
3D Game Development with
Microsoft Silverlight 3
Beginner's Guide

A practical guide to creating real-time responsive online
3D games in Silverlight 3 using C#, XBAP WPF, XAML, Balder,
and Farseer Physics Engine

Gastón C. Hillar

 BIRMINGHAM - MUMBAI

This material is copyright and is licensed for the sole use by Vadim Kudria on 4th October 2009

6352 108th St, , Forest Hills, , 11375

3D Game Development with Microsoft Silverlight 3
Beginner's Guide

Copyright © 2009 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval system,
or transmitted in any form or by any means, without the prior written permission of the
publisher, except in the case of brief quotations embedded in critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy of the
information presented. However, the information contained in this book is sold without
warranty, either express or implied. Neither the author, nor Packt Publishing, and its dealers
and distributors will be held liable for any damages caused or alleged to be caused directly or
indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the
companies and products mentioned in this book by the appropriate use of capitals.
However, Packt Publishing cannot guarantee the accuracy of this information.

First published: September 2009

Production Reference: 1180909

Published by Packt Publishing Ltd.
32 Lincoln Road
Olton
Birmingham, B27 6PA, UK.

ISBN 978-1-847198-92-1

www.packtpub.com

Cover Image by Gastón Hillar and Adline Swetha Jesuthas

Cover image for illustrative purposes only.

This material is copyright and is licensed for the sole use by Vadim Kudria on 4th October 2009

6352 108th St, , Forest Hills, , 11375

Download at WoweBook.Com

Credits

Author

Gastón C. Hillar

Reviewers

Tarkan Karadayi

Richard Griffin

Acquisition Editor

James Lumsden

Development Editor

Darshana D. Shinde

Technical Editor

Arani Roy

Copy Editor

Sneha Kulkarni

Indexer

Hemangini Bari

Editorial Team Leader

Abhijeet Deobhakta

Project Team Leader

Priya Mukherji

Project Coordinator

Zainab Bagasrawala

Proofreader

Lesley Harrison

Graphics

Nilesh R. Mohite

Production Coordinators

Aparna Bhagat

Shantanu Zagade

Cover Work

Aparna Bhagat

This material is copyright and is licensed for the sole use by Vadim Kudria on 4th October 2009

6352 108th St, , Forest Hills, , 11375

Download at WoweBook.Com

About the Author

Gastón C. Hillar has been working with computers since he was eight. He began
programming with the legendary Texas TI-99/4A and Commodore 64 home computers
in the early 80's.

He has a Bachelor's degree in Computer Science in which he graduated with honors, and
he also has an MBA (Master in Business Administration) in which graduated with an
outstanding thesis. He has worked as a developer, an architect, and project manager for
many companies in Buenos Aires, Argentina. Now, he is an independent IT consultant and a
freelance author always looking for new adventures around the world. He also works with
electronics (he is an electronics technician). He is always researching new technologies and
writing about them. He owns an IT and electronics laboratory with many servers, monitors,
and measuring instruments.

He has written another book for Packt, "C# 2008 and 2005 Threaded Programming:
Beginner's Guide".

He contributes to Dr. Dobb’s Go Parallel programming portal http://www.ddj.com/go-
parallel/ and he is a guest blogger at Intel Software Network http://software.
intel.com

He is the author of more than 40 books in Spanish about computer science, modern
hardware, programming, systems development, software architecture, business applications,
balanced scorecard applications, IT project management, the Internet, and electronics.

He usually writes articles for the Spanish magazines "Mundo Linux", "Solo Programadores"
and "Resistor".

He lives with his wife, Vanesa, and his son, Kevin. When not tinkering with computers, he
enjoys developing and playing with wireless virtual reality devices and electronics toys with
his father, his son, and his nephew Nico.

You can reach him at: gastonhillar@hotmail.com

You can follow him on Twitter at: http://twitter.com/gastonhillar

Gastón's blog is at: http://csharpmulticore.blogspot.com

This material is copyright and is licensed for the sole use by Vadim Kudria on 4th October 2009

6352 108th St, , Forest Hills, , 11375

Download at WoweBook.Com

Acknowledgement

While writing this book, I was fortunate enough to work with an excellent team at Packt
Publishing Ltd, whose contributions vastly improved the presentation of this book. James
Lumsden helped me to transform the idea in the final book and to take my first steps
working with a new Beginner's Guide. Zainab Bagasrawala made everything easier with both
her incredible time management and patience. Darshana Shinde helped me realize my vision
for this book and provided many sensible suggestions regarding the text, the format and the
flow. The reader will notice her great work. Arani Roy made the sentences, the paragraphs,
and the code easier to read and to understand. He has added great value to the final drafts.

Special thanks go to Einar Ingebrigtsen (http://www.ingebrigtsen.info), Balder's
lead developer. Einar's work inspired this book. He made it possible to have a game engine
for Silverlight 3. This book was possible because Einar helped me with each new feature
added to Balder. His outstanding knowledge on game development made it possible to work
with an excellent engine. I also have to thank Petri Wilhelmsen, another Balder's developer
who also helped to improve the engine. I would like to thank my technical reviewers and
proofreaders, for their thorough reviews and insightful comments. I was able to incorporate
some of the knowledge and wisdom they have gained in their many years in the software
development industry. The examples, the pictures and the code include the great feedback
provided by Tarkan Karadayi. Tarkan helped me a lot to include better and shorter code to
simplify the learning process. I would like to thank Mark Dawson, Kit3D's developer. Mark's
work also inspired the development of many simple 3D applications using previous Silverlight
versions and his simple yet powerful engine. I wish to acknowledge Bill Reiss, as he worked
to show the world that Silverlight games were possible. He was another great source of
inspiration for my work on this book. I would like to thank Doug Holland, as his blog posts at
Intel Software Network always helped me to stay tuned with tips related to many products
used in this book.

I must acknowledge David Barnes, Beginner's Guide Series Editor at Packt. His help in my
previous book and his wisdom is also part of this new one. I must also thank Shilpa Dube,
Rakesh Shejwal and Rajashree Hamine. They helped me in my previous book written for
Packt and this new one was much easier bearing in mind their excellent tips.

This material is copyright and is licensed for the sole use by Vadim Kudria on 4th October 2009

6352 108th St, , Forest Hills, , 11375

Download at WoweBook.Com

I wish to acknowledge Hector A. Algarra, who always helped me to improve my writing.

Special thanks go to my wife, Vanesa S. Olsen, my son Kevin, my nephew, Nicolas, my father,
Jose Carlos, who acted as a great sounding board and participated in many hours of technical
discussions, my sister, Silvina, who helped me when my grammar was confusing and my
mother Susana. They were always supporting me during the production of this book.

This material is copyright and is licensed for the sole use by Vadim Kudria on 4th October 2009

6352 108th St, , Forest Hills, , 11375

Download at WoweBook.Com

About the Reviewer

Tarkan Karadayi has been writing code since age 14. He has a Masters in Computer
Science and is currently working as a Lead Developer.

I would like to thank my wife Anna, my parents and my three sons Taran,
Kyle, and Ryan for their love and support.

This material is copyright and is licensed for the sole use by Vadim Kudria on 4th October 2009

6352 108th St, , Forest Hills, , 11375

Download at WoweBook.Com

This material is copyright and is licensed for the sole use by Vadim Kudria on 4th October 2009

6352 108th St, , Forest Hills, , 11375

Download at WoweBook.Com

I would like to dedicate this book to my son Kevin and my wife Vanesa

This material is copyright and is licensed for the sole use by Vadim Kudria on 4th October 2009

6352 108th St, , Forest Hills, , 11375

Download at WoweBook.Com

This material is copyright and is licensed for the sole use by Vadim Kudria on 4th October 2009

6352 108th St, , Forest Hills, , 11375

Download at WoweBook.Com

Table of Contents
Preface	 1
Chapter	1:	Lights,	Camera,	and	Action!	 7

UFOs	in	the	sky!:	Invaders	 7
Time for action – preparing the development environment 8
Time for action – recognizing digital art assets 12
Time for action – creating the raster digital content 14
Digital Content Creation tools 17
Basic elements of a 2D and/or 3D real-time game 18
Programming responsibilities 19
Time for action – installing tools to manipulate scalable digital content 19
XAML works fine with Silverlight 3 22
Time for action – creating the scalable digital content in XAML 22
Previewing and scaling XAML vector graphics 25
Time for action – testing the scalable digital content using XamlPad 26
Editing vector illustrations using Expression Design 27

Preparing	a	gaming	framework	 29
Time for action – creating Silverlight applications 29
Time for action – building and running Silverlight applications 33
Programming event handlers in the main page 35
Time for action – creating XBAP WPF applications 36
Time for action – building and running the XBAP WPF applications 38

Summary	 42
Chapter	2:	Working	with	2D	Characters	 43

Creating	an	accelerated	graphics	viewport	 43
Time for action – enabling hardware acceleration 44
Time for action – transforming media using the GPU 45
Caching rendered content 48

This material is copyright and is licensed for the sole use by Vadim Kudria on 4th October 2009

6352 108th St, , Forest Hills, , 11375

Download at WoweBook.Com

Table of Contents

[ii]

Scaling and rotating a vector-based illustration 49
Time for action – shaking many illustrations at the same time 49
Running loops faster 51
Accelerating transforms and blends 52
Using 2D vectors 53
Time for action – detecting GPU-acceleration problems 54
Understanding GPU acceleration limitations 56

Creating	encapsulated	object-oriented	characters	 56
Time for action – creating User Control classes to hold images 56
Time for action – displaying images and sprites 58
Showing a sprite on the screen 62
Defining the behavior 63
Understanding dimensions 65
Managing resolutions 66
Screen resolutions 67

Summary	 69
Chapter	3:	Combining	Sprites	with	Backgrounds	 71

The	first	remake	assignment	 71
Time for action – creating sprites based on XAML vector-based graphics 72
Defining the relative center point 75
Time for action – creating a specialized sprite management class 76
Taking full advantage of object-oriented capabilities 80
Preparing the classes for inheritance 81
Wrapping a UserControl to manage it 81
Time for action – creating a superclass for some characters 82
Time for action – creating the subclasses for the characters 84
Time for action – creating methods for the game loop 89
Creating objects on the fly 93
Managing dynamic objects 93
Time for action – writing the game loop 94
Animating multiple sprites 98
Managing a complex game loop 99
Time for action – detecting collisions between 2D characters 99
Using colors to paint sprites 103

Summary	 106
Chapter	4:	Working	with	3D	Characters	 107

The	second	remake	assignment	 107
Time for Action – exporting a 3D model without considering textures 108
XAML 3D models 113

This material is copyright and is licensed for the sole use by Vadim Kudria on 4th October 2009

6352 108th St, , Forest Hills, , 11375

Download at WoweBook.Com

Table of Contents

[iii]

Time for action – from DCC tools to WPF 115
XBAP WPF applications with 3D content 116
Time for action – displaying a 3D model in a 2D screen with WPF 117
Understanding the 3D world 121
X, Y, and Z in practice 123
GPU 3D acceleration 124
Understanding meshes 125
Time for action – using other XAML exporter for DCC tools 126
Time for action – adding 3D elements and interacting with them
 using Expression Blend 128
Interacting with 3D elements using Expression Blend 131

Silverlight	and	the	3D	world	 132
Time for action – exporting a 3D model to ASE 132
Time for action – installing Balder 3D engine 133
Time for action – from DCC tools to Silverlight 135
Displaying a 3D model in a 2D screen with Silverlight 138
Using 3D vectors 139

Summary	 140
Chapter	5:	Controlling	the	Cameras:	Giving	Life	to		
Lights	and	Actions	 141

Understanding	3D	cameras	 142
Time for action – when seeing is believing 142
Controlling the position, the direction, and the up vector 146
Time for action – performing transformations 147
Defining and applying transformations 150
Time for action – zooming in and out 151
Controlling the perspective field of view 155
Controlling the clipping planes 155
Time for action – understanding perspective and orthographic cameras 157

Silverlight	and	the	cameras	 160
Time for action – controlling cameras on the fly 160
Understanding cameras related to matrixes 161

Summary	 164
Chapter	6:	Controlling	Input	Devices	to	Provide	Great	Feedback	 165

Giving	life	to	the	game!	 166
Time for action – creating a keyboard manager class 166
Using the keyboard 168
Time for action – programming the input control in the game loop 169
Time for action – mapping a gamepad to the keyboard 173

This material is copyright and is licensed for the sole use by Vadim Kudria on 4th October 2009

6352 108th St, , Forest Hills, , 11375

Download at WoweBook.Com

Table of Contents

[iv]

Understanding the gamepad as an input device 176
Time for action – using the gamepad 178
Time for action – creating a mouse manager class 179
Using the mouse 181
Time for action – using the mouse manager in the game loop 181
Time for action – using the gamepad as a mouse 184
Time for action – rotating cameras using input devices 185

Bridging	with	DirectInput	capabilities	 188
Time for action – installing the necessary SDKs 189
Considering deployment's additional requirements 190
Time for action – understanding sticks and buttons 190
Understanding the steering wheel as an input device 192
Time for action – testing the input devices with a DirectInput wrapper 193
Understanding the analog axis for a steering wheel 195
Understanding the analog axis for a gamepad 196
Time for action – adapting a joystick manager class 197
Time for action – using the steering wheel in the game loop 200
Using the joystick manager 202
Working with many input devices 203
Using other input devices 204

Summary	 206
Chapter	7:	Using	Effects	and	Textures	to	Amaze	 207

Dressing	characters	using	textures	 207
Time for action – adding textures in DCC tools 208
Time for action – exporting 3D models from DCC tools to Silverlight 212
Displaying a 3D model using textures in a 2D screen with Silverlight 213
Time for action – enveloping 3D models 214
Understanding textures 217
Repeating textures as tiles 217
Time for action – replacing textures 218

Displaying	lights,	shadows,	materials,	and	textures	 222
Time for action – working with lights and understanding shadows 222
Understanding different kinds of lights 225

Summary	 228
Chapter	8:	Animating	3D	Characters	 229

Invaders	3D	 230
Time for action – adding a UFO 230
Time for action – creating a new game superclass to generalize
 time management capabilities 232

This material is copyright and is licensed for the sole use by Vadim Kudria on 4th October 2009

6352 108th St, , Forest Hills, , 11375

Download at WoweBook.Com

Table of Contents

[v]

Time for action – specializing a game superclass 233
Time for action – creating a subclass for a 3D character 234
Using an Actor to represent a 3D character 236
Time for action – adding an Actor to the game 237
Moving 3D characters as Actors 238
Time for action – rotating 3D characters 239
Using the World matrix in order to perform transformations to meshes 241
Performing compound transformations 243
Time for action – scaling 3D characters 243
Using the World matrix in order to scale meshes 244

Using	bones	and	skeletons	 246
Time for action – animating models with skeletons and bones 247
Using skeletons and bones 249
Time for action – adding an Actor with skeletons and bones
 to the game 250
Understanding complex 3D animation techniques 251

Summary	 254
Chapter	9:	Adding	Realistic	Motions	Using	a	Physics	Engine	 255

Using	physical	principles	in	games	to	beat	invaders	 256
Time for action – installing Farseer Physics Engine 256
Time for action – adding parallel physics bodies and
 geometries to 3D characters 259
Creating bodies 260
Creating geometries 261
Updating a 3D model according to the associated body's properties 262
Time for action – working with forces, impulses, acceleration,
 and speed 262
Specifying the gravitational force 265
Applying forces 265
Applying impulses 266
Working with a 2D physics simulator in the game loop 266
Time for action – working with torques and rotations 267
Applying torques 268
Translating 2D physics to a 3D world 269
Working with Farseer Physics Engine in XBAP WPF applications 270

Summary	 273
Chapter	10:	Applying	Artificial	Intelligence	 275

Detecting	collisions	between	3D	characters	 275
Time for action – adding a second UFO 276
Time for action – detecting collisions between 3D characters 279

This material is copyright and is licensed for the sole use by Vadim Kudria on 4th October 2009

6352 108th St, , Forest Hills, , 11375

Download at WoweBook.Com

Table of Contents

[vi]

Working with advanced responses to collisions 282
Controlling collision moments using events 283
Working with collision categories 285
Using engines to improve collision detection precision 285

Using	artificial	intelligence	in	games	to	control	3D	characters	 288
Time for action – using chasing algorithms 289
Working with states for the characters 293
Pursuing an enemy 294
Generating and controlling random situations 294
Time for action – using evasion algorithms 295
Evading an enemy 297
The advantages of using an AI engine 298

Summary	 299
Chapter	11:	Applying	Special	Effects	 301

Working	with	3D	characters	in	the	background	 301
Time for action – adding a transition to start the game 302
Time for action – creating a low polygon count meteor model 304
Time for action – from 3D Studio Max to Silverlight 307
Time for action – creating a subclass for a 3D meteor 308
Time for action – creating and controlling a meteor rain 311
Advantages of using multiple physics engines 314
Time for action – simulating fluids with movement 315
Simulating waves 317
Time for action – creating a subclass for a complex asteroid belt 318
Using an Actor to represent a wave in the background 321
Time for action – adding an asteroid belt background to the game 322
Working with encapsulated physics controllers 324

Summary	 325
Chapter	12:	Controlling	Statistics	and	Scoring	 327

Showing	gauges	and	scorecards	 327
Time for action – using special fonts 328
Embedding fonts in the project 332
Time for action – creating a score gauge showing text 332
Using Expression Blend to create 2D gauges 335
Time for action – showing a score gauge 336
Calculating, saving, and showing statistics 339
Time for action – creating a bonus gauge showing text 341
Time for action – creating a fuel gauge 342
Time for action – creating a remaining lives gauge 345

This material is copyright and is licensed for the sole use by Vadim Kudria on 4th October 2009

6352 108th St, , Forest Hills, , 11375

Download at WoweBook.Com

Table of Contents

[vii]

Using a panel to show many aligned user controls 347
Time for action – showing and updating multiple gauges 348
Working with multiple gauges 352

Summary	 354
Chapter	13:	Adding	Environments	and	Scenarios	 355

Working	with	levels	and	stages	 356
Time for action – installing Windows Presentation Foundation 356
Pixel Shader Effects Library 356
Time for action – adding screens to organize the game 361
Time for action – applying transition effects 363
Rendering a WriteableBitmap and using it as an ImageBrush 366
Creating a StoryBoard 366
Working with a StoryBoard to animate an effect 367
Time for action – changing the transition effect 368
Exploring transition effects 370
Working with multiple transition effects 371
Time for action – using skill levels 372
Time for action – changing and improving the environments
 according to the skill level 375
Retrieving values for parameters using LINQ to XML 378
Time for action – saving configurations 379

Summary	 383
Chapter	14:	Adding	Sound,	Music,	and	Video	 385

Hear	the	UFOs	coming	 386
Time for action – installing tools to manipulate videos 386
Time for action – preparing a video to use it in Silverlight 389
Video formats supported in Silverlight 3 392
Using free applications to convert video formats 393
Time for action – reproducing videos 393
Locating videos in a related web site 395
Stretching videos 396
Taking advantage of GPU acceleration to scale videos 397
Time for action – applying projections 398
Time for action – animating projections 399
Working with a StoryBoard in XAML to animate a projection 401
Time for action – solving navigation problems 401
Time for action – reproducing music 403
Time for action – preparing audio files to use them in Silverlight 405
Audio formats supported in Silverlight 3 408

This material is copyright and is licensed for the sole use by Vadim Kudria on 4th October 2009

6352 108th St, , Forest Hills, , 11375

Download at WoweBook.Com

Table of Contents

[viii]

Using free applications to convert audio formats 408
Time for action – creating a class to handle audio concurrency 409
Using a round robin algorithm to work with concurrent sounds 411
Time for action – generating sounds associated to game events 412

Summary	 415
Appendix:	Pop	Quiz	Answers	 417
Index	 421

This material is copyright and is licensed for the sole use by Vadim Kudria on 4th October 2009

6352 108th St, , Forest Hills, , 11375

Download at WoweBook.Com

Preface
Most online interactive content uses 2D graphics. To represent real-life situations, Rich
Internet Applications (RIAs) need to show real-time 3D scenes. This book will let you add
a new dimension to your Silverlight applications using C# and XAML. The book covers the
various tools and libraries needed for giving life to 3D models in a Silverlight viewport—right
from editing, exporting, loading, and controlling 3D models up to specific 3D algorithms.
It will help you learn to develop 3D games and interactive 3D scenes for a web site with
animated models, with numerous examples and clear explanations packed with screenshots
to aid your understanding of every process. After all of the code is written and the additional
art assets edited, they are all compressed into .zip files for easy availability and use.

What this book covers
Chapter 1: Lights, Camera, and Action!: In this chapter, we will cover many topics that will
help us to understand the new tools and techniques involved in preparing 2D graphics to be
used in Silverlight games. This chapter is all about tools and graphics.

Chapter 2: Working with 2D Characters: In this chapter, we will begin creating 2D characters
that move on the screen and we will learn to control their behavior in the 2D space. We will
learn about GPU hardware acceleration, 2D vectors, resolutions, sprites, and animation.

Chapter 3: Combining Sprites with Backgrounds: In this chapter, we will control multiple sprites
created on demand. We will animate several independent sprites at the same time, while
responding to the keys pressed by the player to control characters and some game logic.

Chapter 4: Working with 3D Characters: In this chapter, we will take 3D elements from
popular and professional 3D DCC tools and we will show them rendered in real-time on the
screen. We will learn a lot about 3D models, meshes, and 3D engines.

Chapter 5: Controlling the Cameras: Giving Life to Lights and Actions: In this chapter, we
will learn everything we need to know about 3D cameras to be able to render our models
in real-time on a 2D screen from different angles. We will change the values for their most
important properties and we will be able to watch their effects in a rendered 3D view.

This material is copyright and is licensed for the sole use by Vadim Kudria on 4th October 2009

6352 108th St, , Forest Hills, , 11375

Download at WoweBook.Com

Preface

[2]

Chapter 6: Controlling Input Devices to Provide Great Feedback: In this chapter, we will learn
everything we need to know about the most widely used gaming input devices. We will be
able to read values from them in order to control many aspects of our games.

Chapter 7: Using Effects and Textures to Amaze: In this chapter, we will learn everything we
need to know about the process of enveloping a 3D model using textures. We will be able
to take 3D elements from popular and professional 3D DCC tools and we will show them
rendered in real-time on the screen with different textures and enlightened by many lights.

Chapter 8: Animating 3D Characters: In this chapter, we will learn how to move, rotate, and
scale the 3D models in the 3D scenes. We will use object-oriented capabilities to define
independent behaviors for simple and complex 3D characters.

Chapter 9: Adding Realistic Motions Using a Physics Engine: In this chapter, we will
simulate some laws of 2D and 3D physics. We will learn to define gravity force, mass, drag
coefficients, and moment of inertia to represent the physical properties of the bodies that
define a model.

Chapter 10: Applying Artificial Intelligence: In this chapter, we will detect collisions between
3D characters and we will define specific behaviors using artificial intelligence, persecution,
and evasion algorithms

Chapter 11: Applying Special Effects: In this chapter, we will use advanced physics and special
effects. We will generate gravity effects, we will add fluids with movements, and we will use
transitions to determine different states in a game.

Chapter 12: Controlling Statistics and Scoring: In this chapter, we will create gadgets to
display different kinds of information to the player on the screen. We will also calculate
different kinds of information in order to update the gauges. Also, we will measure and
improve the game’s overall performance.

Chapter 13: Adding Environments and Scenarios: In this chapter, we will create menus and
attractive transitions. We will add configuration options and we will save them using an
isolated storage.

Chapter 14: Adding Sound, Music, and Video: In this chapter, we will generate sounds
associated to game events. We will also add presentation videos and background music.

Appendix: Pop Quiz Answers: This appendix will include answers to all the pop quiz
questions chapter-wise.

This material is copyright and is licensed for the sole use by Vadim Kudria on 4th October 2009

6352 108th St, , Forest Hills, , 11375

Download at WoweBook.Com

Preface

[3]

What you need for this book
You will need Visual C# 2008 (.NET Framework 3.5) with Service Pack 1, or greater—Visual C#
2010—installed.

You can use the free Visual Web Developer 2008 Express Edition or greater
(http://www.microsoft.com/express/vwd/). However, you have to read
the documentation to consider its limitations carefully.

Who this book is for
This book is designed primarily for C# developers with a basic knowledge of Visual Studio IDE
who want to develop online 3D games using Silverlight, or create interactive 3D scenes for a
web site with animated models. No prior experience in 3D programming, 3D animation, and
Silverlight is required.

The book is also aimed at 3D developers who want to improve their online content by
offering innovative 3D models in action.

Conventions
In this book, you will find a number of styles of text that distinguish between different
kinds of information. Here are some examples of these styles, and an explanation of
their meaning.

Code words in text are shown as follows: “We can include other contexts through the use of
the include directive."

A block of code is set as follows:

private void Ghost_MouseMove(object sender, MouseEventArgs e)
{
// Get the mouse current position
Point point = e.GetPosition(cnvMovementTest);
// Set the canvas Left property to the mouse X position
ghost.SetValue(Canvas.LeftProperty, point.X);
// Set the canvas Top property to the mouse Y position
ghost.SetValue(Canvas.TopProperty, point.Y);
}

Any command-line input or output is written as follows:

C:\Users\packt>set

NUMBER_OF_PROCESSORS=4

This material is copyright and is licensed for the sole use by Vadim Kudria on 4th October 2009

6352 108th St, , Forest Hills, , 11375

Download at WoweBook.Com

Preface

[4]

New terms and important words are shown in bold. Words that you see on the screen, in
menus or dialog boxes for example, appear in the text like this: “clicking the Next button
moves you to the next screen".

Warnings or important notes appear in a box like this.

Tips and tricks appear like this.

Reader feedback
Feedback from our readers is always welcome. Let us know what you think about this
book—what you liked or may have disliked. Reader feedback is important for us to
develop titles that you really get the most out of.

To send us general feedback, simply send an email to feedback@packtpub.com, and
mention the book title via the subject of your message.

If there is a book that you need and would like to see us publish, please send us a note in the
SUGGEST A TITLE form on www.packtpub.com or email suggest@packtpub.com.

If there is a topic that you have expertise in and you are interested in either writing or
contributing to a book on, see our author guide on www.packtpub.com/authors.

Customer support
Now that you are the proud owner of a Packt book, we have a number of things to help you
to get the most from your purchase.

Downloading the example code for the book
Visit http://www.packtpub.com/files/code/8921_Code.zip to directly download
the example code.

The downloadable files contain instructions on how to use them.

This material is copyright and is licensed for the sole use by Vadim Kudria on 4th October 2009

6352 108th St, , Forest Hills, , 11375

Download at WoweBook.Com

Preface

[5]

Errata
Although we have taken every care to ensure the accuracy of our content, mistakes do
happen. If you find a mistake in one of our books—maybe a mistake in the text or the
code—we would be grateful if you would report this to us. By doing so, you can save other
readers from frustration, and help us to improve subsequent versions of this book. If you
find any errata, please report them by visiting http://www.packtpub.com/support,
selecting your book, clicking on the let us know link, and entering the details of your errata.
Once your errata are verified, your submission will be accepted and the errata added to
any list of existing errata. Any existing errata can be viewed by selecting your title from
http://www.packtpub.com/support.

Piracy
Piracy of copyright material on the Internet is an ongoing problem across all media. At Packt,
we take the protection of our copyright and licenses very seriously. If you come across any
illegal copies of our works, in any form, on the Internet, please provide us with the location
address or web site name immediately so that we can pursue a remedy.

Please contact us at copyright@packtpub.com with a link to the suspected pirated material.

We appreciate your help in protecting our authors, and our ability to bring you
valuable content.

Questions
You can contact us at questions@packtpub.com if you are having a problem with any
aspect of the book, and we will do our best to address it.

This material is copyright and is licensed for the sole use by Vadim Kudria on 4th October 2009

6352 108th St, , Forest Hills, , 11375

Download at WoweBook.Com

This material is copyright and is licensed for the sole use by Vadim Kudria on 4th October 2009

6352 108th St, , Forest Hills, , 11375

Download at WoweBook.Com

1
Lights, Camera, and Action!

We want to develop 3D games using Silverlight 3. We will need to work
hard in order to achieve this exciting goal. First, we must understand some
fundamentals related to various tools and 2D graphics, and their relevance
to Silverlight 3. In this chapter, we will cover many topics that will help us
understand the new tools and techniques involved in preparing 2D graphics
to be used in Silverlight games. This chapter is all about graphics.

In this chapter, we will:

Prepare a development environment to develop games using Silverlight 3

Recognize the digital art assets from an existing game

Create and prepare the digital content for a new 2D game

Understand the tools involved in a 2D game development process

Learn to manipulate, preview, and scale the digital content

Build and run our first graphics application using the digital content

UFOs in the sky!: Invaders
You love 3D games. You have always wanted to develop a 3D game with amazing characters,
dazzling scenarios, outstanding effects, and many skill levels. And now you have the
opportunity. A legendary game developer drives a new game contest. He challenges
Silverlight developers to show him some ideas for a modern 2D Invaders game. If he likes
a developer's idea, he will contract him to develop 3D games for his well-known gaming
web site using Silverlight 3. This web site pays high wages to developers. It is an incredible
opportunity and you cannot miss this train. Tickets, please!

This material is copyright and is licensed for the sole use by Vadim Kudria on 4th October 2009

6352 108th St, , Forest Hills, , 11375

Download at WoweBook.Com

Lights, Camera, and Action!

[�]

Developing 3D games is an exciting process, but it is also difficult. However, working with
a 2D game before moving into the 3D world is a nice starting point. That is exactly what we
are going to do.

During our journey, we will need to exploit our creativity as much as possible. Game
development requires many heterogeneous skills. However, the most important
ingredient is creativity.

We already know how to develop some applications using the C# programming language.
However, RIAs (Rich Internet Applications) offer an exciting way ahead for game
development because they provide a rich experience for users without the need to install
software on their computers. Users expect RIAs to be like conventional downloadable games
that offer amazing graphics, impressive performance, and a very interactive experience.
Silverlight is a great (and growing) RIA platform, and games are the next level to exploit in
Silverlight. 3D games represent our challenge in this book and we shall take full advantage
of our C# knowledge here.

So, let's take our C#, XAML, and Silverlight development skills to the next level. We want to
take full advantage of modern technologies. First of all, we must install the latest tools and
begin working on some 2D games' basics. Later, we will use that knowledge in developing 3D
games using Silverlight 3, the newest kid on the block from Microsoft.

The only requirements needed to develop 3D games using Silverlight are to understand the
basics of the C# programming language, XAML code, and the Visual Studio IDE. We will cover
the rest of the requirements in our journey through the 3D game development world!

Time for action – preparing the development environment
First, we must download and install various Silverlight development tools.

We need to install Visual C# 2008 (.NET Framework 3.5) with Service Pack 1 or greater
(Visual C# 2010) in order to successfully complete the installations provided here. Installing
Silverlight 3 Tools will uninstall the previous Silverlight versions. We will not be able to create
Silverlight 2 applications using Visual C# 2008 with Silverlight 3 Tools installed in our system.
Visual C# 2010 does not have this restriction because it allows us to choose the desired
Silverlight version target.

You can use the free Visual Web Developer 2008 Express Edition or greater
(http://www.microsoft.com/express/vwd/). However, you
have to read the documentation and consider its limitations carefully.

This material is copyright and is licensed for the sole use by Vadim Kudria on 4th October 2009

6352 108th St, , Forest Hills, , 11375

Download at WoweBook.Com

Chapter 1

[�]

The following are steps for preparing the development environment:

1.	 Download the following files:

Application
name

Download link File name Description

Expression
Design

http://www.microsoft.
com/expression/
products/Overview.
aspx?key=design

Design_Trial_
en.exe

It is a commercial tool,
but the trial offers a
free fully functional
version for 30 days.
This tool will enable
us to transform
vector assets to the
appropriate format for
use in Silverlight 3.

Inkscape http://inkscape.org/
download/?lang=en

Inkscape-
0.46.win32.
exe

It is a very complete
free, open source,
vector drawing
program. This tool
will enable us to
import many vector
assets in different,
popular file formats
and export them to a
format recognized by
Expression Design.

Silverlight
3 Tools for
Visual Studio

http://www.microsoft.
com/downloads/details.
aspx?familyid=9442b0f2-
7465-417a-88f3-5e7b5409
e9dd&displaylang=en

Silverlight3_
Tools.exe

We must install it
to create Silverlight
3 applications in
Visual Studio IDE
using XAML and C#.
This will uninstall
previous Silverlight
SDKs (Software
Development Kits).

Silverlight
3 Offline
Documentation
(in a CHM
format)

http://www.microsoft.
com/downloads/details.
aspx?familyid=0A9773A7-
C854-41FA-B73D-535ABFB7
3BAF&displaylang=en

Silverlight_
3_Docs.zip

We must download
and decompress this
file, as we will be
needing access to the
Silverlight 3 official
documentation.

This material is copyright and is licensed for the sole use by Vadim Kudria on 4th October 2009

6352 108th St, , Forest Hills, , 11375

Download at WoweBook.Com

Lights, Camera, and Action!

[10]

Application
name

Download link File name Description

Expression
Blend 3 +
SketchFlow

http://www.microsoft.
com/expression/try-it/
Default.aspx#PageTop

Blend_Trial_
en.exe

This tool will enable
us to create content
and prototypes that
target Silverlight 3. It
will be really helpful
to use Expression
Blend 3 to create rapid
prototypes for some
game scenes.

.NET RIA
Services

http://www.microsoft.
com/downloads/details.
aspx?FamilyID=76bb3a07-
3846-4564-b0c3-27972bca
abce&displaylang=en

RiaServices.
msi

This framework
allows the creation of
business applications
that are capable of
talking to our games.
In the same link, there
is a PDF file available
for download
with interesting
documentation about
this framework.

Silverlight
Toolkit
(updated for
Silverlight 3
compatibility)

http://codeplex.com/
Silverlight

Silverlight 3
Toolkit July
2009.msi

It is convenient to
download the latest
stable release. This
toolkit provides a
nice collection of
Silverlight controls,
components, and
utilities made
available outside the
normal Silverlight
release cycle. It will
be really helpful to
use these controls to
provide many game
statistics. Besides,
it includes more
Silverlight themes.

2. Run the installers in the same order in which they appear in the previous
list, and follow the steps to complete the installation wizards. Take into
account that to install Silverlight 3 Tools for Visual Studio, you will need an
Internet connection for a small download when the wizard begins. One of
the items enumerated under the Products affected by the software update:
list is Download Preparation, as shown in the following screenshot:

This material is copyright and is licensed for the sole use by Vadim Kudria on 4th October 2009

6352 108th St, , Forest Hills, , 11375

Download at WoweBook.Com

Chapter 1

[11]

3.	 Once the installations have successfully finished, run Visual Studio 2008 or Visual
Web Developer 2008 (or later). You will see the Microsoft Silverlight Projects
label displayed on the splash screen, as shown in the following picture:

This material is copyright and is licensed for the sole use by Vadim Kudria on 4th October 2009

6352 108th St, , Forest Hills, , 11375

Download at WoweBook.Com

Lights, Camera, and Action!

[12]

4.	 If the splash screen disappears too quickly, you will not be able to check Silverlight's
availability. However, you can check it once Visual Studio 2008 or Visual Web
Developer 2008 (or later) is running. Select Help | About Microsoft Visual Studio. A
dialog box will appear and you will see Microsoft Silverlight Projects 2008 displayed
under the Installed products list. Select this item and check whether Product
details shows number 3 after the second dot (.). For example, 9.0.30730.126
indicates that Silverlight 3 is installed, as shown in the following picture:

What just happened?
We installed Silverlight 3 Tools for Visual Studio, Expression Blend 3 for Silverlight 3, .NET RIA
Services, and Silverlight Toolkit.

Now, we have everything we need to begin creating and testing amazing 2D games using
Silverlight 3 and C#.

Time for action – recognizing digital art assets
One of the best ways of explaining a new game idea is showing it in a very nice picture. This
is exactly what you want to do. However, it is very difficult to find a new game idea from
scratch. Therefore, in working out how to impress the legendary game developer, you ask for
some help in an 8-bit retro gaming community. You meet a legendary space shooter games'
expert and he shows you many remakes of the classic 8-bit Invader game—also known as

This material is copyright and is licensed for the sole use by Vadim Kudria on 4th October 2009

6352 108th St, , Forest Hills, , 11375

Download at WoweBook.Com

Chapter 1

[13]

Space Invaders. The remakes are too simple and they do not exploit modern widescreen
displays, as they run in very low resolutions inside the web browsers. A dazzling remake
of an Invaders game sounds like a very nice idea!

We are going to take a snapshot of the first scene of one of the most exciting 8-bit
implementations of the Invaders game—the legendary TI Invaders—as shown in the
following picture:

What just happened?
Looking at the TI Invaders scene picture, we can recognize the following digital art assets:

Green aliens

Blue aliens

Red aliens

Tents to protect our ship against the aliens' attack

A ship

This material is copyright and is licensed for the sole use by Vadim Kudria on 4th October 2009

6352 108th St, , Forest Hills, , 11375

Download at WoweBook.Com

Lights, Camera, and Action!

[14]

These assets are organized as shown in the following picture:

The aliens are organized in five rows and eleven columns. There are four tents and just one
ship to challenge all these aggressive invaders.

Time for action – creating the raster digital content
This prehistoric game used a 256X192 pixels screen (49,152 pixels). We are going to prepare
raster digital assets for the game optimized for a 1680X1050 pixels screen (1,764,000 pixels).
The game should look nice when compared to the older version.

The old version used 8X8 pixels raster digital assets. In this new version, we can use 50X50
pixels raster digital assets.

The creation of raster digital assets for a 2D game is very complex and
requires professional skills. Digital artists and graphic designers are very
important members of a professional game development team. They
provide great quality digital assets to the programming team.

This material is copyright and is licensed for the sole use by Vadim Kudria on 4th October 2009

6352 108th St, , Forest Hills, , 11375

Download at WoweBook.Com

Chapter 1

[15]

As you do not have access to professional digital artists yet, you must download some
freeware icons and then prepare them to be a part of a game demonstration. Luckily, you
will find some nice space and zoom-eyed creatures in PNG (Portable Network Graphics)
format that are free to download from Turbomilk (a professional visual interface design
company, http://turbomilk.com). They are ideal to use in the game.

PNG is an open, extensible image format with lossless compression.
Silverlight 3 works great with PNG images. I recommend not using the JPEG
(Joint Photographic Experts Group) format for foreground digital assets or
iconic graphics because it uses a lossy compression method that removes
some information from the image.

First, we are going to download, manipulate, resize, and finally save the new versions of the
new raster digital content for the game:

1.	 Download the PNG images for the green, blue, and red aliens, the tents, and the
ship. You can take some nice images from http://turbomilk.com/downloads/.

2.	 Save all the original PNG images in a new folder (C:\Silverlight3D\
Invaders\GAME_PNGS), as shown in the following picture:

3.	 Open the images for the aliens, ship, and tents using an image-manipulation
tool. You can use a free and open source software such as GIMP (the GNU Image
Manipulation Program) that is available at http://www.gimp.org, or a
commercial software such as Adobe Photoshop available at http://www.adobe.
com, or free software such as Picasa available at http://picasa.google.com.

This material is copyright and is licensed for the sole use by Vadim Kudria on 4th October 2009

6352 108th St, , Forest Hills, , 11375

Download at WoweBook.Com

Lights, Camera, and Action!

[16]

4.	 Remove the shadows from the images because we are not going to use them as
icons. You can select the shadows and delete them using the magic wand tool
(fuzzy select tool). It requires high precision in the selection to avoid deleting
the original drawing. Shadows have to be removed because we want to use
them as raster content for the game, as shown in the following picture:

5.	 Remove the transparent pixels from the images (that is, erase the selection).

6.	 Resize the images for the aliens and the ship to 50X50 pixels square, while
keeping proportions. Save them in a PNG format using the following names:

ALIEN_01_01.png—the blue alien, the octopus

ALIEN_02_01.png—the red alien, the gothic cherry

ALIEN_03_01.png—the green alien, the eye

SHIP_01_01.png—the ship

7.	 Resize the image for the tents to 100X100 pixels square, while keeping
proportions. Save it in a PNG format using the name TENT_01_01.png.

8.	 Now, copy the newly manipulated and resized images in a
new folder (C:\Silverlight3D\Invaders\GAME_PNGS_
RESIZED), as shown in the following picture:

This material is copyright and is licensed for the sole use by Vadim Kudria on 4th October 2009

6352 108th St, , Forest Hills, , 11375

Download at WoweBook.Com

Chapter 1

[17]

What just happened?
We created raster digital content for the game optimized for a 1680X1050 pixels screen. We
downloaded some images, and manipulated them to remove the shadows and prepare them
for the game's main scene. We used a naming convention for the images as we want to keep
everything well organized for the game.

The game will look nice using these modern raster digital art assets.

Digital Content Creation tools
The Digital Content Creation tools (DCC) are very important partners for game designers and
developers. They allow digital artists and graphic designers to concentrate on the creation of
different kinds of digital art assets, which are then used in the applications.

We can also use everything we are learning in developing the applications that
have intensive graphical resources. However, we will call them games in the
rest of the book.

It is very easy to understand their purpose using an example. If you want to show a sky with
stars as an application's background, the easiest way to do it is by loading a bitmap (PNG, BMP,
JPG, and so on) using the procedures or controls provided by the programming language.

A digital artist will create and manipulate the sky bitmap using an image manipulation tool
such as GIMP, Photoshop, or Picasa.

Developing games requires the usage of a great number of resources; it is not just
programming tasks. We are going to use many popular DCC tools during our journey to
create Silverlight 3D games. As many of these tools are very expensive, we will use some
open source and free alternatives to carry out the most important tasks.

A good practice before beginning 2D and 3D game development is to research the tools
used to create the 2D and 3D digital content. This way, we will have a better idea of how
to create the different scenes and the most common techniques. Later, we will learn the
programming techniques used to give life to these graphics-related operations. We will be
able to provide great real-time interaction to all these digital content assets, as shown in
the following diagram:

Programming
(loading,
drawing,
logic, and
control)

Game

2D images

3D models

Effects definitions

Maps

This material is copyright and is licensed for the sole use by Vadim Kudria on 4th October 2009

6352 108th St, , Forest Hills, , 11375

Download at WoweBook.Com

Lights, Camera, and Action!

[1�]

Basic elements of a 2D and/or 3D real-time game
A modern 2D and/or 3D real-time game uses the basic elements shown in the previous
diagram. Let's go through them in the following list:

2D images: These can be raster bitmaps as used in our previous example, or vector
graphics—also known as vector-based illustrations. In some cases, they are useful as
a background made of a starry sky, or a cloudy sky. In other cases, they are used as
textures to envelope different 3D objects. For example, a 2D brick's image is used as
a texture to envelope a 3D object representing a wall.

3D models: These contain information about the representations of primitive elements
(point, lines, triangles, and polygons) to create great meshes, similar to a wire mesh
that describes a 3D model. Their different parts can be enveloped by textures. Then
everything renders in a representation in the 2D space shown by the players' screens.

Effects definitions: These can be applied to 3D models to offer more realism in the
production of many scenes. To simplify the development process, there are many
specific programming languages used to define the behavior of effects.

Maps: It is easier to create real-time digital content using different kinds of maps
and diverse proprietary formats. Maps can specify the location of the different kinds
of houses and trees in a game that involves driving a car in a city. It is possible to
create many levels based on the same logic and behavior programmed for a game,
but by using many different maps.

Many specialized DCC tools help in creating the basic elements explained in the
aforementioned list. For example, using GIMP you can see the alpha channel for the ship's
PNG image, as shown in the following picture:

This material is copyright and is licensed for the sole use by Vadim Kudria on 4th October 2009

6352 108th St, , Forest Hills, , 11375

Download at WoweBook.Com

Chapter 1

[1�]

Programming responsibilities
We do not have to write lines of code dedicated to creating an image. Instead, modern game
programming focuses on the following tasks:

Loading: We must load 2D images, 3D models, textures, effects definitions, and
maps using different kinds of content loaders, parsers, import techniques, and
translators. They are going to help us in transforming the original file formats to the
ones supported by the programming language and the framework used to develop
the game.

Drawing: A game's main goal is to show real-time graphics content in a screen.
One of the main problems is that 3D scenes have to be shown in a screen capable
of showing just two of these three dimensions.

Logic and control: While the content is being loaded and shown, it is necessary to
apply some AI (Artificial Intelligence) to logic operations, and to provide feedback
according to the controls offered to the user for certain game actors and aspects.
In order to achieve this goal, it is necessary to develop accurate time-management
techniques coordinated with the information obtained from the hardware applied
to control the game—the keyboard, mouse, racing wheel, gamepad, or the Wiimote
(Wii Remote), among others. All of these tasks must be done while managing many
heterogeneous pieces and showing a very complex audiovisual production. Thus,
we must take into account everything related to the execution speed and issues
of performance.

Programming games requires more knowledge about the underlying hardware on which
the game will be run. We must establish performance baselines and minimum requisites to
achieve a desirable performance for the game. Besides, we must specify the recommended
input devices to take full advantage of the game. These tasks could seem pretty trivial, but
they are very important because some games are very complex and demand many difficult
optimizations to be able to run on the mainstream hardware available.

This is a simple summary of a game's programming responsibilities. We will work through
them all throughout this book.

Time for action – installing tools to manipulate
scalable digital content

Your cell phone rings. An old friend sees your name in the participants' list and calls you
because he has some interesting information. He tells you the game has to scale to huge
resolutions such as the ones found in exclusive XHD (eXtreme High Definition) displays.
These displays can support resolutions as high as 2560X1600 pixels.

This material is copyright and is licensed for the sole use by Vadim Kudria on 4th October 2009

6352 108th St, , Forest Hills, , 11375

Download at WoweBook.Com

Lights, Camera, and Action!

[20]

Scaling the raster digital assets is a big problem because pixelation becomes easily visible.
If you scale the final alien for using it in a higher resolution, it will look really pixelated as
shown in the following picture:

You want the game to use the entire screen space, even in the XHD displays. To make this
possible, you could prepare another set of raster digital assets for the game optimized for
a 2560X1600 pixels screen (4,096,000 pixels). However, the game can also be run using a
1920X1080 pixels screen (2,073,600 pixels). There is another alternative of creating a new
set of scalable vector graphics (vector-based illustrations), which are ready to scale to any
screen resolution without generating pixelation problems.

This way, you can provide two versions of the same game—one using raster digital assets
optimized for a 1680X1050 pixels screen and the other using scalable vector graphics.
There is no restriction in the number of games per participant. Therefore, you can submit
both versions.

The creation of scalable vector graphics assets for a 2D game is very complex
and involves professional skills. We are going to simplify this process by using
the existing clipart.

First, we must download and install some additional tools that will help us in converting the
existing scalable vector graphics to the most appropriate file formats to use in Silverlight 3:

The necessary tools will depend on the applications the digital artists use to
create the scalable vector graphics. However, we will be using some tools that
will work fine with our examples.

This material is copyright and is licensed for the sole use by Vadim Kudria on 4th October 2009

6352 108th St, , Forest Hills, , 11375

Download at WoweBook.Com

Chapter 1

[21]

1.	 Download the following files:

Application name Download link File name Description

Expression
Design

http://www.
microsoft.com/
expression/
products/
Overview.
aspx?key=design

Design_
Trial_
en.exe

It is a commercial tool, but the
trial offers a free fully functional
version for 30 days. This tool will
enable us to transform vector
assets to the appropriate format
for use in Silverlight 3.

Inkscape http://
inkscape.
org/download/
?lang=en

Inkscape-
0.46.
win32.exe

It is a very complete free, open
source, vector drawing program.
This tool will enable us to import
many vector assets in different,
popular file formats and export
them to a format recognized by
Expression Design.

2.	 Run the installers and follow the steps to complete the installation wizards.

3.	 Once Inkscape's installation is finished, you will be able to load and edit many
vector assets in different file formats as shown in the following picture:

This material is copyright and is licensed for the sole use by Vadim Kudria on 4th October 2009

6352 108th St, , Forest Hills, , 11375

Download at WoweBook.Com

Lights, Camera, and Action!

[22]

What just happened?
We installed Expression Design and Inkscape. Now we have the necessary tools to convert
the existing vector clipart to the most appropriate formats to use in Silverlight 3.

XAML works fine with Silverlight 3
Why do we need to install so many tools to create a simple vector asset to use in Silverlight
3? It's because Silverlight 3 uses XAML (eXtensible Application Markup Language), and the
best way to add scalable vector content is using objects defined in XAML. However, many
tools that offer functions to export to XAML do not work as expected and are not compatible
with Silverlight 3. Besides, many converters are still in alpha versions and have problems
when we need to convert complex vector art.

The game must be finished on or before the due date. Therefore, to avoid problems related
to XAML vector assets, we are going to perform additional steps. But we will be sure that the
resulting XAML will work fine with Silverlight 3.

Time for action – creating the scalable digital content in XAML
As you do not have access to professional digital artists yet, you must download some free
clipart and then prepare it to be a part of a scalable game demonstration. This time, you
want to offer a different version of the game by mixing some Halloween monsters (the new
invaders) with the ship. This will be the vector-graphics based game. Luckily, you find some
nice, free-to-use clipart in WMF (Windows Meta-File) scalable vector format from Microsoft
Office Clipart. They are great to use for offering a different scalable version of the game.

WMF is an old, scalable vector format. Silverlight 3 does not offer direct
support for WMF graphics. Therefore, we must convert WMF graphics to XAML.
Following the next steps, we can also convert from any vector formats supported
by Inkscape such as SVG (Scalable Vector Graphics), AI (Adobe Illustrator), PDF
(Adobe PDF), and EMF (Enhanced Meta-File) among others.

First, we are going to download, organize, and convert some scalable vector graphics to
XAML which is compatible with Silverlight 3:

1.	 Download or copy the vector graphics for the green, blue, and red aliens, the
tents, and the ship. Remember that this version is themed on Halloween monsters.
You can take some nice graphics from the Microsoft Office Clipart Collection.

This material is copyright and is licensed for the sole use by Vadim Kudria on 4th October 2009

6352 108th St, , Forest Hills, , 11375

Download at WoweBook.Com

Chapter 1

[23]

2.	 Save all of the original WMF images in a new folder (C:\Silverlight3D\
Invaders\GAME_WMFS), as shown in the following picture:

3.	 Repeat the following steps (4 to 13) for each vector graphic (WMF file).

4.	 Open the vector graphic file in Inkscape.

5.	 Select File | Save a copy…. A dialog box showing many export options will appear.

6.	 Remove the extension from the filename. For example, if the filename
shown is ALIEN_01_01.wmf, the new name will be ALIEN_01_01.

