example of how to implement didUpdateToLocation and didFailWithError delegate 

methods from CLLocationManagerDelegate.in our class MyCoreLocationController 

Listing 14–1. Core location delegate example  

@implementation MyCoreLocationController //our own controller 
@synthesize locationManager; 
 
- (id) init { 
    self = [super init]; 
    if (self != nil) { 
        self.locationManager = [[CLLocationManager alloc] init]; 
        self.locationManager.delegate = self; // send location updates updates to myself 
    } 
    return self; 
} 
 
- (void)locationManager:(CLLocationManager *)manager 
    didUpdateToLocation:(CLLocation *)newLocation 
           fromLocation:(CLLocation *)oldLocation 
{ 
    NSLog(@"Location: %@", [newLocation description]); 
} 
 
- (void)locationManager:(CLLocationManager *)manager 
           didFailWithError:(NSError *)error 
{ 
 NSLog(@"Error: %@", [error description]); //print error description 
} 
 
- (void)dealloc { 
    [self.locationManager release]; 
    [super dealloc]; 
} 
@end 

Next Steps 
You now have a great Objective-C foundation. You should be able to dive right 

becoming a great iOS developer. Two great books that we recommend to students as 

they progress to becoming iOS developers are Learn Objective-C on the Mac by Mark 

Dalrymple and Scott Knaster, and Beginning iPhone Development by Dave Mark and 

Jeff LaMarche, both published by Apress. 

You will be well prepared for these books and writing your iOS apps. However, don’t 

take time off – keep moving forward. Get started with these books and writing your 

apps. The faster your start using what you have learned, the better you will get. 

Whatever you do, don’t stop now! 



CHAPTER 14:  Protocols and Delegates 261 

Summary 
You made it! In this chapter we covered why multiple inheritance is not used in 

Objective-C and how protocols and delegates work.  

There is still a lot to learn and know on your iOS journey. Keep it up and help others 

along their way.  

You should be familiar with the following terms: 

 Multiple Inheritance 

 Protocol 

 Delegate 



CHAPTER 14:  Protocols and Delegates 262 



 

 

263

263 

Index 

■ Symbols and 
Numbers 

#import statements, 102, 112, 122 
% operator, 76 
%d symbol, 53 
&& operator, 63 
|| operator, 63 
+ character, 102 
3D user interface, Alice, 15 

■ A 
Account Balance screen, iPhone, 3 
actions 

connecting to objects, 193–194 
implementing, 186 

Add instance to world option, Alice, 21 
Add Objects button, Alice, 16, 21 
Add to Project drop-down menu, Xcode, 

111 
addresses, 204–207 
Airplane class, Alice, 17 
algorithms, 2 
Alice app 

coding example app in, 72–73 
using variables and data types with, 43–

49 
Alice application, 6 
Alice gallery, 68 
Alice interface 

classes, objects, and instances, 17–18 
creating apps, 20–25 
Details Area, 19 
Editor Area, 18 
Events Area, 19 
Navigation menu, 14 
Object Tree, 18 
overview, 8–11 

World window, 15–17 
allocation, 104 
AlmostAllAboutAlice example, Alice, 15 
Also create "HelloWorld.h" check box, 

Xcode, 109 
AND operator, 58 
angle brackets (< >), function of, 123 
App Store, iTunes, 4 
Applications folder, 237 
Applications option, Xcode, 30 
apps. See also Interface Builder app 

Alice 
coding example app in, 72–73 
using variables and data types with, 

43–49 
creating, 20–25 
designing 

and flowcharting, 67–68 
pseudo-code, 62–63 
requirements for, 64–67 

iPhone, creating 
connecting actions and objects, 193–

194 
connecting outlets and objects, 192 
creating views, 191 
Document window, 188 
implementation file, 195 
implementing actions, 186 
Inspector window, 190 
Library window, 189 
outlets, 185–186 
overview, 180–184 

Objective-C, coding example app in, 74–
76 

Xcode, creating, 160–163 
architectural pattern, 177 
arguments, 99, 105 
asterisk symbol, 104, 208 
Astronaut class, Alice, 22 
astronaut object, Alice, 23 
astronaut|say tile, Alice, 25 