7.	 Choose the PDF via Cairo (*.PDF) option in the combo box that lists the
available file formats to export. Click on Save and then on OK. Now, you
will have the vector graphic as a PDF file. You will be able to open the file
using any PDF reader such as Adobe Acrobat Reader or Foxit Reader.

8.	 Rename the new PDF file and change its PDF extension to AI.
For example, if the file name generated by Inkscape is ALIEN_
01_01.pdf, the new name will be ALIEN_01_01.ai.

9.	 Now, open the file with the .ai extension in Microsoft Expression Design.

10.	Select File | Export…. A dialog box with many export options will appear.

This material is copyright and is licensed for the sole use by Vadim Kudria on 4th October 2009

6352 108th St, , Forest Hills, , 11375

Download at WoweBook.Com

Lights, Camera, and Action!

[24]

11.	Choose XAML Silverlight Canvas in the Format combo box under Export properties.
Now, you will be able to see a nice image preview as shown in the following picture:

12.	Click on Browse… and choose the destination folder for the new
XAML file (C:\Silverlight3D\Invaders\GAME_XAML).

13.	Click on Export All and Expression Design will create the XAML file. You can
preview the XAML file in Internet Explorer, as shown in the following picture:

This material is copyright and is licensed for the sole use by Vadim Kudria on 4th October 2009

6352 108th St, , Forest Hills, , 11375

Download at WoweBook.Com

Chapter 1

[25]

What just happened?
We created scalable vector graphics and converted them to an XAML format, which is
compatible with Silverlight 3. We downloaded some images and used a process to convert
them to a format that Microsoft Expression Design can read. As this tool does not work with
WMF files, we needed to provide an AI-compatible format.

We converted the files to a PDF format, which is compatible with the newest AI formats.
Expression Design can read this format, but it requires the files to have the .ai extension.
That is why we needed to rename the files exported from Inkscape as PDF.

We used Inkscape because it is free, open source, and compatible with the most popular
scalable vector graphics formats. However, we did not export to XAML from Inkscape
because there are some incompatibilities in that conversion. The most secure way to export
to XAML these days is using Expression Design.

This scalable vector content for the game could be optimized for any resolution. We used the
same naming convention previously employed by the raster graphics, as we want to keep
everything well organized for the two versions of the game. One will show raster aliens and
the other, scalable Halloween monsters.

The game will look nice on XHD monitors using these scalable vector art assets.

Previewing and scaling XAML vector graphics
The XAML vector graphics can scale while keeping their quality intact when they are used in
Silverlight 3 applications. This is not new; this happened with all the vector graphics formats.
Scaling the vector graphics is not a problem because they do not have pixelation problems.
However, they require more processing time than raster graphics to be shown on a screen.

If you scale one of the Halloween monsters to use it in a higher resolution, it will look really
great as shown in the following picture:

This material is copyright and is licensed for the sole use by Vadim Kudria on 4th October 2009

6352 108th St, , Forest Hills, , 11375

Download at WoweBook.Com

Lights, Camera, and Action!

[26]

A very interesting hidden tool that can help us when working with XAML and XAML vector
graphics is XamlPad.

XamlPad is a part of the WPF (Windows Presentation Foundation) SDK. Once Visual Studio
is installed, it is available in the following folder: Program Files\Microsoft SDKs\
Windows\v6.0A\bin. You must create a manual shortcut to XamlPad.exe in that folder
because it is not available in a menu shortcut.

Time for action – testing the scalable digital content
using XamlPad

Now, we are going to test how an XAML vector graphic scales using XamlPad:

1.	 Open one of the XAML vector graphics exported by
Expression Design using Windows Notepad.

2.	 Select all of the text and copy it to the clipboard.

3.	 Run XamlPad.

4.	 Paste the clipboard's content (the XAML definition) in the XAML area. You will see
the illustration appearing in the top panel, as shown in the following picture:

This material is copyright and is licensed for the sole use by Vadim Kudria on 4th October 2009

6352 108th St, , Forest Hills, , 11375

Download at WoweBook.Com

Chapter 1

[27]

5.	 Change the zoom many times, taking into account that you can
enter manual values. You will see the illustration appearing
with different sizes without pixelation problems.

6.	 Click on Show/Hide the visual tree. The Visual Tree Explorer and Property
Tree Explorer will allow you to navigate through the different components of
this scalable XAML vector illustration, as shown in the following picture:

What just happened?
We used a very simple yet handy tool called XamlPad to preview XAML-scalable vector
illustrations. Now, we are sure that the scalable clipart for the game is going to work fine in
different resolutions. We can include these vector illustrations in Silverlight 3 applications.

Editing vector illustrations using Expression Design
Expression Design is a very useful tool if we need to create special effects with 2D XAML
vector graphics. Using this tool, a digital artist can create and manipulate vector graphics.
Also, this tool can define a name for each shape. Thus, we can later add some code to
change some of the properties of these shapes by using the names to identify them.

This material is copyright and is licensed for the sole use by Vadim Kudria on 4th October 2009

6352 108th St, , Forest Hills, , 11375

Download at WoweBook.Com

Lights, Camera, and Action!

[2�]

For example, we can change an eye's color. However, we need 2D XAML vector graphics
that use nice names to identify each shape. The following picture shows Expression Design
editing our well-known Halloween monster to provide nice names for the shapes that define
the eye's background and background border:

Using expression design, we can also add effects to many shapes and layers. Hence, if we are
going to work hard with Silverlight 3, it is a very important tool for the digital artists involved
in the project.

Our main goal is to develop games using Silverlight 3. However, it is very
important to understand the preparation of digital art assets.

This material is copyright and is licensed for the sole use by Vadim Kudria on 4th October 2009

6352 108th St, , Forest Hills, , 11375

Download at WoweBook.Com

Chapter 1

[2�]

Have a go hero – preparing scalable digital content for a new remake
You have to win the game contest. As you know, there is no restriction on the number
of games per participant. What about preparing another completely different game to
participate in this contest?

Take a classic game that is based one screen and does not have scrolling capabilities, similar
to the Invaders game. Prepare scalable vector graphics in an XAML format to represent
its characters. However, this time, prepare some additional animation frames for each
character. We will use them in the following chapter to prepare that game using a
new framework.

You can do it. If you are not a good artist, you can download free clipart from the Web and
then use the techniques and tools previously explained to create vector graphics in XAML
format that are ready for use in Silverlight 3 games.

Preparing a gaming framework
Silverlight 3 does not provide a gaming framework. However, it offers outstanding
graphics-rendering capabilities that are combined with really useful time-management
features. Hence, we will have to add some code to prepare a framework to simplify the
development of games, combining the powerful C# programming language and the
flexibility of XAML.

We will have to work harder in our initial games because we will be preparing a gaming
framework. However, once we have the framework, we will be able to develop new games
reusing a lot of code. Thus, we can focus more on the game behavior and graphic effects.

Time for action – creating Silverlight applications
First of all, you have to create a Silverlight application and see how it works in a web browser.
To best understand how it works, we can see it in action and experience a vector graphic
moving on the screen while the mouse pointer changes its position. These are the steps
to do it:

1.	 Create a new C# project using the Silverlight Application template in Visual
Studio or Visual C# Express. Use SilverlightMonster.Web as the project's name.

This material is copyright and is licensed for the sole use by Vadim Kudria on 4th October 2009

6352 108th St, , Forest Hills, , 11375

Download at WoweBook.Com

Lights, Camera, and Action!

[30]

2.	 The IDE is going to present a dialog box showing many options for a new
Silverlight application. Activate the Host the Silverlight application in
a new Web site checkbox, as shown in the following screenshot:

3.	 Click on OK and the IDE will create an empty Silverlight application,
including a Web project. The Web project will allow us to change
some properties to configure the Silverlight runtime.

4.	 Right-click on SilverlightMonster (the main project) in the Solution Explorer
and select Add | Existing item… from the context menu that appears.

5.	 Choose the destination folder for the previously generated XAML
files (C:\Silverlight3D\Invaders\GAME_XAML) and select
a vector asset (ALIEN_01_01.xaml). Now click on Add.

This material is copyright and is licensed for the sole use by Vadim Kudria on 4th October 2009

6352 108th St, , Forest Hills, , 11375

Download at WoweBook.Com

Chapter 1

[31]

6.	 Select the recently added item (ALIEN_01_01.xaml) in Solution Explorer and right-
click on it. You will not be able to see the graphic in the IDE's screen. Select Open
in Expression Blend. A security-warning dialog box will appear. Do not worry; the
project is secure. Click on Yes. Now, the project will be opened in Expression Blend
and you will see the vector graphic on the screen, as shown in the following picture:

7.	 Right-click on the canvas named Layer_3 under Objects and
Timeline window, and select Make Into UserControl… in the
context menu that appears. A dialog box will appear.

8.	 Enter the name Ghost for this new UserControl and click on OK. A new item will
be added to the SilverlightMonster project named Ghost.xaml. Save the changes
and go back to Visual Studio or Visual C#, and reload the contents of the solution.

This material is copyright and is licensed for the sole use by Vadim Kudria on 4th October 2009

6352 108th St, , Forest Hills, , 11375

Download at WoweBook.Com

Lights, Camera, and Action!

[32]

9.	 Now, you will be able to see the graphics representation of this
UserControl in Visual Studio or Visual C#. Expand Ghost.xaml in the
Solution explorer and you will find Ghost.xaml.cs (the C# code related
to the XAML UserControl), as shown in the following picture:

Silverlight 3 RTW (Ready To Web) made the default XAML preview capabilities
invisible for Silverlight projects in Visual C# 2008. We have to resize the preview
panel in order to see the graphics representation. The preview capabilities are
available without changes in Visual Studio 2010 or Visual C# 2010.

What just happened?
You created your first Silverlight application showing the ghost that will be a part of your
game. It required too many steps, and you had to combine two tools: Visual Studio or Visual
C#, and Expression Blend. It seems complex, but once you get used to working with graphic
manipulation tools and development environments to create Silverlight games, it is going to
be easier.

We created a new web site to host our Silverlight application because that is going to allow
us to change many advanced parameters related to Silverlight's runtime that are very useful
to improve the performance of our games.

We created a UserControl from an existing XAML-scalable vector illustration. A
UserControl has its XAML representation and provides its own logic.

This material is copyright and is licensed for the sole use by Vadim Kudria on 4th October 2009

6352 108th St, , Forest Hills, , 11375

Download at WoweBook.Com

Chapter 1

[33]

Time for action – building and running Silverlight applications
Now, you want to see the ghost moving on the screen while the mouse pointer changes its
position. In order to do this, we must add some code to show the ghost and to move it. We
will add both XAML and C# code as follows:

1.	 Stay in the SilverlightMonster project.

2.	 Open the XAML code for MainPage.xaml (double-click on it in the
Solution Explorer) and replace the existing code with the following:

<UserControl x:Class="SilverlightMonster.MainPage"

 xmlns="http://schemas.microsoft.com/winfx/2006/xaml

 /presentation"

 xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml"

 Cursor="None"

 Width="1366" Height="768" MouseMove="Ghost_MouseMove"

 xmlns:SilverlightMonster="clr-namespace:SilverlightMonster">

 <Canvas x:Name="cnvMovementTest" Width="1366" Height="768"

 Background="Bisque">

 <SilverlightMonster:Ghost Canvas.Left="10" Canvas.Top="10"

 x:Name="ghost"/>

 </Canvas>

</UserControl>

3.	 You will see the ghost appearing in the upper-left corner of the page in the designer.

4.	 Now, expand MainPage.xaml in the Solution Explorer and open
MainPage.xaml.cs (double-click on it). We need to add an event handler to
move the ghost on the screen to the position where the mouse has moved.

5.	 Add the following lines of code in the public partial class MainPage :
UserControl to program the event handler for the MouseMove event:

private void Ghost_MouseMove(object sender, MouseEventArgs e)

{

 // Get the mouse current position

 Point point = e.GetPosition(cnvMovementTest);

 // Set the canvas Left property to the mouse X position

 ghost.SetValue(Canvas.LeftProperty, point.X);

 // Set the canvas Top property to the mouse Y position

 ghost.SetValue(Canvas.TopProperty, point.Y);

}

This material is copyright and is licensed for the sole use by Vadim Kudria on 4th October 2009

6352 108th St, , Forest Hills, , 11375

Download at WoweBook.Com

Lights, Camera, and Action!

[34]

6.	 Build and run the solution. The IDE will ask whether you want to turn on debugging
or not. It is always convenient to click on Yes because you will need to debug many
times. The default web browser will appear showing a bisque background and the
ghost will move following the mouse pointer, as shown in the following picture:

What just happened?
The ghost appeared in the web browser and it moved through the bisque rectangle as
if it were a mouse pointer. You created and ran your first Silverlight application in the
web browser.

First, we changed the XAML code for MainPage.xaml. We made some changes to do
the following:

Hide the mouse pointer (the cursor):

<UserControl x:Class="SilverlightMonster.MainPage"

 xmlns="http://schemas.microsoft.com/winfx/2006/xaml

 /presentation"

 xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml"

 Cursor="None"

Specify width and height of 1366X768 pixels:

Width="1366" Height="768"

This material is copyright and is licensed for the sole use by Vadim Kudria on 4th October 2009

6352 108th St, , Forest Hills, , 11375

Download at WoweBook.Com

Chapter 1

[35]

Indicate a MouseMove event handler:

MouseMove="Ghost_MouseMove"

Reference the SilverlightMonster namespace to allow access to the definitions
specified in it:

xmlns:SilverlightMonster="clr-namespace:SilverlightMonster">

Then, we added a Canvas named cnvMovementTest (with a 1366X768 pixels width and
height), a bisque background, and an instance of Ghost (SilverlightMonster:Ghost)
named ghost located in the point (10, 10) taking into account both the Canvas and its
upper-left corner:

<Canvas x:Name="cnvMovementTest" Width="1366" Height="768"
 Background="Bisque">
 <SilverlightMonster:Ghost Canvas.Left="10" Canvas.Top="10"
 x:Name="ghost"/>
</Canvas>

Programming event handlers in the main page
Once the ghost was shown using XAML code, we had to program code for the event handler,
which is triggered when the mouse moves on the main page's UserControl. We had
indicated the MouseMove event handler as Ghost_MouseMove. For this reason, we
defined a private void method with that name in the C# class MainPage, associated with
the previously explained XAML.

As mentioned earlier, we defined the cnvMovementTest Canvas in the XAML section.
The code in the event is very simple. However, it interacts with some elements defined in
the XAML code.

The following line retrieves the mouse's current position as an instance of Point—a 2D
vector, with two coordinates (X and Y):

Point point = e.GetPosition(cnvMovementTest);

Now we call the SetValue method for ghost (the instance of Ghost is already defined in
the XAML section). We assign the values of the X and Y coordinates of the 2D vector to the
Left and Top properties of the canvas containing the ghost illustration:

ghost.SetValue(Canvas.LeftProperty, point.X);
ghost.SetValue(Canvas.TopProperty, point.Y);

We can create visual objects, such as the ghost of this example, in XAML or
using C# code. Sometimes, it is more convenient to use XAML, whereas at
other times it is more convenient to use C# code. It depends on the kind of
application we are developing.

This material is copyright and is licensed for the sole use by Vadim Kudria on 4th October 2009

6352 108th St, , Forest Hills, , 11375

Download at WoweBook.Com

Lights, Camera, and Action!

[36]

Time for action – creating XBAP WPF applications
Silverlight is a subset of WPF. One of the great advantages of Silverlight applications is that
they just require a plugin installed in the web browser to run. However, sometimes, we need
to develop games that require more power than what is being provided by Silverlight. In
those cases, we can create an XBAP (XAML Browser Application) WPF application by making
some small changes to the source code.

XBAP WPF applications are not based on Silverlight. They are .NET WPF
applications capable of running in a sandbox (to avoid security problems)
inside a web browser. They run with Internet zone permissions and require
the entire .NET framework to be installed on the computer that wants to run
them. Therefore, they have some limitations when compared with the classic
.NET WPF applications that run on the desktop. The XBAP WPF applications
are an interesting alternative when the power of Silverlight is not enough.

Now, you want to create the same application that worked with Silverlight as an XBAP
WPF application. If you need more power in any of your games, you will want to have
the alternative to work with the XBAP WPF applications.

1.	 Create a new C# project using the WPF Browser Application template
in Visual Studio or Visual C# Express. Use SilverlightMonsterXBAP
as the project's name. You will see a slightly different IDE, as it allows
access to most of the WPF applications' features and controls.

2.	 Right-click on SilverlightMonsterXBAP in the Solution Explorer and
select Add | Existing item… from the context menu that appears.

3.	 Choose the destination folder for the previously generated XAML
files (C:\Silverlight3D\Invaders\GAME_XAML) and select
a vector asset (ALIEN_01_01.xaml). Now click on Add.

4.	 Select the recently added item (ALIEN_01_01.xaml) in the Solution Explorer and
double-click on it. In this case, you will be able to see the graphic in the IDE's screen.

5.	 Select Project | Add User Control… from the main menu. A dialog box will appear.

6.	 Enter the name Ghost for this new UserControl and click on OK. A new item
will be added to the SilverlightMonsterXBAP project, named Ghost.xaml.

7.	 Open the XAML code for ALIEN_01_01.xaml. Copy from the
following line to the line before the last </Canvas>:

<Canvas x:Name="Layer_3" Width="193.333" Height="128"

 Canvas.Left="0" Canvas.Top="0">

This material is copyright and is licensed for the sole use by Vadim Kudria on 4th October 2009

6352 108th St, , Forest Hills, , 11375

Download at WoweBook.Com

Chapter 1

[37]

8.	 Open the XAML code for Ghost.xaml. Remove the following text (as we
want the UserControl to take the size from the ghost illustration):
Height="300" Width="300"

9.	 You will see the following code:
<UserControl x:Class="SilverlightMonsterXBAP.Ghost2"
 xmlns="http://schemas.microsoft.com/winfx/2006/xaml
 /presentation"
 xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml">
 <Grid>

 </Grid>
</UserControl>

10.	Select the lines from <Grid> to </Grid> (inclusive) that define a Grid,
and paste the XAML code previously copied from ALIEN_01_01.xaml.

11.	Now, you will see the graphics representation of this UserControl in Visual
Studio or Visual C#. Expand Ghost.xaml in the Solution explorer and you will
find Ghost.xaml.cs (the C# code related to the XAML UserControl) as
shown in the following picture, but this time in a XBAP WPF application:

This material is copyright and is licensed for the sole use by Vadim Kudria on 4th October 2009

6352 108th St, , Forest Hills, , 11375

Download at WoweBook.Com

Lights, Camera, and Action!

[3�]

What just happened?
You created your first XBAP WPF application showing the ghost that will be a part of your
future game. It required some steps that were different from those you learned to create
this same application for Silverlight.

We created a WPF UserControl from an existing XAML scalable vector illustration. Once
we create the UserControl, the steps and the code required are very similar to the ones
explained for the Silverlight version. However, it is very interesting to understand the whole
development process.

Time for action – building and running the
XBAP WPF applications

Now, you want to see the ghost moving on the screen as an XBAP WPF application while the
mouse pointer changes its position. In order to do this, we must add some code to show the
ghost and to move it. We will add both XAML and C# code as follows:

1.	 Stay in the SilverlightMonsterXBAP project.

2.	 Open the XAML code for Page1.xaml (double-click on it in the Solution
Explorer) and replace the existing code with the following:

<Page x:Class="SilverlightMonsterXBAP.Page1"
 xmlns="http://schemas.microsoft.com/winfx/2006/xaml
 /presentation"
 xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml"
 Title="Page1"
 Cursor="None">
 <Canvas Width="1366" Height="768" MouseMove="Ghost_MouseMove"
 xmlns:SilverlightMonsterXBAP=
 "clr-namespace:SilverlightMonsterXBAP">
 <Canvas x:Name="cnvMovementTest" Width="1366" Height="768"
 Background="Bisque">
 <SilverlightMonsterXBAP:Ghost Canvas.Left="10"
 Canvas.Top="10" x:Name="ghost"/>
 </Canvas>
 </Canvas>
</Page>

3.	 You will see the ghost appearing in the upper-left corner of the page in the designer.

This material is copyright and is licensed for the sole use by Vadim Kudria on 4th October 2009

6352 108th St, , Forest Hills, , 11375

Download at WoweBook.Com

Chapter 1

[3�]

4.	 Expand Page1.xaml in the Solution Explorer and open Page1.xaml.cs
(double-click on it). We need to add an event handler to move the ghost
on the screen to the position to which the mouse has moved.

5.	 Add the same lines of code previously explained for the Silverlight
version in the public partial class Page1 : Page to
program the event handler for the MouseMove event.

6.	 Build and run the solution. The default web browser will appear showing a
bisque background and the ghost will move following the mouse pointer. This
time, it is running an XBAP WPF application, as shown in the following picture:

What just happened?
The ghost appeared in the web browser and moved through the bisque rectangle as if it
were a mouse pointer. The application looked very similar to its Silverlight version. However,
in this case, you have access to most of the WPF features and controls. You created and ran
an XBAP WPF application in the web browser.

XBAP WPF applications require more time to start than Silverlight applications.
Therefore, we should not confuse Silverlight with XBAP WPF. They are two
different technologies. However, we can transform a Silverlight application
to an XBAP WPF application by making small changes to the source code, as
shown in this example.

This material is copyright and is licensed for the sole use by Vadim Kudria on 4th October 2009

6352 108th St, , Forest Hills, , 11375

Download at WoweBook.Com

Lights, Camera, and Action!

[40]

First, we changed the XAML code for Page1.xaml. We made some changes to do
the following:

Hide the mouse pointer (the cursor) using the following code:

<Page x:Class="SilverlightMonsterXBAP.Page1"

 xmlns="http://schemas.microsoft.com/winfx/2006/xaml/
presentation"

 xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml"

 Title="Page1"

 Cursor="None">

Replace the Grid definition with a Canvas and indicate a MouseMove event handler:

MouseMove="Ghost_MouseMove"

Reference the SilverlightMonsterXBAP namespace to allow access to the
definitions specified in it:

xmlns:SilverlightMonsterXBAP="clr-namespace:
SilverlightMonsterXBAP">

Next, we added a Canvas named cnvMovementTest with a resolution of 1366X768
pixels (width and height), a bisque background, and showed an instance of Ghost
(SilverlightMonster:Ghost) named ghost located on the point (10, 10) by taking
into account both the Canvas and its upper-left corner:

<Canvas x:Name="cnvMovementTest" Width="1366" Height="768"
Background="Bisque">
 <SilverlightMonsterXBAP:Ghost Canvas.Left="10" Canvas.Top="10"
 x:Name="ghost"/>
</Canvas>

Once the ghost is shown using XAML code, we had to program the code for the event handler
that triggered when the mouse moved on the main page's UserControl. We followed the
same procedure previously explained in the Silverlight version of this application.

Have a go hero – creating a prototype for the remake
You receive an email from the game contest. They require each participant to send a
Silverlight prototype of the first scene of the game without movement—a still snapshot.

Using the scalable vector graphics in an XAML format prepared for the Invader game, create
a new Silverlight application that reproduces the first screen of the game with the aliens
organized in five rows and eleven columns, the four tents, and the ship.

You can do it creating one UserControl for each vector graphics as we did for the ghost.
Now, you can organize a nice Silverlight prototype by defining a Canvas for each alien and
tent, and then for the ship using 2D coordinates.

This material is copyright and is licensed for the sole use by Vadim Kudria on 4th October 2009

6352 108th St, , Forest Hills, , 11375

Download at WoweBook.Com

Chapter 1

[41]

Pop quiz – preparing the digital content
1. When scaling raster digital assets:

a. Pixelation becomes easily visible.

b. Pixelation is no problem.

c. We must previously perform a conversion to XAML to avoid pixelation.

2. When scaling vector graphics:

a. We must previously perform a conversion to WMF to avoid pixelation.

b. Pixelation becomes easily visible.

c. Pixelation is no problem.

3. XamlPad is an utility whose main goal is:

a. To preview XAML content.

b. To convert WMF and EMF formats to XAML.

c. To test a Silverlight 3 application.

4. Silverlight 3 works great with raster digital assets in:

a. The TGA (Targa) format.

b. The PNG (Portable Network Graphics) format.

c. The XJT (Compressed XJT GIMP) format.

5. Silverlight 3 works great with vector graphics in:

a. The WMF (Windows Meta-File) format.

b. The CDR (CorelDRaw) format.

c. The XAML (eXtensible Application Markup Language) format.

6. Silverlight is:

a. A subset of WPF.

b. An extension to WPF.

c. A plugin to add more controls to the XBAP WPF applications.

7. XBAP WPF applications are:

a. The same as Silverlight applications (with just a different name).

b. .Net WPF applications that can run in a sandbox or inside a web
browser with some security restrictions.

c. .Net WPF applications that can run on a desktop or in a web browser
with no security restrictions.

This material is copyright and is licensed for the sole use by Vadim Kudria on 4th October 2009

6352 108th St, , Forest Hills, , 11375

Download at WoweBook.Com

Lights, Camera, and Action!

[42]

Summary
We learned a lot in this chapter about digital content recognition, manipulation, conversion,
and creation. Specifically, we prepared a development environment and the tools to
work with 2D content and Silverlight 3. We recognized digital art assets from an existing
game—the legendary Invaders. We created and prepared digital content for two new 2D
games—one raster art based and the other vector graphics based. We understood the
different tools involved in a 2D game development process and learned many techniques to
manipulate, convert, preview, and scale digital content. We acknowledged the advantages of
vector-based graphics as well as its performance trade-offs. We created our first Silverlight
application using vector-based XAML graphics, and then developed an XBAP WPF version of
the same application. Now, we are able to begin preparing and organizing the digital content
for a simple yet impressive 2D game.

Now that we've learned about the principles of development environment preparation
and digital content manipulation, we're ready to learn the techniques to work with
2D characters in a 2D game and to manage resolutions and frameworks, which is the
topic of the next chapter.

This material is copyright and is licensed for the sole use by Vadim Kudria on 4th October 2009

6352 108th St, , Forest Hills, , 11375

Download at WoweBook.Com

2
Working with 2D Characters

In order to create first-rate games, we must show moving graphics on the
screen. This seems to be a pretty simple task. However, it requires writing
smart code in C# to avoid losing control over some important aspects of a
game, such as the speed of the image's movement and the time it takes to
render the animations in different computers.

In this chapter, we will begin creating 2D characters that move on the screen and also learn
to control their behavior in a 2D space. We will:

Prepare a project to take advantage of Silverlight 3's performance enhancements for
graphics-intensive applications

Learn to perform hardware-accelerated transformations on multiple art assets

Animate images in a 2D space working with vectors, speed, and direction

Understand locations, resolutions, and dimensions

Creating an accelerated graphics viewport
So far, we have prepared a development environment to develop games using Silverlight
3, and we have created some digital art assets for new remakes of an old game. We have
developed a very simple Silverlight and XBAP WPF application to show a ghost moving like
a mouse pointer. However, games require something more impressive. How can we exploit
modern hardware in Silverlight to accelerate the production of real-time graphics on
the screen?

This material is copyright and is licensed for the sole use by Vadim Kudria on 4th October 2009

6352 108th St, , Forest Hills, , 11375

Download at WoweBook.Com

Working with 2D Characters

[44]

WPF applications take advantage of the power offered by modern GPUs (Graphics
Processing Units), also known as accelerated graphics cards. This specialized hardware runs
common and complex procedures related to 2D and 3D graphics, and they free the CPU
(Central Processing Unit) from this weight load.

Unfortunately, Silverlight 3 does not take full advantage of modern GPUs. However, it offers
the possibility to use the GPU for some operations. Under certain circumstances, we can
improve the performance of a game using the hardware-acceleration capabilities offered
by Silverlight 3.

Time for action – enabling hardware acceleration
A good game must run offering smooth animation and good-looking graphics on the
screen. Let's assume you have some doubts about the performance offered by Silverlight 3.
Therefore, you decide to make some changes to the application developed in the previous
chapter in order to test hardware acceleration. Hence, you will be able to develop games
exploiting some of the features offered by modern GPUs in Silverlight.

Now, we are going to show more ghosts moving on the screen, but this time doing some
transformations and using some hardware acceleration:

We need a computer with a GPU or accelerated graphics card compatible
with DirectX 9.0c installed in order to achieve significant results for the
next experience.

1. Stay in the SilverlightMonster project.

2. Open the ASPX code for SilverlightMonsterTestPage.aspx (by double-
clicking on it in the Solution Explorer, found under the SilverlightMonster.Web
project). This is the ASPX test page for the project that creates the Silverlight control
host, which runs the generated Silverlight application (the .xap file).

3. Find the section beginning with the following line of code:

<object data="data:application/x-silverlight-2,"

4. In this project, the first two complete lines are the following:

<object data="data:application/x-silverlight-2,"

 type="application/x-silverlight-2" width="100%"

 height="100%">

 <param name="source" value="ClientBin/SilverlightMonster.xap"/>

This material is copyright and is licensed for the sole use by Vadim Kudria on 4th October 2009

6352 108th St, , Forest Hills, , 11375

Download at WoweBook.Com

Chapter 2

[45]

5. Insert the following line of code after the line that begins with <param
name="source". (We are setting the EnableGPUAcceleration boolean
parameter to true for the Silverlight plugin instance.)
<param name="EnableGPUAcceleration" value="true" />

6. The last part of the ASPX code that creates the Silverlight control host will be similar
to the following screenshot:

What just happened?
We changed a parameter that enabled GPU acceleration for some operations in the
Silverlight host control. However, that is not enough to guarantee that Silverlight will
use the GPU. We have to make some additional changes to the user interface elements
(UI elements) shown by the application, and we have to perform the operations that benefit
from hardware acceleration.

Time for action – transforming media using the GPU
We are going to make some changes to the application. This time, we will show eight
ghosts. We will configure some additional parameters to allow hardware acceleration for
some operations and we will scale, rotate, and translate them. At the same time, we will
be changing their opacity settings:

1. Stay in the SilverlightMonster project.

2. Open the XAML code for Ghost.xaml. Remove only the following two lines that
define a Grid named LayoutRoot as we want the illustration to be a part of a
Canvas instead of a Grid:
<Grid x:Name="LayoutRoot">

</Grid>

This material is copyright and is licensed for the sole use by Vadim Kudria on 4th October 2009

6352 108th St, , Forest Hills, , 11375

Download at WoweBook.Com

Working with 2D Characters

[46]

3. Change the name of the main Canvas from "Layer_3" to "LayoutRoot"
(the default value for the root element).

4. Add the following lines after the first line that begins with the definition of the main
Canvas. (We are assigning the BitmapCache value to the CacheMode property of
the Canvas that contains the ghost's paths.)

<Canvas.CacheMode>

 <BitmapCache/>

</Canvas.CacheMode>

5. Now, add the following lines after the first line that begins with the definition of the
main Canvas. (We are defining two transforms for this Canvas—scale and rotate.)

<Canvas.RenderTransform>

 <TransformGroup>

 <ScaleTransform x:Name="scaleGhost" ScaleX="1.5" ScaleY="1.5"

 />

 <RotateTransform x:Name="rotateGhost" Angle="0"/>

 </TransformGroup>

</Canvas.RenderTransform>

After adding the aforementioned lines, you will see the ghost bigger
in the preview panel because you scaled both its width (ScaleX)
and height (ScaleY) 1.5 times.

6. Open the XAML code for MainPage.xaml and create seven more instances of the
Ghost UserControl. Add the following lines after the first ghost:

<SilverlightMonster:Ghost Canvas.Left="50" Canvas.Top="50"

 x:Name="ghost2"/>

<SilverlightMonster:Ghost Canvas.Left="100" Canvas.Top="100"

 x:Name="ghost3"/>

<SilverlightMonster:Ghost Canvas.Left="150" Canvas.Top="150"

 x:Name="ghost4"/>

<SilverlightMonster:Ghost Canvas.Left="200" Canvas.Top="200"

 x:Name="ghost5"/>

<SilverlightMonster:Ghost Canvas.Left="250" Canvas.Top="250"

 x:Name="ghost6"/>

<SilverlightMonster:Ghost Canvas.Left="300" Canvas.Top="300"

 x:Name="ghost7"/>

<SilverlightMonster:Ghost Canvas.Left="350" Canvas.Top="350"

 x:Name="ghost8"/>

This material is copyright and is licensed for the sole use by Vadim Kudria on 4th October 2009

6352 108th St, , Forest Hills, , 11375

Download at WoweBook.Com

Chapter 2

[47]

7. You will see eight ghosts in the main page preview, aligned as shown in the
following screenshot:

What just happened?
Now, you have eight instances of the Ghost class, created in the XAML code. They have
different positions defined by their Canvas Left and Top properties, as shown in the
following line:

<SilverlightMonster:Ghost Canvas.Left="350" Canvas.Top="350"
 x:Name="ghost8"/>

The variable name for this instance is ghost8 and its upper-left corner is shown in X = 350
(Canvas.Left) and Y = 350 (Canvas.Top).

Remember that we can also create instances of the Ghost
UserControl using the C# code.

This material is copyright and is licensed for the sole use by Vadim Kudria on 4th October 2009

6352 108th St, , Forest Hills, , 11375

Download at WoweBook.Com

Working with 2D Characters

[4�]

Caching rendered content
We made some changes in the XAML code for the definition of Ghost UserControl and
the MainPage Canvas.

We assigned the BitmapCache value to the ghost's CacheMode property using the
following lines:

<Canvas.CacheMode>
 <BitmapCache/>
</Canvas.CacheMode>

This property determines whether the rendered content should be cached when possible
using the GPU. Its default value is a null reference, meaning that the content should not
be cached.

Setting the value to BitmapCache tells Silverlight to cache this element as a bitmap. Hence,
the GPU will handle any of these three operations on that content:

Transforms: Shrinking and/or stretching (scaling), rotating, skewing, and so on

Blends: Using opacity settings

Clips: Creating rectangular clips

At times we will not notice a great improvement in performance. It depends
on the operations that the game performs on its graphics. If we have a great
number of transforms, blends, and clips, it is very probable that we can
obtain improved performance by caching the rendered content as bitmaps
to use some of the GPU power.

Nevertheless, as the element is cached as a bitmap, we will lose some of the advantages
of the scalable vector graphics. The element will be converted to a raster image in the
GPU memory. Then, the GPU will perform the operations using a raster image, which
is a snapshot of the scalable vector version. There is always a trade-off.

Furthermore, any media element (such as a video that shrinks or stretches) will use
hardware acceleration if we follow the same steps previously explained:

Enable hardware acceleration in the Silverlight control host that runs the application

Assign the BitmapCache value to the CacheMode property for each media element
that shrinks or stretches

This material is copyright and is licensed for the sole use by Vadim Kudria on 4th October 2009

6352 108th St, , Forest Hills, , 11375

Download at WoweBook.Com

Chapter 2

[4�]

Scaling and rotating a vector-based illustration
We added two transforms for the Canvas, which contains the paths that define the ghost.
They are as follows:

The ScaleTransform, named scaleGhost. It enables us to change its ScaleX
and ScaleY properties to shrink or stretch the vector-based illustration. This is done
in the following line:

<ScaleTransform x:Name="scaleGhost" ScaleX="1.5" ScaleY="1.5"/>

The RotateTransform, named rotateGhost. It enables us to change its Angle
property to rotate the vector-based illustration around its central point. This is done
in the following line:

<RotateTransform x:Name="rotateGhost" Angle="0"/>

We will be able to change these properties to scale and rotate the ghost, taking into
account the mouse pointer's position using the C# code to access the instances created
for ScaleTransform and RotateTransform.

Time for action – shaking many illustrations at the same time
1.	 Stay in the SilverlightMonster project.

2.	 Expand MainPage.xaml in the Solution Explorer and open MainPage.xaml.cs.

3.	 Add the following private variable in the public partial class MainPage :
UserControl to hold a list of Ghost instances:

private List<Ghost> _ghosts;

4.	 Add the following lines of code after the line InitializeComponent(); in the
constructor. (We must create the list and add the Ghost instances created through
the XAML code.)

// Create the new list

_ghosts = new List<Ghost>();

// Add each Ghost instance previously created through XAML code

_ghosts.Add(ghost);

_ghosts.Add(ghost2);

_ghosts.Add(ghost3);

_ghosts.Add(ghost4);

_ghosts.Add(ghost5);

_ghosts.Add(ghost6);

_ghosts.Add(ghost7);

_ghosts.Add(ghost8);

This material is copyright and is licensed for the sole use by Vadim Kudria on 4th October 2009

6352 108th St, , Forest Hills, , 11375

Download at WoweBook.Com

Working with 2D Characters

[50]

5.	 Replace the code in the event handler for the MouseMove event with the following
lines:

// Get the mouse current position

Point point = e.GetPosition(cnvMovementTest);

// Define a starting point that will be used for each Ghost
instance

Point startPoint = new Point(0,0);
for (int i = 0; i < _ghosts.Count(); i++)

{

 // Set the canvas Left property to the mouse X position and the

 starting point's X value

 _ghosts[i].SetValue(Canvas.LeftProperty, point.X +

 startPoint.X);

 // Set the canvas Top property to the mouse Y position and the

 starting point's Y value

 _ghosts[i].SetValue(Canvas.TopProperty, point.Y + startPoint.Y);

 // Change the ghost's angle

 _ghosts[i].rotateGhost.Angle = ((point.X + (i * 10)) % 360);

 // Change the ghost's horizontal scale

 _ghosts[i].scaleGhost.ScaleX = 1 + ((point.X / 500) % 2);

 // Change the ghost's vertical scale

 _ghosts[i].scaleGhost.ScaleY = 1 + ((point.X / 500) % 2);

 // Change the ghost's opacity percentage

 _ghosts[i].Opacity = ((point.Y / 100) % 1);

 // Increase the starting point X and Y values

 startPoint.X += 50;

 startPoint.Y += 50;

}

6.	 Build and run the solution. The default web browser will appear showing eight
ghosts moving, scaling, rotating, and changing their opacity according to the mouse
pointer's position. The web browser will be using some GPU hardware acceleration,
but ghosts will become slightly pixelated as shown in the following screenshot:

This material is copyright and is licensed for the sole use by Vadim Kudria on 4th October 2009

6352 108th St, , Forest Hills, , 11375

Download at WoweBook.Com

Chapter 2

[51]

What just happened?
Silverlight cached bitmaps of the ghosts in the GPU to perform the operations using some
hardware acceleration. Now, you know how to make some changes to an existing Silverlight
application to translate some work to the GPU.

We manipulated the eight instances of the Ghost class created in the XAML code, adding the
C# code in the MainPage class. We added a private List to hold the eight instances. In
the Initialize method for this class, we created this list and then added each ghost using
the names we gave them in the XAML code.

Running loops faster
One of the questions that might arise is why a for loop was used to iterate through the
instances instead of a foreach one.

Silverlight will trigger the code in the MouseMove event handler (Ghost_MouseMove)
each time the mouse pointer's position changes. That could happen dozens of times in just
a single second. We must update all the Ghost instances contained in the list as fast as
possible because this code can run many times per second.

A foreach loop, like the one defined by the following line, is the easiest way to iterate
through the list:

foreach (Ghost oneghost in _ghosts)

This material is copyright and is licensed for the sole use by Vadim Kudria on 4th October 2009

6352 108th St, , Forest Hills, , 11375

Download at WoweBook.Com

Working with 2D Characters

[52]

However, the problem is that the foreach loops are slower than the for loops that perform
exactly the same operations in the elements of a list. For this reason, it is convenient to use
the for loops instead of the foreach loops, especially when the code is going to run many
times per second. Hence, we used the following for loop to update the ghosts:

for (int i = 0; i < _ghosts.Count(); i++)

The code in the event is very simple. It interacts with the elements and the transformations
defined in the XAML code. It changes the values of some properties, taking into account a
relative starting position and the mouse pointer's current position.

Accelerating transforms and blends
Once we have the mouse position, we will define a starting point that we will be using for
each Ghost instance found in the list. We will align the ghosts as in a domino game. The
startPoint local variable holds the relative X and Y values for each ghost, starting at
X = 0 and Y = 0:

Point startPoint = new Point(0,0);

Next, we do the following operations with each ghost by just changing some properties:

Translate the Canvas that contains the paths that create the ghost, taking
into account the mouse pointer's current position, and the value of the X and
Y coordinates of the starting point. We could achieve the same goal using a
TranslateTransform instance.

Change the ghost's angle. In order to do this, we access the RotateTransform
instance named rotateGhost (created in the XAML code) and change the value
for its Angle property:
_ghosts[i].rotateGhost.Angle = ((point.X + (i * 10)) % 360);

Scale the ghost (width and height). We access the ScaleTransform instance
named scaleGhost (created in the XAML code) and change the values of its
ScaleX and ScaleY properties:
_ghosts[i].scaleGhost.ScaleX = 1 + ((point.X / 500) % 2);

_ghosts[i].scaleGhost.ScaleY = 1 + ((point.X / 500) % 2);

Change the ghost's transparency level. We change the value of the Opacity
property (0…1).

Once we complete a cycle, we increase the starting point's X and Y values to locate the
next ghost.

We used the modulus operator (%) many times to easily restrict the upper values and create
a repetitive effect while the mouse pointer was moving.

This material is copyright and is licensed for the sole use by Vadim Kudria on 4th October 2009

6352 108th St, , Forest Hills, , 11375

Download at WoweBook.Com

Chapter 2

[53]

The GPU helps the CPU to perform these operations. We made the necessary
changes to allow Silverlight to accelerate these operations through a specialized
hardware. However, this does not mean that all of the applications and games
will benefit from these kinds of configurations. As explained earlier, it depends
on the operations performed.

Using 2D vectors
The startPoint local variable is of the Point type (System.Windows.Point). This
structure represents a 2D vector with two components, represented by two double
values—X (column) and Y (row). It is useful to define the position of UI elements on the
screen, or in the UI elements that define a viewport or a 2D space.

We created it by specifying the values for the X-coordinate (column) and the
Y-coordinate (row):

Point startPoint = new Point(0,0);

If we wanted the starting point to be at the pixel column number 100 (X) and the pixel row
number 50 (Y), we should replace it by the following line:

Point startPoint = new Point(100,50);

The first parameter is the X-coordinate value and the second is the Y-coordinate value.

The upper-left corner of a Canvas (one of the Layout panels available in Silverlight) begins at
X = 0 and Y = 0. Thus, it uses a simple numeric series beginning at 0 for both coordinates.

The following diagram illustrates the way the X-coordinate and the Y-coordinate values work
in both Silverlight and WPF to display UI elements in a Canvas or other Layout panels:

- (reduce)

- (reduce)

Y axis

X axis+ (increase)

+ (increase)

This material is copyright and is licensed for the sole use by Vadim Kudria on 4th October 2009

6352 108th St, , Forest Hills, , 11375

Download at WoweBook.Com

Working with 2D Characters

[54]

The following list illustrates the changes in the coordinate values to move in a certain direction:

If we want to move right, we must increase the X-coordinate value

If we want to move left, we must reduce the X-coordinate value

If we want to move up, we must reduce the Y-coordinate value

If we want to move down, we must increase the Y-coordinate value

Time for action – detecting GPU-acceleration problems
You want to prepare the most exciting game using as much GPU acceleration as possible.
However, is the game going to take advantage of GPU acceleration in Silverlight 3? As
previously explained, that depends on the operations performed over the UI elements. If
you have any doubts, it is possible to change a parameter and check whether Silverlight is
sending the cache bitmap to the GPU for certain UI elements:

1. Stay in the SilverlightMonster project.

2. Open the ASPX code for SilverlightMonsterTestPage.aspx (double-click on it
in the Solution Explorer, found under the SilverlightMonster.Web project).

3. Move to the section beginning with the following line of code:

<object data="data:application/x-silverlight-2,"

4. Insert the following line of code after the line that begins with <param
name="source". (We are setting the EnableCacheVisualization boolean
parameter to true for the Silverlight plugin instance.)

<param name="EnableCacheVisualization" value="true" />

5. Open the XAML code for Ghost.xaml

6. Comment out the lines that assign the BitmapCache value to the CacheMode
property of the Canvas that contains the paths that define the vector-based
illustration:

<!-- Disable cache mode

<Canvas.CacheMode>

 <BitmapCache/>

</Canvas.CacheMode>

-->

Remember that enclosing the XAML code between <!-- and --> generates a
comment block, like /* and */ in the C# code. Of course, the commented code
is not taken into account.

This material is copyright and is licensed for the sole use by Vadim Kudria on 4th October 2009

6352 108th St, , Forest Hills, , 11375

Download at WoweBook.Com

Chapter 2

[55]

7. Build and run the solution. Now, the eight ghosts will scale like real vector graphics.
However, they will be red in color and will move slower because Silverlight is
showing those UI elements that are not cached in red. Hence, none of the ghosts
are using GPU hardware acceleration, as shown in the following screenshot:

What just happened?
We changed the EnableCacheVisualization parameter that caused the red color to
paint the UI elements that are not being cached by the GPU. Hence, these elements will not
benefit from specialized hardware acceleration.

We removed the assignment of the BitmapCache value to the CacheMode property of the
Canvas, which contains the paths that define the vector-based ghost. Thus, the GPU does
not use a bitmap snapshot as a source for performing hardware-accelerated transformations.
This means there is no bitmap cache to work with. Therefore, there is no GPU acceleration
and the ghosts use more CPU to render the transformations. However, the advantage is that
the scalable vector graphics do not became pixelated when scaled without this kind of GPU
acceleration offered by Silverlight 3. Thus, there is no CPU acceleration and the ghosts use
more CPU to render the transformations.

This material is copyright and is licensed for the sole use by Vadim Kudria on 4th October 2009

6352 108th St, , Forest Hills, , 11375

Download at WoweBook.Com

Working with 2D Characters

[56]

Understanding GPU acceleration limitations
The GPU acceleration in Silverlight 3 is based on using a bitmap snapshot of the original
representation of a graphic (vector-based or raster). For this reason, when we need to scale
vector-based graphics using this GPU acceleration, it will generate pixelated graphics. This
is because it is scaling a bitmap snapshot of vector-based graphics using the GPU functions to
transform the bitmaps. It is not full GPU acceleration like the acceleration found in DirectX
or OpenGL.

Therefore, its usage will depend on the kind of game which we are making and the
capabilities of the computers that are running the Silverlight application.

We will have to measure the performance improvements, test the visual results, and then
decide. There is no silver bullet.

Creating encapsulated object-oriented characters
So far, we made some changes to take advantage of some of the power offered by modern
GPUs in Silverlight 3. We developed a very simple application showing eight ghosts doing
funny things on the screen, controlled by the mouse. However, there is no time to play! You
have to begin developing games for the competition. These games require images of aliens
moving from one side of the screen to the other without any mouse interaction. How can we
display, animate, and control an image in Silverlight?

Silverlight 3 provides excellent animation features. However, games require more precision
and coordination than individual animations. In our remakes, we will need to control
different characters with diverse behaviors. The best way to do this is by combining
encapsulated object-oriented characters with Silverlight-rendering capabilities. A good
object-oriented design will allow us to generalize some behaviors and create a simple yet
powerful gaming framework.

This is not a five-step task. Therefore, we will begin by working with some animation basics,
encapsulate the characters and generalize their behaviors in the game, and then add classes.

Time for action – creating User Control classes to hold images
A sprite is a 2D image (a bitmap) that provides movement and animation capabilities, and is
integrated into a scene. A sprite represents a game character capable of moving through the
scene and interacting with other sprites. However, using Silverlight 3, we can also use vector-
based illustrations as sprites for our games.

This material is copyright and is licensed for the sole use by Vadim Kudria on 4th October 2009

6352 108th St, , Forest Hills, , 11375

Download at WoweBook.Com

Chapter 2

[57]

First, we will transform some raster-based aliens to User Controls. Then, we will be able to
control their movements like sprites:

1.	 Create a new C# project using the Silverlight Application template. Use
SilverlightInvaders2D as the project's name.

2.	 Create a new folder in SilverlightInvaders2D (the main project that will
generate the XAP output file). Rename it to images.

3.	 Right-click on the aforementioned folder and select Add | Existing item… from the
context menu that appears.

4.	 Go to the folder in which you saved the manipulated and resized raster images
(C:\Silverlight3D\Invaders\GAME_PNGS_RESIZED). Select all the PNG
images and click on Add.

5.	 Repeat the following steps (6 to 8) for each raster graphic (a PNG file).

6.	 Add a new Silverlight User Control. A dialog box will appear asking for a name. Use
the names taking into account the following table for each new User Control, and
click on OK:

Image filename User Control name

ALIEN_01_01.PNG BlueAlien

ALIEN_02_01.PNG RedAlien

ALIEN_01_01.PNG GreenAlien

SHIP_01_01.PNG Ship

TENT_01_01.PNG Tent

7.	 Open the XAML code for a new User Control. Remove the assignments of the
Width and Height properties by erasing this code:

Width="400" Height="300"

8.	 Replace the Grid definition with a Canvas and add an Image element to it.
The Source property has to include the relative path for the image to be shown.
We are going to use the name imgSprite01 for this image embedded in the
Canvas parent:

<Canvas x:Name="LayoutRoot" Background="Transparent">

 <Image Source="images/ALIEN_01_01.png" x:Name="imgSprite01" />

</Canvas>

This material is copyright and is licensed for the sole use by Vadim Kudria on 4th October 2009

6352 108th St, , Forest Hills, , 11375

Download at WoweBook.Com

Working with 2D Characters

[5�]

9.	 For each User Control created, the IDE is going to show the image with a transparent
background in the preview, as shown in the following screenshot for the RedAlien:

What just happened?
We created a new User Control for each of the aliens, the tent, and the ship. These are
the characters of our raster game. Now, the project has a new XAML and a Class for each
potential sprite:

BlueAlien

GreenAlien

RedAlien

Ship

Tent

Now we have everything we need to begin moving these characters.

Time for action – displaying images and sprites
First, we are going to display the raster images and give them life by transforming them into
our first sprites. We are going to add some code, which we will improve later:

1.	 Stay in the SilverlightInvaders2D project.

2.	 Open the XAML code for MainPage.xaml and replace the existing code with the
following. (You will see a button and the aliens aligned in five rows in the preview,
as shown in the screenshot after the code.)

<UserControl x:Class="SilverlightInvaders2D.MainPage"
 xmlns="http://schemas.microsoft.com/winfx/2006/xaml

This material is copyright and is licensed for the sole use by Vadim Kudria on 4th October 2009

6352 108th St, , Forest Hills, , 11375

Download at WoweBook.Com

Chapter 2

[5�]

 /presentation"
 xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml"
 Width="1366" Height="768"
 xmlns:SilverlightInvaders2D=
 "clr-namespace:SilverlightInvaders2D">
 <Canvas x:Name="LayoutRoot" Background="White">
 <!-- A button to start moving the sprites -->
 <Button x:Name="btnStartGame"
 Content="Start the game!"
 Canvas.Left="200" Canvas.Top="20"
 Width="200" Height="30" Click="btnStartGame_Click">
 </Button>
 <!-- Code to show the User Controls (the sprites) -->
 <SilverlightInvaders2D:GreenAlien x:Name="ucGreenAlien1"
 Canvas.Left="50" Canvas.Top="10"/>
 <SilverlightInvaders2D:BlueAlien x:Name="ucBlueAlien1"
 Canvas.Left="50" Canvas.Top="70"/>
 <SilverlightInvaders2D:BlueAlien x:Name="ucBlueAlien2"
 Canvas.Left="50" Canvas.Top="130"/>
 <SilverlightInvaders2D:RedAlien x:Name="ucRedAlien1"
 Canvas.Left="50" Canvas.Top="190"/>
 <SilverlightInvaders2D:RedAlien x:Name="ucRedAlien2"
 Canvas.Left="50" Canvas.Top="250"/>
 </Canvas>
</UserControl>

This material is copyright and is licensed for the sole use by Vadim Kudria on 4th October 2009

6352 108th St, , Forest Hills, , 11375

Download at WoweBook.Com

Working with 2D Characters

[60]

3.	 Open MainPage.xaml.cs and add the following lines to define the private
variables in public partial class MainPage : UserControl:

// Holds the green alien's location in the Canvas

private Point _GreenAlien1Location = new Point(0, 0);

// Holds the speed for X and Y movement

private Point _GreenAlien1Speed = new Point(250, 0);

// The upper left corner for the animation

private Point _UpperLeftCorner = new Point(0, 0);

// The bottom right corner for the animation

private Point _BottomRightCorner = new Point(0, 0);

// The aliens' row height

private double _RowHeight = 60;

// Holds the time when the method finished rendering a frame

private DateTime _LastTick;

4.	 Add the following lines of code to program the event handler that will render each
frame and update the sprite's position:

private void RenderFrame(object sender, EventArgs e)

{

 // Hold the elapsed time after the last call to this method

 TimeSpan ElapsedTime = (DateTime.Now - _LastTick);

 // Update the X-coordinate according to the elapsed time and the

 speed

 _GreenAlien1Location.X += _GreenAlien1Speed.X *

 (double)ElapsedTime.TotalSeconds;

 // Update the Y-coordinate according to the elapsed time and the

 speed

 _GreenAlien1Location.Y += _GreenAlien1Speed.Y *

 (double)ElapsedTime.TotalSeconds;

 if (_GreenAlien1Location.X > _BottomRightCorner.X)

 {

 // Right bound reached, invert direction

 _GreenAlien1Speed.X *= -1;

 _GreenAlien1Location.X = _BottomRightCorner.X;

 // Advance one row

 _GreenAlien1Location.Y += _RowHeight;

 }

 else if (_GreenAlien1Location.X < _UpperLeftCorner.X)

 {

 // Left bound reached, invert direction

This material is copyright and is licensed for the sole use by Vadim Kudria on 4th October 2009

6352 108th St, , Forest Hills, , 11375

Download at WoweBook.Com

Chapter 2

[61]

 _GreenAlien1Speed.X *= -1;

 _GreenAlien1Location.X = _UpperLeftCorner.X;

 // Advance one row

 _GreenAlien1Location.Y += _RowHeight;

 }

 // Set the new location for the sprite

 ucGreenAlien1.SetValue(Canvas.LeftProperty,

 _GreenAlien1Location.X);

 ucGreenAlien1.SetValue(Canvas.TopProperty, _GreenAlien1Location.
Y);

 // Save the current time

 _LastTick = DateTime.Now;

}

5.	 Finally, add the following lines of code to program the event handler for the button's
Click event. (This code will start animating the sprite.)

private void btnStartGame_Click(object sender, RoutedEventArgs e)

{

 // Hide the button

 btnStartGame.Visibility = Visibility.Collapsed;

 // Store the green alien's current location

 _GreenAlien1Location = new

 Point((double)ucGreenAlien1.GetValue(Canvas.LeftProperty),

 (double)ucGreenAlien1.GetValue(Canvas.TopProperty));

 // Define the upper left corner and bottom right corner for the

 animation

 _UpperLeftCorner = new Point(_GreenAlien1Location.X,

 _GreenAlien1Location.Y);

 _BottomRightCorner = new Point(LayoutRoot.ActualWidth -

 ucGreenAlien1.imgSprite01.ActualWidth,

 LayoutRoot.ActualHeight -

 ucGreenAlien1.imgSprite01.ActualHeight);

 // Save the current time

 _LastTick = DateTime.Now;

 // Add an EventHandler

 CompositionTarget.Rendering += RenderFrame;

}

This material is copyright and is licensed for the sole use by Vadim Kudria on 4th October 2009

6352 108th St, , Forest Hills, , 11375

Download at WoweBook.Com

Working with 2D Characters

[62]

6.	 Build and run the solution. Click on the button and the green alien (the sprite) will
move from the left to right, down a row, right to left, down a row, left to right, and
so on as shown in the following screenshot:

What just happened?
You have the first sprite moving in a Silverlight 3 application! The sprite does not have a nice
animation. It just moves on the screen, as the invaders have to move in the game. The alien
moves from the upper-left corner to the bottom-right corner with a certain speed and takes
into account the time elapsed between each frame rendering.

This is very important in games because they are going to run on computers with different
amounts of processing power. The movement should take nearly the same time on all of the
target machines for the game.

Showing a sprite on the screen
First we created the instances for the User Controls intended to be sprites using the XAML
code. For example, the green alien sprite was created with the name ucGreenAlien1 using
the following line:

<SilverlightInvaders2D:GreenAlien x:Name="ucGreenAlien1"
 Canvas.Left="50" Canvas.Top="10"/>

This material is copyright and is licensed for the sole use by Vadim Kudria on 4th October 2009

6352 108th St, , Forest Hills, , 11375

Download at WoweBook.Com

Chapter 2

[63]

Initially, the sprite is visible in the Canvas at the position X = 50; Y = 10, which includes the
upper-left corner of its own Canvas.

We could have animated the sprite using Silverlight 3 animation facilities. However, we need
a lot of precision in games and we must keep a control on certain important issues. One of
the most important issues is time management.

By default, Silverlight 3 renders 60 frames per second. This means that it will redraw
changes in the rendered content 60 times per second whenever possible. The code executed
in each render call must be as fast as possible to avoid skipping frames and to create a
smooth animation.

We used the MainPage class to include many private variables to help us
develop precise time-management features and a nice sprite movement.
However, we will have to refactor this code to create specialized classes as a
part of our gaming framework. We need a simple way to create sprites without
having to add dozens of new variables for each new sprite. Nevertheless, we
must understand how things work before generalizing different behaviors using
the C# object-oriented capabilities.

We wanted the sprite to move in the Canvas as shown in the following screenshot:

Defining the behavior
We defined a Point variable used as a 2D vector that holds the speed for this sprite's X-axis
and Y-axis:

private Point _GreenAlien1Speed = new Point(250, 0);

This material is copyright and is licensed for the sole use by Vadim Kudria on 4th October 2009

6352 108th St, , Forest Hills, , 11375

Download at WoweBook.Com

Working with 2D Characters

[64]

The resultant actions for various values that a speed can take are listed here:

A positive speed for the X-axis advances from left to right

A negative speed for the X-axis goes from right to left

A positive speed for the Y-axis goes from top to bottom

A negative speed for the Y-axis goes from bottom to top

Combining both speeds, we can make a sprite move both horizontally and vertically on
the screen.

If we want to change the speed of this sprite, we just have to replace the aforementioned
line or change the value of the X and Y properties of the Point structure that defines the
speed. When the code that renders the sprite is next ran, it will automatically use the new
speed values.

When we change the sign of the speed, we are changing the sprite's direction.

We use the elapsed time, measured in seconds (with milliseconds precision), between each
frame that has to be rendered in order to calculate the new position for the sprite. A formula
based on the speed and the time elapsed offers good precision, and also allows us to have
exhaustive control over the animation parameters.

Once the time span between the last time the CompositionTarget.Rendering event
handler (the RenderFrame method) was called and the current time is calculated, we can
update the X and Y coordinates for the sprite using the following lines:

TimeSpan ElapsedTime = (DateTime.Now - _LastTick);
_GreenAlien1Location.X += _GreenAlien1Speed.X *
 (double)ElapsedTime.TotalSeconds;
_GreenAlien1Location.Y += _GreenAlien1Speed.Y *

 (double)ElapsedTime.TotalSeconds;

We are not performing an animation of the Y-axis based on the speed in our example.
However, it is included in the code to allow further experimentation with changing the
speed. Remember that you have to find the most accurate speed for the Invader game.

An animation controlled by speed and direction is more difficult to code for the first time.
However, it is very flexible and will allow us to control dozens of sprites moving at the same
time with a small amount of code.

This material is copyright and is licensed for the sole use by Vadim Kudria on 4th October 2009

6352 108th St, , Forest Hills, , 11375

Download at WoweBook.Com

Chapter 2

[65]

Understanding dimensions
When we click on the button, the code programmed in its event handler initializes certain
variables related to the dimensions.

First, it stores the sprite's initial location in the _GreenAlien1Location Point (a 2D
vector). It does this by calling the GetValue method to obtain both the Left and Top
properties for the Canvas that contains the sprite image:

_GreenAlien1Location = new Point((double)ucGreenAlien1.
 GetValue(Canvas.LeftProperty),
 (double)ucGreenAlien1.
 GetValue(Canvas.TopProperty));

We must typecast to double because the point needs two double values (for the X and
Y coordinates).

Once we saved the initial location in an instance variable, we have to calculate the
boundaries of the viewport in which the sprite is going to move.

The upper-left corner is defined by its initial location because it is using the same values as
the Canvas Left and Top properties:

_UpperLeftCorner = new Point(_GreenAlien1Location.X,
 _GreenAlien1Location.Y);

The bottom-right corner takes into account the actual width of the main Canvas
(LayoutRoot) and the actual width of the image contained in the User Control. We use the
image because we created a Canvas with no size for the User Controls that define the sprites.
The image contains the actual size, which is as follows:

_BottomRightCorner = new Point(LayoutRoot.ActualWidth -
 ucGreenAlien1.imgSprite01.ActualWidth,
 LayoutRoot.ActualHeight -
 ucGreenAlien1.imgSprite01.ActualHeight);

Now, the code saves the current time for the first time and adds the event handler to
CompositionTarget.Rendering:

_LastTick = DateTime.Now;
CompositionTarget.Rendering += RenderFrame;

We can end the animation at any time, thus detaching the event handler:

CompositionTarget.Rendering -= RenderFrame;

This material is copyright and is licensed for the sole use by Vadim Kudria on 4th October 2009

6352 108th St, , Forest Hills, , 11375

Download at WoweBook.Com

Working with 2D Characters

[66]

Managing resolutions
One of the most important issues related to game development is understanding the screen
and its resolutions.

We defined a resolution of a 1366X768 pixel Canvas. The User Controls that define the
potential sprites are the children of this Canvas (LayoutRoot), as explained in the document
outline shown in the following screenshot:

In order to display the document outline for an XAML file, select View |
Other Windows | Document Outline from the main menu.

Thus, the sprites have to move inside this Canvas. The code programmed in the event
handler to render each frame considers this. Once it has calculated the new positions for
the X and Y coordinates, it checks if the values are inside the movement viewport. We
calculated the viewport dimensions outside the code, which runs each time a frame has to
be rendered, because we want this code to be as simple and fast as possible. Hence, we just
had to compare values using a few simple if blocks:

if (_GreenAlien1Location.X > _BottomRightCorner.X)
{
 _GreenAlien1Speed.X *= -1;
 _GreenAlien1Location.X = _BottomRightCorner.X;
 _GreenAlien1Location.Y += _RowHeight;
}
else if (_GreenAlien1Location.X < _UpperLeftCorner.X)

This material is copyright and is licensed for the sole use by Vadim Kudria on 4th October 2009

6352 108th St, , Forest Hills, , 11375

Download at WoweBook.Com

Chapter 2

[67]

{
 _GreenAlien1Speed.X *= -1;
 _GreenAlien1Location.X = _UpperLeftCorner.X;
 _GreenAlien1Location.Y += _RowHeight;
}

If the new location (still not rendered to the screen) is outside the boundaries, we do
the following:

Invert the direction of the X-axis movement

Assign a new appropriate value to the X-coordinate

Advance the amount of pixels specified by the _RowHeight variable in
the Y-coordinate

These techniques work in any desired resolution for a game.

As we can see, using a time-based animation programmed in a frame-based rendering event
handler allows us to control a sprite with a few lines of code. Of course, this can be improved
and refactored to simplify future developments.

We are taking into account the current time. Hence, the sprites will run pretty similarly
in most modern computers and in any resolution, provided they can handle a minimum
acceptable processing demand.

Screen resolutions
The following table summarizes the most common modern screen resolutions and their
standard names. We must consider them when developing games that will run in a
web browser:

Name Horizontal pixels Vertical pixels Aspect ratio

VGA 640 480 4:3
NTSC 720 480 3:2
PAL 768 576 4:3
SVGA 800 600 4:3
WVGA 854 480 16:9
XGA 1024 768 4:3
HD720 (720i
and 720p) 1280 720 16:9

This material is copyright and is licensed for the sole use by Vadim Kudria on 4th October 2009

6352 108th St, , Forest Hills, , 11375

Download at WoweBook.Com

Working with 2D Characters

[6�]

Name Horizontal pixels Vertical pixels Aspect ratio

SXGA 1280 1024 5:4
WXGA 1366 768 16:9
SXGA+ 1400 1050 4:3
WXGA+
(WSXGA) 1440 900 16:10

UXGA 1600 1200 4:3
WSXGA+ 1680 1050 16:10
HD1080 (1080i
and 1080p) 1920 1080 16:9

WUXGA 1920 1200 16:10
QXGA 2048 1536 4:3
WQXGA 2560 1600 16:10
QSXGA 2560 2048 5:4

Have a go hero – completing the animation
You receive an RSS feed update from the game contest. To participate in the contest, they are
requesting a Silverlight 3 application that shows some preview animation for the games.

Do not worry! Using the animation techniques learned so far, you could animate multiple
sprites, all the monsters, the tents, and the ship at the same time.

Prepare the complete animation for the raster game we have been working on in
this chapter.

Also, create another application using all the vector-based graphics. Using nearly the same
steps from our previous example, you can animate sprites using vector graphics instead of
raster images.

If you feel the code is not easy to maintain when you have to work with many sprites, you
are right. Refactor the code that is wrapping the sprites using a new class to define the most
common animation behavior for this game.

Pop quiz – working with sprites and the GPU
1. If you want to move right, you must:

a. Reduce the X-coordinate value

b. Increase the X-coordinate value

c. Reduce the Y-coordinate value

This material is copyright and is licensed for the sole use by Vadim Kudria on 4th October 2009

6352 108th St, , Forest Hills, , 11375

Download at WoweBook.Com

Chapter 2

[6�]

2. When scaling vector-based graphics using GPU acceleration and a bitmap cache mode:

a. Pixelation is not a problem

b. Pixelation is a problem

c. We must previously perform a conversion to XAML to avoid pixelation

3. The Canvas Left and Top properties indicate the position of the Canvas based on:

a. Its bottom-right corner

b. Its upper-left corner

c. Its upper-right corner

4. By default, Silverlight 3 calls the CompositionTarget.Rendering event handler:

a. 30 times per second

b. 60 times per second

c. 90 times per second

5. Animating a sprite considering the elapsed time offers:

a. Completely unpredictable results in diverse computers

b. Very different speeds in diverse computers

c. Pretty similar speeds in diverse computers

6. To animate sprites and control their behaviors, it is convenient to:

a. Program code in the CompositionTarget.RenderFrame event
handler to manage the animation

b. Program code in the TimeBasedAnimation.Rendering event
handler to manage the animation

c. Program code in the CompositionTarget.Rendering event handler
to manage the animation

Summary
We learned a lot in this chapter about GPU hardware acceleration, 2D vectors, resolutions,
sprites, and animation. Specifically, we made some configurations to take advantage of the
Silverlight 3D GPU-acceleration capabilities. We used the digital art assets to create sprites
and to develop a precise animation rendering process. We understood the advantages and
trade-offs related to hardware-accelerated operations in Silverlight 3.

Now that we've learned about the principles of 2D sprites and time-based animation
combined with frame-based rendering, we're ready to combine multiple sprites with nice
backgrounds, which is the topic of the next chapter.

This material is copyright and is licensed for the sole use by Vadim Kudria on 4th October 2009

6352 108th St, , Forest Hills, , 11375

Download at WoweBook.Com

This material is copyright and is licensed for the sole use by Vadim Kudria on 4th October 2009

6352 108th St, , Forest Hills, , 11375

Download at WoweBook.Com

3
Combining Sprites with Backgrounds

In order to provide good feedback to the players, we must animate many
independent sprites at the same time, while responding to the players controls.
This seems to be a very complex task, involving a lot of code. However, using a
good object-oriented design, combined with Silverlight 3's capabilities, we can
transform complex game loops into easy-to-understand code.

In this chapter, we will control multiple sprites created on demand. By reading it and
following the exercises you will learn how to:

Take advantage of object-oriented programming to work with multiple sprites

Prepare easy-to-understand and well-organized game loops

Create objects on the fly, as needed by the game logic

Control transformations applied to vector-based graphics

Understand the basics of collision detection algorithms

The first remake assignment
So far, we showed a few raster sprites, and created a simple 2D scene with some animations.
We also took advantage of some GPU acceleration and used 2D vectors to define locations
and movements. However, games require dozens of sprites moving at different speeds and
directions. How can we animate multiple independent concurrent sprites while managing a
complex game loop?

We can do this by combining a good object-oriented design with the power of XAML based
vector graphics. Using the same principles that we learnt for raster sprites, it is possible to
create more flexible vector-based sprites.

This material is copyright and is licensed for the sole use by Vadim Kudria on 4th October 2009

6352 108th St, , Forest Hills, , 11375

Download at WoweBook.Com

Combining Sprites with Backgrounds

[72]

The key to success is using smart object-oriented characters and a flexible
game loop. We must understand what we are doing in order to create
efficient algorithms for our games.

Time for action – creating sprites based on XAML
vector-based graphics

You receive an e-mail from the game contest. They loved the vector-based graphics used in
your preview. Now, they want you to send them a more complete prototype for this remake.
They want more action. If they like your game, they will hire you to create 3D games using
Silverlight 3 and a powerful 3D engine.

First, we are going to transform all the XAML vector-based graphics to User Controls. Then,
we will create many object-oriented classes using inheritance, a very powerful capability
that simplifies code re-use. In this case, we are not going to define instances using XAML,
we will create them with the C# code:

1.	 Create a new C# project using the Silverlight Application template. Use
SilverlightInvaders2DVector as the project's name.

2.	 Make the necessary changes to the configuration files to enable GPU acceleration.
We learned the steps to do it in the previous chapter.

3.	 Go to the folder in which you saved the scalable vector graphics for the game in
XAML format (C:\Silverlight3D\Invaders\GAME_XAML).

4.	 Repeat the following steps (5 to 17) for each of the vector-based graphic (XAML file).

5.	 Add a new Silverlight User Control. A dialog box will appear asking for a name.
Use the names from the following table for each new User Control and click on OK:

XAML file name User Control name

ALIEN_01_01.XAML BlueAlien

ALIEN_02_01.XAML RedAlien

ALIEN_03_01.XAML GreenAlien

SHIP_01_01.XAML Ship

TENT_01_01.XAML Tent

Open the XAML code for the new User Control. Make the changes explained in
the previous chapter to create the Ghost UserControl (replace the Grid with
a Canvas, rename it to LayerRoot and assign the value BitmapCache to the
CacheMode property of the Canvas).

This material is copyright and is licensed for the sole use by Vadim Kudria on 4th October 2009

6352 108th St, , Forest Hills, , 11375

Download at WoweBook.Com

Chapter 3

[73]

6.	 Now, replace Background="{x:Null}" with Background="White" in the line
that defines the main Canvas. Add values for Width and Height to change
the Canvas's size. The white background will help you to find the exact values
for each character.

7.	 Once you find the correct values for Width and Height, replace
Background="White" with Background="{x:Null}". We
do not want a white rectangle behind the characters.

8.	 Add the following code to the line that defines the main Canvas (we have to set
the render transform relative to the center of the bounds of the Canvas—50% of
total width and 50% of total height):

RenderTransformOrigin="0.5,0.5"

9.	 The complete line should be similar than this one:

<Canvas x:Name="LayoutRoot" Background="{x:Null}" Width="195"
 Height="128" RenderTransformOrigin="0.5,0.5">

10.	Open the XAML in Expression Blend (right-click on it in the Solution Explorer and
select Open in Expression Blend).

11.	Click on the main Canvas named LayoutRoot under Objects and Timeline and
go to its Properties tab.

12.	Expand Transform and activate the Center Point tab. Click on Relative and
enter 0.5 in both X and Y textboxes. The RenderTransformOrigin property,
under Miscellaneous will show the value 0.5,0.5, and the center point will
appear in the middle of the main Canvas, as shown in the following screenshot
(a small circle appears behind the mouse pointer with four arrows):

This material is copyright and is licensed for the sole use by Vadim Kudria on 4th October 2009

6352 108th St, , Forest Hills, , 11375

Download at WoweBook.Com

Combining Sprites with Backgrounds

[74]

13.	Expand Transform and select the Scale tab. Click on Relative and enter 0.5 in
both X and Y textboxes. In this case, we have to reduce the size for sprites. However,
we can change the scale later for bigger resolutions.

14.	Go back to the XAML code and you will see a Canvas.RenderTransform
and a TransformGroup. Expression Blend created them. Give the name
"rotateSprite" to the RotateTransform. The line that defines the rotate
transformation will be this:

<RotateTransform x:Name="rotateSprite" Angle="0"/>

15.	Leave the same values generated by Expression Blend for the X and Y properties of
the TranslateTransform definition.

16.	For each User Control created, the IDE is going to show the image with a
transparent background in the preview, as shown in the following screenshot
of the GreenAlien:

What just happened?
We created a new User Control for each vector graphics that represent a character in our
game. Now, the project has a new XAML code and a Class for each potential sprite.

However, in this case, we did not add a reference to an image. We created a complex XAML
vector graphic with some parameters to simplify future animation tasks.

This material is copyright and is licensed for the sole use by Vadim Kudria on 4th October 2009

6352 108th St, , Forest Hills, , 11375

Download at WoweBook.Com

Chapter 3

[75]

Defining the relative center point
One of the questions that might arise is why specific widths and heights were introduced for
each XAML Canvas?

We want to keep things simple in order to learn many important 2D techniques that will help
us in our main goal—3D games development. The automatic sizing features in Silverlight are
a bit complex when working with XAML vector graphics. We do not want to begin working
with delegates and asynchronous code to obtain the rendered Width and Height for each
sprite. Therefore, we defined it using XAML so that we will be able to work with precise
widths and heights for each graphic that has to be shown.

We used Expression Blend to create a group of transformations that will allow us to rotate
each alien around its center point. This center point is defined by considering the width and
height of the main Canvas:

<Canvas x:Name="LayoutRoot" Background="{x:Null}" Width="205"
 Height="110" RenderTransformOrigin="0.5,0.5">

This line means that the center point (origin) for the render transformations is 0.5 * actual
width and 0.5 * actual height, as shown in the following diagram:

Thus, we are able to rotate the graphic around its center point, as shown in the previous
picture. We used the name "rotateSprite" for the rotate transformation. Initially, its
angle is 0, but we are going to access it by its name and change the angle using the C# code.

This material is copyright and is licensed for the sole use by Vadim Kudria on 4th October 2009

6352 108th St, , Forest Hills, , 11375

Download at WoweBook.Com

Combining Sprites with Backgrounds

[76]

If we did not define the relative center point for the transformations, the alien
would rotate from the default center point (X = 0, Y = 0)—the main Canvas's
upper left corner.

The first lines of XAML code that define the Canvas for one of the aliens are the following:

<Canvas x:Name="LayoutRoot" Background="{x:Null}" Width="205"
 Height="110" RenderTransformOrigin="0.5,0.5">
 <Canvas.CacheMode>
 <BitmapCache/>
 </Canvas.CacheMode>
 <Canvas.RenderTransform>
 <TransformGroup>
 <ScaleTransform ScaleX="0.5" ScaleY="0.5"/>
 <SkewTransform/>
 <RotateTransform x:Name="rotateSprite" Angle="0"/>
 <TranslateTransform X="-51.25" Y="-27.5"/>
 </TransformGroup>
 </Canvas.RenderTransform>

Time for action – creating a specialized sprite
management class

We now have the User Controls defined. We need to move many sprites based on these User
Controls. Now, we are going to create a generalized superclass to manage the most common
operations related to a User Control working as a sprite.

1.	 Stay in the SilverlightInvaders2DVector project

2.	 Create a new abstract class—UpdateableUIElement

3.	 Add the following public property to determine whether
the user interface element is alive or not:

public bool isAlive { set; get; }

4.	 Add the following public abstract method to encapsulate
updates based on the elapsed time:

public abstract void Update(TimeSpan elapsedTime);

5.	 Create a new abstract class—SpriteWrapper (a subclass of UpdateableUIElement)
—using the following declaration:

public abstract class SpriteWrapper: UpdateableUIElement

This material is copyright and is licensed for the sole use by Vadim Kudria on 4th October 2009

6352 108th St, , Forest Hills, , 11375

Download at WoweBook.Com

Chapter 3

[77]

6.	 Add the following protected variables:

// Indicates whether the sprite has been rendered or not
protected bool _rendered = false;
// The UserControl instance associated to this SpriteWrapper
protected UserControl _ucSpriteUC;
// The parent Canvas
protected Canvas _cnvParent;

7.	 Add the following protected variables and their properties to access them:

// The location
protected Point _location;
public Point location
{
 set { _location = value; }
 get { return _location; }
}
// The speed
protected Point _speed;
public Point speed
{
 set { _speed = value; }
 get { return _speed; }
}
// The rendered size
protected Size _size;
public Size size
{
 get
 {
 if (!_rendered)
 return new Size();
 else
 return _size;
 }
}

8.	 Add the following public abstract method to create the UserControl instance
associated to the SpriteWrapper instance (the key to the factory method pattern)

public abstract UserControl CreateSpriteUC();

This material is copyright and is licensed for the sole use by Vadim Kudria on 4th October 2009

6352 108th St, , Forest Hills, , 11375

Download at WoweBook.Com

Combining Sprites with Backgrounds

[7�]

9.	 Add the following constructor with two parameters—the parent Canvas
and the initial sprite's location on it:

public SpriteWrapper(Canvas cnvParent, Point initialLocation)
{
 _cnvParent = cnvParent;
 _ucSpriteUC = CreateSpriteUC();
 _location = initialLocation;
 // Initially, the sprite is static
 _speed = new Point(0, 0);
 cnvParent.Children.Add(_ucSpriteUC);
 // Set the initial position for the sprite
 _ucSpriteUC.SetValue(Canvas.LeftProperty, _location.X);
 _ucSpriteUC.SetValue(Canvas.TopProperty, _location.Y);
 // By default, it is alive
 isAlive = true;
}

10.	Add the following public method to calculate the sprite's position taking into
account its initial location, its speed settings, and the elapsed time:

public void CalculateNewPosition(TimeSpan elapsedTime)
{
 // Update the X-coordinate according to the elapsed time and the
 speed
 _location.X += _speed.X * (double)elapsedTime.TotalSeconds;
 // Update the Y-coordinate according to the elapsed time and the
 speed
 _location.Y += _speed.Y * (double)elapsedTime.TotalSeconds;
}

11.	Add the following public method to calculate the sprite's actual size once
it has been rendered for the first time:

public virtual void CalculateSize()
{
 _size = new Size((double)_ucSpriteUC.GetValue(
 Canvas.ActualWidthProperty) * 0.5,
 (double)_ucSpriteUC.GetValue(
 Canvas.ActualHeightProperty) * 0.5);
}

This material is copyright and is licensed for the sole use by Vadim Kudria on 4th October 2009

6352 108th St, , Forest Hills, , 11375

Download at WoweBook.Com

Chapter 3

[7�]

12.	Add the following public methods to simplify the process of inverting the sprite's
directions without changing the actual speed:

public void InvertXDirection()
{
 _speed.X *= -1;
}
public void InvertYDirection()
{
 _speed.Y *= -1;
}

13.	Override the Update method to update the sprite's position taking into account its
initial location, its speed settings and the elapsed time:

public override void Update(TimeSpan elapsedTime)
{
 if (!isAlive)
 return;
 if (!_rendered)
 {
 // First time rendered, save the actual size
 CalculateSize();
 // Flag the sprite as rendered
 _rendered = true;
 }
 CalculateNewPosition(elapsedTime);
 // Set the new location for the sprite
 _ucSpriteUC.SetValue(Canvas.LeftProperty, _location.X);
 _ucSpriteUC.SetValue(Canvas.TopProperty, _location.Y);
}

What just happened?
The code to define an independent sprite is now held in the new SpriteWrapper class
(a subclass of UpdateableUIElement). As it is an abstract class, we will have to create
new subclasses inheriting from SpriteWrapper to specialize the behavior of our characters.

Now, the most common operations to display a sprite based on a UserControl instance
and move it in a Canvas are encapsulated in methods in this class. The instances of the
SpriteWrapper's subclasses will be real independent sprites capable of defining the most
complex behavior taking advantage of the skeleton defined by this superclass.

This material is copyright and is licensed for the sole use by Vadim Kudria on 4th October 2009

6352 108th St, , Forest Hills, , 11375

Download at WoweBook.Com

Combining Sprites with Backgrounds

[�0]

Every character with a particular behavior can have its own subclass. Therefore, we can
create new classes to manage the characters according to our needs. For example, if an alien
needs a rotation speed, we must add a new property or instance variable and override the
necessary methods to rotate the alien while it moves.

It is easier to manage multiple independent sprites using skeletons like this.

The CalculateSize method multiplies the actual size by the same scale transformations
used (0.5). We do this in order to keep things simple and to avoid losing the focus. However,
of course, this is not a very nice way to do this. It is useful for this example:

_size = new
 Size((double)_ucSpriteUC.GetValue(Canvas.ActualWidthProperty)
 * 0.5,(double)_ucSpriteUC.GetValue(
 Canvas.ActualHeightProperty) * 0.5);

Taking full advantage of object-oriented capabilities
One of the main problems that arises when generalizing a common behavior is that the
generalized code to coordinate a UserControl must create instances of the specific
subclasses that represent the UserControl. For example, the alien manager needs to create
an instance of BlueAlien (a subclass of UserControl created mostly through XAML).

Using the concepts introduced by the factory method class creational pattern, we can solve
this problem with great simplicity. The constructor calls the CreateSpriteUC abstract
method to assign the UserControl to the protected _ucSpriteUC variable, as shown
in the following line of code:

_ucSpriteUC = CreateSpriteUC();

The creation is encapsulated in this method, which is an abstract method and forces
subclasses to override it:

public abstract UserControl CreateSpriteUC();

It returns a new UserControl instance. Overriding this method, we can return instances
of any subclass of UserControl. Thus, we let the SpriteWrapper subclasses decide which
class to instantiate.

This is the principle of the factory method design pattern. It lets a class defer
instantiation to subclasses. Hence, each new implementation of a sprite will
have its new SpriteWrapper and UserControl subclasses.

This material is copyright and is licensed for the sole use by Vadim Kudria on 4th October 2009

6352 108th St, , Forest Hills, , 11375

Download at WoweBook.Com

Chapter 3

[�1]

Preparing the classes for inheritance
Apart from implementing a variation of the factory method design pattern, we had to
prepare the SpriteWrapper class for inheritance. We must override methods in order
to create specialized classes.

We must override the following methods in a SpriteWrapper subclass capable of
creating instances:

The constructor; This is used to call the base constructor and append any additional
initialization code that is needed. Remember that constructors do not require the
virtual keyword.

CreateSpriteUC: This is used to return a new instance of a specific
UserControl subclass.

Update: This is used to render each frame taking into account the elapsed time.
It is necessary to add additional code when the sprite represented by the subclass
adds new behaviors.

In order to simplify game development, it is very important to master
inheritance and design patterns as well as many other object-oriented
code reuse techniques. Simpler code is easier to understand and to
maintain. C# is a very powerful language and you can use that power to
simplify games development.

Wrapping a UserControl to manage it
One of the questions that might arise is why a sprite wrapper was used to manage a
UserControl instead of creating an interface. The answer is simple, to keep things simple,
and to take advantage of visual development tools.

Each UserControl has XAML code and C# code. However, if we take a look at the C# code
created automatically by the IDE (the .xaml.cs file), we will see a public partial class
definition, like this one:

public partial class BlueAlien : UserControl

We cannot add an interface or change the superclass for this UserControl subclass,
because the other part of the code is automatically generated from XAML, and it resides
in a file that we cannot modify (the .xaml.g.cs file). We have access to one part of the
complete class that inherits from UserControl. For this reason, we cannot add an interface
or change its superclass.

This material is copyright and is licensed for the sole use by Vadim Kudria on 4th October 2009

6352 108th St, , Forest Hills, , 11375

Download at WoweBook.Com

Combining Sprites with Backgrounds

[�2]

Thus, the simplest way to manage a sprite defined in a UserControl is to use a wrapper
class. That is exactly what we are doing. The easiest way to understand how this works is to
use it.

We can use many other mechanisms in order to achieve the same goal. For
example, we could create a lookless control, also known as Custom Control,
inheriting from the Control class (System.Windows.Controls).
Then, we could create a ControlTemplate to define its appearance.

Time for action – creating a superclass for some characters
Now, we are going to create specialized subclasses of SpriteWrapper for each character in
our game. As we have three different aliens in the game, we will create an AlienWrapper
class, to group the common behavior of the aliens, and then three subclasses to take full
advantage of object-oriented capabilities.

1.	 Stay in the SilverlightInvaders2DVector project.

2.	 Create a new abstract class—AlienWrapper (a subclass of SpriteWrapper)
—using the following declaration:

public abstract class AlienWrapper : SpriteWrapper

3.	 Add the following protected variables (the aliens have to rotate at a
certain speed):

// The current rotation angle
protected double _angle;
// The rotation speed
protected double _rotationSpeed;

4.	 Add the following property:

public double rotationSpeed
{
 set { _rotationSpeed = value; }
 get { return _rotationSpeed; }
}

This material is copyright and is licensed for the sole use by Vadim Kudria on 4th October 2009

6352 108th St, , Forest Hills, , 11375

Download at WoweBook.Com

Chapter 3

[�3]

5.	 Add the following constructor that calls the base constructor:

public AlienWrapper(Canvas cnvParent, Point initialLocation)
 : base(cnvParent, initialLocation)
{
 // Add any necessary additional instructions
 // The default speed for X = 50
 _speed = new Point(50, 0);
 // The default rotation speed = 0
 _rotationSpeed = 0;
 _angle = 0;
}

6.	 Add the following public method to calculate the sprite's rotation angle, taking into
account its rotation speed setting and the elapsed time:

public void CalculateNewAngle(TimeSpan elapsedTime)
{
 // Update the angle according to the elapsed time and the speed
 if (_rendered)
 _angle = ((_angle +_rotationSpeed *
 (double)elapsedTime.TotalSeconds) % 360);
}

7.	 Add the following public method to simplify the process of inverting the sprite's
rotation speed without changing the actual speed:

public void InvertRotationSpeed()
{
 _rotationSpeed *= -1;
}

What just happened?
The code to define the common behavior for the aliens is now held in the new
AlienWrapper class (a subclass of SpriteWrapper). As it is an abstract class, we
will have to create new subclasses inheriting from AlienWrapper to specialize the
behavior of each alien.

The class adds variables, properties, and methods to handle the rotation of the sprite, taking
into account the sprite's rotation speed and the elapsed time.

This material is copyright and is licensed for the sole use by Vadim Kudria on 4th October 2009

6352 108th St, , Forest Hills, , 11375

Download at WoweBook.Com

Combining Sprites with Backgrounds

[�4]

Time for action – creating the subclasses for the characters
Now, we are going to create specialized subclasses for each character. Some of them are
subclasses of SpriteWrapper and others of AlienWrapper. The steps to create each
subclass of AlienWrapper are very similar. However, we will discuss how to refactor the
code later. This is our first intent to generalize many behaviors.

1.	 Stay in the SilverlightInvaders2DVector project.

2.	 Create a new class—BlueAlienWrapper (a subclass of AlienWrapper)—using
the following declaration:

public class BlueAlienWrapper : AlienWrapper

3.	 Add the following constructor that calls the base constructor and defines the
specific rotation speed for this kind of alien:

public BlueAlienWrapper(Canvas cnvParent, Point initialLocation)

 : base(cnvParent, initialLocation)
{
 // Add any necessary additional instructions
 rotationSpeed = 5;
}

4.	 Override the CreateSpriteUC method to create an instance of the BlueAlien class:

public override UserControl CreateSpriteUC()
{
 return new BlueAlien();
}

5.	 Override the Update method to call the base method and then calculate the new
angle and update the rotate transformation parameter:

public override void Update(TimeSpan elapsedTime)
{
 base.Update(elapsedTime);
 CalculateNewAngle(elapsedTime);
 (_ucSpriteUC as BlueAlien).rotateSprite.Angle = _angle;
}

6.	 Create a new class, RedAlienWrapper (a subclass of AlienWrapper)
using the following declaration:

public class RedAlienWrapper : AlienWrapper

This material is copyright and is licensed for the sole use by Vadim Kudria on 4th October 2009

6352 108th St, , Forest Hills, , 11375

Download at WoweBook.Com

Chapter 3

[�5]

7.	 Add the following constructor that calls the base constructor and defines the
specific rotation speed for this kind of alien:

public RedAlienWrapper(Canvas cnvParent, Point initialLocation)
 : base(cnvParent, initialLocation)
{
 // Add any necessary additional instructions
 rotationSpeed = 15;
}

8.	 Override the CreateSpriteUC method to create an instance of the
RedAlien class:

public override UserControl CreateSpriteUC()
{
 return new RedAlien();
}

9.	 Override the Update method to call the base method and then calculate the
new angle and update the rotate transformation parameter:

public override void Update(TimeSpan elapsedTime)
{
 base.Update(elapsedTime);
 CalculateNewAngle(elapsedTime);
 (_ucSpriteUC as RedAlien).rotateSprite.Angle = _angle;
}

10.	Create a new class—GreenAlienWrapper (a subclass of AlienWrapper)—using
the following declaration:

public class GreenAlienWrapper : AlienWrapper

11.	Add the following constructor that calls the base constructor and defines the
specific rotation speed for this kind of alien:

public GreenAlienWrapper(Canvas cnvParent, Point initialLocation)
 : base(cnvParent, initialLocation)
{
 // Add any necessary additional instructions
 rotationSpeed = 25;
}

This material is copyright and is licensed for the sole use by Vadim Kudria on 4th October 2009

6352 108th St, , Forest Hills, , 11375

Download at WoweBook.Com

Combining Sprites with Backgrounds

[�6]

12.	Override the CreateSpriteUC method to create an instance of the
GreenAlien class:

public override UserControl CreateSpriteUC()
{
 return new GreenAlien();
}

13.	Override the Update method to call the base method and then calculate the new
angle and update the rotate transformation parameter:

public override void Update(TimeSpan elapsedTime)
{
 base.Update(elapsedTime);
 CalculateNewAngle(elapsedTime);
 (_ucSpriteUC as GreenAlien).rotateSprite.Angle = _angle;
}

14.	Create a new class, ShipWrapper (a subclass of SpriteWrapper) using the
following declaration:

public class ShipWrapper : SpriteWrapper

15.	Add the following protected variables (the ship has to move up and down,
depending on which key the player presses):

// Speed to move in the X axis
protected double _incrementX = 50;
// Speed to move in the Y axis
protected double _incrementY = 50;

16.	Add the following constructor that calls the base constructor, and leaves a space
to fill in the gaps if additional initialization code is needed:

public ShipWrapper(Canvas cnvParent, Point initialLocation)

 : base(cnvParent, initialLocation)
{
 // Add any necessary additional instructions
}

17.	Override the CreateSpriteUC method to create an instance of the Ship class:

public override UserControl CreateSpriteUC()
{
 return new Ship();
}

This material is copyright and is licensed for the sole use by Vadim Kudria on 4th October 2009

6352 108th St, , Forest Hills, , 11375

Download at WoweBook.Com

Chapter 3

[�7]

18.	Add the following public methods to simplify the process of moving the sprite:

public void GoUp()
{
 _speed.Y = -_incrementY;
 _speed.X = 0;
}
public void GoDown()
{
 _speed.Y = _incrementY;
 _speed.X = 0;
}
public void GoLeft()
{
 _speed.X = -_incrementX;
 _speed.Y = 0;
}
public void GoRight()
{
 _speed.X = _incrementX;
 _speed.Y = 0;
}

19.	Create a new class—TentWrapper (a subclass of SpriteWrapper)—using the
following declaration:

public class TentWrapper : SpriteWrapper

20.	Add the following constructor that calls the base constructor, and leaves a space
to fill in the gaps if additional initialization code is needed:

public TentWrapper(Canvas cnvParent, Point initialLocation)

 : base(cnvParent, initialLocation)
{
 // Add any necessary additional instructions
}

21.	Override the CreateSpriteUC method to create an instance of the Tent class:

public override UserControl CreateSpriteUC()
{
 return new Tent();
}

This material is copyright and is licensed for the sole use by Vadim Kudria on 4th October 2009

6352 108th St, , Forest Hills, , 11375

Download at WoweBook.Com

Combining Sprites with Backgrounds

[��]

What just happened?
Now, we have the following instantiable subclasses to create sprites on the fly:

BlueAlienWrapper

RedAlienWrapper

GreenAlienWrapper

ShipWrapper

TentWrapper

The complete UML diagram for all the classes created in shown in the following picture:

UpdateableUIElement
Abstract Class

SpriteWrapper
Abstract Class

UpdateableUIElement

TentWrapper
Class

SpriteWrapper

ShipWrapper
Class

SpriteWrapper

AlienWrapper

RedAlienWrapper
Class

AlienWrapper

BlueAlienWrapper
Class

GreenAlienWrapper
Class

AlienWrapper

AlienWrapper
Abstract Class

SpriteWrapper

Visual C# or Visual Studio Standard Editions and greater offer an embedded
Class Designer. In these versions, you can right-click on the project's name
in the Solution Explorer and then click on View Class Diagram. This way, you
can create a visual diagram of the classes that compose a project, as the one
previously shown.

We have overridden the CreateSpriteUC method to associate each instantiable
subclass with a specific UserControl. When we create an instance of any of the previously
mentioned classes, there will be a new instance of a UserControl created and assigned to
the _ucSpriteUC protected variable. Hence, the code in the sprite wrappers has access to
the UserControl instance to perform transformations and any other necessary operations.

The three aliens have a rotation speed and rotate taking into account the elapsed time.
They also have different speed values.

This material is copyright and is licensed for the sole use by Vadim Kudria on 4th October 2009

6352 108th St, , Forest Hills, , 11375

Download at WoweBook.Com

Chapter 3

[��]

The ship offers four methods for specifying movement directions:

GoUp

GoDown

GoLeft

GoRight

Time for action – creating methods for the game loop
Firstly, we are going to create many new methods in the MainPage class for creating the
sprites using the SpriteWrapper subclasses, animate them, and control some of their
actions. Then, we will be able to write a complex game loop:

1.	 Stay in the SilverlightInvaders2DVector project.

2.	 Open MainPage.xaml.cs and add the following lines to define private
variables in the public partial class MainPage : UserControl:

// The aliens
private List<AlienWrapper> _aliens;
// The total number of tents
private int _totalTents = 4;
// The total number of rows and cols for the aliens
private int _totalRows = 5;
private int _totalCols = 11;
// The four tents
private List<TentWrapper> _tents;
// The ship
private ShipWrapper _ship;
// The aliens' row height
private double _rowHeight = 75;
// The aliens' col width
private double _colWidth = 75;
// Holds the time when the method finished rendering a frame
private DateTime _LastTick;
// The upper left corner for the animation
private Point _upperLeftCorner = new Point(0, 0);
// The bottom right corner for the animation
private Point _bottomRightCorner = new Point(0, 0);
// The last bound touched was the right bound
private bool _lastTouchRight = false;

This material is copyright and is licensed for the sole use by Vadim Kudria on 4th October 2009

6352 108th St, , Forest Hills, , 11375

Download at WoweBook.Com

Combining Sprites with Backgrounds

[�0]

3.	 Add the following method to create the sprites for the aliens organized in
rows and columns:

private void CreateAliens()
{
// Create the list of aliens
 _aliens = new List<AlienWrapper>(_totalRows * _totalCols);
 AlienWrapper alien;
 Point position;
 for (int col = 0; col <= _totalCols; col++)
 {
 for (int row = 0; row < _totalRows; row++)
 {
 position = new Point((col * _colWidth), (row *
 _rowHeight));
 switch (row)
 {
 case 0:
 alien = new GreenAlienWrapper(LayoutRoot,
 position);
 break;
 case 1:
 alien = new BlueAlienWrapper(LayoutRoot,
 position);
 break;
 case 2:
 alien = new BlueAlienWrapper(LayoutRoot,
 position);
 break;
 case 3:
 alien = new RedAlienWrapper(LayoutRoot,
 position);
 break;
 case 4:
 alien = new RedAlienWrapper(LayoutRoot,
 position);
 break;
 default:
 alien = new RedAlienWrapper(LayoutRoot,
 position);
 break;
 }
 _aliens.Add(alien);
 }
 }
}

This material is copyright and is licensed for the sole use by Vadim Kudria on 4th October 2009

6352 108th St, , Forest Hills, , 11375

Download at WoweBook.Com

Chapter 3

[�1]

4.	 Add the following method to create the sprites for the tents:

private void CreateTents()
{
 _tents = new List<TentWrapper>(_totalTents);
 for (int i = 0; i < _totalTents; i++)
 {
 _tents.Add(new TentWrapper(LayoutRoot,
 new Point(250 * i, 600)));
 }
}

5.	 Now, add the following method to create the sprite for the ship:

private void CreateShip()
{
 // Create the ship
 _ship = new ShipWrapper(LayoutRoot, new Point(500, 800));
}

6.	 Add the following method to translate the aliens down one row and invert
their direction:

private void GoDownOneRow()
{
 // Bound reached, invert direction
 for (int i = 0; i < _aliens.Count; i++)
 {
 if (_aliens[i].isAlive)
 {
 _aliens[i].InvertXDirection();
 _aliens[i].InvertRotationSpeed();
 // Advance one row
 _aliens[i].location = new Point(_aliens[i].location.X,
 _aliens[i].location.Y + _rowHeight);
 }
 }
}

7.	 Add the following methods to check the bounds for the aliens' animation:

private void CheckLeftBound()
{
 // If any alien touches the left bound, go down and invert
 direction
 for (int i = 0; i < _aliens.Count; i++)
 {

This material is copyright and is licensed for the sole use by Vadim Kudria on 4th October 2009

6352 108th St, , Forest Hills, , 11375

Download at WoweBook.Com

Combining Sprites with Backgrounds

[�2]

 if (_aliens[i].isAlive)
 {
 if (_aliens[i].location.X < (_upperLeftCorner.X + 1))
 {
 // Left bound reached
 GoDownOneRow();
 _lastTouchRight = false;
 break;
 }
 }
 }
}
private void CheckRightBound()
{
 // If any alien touches the right bound, go down and invert
 direction
 for (int i = 0; i < _aliens.Count; i++)
 {
 if (_aliens[i].isAlive)
 {
 if (_aliens[i].location.X > (_bottomRightCorner.X -
 _colWidth))
 {
 // Right bound reached
 GoDownOneRow();
 _lastTouchRight = true;
 break;
 }
 }
 }
}
private void CheckBounds()
{
 if (_lastTouchRight)
 CheckLeftBound();
 else
 CheckRightBound();
}

What just happened?
We are going to create a complex game loop. Therefore, it is very important to use methods
in order to make the code easy to read, understand, modify, and re-use.

We did not create a new class to handle the game. We want to keep things simple because
we have added many classes to work with the sprites.

This material is copyright and is licensed for the sole use by Vadim Kudria on 4th October 2009

6352 108th St, , Forest Hills, , 11375

Download at WoweBook.Com

Chapter 3

[�3]

Creating objects on the fly
The subclasses of SpriteWrapper allow us to create sprites on the fly—as needed. Thus,
we do not have to create the sprites in XAML code as we did in the previous raster version
of the game.

The ability to create new sprites at any moment in the game is
very important. We can do this by creating new instances of the
SpriteWrapper subclasses, which generate new UserControl
instances and render them when necessary.

For example, the CreateAliens method creates 55 aliens organized in five rows and
eleven columns. However, the creation process is a bit complex. We have three subclasses
of AlienWrapper. The first row uses instances of GreenAlienWrapper. The second and
the third rows use instances of BlueAlienWrapper. Finally, the fourth and fifth rows use
instances of RedAlienWrapper. Nevertheless, as they are all instances of AlienWrapper,
we use a list of this superclass to store them.

This is the list of aliens:

private List<AlienWrapper> _aliens;

Saving each instance to this list allows us to control the aliens iterating through this list. The
numbers of row and column are used to calculate a initial position for each alien:

position = new Point((col * _colWidth), (row * _rowHeight));

Then, each alien is created and added to the list using this position:

alien = new GreenAlienWrapper(LayoutRoot, position);

Mastering the use of lists, arrays, and collections is a must when developing
complex 2D and 3D games.

Managing dynamic objects
In this case, we are working with 55 aliens. However, by changing two simple values,
_totalRows and _totalCols, we can change the number of sprites created. When
working with games, we have to create code capable of managing dynamic objects.

For example, we can have the following situation:

Stage 1: 55 aliens (5 rows and 11 columns)

Stage 2: 66 aliens (6 rows and 11 columns)

Stage 3: 72 aliens (6 rows and 12 columns)

This material is copyright and is licensed for the sole use by Vadim Kudria on 4th October 2009

6352 108th St, , Forest Hills, , 11375

Download at WoweBook.Com

Combining Sprites with Backgrounds

[�4]

We do not want to write too much new code for each additional stage. We want to be able
to handle many dynamic objects, created on the fly, as needed.