Index 264 

Astronaut|turn tile, Alice, 24 
astronaut2 object, Alice, 23 
Astronaut2|say tile, Alice, 24 
Astronaut2|turn tile, Alice, 23 
at symbol, 103 
automatic variables, 208–209 

■ B 
bases 

base-16 (hexadecimal) numbering, 202–
204 

converting base-10 (decimal) to base-2 
(binary), 201–202 

overview, 200 
beginning brace character, 111 
behavior 

default, overriding, 132–133 
implementing, 150–153 

binary 
base-2 numbering system, 200 
converting decimal to, 201–202 

bits 
base-10 (decimal), converting to base-2 

(binary), 201–202 
base-16 (hexadecimal) numbering, 202–

204 
defined, 200 
Moore's Law, 38 
overview, 37–38 

blocks of code, 99–100 
Book class, 85–86, 94–95 
Book objects, 154–156 
Bookstore class, 83–84, 86 
Boolean expressions 

combining comparisons, 168 
dates, 166–168 
overview, 163 
strings, 164–166 

Boolean logic, 57–61, 157–158 
comparison operators, 61 
truth tables, 59–61 

brackets ([ ]), function of, 205 
brand attribute, TV object, 82 
breakpoints 

disabling, 231 
multiple, deleting, 230–231 
setting, 220–221, 228 

broken connections, 196–198 
bugs, 4, 219 
Build and Debug button, 131, 222 

Build and Debug command, iPhone 
simulator, 196 

Build and Debug icon, Objective-C project, 
77 

Build and Run button, Xcode, 32–33, 114, 
162 

Build and Run menu item, Xcode, 162 
Build and Run option, Xcode toolbar, 53 
Build menu, Xcode, 162 
bunny methods, 48 
bunny say tile, 48 
bunnyDone variable, 47–48 
bytes 

base-16 (hexadecimal) numbering, 202–
204 

converting base-10 (decimal) to base-2 
(binary), 201–202 

defined, 200 
overview, 39–40 

■ C 
C language, 98–100 
call stack, 225–226, 231–234 
camel case, 142 
Camera Adjustment tool, Alice, 22–23 
caseInsensitiveCompare method, 165 
case-sensitive languages, 98 
Char data type, 50 
Charge Credit Card method, Sales class, 87 
Checkout method, Sales class, 87 
Choose3PS button, Xcode, 107 
classes 

creating 
declaring interfaces and instance 

variables, 119 
implementation file, 121–122 
implementing methods, 123–124 
overview, 117–118 
sending messages (methods), 119–

121 
using class methods, 120–121 
using instance methods, 121 

new, adding, 108–114 
NSMutableDictionary, 148–149 
overriding default behavior, 132–133 
overview, 17–18 
planning, 83–92 

Classes folder, 89–90 
CLLocationManagerDelegate protocol, 259–

260 



Index 265 

closing brace, 100 
clubMember variable, 168 
code 

block of, 99 
eliminating, 94–95 
improving through refactoring, 77 

colon (:), function of, 118–119 
combining comparisons, 168 
command line tool, creating, 138–140 
Command Line Tool, Xcode, 30–31, 74, 107 
compare function, 166 
comparing data 

Boolean expressions 
combining comparisons, 168 
dates, 166–168 
overview, 163 
strings, 164–166 

Boolean logic, 157–158 
grouping variables 

NSArray, 170–171 
NSDictionary, 172 
NSMutableArray, 171–172 
NSMutableDictionary, 172 

overview, 157 
relational operators 

creating example Xcode apps, 160–
163 

numbers, 158–163 
switch statement, 168–170 

comparison operators, 61 
Comparison_Prefix.pch file, 161 
Comparison.m file, 161–162 
comparisons, combining, 168 
compound calls, 121 
condition-controlled loops, 71 
connections, broken, 196–198 
container variables, 170 
Continue button, 223, 228 
controls 

debugger, 223 
step, 225 

conventions, 146 
Core Data, 240–241 
Couch object, 82 
count-controlled loops, 70 
counter variables, 70 
Cox, Brad, 98 
Create a new Xcode Project icon, 106 
Create a new Xcode Project option, 30 
Create Document Based Application check 