It is very easy to work with dynamic objects using lists and taking advantage of
object-oriented capabilities like inheritance and polymorphism—also known as dynamic
inheritance. For example, the GoDownOneRow method inverts the movement direction and
the rotation speed of all the aliens and makes them advance one row. However, it does this
after checking whether the sprite is alive or not (the bool value of the isAlive property):

for (int i = 0; i < _aliens.Count; i++)
{
 if (_aliens[i].isAlive)
 {
 _aliens[i].InvertXDirection();
 _aliens[i].InvertRotationSpeed();
 _aliens[i].location = new Point(_aliens[i].location.X,
 _aliens[i].location.Y + _rowHeight);
 }
}

We defined the methods InvertXDirection and InvertRotationSpeed in the
AlienWrapper superclass. Therefore, the three alien specific sprite wrappers have these
methods. We have to consider these situations when designing the classes for the game.

Time for action – writing the game loop
It is time to write the code for the main game loop. We have to show the characters, make
them move and control the ship movement according to the keys pressed by the player.

1.	 Stay in the SilverlightInvaders2DVector project.

2.	 Open the XAML code for MainPage.xaml and replace the existing code with the
following (you will see a button with the title Start the game):

<UserControl x:Class="SilverlightInvaders2DVector.MainPage"
 xmlns="http://schemas.microsoft.com/winfx/2006/xaml/
 presentation"
 xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml"
 Width="1366" Height="768"
 xmlns:SilverlightInvaders2D=
 "clr-namespace:SilverlightInvaders2DVector">
 <Canvas x:Name="LayoutRoot" Background="White">
 <!-- A button to start the game loop -->
 <Button x:Name="btnStartGame"
 Content="Start the game!"

This material is copyright and is licensed for the sole use by Vadim Kudria on 4th October 2009

6352 108th St, , Forest Hills, , 11375

Download at WoweBook.Com

Chapter 3

[�5]

 Canvas.Left="200" Canvas.Top="20"
 Width="200" Height="30" Click="btnStartGame_Click">
 </Button>
 </Canvas>
</UserControl>

3.	 Open MainPage.xaml.cs.

4.	 Now, add the following lines of code, to program the event handler that will render
each frame and update the necessary SpriteWrapper instances calling many
previously programmed methods:

private void RenderFrame(object sender, EventArgs e)
{
 // Hold the elapsed time after the last call to this method
 TimeSpan elapsedTime = (DateTime.Now - _LastTick);

 for (int iTent = 0; iTent < _totalTents; iTent++)
 {
 _tents[iTent].Update(elapsedTime);
 }
 for (int iAlien = 0; iAlien < _aliens.Count(); iAlien++)
 {
 _aliens[iAlien].Update(elapsedTime);
 }
 _ship.Update(elapsedTime);
 CheckBounds();
 // Save the current time
 _LastTick = DateTime.Now;
}

5.	 Add the following lines of code, to program the event handler that will check the
key pressed and move the ship:

private void Page_KeyDown (object sender, KeyEventArgs e)
{
 switch (e.Key)
 {
 case Key.Left:
 _ship.GoLeft();
 break;
 case Key.Right:
 _ship.GoRight();
 break;
 case Key.Up:
 _ship.GoUp();

This material is copyright and is licensed for the sole use by Vadim Kudria on 4th October 2009

6352 108th St, , Forest Hills, , 11375

Download at WoweBook.Com

Combining Sprites with Backgrounds

[�6]

 break;
 case Key.Down:
 _ship.GoDown();
 break;
 }
}

6.	 Finally, add the following lines of code, to program the event handler for the
button's Click event (this code will create all the sprites and start the game):

private void btnStartGame_Click(object sender, RoutedEventArgs e)
{
 // Hide the button
 btnStartGame.Visibility = Visibility.Collapsed;
 CreateAliens();
 CreateTents();
 CreateShip();
 // Define the upper left corner and bottom right corner for the
 animations
 _upperLeftCorner = new Point(_aliens[0].location.X,
 _aliens[0].location.Y);
 _bottomRightCorner = new Point(LayoutRoot.ActualWidth –
 _colWidth, LayoutRoot.ActualHeight - _rowHeight);
 // Save the current time
 _LastTick = DateTime.Now;
 // Add an EventHandler to render each frame
 CompositionTarget.Rendering += RenderFrame;
 // Add an EventHandler to check for each key down
 this.KeyDown += new KeyEventHandler(Page_KeyDown);
}

7.	 Build and run the solution. Click on the button and the 55 aliens will move from left
to right, down a row, right to left, down a row, left to right, and so on. At the same
time, they will rotate around their centers clockwise and counterclockwise, as
shown in the following picture:

This material is copyright and is licensed for the sole use by Vadim Kudria on 4th October 2009

6352 108th St, , Forest Hills, , 11375

Download at WoweBook.Com

Chapter 3

[�7]

What just happened?
You have dozens of vector-based XAML sprites moving in a Silverlight 3 application.
The game looks really nice. It seems that you will be part of a 3D games development
team very soon!

We can also move the ship using the cursor movement keys. The ship moves everywhere,
because we want to keep it simple. We will have more time to focus on controlling input
devices to provide great feedback later.

The aliens are always moving. Once we press a cursor movement key, the ship starts moving.
The tents (Halloween pumpkins) are motionless, but they are also sprites based on the
SpriteWrapper superclass. Hence we can add some animation to the tents.

The code programmed in the button's Click event handler is very simple, because it calls
previously added methods to do the following tasks:

Create the sprites:

CreateAliens();
CreateTents();
CreateShip();

This material is copyright and is licensed for the sole use by Vadim Kudria on 4th October 2009

6352 108th St, , Forest Hills, , 11375

Download at WoweBook.Com

Combining Sprites with Backgrounds

[��]

Define the upper-left corner and bottom-right corner for the aliens' animation:
_upperLeftCorner = new Point(_aliens[0].location.X,
 _aliens[0].location.Y);
_bottomRightCorner = new Point(LayoutRoot.ActualWidth - _colWidth,
 LayoutRoot.ActualHeight - _rowHeight);

Save the current time for the first time:
_LastTick = DateTime.Now;

Attach an event handler to render each frame:
CompositionTarget.Rendering += RenderFrame;

Attach an event handler to be triggered when a key is down:
this.KeyDown += new KeyEventHandler(Page_KeyDown);

That is all. The events begin to fire and the frames start rendering.

Animating multiple sprites
The RenderFrame method acts as the main game loop. Thus, it is responsible for animating
the sprites. However, the code is very simple:

1. It calculates the elapsed time after the last call to this method:
TimeSpan elapsedTime = (DateTime.Now - _LastTick);

2. It calls the Update method for all the SpriteWrapper instances, sending the
calculated elapsed time as the unique parameter. It does this for the tents, the aliens
and the ship:

for (int iTent = 0; iTent < _totalTents; iTent++)
{
 _tents[iTent].Update(elapsedTime);
}

for (int iAlien = 0; iAlien < _aliens.Count(); iAlien++)
{
 _aliens[iAlien].Update(elapsedTime);
}
_ship.Update(elapsedTime);

3. Once the sprites are updated, it calls the CheckBounds method. This method is
responsible of moving the aliens down and inverting the movement direction and
the rotation direction when the bound has reached.

4. Then it saves the current time that will be used in the next call to RenderFrame,
to update all the sprites taking into account the elapsed time:

_LastTick = DateTime.Now;

This material is copyright and is licensed for the sole use by Vadim Kudria on 4th October 2009

6352 108th St, , Forest Hills, , 11375

Download at WoweBook.Com

Chapter 3

[��]

Using the subclasses of SpriteWrapper or any other object-oriented
design to define the characters and their common behavior, we can
simplify the game loops.

Managing a complex game loop
The more complex the game, the more complex the main game loop. However, using
methods with very clear names, we can create a complex game loop with code that we
can understand.

If you do not understand the code in the main game loop, you will not
be able to finish the game's development. Therefore, the code in the
main game loop must be very easy to read.

In this case, we also added some very simple code to the KeyDown event handler. When the
player presses one of the cursor movement keys, the event calls one of the four methods
offered by the ShipWrapper instance to specify movement directions. Then, these new
movement directions will be taken into account by the main game loop, controlled in the
previously explained RenderFrame method.

Time for action – detecting collisions between 2D characters
Now, we are going to add a very simple collision detection capability to the sprites.

This is not a precise collision detection algorithm. We are going to use a very
simple technique to give some life to the game. However, we will improve our
collision detection algorithms later in the following chapters. Our current focus
is on a good object-oriented design for the sprites and on the modification of
the game loop.

We want the aliens to show a different color when they collide with the ship. We want to
see the changes necessary to add some logic to the game. We will do that by following
these steps:

1.	 Stay in the SilverlightInvaders2DVector project.

2.	 Open the code for the superclass SpriteWrapper.

3.	 Add the following public method to return a rectangle with the sprite's bounds:

public Rect UCBounds()
{
 return new Rect(_location, _size);
}

This material is copyright and is licensed for the sole use by Vadim Kudria on 4th October 2009

6352 108th St, , Forest Hills, , 11375

Download at WoweBook.Com

Combining Sprites with Backgrounds

[100]

4.	 Add the following public method to determine whether the SpriteWrapper
instance received as a parameter collides with this sprite's bounds:

public bool CollidesWith(SpriteWrapper spriteToCheck)
{
 Rect rect1 = UCBounds();
 Rect rect2 = spriteToCheck.UCBounds();
 rect1.Intersect(rect2);
 return (rect1 != Rect.Empty);
}

5.	 Add the following public method to paint the sprite with a linear gradient from the
first Color, which is received as a parameter, to the second one:

public void PaintGradient(Color newColor1, Color newColor2)
{
 LinearGradientBrush linearGradientBrush = new
 nearGradientBrush();
 GradientStop gradientStop1 = new GradientStop();
 gradientStop1.Color = newColor1;
 gradientStop1.Offset = 0;
 GradientStop gradientStop2 = new GradientStop();
 gradientStop2.Color = newColor2;
 gradientStop2.Offset = 1.0;
 linearGradientBrush.StartPoint = new Point(0, 0);
 linearGradientBrush.EndPoint = new Point(1, 1);
 linearGradientBrush.GradientStops.Add(gradientStop1);
 linearGradientBrush.GradientStops.Add(gradientStop2);

 // Obtain the main Canvas by its name
 // All the User Controls associated to a SpriteWrapper
 // must use the name LayoutRoot for the main Canvas
 Canvas canvas = (_ucSpriteUC.FindName("LayoutRoot") as Canvas);
 for (int i = 0; i < canvas.Children.Count; i++)
 {
 if (canvas.Children[i] is Path)
 {
 Path path = (canvas.Children[i] as Path);
 // Fill each path with the linear gradient brush
 path.Fill = linearGradientBrush;
 }
 }
}

This material is copyright and is licensed for the sole use by Vadim Kudria on 4th October 2009

6352 108th St, , Forest Hills, , 11375

Download at WoweBook.Com

Chapter 3

[101]

6.	 Now, open MainPage.xaml.cs and add the following method to check for collisions
between the ship and the aliens that are alive:

private void CheckCollisions()
{
 for (int iAlien = 0; iAlien < _aliens.Count(); iAlien++)
 {
 if (_aliens[iAlien].isAlive)
 {
 if (_ship.CollidesWith(_aliens[iAlien]))
 {
 _aliens[iAlien].PaintGradient(Colors.Red, Colors.White);
 _aliens[iAlien].isAlive = false;
 }
 }
 }
}

7.	 Add the following line of code to the RenderFrame method, after the
line CheckBounds();:

CheckCollisions();

8.	 Build and run the solution. Click on the button and move the ship to the aliens.
Every time you touch an alien, it will stop moving and it will rotate on the spot,
painted with a red to white gradient, as shown in the following picture:

This material is copyright and is licensed for the sole use by Vadim Kudria on 4th October 2009

6352 108th St, , Forest Hills, , 11375

Download at WoweBook.Com

Combining Sprites with Backgrounds

[102]

What just happened?
When you move the ship, you can change the aliens' colors and stop their advance against
the earth!

We added a few methods to the SpriteWrapper superclass and they allowed us to detect
collisions between any sprites that are inherited from it.

The UCBounds function returns a rectangle with the sprite's bounds, taking into account its
current location and its actual size.

The CollidesWith function receives a SpriteWrapper as a parameter and returns a bool
value indicating the result of the collision-detection algorithm between this instance and the
one received. The algorithm is very simple, as it intersects both bounding boxes. It uses the
Intersect method that assigns the intersection between the Rect (rect1) and the Rect
received as a parameter (rect2):

rect1.Intersect(rect2);

If the result is not an empty rectangle (Rect.Empty), there is an intersection:

return (rect1 != Rect.Empty);

This does not mean that we have a real visual collision between the two graphics. The results
are not accurate, because the bounding box (the rectangle) is incompletely filled by the
shapes. When the rectangles collide but the shapes do not, the algorithm will still return
true, as shown in the following picture:

This material is copyright and is licensed for the sole use by Vadim Kudria on 4th October 2009

6352 108th St, , Forest Hills, , 11375

Download at WoweBook.Com

Chapter 3

[103]

An ideal algorithm will return true only when real paths collision exists. However, this
requires extra work and we are not focussing on collision detection algorithms yet.
Thus, we can improve it later.

We added a CheckCollisions method in the MainPage class. It iterates through the alive
aliens to check whether one of them has collided with the ship. If this happens, it calls the
PaintGradient method for that alien and sets its isAlive property to false.

if (_ship.CollidesWith(_aliens[iAlien]))
{
 _aliens[iAlien].PaintGradient(Colors.Red, Colors.White);
 _aliens[iAlien].isAlive = false;
}

The RenderFrame method calls the CheckCollisions procedure after checking the
bounds for the aliens. As we can see, the main game loop is still very simple to understand.

Using colors to paint sprites
When the ship collides with an alien, the PaintGradient method creates a new
LinearGradientBrush and two GradientStop instances, one for the starting
color and the other for the ending color:

LinearGradientBrush linearGradientBrush = new LinearGradientBrush();
GradientStop gradientStop1 = new GradientStop();
gradientStop1.Color = newColor1;
gradientStop1.Offset = 0;
GradientStop gradientStop2 = new GradientStop();
gradientStop2.Color = newColor2;
gradientStop2.Offset = 1.0;

It defines the starting point and ending point for the gradient:

linearGradientBrush.StartPoint = new Point(0, 0);
linearGradientBrush.EndPoint = new Point(1, 1);

It adds each GradientStop instance to the GradientStops collection:

linearGradientBrush.GradientStops.Add(gradientStop1);
linearGradientBrush.GradientStops.Add(gradientStop2);

The brush is ready to be applied to the Fill property of each path that is a child of the
main Canvas.

This material is copyright and is licensed for the sole use by Vadim Kudria on 4th October 2009

6352 108th St, , Forest Hills, , 11375

Download at WoweBook.Com

Combining Sprites with Backgrounds

[104]

In order to find the main Canvas, it uses the FindName method, passing "LayoutRoot"
as a parameter. We used that name in the User Controls created to be used as sprites. As it
returns an object, it is necessary to cast the result as a Canvas:

Canvas canvas = (_ucSpriteUC.FindName("LayoutRoot") as Canvas);

We must be very careful using the FindName method and casting its
result. It is very important to use naming conventions for the objects
defined in XAML, to avoid problems with the FindName method like
inappropriate castings.

Once it has the brush and the Canvas, it iterates through each of its children and changes
the Fill property for each Path:

for (int i = 0; i < canvas.Children.Count; i++)
{
 if (canvas.Children[i] is Path)
 {
 Path path = (canvas.Children[i] as Path);
 // Fill each path with the linear gradient brush
 path.Fill = linearGradientBrush;
 }
}

The code is a bit complex because creating Silverlight brushes in C# requires many steps.

Have a go hero – using backgrounds
The competition organizers have uploaded your game preview to the game contest
website. Guess what! It is the most desired game. The web site's visitors want your
game to be finished.

Create a new subclass of UpdateableUIElement, BackgroundWrapper. Use it to create
a raster background that moves while the ship changes its location. It is easy, you have the
necessary knowledge to add a background full of stars to this game.

Have a go hero – preparing Invaders 3000
Once you have added the background, you have to complete the game, using the same
object-oriented designs learned in this chapter.

Enhance the animation of the aliens, when they move down. The animation should be
smoother and not just going down an entire row.

Add a vector graphic and a SpriteWrapper subclass to represent the ship's missile.

This material is copyright and is licensed for the sole use by Vadim Kudria on 4th October 2009

6352 108th St, , Forest Hills, , 11375

Download at WoweBook.Com

Chapter 3

[105]

Add a vector graphic and a SpriteWrapper subclass to represent the alien's bullets.

Let the player shoot missiles using the space bar. You will need to create sprites on the fly.

If the missile collides with an alien, make it invisible.

If a bullet collides with the ship, end the game.

Animate the tents to move from one side to the other.

Did you finish this game? Improve it using diagonal bullets.

Pop quiz – simplifying game loops
1. To rotate an XAML graphic around its center point, you must specify the relative

RenderTransformOrigin to:

a. 0.5,0.5

b. 0.0,0.0

c. 1.0,0.5

2. In order to create the appropriate instance of a subclass of the UserControl class,
we used a variation of:

a. The class creational pattern in the factory.

b. The factory method class creational pattern.

c. The pattern factory mechanism class creational.

3. An abstract class:

a. Does not allow instantiation.

b. Allows instantiation.

c. Does not allow inheritance.

4. The line rect1.Intersect(rect2);:

a. Returns the intersection between rect1 and rect2 as a result.

b. Returns a bool value indicating whether rect1 and rect2 intersect.

c. Saves the intersection between rect1 and rect2 as a new Rect in rect1.

5. The line (_ucSpriteUC.FindName("LayoutRoot") as Canvas):

a. Creates a new Canvas named LayoutRoot and stores it as a
child of _ucSpriteUC.

b. Returns the object named LayoutRoot in _ucSpriteUC as a Canvas.

c. Returns the first object of the type LayoutRoot similar to a Canvas.

This material is copyright and is licensed for the sole use by Vadim Kudria on 4th October 2009

6352 108th St, , Forest Hills, , 11375

Download at WoweBook.Com

Combining Sprites with Backgrounds

[106]

Summary
We learned a lot in this chapter about game loops, object-oriented classes for a game and
working with lists of objects. Specifically, we animated independent sprites at the same time,
while responding to the keys pressed by the player to control characters and some game
logic. We transformed complex game loops in easy to understand code, combining methods
with a good object-oriented design. We understood the creation of objects on the fly and
the basics of a game logic. We also began working with a simple collision algorithm and we
applied everything learned to animate other elements like backgrounds.

Now that we've learned about the advanced multiple sprites animation and control
combined with object-oriented designs for games, we're ready to add a new dimension to
our games and to begin working with 3D characters, which is the topic of the next chapter.

This material is copyright and is licensed for the sole use by Vadim Kudria on 4th October 2009

6352 108th St, , Forest Hills, , 11375

Download at WoweBook.Com

4
Working with 3D Characters

In order to create a nice 3D scene for a game, we must be able to work with 3D
DCC tools and then be able to load the models in our application. This seems to
be an easy task, involving just a few steps. However, it involves many file format
conversions that usually generate a lot of incompatibilities. There is always
trouble just around the corner when working with 3D meshes.Hence, we must
use the right tools and procedures to achieve our desired result.

In this chapter, we will take 3D elements from popular and professional 3D DCC tools and we
will show them rendered in real-time on the screen. By reading it and following the exercises
we will learn to:

Understand how to work in a 3D world that is shown in a 2D screen

Take advantage of 3D DCC tools to create 3D models for our games

Prepare the 3D elements to be loaded into our games

Understand hardware and software real-time rendering processes

Control transformations applied to meshes and 3D elements

The second remake assignment
So far, we have been working with raster and vector based sprites in 2D scenes. We were
able to use a good object-oriented design to generalize the most common tasks related to
sprite management. However, our first goal is to develop 3D scenes using Silverlight 3. How
can we load and display 3D characters in a 3D space using Silverlight?

This material is copyright and is licensed for the sole use by Vadim Kudria on 4th October 2009

6352 108th St, , Forest Hills, , 11375

Download at WoweBook.Com

Working with 3D Characters

[10�]

We can do this by exploiting the powerful features offered by many 3D DCC tools to create and
export 3D models to the file formats that are compatible with the Silverlight 3D engine. Then,
we can combine these models with a good object-oriented design and we will be able to use
similar principles to the ones learned for raster and vector based sprites, but working in a 3D
space. It is time to begin working with 3D games, in particular a 3D space invaders game.

The key to success is preparing the 3D models before exporting them to the
required file formats. We must understand how 3D DCC tools work in order
to create compatible models for our games.

Time for Action – exporting a 3D model without
considering textures

The vector-based prototype of the remake was indeed successful. You have signed your first
contract to develop a new remake! This time, you will have to create a 3D remake. Your first
assignment is to work with a 3D digital artist to choose a 3D model for the spaceship. In
order to do so, you have to watch the model being rendered, and rotate it in the 3D space.
This will allow you and the 3D digital artist to decide whether the spaceship is suitable or not
for this new game.

The 3D digital artist has been creating 3D models for DirectX games. Therefore, he is used to
working with the DirectX .x file format. As you do not know the appropriate 3D engine to use
with Silverlight in order to load the model, your first tests will be done using an XBAP WPF
application and an XAML 3D model. This will allow you to interact with the 3D model.

First, we are going to convert the model to the XAML file format using an open source
3D DCC tool:

1.	 Download the spaceship model in Direct X .x format from XNA Fusion's website
(http://www.xnafusion.com). This website offers many 3D models with low
polygon counts, with a Creative Commons License (http://creativecommons.
org/licenses/by/3.0), appropriate for usage in games using real-time
rendering. The link for the spaceship preview http://www.xnafusion.
com/?p=97 and the link for downloading the compressed (.zip) file with the
model and the textures is http://www.xnafusion.com/wp-content/
uploads/2009/02/ship_06.zip. Save all the uncompressed files and foldersSave all the uncompressed files and folders
in a new folder (C:\Silverlight3D\Invaders3D\3DModels\SPACESHIP01).
The decompression process will create two new folders: Models and Textures.

This material is copyright and is licensed for the sole use by Vadim Kudria on 4th October 2009

6352 108th St, , Forest Hills, , 11375

Download at WoweBook.Com

Chapter 4

[10�]

This 3D model, called Ship_06, was created by Skonk (e-mail:
skonk@xnafusion.com). You are free to use, modify and share
the content providing credit is given to the author.

2.	 You can preview, zoom, and rotate the DirectX .x format using the DirectX
Viewer included in DirectX Software Development Kit. You can download
and install it from http://www.microsoft.com/downloads/details.
aspx?FamilyID=24a541d6-0486-4453-8641-1eee9e21b282&disp
laylang=en. Once installed, you can preview the .x files, as shown in the
following screenshot, by double clicking on them in Windows Explorer:

3.	 If you do not have it yet, download and install Blender
(http://www.blender.org/download/get-blender/).

This material is copyright and is licensed for the sole use by Vadim Kudria on 4th October 2009

6352 108th St, , Forest Hills, , 11375

Download at WoweBook.Com

Working with 3D Characters

[110]

Blender is an excellent open source 3D DCC tool available for all major
operating systems. It is distributed under the GNU General Public License
(http://www.blender.org/education-help/faq/gpl-for-
artists/). The creation of 3D architectural visualizations of buildings,
interiors, and environmental scenery using Blender is described in depth in
Blender 3D Architecture, Buildings, and Scenery by Allan Brito, Packt Publishing.

4.	 Download the latest version of the XAML Exporter for Blender from
http://xamlexporter.codeplex.com/. For example, one of the latest versions
is http://xamlexporter.codeplex.com/Release/ProjectReleases.
aspx?ReleaseId=25481#DownloadId=63694. This script is developed
by TheRHogue and released under the Microsoft Public License (Ms-PL).

5.	 Save the downloaded Python script (the file with the .py extension) to Blender's
scripts folder. By default, it is C:\Program Files\Blender Foundation\.
blender\scripts. The filename for the version v0.48 of this script is
xaml_export.py. On some installations, the location for Blender's scripts
folder could also be C:\Documents and Settings\<username>\
Application Data\Blender Foundation\Blender\.blender\scripts.

6.	 Start Blender. Right-click on the cube (represented by a square in
the view). Press Del and click on Erase selected object(s). This step is
necessary because we do not want the cube in our new 3D model.

7.	 Select File | Import | DirectX (.x)…. Browse to the folder that holds the .x file
(C:\Silverlight3D\Invaders3D\3DModels\SPACESHIP01\Models) and
select the file to import, Ship_06.x. Then, click on Import DirectX. The
spaceship mesh's default top view will appear on the screen, as shown in the
following screenshot:

This material is copyright and is licensed for the sole use by Vadim Kudria on 4th October 2009

6352 108th St, , Forest Hills, , 11375

Download at WoweBook.Com

Chapter 4

[111]

8.	 Save the model in Blender's native format. It will be useful for further format
conversions. Select File | Save…. Browse to the folder created to hold the new
models ((C:\Silverlight3D\Invaders3D\3DModels\SPACESHIP01) and enter
the desired name, Ship01.blend. Then, click on Save As. Now, the model is
available to be loaded in Blender without the need to follow the aforementioned steps.

9.	 Click on Select | Select/Deselect All in the menu that appears at the bottom of
the 3D model. There will be no elements selected on the viewport, as shown in
the following screenshot:

10.	Click on Select | Select/Deselect All again. Now, you will see all the elements
selected on the viewport. These two steps are necessary to ensure that all the
elements are going to be exported in the new file format.

11.	Now, select File | Export | XAML (.xaml)… in the main menu. The default folder
will be the same as the one used in the previous step. Hence, you will not need to
browse to another folder. Enter the desired name, Ship01.xaml. Then, click on
Export Xaml. Now, the model is available as an XAML 3D model.

This material is copyright and is licensed for the sole use by Vadim Kudria on 4th October 2009

6352 108th St, , Forest Hills, , 11375

Download at WoweBook.Com

Working with 3D Characters

[112]

12.	Select View | Camera in the menu that appears at the bottom of the 3D model.
The spaceship mesh will appear as seen by the active camera. Select Render |
Render current frame in the main menu and a new window will appear showing
the spaceship rendered by Blender's internal render engine, without using
the texture to envelope the mesh, as shown in the following screenshot:

What just happened?
We used Blender's import and export capabilities to convert an existing 3D model designed
to work with DirectX or XNA Framework to the new XAML 3D file format. We imported the
DirectX .x model into Blender and then we exported it to XAML.

We used the default camera to render the model without textures on a 2D screen. The
rendering process takes a few seconds to show the results, because it is focused on offering
an accurate scene. When we render a scene using 3D DCC tools like Blender or 3D Studio
Max, they take the necessary time to offer the best possible 2D image that represents the
3D scene, according to the rendering technique used.

However, 3D games need to show many 3D models performing animations on the screen
in real-time. They require many successive rendering processes per second, in order to
generate many 2D images, representing the 3D scene, per second. A 3D game needs more
than 30 frames per second (FPS) to create a fluid animation.

This material is copyright and is licensed for the sole use by Vadim Kudria on 4th October 2009

6352 108th St, , Forest Hills, , 11375

Download at WoweBook.Com

Chapter 4

[113]

For this reason, the real-time rendering engines used for 3D games require
3D models with a lower polygon counts than the ones used to create realistic
3D scenes in 3D DCC tools. On one hand, this reduces the rendering process'
accuracy, but on the other hand, it allows the game to show a fluid animation.

The animation speed is often more important than the scene's definition in a 3D game. A
game showing excellent scenes but running at less than 5 FPS does not make sense. It will
make the player quit the game as soon as he notices the low animation speed. A 3D game
needs to provide a real-time response to the player.

XAML 3D models
If we open the previously exported XAML 3D model (Ship01.xaml) using Internet
Explorer, it will show us the 3D spaceship rendered in the browser's window, as shown
in the following screenshot:

This material is copyright and is licensed for the sole use by Vadim Kudria on 4th October 2009

6352 108th St, , Forest Hills, , 11375

Download at WoweBook.Com

Working with 3D Characters

[114]

This happens because the XAML 3D model includes a definition for a 3D viewport and a
camera targeting the model (the spaceship). Internet Explorer is performing the rendering
process necessary to display a 3D model defined using XAML in a 2D screen.

We can display an XAML 3D model in any WPF application. We can create a 3D model using
XAML directives. However, this does not make sense when working with 3D games. We
would need a few days to create the spaceship model writing XAML code. As previously
explained for 2D art assets, drawing is easier than writing XAML code. 3D modelling is also
easier and more efficient than writing XAML code to define the 3D meshes that represent
the model. Besides, you are working with a great 3D digital artist that will provide you with
the necessary 3D models for your games.

We can also preview an XAML 3D model copying and pasting the XAML code in XamlPad, as
shown in the following screenshot:

The creation of XAML 3D models by writing XAML code is described in depth in 3D
Programming for Windows Three-Dimensional Graphics Programming for the Windows
Presentation Foundation by Charles Petzold, Microsoft Press.

This material is copyright and is licensed for the sole use by Vadim Kudria on 4th October 2009

6352 108th St, , Forest Hills, , 11375

Download at WoweBook.Com

Chapter 4

[115]

Time for action – from DCC tools to WPF
Now, we are going to display the XAML 3D model exported from Blender in an
XBAP WPF application:

1.	 Create a new C# project using the WPF Browser Application template in Visual
Studio or Visual C# Express. Use 3DInvadersXBAP as the project's name.

2.	 Open the file that defines the XAML 3D model using Notepad or any
other text editor. Select all the content and copy it to the clipboard.

3.	 Open the XAML code for Page1.xaml (double-click on it in the Solution Explorer)
and paste the previously copied XAML 3D model after the line that begins defining
the main Grid (<Grid>). You will see the spaceship appear in the page in the
designer window. You can understand how an XAML 3D model is defined and
inserted in a Viewport3D container navigating through the document's outline,
as shown in the following screenshot:

This material is copyright and is licensed for the sole use by Vadim Kudria on 4th October 2009

6352 108th St, , Forest Hills, , 11375

Download at WoweBook.Com

Working with 3D Characters

[116]

4.	 Build and run the solution. The default web browser will appear showing the
spaceship rendered in the 2D window. Resize the web browser's window and
the model will scale. This time, it is running an XBAP WPF application.

What just happened?
We showed the spaceship rendered in a viewport just copying and pasting the XAML 3D
model definition previously exported from a 3D DCC tool.

One of the great advantages of WPF applications is that we can preview the XAML 3D model
in design-time. We can also see the changes while we modify the properties in XAML code.

XBAP WPF applications with 3D content
The key is the Viewport3D element (System.Windows.Controls.Viewport3D). It
allows the definition of 3D elements like cameras, models, meshes, lights, materials,
and 3D transforms, among others.

This line defines the Viewport3D element. The XAML export filter created it:

<Viewport3D xmlns="http://schemas.microsoft.com/winfx/2006/xaml/
presentation" xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml">

Inside the Viewport3D, we can find the Viewport3D.Camera element that defines a
camera targeting the model and the ModelVisual3D element (System.Windows.
Media3D.ModelVisual3D) that, in this case, defines many transformations, lights,
materials, brushes and meshes.

We did not need to write a single line of code to preview and display the 3D model exported
from the 3D DCC tool. The tool created the necessary XAML code to describe the viewport,
a camera and the model's components, as shown in the following screenshot presenting a
more complete document's outline:

This material is copyright and is licensed for the sole use by Vadim Kudria on 4th October 2009

6352 108th St, , Forest Hills, , 11375

Download at WoweBook.Com

Chapter 4

[117]

Time for action – displaying a 3D model in a 2D screen
with WPF

The 3D digital artist is still waiting to see the spaceship from different angles. He needs
to know if the model is appropriate for your game. You want to see the ship moving and
rotating in the screen. In order to do this, we must add some transformations and some
code to control them. We will add both XAML and C# code:

1.	 Stay in the 3DInvadersXBAP project.

This material is copyright and is licensed for the sole use by Vadim Kudria on 4th October 2009

6352 108th St, , Forest Hills, , 11375

Download at WoweBook.Com

Working with 3D Characters

[11�]

2.	 Open the XAML code for Page1.xaml and add the following lines of
code after <ModelVisual3D> (we are adding transformations for the
ModelVisual3D element):
<ModelVisual3D.Transform>
 <Transform3DGroup>
 <RotateTransform3D>
 <RotateTransform3D.Rotation>
 <AxisAngleRotation3D x:Name="rotateShip" Axis="1 0 0"
 Angle="100" />
 </RotateTransform3D.Rotation>
 </RotateTransform3D>
 <TranslateTransform3D x:Name="translateShip" OffsetX="0.0"
 OffsetY="0.0" OffsetZ="0.0" />
 <ScaleTransform3D x:Name="scaleShip" ScaleX="0.5"
 ScaleY="0.5" ScaleZ="0.5" />
 </Transform3DGroup>
</ModelVisual3D.Transform>

3.	 You will see the spaceship rotated and scaled down, as shown in the
following screenshot:

This material is copyright and is licensed for the sole use by Vadim Kudria on 4th October 2009

6352 108th St, , Forest Hills, , 11375

Download at WoweBook.Com

Chapter 4

[11�]

4.	 Change the definition of the Grid element by the following (the grid must be
focusable and we are defining an event handler to capture the keys pressed):

<Grid x:Name="grdGrid" KeyDown="Grid_KeyDown" Focusable="True">

5.	 Now, expand Page1.xaml in the Solution Explorer and open Page1.xaml.cs—the
C# code for Page1.xaml. (double-click on it). We need to add an event handler to
change the values of some properties for the previously defined transformations
according to the keys pressed.

6.	 Add the following lines of code in the public partial class Page1 : Page,
to program the event handler for the KeyDown event:

private void Grid_KeyDown(object sender, KeyEventArgs e)
{
 switch (e.Key)
 {
 // Move the ship in the X; Y and Z axis
 case Key.Left:
 translateShip.OffsetX -= 0.05f;
 break;
 case Key.Right:
 translateShip.OffsetX += 0.05f;
 break;
 case Key.Up:
 translateShip.OffsetY += 0.05f;
 break;
 case Key.Down:
 translateShip.OffsetY -= 0.05f;
 break;
 case Key.Z:
 translateShip.OffsetZ -= 0.05f;
 break;
 case Key.X:
 translateShip.OffsetZ += 0.05f;
 break;
 // Rotate the ship
 case Key.G:
 rotateShip.Angle -= 1;
 break;
 case Key.H:
 rotateShip.Angle += 1;
 break;
 }
}

This material is copyright and is licensed for the sole use by Vadim Kudria on 4th October 2009

6352 108th St, , Forest Hills, , 11375

Download at WoweBook.Com

Working with 3D Characters

[120]

7.	 Add the following line of code to the constructor after the line
InitializeComponent(); (we set the focus to the grid to capture
the keyboard events):

grdGrid.Focus();

8.	 Build and run the solution. The default web browser will appear showing the
spaceship 3D model rendered in the 2D screen. Use the cursor movement keys
and the Z and X keys to move the spaceship in the X, Y, and Z axis. Use the G and
H keys to rotate the spaceship. You will see the spaceship moving and rotating in
real-time inside the web browser's viewport as shown in the following screenshot:

What just happened?
The 3D digital artist could move and rotate the spaceship in real-time. You have decided that
the spaceship is suitable for this new game. The same code base could be used for many
other 3D models in order to watch them from different angles.

We changed the definition of the Grid element to allow it to be focusable
(Focusable="True"), because we wanted to capture the keys pressed by the, because we wanted to capture the keys pressed by the
user. Besides, we defined an event handler for the KeyDown event.

This material is copyright and is licensed for the sole use by Vadim Kudria on 4th October 2009

6352 108th St, , Forest Hills, , 11375

Download at WoweBook.Com

Chapter 4

[121]

Understanding the 3D world
We added tree transforms for the ModelVisual3D that contains the meshes that define
the 3D model. They transform the model, not the camera. However, the model is viewed
through the camera defined in the Viewport3D container. This is one of the main
differences between the 2D world and the 3D world.

In a 2D scene, we can easily understand dimensions, because we work with pixels and a
great pixel grid.

In a 3D scene, the active camera defines an eye for the models. Hence, when this scene
is rendered in a 2D screen, we can see a part of the entire 3D world through the camera's
lens. The camera changes the perspective for the 3D models that compose the 3D world.
Hence, we work with relative dimensions, because what is seen in the 2D screen can change
according to the camera used and its properties.

In this case, we apply the transforms to the model and we are keeping the camera stationary.
We defined a Transform3DGroup to group the three transforms.

The ScaleTransform3D, named scaleShip, enables us to change its ScaleX, ScaleY,
and ScaleZ properties to shrink or stretch the meshes that compose the model. This is done
in the following line:

<ScaleTransform3D x:Name="scaleShip" ScaleX="0.5" ScaleY="0.5"
 ScaleZ="0.5" />

Initially, we scale down the spaceship proportionally to 50% of its original size.

The TranslateTransform3D, named translateShip, enables us to move the model's
meshes through the 3D space. We can do this changing its OffsetX, OffsetY, and
OffsetZ properties in order to change its position in the X; Y and Z axis. This is done in
the following line:

<TranslateTransform3D x:Name="translateShip" OffsetX="0.0"
 OffsetY="0.0" OffsetZ="0.0" />

The RotateTransform3D is a little more complex, because it adds a Rotation and an
AxisAngleRotation3D named rotateShip. It enables us to rotate the model's meshes
through its X-axis. We can do this by changing its Angle property to rotate the model around
its defined central point. This is done in the following lines:

<RotateTransform3D>
 <RotateTransform3D.Rotation>
 <AxisAngleRotation3D x:Name="rotateShip" Axis="1 0 0" Angle="100"
 />
 </RotateTransform3D.Rotation>
</RotateTransform3D>

This material is copyright and is licensed for the sole use by Vadim Kudria on 4th October 2009

6352 108th St, , Forest Hills, , 11375

Download at WoweBook.Com

Working with 3D Characters

[122]

The central points can be defined in the RotateTransform3D element, using the CenterX,
CenterY, and CenterZ properties. In this case, we defined a single rotation, around the
X-axis. However, we can add more RotateTransform3D groups to define new rotations
around different axes. The Axis property specifies the axis that will rotate according to
the value assigned to the Angle property. It requires three binary numbers separated by a
space, a 1 indicates that the axis represented in the position (X; Y and Z) should rotate. For
example, the following line indicates that the rotation should be done in the X-axis

<AxisAngleRotation3D x:Name="rotateShip" Axis="1 0 0" Angle="100" />

If we want to rotate in the Y-axis, we should change Axis="1 0 0" by Axis="0 1 0".

We can define many RotateTransform3D groups, like in the following lines of code, in which
we create three independent rotations: rotateShipX, rotateShipY, and rotateShipZ:

<RotateTransform3D>
 <RotateTransform3D.Rotation>
 <AxisAngleRotation3D x:Name="rotateShipX" Axis="1 0 0"
 Angle="100" />
 </RotateTransform3D.Rotation>
</RotateTransform3D>
<RotateTransform3D>
 <RotateTransform3D.Rotation>
 <AxisAngleRotation3D x:Name="rotateShipY" Axis="0 1 0" Angle="50"
 />
 </RotateTransform3D.Rotation>
</RotateTransform3D>
<RotateTransform3D>
 <RotateTransform3D.Rotation>
 <AxisAngleRotation3D x:Name="rotateShipZ" Axis="0 0 1" Angle="25"
 />
 </RotateTransform3D.Rotation>
</RotateTransform3D>

One of the simplest ways of mastering the 3D world and understanding how
3D models move in the 3D space is defining transformations and changing
the values of their properties. Using a WPF application and XAML code,
we can see a preview in real-time, while we change the rotation values, as
shown in the following screenshot that presents the spaceship with the
three aforementioned rotations defined:

This material is copyright and is licensed for the sole use by Vadim Kudria on 4th October 2009

6352 108th St, , Forest Hills, , 11375

Download at WoweBook.Com

Chapter 4

[123]

X, Y, and Z in practice
As previously explained, the 2D world uses a bi-dimensional coordinate system. The 3D
world uses a three-dimensional coordinate system. It adds the Z-axis. However, WPF
also changes the way the Y-axis works in the 3D world, because the model moves up
when the Y-axis increases.

This material is copyright and is licensed for the sole use by Vadim Kudria on 4th October 2009

6352 108th St, , Forest Hills, , 11375

Download at WoweBook.Com

Working with 3D Characters

[124]

The following diagram illustrates the way the X-coordinate, Y-coordinate, and Z-coordinate
values work to display elements in a 3D scene:

- (reduce)

- (reduce)

- (reduce)

Y axis

X axis

Z axis

+ (increase)

+ (increase)

+ (increase)

The following list explains the previous diagram in detail:

If we want to move right, we must increase the X-coordinate's value

If we want to move left, we must reduce the X-coordinate's value

If we want to move up, we must increase the Y-coordinate's value

If we want to move down, we must reduce the Y-coordinate's value

If we want to move front, we must increase the Z-coordinate's value

If we want to move back, we must reduce the Z-coordinate's value

Nevertheless, we must be very careful, because the three-dimensional
coordinate system used in our games will be relative to the active camera. The
camera's position and its target in the 3D space will set the baselines for the
three-dimensional coordinate system. A camera can view the three-dimensional
coordinate system from any direction.

The code programmed in the KeyDown event handler takes into account the key that
is pressed and reduces or increases the value of the OffsetX, OffsetY, or OffsetZ
properties for the translate transform.

It also changes the Angle value of the previously explained X-axis rotate transform.

GPU 3D acceleration
Real-time rendering of 3D scenes is a very complex process. On one hand, we have a screen
capable of showing 2D images (X and Y), but on the other hand, we have 3D models in a
3D world (X, Y, and Z). There is a very easy to understand asymmetry problem. Therefore,
in order to show the 3D scene in a 2D screen, a rendering process must create a 2D image

This material is copyright and is licensed for the sole use by Vadim Kudria on 4th October 2009

6352 108th St, , Forest Hills, , 11375

Download at WoweBook.Com

Chapter 4

[125]

in a specific resolution that shows the portion of the whole 3D world seen by the lens of an
active camera. The screen can display the resulting 2D image.

The rendering process for a single frame requires thousands of complex mathematics
operations. We need a performance of at least 30 FPS to create a responsive 3D game.
For this reason, the real-time rendering process will require hundreds of thousands of
mathematics operations per second.

Therefore, there is specialized hardware dedicated to accelerating real-time 3D rendering
processes. We have already talked about GPUs.

WPF and XBAP WPF applications take advantage of the presence of GPUs to perform
real-time 3D rendering processes. Hence, they can offer great performance for 3D games
that need to render complex models.

So far, Silverlight 3 does not offer the possibility to use a GPU to perform real-
time 3D rendering processes. When working with Silverlight, we will have to
use software based rendering. This means that the rendering process will run
on the CPU(s) and their available processing cores. Hence, if we need more
power for our game, we can take advantage of XBAP WPF applications' advanced
capabilities.

Understanding meshes
In the following diagram, we can see the wire-mesh view of the 3D model that represents
the spaceship:

This material is copyright and is licensed for the sole use by Vadim Kudria on 4th October 2009

6352 108th St, , Forest Hills, , 11375

Download at WoweBook.Com

Working with 3D Characters

[126]

This mesh defines the spaceship using many primitive elements (points, lines, triangles, and
polygons). We can use materials and textures to paint and envelope the different faces. As
we can see, this is a wire-mesh with a low polygon counts. This is very important, because 3D
DCC tools are able to work with meshes with hundreds of thousands of polygons. However,
they would require too much processing time to successfully render them in real-time. We
must remember that we must show at least 30 FPS.

We can understand how to work with meshes using 3D DCC tools. They will
provide us an interactive experience with the 3D models and we will be able to use
this knowledge in developing 3D games that interact with meshes and models.

We are going to work with 3D DCC tools in order to create the 3D models and their meshes
for our games.

Time for action – using other XAML exporter for DCC tools
The 3D digital artist has to develop new models for the game. However, he is going to
develop them using 3D Studio Max. He wants to see a few spheres in the scene to check
whether the XAML exporter he found works fine or not.

Now, we are going to convert the model to the XAML file format using an open source XAML
exporter for 3D Studio Max:

1.	 Download the most recent release of the XAML exporter for 3D
Studio Max from http://max2xaml.codeplex.com/.

Timmy Kokke (Sorskoot) developed the XAML exporter for 3D Studio Max
as an open source project in CodePlex.

2.	 Save all the uncompressed files in a new folder (C:\Silverlight3D\
Invaders3D\3DModels\MAX_XAML_EXPORTER). The decompression
process will create three files: XamlExport.ms, Main.ms, and and Utils.ms.

3.	 Now, start 3D Studio Max.

3D Studio Max is commercial software. However, you can download a free
fully functional 30-day trial for non-commercial use from Autodesk's website:
http://usa.autodesk.com/

This material is copyright and is licensed for the sole use by Vadim Kudria on 4th October 2009

6352 108th St, , Forest Hills, , 11375

Download at WoweBook.Com

Chapter 4

[127]

4.	 Add three spheres using 15 segments and assign each one a material, as shown
in the following screenshot:

5.	 It is very important to assign a material to each element, because if there is an
element without a material, the script used to export to XAML will not work. If you
are facing problems, remember that the 3D digital artist left the spheres.max file
in the following folder (C:\Silverlight3D\Invaders3D\3DModels\SPHERES).

6.	 Save the file using the name spheres.max in the aforementioned folder.

7.	 Select MAXScript | Run script…. Browse to the folder in which you decompressed
the export scripts (C:\Silverlight3D\Invaders3D\3DModels\MAX_XAML_
EXPORTER) and choose Main.ms. Then, click on Open. A new window will
appear showing the title Max2Xaml.

8.	 Click on Export. Browse to the same folder in which you saved the original 3D Studio
Max model and enter spheres.xaml in the Name textbox. Then, click on Save.
The exporter will show the XAML output. Now, the model is available as an XAML
resource dictionary.

What just happened?
We used an open source XAML exporter to create an XAML 3D model from a 3D Studio Max
file. However, we cannot preview the model using a web browser or XamlPad, as previously
done with the spaceship.

This material is copyright and is licensed for the sole use by Vadim Kudria on 4th October 2009

6352 108th St, , Forest Hills, , 11375

Download at WoweBook.Com

Working with 3D Characters

[12�]

This XAML exporter creates a resource dictionary with all the data for the meshes and
materials. Hence, there is no Viewport3D definition. We will have to work a bit harder
to include the meshes in a 3D scene.

Time for action – adding 3D elements and interacting with
them using Expression Blend

Now, we are going to add the 3D elements exported from 3D Studio Max to our existing
XBAP WPF application:

1.	 Open the projectproject 3DInvadersXBAP in Expression Blend.

2.	 Select Project | Add existing item…. Choose the previously exported
spheres.xaml and click onand click on Open.

3.	 Click on the Resources panel and expand spheres.xaml. You will see three
MeshGeometry3D, three MaterialGroup, and aand a Model3DGroup listed,
as shown in the following screenshot:

4.	 Now, open the XAML code for Page1.xaml and add the following lines of code
after the Page definition (we are merging the resource dictionary that contains
the definition for the 3D elements in the main page):

<Page.Resources>
 <ResourceDictionary>
 <ResourceDictionary.MergedDictionaries>
 <ResourceDictionary Source="spheres.xaml"/>
 </ResourceDictionary.MergedDictionaries>
 </ResourceDictionary>
</Page.Resources>

This material is copyright and is licensed for the sole use by Vadim Kudria on 4th October 2009

6352 108th St, , Forest Hills, , 11375

Download at WoweBook.Com

Chapter 4

[12�]

You can also do the previous step without adding any code, by right-clicking on
the Page element and selecting Linking to Resource Dictionary, spheres.
xaml.

5.	 Add the following code after the line </Viewport3D.Camera> that ends the
definition for the camera element (we are adding a new GeometryModel3D
element for each sphere, using the names sphere01, sphere02, and sphere03):

<ModelVisual3D>
 <ModelVisual3D.Content>
 <GeometryModel3D x:Name="sphere01" />
 </ModelVisual3D.Content>
</ModelVisual3D>
<ModelVisual3D>
 <ModelVisual3D.Content>
 <GeometryModel3D x:Name="sphere02" />
 </ModelVisual3D.Content>
</ModelVisual3D>
<ModelVisual3D>
 <ModelVisual3D.Content>
 <GeometryModel3D x:Name="sphere03" />
 </ModelVisual3D.Content>
</ModelVisual3D>

6.	 Click on Viewport3D under Objects and Timeline and expand its children. Select
sphere01 go to its Properties tab.

7.	 Expand Miscellaneous, click on Geometry and select Local resource | gSphere01
from the context menu that appears. This step assigns the MeshGeometry3D
resource defined in the resource dictionary.

This material is copyright and is licensed for the sole use by Vadim Kudria on 4th October 2009

6352 108th St, , Forest Hills, , 11375

Download at WoweBook.Com

Working with 3D Characters

[130]

8.	 Expand Materials, click on Material and select Local resource | m01_-_Default from
the context menu that appears. This step assigns the MaterialGroup resource
defined in the resource dictionary. Now, you will see a new sphere in the scene,
as shown in the following screenshot:

9.	 Go back to the XAML code and you will see that new code was added to the
GeometryModel3D element. The line that defines this element will be this:

<GeometryModel3D x:Name="sphere01"
 Geometry="{DynamicResource gSphere01}"
 Material="{DynamicResource m01_-_Default}" />

10.	Repeat the steps 6 to 9 for the other two spheres, sphere02 and sphere03,
assigning them the MeshGeometry3D gSphere02 and gSphere03, and
then the MaterialGroup m02_-_Default and m03_-_Default.

This material is copyright and is licensed for the sole use by Vadim Kudria on 4th October 2009

6352 108th St, , Forest Hills, , 11375

Download at WoweBook.Com

Chapter 4

[131]

What just happened?
We added the XAML 3D models created in 3D Studio Max to our 3D scene in an XBAP
WPF application.

First, we added the resource dictionary to the solution. Then, we created new
GeometryModel3D elements for each sphere. Finally, we assigned the mesh
definitions and the materials to each sphere.

Interacting with 3D elements using Expression Blend
Expression Blend is very helpful when we need to interact with 3D elements contained in
a Viewport3D. We can see and change properties for the 3D elements that generate the
scene. Therefore, we can also learn how things work in the 3D space without the need to
write XAML code.

Visual Studio shows a preview of the scene, but it does not allow the same interaction than
this tool. Expression Blend allows us to interact visually with the 3D elements, offering the
possibility to design the scenes placing and moving elements. For example, we can rotate the
spaceship using the mouse, as shown in the following diagram:

This material is copyright and is licensed for the sole use by Vadim Kudria on 4th October 2009

6352 108th St, , Forest Hills, , 11375

Download at WoweBook.Com

Working with 3D Characters

[132]

Silverlight and the 3D world
So far, we have been adding 3D models to an XBAP WPF application. We exported the
models from Blender and 3D Studio Max and we were able to include them in a 3D scene.
However, we want to do this using Silverlight, which does not have official support for 3D
XAML models. How can we create 3D scenes using real-time rendering in Silverlight 3?

We can do this using a 3D graphics engine designed to add software based real-time
rendering capabilities to Silverlight. We have two excellent open source alternatives
for this goal:

Kit3D (http://www.codeplex.com/Kit3D). It is developed by Mark Dawson.
Matches the System.Windows.Media.Media3D namespace from WPF. It offers
a subset of WPF 3D capabilities and it offers a very fast rendering pipeline. Its main
drawback is that it does not offer a mechanism to load meshes. Therefore, you have
to create the meshes using C# code. It is a good alternative for 3D games that use
simple basic meshes like boxes, cubes, and spheres.

Balder (http://www.codeplex.com/Balder). Einar Ingebrigtsen leads its
development team. It is intended to be used in games, for this reason it uses a
model similar than the one found in XNA Framework. It offers many features that
make it simple to begin developing games with this engine. It offers the possibility
to load models from many popular file formats. It is an excellent alternative for
3D games that need to show many 3D models designed using DCC tools.

We will use Balder to add 3D real-time rendering capabilities to Silverlight for ourreal-time rendering capabilities to Silverlight for our
games. However, in some cases, you may find Kit3D to be a very useful alternative.

Time for action – exporting a 3D model to ASE
So far, Balder does not offer support for XAML 3D models. However, it works fine with the
ASE (3D Studio Max ASCII Scene Exporter) file format. 3D Studio Max offers the possibility to
export ASE files from a 3D scene. However, the spaceship model is now in Blender format.

First, we are going to install a script to allow Blender to export models to the ASE format and
then we will save the spaceship in the new file format which is compatible with Balder:

1.	 Download the latest version of the Goofos ASE export script for Blender from
http://www.katsbits.com/htm/tools_utilities.htm. For example, one
of the latest versions is http://www.katsbits.com/files/blender/
goofosASE-2.44v0.6.10b_9sept07.zip. This script is developed by Goofos
and released under the GNU GPL license.

This material is copyright and is licensed for the sole use by Vadim Kudria on 4th October 2009

6352 108th St, , Forest Hills, , 11375

Download at WoweBook.Com

Chapter 4

[133]

2.	 Decompress the downloaded ZIP file and copy the Python script (the file with
the .py extension) to Blender's scripts folder. By default, it is C:\Program
Files\Blender Foundation\.blender\scripts. The file name for the
version 6.10b of this script is goofosASE-2.44v0.6.10b_9sept07.py.

3.	 Restart Blender and open the spaceship model (previously saved in
Blender's native format as Ship01.blend in C:\Silverlight3D\
Invaders3D\3DModels\SPACESHIP01).

4.	 Now, select File | Export | ASCII Scene (.ase) v0.6.10. The default folder will be
the same used in the previous step. Hence, you will not need to browse to another
folder. Enter the desired name, Ship01.ase. Then, click on Export ASCII Scene.
A dialog box will appear.

5.	 Click on Selection only to deselect this option. This will tell the script to export
all the elements in the scene and not just the selected ones, as shown in the
following screenshot:

6.	 Click on OK. Now, the model is available as an ASE 3D model, ready to be loaded
in Silverlight using Balder.

What just happened?
We used Blender's export capabilities to convert an existing 3D model to the ASE file format,
using the Goofos ASE export script.

Time for action – installing Balder 3D engine
Now, we are going to create a new Silverlight application adding the necessary references to
use the Balder 3D engine:

1.	 Download the most recent release of Balder from
http://www.codeplex.com/Balder.

This material is copyright and is licensed for the sole use by Vadim Kudria on 4th October 2009

6352 108th St, , Forest Hills, , 11375

Download at WoweBook.Com

Working with 3D Characters

[134]

Balder is a very active project. Thus, it regularly releases new versions adding
additional features and fixing bugs. Sometimes, a new version can introduce
changes to classes or methods. In the following examples, we will use version 1.0.

2.	 Save all the uncompressed files in a new folder (C:\Balder).

3.	 Create a new C# project using the Silverlight Application template in Visual Studio
or Visual C# Express. Use 3DInvadersSilverlight as the project's name.

4.	 Select File | Add Reference… and add the following DLLs from Balder's folder:

Balder.Core.Silverlight.dll

Balder.Silverlight.dll

5.	 Now, the project will list the references to the aforementioned Balder's DLLs in
the Solution Explorer, as shown in the following screenshot:

What just happened?
We downloaded Balder and we added the necessary references to use it in a Silverlight
project. The previously explained steps are the only ones required to access Balder's
components and services in any new Silverlight application.

This material is copyright and is licensed for the sole use by Vadim Kudria on 4th October 2009

6352 108th St, , Forest Hills, , 11375

Download at WoweBook.Com

Chapter 4

[135]

Time for action – from DCC tools to Silverlight
Now, we are going to display the ASE 3D model exported from Blender in a Silverlight
application with Balder's help:

1.	 Stay in the 3DInvadersSilverlight project.

2.	 Create a new folder in 3DInvadersSilverlight (the main project that will
generate the XAP output file). Rename it to Assets.

3.	 Right-click on the previously mentioned folder and selectand select Add | Existing item…
from the context menu that appears.

4.	 Go to the folder in which you saved the 3D model in the ASE format
(C:\Silverlight3D\Invaders3D\3DModels\SPACESHIP01).
Select the ASE file and click on Add.

5.	 Click on the ASE file added in the previous step. Change its Build Action
property to Resource.

6.	 Open the XAML code for MainPage.xaml (double-click on it in the
Solution Explorer) and replace the existing code with the following:

<UserControl x:Class="_3DInvadersSilverlight.MainPage"
 xmlns="http://schemas.microsoft.com/winfx/2006/xaml/
 presentation"
 xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml"
 Width="1366" Height="768" >
 <Grid x:Name="LayoutRoot" Background="White" >
 </Grid>
</UserControl>

7.	 Create a new class, InvadersGame.

8.	 Add the following lines of code at the beginning (as we are going to use many
Balder's classes and interfaces):

using Balder.Core;
using Balder.Core.FlatObjects;
using Balder.Core.Geometries;
using Balder.Core.Lighting;
using Balder.Core.Math;

9.	 Replace the new InvadersGame class declaration with the following (it has to be a
subclass of Game):

public class InvadersGame : Game

This material is copyright and is licensed for the sole use by Vadim Kudria on 4th October 2009

6352 108th St, , Forest Hills, , 11375

Download at WoweBook.Com

Working with 3D Characters

[136]

10.	Add the following lines to define two private variables:

// The spaceship's mesh
private Mesh _ship;
// A light
private Light _light;

11.	Override the Initialize method to change some properties on the main
viewport defined by Balder:

public override void Initialize()
{
 base.Initialize();
 Display.BackgroundColor = Colors.White;
 Viewport.XPosition = 0;
 Viewport.YPosition = 0;
 Viewport.Width = 1366;
 Viewport.Height = 768;
}

12.	Override the LoadContent method to load the spaceship's mesh, create a light,
and define the main camera's target:

public override void LoadContent()
{
 base.LoadContent();
 _ship = ContentManager.Load<Mesh>("ship01.ase");
 Scene.AddNode(_ship);

 _light = new OmniLight();
 _light.Position.X = 0;
 _light.Position.Y = 0;
 _light.Position.Z = -30;
 _light.ColorAmbient = Colors.Red;
 _light.ColorDiffuse = Colors.Purple;
 _light.ColorSpecular = Colors.Magenta;
 Scene.AddNode(_light);
 Camera.Target.X = 0;
 Camera.Target.Y = 0;
 Camera.Target.Z = 15;
}

This material is copyright and is licensed for the sole use by Vadim Kudria on 4th October 2009

6352 108th St, , Forest Hills, , 11375

Download at WoweBook.Com

Chapter 4

[137]

13.	Override the Update method to leave it ready to add some scene management
code in it later:

public override void Update()
{
 base.Update();
 // TODO: Add code to update the scene
}

14.	Now, expand App.xaml in the Solution Explorer and open App.xaml.cs—the C#
code for App.xaml. We need to add some code to the StartUp event handler
to initialize Balder with our game class.

15.	Add the following lines of code at the beginning (as we are going to use many
Balder's classes and interfaces):

using Balder.Core.Runtime;
using Balder.Silverlight.Services;

16.	Add the following lines of code to the event handler for the Application_
Startup event, after the line this.RootVisual = new MainPage();:

TargetDevice.Initialize<InvadersGame>();

17.	Build and run the solution. The default web browser will appear showing
the spaceship colored in red, as shown in the following screenshot:

This material is copyright and is licensed for the sole use by Vadim Kudria on 4th October 2009

6352 108th St, , Forest Hills, , 11375

Download at WoweBook.Com

Working with 3D Characters

[13�]

What just happened?
The 3D digital artist is very happy because the spaceship can be loaded and shown using
Silverlight. Now, he trusts you and he will continue to work on exciting 3D models for your
game. However, do not be quiet, because you still have to learn many things about cameras
and lights.

We showed the spaceship rendered in a Balder's viewport. We had to work a bit more than
with the XAML 3D model in the XBAP WPF application. However, we could load and render
a 3D model previously exported from a 3D DCC tool using the ASE file format.

One of the drawbacks of Silverlight 3D applications using Balder is that we cannot preview
the 3D model during design-time. However, we can experiment with an XBAP WPF
application and then, we can work with Silverlight.

Displaying a 3D model in a 2D screen with Silverlight
Once we have the model in the ASE file format and Balder is installed and added as a
reference, the steps to load and show a 3D model in Silverlight are the following:

1. Add the ASE model to the Assets folder. It must be built as a Resource.

2. Override the game class's LoadContent method to load the model, creating a new
mesh using the ContentManager, as done in the following line:

_ship = ContentManager.Load<Mesh>("ship01.ase");

3. Add the new mesh to the scene using the AddNode method:

Scene.AddNode(_ship);

4. Override the game class's Update method to manage the scene, the cameras, the
lights, and the meshes:

Before following those steps, we must be sure that we have configured the main viewport,
the main camera, and the necessary lights.

In order to start the engine's run-time, Balder requires just one line of code, such as the
following one:

TargetDevice.Initialize<InvadersGame>();

We must replace InvadersGame by the main game class (it must be a
Balder.Core.Game subclass).

This material is copyright and is licensed for the sole use by Vadim Kudria on 4th October 2009

6352 108th St, , Forest Hills, , 11375

Download at WoweBook.Com

Chapter 4

[13�]

Using 3D vectors
Balder works with 3D vectors (Balder.Core.Math.Vector) to define positions in the
3D space. For example, the common Position property is a 3D vector, with the following
fields: X; Y and Z.

We used Balder's 3D vectors to define the position for the light:

_light.Position.X = 0;
_light.Position.Y = 0;
_light.Position.Z = -30;

And, we used another 3D vector to specify the main camera's target:

Camera.Target.X = 0;
Camera.Target.Y = 0;
Camera.Target.Z = 15;

These vectors allow many complex math operations, like translations and transforms. They
will simplify the code needed to control perspectives and cameras.

Have a go hero – working with multiple 3D characters
The project manager that hired you wants to see your recent work. He is very happy to
know you are able to work with existing 3D models in your new games in XBAP WPF and
in Silverlight.

He asks you to prepare a new XBAP WPF application showing a model of a car. He wants the
main camera to rotate around the car.

But wait, he also wants a Silverlight version of the same application. You can do it using
Balder as the 3D engine.

Remember the elapsed time technique learned when working with 2D characters. You can
also use it with 3D models.

Once you finish these new applications, you can add a motorbike and make some effects
using different colors in the lights.

Pop quiz – 3D models and real-time rendering
1. Real-time rendering is more efficient when working with meshes that have:

a. Millions of polygons

b. Hundreds of thousands of polygons

c. A low polygon count (less than 2,000 polygons per mesh)

This material is copyright and is licensed for the sole use by Vadim Kudria on 4th October 2009

6352 108th St, , Forest Hills, , 11375

Download at WoweBook.Com

Working with 3D Characters

[140]

2. Silverlight 3 allows us to load:

a. The XAML 3D models using a third party 3D engine—Pentium.

b. The ASE 3D models using a third party 3D engine—Balder.

c. The 3DS 3D models using Silverlight 3 native controls.

3. A 3D vector represents:

a. Three fields: X, Y, and Z.

b. Three fields: W, X, and Y.

c. Three dimensions using 2 fields: 2D (X and Y) and 3D (X, Y, and Z).

4. Expression Blend allows us to:

a. Load and interact with 3D models in XAML 3D format in
WPF applications.

b. Load and interact with 3D models in 3DS 3D format in WPF applications.

c. Import .X 3D models and export them as Silverlight 3D mesh
open format.

5. When rendering a 3D scene in a 2D screen:

a. We can see the whole 3D scene in 3D.

b. We can see a portion of the whole 3D world simulated in a 2D screen,
as seen through a specific camera.

c. We can see the whole 3D world as polygons without textures.

Summary
We learned a lot in this chapter about 3D models, meshes, and other elements. Specifically,
we imported, exported and prepared 3D models using 3D DCC tools in order to load them in
our applications. We showed models in XBAP WPF using XAML and in Silverlight applications
using the services provided by a specialized 3D engine. We rendered and transformed the
meshes in real-time using both hardware-based and software-based rendering processes.
We understood the usage of a Silverlight 3D engine and we began controlling some aspects
of the 3D elements.

Now that we've started working with 3D characters for our games, we're ready to control
lights and cameras to create dazzling real-time scenes, which is the topic of the next chapter.

This material is copyright and is licensed for the sole use by Vadim Kudria on 4th October 2009

6352 108th St, , Forest Hills, , 11375

Download at WoweBook.Com

5
Controlling the Cameras:

Giving Life to Lights and Actions

In order to create dazzling real-time scenes, we must understand how 3D
cameras work. Only then we will be able to control their properties and switch
between multiple cameras to give life to our 3D models located in a 3D world.

The 3D cameras are both complex and powerful. Hence, we must reduce their
complexity to keep things simple, and must be able to exploit their power
without reading Pitagora's bookshelf.

In this chapter, we will learn everything we need to know about 3D cameras so that we
can render our models in real time on a 2D screen from different angles. By reading it and
following the exercises, we will learn to:

Understand how to work with the most important properties of 3D cameras

Control transformations applied to cameras and understand their effects on the
rendered view

Prepare the cameras according to our scene needs

Work with many cameras with different parameters

Control the part of the 3D world rendered in the 2D screen

This material is copyright and is licensed for the sole use by Vadim Kudria on 4th October 2009

6352 108th St, , Forest Hills, , 11375

Download at WoweBook.Com

Controlling the Cameras: Giving Life to Lights and Actions

[142]

Understanding 3D cameras
So far, we have been working with simple 3D scenes and have used a single camera. We
were able to show a 3D model, previously exported from a 3D DCC tool in both an XBAP
WPF application and in Silverlight. However, we neither moved the camera nor changed its
properties. How can we define and control many cameras to give life to lights and actions?

We can do this by exploiting the powerful camera classes offered by WPF and Balder. We can
define many different kinds of cameras and change their properties in real time. Then, we
can combine the camera's management with the model's animations and create amazing
scenes from a 3D world in a 2D screen.

Understanding how cameras work is very important if you want to
control the part of the great 3D world rendered in the 2D screen.

Time for action – when seeing is believing
Your project manager wants the game's player to be able to select between many available
spaceships. Two 3D digital artists are creating new models using 3D DCC tools. He wants you
to control many cameras in real time to show a ship from many different angles. The player
should be able to choose one active camera. This technique is very common in 3D games
where the player must choose a desired character.

However, there is a big problem. The 3D digital artist who is working with you, knows about
the cameras used in the 3D DCC tools, whereas you do not have any idea of how to work
with cameras in Balder. Do not worry. The best way to understand how cameras work is by
previewing what happens when you change the values of the parameters that manage their
behavior. Luckily, using Expression Blend, you can see what happens in the Viewport3D
when you change the values. As you need to learn to accomplish this task quickly, we will
begin working with this tool to see what happens:

1. Open the 3DInvadersXBAP project in Expression Blend.

2. Open Page1.xaml. (The spaceship will be shown in the Viewport3D component.)

3. Click on Viewport3D under Objects and Timeline and expand its children.

4. Expand Camera, select PerspectiveCamera, and go to its Properties tab. You
will see two panels, Transform and Camera, with many properties as shown in the
following screenshot:

This material is copyright and is licensed for the sole use by Vadim Kudria on 4th October 2009

6352 108th St, , Forest Hills, , 11375

Download at WoweBook.Com

Chapter 5

[143]

5. Copy the XAML code that defines the Viewport3D.Camera element and its
children. Save this part of the code because you will be changing many values
and will want to recall the original parameters. The original code that defines a
perspective camera and its transformations is the following:

<Viewport3D.Camera>
 <PerspectiveCamera FarPlaneDistance="100.000000"
 NearPlaneDistance="0.100000"
 UpDirection="0,1,0" LookDirection="0,0,-1"
 Position="0,0,0" FieldOfView="49.134343">
 <PerspectiveCamera.Transform>
 <Transform3DGroup>
 <RotateTransform3D>
 <RotateTransform3D.Rotation>
 <AxisAngleRotation3D
 Axis="0.772239,0.341341,0.535848"
 Angle="77.185380875237655"/>
 </RotateTransform3D.Rotation>
 </RotateTransform3D>
 <TranslateTransform3D OffsetX="7.4811315536499023"
 OffsetY="-6.5076398849487305"
 OffsetZ="5.3436651229858398"/>
 </Transform3DGroup>
 </PerspectiveCamera.Transform>
 </PerspectiveCamera>
</Viewport3D.Camera>

This material is copyright and is licensed for the sole use by Vadim Kudria on 4th October 2009

6352 108th St, , Forest Hills, , 11375

Download at WoweBook.Com

Controlling the Cameras: Giving Life to Lights and Actions

[144]

6. Click on the Camera Orbit button in the toolbox or press O.

7. Click on the spaceship and drag the mouse to move the camera up, down, left, and
right. The values of X, Y, and Z for Position, Direction, and Up Vector will change as
you drag the mouse. The part of the scene rendered in the Viewport3D will change
as you change these properties for the perspective camera. For example, you will
be able to move the camera in order to see one of the spheres, as shown in the
following screenshot:

8. Click on the spaceship again and hold the Alt key while dragging the mouse down
to move the camera further away from the look-at point (the spaceship model).
Repeat this sequence many times, until you see the three spheres in the Viewport3D
as shown in the following screenshot:

This material is copyright and is licensed for the sole use by Vadim Kudria on 4th October 2009

6352 108th St, , Forest Hills, , 11375

Download at WoweBook.Com

Chapter 5

[145]

Holding the Alt key while dragging the mouse up, you can move
the camera closer to the look-at point.

9. Change the values of X, Y, and Z for Position, Direction, and Up Vector. You can
enter the new numeric values, drag the mouse in the textboxes, or drag the handles
shown at the lefthand side of the textboxes. You can also move the direction that
is up for the camera by rotating the Up line and dragging the mouse to the desired
position. The models seen in the scene rendered in the Viewport3D will rotate as
you drag the mouse. Besides, the values of X, Y, and Z for Up Vector will change as
you drag the Up line, as shown in the following screenshot:

The 3D models rendered in the Viewport3D will appear to be rotating.
However, you are changing the parameters for the camera. The models
remain in their original positions in the 3D world and the camera is the
only element that is changing.

What just happened?
We saw what happens when changing the parameters for a perspective camera. The 3D
models are rendered in the 2D screen taking into account the new parameters, and we can
create animations without moving or rotating the models.

When rendering 3D scenes in a 2D screen, a camera represents a vantage point. The
easiest way to understand how a camera component works is comparing it with a video
camera's behavior.

This material is copyright and is licensed for the sole use by Vadim Kudria on 4th October 2009

6352 108th St, , Forest Hills, , 11375

Download at WoweBook.Com

Controlling the Cameras: Giving Life to Lights and Actions

[146]

If you watch a real-life scene through a video camera, you will not be able to see the entire
3D world in which you are located. You will see a part of the whole 3D world rendered in
the video camera's 2D LCD screen. You can move the video camera in many ways using your
hands and you can walk while recording the video. You can also rotate the video camera
using your hands.

You can also zoom in to get closer to a look-at point or zoom out to move further away from
it. The part of the whole 3D world rendered in the video camera's 2D LCD screen will change
as you translate and rotate the video camera in the 3D space, zoom in, or zoom out.

The same happens when using camera components to render virtual 3D worlds in a 2D
screen. You can perform nearly the same operations than you can perform with a real video
camera. However, you will be performing these by changing the values of many parameters
instead of moving the camera with your hand.

Controlling the position, the direction, and the up vector
We changed the values for some of the parameters defined in the following XAML line:

<PerspectiveCamera FarPlaneDistance="100.000000"
 NearPlaneDistance="0.100000" UpDirection="0,1,0"
 LookDirection="0,0,-1" Position="0,0,0"
 FieldOfView="49.134343">

We used Expression Blend's interactive tools. However, we could have done it by changing
the values in the XAML code, or using the C# code to access the perspective camera's
properties.

The camera has to be located in a specific position in the 3D world. We altered this location
by changing the X, Y, and Z fields of the Position object (a Point3D).

Remember that X = 0, Y = 0, and Z = 0 represent the center of the 3D
world—the point where the three axis join. For example, Position="0,
0, 0" means X = 0, Y = 0, and Z = 0.

The camera has to point in some direction. We altered the camera's direction by changing
the values of the X, Y, and Z fields of the LookDirection object (a Vector3D).
The initial value made the camera point in the direction of the negative Z axis,
LookDirection="0,0,-1" means X = 0, Y = 0, and Z = -1.

The camera needs an orientation. We altered it by changing the values of the X, Y, and Z fields
of the UpDirection object (a Vector3D). The initial value made the camera's orientation
point upward (the top points in the positive Y direction). UpDirection="0,1,0" means X
= 0, Y = 1, and Z = 0. We can see how the position, the direction, and the up vector affect the
camera in the following diagram:

This material is copyright and is licensed for the sole use by Vadim Kudria on 4th October 2009

6352 108th St, , Forest Hills, , 11375

Download at WoweBook.Com

Chapter 5

[147]

Time for action – performing transformations
Your project manager brings you a diagram that illustrates how to show each spaceship to
the player. The camera has to rotate around the model, as shown in the following diagram:

This material is copyright and is licensed for the sole use by Vadim Kudria on 4th October 2009

6352 108th St, , Forest Hills, , 11375

Download at WoweBook.Com

Controlling the Cameras: Giving Life to Lights and Actions

[14�]

Now, we will take advantage of the transformations defined for the perspective camera. We
will see how to move and rotate the camera around the model using Expression Blend:

1. Stay in the 3DInvadersXBAP project.

2. Change the perspective camera's properties to get a whole picture of the spaceship,
as shown in the following screenshot:

3. Expand the Transform panel for the perspective camera.

4. Click on the Rotate tab and change the values for the Z angle. The camera will rotate
and the scene will be rendered according to the new angle.

5. Click on the Translate tab and change the values for the X and Y axis. The camera
will move to the new position and the scene will be rendered according to the new
part of the whole 3D world that can be seen through the camera, as shown in the
following screenshot:

This material is copyright and is licensed for the sole use by Vadim Kudria on 4th October 2009

6352 108th St, , Forest Hills, , 11375

Download at WoweBook.Com

Chapter 5

[14�]

What just happened?
In order to show the spaceship as your project manager wants, you need to translate and
rotate the camera around the 3D model. Thus, using transformations like the ones previously
explained for the 3D model, you could translate and rotate the camera to perform the task.

The transformations applied to the camera change its position and rotation angles. As the
active camera defines an eye for the models in the 3D world therefore, moving and rotating
the camera animates the models in our 2D screen.

In this case, we apply the transformations to the camera while we keep the models in a
stationary position in the 3D world. We use the Transform3DGroup to group the three
transforms. Blender created this default transformation group when we exported the
model to XAML.

So far, the camera and the transformations do not have names. It is good
practice to give names to the XAML elements. This way, we will be able to
access the elements through the C# code.

This material is copyright and is licensed for the sole use by Vadim Kudria on 4th October 2009

6352 108th St, , Forest Hills, , 11375

Download at WoweBook.Com

Controlling the Cameras: Giving Life to Lights and Actions

[150]

Defining and applying transformations
The TranslateTransform3D enables us to move the camera meshes through the 3D
space. We can do this by changing its OffsetX, OffsetY, and OffsetZ properties in
order to change its position in the X, Y, and Z axis. This is done in the following line:

<TranslateTransform3D OffsetX="7.4811315536499023"
 OffsetY="-6.5076398849487305"
 OffsetZ="5.3436651229858398"/>

Initially, the RotateTransform3D adds a rotation and an AxisAngleRotation3D. This is
done in the following lines:

<RotateTransform3D>
 <RotateTransform3D.Rotation>

 <AxisAngleRotation3D Axis="0.772239,0.341341,0.535848"
 Angle="77.185380875237655"/>
 </RotateTransform3D.Rotation>
</RotateTransform3D>

However, we learned to use the RotateTransform3D with the model's meshes, defining
the axis to rotate and the desired angle. This time, we copied and pasted the XAML exported
from Blender, therefore the technique is slightly different. Once we change the values
using Expression Blend, it will define a new RotateTransform3D using the syntax that we
previously learned when rotating the model's meshes:

<RotateTransform3D.Rotation>
 <AxisAngleRotation3D Axis="0, 0, -1" Angle="88" />
</RotateTransform3D.Rotation>

In this case, there is a definition for a single rotation around the Z-axis. As we explained
for the model's meshes, we can also add more RotateTransform3D groups to define
new rotations around different axes. The Axis property specifies the axis that will
rotate according to the value assigned to the Angle property. The previous line uses
a -1, indicating that the axis should rotate -1 * 88 = -88 degrees, which means 88
counterclockwise degrees.

When we want the camera to rotate clockwise, we use 1 (positive degrees).
Otherwise, we use -1 (negative degrees).

This material is copyright and is licensed for the sole use by Vadim Kudria on 4th October 2009

6352 108th St, , Forest Hills, , 11375

Download at WoweBook.Com

Chapter 5

[151]

Adding transformations to the camera adds flexibility to the possible scenes that can be
rendered from the whole 3D world. The parameters learned so far and the transformations
are represented in the following screenshot:

Time for action – zooming in and out
You want to add zoom in and zoom out capabilities to the camera rotating around the model.
However, there is no zoom property.

Using a perspective camera, we can change the values for many parameters to control it like
a telephoto lens, as explained next:

1. Stay in the 3DInvadersXBAP project.

2. Go to the perspective camera's properties. Check the value for Perspective Field of
View (usually 45 degrees by default).

This material is copyright and is licensed for the sole use by Vadim Kudria on 4th October 2009

6352 108th St, , Forest Hills, , 11375

Download at WoweBook.Com

Controlling the Cameras: Giving Life to Lights and Actions

[152]

3. Change it to 150 degrees. You will see more models in the scene, but the spaceship
will be shown smaller (further away from the camera), as in the following screenshot:

4. Now, change it to 75 degrees. You will see fewer models in the scene, but they will
be larger (closer to the camera), as shown in the following screenshot:

This material is copyright and is licensed for the sole use by Vadim Kudria on 4th October 2009

6352 108th St, , Forest Hills, , 11375

Download at WoweBook.Com

Chapter 5

[153]

5. The Far Clipping Plane value shows the default value of 100. Reduce it slowly,
dragging the mouse over the textbox to the left. As you reduce its value, you will see
that many pieces of the 3D models in the rendered scene begin to disappear (first
the spheres and then the spaceship), as shown in the following screenshot:

6. Restore the Far Clipping Plane value to the default of 100.

This material is copyright and is licensed for the sole use by Vadim Kudria on 4th October 2009

6352 108th St, , Forest Hills, , 11375

Download at WoweBook.Com

Controlling the Cameras: Giving Life to Lights and Actions

[154]

7. The Near Clipping Plane value shows the default value of 0.1. Increase it very slowly,
dragging the mouse over the textbox to the right. As you increase its value, you will
see that many pieces of the 3D models in the rendered scene begin to disappear
(first the spaceship and then the spheres), as shown in the following screenshot:

8. Restore the Near Clipping Plane value to the default of 0.1.

What just happened?
You changed the perspective field of view, the near clipping plane, and the far clipping plane
values for the perspective camera. You could see what happens when you modify these
values in a rendered 3D scene.

As these parameters are a bit complex, it is very important to experiment with
them and preview the changes.

Now, we are able to translate the camera, rotate it, and change many parameters to show
the desired elements of a 3D world in each rendered scene.

This material is copyright and is licensed for the sole use by Vadim Kudria on 4th October 2009

6352 108th St, , Forest Hills, , 11375

Download at WoweBook.Com

Chapter 5

[155]

Controlling the perspective field of view
The perspective field of view for the camera defines the angle for the perspective camera's
lens. A low value for this angle narrows the view. Hence, the models will appear larger in the
visible part of the 3D world, as shown in the following diagram that represents a camera's
lens with a perspective field of a view of 45 degrees:

Perspective
field of view =

450

450

A high value for this angle widens the view. Hence, the models appear smaller in the visible
part of the 3D world, as shown in the following diagram that represents a camera's lens with
a perspective field of a view of 90 degrees (compare it with the previous diagram):

Perspective
field of view =

900

900

The higher the value of the angle, the wider the rendered view.

We can change the angle for the perspective field of view in the XAML or C# code through
the perspective camera's instance FieldOfView property.

Controlling the clipping planes
The values for the clipping planes determine how close to or far away from the camera a
3D model can get before it disappears from the rendered view. The part of the 3D world
that is going to be rendered can be represented as a four-sided frustum (generated by the
perspective field of view), the near clipping plane, and the far clipping plane.

This material is copyright and is licensed for the sole use by Vadim Kudria on 4th October 2009

6352 108th St, , Forest Hills, , 11375

Download at WoweBook.Com

Controlling the Cameras: Giving Life to Lights and Actions

[156]

The following diagram shows a 2D representation of the near clipping plane and the far
clipping plane that define the boundaries for a perspective camera's frustum:

Far Clipping Plane
(FarPlaneDistance)

Part of the 3D world
rendered in the 2D

screen

Near Clipping Plane
(NearPlaneDistance)

Perspective
field of view =

450

450

The 3D region, which is visible on the screen, is formed by a clipped pyramid called a frustum.
The near clipping plane and the far clipping plane determine the clips. You can see the 3D
representation and its relation with the perspective field of view in the following diagram:

Far Clipping Plane
(FarPlaneDistance)

Part of the 3D world
rendered in the 2D

screen

Near Clipping Plane
(NearPlaneDistance)

- (reduce)

- (reduce)

- (reduce)

Y axis

X axis

+ (increase)

+ (increase)

+ (increase) Z axis

Perspective
field of view

This material is copyright and is licensed for the sole use by Vadim Kudria on 4th October 2009

6352 108th St, , Forest Hills, , 11375

Download at WoweBook.Com

Chapter 5

[157]

The near clipping plane controls the position of the plane that slices the top of the pyramid
and determines the nearest part of the 3D world that the camera is going to render in
the 2D screen. The value is expressed taking into account the Z-axis. We can change the
near clipping plane to define the frustum to render in the XAML or C# code through the
perspective camera's instance NearPlaneDistance property. Its default value is 0.1.

The far clipping plane controls the position of the plane that slices the back of the pyramid
and determines the more distant part of the 3D world that the camera is going to render
in the 2D screen. The value is expressed taking into account the Z-axis. We can change
the far clipping plane to define the frustum to render in the XAML or C# code through the
perspective camera's instance FarPlaneDistance property. Its default value is 100.

The camera's position in the 3D world and its transformations will determine
the final effects of these values. As mentioned earlier, these values can affect
whether or not a model is visible in the rendered view. Hence, it is very
important to work with them when we import 3D models from different DCC
tools with different scales. Sometimes, we cannot see a model rendered because
these values create a frustum that does not include the models in the rendered
view. Therefore, it is very important to understand all the parameters related to
the cameras. The 3D world is more complex than a simple 2D screen.

Time for action – understanding perspective and
orthographic cameras

You have to work with a camera that shows the objects with a perspective view, as happens
when watching a scene using an ordinary camera lens. This means that the objects that get
further away from the camera should appear smaller.

Now, we are going to see the difference between a perspective and an orthographic camera:

1.. Stay in the 3DInvadersXBAP project.

This material is copyright and is licensed for the sole use by Vadim Kudria on 4th October 2009

6352 108th St, , Forest Hills, , 11375

Download at WoweBook.Com

Controlling the Cameras: Giving Life to Lights and Actions

[15�]

2. Go to the perspective camera's properties. Rotate and translate the camera using
the camera's orbit function, as previously explained. The camera should show a
rendered scene, like the one shown in the following screenshot, with the three
spheres and the spaceship being visible. The spaceship appears smaller because
it is further away from the camera.

3. Go to the perspective camera's properties. Click on the Orthographic Camera button
for the Camera Type property. The Perspective Field of View (FieldOfView)
property will be replaced by the Width (Width) property. As an orthographic
camera turns off the perspective view of an ordinary camera, the spaceship will
appear larger, as shown in the following screenshot:

This material is copyright and is licensed for the sole use by Vadim Kudria on 4th October 2009

6352 108th St, , Forest Hills, , 11375

Download at WoweBook.Com

Chapter 5

[15�]

4. Click on the Perspective Camera button for the Camera Type property.

What just happened?
You change the camera type used to render the view. It is easy to understand the differences
between the perspective and the orthographic cameras that are viewing the same scene
rendered by just changing the camera type.

When the models get further away from an orthographic camera, they do not appear to get
smaller or distorted because this camera turns off the perspective.

As we want our games to be as realistic as possible, we will use a perspective camera.
The models will get smaller and appear distorted as they get further away from the
perspective camera. We must consider this when working with collision-detection
algorithms, effects, and physics.

It is very important to understand the way a perspective camera works as we will
be trusting in its capabilities to offer a realistic rendered view of our 3D world in
which the models move and interact.

Have a go hero – rotating cameras around a 3D model
There is no more time for learning about cameras. It is time for action.

Give a name to the perspective camera (PerspectiveCamera1). Give names to the
transformations defined for this camera.

Add the C# code to the application in order to rotate the camera around the 3D model,
as your project manager showed you in the previous diagram. You will have to translate and
rotate the camera taking into account the elapsed time to provide a smooth animation.

Now, replace the existing keyboard handler with a new one, letting the user move the
camera nearer to the model and further away from it, as the camera goes on rotating
around the 3D model.

Finally, add the possibility to use new keys to let the user change the near and far planes of
the frustum used to render the view.

This material is copyright and is licensed for the sole use by Vadim Kudria on 4th October 2009

6352 108th St, , Forest Hills, , 11375

Download at WoweBook.Com

Controlling the Cameras: Giving Life to Lights and Actions

[160]

Silverlight and the cameras
So far, we have been controlling cameras in an WPF XBAP application. We used Expression
Blend to interact with a perspective camera's properties and saw the models rendered in
a Viewport3D. Now we want to do this using Silverlight, which does not have an official
support for Viewport3D and its cameras. How can we control cameras on the fly using
real-time rendering in Silverlight 3?

We can do this using the Camera class and its default instance provided by Balder. Everything
we have learned so far about the cameras is also useful when working with Balder's cameras
in Silverlight. We began working with an WPF XBAP application because cameras are indeed
complex components and we could preview the changes as we modified the properties.

Time for action – controlling cameras on the fly
Now, your project manager wants to view the spaceship rotating in a Silverlight application.
However, as you have learned about cameras, he wants you to create the rotation effect
through the camera and not by rotating the model.

Luckily, Balder offers a simple Camera class that allows us to control the position and the
target without the need to make complex math calculations:

1. Open the 3DInvadersSilverlight project.

2. Open the code for the InvadersGame class.

3. Add the following lines to define a private variable:

// The camera's angle expressed in radians

private double _cameraAngleRadians = 0;

4. Replace the code that defined some properties for Camera in the LoadContent
method with the following:

// Define the camera's target (0; -5; 0)

Camera.Target.X = 0;

Camera.Target.Y = -5;

Camera.Target.Z = 0;

// Define the stable camera's position in the Y-axis

Camera.Position.Y = 35f;

5. Replace the code for the Update method with the following:

// Calculate the new position for the camera in the X-axis

Camera.Position.X = (float)Math.Sin(_cameraAngleRadians) * 50f;

// Calculate the new position for the camera in the Z-axis

This material is copyright and is licensed for the sole use by Vadim Kudria on 4th October 2009

6352 108th St, , Forest Hills, , 11375

Download at WoweBook.Com

Chapter 5

[161]

Camera.Position.Z = (float)Math.Cos(_cameraAngleRadians) * 50f;

// Increase the camera's angle expressed in radians

_cameraAngleRadians += 0.005;

6. Build and run the solution. The default web browser will appear showing the
spaceship colored in red. It will be rotating because the camera is changing its
position in the X and Y axis, as shown in the following screenshot:

What just happened?
Wow! You impressed your project manager. In less than five minutes, you could rotate
the camera to give life to the 3D model with a few lines of code. However, there are many
complex calculations made behind the scenes.

We showed the spaceship rendered in a Balder's viewport and we moved the camera's
position in the X and Y axis. The spaceship appears to be rotating in the screen.

Understanding cameras related to matrixes
Balder's camera implements everything we learned about the perspective camera.
However, it hides many properties.

First, we defined the target for the camera (X = 0, Y = -5, and Z = 0) with the following lines:

Camera.Target.X = 0;
Camera.Target.Y = -5;
Camera.Target.Z = 0;

The target remains stable during the animation. The camera's position in the Y-axis also
remains stable. Therefore, we assigned it the desired value in the LoadContent method:

Camera.Position.Y = 35f;

This material is copyright and is licensed for the sole use by Vadim Kudria on 4th October 2009

6352 108th St, , Forest Hills, , 11375

Download at WoweBook.Com

Controlling the Cameras: Giving Life to Lights and Actions

[162]

We added some scene-management code in the overridden Update method. The code is
quite simple:

Camera.Position.X = (float)Math.Sin(_cameraAngleRadians) * 50f;
Camera.Position.Z = (float)Math.Cos(_cameraAngleRadians) * 50f;
_cameraAngleRadians += 0.005;

Each time this method is executed, the camera's angle expressed in radians is increased
by 0.005.

The new position for the camera in the X-axis is determined by calculating the sine of the
camera's desired angle, expressed in radians. Then, it is multiplied by 50.

The new position for the camera in the Z-axis is determined calculating the cosine of the
camera's desired angle, expressed in radians. Then, it is multiplied by 50.

Once the new positions are assigned, the new frame is rendered and the view is updated.

The default Up vector defined by Balder's camera is X = 0, Y = 1, and Z = 0. The
camera's instance stores this vector in the Up property. However, it is read-only.
We can indirectly change the camera's Up vector by changing the value of the
Roll property.

Taking into account the Position, Target, and Up properties, Balder uses the default
values to create a perspective field of view and a projection matrix:

Field of view angle: 40 degrees

Near plane distance (near clipping plane): 1

Far plane distance (far clipping plane): 1000

It also calculates the definitive Up vector, taking into account the value for the Roll property
and creates a look at the Position, Target, and Up vector using a view matrix.

These matrixes involved many complex calculations that allow Balder to create a perspective
camera capable of rendering a scene without having to worry about the values for the
elements of these matrixes.

The view matrix is available in the ViewMatrix property and the projection matrix in
ProjectionMatrix. However, they are both read-only properties.

Have a go hero – working with many cameras
Working with many cameras in Silverlight using Balder is easy. You just have to save the
values for the properties that define the Position, Target, and Roll properties for each
camera and then swap them as needed.

This material is copyright and is licensed for the sole use by Vadim Kudria on 4th October 2009

6352 108th St, , Forest Hills, , 11375

Download at WoweBook.Com

Chapter 5

[163]

Your project manager wants you to make an animation using three cameras one after
the other.

The first camera has to show the spaceship far away from the camera and then zoom in until
it fills the view. Then, it is time to swap to the second camera.

The second camera has to show the spaceship moving from left to right. Then, it is time to
swap to the third camera.

The third camera has to show the spaceship rotating as previously explained.

You can use a switch statement asking for the number of the active camera and assigning
the properties according to the active camera in the overridden Update method.

Pop quiz – working with cameras in a 3D world
1. The 3D region, which is visible on the screen, rendered using a perspective camera is

formed by:

a. A clipped pyramid called frustum.

b. A clipped box called frustum.

c. A clipped sphere lens called frustumsphere.

2. The near clipping plane and the far clipping plane define the boundaries of:

a. The 2D viewport, which is visible in the web browser.

b. The 3D region, which is visible on the screen, rendered using a camera.

c. The first 3D model rendered on the screen.

3. The perspective field of view for the camera defines the angle for:

a. The camera's rotation on the Z-axis.

b. The perspective camera's lens

c. The camera's rotation on the Y-axis.

4. A low value for the perspective field of view:

a. Widens the view.

b. Increases the view's height.

c. Narrows the view.

5. When the models get further away from a perspective camera:

a. They will not get smaller or distorted.

b. They will get larger and distorted.

c. They will get smaller and distorted.

This material is copyright and is licensed for the sole use by Vadim Kudria on 4th October 2009

6352 108th St, , Forest Hills, , 11375

Download at WoweBook.Com

Controlling the Cameras: Giving Life to Lights and Actions

[164]

6. Balder's camera creates a perspective field of view and a projection matrix, taking
into account the following properties:

a. Position, Target, and Roll.

b. UpDown, Target, and Roll.

c. Position, UpVector, and Roll.

Summary
We learned a lot in this chapter about 3D cameras. Specifically, we changed the values for
their most important properties and learned about their effects in a rendered 3D view. We
performed transformations to the cameras. We translated and rotated them as needed in
XBAP WPF using XAML and in Silverlight applications using the services provided by Balder.
We prepared the cameras according to the needs of our scene and controlled them in real
time. We also learned about the different kinds of cameras and how to control the part of
the 3D world rendered in the 2D screen.

Now that we've learned to define and control 3D cameras for our games, we're ready
to control input devices to provide great feedback to the action in the games, which is
the topic of the next chapter.

This material is copyright and is licensed for the sole use by Vadim Kudria on 4th October 2009

6352 108th St, , Forest Hills, , 11375

Download at WoweBook.Com

6
Controlling Input Devices

to Provide Great Feedback

In order to create attractive games, we must understand how input devices work.
Only then will we be able to offer the players the ability to control many aspects
of their gaming using the most exciting gaming input devices. Most players do
not want to be limited to the keyboard and mouse when playing games. Hence,
we must be able to communicate with gamepads, joysticks, and steering wheels,
and other input devices to offer a more complete gaming experience.

In this chapter, we will learn everything we need to know about the most widely used
gaming input devices. We will be able to read values from them in order to control many
aspects of our games. By reading it and following the exercises we shall:

Understand how to work with the most exciting gaming input devices

Reduce the gaming input devices' complexity to buttons and axes

Work with analog and digital controls

Control cameras using gaming input devices

Read many simultaneous values and react to them with synchronized actions

This material is copyright and is licensed for the sole use by Vadim Kudria on 4th October 2009

6352 108th St, , Forest Hills, , 11375

Download at WoweBook.Com

Controlling Input Devices to Provide Great Feedback

[166]

Giving life to the game!
So far, we have been working with 2D sprites, 3D models, cameras, scenes, and game loops.
We were able to control cameras in order to give life to simple scenes, in both an XBAP
WPF application and in Silverlight. However, most modern computer games do not use the
keyboard as the main input device. They use gamepads, joysticks, flightsticks, steering
wheels, a mouse, and other input devices in order to allow the player to control many
aspects of the game. How can we interact with these gaming input devices to provide the
player with a realistic and comfortable gaming experience?

In order to communicate with these gaming input devices, we need to talk to hardware
drivers. This can be difficult when working with applications running in a web browser. The
biggest problem is the security. Thus, we will have to use some tricks in order to allow the
player to use these gaming input devices.

Most game fans have at least one gamepad. Therefore, it is a great idea to offer
the player the possibility to use it in order to control the game. We are talking
about Windows compatible gamepads. They offer Windows drivers and they
allow us to interact with them from our games. However, there are some console
gamepads that are not compatible with Windows.

Time for action – creating a keyboard manager class
Your project manager wants you to go back to the Invaders 2D game that you had submitted
to the game contest website. Many players reported bugs and said that they could not use a
gamepad to play the game. Remember that it was the most desired game.

The code that checks the keyboard is taking into account just one pressed key. It is time to
create a keyboard manager class. It must be able to track multiple keys pressed by the user
between each rendered frame:

1.	 Open the SilverlightInvaders2DVector project.

2.	 Create a new class—KeyboardManager.

3.	 Add the following line of code at the beginning of the class definition (as we are
going to use the System.Collections.Generic.List class):

using System.Collections.Generic;

This material is copyright and is licensed for the sole use by Vadim Kudria on 4th October 2009

6352 108th St, , Forest Hills, , 11375

Download at WoweBook.Com

Chapter 6

[167]

4.	 Add the following private and static variables:

// The list of pressed keys
private static List<Key> _keys = new List<Key>();
// The list of keys to remove
private static List<Key> _keysToRemove = new List<Key>();
// The target for the the event handlers
private static UserControl _target;

5.	 Add the following constructor with a parameter to the KeyboardManager class:

public KeyboardManager(UserControl target)
{
 _target = target;
 // Add a KeyEventHandler to control the keys that are pressed
 (down)
 _target.KeyDown += new KeyEventHandler(OnKeyDown);
 // Add a KeyEventHandler to control the keys that are released
 (up)
 _target.KeyUp += new KeyEventHandler(OnKeyUp);
}

6.	 Add the following public and static methods to allow some control for the
lists of keys:

public static void RemoveUpKeys()
{
 // Remove the keys that were released (up)
 for (int i = 0; i < _keysToRemove.Count; i++)
 {
 _keys.Remove(_keysToRemove[i]);
 }
}
public static void ClearPressedKeys()
{
 _keys.Clear();
 _keysToRemove.Clear();
}

7.	 Add the following public and static function to check for a keypress:

public static bool IsKeyDown(Key keyToTest)
{
 return (_keys.Contains(keyToTest));
}

This material is copyright and is licensed for the sole use by Vadim Kudria on 4th October 2009

6352 108th St, , Forest Hills, , 11375

Download at WoweBook.Com

Controlling Input Devices to Provide Great Feedback

[16�]

8.	 Add the following private delegates to control the keys that are pressed
and released:

private void OnKeyDown(Object sender, KeyEventArgs e)
{
 // Add the key to the list of pressed keys
 _keys.Add(e.Key);
}
private void OnKeyUp(Object sender, KeyEventArgs e)
{
 // Add the key to the list of keys to remove
 _keysToRemove.Add(e.Key);
}

What just happened?
The code to take information from the keyboard is now held in the new KeyboardManager
class. It uses some static private variables because there is just one keyboard connected
to a computer. Thus, we will need just one instance of this class.

The class is quite easy to understand. The constructor receives a UserControl as a
parameter and it adds two event handlers to control the keys that are pressed (KeyDown)
and released (KeyUp).

The player can press many keys before we check the keys that are pressed in the game
loop. The class is capable of keeping a list of pressed keys. We need that because we want
the player to be capable of pressing many keys at the same time. For example, the player
can press the up and right arrow at the same time to move the ship in the X and Y axis at
the same time. We were not able to do that with our simple keyboard management code
programmed in the events.

Using the keyboard
Using the keyboard for gaming purposes in Silverlight applications is a bit complex, because
we have to add code to the events in order to capture the pressed and released keys. Hence,
we created a class to do that work for us.

Remember that we have to keep the code simple and efficient, because
it is going to be run in the main game loop.

This material is copyright and is licensed for the sole use by Vadim Kudria on 4th October 2009

6352 108th St, , Forest Hills, , 11375

Download at WoweBook.Com

Chapter 6

[16�]

We do not want to add the code to handle the keyboard in the events. Instead, the keyboard
manager uses the KeyDown and KeyUp event handlers to work with two static and
private lists:

_keys: The list of pressed keys

_keysToRemove: The list of keys to remove. (They were pressed and now,
they are not.)

In the game loop, we can call the IsKeyDown static function to determine whether a key
was pressed or not. As the keys that were pressed are kept in a list, we can call this function
for many different keys.

Once we have processed the pressed keys, we can call the RemoveUpKeys static
method. It removes the keys that were released, using a simple for loop, as shown
in the following lines:

for (int i = 0; i < _keysToRemove.Count; i++)
{
 _keys.Remove(_keysToRemove[i]);
}

We decide when to call this method because we must first process the keys that were
pressed. We cannot remove the keys in the attached KeyUp event handler because it would
not let us check the keys that were pressed. Once the action occurs, if the key is not pressed
anymore, the user will have to press that key again. However, if the key is still pressed when
the main game loop checks for the pressed keys the next time, a new action based on this
key will be triggered. Thus, we will be able to offer the player smooth character movement.

Time for action – programming the input control
in the game loop

Now, it is time to make the necessary changes to the game loop in order to use our new
keyboard manager:

1.	 Stay in the SilverlightInvaders2DVector project.

2.	 Open the code for the superclass SpriteWrapper.

This material is copyright and is licensed for the sole use by Vadim Kudria on 4th October 2009

6352 108th St, , Forest Hills, , 11375

Download at WoweBook.Com

Controlling Input Devices to Provide Great Feedback

[170]

3.	 Replace the public methods GoUp, GoDown, GoLeft, and GoRight with the
following public methods to allow each key to change the speed for an
independent axis:

public void GoUp()
{
 _speed.Y = -_incrementY;
 //_speed.X = 0;
}
public void GoDown()
{
 _speed.Y = _incrementY;
 //_speed.X = 0;
}
public void GoLeft()
{
 _speed.X = -_incrementX;
 //_speed.Y = 0;
}
public void GoRight()
{
 _speed.X = _incrementX;
 //_speed.Y = 0;
}

We just commented the lines that assigned a 0 to the axis that did not move.
Thus, we will be able to call the GoUp and then the GoRight methods and
the sprite will move up and right at the same time.