box, 88 

create new variable option, 43, 47 
Customer class, 84–86, 90–92 
Customer.h file, 90–91 
Customer.m file, 90 
Customize Toolbars and Menus... context 

menu item, 53 

■ D 
Dalrymple, Mark, 260 
data. See also comparing data 

data types and Objective-C, 50–53 
programming numbering systems 

bits, 37–38 
bytes, 39–40 
hexadecimal, 41 
Moore's Law, 38 
Unicode, 42 

troubleshooting, 54–56 
types of, 42–43 
using variables and data types with Alice 

app, 43–49 
databases, 239–240 
date attributes, defined, 244 
dates, 166–168 
dateWithString function, 167 
dealloc messages, sending, 215 
dealloc method, 153 
deallocating memory, 209–211 
Debug configuration, 220 
Debugger Console, 33, 162 
debugging programs, 95 

call stack, 231–234 
debugger controls, 223 
debugging variables, 226–230 
deleting multiple breakpoints, 230–231 
disabling breakpoints, 231 
overview, 219 
setting breakpoints, 220–221 
step controls, 225 
thread window and call stack, 225–226 

decimal, converting to binary, 201–202 
delegates, 257–261 

multiple inheritance, 257–258 
understanding protocols, 258–259 

Delete Rule drop-down, Core Data, 246 
dependencies, 111 
dereference operator, 206–207 
description method, 132–133 
design requirements, 2–3 
Details Area, 19 



Index 266 

Developer Documentation dialog, Xcode, 
133 

developers, 1–3 
development cycle, 4–5 
didFailWithError delegate method, 260 
didUpdateToLocation delegate method, 260 
discountThreshold variable, 168 
Document window, Interface Builder, 188, 

190, 192–193, 196 
Dogs class, 82 
Done button, Alice, 23 
double data type, 50 
double quotation marks (" "), function of, 

123 
double slash characters, 111 
dynamic binding, 119 

■ E 
Editor Area, 18 
Editor section, Xcode, 32 
else keyword, 100 
else-if statements, 77 
ending brace character, 111 
enteredPassword string, 165 
equal to operator, 158 
event handlers, 19 
Events Area, 19 
Examples tab, Alice application, 9 
exclamation point, 99 

■ F 
factory methods, defined, 120 
Favorite Book Genre attribute, 85 
File's Owner icon, Interface Builder, 192–

194, 197 
Finish button, Xcode, 109 
First Name attribute, 91 
firstName string, 91 
firstNumber + option, 45 
firstNumber variable, 43, 52 
float attributes, defined, 244 
Float data type, 50 
flowcharting, 67–68 
For Loop, 70, 159 
for.in loops, defined, 152 
Foundation framework, 102 
Foundation option, Xcode, 107 
Foundation.h file, 102, 113 

Functions tab, Alice interface, 19 

■ G 
garbage collection, pro and cons of, 199 
Generate: Open circle icon, Interface 

Builder, 193 
Generate Random Number button, 191, 193 
Generate Random Number Generator, 196 
getter method, 142–143 
getters, defined, 141 
Getting started with Xcode icon, 106 
Grass template, 43 
greater than operator, 158 
greater than or equal to operator, 158 
ground object, Alice, 23 
Group & Files pane, Xcode, 181 
grouping variables, 170–174 

NSArray, 170–171 
NSDictionary, 172 
NSMutableArray, 171–172 
NSMutableDictionary, 172 

Groups & Files pane, Xcode, 32, 108, 113, 
182 

■ H 
HD directory, Mac, 28 
HelloWord.m file, 102 
HelloWorld app, Xcode, 31 
HelloWorld class, 102, 104 
HelloWorld object, 101–102 
HelloWorld.h file, 104, 111 
HelloWorld.m file, 33, 109, 112 
helpers, 259 
hexadecimal, 41 
hexadecimal numbering, 202–204 
HIGs (Human Interface Guidelines), 179–180 
hyphen (-), function of, 121 

■ I 
i++ command, 70 
IBOutlet declaration, 185 
Id data type, 50 
IDE (integrated development environment), 

6, 10 
if statement, 99–100 
if-else statement, 77 
immutable classes, defined, 148 