4.	 Add the following public method to stop moving the sprite:

public void GoNowhere()
{
 _speed.Y = 0;
 _speed.X = 0;
}

5.	 Open MainPage.xaml.cs.

6.	 Add the following private variable in the public partial class MainPage
: UserControl, to hold an instance of the KeyboardManager class:

private KeyboardManager _keyboardManager;

This material is copyright and is licensed for the sole use by Vadim Kudria on 4th October 2009

6352 108th St, , Forest Hills, , 11375

Download at WoweBook.Com

Chapter 6

[171]

7.	 Add the following private method to check the pressed keys using the
new keyboard manager and to move the ship according to them.

private void CheckKeyboard()
{
 // By default, the ship will not move if there is no key down
 _ship.GoNowhere();
 if (KeyboardManager.IsKeyDown(Key.Left))
 _ship.GoLeft();
 if (KeyboardManager.IsKeyDown(Key.Right))
 _ship.GoRight();
 if (KeyboardManager.IsKeyDown(Key.Up))
 _ship.GoUp();
 if (KeyboardManager.IsKeyDown(Key.Down))
 _ship.GoDown();
 // After checking the down keys, remove the up keys
 KeyboardManager.RemoveUpKeys();
}

8.	 Add the following line of code after the line CheckCollisions(); and before
the line _LastTick = DateTime.Now; in the RenderFrame method:

CheckKeyboard();

9.	 Comment the code in the Page_KeyDown event handler (the keyboard manager
is going to do that job).

10.	Comment the line that added an EventHandler to check for each key down in the
event handler for the btnStartGame button's Click event:

//this.KeyDown += new KeyEventHandler(Page_KeyDown);

11.	Now, add the following line of code before the end of the previously
mentioned event:

_keyboardManager = new KeyboardManager(this);

This material is copyright and is licensed for the sole use by Vadim Kudria on 4th October 2009

6352 108th St, , Forest Hills, , 11375

Download at WoweBook.Com

Controlling Input Devices to Provide Great Feedback

[172]

12.	Build and run the solution. Click on the button and move the ship towards the
aliens, using diagonal movements (up & left; down & left; up & right or down &
right). Keep the keys pressed for a few seconds and then release them. You will be
able to move and stop the ship with great accuracy, using the keyboard, as shown
in the following picture:

What just happened?
You could move the ship using the cursor movement keys. You could control the ship's
movements. The ship moves when the keys are held down and it stops moving when
the keys are released. However, as the game loop is called so many times per second,
sometimes, it is difficult to move the ship in a diagonal direction. We will make a remedy
for this using a gamepad to control the ship.

First, we made some changes to the methods that controlled the ship's movement in
SpriteWrapper. We wanted to have more control over the ship.

When the player clicks on the start button, a new instance of KeyboardManager is created.
This is necessary to tell the class the UserControl:

_keyboardManager = new KeyboardManager(this);

This material is copyright and is licensed for the sole use by Vadim Kudria on 4th October 2009

6352 108th St, , Forest Hills, , 11375

Download at WoweBook.Com

Chapter 6

[173]

The constructor will add the event handlers to this UserControl in order to identify the
pressed and released keys.

We added a call to the new CheckKeyboard procedure in the RenderFrame method.
We made some changes, taking into account the possibilities offered by our new
keyboard manager.

The ship does not move if there is no key held down. We achieve this calling the GoNowhere
method before evaluating the keys that are pressed:

_ship.GoNowhere();

Then, we evaluate the keys that are down, using the static IsKeyDown function. We are
able to evaluate multiple keys at the same time. This gives us the possibility to respond to
complex keyboard inputs using this keyboard manager.

As previously explained, once we have processed the pressed keys, we call the
RemoveUpKeys static method:

KeyboardManager.RemoveUpKeys();

Therefore, when the RenderFrame method is called again, the keyboard handler will inform
the method of the keys that are still held down and will not hold keys that have already
been released. This way, we make sure that the ship moves when the keys are down. It is
very important to translate this behavior to other input devices mapped to a keyboard, like
gamepads, joysticks, and flightsticks.

Time for action – mapping a gamepad to the keyboard
Your project manager brings you a new USB gamepad, similar to the one used by Sony
Playstation 3 game console. He wants to control the Invaders 2D game using the gamepad's
right mini stick.

We cannot use DirectX to access DirectInput in Silverlight. We cannot access
the gamepad driver either. Therefore, we have to use a feature provided by
most gamepad drivers, the keyboard and mouse mode.

This material is copyright and is licensed for the sole use by Vadim Kudria on 4th October 2009

6352 108th St, , Forest Hills, , 11375

Download at WoweBook.Com

Controlling Input Devices to Provide Great Feedback

[174]

We have to configure the gamepad driver to map four gamepad keys to the keyboard's
cursor movement keys:

You need a USB gamepad with 4 axis and 2 mini sticks in order to complete
the following exercises.

1.	 Connect the USB gamepad to the computer and install its driver if you have
not already done so.

2.	 Go to Control Panel | Game Controllers. Select the gamepad in the game controllers
list and click on Properties (some drivers show the generic name USB Network
Joystick). A dialog box will show the buttons for the gamepad, the mini sticks
axis, and the point of view hat, as shown in the following screenshot:

3.	 Disable the analog mode (the analog mode led should be turned off). The gamepad
must be in digital mode in order to allow us to map the right mini stick to
keyboard's keys.

4.	 You can test the relationship between the button numbers shown in the screen and
the gamepad's pressed buttons using the previously mentioned dialog box.

This material is copyright and is licensed for the sole use by Vadim Kudria on 4th October 2009

6352 108th St, , Forest Hills, , 11375

Download at WoweBook.Com

Chapter 6

[175]

5.	 Click on Keyboard & Mouse Setting. A new dialog box will appear. It will allow you
to change the gamepad mode and map its buttons to keyboard's keys.

6.	 Activate the checkbox Keyboard & Mouse Mode.

7.	 Select the following values for the first four keys (you must select the Keyboard
Key… option in the combo box and then press the desired key on the keyboard
dialog box):

Key 1: Up Arrow

Key 2: Right Arrow

Key 3: Down Arrow

Key 4: Left Arrow

8.	 The values should be similar to the ones shown in the following picture:

9.	 Click on OK.

10.	Move the gamepad's left mini stick. The mouse pointer should change its position
as the mini stick moves.

11.	Control the gamepad's POV. The mouse pointer should change its position as
it is pressed in different directions.

This material is copyright and is licensed for the sole use by Vadim Kudria on 4th October 2009

6352 108th St, , Forest Hills, , 11375

Download at WoweBook.Com

Controlling Input Devices to Provide Great Feedback

[176]

12.	Open a text file in Notepad. Move the gamepad's right mini stick. It
should work as the cursor movement keys.

13.	Press the gamepad's four-action buttons (on the right side). They should work
as the cursor movement keys.

What just happened?
You configured the gamepad driver to map its mini sticks and four-action buttons to the
mouse pointer and the cursor movement keys. Therefore, you will be able to control your
Silverlight game using the gamepad without problems.

This is not the most convenient way to use a gamepad in a game. However, as
Silverlight has limitations, we can configure gamepads as previously explained
and we will be able to use them in our games. The same technique can be used
for joysticks and flightsticks.

Understanding the gamepad as an input device
The gamepad is a complex input device. It usually offers many action buttons and two mini
sticks, as shown in the following picture (top view):

This material is copyright and is licensed for the sole use by Vadim Kudria on 4th October 2009

6352 108th St, , Forest Hills, , 11375

Download at WoweBook.Com

Chapter 6

[177]

Each button number can be assigned to represent a different key on the keyboard. Thus, we
can take advantage of the 12 action buttons in this kind of gamepad.

The action buttons 11 and 12 are triggered when the player pushes the mini stick
(like clicking with a mouse button).

The other four action buttons are visible in the following picture (rear view):

Depending on the manufacturer and the model, its four action buttons on the right side can
show different symbols or numbers, as shown in the following diagram:

This material is copyright and is licensed for the sole use by Vadim Kudria on 4th October 2009

6352 108th St, , Forest Hills, , 11375

Download at WoweBook.Com

Controlling Input Devices to Provide Great Feedback

[17�]

Time for action – using the gamepad
Now, it is time to invite your project manager to control the game using the gamepad in a
Silverlight application:

1.	 Stay in the SilverlightInvaders2DVector project.

2.	 Build and run the solution. Click on the button and move the ship to the aliens, using
the right mini stick. You will be able to move and stop the ship with great accuracy,
using the gamepad, as shown in the following picture:

3.	 Now, use the gamepad's four action buttons to control the ship's movement.

This material is copyright and is licensed for the sole use by Vadim Kudria on 4th October 2009

6352 108th St, , Forest Hills, , 11375

Download at WoweBook.Com

Chapter 6

[17�]

What just happened?
Many Silverlight developers had told your project manager that it was impossible to use a
gamepad to control a Silverlight application. For this reason, he is delighted to see that the
Silverlight games you are creating can use a gamepad.

We did not have to change a single line of code. Firstly, we had to take the input from a
keyboard, taking into account that many keys could be pressed during the time taken to
render one frame. Then, mapping the gaming input device to keys, we could use it in a
Silverlight application, without even needing to know its model or manufacturer.

This technique has its limitations, because we do not have access to
the gaming input device's driver. For example, we cannot activate the
vibration effect, if available in the device.

Time for action – creating a mouse manager class
Now, your project manager wants to use the left mini stick to move the ship. As it controls
the mouse pointer, you can take into account its position to allow a player to use the left
mini stick in a Silverlight application.

It is time to create a simple yet useful mouse manager class. It must be able to track the left
button and the mouse pointer's position between each rendered frame:

As Silverlight runs on both Windows and Mac OS X, it allows us to know the state
for the left mouse button. Mac computers do not have a right mouse button.
Besides, Silverlight applications can run on Linux through the Moonlight project:
http://www.mono-project.com/Moonlight

1.	 Stay in the SilverlightInvaders2DVector project.

2.	 Create a new class—MouseManager.

3.	 Add the following private and static variables:

// The target for the the event handlers
private static UserControl _target;
// The mouse's left button state
private static bool _mouseButton;
// The mouse position, represented by a Point
private static Point _mousePoint = new Point(0,0);

This material is copyright and is licensed for the sole use by Vadim Kudria on 4th October 2009

6352 108th St, , Forest Hills, , 11375

Download at WoweBook.Com

Controlling Input Devices to Provide Great Feedback

[1�0]

4.	 Add the following constructor with a parameter to the MouseManager class:

public MouseManager(UserControl target)
{
 _target = target;
 // Add a KeyEventHandler to control when the button is down
 _target.MouseLeftButtonDown += new
 MouseButtonEventHandler(OnMouseDown);
 // Add a KeyEventHandler to control when the button is up
 _target.MouseLeftButtonUp += new
 MouseButtonEventHandler(OnMouseUp);
 // Add a KeyEventHandler to control the mouse movement
 _target.MouseMove += new MouseEventHandler(OnMouseMove);
}

5.	 Add the following public and static function to check the mouse button state
and the pointer's position:

public static bool IsButtonDown()
{
 return (_mouseButton);
}
public static Point GetMousePosition()
{
 return (_mousePoint);
}

6.	 Add the following private delegates to control the mouse movement and the
button that is pressed and released:

private void OnMouseDown(Object sender, MouseButtonEventArgs e)
{
 mouseButton = true;
}
private void OnMouseUp(Object sender, MouseButtonEventArgs e)
{
 _mouseButton = false;
}
private void OnMouseMove(Object sender, MouseEventArgs e)
{
 _mousePoint = e.GetPosition(null);
}

This material is copyright and is licensed for the sole use by Vadim Kudria on 4th October 2009

6352 108th St, , Forest Hills, , 11375

Download at WoweBook.Com

Chapter 6

[1�1]

What just happened?
The code to take information from the mouse is now held in the new MouseManager class.
It uses some static private variables because there is just one mouse connected to a
computer. Thus, we will need just one instance of this class.

The class is similar to the one used to take information from the keyboard. The constructor
receives a UserControl as a parameter and it adds three event handlers to handle the
mouse movement (OnMouseMove) and the left button that is pressed (OnMouseDown) and
released (OnMouseUp).

Using the mouse
Using the mouse for gaming purposes in Silverlight applications has some limitations. We
already mentioned that we are limited to checking for the left button. Besides, the mouse
pointer's movement is limited to the UI Element area used in the web browser to display
the game's scenes. Thus, we will not have the same precision offered by the keyboard.

As we have to add code to the events in order to capture the mouse movement and the
pressed and released button, we created a class to do that work for us.

We do not want to add the code to handle the mouse in the events. Instead, the mouse
manager uses the OnMouseMove, OnMouseDown, and OnMouseUp event handlers to save
the results in two private and static variables:

_mouseButton: A bool value indicating whether the left button is pressed or not.

_mousePoint: The mouse pointer's last position.

In the game loop, we can call the GetMousePosition static function to trigger actions
according to the new mouse pointer location. Besides, we can call the IsButtonDown
static function to determine whether the left button was pressed or not.

Time for action – using the mouse manager in the game loop
Now, it is time to make the necessary changes to the game loop in order to use our
new mouse manager. We will deactivate the keyboard manager and replace it with the
mouse manager:

1.	 Stay in the SilverlightInvaders2DVector project.

2.	 Open MainPage.xaml.cs.

This material is copyright and is licensed for the sole use by Vadim Kudria on 4th October 2009

6352 108th St, , Forest Hills, , 11375

Download at WoweBook.Com

Controlling Input Devices to Provide Great Feedback

[1�2]

3.	 Add the following private variables in the public partial class MainPage :
UserControl, to hold an instance of the MouseManager class and the previous
mouse position:

private MouseManager _mouseManager;
private Point oldMousePoint = new Point(0,0);

4.	 Add the following private method to check the mouse movement using the new
mouse manager and to move the ship according to the vectors.

private void CheckMouse()
{
 // By default, the ship will not move if there is no mouse
 activity
 _ship.GoNowhere();
 Point mousePoint = MouseManager.GetMousePosition();
 // Move the ship when the button is down
 if (mousePoint.X < oldMousePoint.X)
 _ship.GoLeft();
 if (mousePoint.X > oldMousePoint.X)
 _ship.GoRight();
 if (mousePoint.Y < oldMousePoint.Y)
 _ship.GoUp();
 if (mousePoint.Y > oldMousePoint.Y)
 _ship.GoDown();
 if (MouseManager.IsButtonDown())
 {
 _ship.GoNowhere();
 }
 // Save the old mouse position
 oldMousePoint = mousePoint;
}

5.	 Comment the line CheckKeyboard(); (this time, we are just going to use the
mouse). Then, add the following line of code after the line CheckCollisions();
and before the line _LastTick = DateTime.Now; in the RenderFrame method:

//CheckKeyboard();
CheckMouse();

6.	 Now, add the following line of code before the end of the btnStartGame
button's Click event:

_mouseManager = new MouseManager(this);

This material is copyright and is licensed for the sole use by Vadim Kudria on 4th October 2009

6352 108th St, , Forest Hills, , 11375

Download at WoweBook.Com

Chapter 6

[1�3]

7.	 Build and run the solution. Click on the button and move the mouse. You will see
that the ship moves in the same direction that the mouse pointer translates. You will
be limited by the area where the mouse pointer can be moved, as shown in the
following picture:

What just happened?
You can move the ship using the mouse. You can control the ship's movements, limited
to the area available for the mouse pointer's location. The ship moves when the mouse
moves in certain directions and it stops moving when the left button is pressed or when the
mouse stops moving. It is very easy to move the ship in a diagonal direction and with a free
movement style.

When the player clicks on the start button, a new instance of MouseManager is created. This
is necessary to tell the class the UserControl:

_mouseManager = new MouseManager(this);

The constructor will add the three previously explained event handlers to this UserControl.

We commented the call to the CheckKeyboard procedure and we added a call to the new
CheckMouse procedure in the RenderFrame method.

We evaluate the direction of the mouse pointer taking into account its previous position
and comparing it with the new one. We are able to evaluate directions in both axes at the
same time.

This material is copyright and is licensed for the sole use by Vadim Kudria on 4th October 2009

6352 108th St, , Forest Hills, , 11375

Download at WoweBook.Com

Controlling Input Devices to Provide Great Feedback

[1�4]

The ship does not move if the mouse left button is pressed. We achieved this by calling the
GoNowhere method before evaluating the button's status:

if (MouseManager.IsButtonDown())
{
 _ship.GoNowhere();
}

Time for action – using the gamepad as a mouse
Now, it is time to invite your project manager to control the game using the gamepad's left
mini stick in a Silverlight application:

1.	 Stay in the SilverlightInvaders2DVector project.

2.	 Keep the same configuration previously explained for the gamepad.

3.	 Build and run the solution. Click on the button and move the ship to the aliens,
using the left mini stick. You will be able to move and stop the ship according to the
mouse pointer's position, using the gamepad, as shown in the following picture:

4.	 Repeat the experience using the gamepad's POV control to move the ship.

This material is copyright and is licensed for the sole use by Vadim Kudria on 4th October 2009

6352 108th St, , Forest Hills, , 11375

Download at WoweBook.Com

Chapter 6

[1�5]

What just happened?
By using the keyboard manager, the mouse manager, and configuring the gamepad's driver,
you could take into account its input to control a game running as a Silverlight application.

Again, we did not have to change a single line of code. Firstly, we had to take the input from
the mouse, taking into account its movement during the time taken to render one frame.
Then, mapping one of the gaming input device's analog controls to the mouse; we could use
it in a Silverlight application, without even needing to know its model or manufacturer.

Time for action – rotating cameras using input devices
As you were able to use a gamepad in Silverlight, your project manager wants to control the
camera that shows the ship using this device.

Now, we are going to add the keyboard and mouse management classes to our application
that shows the spaceship, using Balder and Silverlight:

1.	 Open the project, 3DInvadersSilverlight.

2.	 Copy and paste the previously created keyboard and mouse management classes to
the main project, KeyboardManager and MouseManager.

3.	 Open MainPage.xaml.cs.

4.	 Add the following private variables in the public partial
class MainPage : UserControl, to hold instances of the
KeyboardManager and MouseManager classes:

private KeyboardManager _keyboardManager;
private MouseManager _mouseManager;

5.	 Add the following line of code before the end of the aforementioned
 class's constructor:

// Key manager
_keyboardManager = new KeyboardManager(this);
// Mouse manager
_mouseManager = new MouseManager(this);

6.	 Open InvadersGame.cs.

7.	 Add the following private variables in the public class
InvadersGame : Game, to hold the previous mouse position:

private Point oldMousePoint = new Point(0,0);

This material is copyright and is licensed for the sole use by Vadim Kudria on 4th October 2009

6352 108th St, , Forest Hills, , 11375

Download at WoweBook.Com

Controlling Input Devices to Provide Great Feedback

[1�6]

8.	 Add the following private methods to change the camera's angle:

private void ReduceCameraAngle()

{
 _cameraAngleRadians -= 0.1;
}
private void IncreaseCameraAngle()
{
 _cameraAngleRadians += 0.1;
}

9.	 Add the following private methods to check the mouse movement and the
keys pressed using the new mouse and keyboard manager. They control the
camera's angle:

private void CheckMouse()
{
 Point mousePoint = MouseManager.GetMousePosition();
 // Move the spaceship when the button is down
 if (mousePoint.X < oldMousePoint.X)
 ReduceCameraAngle();
 if (mousePoint.X > oldMousePoint.X)
 IncreaseCameraAngle();
 // Save the old mouse position
 oldMousePoint = mousePoint;
}
private void CheckKeyboard()
{
 if (KeyboardManager.IsKeyDown(Key.Left))
 ReduceCameraAngle();
 if (KeyboardManager.IsKeyDown(Key.Right))
 IncreaseCameraAngle();
 // After checking the down keys, remove the up keys
 KeyboardManager.RemoveUpKeys();
}

10.	Replace the code in the Update method with the following. (We want to control the
camera's angle using both the keyboard and the mouse while the light rotates.):

base.Update();
CheckKeyboard();
CheckMouse();
// Calculate the new position for the camera in the X-axis
Camera.Position.X = (float)Math.Sin(_cameraAngleRadians) * 50f;

This material is copyright and is licensed for the sole use by Vadim Kudria on 4th October 2009

6352 108th St, , Forest Hills, , 11375

Download at WoweBook.Com

Chapter 6

[1�7]

// Calculate the new position for the camera in the Z-axis
Camera.Position.Z = (float)Math.Cos(_cameraAngleRadians) * 50f;
_light.Position.X = -(float)Math.Sin(_lightAngleRadians) * 20f;
_light.Position.Z = -(float)Math.Cos(_lightAngleRadians) * 20f;
_lightAngleRadians += 0.05;

11.	Build and run the solution. Click on the web browser's viewport to activate its
focus. Move the mouse left and right. You will see that the camera that targets
the spaceship rotates as the mouse is moved. Use the cursor movement keys
to control the camera.

12.	Keep the same configuration that was previously explained for the gamepad.

13.	Rotate the camera using the left mini stick (left and right). You can also rotate the
camera using the two action buttons mapped to the left and to the right cursor
movement keys. The following picture shows the left mini stick controlling
the camera.

This material is copyright and is licensed for the sole use by Vadim Kudria on 4th October 2009

6352 108th St, , Forest Hills, , 11375

Download at WoweBook.Com

Controlling Input Devices to Provide Great Feedback

[1��]

What just happened?
By using the keyboard manager, the mouse manager, and configuring the gamepad's driver,
you could take into account its input to control a camera using Balder under Silverlight.

We did not have to change our manager classes. We just had to add some code to create the
instances in the MainPage class.

We created methods very similar to the ones already explained for our previous examples.
However, this time we were back in a 3D scene.

Using the same manager classes, we can control as many aspects
of a game as desired.

Have a go hero – taking full advantage of the gamepad
You have a gamepad with 12 action buttons in your hand. You must take full advantage of
this gamepad in the games you are working on. Make the following changes to the XBAP
WPF and the Silverlight version of the 3D games. Use the keyboard and mouse management
classes to achieve these goals.

Use the gamepad's select button to switch between three cameras:

Top view

Front view

Rear view

They must target to the spaceship from the aforementioned views.

Use the gamepad's left and right pair of buttons (check the gamepad's rear view) to rotate
the spaceship 0, 90, 180, and 270 degrees.

Use the left mini stick to rotate the camera.

Use the four action buttons (right mini stick in digital mode) to move the spaceship in the
3D scene.

Bridging with DirectInput capabilities
So far, we have been mapping a gamepad and other gaming input devices to keyboard's keys
and the mouse pointer. Our keyboard and mouse managers allowed us to take the inputs
provided by these devices. Thus, we were able to use just their most essential features.
However, we could not take full advantage of them. Silverlight does not allow us to access

This material is copyright and is licensed for the sole use by Vadim Kudria on 4th October 2009

6352 108th St, , Forest Hills, , 11375

Download at WoweBook.Com

Chapter 6

[1��]

DirectX. However, we can change some security settings to allow an XBAP WPF application
to use DirectInput and take full advantage of exciting input gaming devices, such as steering
wheels. How can we interact with DirectInput in order to control these gaming input devices?

In order to communicate with DirectX in an XBAP WPF application, we must
change some default security settings. This is not a recommended practice,
because we will introduce some security risks. However, we can use it when
we are deploying applications on a trusted Intranet or Extranet.

Time for action – installing the necessary SDKs
We have to work with DirectX for managed code. Thus, we must make sure that we have the
necessary SDKs installed.

XNA Framework replaced DirectX for managed code. However, we are
only using it to access DirectInput's features.

1.	 Download the DirectX Software Development Kit (SDK). The download
link for the kit is http://www.microsoft.com/downloads/details.
aspx?FamilyID=24a541d6-0486-4453-8641-1eee9e21b282&displaylang=
en—file name: DXSDK_Mar09.exe. This SDK includes the set of DirectX DLLs that
are required to run DirectX applications.

2.	 Run the installer and follow the steps to complete the installation wizard.

3.	 Once the installation of the DirectX SDK has finished, you will be able to use the
references included in the .NET Framework to access DirectX functions in
C# (managed code), as shown in the following screenshot:

This material is copyright and is licensed for the sole use by Vadim Kudria on 4th October 2009

6352 108th St, , Forest Hills, , 11375

Download at WoweBook.Com

Controlling Input Devices to Provide Great Feedback

[1�0]

What just happened?
Now, we will be working with an XBAP WPF application. As mentioned earlier, it uses the
complete .NET Framework. Therefore, we already have .NET installed. We needed the
DirectX libraries to access DirectX for managed code.

We are not going to use XNA Framework because we want to access more gaming input
devices than the ones supported by XNA.

Considering deployment's additional requirements
There is a small issue with the deployment of applications that use DirectX for managed
code. The stand-alone developer run-time installers install only the DirectX developer and
debug run-time for redistribution purposes.

However, the user that needs to use our new XBAP WPF application will need to install the
full set, including the managed code version.

In order to install these additional libraries, you have to run the DirectX redistributable
installer using the following command-line parameter:

DXSetup.exe /InstallManagedDX

Using the /InstallManagedDX flag, DirectX setup routine will
install the managed run-times. We need them in order to access
DirectX from our application.

Time for action – understanding sticks and buttons
Using DirectInput, you can take control of most gaming input devices that you can connect to
a modern PC through USB. Some input devices look pretty complex. However, they are just a
smart combination of sticks (analog axes) and buttons.

Therefore, the first step to understanding the gaming input device is checking the sticks and
buttons offered. We followed a similar step for the gamepad, but now we are going to pay
special attention to the functions offered by a steering wheel.

1.	 Connect the USB steering to the computer and install its driver if you have not
done so.

2.	 Go to Control Panel | Game Controllers. Select the wheel in the game controllers
list and click on Properties (some drivers show the generic name USB Vibration
Wheel). A dialog box will show the buttons for the steering wheel, the axis
controlled by the wheel and the point of view hat, as shown in the following picture:

This material is copyright and is licensed for the sole use by Vadim Kudria on 4th October 2009

6352 108th St, , Forest Hills, , 11375

Download at WoweBook.Com

Chapter 6

[1�1]

3.	 Move the steering wheel and watch the X-axis changing its value.

4.	 Accelerate (right pedal) and watch the Y-axis increasing its value.

5.	 Brake (left pedal) and watch the Y-axis reducing its value.

6.	 Test the relationship between the button numbers shown in the screen and
the wheel's pressed buttons using the previously mentioned dialog box.

7.	 If the wheel offers a shift control, use it and you will see the button numbers
representing each shift. In this example, button 11 represents shift up and
button 12 represents shift down.

What just happened?
Using the driver's dialog box, you could discover how a steering wheel or other gaming input
device sends its analog and digital values to its driver.

This information will help us to use DirectInput's capabilities.

This material is copyright and is licensed for the sole use by Vadim Kudria on 4th October 2009

6352 108th St, , Forest Hills, , 11375

Download at WoweBook.Com

Controlling Input Devices to Provide Great Feedback

[1�2]

Understanding the steering wheel as an input device
The steering wheel is a complex input device. It usually offers many action buttons and
it controls two axes (X and Y). The steering wheel movement controls the X-axis and the
accelerate and brake pedal control the negative and positive values for the Y-axis, as shown
in the following picture:

This material is copyright and is licensed for the sole use by Vadim Kudria on 4th October 2009

6352 108th St, , Forest Hills, , 11375

Download at WoweBook.Com

Chapter 6

[1�3]

Depending on the manufacturer and the model, the number of
action buttons on the wheel could be different.

Time for action – testing the input devices with
a DirectInput wrapper

DirectInput offers a complex API. You do not want to learn the complete API because you just
want to use the steering wheel in your XBAP WPF game.

There is a simple yet powerful wrapper for joystick style devices, developed in C# by Mark
Harris. We can use it to obtain values from the steering wheel. There is an example Windows
Forms application that can help us to understand how to work with this wrapper.

1.	 Download the source code for the C# Joystick wrapper from its page in THE
CODE PROJECT website, http://www.codeproject.com/KB/directx/
joystick.aspx. The compressed file is joystick-src.zip.

The source code is available as part of the code that can be downloaded for
this book. However, in order to publish code for your new applications that
use this wrapper, you must keep the copyright notice and the credit to the
original author, Mark Harris.

2.	 Decompress the previously mentioned file.

3.	 Open the JoystickSample solution.

This material is copyright and is licensed for the sole use by Vadim Kudria on 4th October 2009

6352 108th St, , Forest Hills, , 11375

Download at WoweBook.Com

Controlling Input Devices to Provide Great Feedback

[1�4]

4.	 Now, you have to change a setting in Visual Studio to allow the application to get
a device list without throwing a LoaderLock exception. Select Debug | Exceptions
and a dialog box will appear. Expand Managed Debugging Assistants under the
list Break when an exception is. Uncheck Thrown for LoaderLock and click OK.
This way, you will be able to debug the application. See the following screenshot:

5.	 Build and run the solution. A new window will appear showing sliders to present the
current values of the different axes and radio buttons to display the status for the
button. Move the gaming input device's axis, press and release its buttons, and
see how the application shows these changes in real-time, as shown in the
following screenshot:

This material is copyright and is licensed for the sole use by Vadim Kudria on 4th October 2009

6352 108th St, , Forest Hills, , 11375

Download at WoweBook.Com

Chapter 6

[1�5]

What just happened?
The application established a communication with the gaming input device driver and could
retrieve the position of each axis and status of each button.

The buttons have a boolean status.

The joystick wrapper used in the application shows values for each axis using a two bytes
unsigned integer. Hence, the value goes from 0 to 65,535. The value 32,767 represents the
central or neutral position.

It is very important to test whether the center of each analog axis is calibrated
in order to avoid getting incorrect values from the gaming input device.

Understanding the analog axis for a steering wheel
The screen can show up to 6 axis. The following table shows the usual names:

Name shown in the screen label Property name Technical name

Axis: 1 AxisA Rz
Axis: 2 AxisB Rx
Axis: 3 AxisC X
Axis: 4 AxisD Y
Axis: 5 AxisE Extra Axis 1
Axis: 6 AxisF Extra Axis 2

Considering the aforementioned table and the usage of a steering wheel, when the player:

Moves the steering wheel right, the value of X-axis (AxisC) increases (>= 32,767).
The values from 32,768 to 65,535 represent the right.

Moves the steering wheel left, the value of X-axis (AxisC) decreases (<= 32,767).
The values from 0 to 32,766 represent the left.

Keeps the steering wheel at the center, the value of X-axis (AxisC) is equal
to 32,767.

Accelerates (pushes the right pedal), the value of Y-axis (AxisD) decreases
(<= 32,767). The values from 0 to 32,766 mean acceleration. This is the inverse
of the previously experienced behavior shown by the driver user interface. The
problem is that the accelerator and brake work against the same axis. Therefore,
using this wrapper, the values will decrease when accelerating and increase
when braking.

This material is copyright and is licensed for the sole use by Vadim Kudria on 4th October 2009

6352 108th St, , Forest Hills, , 11375

Download at WoweBook.Com

Controlling Input Devices to Provide Great Feedback

[1�6]

Brakes (pushes the left pedal), the value of Y-axis (AxisD) increases (>= 32,767).
The values from 32,768 to 65,535 means braking. Again, this is the inverse of the
previously experienced behavior shown by the driver user interface.

Neither accelerates nor brakes, the Y-axis value (AxisC) is equal to 32,767.

Understanding the analog axis for a gamepad
If we want to work with a two mini sticks gamepad, we can replace the default mapping for
the Joystick class with a new mapping.

In the update method, change the following line:

axisB = state.Rx;

With this line:

axisB = state.Z;

Thus, the AxisB property (representing the axisB field) will be mapped to the Z-axis, which
is controlled by the right mini stick's horizontal movement.

Considering the aforementioned change and the usage of a gamepad with two mini sticks,
when the player:

Moves the left mini stick:

To the right, the value of X-axis (AxisC) increases (>= 32,767). The
values from 32,768 to 65,535 represent right.

To the left, the value of X-axis (AxisC) decreases (<= 32,767). The
values from 0 to 32,766 represent left.

Down, the value of Y-axis (AxisD) increases (>= 32,767). The values
from 32,768 to 65,535 represent down.

Up, the value of Y-axis (AxisD) decreases (<= 32,767). The values
from 0 to 32,766 represent up.

Keeps this stick at the center, the values of X-axis (AxisC) and the
Y-axis (AxisD) are both equal to 32,767.

Moves the right mini stick:

Down, the value of Rz-axis (AxisA) increases (>= 32,767). The
values from 32,768 to 65,535 represent down.

Up, the value of Rz-axis (AxisA) decreases (<= 32,767). The values
from 0 to 32,766 represent up.

This material is copyright and is licensed for the sole use by Vadim Kudria on 4th October 2009

6352 108th St, , Forest Hills, , 11375

Download at WoweBook.Com

Chapter 6

[1�7]

Right, the value of Z-axis (AxisB) increases (>= 32,767). The values
from 32,768 to 65,535 represent right.

Left, the value of Z-axis (AxisB) decreases (<= 32,767). The values
from 0 to 32766 represent left.

Keeps this stick at the center, the values of Z-axis (AxisB) and the
Rz-axis (AxisA) are both equal to 32,767.

As we are working with analog modes, the values for the different axes change
proportionally to the movement made by the player. Thus, we can offer a very
precise control over many aspects of the game.

Besides, the gamepad's analog mode allows us to take independent inputs from both mini
sticks and the main four action buttons.

Time for action – adapting a joystick manager class
It is time to adapt the wrapper for joystick style devices in order to use it in our
XBAP WPF application.

By default, Visual Studio configures an XBAP WPF application to run as a
partial trust application. We are going to change that in order to have access
to DirectInput. However, this is not a recommended practice. You should only
use it when working with other security resources as certificates.

1.	 Open the 3DInvadersXBAP project.

2.	 Select Project | Add Reference… and select Microsoft.DirectX.DirectInput.
Then, click on OK.

3.	 Now, the project will list the reference to the aforementioned DLL in the
Solution Explorer.

4.	 Right-click on 3DInvadersXBAP (the main project) in the Solution Explorer and
select Properties from the context menu that appears.

5.	 Click on the Security tab and then activate the radio button This is a full trust
application. Now, we will be able to access DirectInput and to use the joystick
wrapper from our XBAP WPF application.

6.	 Create a new class—Joystick.

This material is copyright and is licensed for the sole use by Vadim Kudria on 4th October 2009

6352 108th St, , Forest Hills, , 11375

Download at WoweBook.Com

Controlling Input Devices to Provide Great Feedback

[1��]

7.	 Add the following lines of code at the beginning of the class definition:

using Microsoft.DirectX.DirectInput;
using System.Diagnostics;

8.	 Do not forget to make the previously explained changes if you are planning to take
input from a gamepad with two mini sticks.

9.	 Copy and paste the code for the Joystick class from the JoystickSample
solution, from the constructor to the end of the class's methods. Do not include
the previous namespace as we are changing it.

10.	Find and comment the following line (we are not going to use Windows Forms and
we do not want to work with window handles):

//private IntPtr hWnd;

11.	Comment the existing constructor's definition:

//public Joystick(IntPtr window_handle)

12.	Replace the previously mentioned constructor's definition with the following,
without parameters:

public Joystick()

13.	Find and comment the first line in the constructor's code:

// hWnd = window_handle;

14.	Find and comment the following line in the FindJoysticks method:

//joystickDevice.SetCooperativeLevel(hWnd,
// CooperativeLevelFlags.Background |
// CooperativeLevelFlags.NonExclusive);

15.	Find and comment the following line in the AcquireJoystick method:

//joystickDevice.SetCooperativeLevel(hWnd,
// CooperativeLevelFlags.Background |
// CooperativeLevelFlags.NonExclusive);

This material is copyright and is licensed for the sole use by Vadim Kudria on 4th October 2009

6352 108th St, , Forest Hills, , 11375

Download at WoweBook.Com

Chapter 6

[1��]

16.	 If you are using Visual Studio Standard or better, right-click on Joystick.cs (the new
class) in the Solution Explorer and select View Class Diagram from the context
menu that appears. The class diagram will show you the fields, properties and
methods for this joystick wrapper:

What just happened?
You have a new Joystick class ready to use in your XBAP WPF application. Now, you are
able to add code in order to read values from the steering wheel.

We had to change the security settings for the XBAP WPF application. This was necessary in
order to have access to DirectInput and the gaming input device drivers.

This material is copyright and is licensed for the sole use by Vadim Kudria on 4th October 2009

6352 108th St, , Forest Hills, , 11375

Download at WoweBook.Com

Controlling Input Devices to Provide Great Feedback

[200]

We made some changes to the class to avoid the usage of a window handle. The class was
originally developed to be used in Windows Forms applications. We are using it in an XBAP
WPF application and we had to make these changes to adapt it to the new environment.

The class is very simple. It offers us many properties to get the values for the available axes
and buttons. The methods allow us to control the desired device and to update the values.

Time for action – using the steering wheel in the game loop
Now, it is time to create a simple game loop for our XBAP WPF application and to make the
necessary changes to it in order to use our new joystick manager. This time, we will use it to
read values from the steering wheel:

1.	 Stay in the 3DInvadersXBAP project.

2.	 Open Page1.xaml.cs.

3.	 Add the following private variables in the public partial class Page1 :
Page, to hold an instance of the Joystick class and the last time a frame finished
its rendering:

// Holds the time when the method finished rendering a frame
private DateTime _LastTick;
// The instance of the Joystick class to access the wrapper
private Joystick _joystick;

4.	 Add the following lines of code before the end of the Page constructor:

// Grab the joystick
_joystick = new Joystick();
// Obtain the list of joystick style game input devices found
string[] sticks = _joystick.FindJoysticks();
// Acquire the main joystick
_joystick.AcquireJoystick(sticks[0]);
// Save the current time
_LastTick = DateTime.Now;
// Add an EventHandler to render each frame
CompositionTarget.Rendering += RenderFrame;

5.	 Add the following private method to check the steering wheel movement and
its buttons' states using the new Joystick class and to move and rotate the ship
according to them.

private void CheckJoystick()
{
 // Update the joystick status

This material is copyright and is licensed for the sole use by Vadim Kudria on 4th October 2009

6352 108th St, , Forest Hills, , 11375

Download at WoweBook.Com

Chapter 6

[201]

 _joystick.UpdateStatus();
 // Shift up = move forward
 if (_joystick.Buttons[10] == true)
 translateShip.OffsetX += 0.05f;
 // Shift down = move back
 if (_joystick.Buttons[11] == true)
 translateShip.OffsetX -= 0.05f;
 // Rotate the ship according to the axis values
 rotateShip.Angle = ((_joystick.AxisC / 65535f) * 360);
 rotateShipY.Angle = ((_joystick.AxisD / 65535f) * 360);
}

6.	 Now, add the following lines of code to program the event handler that will render
each frame and update the spaceship's position and rotation according to the
input read from the steering wheel:

private void RenderFrame(object sender, EventArgs e)
{
 // Hold the elapsed time after the last call to this method
 TimeSpan elapsedTime = (DateTime.Now - _LastTick);
 CheckJoystick();
 // Save the current time
 _LastTick = DateTime.Now;
}

7.	 Build and run the solution. Move the steering wheel left and right and you will see
the spaceship rotating taking into account both the wheel's direction and position,
as shown in the following picture:

This material is copyright and is licensed for the sole use by Vadim Kudria on 4th October 2009

6352 108th St, , Forest Hills, , 11375

Download at WoweBook.Com

Controlling Input Devices to Provide Great Feedback

[202]

8.	 Play with the acceleration and brake pedals. The spaceship will rotate in the Y-axis
according to the values read from this pedals.

9.	 Shift up (button 11) to move forward the ship. Shift down (button 12) to move
back the ship.

What just happened?
Awesome! Your project manager can see the ship moving according to the steering
wheel's position.

Using the joystick wrapper and adding a game loop to the XBAP WPF application, you could
take into account its input to control a game running as a full trust XBAP WPF application.

We added a game loop because our XBAP WPF application did not have one. It is very similar
to the game loops used in previous Silverlight applications.

Using the joystick manager
Firstly, we had to grab the joystick, obtain a list of joystick style game input devices and then
acquire the main one. We used the Joystick class and its methods to achieve these goals.

The FindJoysticks function returns a string array with the joystick style game input
devices found. Using this method, we can discover the available devices.

Then, calling the AcquireJoystick method and sending as a parameter the string that
represents the desired input device to acquire, we could take control of the main device:

_joystick = new Joystick();
string[] sticks = _joystick.FindJoysticks();
_joystick.AcquireJoystick(sticks[0]);

In this case, we were considering that the only input game device connected to the
computer is the steering wheel, to keep things simple.

Once we acquired the input device, the work was done in the CheckJoystick method. The
Joystick class offers two properties to recognize the input device features:

AxisCount: The number of available axes

Buttons.Count(): The number of buttons. Buttons is an array of bool values, counting its
members we can know the number of available buttons.

In the CheckJoystick method, the first thing done was to update the input device status,
calling the UpdateStatus method:

_joystick.UpdateStatus();

This material is copyright and is licensed for the sole use by Vadim Kudria on 4th October 2009

6352 108th St, , Forest Hills, , 11375

Download at WoweBook.Com

Chapter 6

[203]

This method updates the values for the axis and the buttons properties to reflect the
changes in the previously acquired input device.

Then, we were able to check the values for the corresponding properties and we translated
and rotated the spaceship according to them.

The Buttons array's lower bound is 0. Therefore, in order to check the bool value for the
button number 11, we used Buttons[10]. A true value means that the button is pressed.
We checked for buttons number 11 and 12 and translated the spaceship according to
their states:

if (_joystick.Buttons[10] == true)
 translateShip.OffsetX += 0.05f;
if (_joystick.Buttons[11] == true)
 translateShip.OffsetX -= 0.05f;

The steering wheel movement affects the AxisC property as previously explained. We took
into account the value that ranges from 0 to 65535 to create a 360 degrees rotation:

rotateShip.Angle = ((_joystick.AxisC / 65535f) * 360);

We also rotated the spaceship in its Y axis taking into account the acceleration and brake
pedals that affect the AxisD property, creating a 360 degrees rotation:

rotateShipY.Angle = ((_joystick.AxisD / 65535f) * 360);

You can control any aspect of the game checking the values for the available
axes and buttons.

Working with many input devices
Sometimes, we need to work with many joystick style game input devices at the same time.

For example, we can work with two gamepads, one flightstick and a gamepad, one steering
wheel and two gamepads, etc.

We can do this using the Joystick class analyzing the strings returned when calling its
FindJoysticks function. Then, we can call the AcquireJoystick method for each
gaming input device that we need to control. We need one instance of the Joystick
class per device.

This material is copyright and is licensed for the sole use by Vadim Kudria on 4th October 2009

6352 108th St, , Forest Hills, , 11375

Download at WoweBook.Com

Controlling Input Devices to Provide Great Feedback

[204]

Using other input devices
We can use the same principles explained for the steering wheel to take full advantage of the
features offered by a gamepad, joystick, flightstick, and any other input gaming devices that
provide a certain number of buttons and digital and/or analog sticks.

The only difference will be the features reported by each device and the experience provided
to the player.

When using DirectInput in an XBAP WPF application, it is convenient
to deactivate the keyboard and mouse mode for the gamepad or other
gaming input devices. We can take full advantage of their analog modes.

Have a go hero – using the Wiimote
You can use the most exciting input gaming devices, such as the amazing Nintendo's
Wiimote, adapting existing wrappers to an XBAP WPF application, as we did for the
Joystick class.

There is a managed library to use the Wiimote in Windows with the C# code, developed
by Brian Peek (http://www.brianpeek.com). You can download it from
http://wiimotelib.codeplex.com/.

Your project manager wants you to control the spaceship using a Wiimote. You have to adapt
this wrapper to use it in the game and change the game loop to take the values from the
Wiimote. It must move and rotate the ship as we did for the steering wheel.

Have a go hero – working with time, analog and digital values
Your project manager is delighted with the steering wheel that controls the spaceship. The
game loop used in the XBAP WPF application takes into account the elapsed time between
each rendered frame. However, this value is not used to bring more precision to the
movements and rotations.

You have already worked with 2D games taking into account the elapsed time. Now, it is time
to do this in the 3D games.

Offer the player the possibility to translate the spaceship and rotate it taking into account
the values from the gaming input devices and the elapse time.

Then, accelerate and decelerate the spaceship's speed according to the values read from
analog inputs.

Use an object-oriented design to provide these new features to the spaceship.

This material is copyright and is licensed for the sole use by Vadim Kudria on 4th October 2009

6352 108th St, , Forest Hills, , 11375

Download at WoweBook.Com

Chapter 6

[205]

Finally, use the acceleration and deceleration algorithms for the camera's movement in
both the Silverlight and the XBAP WPF application. In the Silverlight version, use the analog
values from the mouse position and add the code to take into account the elapsed time in
the Game class.

Pop quiz – working with gaming input devices
1. A Silverlight application can read values from a gamepad:

a. Using DirectInput.

b. Using managed DirectX.

c. Using the gamepad's keyboard and mouse mode in digital mode.

2. A Playstation style gamepad's digital mode allows us to:

a. Map the right mini stick to keyboard's keys.

b. Map the left mini stick to keyboard's keys.

c. Map the both mini sticks to keyboard's keys

3. A Playstation style gamepad's digital mode right mini stick is equivalent to:

a. The left mini stick.

b. The four command buttons on the right.

c. The POV.

4. A Playstation style gamepad's analog mode right mini stick controls:

a. The X and Y axis.

b. The Rz and Rx axis.

c. The Z and Rz axis.

5. Moving a wheel changes the value of the:

a. X-axis.

b. Y-axis.

c. Z-axis.

6. Pressing the acceleration pedal changes the value of the:

a. X-axis.

b. Y-axis.

c. Z -axis.

7. Pressing the bake pedal changes the value of the:

a. X-axis.

b. Y-axis.

c. Z-axis.

This material is copyright and is licensed for the sole use by Vadim Kudria on 4th October 2009

6352 108th St, , Forest Hills, , 11375

Download at WoweBook.Com

Controlling Input Devices to Provide Great Feedback

[206]

Summary
We have learned a lot in this chapter about gaming input devices. Specifically, we were able
to understand how they work and learnt how to read values for their keys, buttons, and
axis. We performed transformations to the models and cameras, translating and rotating
them according to the values read from the input devices in Silverlight applications and in
XBAP WPF using DirectInput, managers, and wrappers. We also understood the differences
between analog and digital controls.

Now that we've learnt to control many aspects of our games using input devices, we're ready
to use effects and textures to amaze the players, which is the topic of the next chapter.

This material is copyright and is licensed for the sole use by Vadim Kudria on 4th October 2009

6352 108th St, , Forest Hills, , 11375

Download at WoweBook.Com

7
Using Effects and Textures to Amaze

In order to create realistic games, we must render scenes that project a genuine
environment to the players. If we want to show a spaceship in a game, it will
have to be similar to a real spaceship. Hence, we have to paint our models
using textures and we must use different kinds of lights to illuminate them and
to create amazing environments and effects. We must mix 2D images with 3D
models. In this chapter, we will learn everything we need to know about the
process of enveloping a 3D model using textures.

We will be able to take 3D elements from popular and professional 3D DCC tools and we will
show them rendered in real-time on the screen with different textures, and enlightened by
many lights. In this chapter, we shall:

Prepare the 3D elements to be enveloped by textures

Take advantage of 3D DCC tools to create 3D models with texture
mapping coordinates

Understand how to work with many different complex textures

Control lights to give life to the scenes

Work with lights to create our first special effects

Dressing characters using textures
So far, we have been working with 3D scenes showing 3D models without textures. We were
able to show and to control a 3D model and many cameras using different input devices, in
both an XBAP WPF application and in Silverlight. However, we did not consider the original
texture used to envelope the spaceship. Thus, the spaceship does not look as nice as
expected. How can we envelope 3D models using textures to amaze the player?

This material is copyright and is licensed for the sole use by Vadim Kudria on 4th October 2009

6352 108th St, , Forest Hills, , 11375

Download at WoweBook.Com

Using Effects and Textures to Amaze

[20�]

In order to envelope 3D models using textures, we need to export the model from the
3D DCC tool including the references to the images used as textures. Then, we will be
able to replace the image used as a texture with another one.

Whilst working with 2D games, changing colors was a nice technique to create
new characters and to draw the players in to new stages, reusing existing sprites
and backgrounds. We can use a similar technique to create new characters and
scenarios for 3D games by changing the textures that envelope a 3D model.

Time for action – adding textures in DCC tools
The 3D digital artists are facing difficulties in creating additional spaceship models. However,
using two or three models and displaying them with many different textures will enable the
player to choose between a dozen spaceships. Your project manager wants you to use the
same technique used in the 2D games to create additional characters without putting in a
huge effort.

First, we are going to open the spaceship model in Blender, add a texture based on a PNG
image and export the 3D model to the ASE format, compatible with Balder. These steps are
necessary because we must export the ASE format including a bitmap texture definition
enveloping the meshes. Later, we will be able to replace this bitmap texture definition.

1.	 Start Blender and open the spaceship model (previously saved in Blender's native
format as Ship01.blend in C:\Silverlight3D\Invaders3D\3DModels\
SPACESHIP01).

2.	 Select Panels | Shading | Material. (You will see the Shading panel displaying the
Material buttons.)

3.	 Select the first material listed in the Link to Object combo box, under Link to Object.
In this case, the first material is MA:Material.001.

The spaceship is a complex model, previously imported into Blender from a
DirectX .x format. Thus, we are going to assign a bitmap texture to an existing
material to envelope the meshes. The spaceship model contains definitions for
seven materials. In this case, we are just going to change the first one.

4.	 Now, click on the Add New button in the Texture panel. Blender will assign the
name Tex to the new texture, as shown in the following picture:

This material is copyright and is licensed for the sole use by Vadim Kudria on 4th October 2009

6352 108th St, , Forest Hills, , 11375

Download at WoweBook.Com

Chapter 7

[20�]

5.	 Select Panels | Shading | Texture. You will see the Shading panel displaying the
Texture buttons.

6.	 Click on Texture Type and select Image. Blender will add a new panel, Image.

7.	 Click on the Load button, select the PNG file to be used as a texture to envelope the
meshes. You can use Ship_06.PNG in the Textures folder or you can use another
texture like Bricks.PNG (downloaded from http://www.freefoto.com/). You
just need to add a reference to a bitmap file. Then, click on Select Image. The Preview
panel will show a small bitmap's thumbnail, as shown in the following picture:

This material is copyright and is licensed for the sole use by Vadim Kudria on 4th October 2009

6352 108th St, , Forest Hills, , 11375

Download at WoweBook.Com

Using Effects and Textures to Amaze

[210]

8.	 Select Panels | Shading | Material. You will see the Shading panel displaying the
Material buttons and a preview for the material using the recently loaded bitmap
as a texture to envelope the meshes, as shown in the following screenshot:

9.	 Save the model in Blender's native format. It will be useful for further format
conversions. Select File | Save…. Browse to the folder created to hold the new
models (C:\Silverlight3D\Invaders3D\3DModels\SPACESHIP01) and
enter the desired name—Ship01_texture01.blend. Then, click on Save As. The
model is available to be loaded in Blender without the need to follow the previously
mentioned steps.

10.	Now, you have to export the model to the ASE format with the reference to the
texture. Therefore, select File | Export | ASCII Scene (.ase) v0.6.10. The default
folder will be the same used in the previous step. Hence, you will not need to
browse to another folder. Enter the desired name— Ship01_texture01.ase.
Then, click on Export ASCII Scene. A dialog box will appear.

11.	Click on Selection only to deselect this option.

12.	Click on OK. Now, the model is available as an ASE 3D model with the reference to
the texture. You will have to change the absolute path for the bitmap that defines
the texture in order to allow Balder to load the model in a Silverlight application.

What just happened?
We used a 3D DCC tool (Blender) to add a texture based on a bitmap and link it to an existing
material to envelope the meshes. Then, we converted the 3D model to the ASE file format,
using the Goofos ASE export script.

If we open the ASE file using a text editor, we will recognize the bitmap filename used for the
texture, included with its full path, as shown in the following lines:

*MATERIAL 0 {
 *MATERIAL_NAME "Multi # Material.001"
 MATERIAL_CLASS "Multi/Sub-Object"
 *MATERIAL_AMBIENT 0.0000 0.0000 0.0000
 *MATERIAL_DIFFUSE 0.7843 0.7843 0.7843

This material is copyright and is licensed for the sole use by Vadim Kudria on 4th October 2009

6352 108th St, , Forest Hills, , 11375

Download at WoweBook.Com

Chapter 7

[211]

 *MATERIAL_SPECULAR 1.0000 1.0000 1.0000
 *MATERIAL_SHINE 0.5000
 MATERIAL_SHINESTRENGTH 0.0978
 *MATERIAL_TRANSPARENCY 0.0000
 *MATERIAL_WIRESIZE 1.0000
 *NUMSUBMTLS 7
 *SUBMATERIAL 0 {
 *MATERIAL_NAME "Material.001"
 *MATERIAL_CLASS "Standard"
 *MATERIAL_AMBIENT 0.0000 0.0000 0.0000
 *MATERIAL_DIFFUSE 0.7843 0.7843 0.7843
 *MATERIAL_SPECULAR 1.0000 1.0000 1.0000
 *MATERIAL_SHINE 0.5000
 *MATERIAL_SHINESTRENGTH 0.0978
 *MATERIAL_TRANSPARENCY 0.0000
 *MATERIAL_WIRESIZE 1.0000
 *MATERIAL_SHADING Blinn
 *MATERIAL_XP_FALLOFF 0.0000
 *MATERIAL_SELFILLUM 0.0000
 *MATERIAL_FALLOFF In
 *MATERIAL_XP_TYPE Filter
 *MAP_DIFFUSE {
 *MAP_NAME "Tex.001"
 *MAP_CLASS "Bitmap"
 *MAP_SUBNO 1
 *MAP_AMOUNT 1.0000
 *BITMAP "C:\Silverlight3D\Invaders3D\3DModels\SPACESHIP01
 \Textures\Bricks.png"

These lines of code define the first material, Multi # Material.001, composed of seven
sub-materials.

The first sub-material is Material.001 and it includes a bitmap texture. The full path and
the PNG filename for the bitmap texture is referenced in the line that begins with *BITMAP.

We do not need to be experts in the ASE format. However, it is important
to understand the changes generated in the exported model.

This material is copyright and is licensed for the sole use by Vadim Kudria on 4th October 2009

6352 108th St, , Forest Hills, , 11375

Download at WoweBook.Com

Using Effects and Textures to Amaze

[212]

Time for action – exporting 3D models from DCC tools
to Silverlight

Now, we are going to display the ASE 3D model, exported from Blender in a Silverlight
application with help of Balder, using an image texture:

1.	 Open the 3DInvadersSilverlight project.

2.	 Right-click on the Assets folder and select Add | Existing item… from the context
menu that appears.

3.	 Go to the folder in which you saved the new 3D model, including the link to the
texture, in the ASE format (C:\Silverlight3D\Invaders3D\3DModels\
SPACESHIP01). Select the new ASE file (Ship01_texture01.ase)
and click on Add.

4.	 Click on the ASE file added in the previous step. Change its Build Action property
to Resource.

5.	 Right-click on the Assets folder and select Add | Existing item… from the context
menu that appears. Now, you are going to add the bitmap to use as a texture.

6.	 Go to the folder in which you saved the PNG to use as a texture
(C:\Silverlight3D\Invaders3D\3DModels\SPACESHIP01\
Textures). Select the bricks image file (Bricks.PNG) and click on Add.

7.	 Open the code for the recently added ASE file (Ship01_texture01.ase).

8.	 Search the line that begins with *BITMAP.

9.	 Replace the full path and the filename that follows the *BITMAP
(C:\Silverlight3D\Invaders3D\3DModels\SPACESHIP01\
Textures\Bricks.png) with the desired PNG bitmap, Bricks.png.

10.	Now, open the code for the class InvadersGame.

11.	Replace the line of code that loaded the spaceship mesh in the LoadContent
method with the following:

_ship = ContentManager.Load<Mesh>("ship01_texture01.ase");

This material is copyright and is licensed for the sole use by Vadim Kudria on 4th October 2009

6352 108th St, , Forest Hills, , 11375

Download at WoweBook.Com

Chapter 7

[213]

12.	Build and run the solution. The default web browser will appear showing the
spaceship enveloped with a bricks texture, as shown in the following screenshot:

13.	Click on the web browser's viewport to activate its focus. Move the mouse left
and right. You will see that the camera that targets the spaceship rotates as
the mouse is moved. Use the cursor movement keys to control the camera.

What just happened?
Wow! A spaceship made of bricks was rendered in the web browser. Your project manager is
amazed with the possibility to use different textures to envelope existing
3D models.

We showed the new spaceship with a texture rendered in a Balder's viewport. We had to
replace the existing reference to a bitmap in the ASE file with a simple image filename. Thus,
we could load and render a 3D model, previously exported from a 3D DCC tool, using a PNG
bitmap to envelope it.

Displaying a 3D model using textures in a 2D screen with
Silverlight
Once we have the model in the ASE file format with a material linking to an image texture,
the steps to load and show a 3D model using a texture to envelope it are the following:

1. Add the new ASE model to the Assets folder. It must be built as a Resource.

2. Open the code for the ASE file and replace the full paths and the filenames that
follows the *BITMAP prefixes with the desired filenames without paths.

This material is copyright and is licensed for the sole use by Vadim Kudria on 4th October 2009

6352 108th St, , Forest Hills, , 11375

Download at WoweBook.Com

Using Effects and Textures to Amaze

[214]

3. Add the necessary PNG files (the image textures) to the Assets folder. They are
built as Resources by default.

4. Override the game class's LoadContent method to load the model, creating a new
mesh using the ContentManager, as done in the following line:

_ship = ContentManager.Load<Mesh>("ship01_texture01.ase");

5. Add the new mesh to the scene using the AddNode method:

Scene.AddNode(_ship);

6. Override the game class's Update method to manage the scene, the cameras, the
lights and the meshes.

This time, we did not follow the last two steps because we were working on an existing
solution that showed the spaceship's previous version without textures.

We can see the difference between the spaceship without textures (the previous version)
and the new spaceship, with textures (made of bricks), in the following picture:

Time for action – enveloping 3D models
The spaceship made of bricks is nice. However, it is difficult to believe that it could fly.

It is time to envelope the spaceship using the original texture. It is a very complex texture
that envelopes the model and gives life to the spaceship. We can see the plain image for the
texture Ship_06.PNG in the following screenshot:

This material is copyright and is licensed for the sole use by Vadim Kudria on 4th October 2009

6352 108th St, , Forest Hills, , 11375

Download at WoweBook.Com

Chapter 7

[215]

The image seems to be wrong. However, as it will envelope the spaceship, it will work as a
plain piece of paper enveloping a spaceship handcrafted in wood.

1.	 Stay in the 3DInvadersSilverlight project.

2.	 Right-click on the Assets folder and select Add | Existing item… from the context
menu that appears. Now, you are going to add the new bitmap to use as a texture.

3.	 Go to the folder in which you saved the original PNG to use as a texture for the
spaceship (C:\Silverlight3D\Invaders3D\3DModels\SPACESHIP01\
Textures). Select the original texture image file (Ship_06.png) and click on Add.

4.	 Open the code for the ASE file added in the previous exercise
(Ship01_texture01.ase).

5.	 Search for the line that begins with *BITMAP.

This material is copyright and is licensed for the sole use by Vadim Kudria on 4th October 2009

6352 108th St, , Forest Hills, , 11375

Download at WoweBook.Com

Using Effects and Textures to Amaze

[216]

6.	 Replace the existing filename that follows the *BITMAP (Bricks.png) with the new
desired PNG bitmap, "Ship_06.png".

7.	 Build and run the solution. The default web browser will appear showing the
spaceship enveloped with the original texture, as shown in the following screenshot:

8.	 Move the camera as previously explained to understand how the complex
texture envelopes the 3D model.

What just happened?
Now, you can see a nice spaceship rendered in real-time on the web browser. It does not
look as nice as the original model rendered using the DirectX Viewer because Balder uses
software rendering.

We could use a very complex texture to envelope a 3D model. We had to replace the
previous reference to a bitmap in the ASE file with the new desired texture.

This material is copyright and is licensed for the sole use by Vadim Kudria on 4th October 2009

6352 108th St, , Forest Hills, , 11375

Download at WoweBook.Com

Chapter 7

[217]

Understanding textures
We can use textures to paint and envelope the different faces offered by a 3D model. Balder
allows us to use a bitmap PNG to envelope a 3D model using its real-time software rendering
capabilities. However, in order to use complex textures as the one used in the previous
exercise, the 3D digital artist uses the 3D DCC tool to define the texture's coordinates.

We can also define the texture coordinates manually with code. However, our main goal is to
take 3D models from the DCC tools and export them in the necessary formats in order to use
them in our games. Therefore, we use the capabilities offered by the 3D DCC tool to define
the texture's coordinates.

As the spaceship we are using was created as a DirectX .x 3D model, the digital artist
designed a complex texture and defined its coordinates to envelope the model using
the 3D DCC tool.

If we want to predict the results of using a texture to envelope a 3D model, we
can define the texture in the 3D DCC tool and make the necessary changes to
the texture mapping coordinates. Once the texture envelopes the model as
expected, we can then translate the model and its texture using the real-time
software rendering capabilities offered by Balder in Silverlight.

Repeating textures as tiles
A very common technique is to create images that can be repeated as tiles. Thus, we can use
them as if they were bigger textures, as done with the spaceship made of bricks.

In the following picture, we can see a pattern of diamond tiles:

This image and other amazing textures can be downloaded from Spiral Graphics website
(www.spiralgraphics.biz).

This material is copyright and is licensed for the sole use by Vadim Kudria on 4th October 2009

6352 108th St, , Forest Hills, , 11375

Download at WoweBook.Com

Using Effects and Textures to Amaze

[21�]

Using this texture as tiles to envelope a 3D model, the rendering process will use as many
tiles as necessary to paint the meshe's faces. For example, the following picture shows a
bigger texture created using 9 tiles (3X3):

It seems to be a bigger texture. However, this is an illusion created using tiles.

Time for action – replacing textures
So far, the application is showing just one spaceship. Your project manager wants to test
the possibility of allowing a two-player mode. He wants you to add a new spaceship using
the same texture to envelope the new model, but with a different color.

1.	 Stay in the 3DInvadersSilverlight project.

2.	 Go to the folder in which you have saved the original PNG to use as a texture for
the spaceship (C:\Silverlight3D\Invaders3D\3DModels\SPACESHIP01\
Textures). Make a copy of the original texture image file (Ship_06.PNG)
and name it Ship_07.PNG.

This material is copyright and is licensed for the sole use by Vadim Kudria on 4th October 2009

6352 108th St, , Forest Hills, , 11375

Download at WoweBook.Com

Chapter 7

[21�]

3.	 Open the previously mentioned image file in a photo editing application like GIMP
or Photoshop. Replace its colors manipulating the colors balance, as shown
in the following picture:

4.	 Save the changes.

5.	 Create a copy of the ASE file with the reference to the texture
(Ship01_texture01.ase) and name it Ship01_texture02.ase.

This material is copyright and is licensed for the sole use by Vadim Kudria on 4th October 2009

6352 108th St, , Forest Hills, , 11375

Download at WoweBook.Com

Using Effects and Textures to Amaze

[220]

6.	 Make a copy of the original texture image file (Ship_06.PNG) and name it
Ship_07.PNG.

7.	 Add the new ASE file (Ship01_texture02.ase) to the project in the Assets
folder, as a Resource.

8.	 Add the new texture image file (Ship_07.PNG) to the project in the Assets folder.

9.	 Open the code for the new ASE file added (Ship01_texture02.ase).

10.	Search for the line that begins with *BITMAP.

11.	Replace the existing filename that follows the *BITMAP (Ship_06.png) with the
new desired PNG bitmap—Ship_07.png.

12.	Now, open the code for the InvadersGame class.

13.	Add the following lines to define a new private variable:

// The second spaceship's mesh

private Mesh _ship2;

14.	Add the following lines of code to load the new spaceship mesh in the
LoadContent method, after the lines that load the first spaceship:

// Load and add the second spaceship

_ship2 = ContentManager.Load<Mesh>("ship01_texture02.ase");

Scene.AddNode(_ship2);

// Set the initial X position for the second spaceship

_ship2.Position.X = 10;

15.	Build and run the solution. The default web browser will appear showing two
spaceships enveloped with different textures, as shown in the following screenshot:

This material is copyright and is licensed for the sole use by Vadim Kudria on 4th October 2009

6352 108th St, , Forest Hills, , 11375

Download at WoweBook.Com

Chapter 7

[221]

What just happened?
You can see two spaceships enveloped by different textures rendered in real-time in the
web browser.

The grey ship is on the left and the red one is on the right.

We made small changes to the texture image file and then we created a new model, linked
to this new texture.

As we wanted to show both spaceships, we added a private variable to hold the new Mesh
instance (_ship2). We added the necessary code to load the model into a Mesh instance
and then we changed the value for the X field of the Position Vector. We did this in
order to show the new spaceship on the right:

_ship2 = ContentManager.Load<Mesh>("ship01_texture02.ase");
Scene.AddNode(_ship2);
_ship2.Position.X = 10;

It is very easy to add new models on the scene and to change their
positions. We just have to change the values for the X, Y, and Z fields
of the Position property.

Have a go hero – playing with textures
The spaceships look nice. However, your project manager wants to use textures that are
more colorful.

Using the existing textures as a baseline, create new textures for the spaceships and use
them in the game.

Create a new sphere with a low polygon count using a 3D DCC tool. Envelope it using
different textures to create many planets: The Earth, Mars, and Jupiter. Add the spheres
to the scene with the different textures.

Let the player control the two ships using the keyboard and a gamepad.

Then, add the Moon, the Sun and a few starts. Always use 3D models because you are
working with a 3D scene.

Do you dare to create a 3D representation of the solar system in action in a web browser
using Balder and Silverlight?

This material is copyright and is licensed for the sole use by Vadim Kudria on 4th October 2009

6352 108th St, , Forest Hills, , 11375

Download at WoweBook.Com

Using Effects and Textures to Amaze

[222]

Displaying lights, shadows, materials, and textures
So far, we have been enveloping 3D models using different textures based on bitmap images.
We were able to create new characters by just replacing the texture linked to the 3D model
definition. However, textures are not alone. Many lights, shadows, and other different kind
of materials are also going to be a part of our complex 3D scenes, rendered in real-time. How
do the lights affect an existing scene composed of many 3D models painted using different
kind of materials instead of textures? How can we interact with lights to see the different
generated shadows? How can we learn the differences between the diverse classes of lights?

We can play with lights, shadows, materials, and textures watching the results
of the change being made in real-time using Expression Blend to work with the
components of our 3D scene in an XBAP WPF application.

Time for action – working with lights and
understanding shadows

Your project manager wants you to create the effect of a distant explosion changing the color
of the scene's light.

We have to experiment with the parameters of the PointLight automatically created by
the XAML exporter. It will allow us to create the desired effect.

1.	 Open the project 3DInvadersXBAP in Expression Blend.

2.	 Click on the Viewport3D under Objects and Timeline and expand all its children.
Select [PointLight] and go to its Properties tab. Give it a name, MainLight.

3.	 Click on Color and use the editor to change it from white to a dark blue. All the
models in the screenshot will be colored blue:

This material is copyright and is licensed for the sole use by Vadim Kudria on 4th October 2009

6352 108th St, , Forest Hills, , 11375

Download at WoweBook.Com

Chapter 7

[223]

4.	 Click on the light bulb on the viewport and drag it to different positions in the scene.
You will see how the position of a point light changes (as shown in the following
picture) the blues for the different models:

This material is copyright and is licensed for the sole use by Vadim Kudria on 4th October 2009

6352 108th St, , Forest Hills, , 11375

Download at WoweBook.Com

Using Effects and Textures to Amaze

[224]

5.	 Change the values for the following properties using 0.1 steps:

ConstantAttenuation

LinearAttenuation

QuadraticAttenuation.

6.	 Follow the changes in the XAML code.

7.	 Click on Color and use the editor to change it from dark blue to white, its original
value. The models will recover their original colors.

What just happened?
You could control the colors shown by all the models in the scene by changing the color
emitted by the point light.

This point light (MainLight) is the only light instance in this Viewport3D. When this light is
white, the models that receive the light rays show the colors defined in their materials. They
produce shadows and gradients. However, the base colors are not modified.

However, when this point light changes its color from white to any other tone, it affects
the colors shown by the models. This happens in real scenes with real lights. The rendering
process considers the light sources and uses them to create a 2D screen from the 3D world.
Therefore, when we changed the point light's color to blue, the models were shown using
blue tones.

Thus, changing the lights' colors, we can create amazing effects on the models that receive
these lights.

The simplest way to understand how lights work, is watching their effects over
the models in a scene in real-time. Whilst changing the lights' parameters, we
can understand how they interact with the materials and the textures. Besides,
we are able to see the shadows.

We can define additional lights using XAML or creating the instances using C# code. We can
also add transformations to lights, as shown in the XAML code that defines MainLight:

<PointLight x:Name="MainLight" Color="#FFFFFFFF"
 Position="4.076245,1.005454,5.903862"
 LinearAttenuation="0.033333352406831"
 Range="1.7976931348623157E+308">
 <PointLight.Transform>
 <Transform3DGroup>
 <ScaleTransform3D ScaleX="1" ScaleY="1" ScaleZ="1"/>
 <RotateTransform3D d:EulerAngles="0,0,0"/>

This material is copyright and is licensed for the sole use by Vadim Kudria on 4th October 2009

6352 108th St, , Forest Hills, , 11375

Download at WoweBook.Com

Chapter 7

[225]

 <TranslateTransform3D OffsetX="7.827" OffsetY="-2.375"
 OffsetZ="-11.118"/>
 </Transform3DGroup>
 </PointLight.Transform>
</PointLight>

Understanding different kinds of lights
In an XBAP WPF application, we can use four different kinds of lights. Again, changing
their properties is the best way to understand them. However, we can get an idea of their
differences by looking at the following picture:

Ambient light (AmbientLight): It casts light in all directions. Thus, it lights all the
models in the scene evenly.

Directional light (DirectionalLight): It casts light in a specific direction. It is
similar to sunlight. In Balder this is referred to as DirectionalLight.

This material is copyright and is licensed for the sole use by Vadim Kudria on 4th October 2009

6352 108th St, , Forest Hills, , 11375

Download at WoweBook.Com

Using Effects and Textures to Amaze

[226]

Point light (PointLight): It casts light from a single point in all directions. It is
similar to the real light bulbs. It is also known as Omni light (omnidirectional light).
In Balder this is referred to as OmniLight.

Spot light (SpotLight): It casts light using the shape of a cone. Thus, only the
models that fall inside the cone will be affected by this kind of light. It is similar
to the spot lights used in theaters.

Have a go hero – creating effects using lights
Combining the different kinds of lights, their colors, positions, rotations, and parameters,
create the following effects in both the XBAP WPF application and in Silverlight:

Balder provides only two light styles. Therefore, you will be able to create more
effects using the XBAP WPF application.

An explosion

A flash

A sunrise

A nightfall

Combine the lights with a new 3D model, add the ability for the player to shoot laser beams
from one ship to the other. A light has to illuminate the laser beam while it moves from the
origin to the destination. Do not forget to take into account the elapsed time to control the
positions for the laser beam and the lights.

Pop quiz – working with textures, materials, and lights
1. We can use bitmap images as textures in order to:

a. Envelope 3D models.

b. Add planes to 3D models.

c. Paint the lines that define the meshes.

2. An ASE 3D model includes the reference to the texture in the material definition
using the following prefix:

a. *TEXTURE

b. *IMAGE

c. *BITMAP

This material is copyright and is licensed for the sole use by Vadim Kudria on 4th October 2009

6352 108th St, , Forest Hills, , 11375

Download at WoweBook.Com

Chapter 7

[227]

3. In order to use a bitmap as a texture using Balder and Silverlight, you must:

a. Add the desired PNG bitmap in a new line.

b. Replace the existing image full path and the filename with the desired
PNG bitmap.

c. Replace the existing image filename with the desired PNG bitmap, using
an absolute path.

4. Tile textures:

a. Use the same image many times (as tiles) to envelope a 3D model,
creating the illusion of a bigger texture.

b. Are huge images used to envelope many small 3D models.

c. Use many instances of the same image in the rendering process. Hence,
they can create huge out-of-memory errors.

5. One white light in the scene:

a. Changes the colors of the materials and textures used to envelope the
3D models in the scene.

b. Does not change the colors of the materials and textures used to
envelope the 3D models in the scene.

c. Changes all the colors of the materials and textures used to envelope
the 3D models in the scene to different tones of grey.

6. One blue light in the scene:

a. Changes the colors of the materials and textures used to envelope the
3D models in the scene.

b. Does not change the colors of the materials and textures used to
envelope the 3D models in the scene.

c. Changes all the colors of the materials and textures used to envelope
the 3D models in the scene to different tones of red.

7. A point light, also known as omni light:

a. Casts light using the shape of a cone.

b. Casts light from a single point in all directions.

c. Casts light in a specific direction.

This material is copyright and is licensed for the sole use by Vadim Kudria on 4th October 2009

6352 108th St, , Forest Hills, , 11375

Download at WoweBook.Com

Using Effects and Textures to Amaze

[22�]

Summary
We have learnt a lot in this chapter about textures and lights. Specifically, we were able to
understand how they work and learned how to prepare the 3D models to be enveloped
by textures. We replaced the textures used to envelope different 3D models and we took
advantage of Expression Blend to interact with different kinds of lights in a 3D scene. We
also understood the possibilities offered by textures and lights to create amazing effects.

Now that we've learnt how to use textures and how to work with many different kinds of
lights, we're ready to animate 3D characters, which is the topic of the next chapter.

This material is copyright and is licensed for the sole use by Vadim Kudria on 4th October 2009

6352 108th St, , Forest Hills, , 11375

Download at WoweBook.Com

�
Animating 3D Characters

In order to emulate real-life situations in our games, we must animate our 3D
characters in real-time. If we want to show a UFO in a game, it will have to fly
like a real UFO, changing its position and rotating at the same time. Hence,
we have to add animation capabilities to our models and we must combine
the capabilities offered by the cameras with the possibilities to perform
transformations to many models on each frame. The camera shows us a part
of the whole 3D world in which the 3D models must move, rotate, and scale,
creating amazing effects for the player.

By reading this chapter and following the exercises we shall learn how to:

Move 3D characters in the 3D scenes

Define specific independent behaviors for the 3D characters that compose the
3D world

Understand how to perform different transformations to a 3D model at the
same time

Control many transformations over the three axes of a 3D model

Animate complex 3D models based on bones and skeletons

This material is copyright and is licensed for the sole use by Vadim Kudria on 4th October 2009

6352 108th St, , Forest Hills, , 11375

Download at WoweBook.Com

Animating 3D Characters

[230]

Invaders 3D
So far, we have been working with 3D scenes showing 3D models with textures and different
kinds of lights. We were able to envelope 3D models with textures and create amazing
effects using lights. We moved the 3D models and cameras, translating and rotating them
according to the values read from the input devices. However, we did not animate the 3D
models in Silverlight applications. Games require dozens of 3D models performing different
kinds of animations concurrently. Thus, we have to move and rotate our 3D characters
to create realistic and attractive games. How can we animate multiple independent and
concurrent 3D characters while managing a complex game loop in Silverlight?

We can do this by combining a good object-oriented design with the power of Balder. Using
the same principles learned for raster and vector sprites, it is possible to create flexible and
easy-to-animate 3D characters.

The key to success is reducing the complexity of the mathematics involved in
moving and rotating 3D models using Balder's simple functions.

Time for action – adding a UFO
The 3D digital artists created a model of a UFO (Unidentified Flying Object). They
downloaded another model in DirectX .x format from XNA Fusion's website (http://www.
xnafusion.com). They made some changes to a round shield model to create a nice UFO.
The link for the round shield preview is http://www.xnafusion.com/?p=66, and the
link for downloading the compressed file with the model and the textures is http://www.
xnafusion.com/wp-content/uploads/2008/04/round_shield.zip.

The original 3D model, called Round_shield, was created by Skonk (e-mail:
skonk@xnafusion.com). You are free to use, modify, and share the content
provided due credit is given to the author.

The UFO is one of the enemies. The aliens want to use this kind of spaceship to invade
Earth. The game must show an UFO moving around and rotating while it changes its
position. Surprisingly, your project leader wants you to use an UFO made of bricks. It is a bit
unrealistic, but this is what he wants.

First, we are going to open the UFO model in Blender, add a texture based on a PNG image
and export the 3D model to the ASE format, compatible with Balder.

This material is copyright and is licensed for the sole use by Vadim Kudria on 4th October 2009

6352 108th St, , Forest Hills, , 11375

Download at WoweBook.Com

Chapter 8

[231]

1.	 Start Blender and open the UFO model, previously saved by the
3D digital artists in Blender's native format as Ufo01.blend in
C:\Silverlight3D\Invaders3D\3DModels\UFO01).

2.	 Assign a bitmap texture to an existing material to envelope the meshes that shape
the UFO. You already learned the detailed steps for this process.

The 3D digital artists had to rotate and scale the original DirectX .X model to
shape the UFO. The UFO model contains definitions for five materials. In this
case, you just need to change the first one.

3.	 Use the bricks texture (Bricks.PNG) to envelope the meshes. The Preview panel
will show a small bitmap's thumbnail, as shown in the following picture:

4.	 Save the changes.

5.	 Export it to the ASE format (UFO01.ase).

6.	 Open the project, 3DInvadersSilverlight.

7.	 Add the previously exported ASE file (UFO01.ase) to the Assets folder.

8.	 Replace the full path and the file name for the texture in the ASE file with the
desired PNG bitmap, "Bricks.png". You added this bitmap to
the project when you first learned to work with textures.

This material is copyright and is licensed for the sole use by Vadim Kudria on 4th October 2009

6352 108th St, , Forest Hills, , 11375

Download at WoweBook.Com

Animating 3D Characters

[232]

What just happened?
We prepared the model to use a texture based on an image, exported it to the ASE file
format and added it to the project changing its texture.

The UFO model is now ready to be loaded and rendered, using Blender.

Time for action – creating a new game superclass to
generalize time management capabilities

So far, our Silverlight game does not handle the elapsed time between each rendered frame.
We need this information in order to create animations that consider time as a variable.

We are going to create a new abstract superclass to add time management capabilities to
the basic Game (Balder.Core.Game) class provided by Balder:

1.	 Stay in the 3DInvadersSilverlight project.

2.	 Create a new class—RealTimeGame (a subclass of Game)—using the
following declaration:

public abstract class RealTimeGame : Game

3.	 Add the following line of code at the beginning (as we are inheriting from Balder's
Game class):

using Balder.Core;

4.	 Add the following private variables and one property to handle the ticks and
the elapsed time between each rendered frame:
// Holds the time when the method finished rendering a frame
protected DateTime _lastTick;
// Holds the elapsed time after the last call to the Update method
protected TimeSpan _elapsedTime;
public TimeSpan ElapsedTime
{
 get { return _elapsedTime; }
}

5.	 Add the following public abstract method to encapsulate updates based on the
elapsed time (previously saved on _elapsedTime):
public abstract void UpdateWithTime();

6.	 Override the Loaded method to save the current time for the first time:

public override void Loaded()
{

This material is copyright and is licensed for the sole use by Vadim Kudria on 4th October 2009

6352 108th St, , Forest Hills, , 11375

Download at WoweBook.Com

Chapter 8

[233]

 base.Loaded();
 // Save the current time
 _lastTick = DateTime.Now;
}

7.	 Override the Update method to calculate and save the elapsed time and save the
new time after updating the game:

public override void Update()
{
 base.Update();
 // Hold the elapsed time after the last call to this method
 _elapsedTime = (DateTime.Now - _lastTick);
 UpdateWithTime();
 // Save the current time
 _lastTick = DateTime.Now;
}

What just happened?
The code to define a game that handles the elapsed time between each rendered frame is
now held in the new RealTimeGame class (a subclass of Game). As it is an abstract class,
we will have to create new subclasses inheriting from RealTimeGame to specialize the
behavior of our game.

Once the models are loaded, the game runs the code added in the Loaded method. The
code will save the current time. This will be the first value for the _lastTick variable.

Then, the engine will call the Update method for each frame. Therefore, we had to override
this method to calculate and save the elapsed time in the _elapsedTime variable. Then, it
calls the abstract UpdateWithTime method. This way, we make sure that the code written
in this method in the subclasses will have access to a value in the _elapsedTime variable
and in the ElapsedTime read-only property. Once the UpdateWithTime method finishes
its execution, we save the current time in the _lastTick variable.

Time for action – specializing a game superclass
Now, we can specialize RealTimeGame instead of using subclasses of Game. This requires
a small change to the code. We have to override the UpdateWithTime method instead of
overriding the Update method. Besides, we have to remove the line base.Update(); used
in the Update method. These changes will allow us to animate 3D characters taking into
account the elapsed time.

1.	 Stay in the 3DInvadersSilverlight project.

2.	 Open InvadersGame.cs.

This material is copyright and is licensed for the sole use by Vadim Kudria on 4th October 2009

6352 108th St, , Forest Hills, , 11375

Download at WoweBook.Com

Animating 3D Characters

[234]

3.	 Replace the declaration for the InvadersGame class with this one. (Now, it will be
a subclass of RealTimeGame.):

public class InvadersGame : RealTimeGame

4.	 Replace the declaration of the Update method with the following. (Now, we
override the UpdateWithTime method instead.):

public override void UpdateWithTime()

5.	 Remove or comment the following line of code in this method:

//base.Update();

6.	 Build and run the solution. The application will run as in the previous examples.
You will not notice any changes.

What just happened?
We made the necessary changes to our main Game class to specialize the new
RealTimeGame superclass. Now, we will be able to animate the 3D characters whilst
considering the elapsed time.

Time for action – creating a subclass for a 3D character
Now, we are going to create a specialized subclass of Actor (Balder.Core.Runtime.
Actor) for the UFO. This is our first intent to generalize many behaviors related to 3D
characters. In this case, it is a 3D character composed of just one model (an instance of Mesh).

1.	 Stay in the3DInvadersSilverlight project.

2.	 Create a new class—Ufo (a subclass of Actor)—using the following declaration:

public class Ufo : Actor

3.	 Add the following lines of code at the beginning (as we are going to use many
of Balder's classes and interfaces):

using Balder.Core;
using Balder.Core.Geometries;
using Balder.Core.Math;
using Balder.Core.Runtime;

4.	 Add the following protected variables to hold references for the RealTimeGame
and the Scene instances:

protected RealTimeGame _game;
protected Scene _scene;

This material is copyright and is licensed for the sole use by Vadim Kudria on 4th October 2009

6352 108th St, , Forest Hills, , 11375

Download at WoweBook.Com

Chapter 8

[235]

5.	 Add the following protected variable to hold the 3D model (an instance of Mesh):

protected Mesh _mesh;

6.	 Add the following constructor with two parameters, the RealTimeGame and
the Scene instances:

public Ufo(RealTimeGame game, Scene scene)
{
 _game = game;
 _scene = scene;
}

7.	 Override the LoadContent method to load the UFO's mesh and set its
initial position:

public override void LoadContent()
{
 base.LoadContent();

 _mesh = _game.ContentManager.Load<Mesh>("ufo01.ase");
 _scene.AddNode(_mesh);
 _mesh.Position.X = -20;
 _mesh.Position.Z = 0;
 _mesh.Position.Y = 0;
}

8.	 Override the Update method to change the UFO's position taking into account its
initial location, fixed speed settings, and the elapsed time:

public override void Update()
{
 base.Update();
 // Update the X-coordinate according to the elapsed time and a
 fixed speed
 _mesh.Position.X += 1f * (float)_game.ElapsedTime.TotalSeconds;
 // Update the Z-coordinate according to the elapsed time and a
 fixed speed
 _mesh.Position.Z -= 2f * (float)_game.ElapsedTime.TotalSeconds;
 // Update the Y-coordinate according to the elapsed time and a
 fixed speed
 _mesh.Position.Y -= 2f * (float)_game.ElapsedTime.TotalSeconds;
}

This material is copyright and is licensed for the sole use by Vadim Kudria on 4th October 2009

6352 108th St, , Forest Hills, , 11375

Download at WoweBook.Com

Animating 3D Characters

[236]

What just happened?
Now, we have a subclass of Actor that loads the UFO's model and updates its position.

Creating subclasses of Actor and overriding its methods, we can create 3D characters with
different behaviors.

In this case, we defined the specific behavior by overriding the Update method.
However, we can also add methods to the subclass, as previously done with 2D
characters. Everything we have learned so far about the advantages of using
object-oriented characters in 2D scenes is also useful when working with our 3D
games. Now, we are focusing on other topics. However, we can also generalize
additional behaviors and add methods and properties to this subclass.

Using an Actor to represent a 3D character
The most appropriate way to represent a 3D character in Balder is creating a new subclass of
the Actor class. It allows us to apply a nice object-oriented design to our games. Luckily, we
do not need to use wrappers, as we can inherit from the Actor class without problems.

We need to access the RealTimeGame instance from the Actor. We use RealTimeGame
instead of its superclass, Game, because it allows us to use its ElapsedTime property.
We also need to access the Scene instance from the Actor. We have to add the meshes
that define the 3D character to this Scene instance so that it can be taken into account
by the rendering process. Therefore, we used a constructor that saves the references to
these instances:

public Ufo(RealTimeGame game, Scene scene)

We have overridden the LoadContent method. We used it in a way similar to what we
had previously learnt for loading models in the Game subclasses. In fact, Game is a subclass
of Actor.

Once the mesh was loaded, we added it to the active scene (previously saved in
the constructor):

_mesh = _game.ContentManager.Load<Mesh>("ufo01.ase");
_scene.AddNode(_mesh);

The initial position for the UFO's model is X = -20; Z = 0, and Y = 0. We changed the values of
the three fields from the Balder's 3D vectors to define the initial position:

_mesh.Position.X = -20;
_mesh.Position.Z = 0;
_mesh.Position.Y = 0;

This material is copyright and is licensed for the sole use by Vadim Kudria on 4th October 2009

6352 108th St, , Forest Hills, , 11375

Download at WoweBook.Com

Chapter 8

[237]

Finally, we have overridden the Update method. As we had an instance of RealTimeGame
referenced in the _game protected variable, we could access its ElapsedTime property to
update the three axes and translate the UFO in the 3D space. We updated each coordinate
considering the elapsed time and a fixed speed, converted to a float because Position is a
3D vector. In the following line, we increase the X-coordinate by 1 for each second elapsed:

_mesh.Position.X += 1f * (float)_game.ElapsedTime.TotalSeconds;

The Ufo class contains all the code to control a simple UFO's movement in
our scene. It encapsulates a 3D character.

Time for action – adding an Actor to the game
Now, we are going to add the UFO as an actor to our existing game, with a
predefined behavior:

1.	 Stay in the 3DInvadersSilverlight project.

2.	 Open InvadersGame.cs.

3.	 Add the following private variable in the public class
InvadersGame : RealTimeGame, to hold the new Ufo instance:
private Ufo _ufo1;

4.	 Add the following lines of code before the end of the Initialize method
to create an Ufo instance and add this actor to the game:

_ufo1 = new Ufo(this, Scene);
AddActor(_ufo1);

5.	 Build and run the solution. The default web browser will appear displaying the two
spaceships, and an UFO made of bricks moving through the 3D space, as shown
in the following picture:

This material is copyright and is licensed for the sole use by Vadim Kudria on 4th October 2009

6352 108th St, , Forest Hills, , 11375

Download at WoweBook.Com

Animating 3D Characters

[23�]

6.	 Click on the web browser's viewport to activate its focus. Move the mouse left
and right. You will see that the camera that targets the spaceships and the new
UFO rotates as the mouse is moved. Use the cursor movement keys to control the
camera. Remember that you can also use your gamepad to control the camera.
While rotating the camera, the UFO will go on moving, as shown in the
following picture:

What just happened?
Wow! A UFO made of bricks appeared flying on the scene. Your project manager likes the
simple animation. He is amazed with the possibility to add 3D characters with animation
capabilities adding just a few lines of code. He calls the 3D digital artists and asks them
to create dozens of new models for this game. You will have to work hard in order to create
a lot of new subclasses of the Actor class.

Moving 3D characters as Actors
We added an instance of the previously programmed Ufo class to our main game
class—InvadersGame.

We added two simple lines of code to the InvadersGame class's overridden Initialize
method. As InvadersGame is a subclass of the previously created RealTimeGame, we could
use this as the first parameter to the Ufo's constructor. We also used the Scene property:

_ufo1 = new Ufo(this, Scene);

This material is copyright and is licensed for the sole use by Vadim Kudria on 4th October 2009

6352 108th St, , Forest Hills, , 11375

Download at WoweBook.Com

Chapter 8

[23�]

Once we created the desired instance of a subclass of Actor (Ufo), we just have to call the
AddActor method:

AddActor(_ufo1);

This method adds the instance to a private List<Actor> (a collection of actors). The
game will call the LoadContent, Update and other methods when necessary for each actor
found in this collection. Hence, we do not need to add code to the game class. We can use
Actor subclasses to create simple or complex 3D characters with their own behavior.

In this case, the LoadContent method has the code to load the UFO's model as a Mesh and
the Update method changes the position of this Mesh according to the elapsed time.

This way, the code in the main game class is simpler and easier to understand.

We can also add methods to each Actor subclass and we can call them from
the game's UpdateWithTime procedure to have more control over their
behavior. We had already done these things when working with 2D sprites.

Time for action – rotating 3D characters
You have a problem. UFOs do not fly just by moving through the space. They usually rotate
around themselves while moving in the different directions.

Now, we are going to add rotation capabilities to this 3D character.

1.	 Stay in the 3DInvadersSilverlight project.

2.	 Open Ufo.cs.

3.	 Add the following protected variables. (The UFO has to keep track of the
rotation angles and it has to rotate at certain speeds, both defined for each axis):

// The rotation angles
protected Vector _angleDegrees = new Vector(0, 0, 0);
// The rotation speed for the three axis
protected Vector _rotationSpeed = new Vector(10f, 5f, 0f);

4.	 Add the following public method to calculate the UFO's rotation angles taking
into account its rotation speed settings for each axis and the elapsed time:

public void CalculateNewAngles()
{
 _angleDegrees.X = ((_angleDegrees.X + _rotationSpeed.X *
 (float)_game.ElapsedTime.TotalSeconds) % 360);

This material is copyright and is licensed for the sole use by Vadim Kudria on 4th October 2009

6352 108th St, , Forest Hills, , 11375

Download at WoweBook.Com

Animating 3D Characters

[240]

 _angleDegrees.Y = ((_angleDegrees.Y + _rotationSpeed.Y *
 (float)_game.ElapsedTime.TotalSeconds) % 360);
 _angleDegrees.Z = ((_angleDegrees.Z + _rotationSpeed.Z *
 (float)_game.ElapsedTime.TotalSeconds) % 360);
}

5.	 Add the following lines of code before the end of the Update method to calculate
the new angles, update the mesh's world matrix and rotate the model:

CalculateNewAngles();
_mesh.World =
 Balder.Core.Math.Matrix.CreateRotationX(_angleDegrees.X) *
 Balder.Core.Math.Matrix.CreateRotationY(_angleDegrees.Y) *
 Balder.Core.Math.Matrix.CreateRotationZ(_angleDegrees.Z);

6.	 Build and run the solution. The default web browser will appear, displaying the two
spaceships, and a UFO made of bricks rotating around itself in two axis while
moving through the 3D space, as shown in the following picture:

7.	 Rotate the camera and watch the UFO moving and rotating while the camera is
changing its position.

What just happened?
Now, the UFO moves and rotates at the same time, just like a real-life UFO. Do you believe in
the existence of UFOs?

The code to add rotation capabilities to the UFO is now held in its class (a subclass of Actor).

We added two 3D vector variables:

_angleDegrees. It holds the current rotation angle in degrees, for each axis. The
initial angle is 0 for each axis—X= 0, Y = 0, and Z = 0.

_rotationSpeed. It allows us to set a rotation speed in degrees per second. The
initial rotation speed for each axis is—X = 10, Y = 5, and Z = 0.

This material is copyright and is licensed for the sole use by Vadim Kudria on 4th October 2009

6352 108th St, , Forest Hills, , 11375

Download at WoweBook.Com

Chapter 8

[241]

The CalculateNewAngles method calculates and saves the new angle for each axis,
considering the rotation speed defined for the axis and the elapsed time. If the calculated
angle for the axis is greater than 360 degrees, it will return to 0

_angleDegrees.X = ((_angleDegrees.X + _rotationSpeed.X *
 (float)_game.ElapsedTime.TotalSeconds) % 360);

Using the World matrix in order to perform transformations
to meshes
We have added code to the Update method in order to calculate the new angles for each
axis. Then, we changed the value of the World property for the UFO's Mesh.

The World field is of the type Matrix (Balder.Core.Math.Matrix) and it represents the
world matrix for the model. This simple 4X4 matrix allows us to transform the model using
world coordinates. It offers a very flexible way to place and construct all the pieces of the
3D world, irrespective of what we can actually see using the active camera.

Changing the values of the world matrix's elements, we can perform the following
transformations to a mesh:

Translate

Rotate

Scale

We can perform these transformations to any of the three axes (X, Y, and Z) changing the
values of the world matrix's elements. For example, we can translate the mesh in the X-axis
and rotate it in the Y-axis. The combination of these transforms can be represented by the
4X4 world matrix.

On one hand, matrices algebra makes graphical transformations easy to
manipulate. On the other hand, performing some transformations using
matrices involves complex calculations. We should not be scared about matrices,
as they are part of our basic education. However, we do not want to introduce
mistakes in to our game and we want to keep things simple.

A rectangular array of numbers defines a matrix. It has a fixed number of rows and columns.
The 4X4 world matrix has four rows and four columns.

Luckily, Balder's Matrix class offers many operators and methods in order to allow us to
apply transformations without needing to become skilled at matrices algebra. Hence, we
do not need to re-open our old matrices algebra workbook.

This material is copyright and is licensed for the sole use by Vadim Kudria on 4th October 2009

6352 108th St, , Forest Hills, , 11375

Download at WoweBook.Com

Animating 3D Characters

[242]

The initial values for the world matrix are ones on the diagonal, from the upper-left corner to
the bottom-right corner. The remaining values are zeros, as shown in the following table that
represents the initial world matrix:

1

1

1

1

0

0

0

0

0

0

0

0

0

0

0

0

The CreateRotationX, CreateRotationY, and CreateRotationZ static methods
return a new Matrix with the necessary values to rotate the Mesh in the corresponding
axis, considering the angle in degrees received as a parameter.

If we want to rotate a model 90 degrees over the Z-axis, we just need to assign the new
Matrix created by the CreateRotationZ method to the Mesh's World property, as
shown in the following line of code:

_mesh.World = Balder.Core.Math.Matrix.CreateRotationZ(90);

The resulting world matrix to perform this rotation of 90 degrees over the Z-axis is
the following:

-1

1

1

1

0

0

0

0

0

0

0

0

0

0

0

0

If we want to rotate a model 45 degrees over the Y-axis, the mechanism is pretty similar:

_mesh.World = Balder.Core.Math.Matrix.CreateRotationY(45);

The resulting world matrix to perform this rotation of 45 degrees is the following:

1

1

0

0

0

0

00

0

0

0

00.7071

0.7071 0.7071

-0.7071

This material is copyright and is licensed for the sole use by Vadim Kudria on 4th October 2009

6352 108th St, , Forest Hills, , 11375

Download at WoweBook.Com

Chapter 8

[243]

One of the questions that might arise is why Balder.Core.Math.Matrix was used to
call each method instead of Matrix. The System.Windows.Media.Matrix namespace
also has a definition for a Matrix class. This namespace is automatically added to the
using statements for each new class created in a Silverlight application. Hence, we have
two alternatives, removing the System.Windows.Media.Matrix namespace for the class
or using the full reference to Balder's Matrix class. As the default situation will be usually
having the System.Windows.Media.Matrix namespace included, we used the
full reference.

Balder's Matrix class mimics many capabilities offered by the Matrix
class provided by XNA Framework (XNA Game Studio).

Performing compound transformations
Compound transformations are equivalent to matrix multiplications. Hence, in order to
perform many transformations to a Mesh at the same time, we just need to assign the result
of multiplying many new Matrix instances, created by calling the methods offered by
Balder's Matrix class, to the Mesh's World property.

If we want to rotate a model 90 degrees over the Z-axis and 45 degrees over the Y-axis, we
just need to assign the result of multiplying two matrices to the Mesh's World property, as
shown in the following line of code:

_mesh.World = Balder.Core.Math.Matrix.CreateRotationZ(90) *
 Balder.Core.Math.Matrix.CreateRotationY(45);

The resulting world matrix to perform these two rotations is the following:

0

0

01

1

00

00

0

0

0

0.7071

0.7071 0.7071

-0.7071

In fact, it is the result of multiplying the previously shown two matrices. However, we do not
need to worry about the details.

Time for action – scaling 3D characters
The UFO is too small. You want to make it appear bigger on the rendered scene. However,
you do not want to change the camera's parameters. Unfortunately, the 3D digital artists
cannot change the original model because they are attending a conference.

This material is copyright and is licensed for the sole use by Vadim Kudria on 4th October 2009

6352 108th St, , Forest Hills, , 11375

Download at WoweBook.Com

Animating 3D Characters

[244]

Now, we are going to scale this 3D character changing the values of the world
matrix's elements.

1.	 Stay in the3DInvadersSilverlight project.

2.	 Open Ufo.cs.

3.	 Replace the lines that update the mesh's world matrix with these:

_mesh.World =
 Balder.Core.Math.Matrix.CreateRotationX(_angleDegrees.X) *
 Balder.Core.Math.Matrix.CreateRotationY(_angleDegrees.Y) *
 Balder.Core.Math.Matrix.CreateRotationZ(_angleDegrees.Z) *
 Balder.Core.Math.Matrix.CreateScale(new Vector(4f, 4f, 4f));

4.	 Build and run the solution. The default web browser will appear displaying the two
spaceships, and a bigger UFO made of bricks rotating around itself in two axes while
moving through the 3D space, as shown in the following screenshot:

5.	 Rotate the camera and watch scaled UFO moving and rotating while the camera is
changing its position.

What just happened?
Now, the UFO is four times bigger than it was before. It scales, moves, and rotates at the
same time. The code to perform a scale transformation to the three axes—X, Y, and Z— is
now held in its class (a subclass of Actor).

Using the World matrix in order to scale meshes
We changed the value of the World property for the UFO's Mesh. This time, we multiplied
the matrix resulting from the previously added two rotations by a new matrix created by the
CreateScale static method.

This method returns a new Matrix with the necessary values to scale the Mesh in the three
axes, considering the three scale ratios received in a Vector instance as a parameter.

This material is copyright and is licensed for the sole use by Vadim Kudria on 4th October 2009

6352 108th St, , Forest Hills, , 11375

Download at WoweBook.Com

Chapter 8

[245]

If we want to scale a model 1.5 times on the X-axis, 2 times on the Y-axis and 3 times on the
Z-axis, we just need to assign the new Matrix created by the CreateScale method to the
Mesh's World property, as shown in the following line of code:

_mesh.World = Balder.Core.Math.Matrix.CreateScale(new Vector(1.5f,
 2f, 3f));

The resulting world matrix to perform this resizing with different scale ratios for each axis is
the following:

1.5

3

2

1

0

0

0

0

0

0

0

0

0

0

0

0

In this case, the matrix is very easy to understand. We can find the scale ratios in the first
three values on the diagonal, from the upper-left corner to the bottom-right—1.5 for the
X-axis; 2 for the Y-axis and 3 for the Z-axis.

As we wanted to scale the UFO's model four times, we multiplied the world matrix with this
new one:

Balder.Core.Math.Matrix.CreateScale(new Vector(4f, 4f, 4f));

The matrix return from this method to perform this resizing with a scale ratio of 4:1 for each
axis is the following:

4

4

4

1

0

0

0

0

0

0

0

0

0

0

0

0

We did not need to scale the model using a 3D DCC tool. We could scale it performing a
compound transformation changing the values for the world matrix.

Have a go hero – creating a specialized XAML 3D character wrapper class
Your project manager wants to use the full potential offered by an additional steering wheel
to control the UFO. This means that you have to add the UFO to the WPF XBAP application.

However, he also wants a random number of UFOs to appear in the scene, moving
and rotating.

This material is copyright and is licensed for the sole use by Vadim Kudria on 4th October 2009

6352 108th St, , Forest Hills, , 11375

Download at WoweBook.Com

Animating 3D Characters

[246]

The easiest way to control so many 3D characters is to work with a good object-oriented
design. You have to prepare the main scene creating ModelVisual3D elements. Thus, you
can create a generalized superclass to manage the most common operations related to a
ModelVisual3D element working as a 3D character in the scene.