Index 267 

implementation file, 121–122, 195 
implementing actions, 186 
implied retain messages, 214 
imports, 101 
Indexed check box, Core Data, 244 
infinite loops, 71 
inheritance, 93–94, 118 
init message, 104 
Inputs & Values section, Interface Builder 

Library window, 191 
insertObject:atIndex: method, 171 
Inspector window, 190 
instance methods, 121, 123 
instance variables 

accessing, 141–142 
declaring, 119 
getter and setter methods, 142–143 
overview, 140 

instances, 17–18 
instantiation, 18, 21, 104 
Int data type, 50 
Integer 32 attributes, 244 
integrated development environment (IDE), 

6, 10 
Interface Builder app 

broken connections, 196–198 
creating example iPhone apps 

connecting actions and objects, 193–
194 

connecting outlets and objects, 192 
creating views, 191 
Document window, 188 
implementation file, 195 
implementing actions, 186 
Inspector window, 190 
Library window, 189 
outlets, 185–186 
overview, 180–184 

Human Interface Guidelines (HIGs), 179–
180 

Model-View-Controller (MVC), 177–179 
overview, 175–176 

interfaces 
Alice 

classes, objects, and instances, 17–
18 

creating apps, 20–25 
Details Area, 19 
Editor Area, 18 
Events Area, 19 
Navigation menu, 14 

Object Tree, 18 
overview, 13 
World window, 15–17 

declaring, 119 
defined, 118 
Objective-C, 95 
storage, 250–255 

iPhone apps, creating 
connecting actions and objects, 193–194 
connecting outlets and objects, 192 
creating views, 191 
Document window, 188 
implementation file, 195 
implementing actions, 186 
Inspector window, 190 
Library window, 189 
outlets, 185–186 
overview, 180–184 

isEqualToString method, 165 
isTrue variable, 71 
iTunes Connect app store, 66 

■ J 
Jobs, Steve, 98 

■ K 
Kernighan, Brian, 97 
keys 

defined, 148 
unique, 150 

key-value pairs, 151 
Knaster, Scott, 260 

■ L 
Label icon, Interface Builder, 192 
LaMarche, Jeff, 260 
languages, 97–98, 100 
less than operator, 158 
less than or equal to operator, 158 
Let me try button, iPad Simulator, 20 
Library object, 101 
Library window, 189 
Library window, Interface Builder, 189, 191 
Library.h file, 101 
Library.m file, 101 
locationManager delegate method, 260 
logical not operator, 99 



Index 268 

logical-and operator, 63 
logical-or operator, 63 
long double data type, 50 
long int data type, 50 
looping, 69–71 
Lunar Lander option, Alice, 20–21 
lunarLander object, Alice, 23 

■ M 
Mac Dev Center, 105 
Mac HD directory, 28 
Mac OS X Install DVD window, 27 
Magazine class, 94–95 
main function, 98–100, 114 
malloc function, 208 
managed object context, 250 
Mark, Dave, 260 
Master/Detail View, Core Data, 252 
memory 

addresses, 204–207 
bits, bytes, and bases 

base-10 converting to base-2, 201–
202 

base-16 numbering, 202–204 
overview, 200 

deallocating, 209–211 
leaks, 209 
managing in Objective-C 

implied retain messages, 214 
retain/release model, 212–214 
sending dealloc messages, 215 

requesting, automatic variables and 
pointers, 208–209 

memory addresses, 204 
menus, Navigation, 14 
messages 

dealloc, 215 
implied retain, 214 
and multiple arguments, 105 
sending 

overview, 119 
using class methods, 120–121 
using instance methods, 121 

methods 
defined, 118 
getter and setter, 142–143 
implementing, 123–124 
sending 

overview, 119 
using class methods, 120–121 

using instance methods, 121 
Methods tab, Alice interface, 19 
Model, 242–250 
models, retain/release, 212–214 
Model-View-Controller (MVC), 177–179 
modulus operator, 76 
Moore, Gordon E., 38 
Moore's Law, 38 
multiple arguments, 105 
multiple inheritance, 257–258 
mutable classes, 148 
MVC (Model-View-Controller), 177–179 
My First App icon, Xcode, 108 
My First App project, Xcode, 107 
My First App.m file, 108, 113 
MyBookstore program 

Book objects, 154–156 
cleaning objects, 153 
implementing behavior, 150–153 
NSMutableDictionary class, 148–149 
objects, 149 
overview, 146–147 

MyClass class, 259 
MyCoreLocationController class, 260 
myObject variable, 104 
myPassword string, 165 

■ N 
naming conventions 

file and class names, 128 
setter objects, 142 

NAND operator, 59 
Navigation menu, Alice, 14 
nested call, 104 
nested if statements, 77 
New File dialog, Xcode, 109–110 
New Project window, 126 
Newspaper class, 94–95 
Next button, Xcode, 109 
NeXTSTEP operating system, 98, 102 
nibbles, defined, 202 
nil pointer, 211 
NOR operator, 59 
not equal to operator, 158 
NOT operator, 58 
not-equal sign, 99 
NSArray class, 170–172 
NSAutoreleasePool, 108, 113 
NSCalendarDate class, 166 
NSComparisonResult property, 166–167 



Index 269 

NSDate class, 166 
NSDictionary class, 172 
NSLog class, 115 
NSLog function, 33, 52–53, 103 
NSLog string, 53 
NSMutableArray class, 170–172 
NSMutableDictionary class, 131, 148–149, 

172, 213 
NSMutableString class, 148 
NSObject class, 93, 102, 104, 109, 212 
NSObject object, 102 
NSOrderedAscending value, 166 
NSOrderedDescending value, 166 
NSOrderedSame value, 166–167 
NSString class, 103 
NSString variable, 169, 171 
NSUserDefaults class, 238 
NSUserDefaults object, 239 
NULL pointer, 210–211, 216 
numbering systems 

bits, 37–38 
bytes, 39–40 
hexadecimal, 41, 202–204 
Unicode, 42 

numbers, 158–163 

■ O 
Object Adjustment tool, Alice, 23 
object context, managed, 250 
Object Gallery, Alice, 21 
object oriented programming. See OOP 

(object oriented programming) 
Object Tree, 18 
Objective-C 

basics, 98–100 
classes 

overview, 82 
planning, 83–92 

coding example app in, 74–76 
command line tool, creating, 138–140 
creating classes 

declaring interfaces and instance 
variables, 119 

implementation file, 121–122 
implementing methods, 123–124 
overview, 117–118 
sending messages (methods), 119–121 
using class methods, 120–121 
using instance methods, 121 

creating MyBookstore program 

Book objects, 154–156 
cleaning objects, 153 
implementing behavior, 150–153 
NSMutableDictionary class, 148–149 
objects, 149 
overview, 146–147 

and data types, 50–53 
history of, 97–98 
inheritance, 93–94 
instance variables 

accessing, 141–142 
getter and setter methods, 142–143 
overview, 140 

interface, 95 
managing memory in 

implied retain messages, 214 
retain/release model, 212–214 
sending dealloc messages, 215 

object oriented programming (OOP) 
debugging, 95 
eliminate code, 94–95 
replacement, 95 

objects, 81–82 
polymorphism, 95 
properties, 144–146 

objects, 149 
in Alice, 17–18 
Book, 154–156 
cleaning, 153 
connecting to actions, 193–194 
connecting to outlets, 192 
Objective-C, 81–82 

Objects Adjustment tool, Alice, 22 
OmniGraffle tool, 64–65 
OOP (object oriented programming) 

debugging, 95 
eliminate code, 94–95 
overview, 6–8 
replacement, 95 

Open button, Alice, 20 
opening brace symbol, 99 
Opening screen, Alice, 14 
opening screen, Xcode, 106 
operators, relational, 158–163 
Optional check box, Core Data, 243 
Optional Installs window, Xcode, 27 
OR operator, 58 
Ordinal Data types, 169 
Ordinal type, 169–170 
outlets, 185–186, 192 
Output pane, 224 



Index 270 

■ P 
period (.), function of, 146 
planning classes, 83–92 
play button, Alice application, 6, 32 
plus sign (+), function of, 120 
pointer to, 104 
pointers, 208–211 
polymorphism, 95 
preferences file, 237–238 
primary keys, 245 
Print Invoice method, Sales class, 87 
Printed Material class, 94 
printf function, 99–100 
printf statement, 100 
printGreeting message, 102, 104, 113 
printGreeting method, 116 
printTheMeaningOfLife method, 116 
procedural language, 98 
program statements, using loops to repeat, 

70–71 
Programmed exited with status value:0 

message, Xcode, 33 
programming. See also Objective-C 

Alice interface 
classes, objects, and instances, 17–

18 
creating apps, 20–25 
Details Area, 19 
Editor Area, 18 
Events Area, 19 
Navigation menu, 14 
Object Tree, 18 
overview, 13 
World window, 15–17 

numbering systems 
bits, 37–38 
bytes, 39–40 
hexadecimal, 41 
Unicode, 42 

programs 
building and running, 114 
debugging with Xcode 

call stack, 231–234 
debugger controls, 223 
debugging variables, 226–230 
deleting multiple breakpoints, 230–

231 
disabling breakpoints, 231 
overview, 219 
setting breakpoints, 220–221 
step controls, 225 

thread window and call stack, 225–
226 

MyBookstore, creating 
Book objects, 154–156 
cleaning objects, 153 
implementing behavior, 150–153 
NSMutableDictionary class, 148–149 
objects, 149 
overview, 146–147 

Project Breakpoints Option, 231 
project window, Xcode, 108 
Project/debug page, 222 
projects, creating 

adding new classes, 108–114 
building and running programs, 114 
overview, 107 

properties, Objective-C, 144–146 
Properties tab, Alice interface, 19 
protocols 

multiple inheritance, 257–258 
syntax of, 259 
understanding delegates, 259–260 

pseudo-code, 62–63 

■ Q 
QA (Quality Assurance), 4 

■ R 
rand( ) function, 76 
randNumber class, 185 
randNumber outlet, 192 
[randNumber setText: method, 195 
random( ) function, 76, 196 
Random number generator app 

Alice, 73 
Objective-C, 78 
Xcode, 75 

RandomNumber project, 74, 181 
RandomNumber.m file, 75 
RandomNumberViewController.h file, 183–

185 
RandomNumberViewController.m file, 183, 

195 
RandomNumberViewController.xib file, 187 
rangeOfString function, 165 
Read to me button, iPad Simulator, 20 
reading preferences, 239 
readonly directive, 145 



Index 271 

Received Actions section, Interface Builder 
Document window, 193 

receivers, 100, 119 
refactoring, improving code through, 77 
relational operators 

creating example Xcode apps, 160–163 
numbers, 158–163 

removeObjectForKey: method, 151 
requesting memory, automatic variables and 

pointers, 208–209 
result variable, 167 
retain directive, 145 
retain keyword, 149 
retain method, 186 
retainCount method, 215 
retain/release model, 210, 212–214 
return statement, 100 
Ritchie, Dennis, 97 
rotate left action, UITableView object, 7 

■ S 
Sales class, 85–87, 94 
saleStarted variable, 167 
sand boxes, defined, 237 
Save All button, Xcode, 114 
save all operation, Xcode, 114 
Save before building dialog box, Xcode, 114 
scanf function, 76–77 
Scene Editor, Alice, 16–17 
scope, 101, 119, 141 
secondNumber variable, 44–45, 52 
Seed: action, 194 
Seed: open circle icon, Interface Builder, 

194 
Seed Random Number Generator, Interface 

Builder, 194, 196 
selectors, 119 
self keyword, 124 
semicolon character, 100 
sending dealloc messages, 215 
setObject:forKey: method, 152 
setter method, 142–143 
setText method, 195 
Show this window when Xcode launches 

check box, Xcode, 106 
size attribute, TV object, 82 
Smalltalk language, 97, 100 
software development cycle, 5 
Source group, Xcode, 74 
Space Class option, Alice, 21 

Space Template, Alice, 20–21 
SQLite, databases, 240 
State concept, 8 
state of an object, 8 
statements 

nested if and else-if, 77 
switch, 168–170 

step controls, 225 
Step Into button, 223, 225, 228 
Step Out button, 223, 225 
Step Over button, 223, 225 
storage 

Core Data, 241 
databases, 239–240 
interface, 250–255 
Model, 242–250 
overview, 237 
preferences 

overview, 237 
reading, 239 
writing, 238–239 

storing information in databases, 240 
string attributes, 244 
strings, 164–166 
super keyword, 124 
switch statement, 168–170 

■ T 
Targets check box, Xcode, 111 
Tasks button, 223 
Template tab, Alice, 20 
Text editor pane, 224 
Thread list pane, 224 
thread window, 225–226 
To-Many Relationship check box, Core 

Data, 246 
totalSpent variable, 168 
totalSum variable, 45–46, 49 
toTheMoonAlice.a2w app, Alice, 25 
Touch Up Inside event, 193–194 
Transient check box, Core Data, 244 
triggers, 19 
troubleshooting data, 54–56 
truth tables, 59–61 
Tutorial tab, Alice application, 9 
TV object, 82 
type attribute, TV object, 82 
type, data, 99 
Type drop-down menu, Xcode, 107 
types, 119 



Index 272 

■ U 
UI (user interface), 3, 180 
UILabel: type, 185 
UITableView objects, 7–8 
Ultimate iPhone Stencil Plug-in, 65 
UML (unified modeling language), 87 
Unicode, 42 
unsigned int data type, 50 
unsigned long int data type, 50 
unsigned long long int data type, 50 
Use Core Data for Storage check box, 88 
user did select row 3 action, UITableView 

object, 7 
user interface (UI), 3, 180 
user interface, Alice, 13, 15 
userGuess variable, 76 

■ V 
Variable pane, 224 
variables 

automatic, 208–209 
debugging, 226–230 
grouping 

NSArray, 170–171 
NSDictionary, 172 
NSMutableArray, 171–172 
NSMutableDictionary, 172 

using with Alice app, 43–49 
View window, Interface Builder, 189, 191–

193 
views, creating, 191 
virtualized memory, 207 
void type, 99 
(void)printGreeting object, 102 

■ W 
wait function, 49 
WebServiceDelegate protocol, 259 
while loop, 71 
windows 

Document, 188 
Inspector, 190 
Library, 189 
thread, 225–226 
World, 15–17 

Woodforest Mobile Banking app, 4, 66 
World window, 15–17 
writing preferences, 238–239 

■ X 
Xcode 

accessing documentation, 133 
creating apps, 160–163 
creating projects 

adding new classes, 108–114 
building and running new programs, 

114 
overview, 107 

debugging programs 
call stack, 231–234 
debugger controls, 223 
debugging variables, 226–230 
deleting multiple breakpoints, 230–

231 
disabling breakpoints, 231 
overview, 219 
setting breakpoints, 220–221 
step controls, 225 
thread window and call stack, 225–

226 
dependencies, 111 
downloading, 105 
installing, 27–28 
launching and using, 30–36 
overview, 105 
starting up, 106 

Xcode.mpkg icon, 28 
XOR operator, 59 

■ Z 
zero-based arrays, 205 

 


	Prelim
	Contents at a Glance
	Contents
	About the Authors
	About the Technical Reviewer
	Acknowledgments
	Introduction
	Becoming a Great iPhone/iPad or Mac Programmer
	Thinking Like a Developer
	Completing the Development Cycle
	Introducing Object Oriented Programming
	Working with the Alice Interface
	Summary
	Exercises

	Programming Basics
	Taking a Tour with Alice
	Navigation Menu
	World Window
	Classes, Objects, and Instances in Alice
	Object Tree
	Editor Area
	Details Area
	Events Area

	Creating an Alice App—To the Moon Alice
	Your First Objective-C Program
	Installing Xcode
	Launching and Using Xcode

	Summary
	Exercises

	It’s All About the Data
	Numbering Systems Used in Programming
	Bits
	Bytes
	Hexadecimal
	Unicode

	Data Types
	Using Variable and Data Types with Alice
	Data Types and Objective-C
	Identifying Problems
	Summary
	Exercises

	Making Decisions About…and Planning Program Flow
	Boolean Logic
	Truth Tables
	Comparison Operators

	Designing Apps
	Pseudo-code

	Design Requirements
	Flowcharting
	Designing and Flowcharting an Example App
	The App’s Design
	Using Loops to Repeat Program Statements

	Coding the Example App in Alice
	Coding the Example App in Objective-C
	Nested If Statements and Else-If Statements
	Improving the Code Through Refactoring
	Moving Forward Without Alice
	Summary
	Exercises

	Object Oriented Programming with Objective-C
	The Object
	What Is a Class
	Planning Classes
	Inheritance
	Why Use OOP?
	Eliminate Redundant Code
	Ease of Debugging
	Ease of Replacement

	Advanced Topics
	Interface
	Polymorphism

	Summary
	Exercises

	Introducing Objective-C and Xcode
	A Brief History of Objective-C
	Understanding C Language Basics
	Putting the “Objective” into Objective-C
	Introducing Xcode
	Starting Up Xcode
	Creating Your First Project
	Adding a New Class
	Building and Running the New Program

	Summary
	Exercises

	Objective-C Classes, Objects, and Methods
	Creating an Objective-C Class
	Declaring Interfaces and Instance Variables
	Sending Messages (Methods)
	Working with the Implementation File
	Implementing Methods

	Using Our New Class
	Overriding Default Behavior
	Taking Class Methods to the Next Level

	Accessing the Xcode Documentation
	Summary
	Exercises

	Programming Basics in Objective-C
	Creating a Simple Command Line Tool
	Introducing Instance Variables
	Accessing Instance Variables
	Using Getter and Setter Methods

	Introducing Properties
	Using Properties
	Understanding the Importance of Conventions

	Creating the MyBookstore Program
	Using the NSMutableDictionary Class
	Making Our Object Do Something
	Implementing Behavior
	Cleaning Up Our Objects
	Using the Bookstore and Book Objects

	Summary
	Exercises

	Comparing Data
	Introducing Boolean Logic
	Using Relational Operators
	Comparing Numbers

	Using Boolean Expressions
	Comparing Strings
	Comparing Dates
	Combining Comparisons

	Using the Switch Statement
	Grouping Variables Together
	NSArray
	NSMutableArray
	NSDictionary
	NSMutableDictionary

	Summary
	Exercises

	Creating User Interfaces with Interface Builder
	Understanding Interface Builder
	The Model-View-Controller
	Human Interface Guidelines (HIGs)
	Creating an Example iPhone App with Interface Builder
	Using Outlets
	Implementing an Action
	Using Interface Builder
	Document Window
	Library Window
	Inspector Window
	Creating the View
	Connecting the Outlets and Objects
	Connecting Actions and Objects
	Implementation File

	Broken Connections in Interface Builder
	Summary
	Exercises

	Memory, Addresses, and Pointers
	Understanding Memory
	Bits, Bytes, and Bases

	Understanding Memory Address Basics
	Requesting Memory
	Working with Automatic Variables and Pointers

	Deallocating Memory
	Using Special Pointers

	Managing Memory in Objective-C
	Using the Retain/Release Model
	Working with Implied Retain Messages
	Sending the dealloc Message

	If Things Go Wrong
	Summary
	Exercises

	Debugging Programs with Xcode
	Getting Started with Debugging
	Setting Breakpoints
	Debugging Basics
	Working with the Debugger Controls

	Debugging a Program
	Using the Step Controls
	Looking at the Thread Window and Call Stack
	Debugging Variables
	Deleting Multiple Breakpoints
	Disabling Breakpoints
	A Larger Call Stack

	Summary
	Exercises

	Storing Information
	Storage Considerations
	Preferences
	Writing Preferences
	Reading Preferences

	Databases
	Storing Information in a Database
	Getting Started with Core Data
	The Model
	Managed Object Context

	Setting Up the Interface
	Summary
	Exercises

	Protocols and Delegates
	Multiple Inheritance
	Understanding Protocols
	Protocol Syntax

	Understanding Delegates
	Next Steps
	Summary

	Index
	¦ Symbols and
	Numbers
	¦ A
	¦ B
	¦ C
	¦D
	¦G
	¦ E
	H
	¦
	¦ F
	¦I
	¦ J
	¦ K
	L
	¦
	¦ M
	¦ N
	¦ O
	¦ P
	¦Q
	¦ R
	¦ S
	¦ T
	¦ U
	¦X
	¦ V
	¦ Z ¦ W