You can create a wrapper class, as done in your previous 2D experience with the
SpriteWrapper class.

The most common operations to display a 3D character based on a ModelVisual3D
instance must be encapsulated in methods in this new class. The instances of the subclasses
of this new superclass will be real independent 3D characters, capable of defining the most
complex of behaviors.

Every character with a particular behavior can have its own subclass. Therefore, you can
create new classes to manage the 3D characters according to your needs.

Using bones and skeletons
So far, we have been animating 3D characters based on a single mesh. We moved, rotated
and scaled single meshes using instances of the Actor class in Silverlight applications.
However, we did not animate specific parts of the model, like arms, legs, heads, and so on.
How can we animate bones and skeletons defined in complex models in Silverlight?

Most 3D DCC tools offer different ways to create fully animatable 3D characters. Some
advanced techniques allow the digital artist to specify the mapping between the motions
of a real-life actor or input device and those of the character.

Unfortunately, we cannot import the animation definitions stored in many 3D character file
formats. However, we are still able to create a 3D character using the bones and skeletons
concepts. We can do this combining many autonomous meshes and performing independent
transformations to them.

This requires additional work and is more complex than using a 3D character defined in a
specialized 3D DCC tool. We have to create independent models for each animatable part
of the 3D character and work with them as meshes using a good object-oriented design.

The key to success is converting a complex model into multiple independent
simple models. Then, moving, rotating and scaling each independent mesh,
we can create the most exciting and realistic animations.

This material is copyright and is licensed for the sole use by Vadim Kudria on 4th October 2009

6352 108th St, , Forest Hills, , 11375

Download at WoweBook.Com

Chapter 8

[247]

Time for action – animating models with skeletons and bones
Your project manager's favorite animated series was Transformers. He loves the idea of big
robots composed of smaller robots working as arms, legs and heads. He wants you to create
a new strange 3D character for the game with a head, a chest, and two arms. However, there
are no new models. You have to use the UFO and the spaceships with different textures.

Now, we are going to create a new specialized subclass of Actor (Balder.Core.Runtime.
Actor) for this complex robot. This is our first attempt to animate a complex 3D model using
the skeletons and bones concept. In this case, it is a 3D character composed of many models
(many independent instances of Mesh).

1.	 Stay in the 3DInvadersSilverlight project,.

2.	 Create a new class—Robot (a subclass of Actor)—using the following declaration:

public class Robot : Actor

3.	 Add the following lines of code at the beginning (as we are going to use many
Balder's classes and interfaces):

using Balder.Core;
using Balder.Core.Geometries;
using Balder.Core.Math;
using Balder.Core.Runtime;

4.	 Add the following protected variables to hold references for the RealTimeGame
and the Scene instances:

protected RealTimeGame _game;
protected Scene _scene;

5.	 Add the following protected variable to hold the 3D models (the independent
instances of Mesh):

protected Mesh _meshHead;
protected Mesh _meshLeftArm;
protected Mesh _meshRightArm;
protected Mesh _meshChest;

6.	 Add the following constructor with two parameters, the RealTimeGame and the
Scene instances:

public Robot(RealTimeGame game, Scene scene)
{
 _game = game;
 _scene = scene;
}

This material is copyright and is licensed for the sole use by Vadim Kudria on 4th October 2009

6352 108th St, , Forest Hills, , 11375

Download at WoweBook.Com

Animating 3D Characters

[24�]

7.	 Override the LoadContent method to load the Robot's meshes and set their initial
positions and transformations:

public override void LoadContent()
{
 base.LoadContent();
 // Load the meshes and set their initial positions
 // Add the head
 _meshHead = _game.ContentManager.Load<Mesh>("ufo01.ase");
 _scene.AddNode(_meshHead);
 _meshHead.Position.X = -12;
 _meshHead.Position.Z = 0;
 _meshHead.Position.Y = 0;
 _meshHead.World = Balder.Core.Math.Matrix.CreateScale(
 new Vector(2f, 2f, 2f)) *
 Balder.Core.Math.Matrix.CreateRotationX(270);
 // Add the chest
 _meshChest =
 _game.ContentManager.Load<Mesh>("ship01_texture01.ase");
 _scene.AddNode(_meshChest);
 _meshChest.Position.X = -12;
 _meshChest.Position.Z = 1;
 _meshChest.Position.Y = 4;
 _meshChest.World = Balder.Core.Math.Matrix.CreateRotationY(180);
 // Add the left and right arms
 _meshLeftArm =
 _game.ContentManager.Load<Mesh>("ship01_texture02.ase");
 _scene.AddNode(_meshLeftArm);
 _meshLeftArm.Position.X = -19;
 _meshLeftArm.Position.Z = 1;
 _meshLeftArm.Position.Y = 2;
 _meshLeftArm.World = Balder.Core.Math.Matrix.CreateRotationZ(
 -90);
 _meshRightArm =
 _game.ContentManager.Load<Mesh>("ship01_texture02.ase");
 _scene.AddNode(_meshRightArm);
 _meshRightArm.Position.X = -6;
 _meshRightArm.Position.Z = 1;
 _meshRightArm.Position.Y = 2;
 _meshRightArm.World =
 Balder.Core.Math.Matrix.CreateRotationZ(90);
}

This material is copyright and is licensed for the sole use by Vadim Kudria on 4th October 2009

6352 108th St, , Forest Hills, , 11375

Download at WoweBook.Com

Chapter 8

[24�]

What just happened?
Now, we have a subclass of Actor that loads the Robot's models as independent meshes
with different initial positions and transformations.

Creating subclasses of Actor and overriding its methods, we can create complex 3D
characters with different behaviors.

Using skeletons and bones
The most appropriate way to represent skeletons and bones for a complex 3D character
in Balder is creating a new subclass of the Actor class. It allows us to apply a nice object-
oriented design to a complex animation technique creating as many meshes as necessary
bones for our skeleton.

We have overridden the LoadContent method. We used it for loading many models that
compose our complex 3D character.

Once each mesh was loaded, we added it to the active scene (previously saved in the
constructor), we assigned its initial position. Then, we rotated and scaled it changing the
values of its world matrix, as previously learned.

This way, we could create the following independent meshes that define the complex
3D character:

A head: A UFO with a scale ratio of 2:1 and rotated 270 degrees over the X-axis.

A chest: A spaceship with the original texture and rotated 180 degrees over
the Y-axis.

A left arm: A spaceship with the second texture and rotated -90 degrees over
the Z-axis.

A right arm: A spaceship with the second texture and rotated 90 degrees over
the Z-axis.

The Robot class contains all the code to control a complex Robot's
movement in our scene. It encapsulates a complex 3D character with
independent meshes. Overriding its Update method, we can move, rotate
and scale each independent mesh to create exciting animations.

This material is copyright and is licensed for the sole use by Vadim Kudria on 4th October 2009

6352 108th St, , Forest Hills, , 11375

Download at WoweBook.Com

Animating 3D Characters

[250]

Time for action – adding an Actor with skeletons and
bones to the game

Now we are going to add the Robot as an actor to our existing game:

1.	 Stay in the project 3DInvadersSilverlight.

2.	 Open InvadersGame.cs.

3.	 Add the following private variable in the public class InvadersGame
: RealTimeGame, to hold the new Robot instance:

private Robot _robot1;

4.	 Add the following lines of code before the end of the Initialize method to
create a Robot instance and add this complex actor to the game:

_robot1 = new Robot(this, Scene);
AddActor(_robot1);

5.	 Build and run the solution. The default web browser will appear displaying the
strange robot on the left part of the scene, as shown in the following screenshot:

6.	 Move the camera to see the robot from different angles while the UFO performs
its already well-known animation.

What just happened?
A complex robot appeared on the scene. You could find the specific positions and rotations
needed for each mesh to create the robot. Now, you will have to work hard in order to
animate complex 3D characters created using multiple independent models.

This material is copyright and is licensed for the sole use by Vadim Kudria on 4th October 2009

6352 108th St, , Forest Hills, , 11375

Download at WoweBook.Com

Chapter 8

[251]

Understanding complex 3D animation techniques
The techniques used to animate complex 3D models are just a combination of multiple
transformations performed to many meshes in the same frame.

The robot has the independent meshes, as shown in the following screenshot:

Thus, we can rotate the left arm (_meshLeftArm) to a certain number of degrees on the
X-axis, and rotate the right arm (_meshRightArm) to a certain number of degrees on the
Y-axis. Performing this kind of independent transformations to each mesh, we can reproduce
any kind of animation, such as a robot or alien walking.

Each movable element in these kinds of 3D characters must be an independent
mesh. Then, we can take full advantage of the object-oriented design to create
methods that simplify the most common animations.

First, we can create simple methods with specific parameters according to the animation's
needs, like the following:

MoveRightArm

MoveLeftArm

RotateHead

This material is copyright and is licensed for the sole use by Vadim Kudria on 4th October 2009

6352 108th St, , Forest Hills, , 11375

Download at WoweBook.Com

Animating 3D Characters

[252]

Then, we can create higher level methods like these:

WalkStep

Run

LookDown

These animations involving multiple transformations over many meshes, require a lot of
code. Therefore, it is very important to create methods in order to allow us to reuse code
in many high-level animation methods. For example, both WalkStep and Run must call
MoveRightArm and MoveLeftArm.

Have a go hero – aliens walking
It is time to work harder. Your project manager wants you to create a very complex
3D character and to animate it using the techniques you have already learned.

Create many independent 3D models, using very simple geometries, to use as meshes for an
alien with a skeleton, similar to the one shown in the following diagram:

Create a subclass of Actor with the following independent meshes:

Left hand

Left foot

Left forearm

Left calf

Left upper arm

Left thigh

Head

Neck

Chest
and backbone

Right upper arm

Right thigh

Right forearm

Right calf

Right hand

Right foot

This material is copyright and is licensed for the sole use by Vadim Kudria on 4th October 2009

6352 108th St, , Forest Hills, , 11375

Download at WoweBook.Com

Chapter 8

[253]

Add the code to show the independent meshes that comprise the skeleton in their initial
positions. Once the alien appears on the scene as expected, create low and high level
methods to let him walk on the scene.

You just have to perform many independent transformations to the meshes. You can do it. It
requires many lines of code, but it is easier than expected.

Pop quiz – animating 3D characters in a scene
1. You can move a 3D character using Balder changing the values of:

a. The 3D vector Position for the instance of the Actor superclass.

b. The 3D vector Position for each mesh that defines the 3D character.

c. The 3D vector 3DMovement for the instance of the Actor superclass.

2. You can create 3D characters with different behaviors defining subclasses
of Balder's:

a. Actor class.

b. Character class.

c. 3DCharacter class.

3. To add the new 3D characters to a Balder's Game, you have to call the following
method with the new instance as a parameter:

a. AddCharacter.

b. AddActor.

c. Add3DCharacter.

4. A Balder's Mesh World field is of the type:

a. System.Windows.Media.Matrix.

b. Microsoft.Xna.Framework.Matrix.

c. Balder.Core.Math.Matrix.

5. Changing the values of a Balder's Mesh world matrix's elements:

a. You can perform transformations to the scene's camera.

b. You can perform transformations to a specific mesh.

c. You can perform transformations to a specific light.

6. Changing the values of the world matrix's elements, you can perform the following
transformations to a Balder's Mesh:

a. Translate, rotate and scale any of the three axis (X, Y, and Z).

b. Translate, rotate and scale any of the two axis (X and Z).

c. Translate and rotate any of the three axis (X, Y, and Z).

This material is copyright and is licensed for the sole use by Vadim Kudria on 4th October 2009

6352 108th St, , Forest Hills, , 11375

Download at WoweBook.Com

Animating 3D Characters

[254]

7. The world matrix is a:

a. 3X3 matrix. It has three rows and three columns.

b. 4X4 matrix. It has four rows and four columns.

c. 5X5 matrix. It has five rows and five columns.

8. The initial values for the world matrix are:

a. All zeros.

b. Ones on the diagonal, from the upper right corner to the bottom left.

c. Ones on the diagonal, from the upper left corner to the bottom right.

9. Compound transformations are equivalent to:

a. Matrix multiplications.

b. Matrix divisions.

c. Matrix sums.

10. In order to create a world matrix that performs a rotation of 90 degrees over the
X axis, you can assign the result of calling this method to the World field:

a. Balder.Core.Math.Matrix.CreateRotation("X", 90).

b. Balder.Core.Math.Matrix.CreateRotationX(Axis.X, 90).

c. Balder.Core.Math.Matrix.CreateRotationX(90).

11. In order to animate a complex 3D character in Silveright using Balder, you can:

a. Move, rotate, and scale each independent mesh.

b. Extract bones from the 3D characters defined in the 3D DCC tools
using Balder's Import3DCharacter function.

c. Create a subclass of 3DCharacter and then call the
LoadBones method.

Summary
We learned a lot in this chapter about animating 3D characters. Specifically, we were able to
move, rotate, and scale the 3D models in the 3D scenes. We used object-oriented capabilities
to define independent behaviors for simple and complex 3D characters. We understood
simple techniques to perform many transformations to a 3D model using the complex world
matrix. We also understood how to animate complex 3D characters composed with many
independent meshes that define a skeleton with many animatable bones.

Now that we've learned to animate 3D characters in a 3D scene, we're ready to generate
physics using engines, which is the topic of the next chapter.

This material is copyright and is licensed for the sole use by Vadim Kudria on 4th October 2009

6352 108th St, , Forest Hills, , 11375

Download at WoweBook.Com

�
Adding Realistic Motions Using

a Physics Engine

In order to represent real-life behaviors in our games, we must simulate the
effects of the laws of 3D physics in our 3D scenes. A UFO flying near the Earth
will be attracted by gravitational force. Real things move and spin responding
to forces, impulses, and torques. Therefore, we have to add physics simulation
capabilities to our models' animations. We have to create a 3D world capable
of reproducing some realistic behaviors.

Reading this chapter and following the exercises we shall learn how to:

Define parameters to work with physics simulation

Simulate real-life physics in each model movement and rotation

Add a gravitational force to a 3D scene

Define specific physics behaviors for the 3D characters that compose the 3D world

Understand how to apply forces and impulses to move a 3D model

Control the 3D models' rotations using torques

Animate particle systems using a physics engine

This material is copyright and is licensed for the sole use by Vadim Kudria on 4th October 2009

6352 108th St, , Forest Hills, , 11375

Download at WoweBook.Com

Adding Realistic Motions Using a Physics Engine

[256]

Using physical principles in games to beat invaders
So far, we have been displaying and animating simple and complex 3D models in our 3D
scenes. We translated and rotated them considering the elapsed time and according to the
values read from the input devices. We used very simple linear formulas to translate and
rotate the models. However, in the real world, things move and rotate due to applied forces
and torques. Modern games must simulate real-life situations. Therefore, we have to move
and rotate our 3D characters according to the laws of 3D physics. How can we apply forces
and torques to multiple independent and concurrent 3D characters in Silverlight?

We can accomplish this by combining our good object-oriented design with the power of
a specialized physics engine. We can add realistic motions through space-time and all that
derives from these, such as energy and force, using a physics engine to simulate real physics
in our virtual worlds. This way, we can animate our 3D characters while simulating both
simple and complex laws of 3D physics without worrying about the underlying formulas.

The key to success is reducing the complexity of the mathematics involved
in 3D physics using a parallel representation of the 3D world in the physics
engine's bodies and geometries.

Time for action – installing Farseer Physics Engine
Your project manager has a Ph.D. in Physics. So, he is an expert in gravity, speed,
acceleration, impulses, torques, moments of inertia, friction coefficients, and so on. The UFO
and the spaceship will be fighting near the Earth. Therefore, you must consider gravitational
force. Speed cannot be linear. The UFO and the spaceship should have impulses. The UFO
should rotate using an angular velocity and considering a rotational drag coefficient. You
have to improve the game applying the laws of 3D physics.

You have great difficulties with the laws of physics. Your project manager knows this and he
suggests using a high-level physics engine—wait, do not run away! You will not need to learn
complex physics laws in order to apply them in your games.

Farseer Physics Engine (http://farseerphysics.codeplex.com/) is an easy-to-use,
open source 2D physics engine designed for XNA Framework and Silverlight. It focuses on
simplicity and useful features, along with enabling the creation of entertaining, dynamic
games. As it does not offer direct support for 3D physics, we will have to use some tricks in
order to take advantage of its excellent features in our 3D games. It offers the possibility to
control the position and rotation of game entities over time, applying physics through the
use of a very simple object-oriented engine.

This material is copyright and is licensed for the sole use by Vadim Kudria on 4th October 2009

6352 108th St, , Forest Hills, , 11375

Download at WoweBook.Com

Chapter 9

[257]

We will use Farseer Physics Engine to add 3D real-time physics capabilities toFarseer Physics Engine to add 3D real-time physics capabilities to to add 3D real-time physics capabilities toreal-time physics capabilities to
Silverlight for our games. However in some cases you will need to fine-tune the
results offered by this 2D engine in our 3D worlds.

Now, we are going to update our Silverlight application adding the necessary references to
use Farseer Physics Engine 2.1.

1.	 Download Farseer Physics Engine release 2.1 for Silverlight,
available at http://farseerphysics.codeplex.com/
Release/ProjectReleases.aspx?ReleaseId=19656.

Farseer Physics Engine is a very active project. Thus, it frequently releases new
versions adding additional features and fixing bugs. Sometimes, a new version
can introduce changes to classes or methods. In the following examples, we will
use version 2.1, change set # 54,747.

2.	 Save all the uncompressed files in a new folder (C:\Farseer21Silverlight).

3.	 Open the project, FarseerPhysicsSilverlight.csproj, in the
aforementioned folder.

4.	 Convert the solution if necessary.

5.	 Build the new solution (it will use the default build configuration).

6.	 Now, you will find a new library, FarseerPhysics.dll, in the
ClientBin subfolder (C:\Farseer21Silverlight\ClientBin).

7.	 Open the project 3DInvadersSilverlight.

8.	 Click on 3DInvadersSilverlight in the Solution Explorer.

9.	 Select Project | Add Reference…, browse to the ClientBin subfolder and select
the FarseerPhysics.dll library.

This material is copyright and is licensed for the sole use by Vadim Kudria on 4th October 2009

6352 108th St, , Forest Hills, , 11375

Download at WoweBook.Com

Adding Realistic Motions Using a Physics Engine

[25�]

10.	Now the project will list the reference to the aforementioned DLL in
the Solution Explorer, as shown in the following screenshot:

What just happened?
We downloaded Farseer Physics Engine 2.1 and we added the necessary references to use it
in a Silverlight project. The previously explained steps are the only ones required to access
Farseer Physics' classes, types, and functions in any new Silverlight application.

This material is copyright and is licensed for the sole use by Vadim Kudria on 4th October 2009

6352 108th St, , Forest Hills, , 11375

Download at WoweBook.Com

Chapter 9

[25�]

Time for action – adding parallel physics bodies and
geometries to 3D characters

We are now going to add a body and geometry to represent the UFO in the physics engine
world. This is our first attempt to add physics using Farseer Physics Engine.

1.	 Stay in the project 3DInvadersSilverlight.

2.	 Open Ufo.cs.cs.

3.	 Add the following lines of code at the beginning (as we are
going to use many of Farseer's classes and interfaces):

using FarseerGames.FarseerPhysics;
using FarseerGames.FarseerPhysics.Collisions;
using FarseerGames.FarseerPhysics.Dynamics;
using FarseerGames.FarseerPhysics.Factories;
using FarseerGames.FarseerPhysics.Mathematics;

4.	 Add the following public properties:

public Body Body { get; private set; }
public Geom Geom { get; private set; }
public float Width { get; private set; }
public float Height { get; private set; }
public float Mass { get; private set; }

5.	 Replace the old constructor with the following one, which has three parameters—
the RealTimeGame, the Scene, and the and the PhysicsSimulator instances:

public Ufo(RealTimeGame game, Scene scene, PhysicsSimulator
physicsSimulator)
{
 _game = game;
 _scene = scene;
 Width = 5;
 Height = 1;
 Mass = 1;
 // Create the body and set its linear drag coefficient
 Body =
 BodyFactory.Instance.CreateRectangleBody(physicsSimulator,
 Width, Height, Mass);
 Body.LinearDragCoefficient = 0.4f;
 // Create the geometry (Geom) and set its friction coefficient
 Geom =
 GeomFactory.Instance.CreateRectangleGeom(physicsSimulator,
 Body, Width, Height);
 Geom.FrictionCoefficient = .2f;
}

This material is copyright and is licensed for the sole use by Vadim Kudria on 4th October 2009

6352 108th St, , Forest Hills, , 11375

Download at WoweBook.Com

Adding Realistic Motions Using a Physics Engine

[260]

6.	 Replace the old LoadContent method with the following one (we change the initial
position for the mesh and we assign it to the Body instance):

public override void LoadContent()
{
 base.LoadContent();
 _mesh = _game.ContentManager.Load<Mesh>("ufo01.ase");
 _scene.AddNode(_mesh);
 _mesh.Position.X = -20;
 _mesh.Position.Z = 0;
 _mesh.Position.Y = -2;
 Body.Position = new Vector2(_mesh.Position.X, _mesh.Position.Y);
}

7.	 Replace the old Update method with this one (now the physics engine updates the
Body's position):

public override void Update()
{
 base.Update();
 _mesh.Position.X = Body.Position.X;
 _mesh.Position.Y = Body.Position.Y;
}

What just happened?
We now have a subclass of Actor that loads the UFO's model, creates a body and geometry
in the physics engine, and updates its location according to the body's calculated position.

Creating bodies and geometries related to our 3D characters, we are able to apply physics
even using a 2D engine.

Creating bodies
We need to access the PhysicsSimulator (FarseerGames.FarseerPhysics.
PhysicsSimulator) instance from the Actor. We have to add the body and geometry
that define the 3D character in the physics simulator to this instance, in order to be
taken into account by each phase of the simulation process. Therefore, we use a constructor
that receives the reference to this instance as its third parameter.

public Ufo(RealTimeGame game, Scene scene, PhysicsSimulator
 physicsSimulator)

The bodies represent the real world things in the 2D physics simulator. We can apply forces,
impulses, and torques to these bodies and they are going to react according to the laws
of 2D physics.

This material is copyright and is licensed for the sole use by Vadim Kudria on 4th October 2009

6352 108th St, , Forest Hills, , 11375

Download at WoweBook.Com

Chapter 9

[261]

The body factory allows us to create different kinds of bodies (Body instances) and add them
to the specified simulator, received as a parameter. In this case, we create a rectangle body
with a specific width, height, and mass. Using these parameters, Farseer will calculate the
moment of inertia.

Body = BodyFactory.Instance.CreateRectangleBody(physicsSimulator,
 Width, Height, Mass);

A rectangle is not the best representation for our UFO. However, we are learning
how to use the physics simulator. We will be able to improve the accuracy of the
simulation later.

We create a Body instance with a width of 5, height of 1, and mass of 2. We also assigned a
linear drag coefficient of 0.4.

Body.LinearDragCoefficient = 0.4f;

Drag is the force that resists the movement of a body through a fluid or gas.
A body moving through the air will gradually slow down due to the drag. The
higher the linear drag coefficient, the more force the body needs to be moved.
The higher the linear drag coefficient, the faster the body will slow down due to
the drag. Air is a gas and the UFO has to move through the air.

Creating geometries
The geometries (Geom instances) define the edges for a shape and are associated to a body
(a Body instance). They control the collision detection process and control the calculation of
the impulses associated with colliding with other geometries.

The geometry factory allows us to create different kinds of geometries. Besides, it allows
us to add them to the specified simulator that is received as a parameter, and associate
them with a previously created Body instance. In this case, we create a rectangle geometry
with the same width and height used to create the associated Body instance. Using these
parameters, Farseer will create the set of vertices that define the shape.

Geom = GeomFactory.Instance.CreateRectangleGeom(physicsSimulator,
 Body, Width, Height);

Besides, we assigned a friction coefficient of 0.2:

Geom.FrictionCoefficient = .2f;

Friction is the force that opposes the relative motion of two material surfaces
in contact with one another. The higher the friction coefficient, the harder it is to
move relative to the other material with which the geometry is in contact.

This material is copyright and is licensed for the sole use by Vadim Kudria on 4th October 2009

6352 108th St, , Forest Hills, , 11375

Download at WoweBook.Com

Adding Realistic Motions Using a Physics Engine

[262]

Updating a 3D model according to the associated body's
properties
Once the mesh is loaded and added to the active scene, we set its initial position. We
then define the initial position for the associated Body instance, creating a new 2D vector
(Vector2) and sending the X and Y values taking them from the mesh X and Y values:

Body.Position = new Vector2(_mesh.Position.X, _mesh.Position.Y);

This way, we are replicating two out of the three axes in the physics simulator.
We are working with the X and Y axis, without considering the Z-axis.

Finally, we have overridden the Update method with a new one. When this method is
called, the physics simulator has already updated the bodies according to the forces,
impulses, and torques applied. Thus, we just have to use the associated Body instance's
properties to update our mesh.

_mesh.Position.X = Body.Position.X;
_mesh.Position.Y = Body.Position.Y;

Time for action – working with forces, impulses, acceleration,
and speed

We are now going to use Farseer Physics Engine to add a gravitational force affecting the
UFO. Also, we will add the possibility to apply a force to accelerate the UFO and to impulse it,
updating its speed.

1.	 Stay in the 3DInvadersSilverlight project.

2.	 Open InvadersGame.cs.cs.

3.	 Add the following lines of code at the beginning (as we are
going to use many Farseer's classes and interfaces):

using FarseerGames.FarseerPhysics;
using FarseerGames.FarseerPhysics.Collisions;
using FarseerGames.FarseerPhysics.Dynamics;
using FarseerGames.FarseerPhysics.Factories;
using FarseerGames.FarseerPhysics.Mathematics;

4.	 Add the following private variable in the public class
InvadersGame : RealTimeGame, to hold the new PhysicsSimulator
(FarseerGames.FarseerPhysics.PhysicsSimulator) instance:

private PhysicsSimulator _physicsSimulator;

This material is copyright and is licensed for the sole use by Vadim Kudria on 4th October 2009

6352 108th St, , Forest Hills, , 11375

Download at WoweBook.Com

Chapter 9

[263]

5.	 Add the following private method to initialize Farseer Physics Engine,
specifying the desired gravitational force as a 2D vector parameter:

private void InitializePhysicsSimulator()
{
 _physicsSimulator = new PhysicsSimulator(new Vector2(0f,
0.25f));
 //50 pixels = 1 meter
 ConvertUnits.SetDisplayUnitToSimUnitRatio(50);
}

6.	 Add the following line of code before the creation of the Ufo instance in the
Initialize method:

InitializePhysicsSimulator();

7.	 Comment the lines that create and add the Robot instance as a new actor
(we need to pay attention to the UFO's behavior).

//_robot1 = new Robot(this, Scene);
//AddActor(_robot1);

8.	 Add the following lines of code in the CheckKeyboard method, before the line
KeyboardManager.RemoveUpKeys();:

if (KeyboardManager.IsKeyDown(Key.I))
 _ufo1.Body.ApplyImpulse(new Vector2(0.25f, -0.25f));
if (KeyboardManager.IsKeyDown(Key.F))
 _ufo1.Body.ApplyForce(new Vector2(-0.05f, -0.5f));

9.	 Now, add the following line of code before the end of the UpdateWithTime method:

_physicsSimulator.Update((float) _elapsedTime.TotalSeconds);

10.	Build and run the solution. The default web browser will appear displaying the two
spaceships and a UFO made of bricks. The UFO will move down through the 3D
space, attracted by the Earth's gravitational force, as shown in the following figure:

This material is copyright and is licensed for the sole use by Vadim Kudria on 4th October 2009

6352 108th St, , Forest Hills, , 11375

Download at WoweBook.Com

Adding Realistic Motions Using a Physics Engine

[264]

11.	Click on the web browser's viewport to activate its focus. Press the F key and keep
it down for a few seconds, applying a force to the UFO. During the first seconds,
the UFO will seem to resist to the gravitational force that moves it down. After
these first few seconds, the UFO will break free of the gravitational force and it
will begin to move up and a bit to the left, as shown in the following figure:

12.	Now, press the I key and keep it down for two seconds, applying an impulse
to the UFO. Then, release the key. During these seconds, the UFO will
seem to jump up and right. When you release the key, its speed will slow
down because the drag force is resisting the UFO's movement. Besides, the
gravitational force will pull it down again, as shown in the following figure:

This material is copyright and is licensed for the sole use by Vadim Kudria on 4th October 2009

6352 108th St, , Forest Hills, , 11375

Download at WoweBook.Com

Chapter 9

[265]

What just happened?
Using a 2D physics engine, you could simulate real-life physics for the UFO. Now, the UFO
offers a realistic movement through the air. Your project manager is calculating whether
the forces are working as expected or not. As you are using a 2D rectangle to represent the
UFO's 3D model in the physics simulator, you will have to make some additional tweaks to
cheat your project manager.

Specifying the gravitational force
As Farseer Physics Engine is a 2D physics simulator, it uses 2D vectors (Vector2) to
specify forces.

We must pass the desired gravity as a Vector2 to the PhysicsSimulator
constructor. In this case, we use a gravitational force that attracts the bodies to positive
Y values (Y = 0.25).

_physicsSimulator = new PhysicsSimulator(new Vector2(0f, 0.25f));

We can use Farseer's gravitational force to apply a global attraction force to all
the bodies that respond to gravity. We can turn off gravity for a specific Body
instance by setting its IgnoreGravity property to true. The default value
for this property is false.

Applying forces
Whilst the F key is down, we apply a force to the UFO's Body instance to go up and a bit to
the left (X = 0.05; Y = -0.5). We called the Body instance's ApplyForce method, passing a
new 2D vector with the definition for this force:

_ufo1.Body.ApplyForce(new Vector2(-0.05f, -0.5f));

A force accelerates the body. It works like a jetpack, accelerating over time.

The physics simulator will take into account the kind of body, its size, its mass, its
parameters, its actual position, the specified gravitational force, and the elapsed time to
calculate the new position. When we call the Update method for the PhysicsSimulator
instance, we must pass the elapsed time in seconds as a parameter. It updates the positions
of all the bodies added to the simulator. Taking into account all the parameters, it applies all
the 2D physics laws it knows:

_physicsSimulator.Update((float) _elapsedTime.TotalSeconds);

This material is copyright and is licensed for the sole use by Vadim Kudria on 4th October 2009

6352 108th St, , Forest Hills, , 11375

Download at WoweBook.Com

Adding Realistic Motions Using a Physics Engine

[266]

Thus, as previously explained, we could change the 3D character's position, borrowing the
values from the associated Body instance in the Actor's subclass Update method.

We do not have to calculate the new positions. The physics simulator does this
job taking into account all the parameters and applying 2D physics laws.

Applying impulses
While the I key is down, we apply an impulse to the UFO's Body instance to go up and right
(X = 0.25; Y = -0.25). We called the Body instance's ApplyImpulse method, passing a new
2D vector with the definition for this force:

_ufo1.Body.ApplyImpulse(new Vector2(0.25f, -0.25f));

An impulse performs an instant change in the moment of a body, and updates
its speed instead of accelerating it like a force. It makes the body jump.

The impulse will work as previously explained for the force. It will update the body's position
applying all the 2D physics laws it knows.

Using impulses and forces, we do not need to worry about speed and acceleration. We can
leave this work to the physics simulator.

Working with a 2D physics simulator in the game loop
Once we have the 3D character defined as a subclass of Actor, we need to follow these
steps with Farseer Physics Engine, in order to update two of the three axes:

1. Initialize the physics simulator with a specific gravitational force.Initialize the physics simulator with a specific gravitational force.

2. Create a Body instance that represents this 3D model in the physics simulator
2D world.

3. Create a Geometry instance that represents the aforementioned Body, for collision
detection purposes.

4. Define the Body's 2D initial position, matching two out of the three axes for the
3D model.

5. Apply forces, impulses, and/or torques to each Body.

6. Call the physics simulator Update method.

7. Update the 3D model's position and rotation according to the properties exposed by
the updated Body instance.

8. Respond to collision events.

This material is copyright and is licensed for the sole use by Vadim Kudria on 4th October 2009

6352 108th St, , Forest Hills, , 11375

Download at WoweBook.Com

Chapter 9

[267]

Time for action – working with torques and rotations
Your project manager is planning to add more physics simulations to the game. He wants the
UFO to rotate around its Y-axis. However, it must follow the physics laws and the rotation
could occur while applying forces and/or impulses to the UFO. Hence, you must use the
physics simulator capabilities to avoid buying a physics law book.

We are now going to use Farseer Physics Engine to add a torque affecting the UFO's rotation.

1.	 Stay in the project 3DInvadersSilverlight.

2.	 Open Ufo.cs.cs.

3.	 Add the following line of code before the end of the class' constructor:

Body.RotationalDragCoefficient = 0.2f;

4.	 Add the following line of code before the end of the Update method:

_mesh.World = Balder.Core.Math.Matrix.CreateRotationY(FarseerGames
.FarseerPhysics.Mathematics.MathHelper.ToDegrees(Body.Rotation));

5.	 Open InvadersGame.cs.cs.

6.	 Add the following lines of code in the CheckKeyboard method,
before the line KeyboardManager.RemoveUpKeys();:

if (KeyboardManager.IsKeyDown(Key.R))
 _ufo1.Body.ApplyTorque(5f);

7.	 Build and run the solution. The default web browser will appear displaying the two
spaceships, along with a UFO made of bricks. Click on the web browser's viewport
to activate its focus. Press the I key and keep it down for two seconds. Then, press
the R key for a few seconds. The UFO will rotate around its Y-axis. However, after
a few seconds, the rotation will become slower, as shown in the following figure:

This material is copyright and is licensed for the sole use by Vadim Kudria on 4th October 2009

6352 108th St, , Forest Hills, , 11375

Download at WoweBook.Com

Adding Realistic Motions Using a Physics Engine

[26�]

What just happened?
By using a 2D physics engine and adding just a few lines of code, you can simulate the
UFO's complex rotation considering many parameters. Now, the UFO offers realistic rotation
around its Y-axis while moving through the air.

Applying torques
We specified a desired rotational drag coefficient of 0.2 to the UFO's Body instance.

Body.RotationalDragCoefficient = 0.2f;

Rotational drag is the force that resists the rotation of a body. A body rotating
will gradually slow down due to the rotational drag. The higher the rotational
drag coefficient, the more torque the body needs to be rotated. The higher the
rotational drag coefficient, the faster the body's rotation will slow down due to
the drag. A value of 0 for the rotational drag would make a body rotate forever.

While the R key is down, we apply a torque to the UFO's Body instance to rotate. We
called the Body instance's ApplyTorque method, passing a float value with the
rotation strength:

_ufo1.Body.ApplyTorque(5f);

Applying torque rotates the body. Hence, it makes the body roll.

The physics simulator will take into account all the parameters and the elapsed time to
calculate the new rotation value in radians.

In this case, we could change the 3D character's Y angle, borrowing the values from the
associated Body instance's Rotation property, in the Actor's subclass Update method.
As this property holds the angle in radians and as Balder's Matrix CreateRotationY
method requires an angle expressed in degrees, we have to convert the angle from radians
to degrees. As we do not want to check formulas in a physics book, we use the ToDegrees
function provided by Farseer.

_mesh.World = Balder.Core.Math.Matrix.CreateRotationY(FarseerGames.
FarseerPhysics.Mathematics.MathHelper.ToDegrees(Body.Rotation));

We do not have to calculate the new angles. The physics simulator does this
job taking into account all the parameters and applying 2D physics laws.

This material is copyright and is licensed for the sole use by Vadim Kudria on 4th October 2009

6352 108th St, , Forest Hills, , 11375

Download at WoweBook.Com

Chapter 9

[26�]

Why FarseerGames.FarseerPhysics.Mathematics.MathHelper
was used to call the ToDegrees function instead of MathHelper:

The Balder.Core.Math namespace also has a definition for a MathHelper
class. Hence, we have two alternatives—removing the Balder.Core.Math
namespace for the class or using the full reference to FarseerGames's
MathHelper class. As we are also using Balder.Core.Math classes, we
used the full reference.

Translating 2D physics to a 3D world
So far, we have been working with a 2D physics simulator to update 2 axes of our 3D world.
We have to do this because we do not have a complete 3D physics simulator working with
Balder or XBAP WPF 3D applications.

However, we can make some tricks to use a 2D physics engine to emulate a 3D world. We
can work with three 2-axis physics simulators (three instances of PhysicsSimulator).
Each instance can represent the following pairs of 3D world axes:

X and Y. (We have been working with this in the previous examples)

X and Z

Y and Z

The following figure shows the representation of a cube in the three pairs of 2 axis:

Y axis

X axis

Z axis

X and Y Y and Z X and Z

This material is copyright and is licensed for the sole use by Vadim Kudria on 4th October 2009

6352 108th St, , Forest Hills, , 11375

Download at WoweBook.Com

Adding Realistic Motions Using a Physics Engine

[270]

The following figure shows the different 2D planes that represent the parts of the cube in
each 2D physics simulator.

2D Physics
simulator #1

2D Physics
simulator #2

2D Physics
simulator #3

X and Y Y and Z X and Z

Each physics simulator can apply forces, impulses, and torques to each of these planes. Each
engine can update just one axis.

X and Y—It updates the X-axis

X and Z—It updates the Z-axis

Y and Z—It updates the Y-axis

Using this technique, we can control the applied physics to three axes using three instances
of a 2D physics engine. It will not offer the same results as a real 3D engine, taking into
account the exact 3D model. However, it will provide the opportunity to apply simple
simulations of forces, impulses and rotations with rough results.

Instead of working with an exact cube, we would be working with a 3D geometry as shown:

Working with Farseer Physics Engine in XBAP WPF applications
Everything we have learned so far about Farseer Physics Engine is also useful when working
with an XBAP WPF application. This engine is also available for WPF and it works exactly the
same way as explained for Silverlight and Balder.

This material is copyright and is licensed for the sole use by Vadim Kudria on 4th October 2009

6352 108th St, , Forest Hills, , 11375

Download at WoweBook.Com

Chapter 9

[271]

Have a go hero – circles are not rectangles
Your project manager comes with a physics book on his hand. He discovered that you had
been using a rectangle to simulate the 2D physics for the UFO. Now, you have to change the
body factory to create a circle instead of a rectangle.

Luckily, Farseer allows the creation of circles calling the BodyFactory.Instance.
CreateCircleBody method. However, it requires a ratio and mass as parameters,
instead of a width, a height, and a mass. Besides, you have to replace the call to
CreateRectangleGeom with CreateCircleGeom.

He also wants to play with the physics simulator, changing the values for its main parameters.

Add a new UFO using a circle body. Apply the forces, impulses, and torques to the existing
and the new UFO.

Add sliders to allow the player to change the gravity (assigning a new Vector2 through the
PhysicsSimulator instance Gravity property). Also let him change both the linear and
the rotational drag coefficients.

Have a go hero – applying particle systems
Now, it's time to work with particle systems. Your project manager wants to test the
capabilities of the 2D physics engine to work with just the X-axis and the Y-axis of many
cubes. These cubes have to simulate a UFO's explosion.

You have to work with forces, impulses, torques, and gravity in order to make the boxes
move as shown in the following figure:

This material is copyright and is licensed for the sole use by Vadim Kudria on 4th October 2009

6352 108th St, , Forest Hills, , 11375

Download at WoweBook.Com

Adding Realistic Motions Using a Physics Engine

[272]

The force of gravity will help you to let the boxes go down.

Use a 3D DCC tool to create a simple box to use as the mesh. You will have to create a
subclass of Actor to represent the box and to create the relation with the Body instance.

You can do it—goodbye UFOs!

Pop quiz – working with bodies, geometries, and physics
1. The higher a body's linear drag coefficient::

a. The more force the body needs to be moved.

b. The less force the body needs to be moved.

c. The more force the body needs to be rotated.

2. The lower a body's rotational drag coefficient:

a. The more torque the body needs to be rotated.

b. The less torque the body needs to be rotated.

c. The less force the body needs to be moved.

3. A Body's Rotation property expresses an angle in:

a. Degrees.

b. Radians.

c. Farenheit.

4. Gravity is a:

a. Torque.

b. Force.

c. Impulse.

5. In order to turn off gravity for a specific Body instance:

a. You can set its Gravity property to 0.

b. You can set its ApplyGravity property to false.

c. You can set its IgnoreGravity property to true.

6. To update the bodies position and rotation taking into account the laws of
2D physics, you must call:

a. The PhysicsSimulator instance Update method.

b. The Update method for each Body.

c. The Update method for Balder's FarseerUpdate class.

This material is copyright and is licensed for the sole use by Vadim Kudria on 4th October 2009

6352 108th St, , Forest Hills, , 11375

Download at WoweBook.Com

Chapter 9

[273]

7. A 3D character using a physics engine can update its position and rotation borrowing
the value from:

a. The associated Geom instance.

b. The associated PhysicsSimulator instance.

c. The associated Body instance.

8. Drag is:

a. The force that resists the movement of a body through a fluid or gas.

b. The gravitational force that attracts bodies to a gravity center.

c. The force that impulses the movement of a body, accelerating it.

Summary
We learned a lot in this chapter about simulating the laws of 2D and 3D physics. Specifically,
we were able to define gravitational force, mass, drag coefficients, and moment of inertia
to represent the physical properties of the bodies that define a model. We used a physics
engine to apply forces, impulses, and torques to 3D models. We took advantage of
object-oriented capabilities to add physics to existing 3D characters. We also understood
how to use a 2D engine to work in a 3D world.

Now that we've learned to use an engine to simulate physics for 3D characters in a 3D scene,
we're ready to apply artificial intelligence, which is the topic of the next chapter.

This material is copyright and is licensed for the sole use by Vadim Kudria on 4th October 2009

6352 108th St, , Forest Hills, , 11375

Download at WoweBook.Com

This material is copyright and is licensed for the sole use by Vadim Kudria on 4th October 2009

6352 108th St, , Forest Hills, , 11375

Download at WoweBook.Com

10
Applying Artificial Intelligence

In order to create competitive games, we must add some intelligence to the
characters and we have to be able to detect collisions between them. An UFO
has to be able to pursue a spaceship. A missile must be capable of chasing
a plane. A cat must try to catch a mouse. The real things move using some
intelligence. However, they also make mistakes. Hence, we have to add artificial
intelligence (AI) to our characters.

In this chapter, we will add action to the scenes. By reading it and following the exercises
we shall learn to:

Detect when two characters hit

Define specific behaviors when the characters collide

Use physics simulation to respond to collisions

Add chasing capabilities to characters

Add evasion capabilities to characters

Control the intelligence used in the automated character's behavior

Detecting collisions between 3D characters
So far, we have been animating simple and complex 3D models in our 3D scenes, working
with forces, impulses, acceleration, and speed. We took advantage of a 2D physics engine
to add realistic movements and rotations to our 3D characters. However, in the real world,
objects collide and they react to these collisions according to certain properties governed by
physics and to the laws of 3D physics. Modern games must simulate real-life effects when 3D
characters collide. How can we detect collisions between our 3D characters and make them
react accordingly in Silverlight?

This material is copyright and is licensed for the sole use by Vadim Kudria on 4th October 2009

6352 108th St, , Forest Hills, , 11375

Download at WoweBook.Com

Applying Artificial Intelligence

[276]

We can do this by taking advantage of the collision detection capabilities offered by a
specialized physics engine. Using a physics engine, it is possible to detect collisions and to
make the 3D characters react according to their actual position, rotation, torque, force, and
impulse. This way, we can animate our 3D characters and simulate the reactions offered by
real-life collisions without worrying about the underlying formulas.

3D collision detection is a very complex problem. It involves very complex
algorithms that require complete access to the meshes, faces and polygons for
each 3D character. However, we want to keep things simple. As previously done
with the addition of physics to our 3D characters, we are going to reduce the
complexity of the mathematics involved in collision detection systems using
a parallel representation of the 3D world in the physics engine's geometries.
This is not going to be the most accurate 3D collision detection procedure.
Nevertheless, it will allow us to add responses to collisions without diving into
very complex algorithms.

Time for action – adding a second UFO
Firstly, we are going to add a second UFO to our existing scene. This UFO must be able to
move and rotate using impulses, forces and torques, like the existing UFO.

1.	 Stay in the 3DInvadersSilverlight project.

2.	 Open Ufo.cs.cs.

3.	 Add the following public method to change the position for both the mesh in
the 3D world and the 2D body representing the rectangle for this mesh in the
2D physics engine world:

public void SetPosition(float x, float y, float z)
{
 _mesh.Position.X = x;
 _mesh.Position.Y = y;
 _mesh.Position.Z = z;
 Body.Position = new Vector2(x, y);
}

4.	 Open InvadersGame.cs.cs.

5.	 Add the following private variable in the public class
InvadersGame : RealTimeGame, to hold the new Ufo instance:

private Ufo _ufo2;

This material is copyright and is licensed for the sole use by Vadim Kudria on 4th October 2009

6352 108th St, , Forest Hills, , 11375

Download at WoweBook.Com

Chapter 10

[277]

6.	 Add the following lines of code before the end of the Initialize method
to create an Ufo instance and add this new actor to the game::

_ufo2 = new Ufo(this, Scene, _physicsSimulator);
AddActor(_ufo2);

7.	 Add the following lines of code in the CheckKeyboard method, before the line
KeyboardManager.RemoveUpKeys();:

if (KeyboardManager.IsKeyDown(Key.D1))
 _ufo2.Body.ApplyImpulse(new Vector2(-0.25f, -0.25f));
if (KeyboardManager.IsKeyDown(Key.D2))
 _ufo2.Body.ApplyForce(new Vector2(0.05f, -0.5f));
if (KeyboardManager.IsKeyDown(Key.D3))
 _ufo2.Body.ApplyTorque(-5f);

8.	 Override the Loaded method to set the initial positions for both the UFO's mesh
and the UFO's 2D body::

public override void Loaded()
{
 base.Loaded();
 // Set the initial position once the models were loaded
 _ufo2.SetPosition(20, -2, 0);
}

9.	 Build and run the solution. The default web browser will appear displaying the two
spaceships, and the two UFOs made of bricks (one on the left, and the other on the
right). Both UFOs will move down through the 3D space, pulled by the Earth's
gravitational force, as shown in the following screenshot:

This material is copyright and is licensed for the sole use by Vadim Kudria on 4th October 2009

6352 108th St, , Forest Hills, , 11375

Download at WoweBook.Com

Applying Artificial Intelligence

[27�]

10.	Click on the web browser's viewport to activate its focus. Press the F+2 key
combination and keep it down for a few seconds, applying a force to both UFOs
at the same time. During the first few seconds, both UFOs will try to resist the
gravitational force that pulls them down. After these first few seconds, both UFOs
will break the gravitational force, and they will begin to move up in opposite
horizontal directions, as shown in the following screenshot:

11.	Now, press the I+1 key combination and keep it down for a few seconds, applying
an impulse to both the UFOs at the same time. Then, release the keys. During these
few seconds, both UFOs will seem to jump up and in opposite horizontal directions.
When you release both keys, their speed will slow down because the drag force is
resisting the UFOs' movements. Also, the gravitational force will pull them
down again, as shown in the following diagram:

What just happened?
Adding just a few lines of code, you could simulate and control the real-life physics for two
UFOs at the same time. Now, both the UFOs display realistic movement through the air and
you are ready to detect collisions between them.

This material is copyright and is licensed for the sole use by Vadim Kudria on 4th October 2009

6352 108th St, , Forest Hills, , 11375

Download at WoweBook.Com

Chapter 10

[27�]

First, we added the SetPosition public method to the Ufo class in order to change the
X, Y, and Z coordinates for the mesh and set the X and Y coordinates for the Ufo's 2D body.
Then, we added code to the Initialize method to create the new instance and add it as
an actor to our game and to the physics simulator.

We had to override the Loaded method to call the SetPosition method for the second
UFO, once the models were loaded.

This was necessary because the Ufo's constructor does not load the mesh.
It creates the body and the geometry to represent the mesh in the physics
simulator but it does not load the model. Hence, we had to make sure the model
was already loaded because the SetPosition method changes the positions
for both the mesh and the body.

We added code to the CheckKeyboard method to apply an impulse (1), a force (2), or a
torque (3) to the new UFO according to the pressed key. We specified the opposite horizontal
direction that the first UFO applied for the impulse, the force, and the torque.

This way, we can press many keys at the same time to impulse both UFOs and make them
collide. Once we have defined the physics simulator, the actors, their bodies and geometries,
it is very easy to add new actors to the game using our simple object-oriented approach.

Time for action – detecting collisions between 3D characters
Your project manager does not want the UFOs to explode when they crash. He wants you to
use the physics simulator to make them rotate and bounce when they collide.

Now, we are going to take advantage of the physics engine's collision detection capabilities:

1.	 Stay in the 3DInvadersSilverlight project.

2.	 Open Ufo.cs.cs.

3.	 Add the following public static constant to identify the kind of 3D character
related to a geometry:
public static string Tag = "UFO";

4.	 Add the following private method to check the geometry that collides with the
Ufo's instance::
private bool OnCollision(Geom geom1, Geom geom2, ContactList
 contactList)
{
 if ((((string) geom1.Tag) == Tag) && (((string) geom2.Tag) ==
Tag))

This material is copyright and is licensed for the sole use by Vadim Kudria on 4th October 2009

6352 108th St, , Forest Hills, , 11375

Download at WoweBook.Com

Applying Artificial Intelligence

[2�0]

 // Both geometries represent an UFO
 return true;
 else
 return false;
}

5.	 Replace the line that assigns a width value in the constructor with the following
one. (We must be more accurate because we want them to respond to a collision.):):

Width = 3f;

6.	 Add the following lines of code before the end of the aforementioned
class's constructor:

// Use Geom.Tag to name the geometry
Geom.Tag = Tag;
// Add a collision event handler
Geom.OnCollision += OnCollision;

7.	 Build and run the solution. The default web browser will appear displaying the two
spaceships, and the two UFOs made of bricks. Press the I+1 key combination and
keep them down, applying an impulse to both the UFOs at the same time, until they
are about to collide. Release the keys. Once the UFOs crash, they will begin rotating
and bouncing, as shown in the following screenshot:

This material is copyright and is licensed for the sole use by Vadim Kudria on 4th October 2009

6352 108th St, , Forest Hills, , 11375

Download at WoweBook.Com

Chapter 10

[2�1]

8.	 Run the application many times, pressing the previously mentioned keys to make
the UFOs collide with different impulses. You will be able to see the UFOs rotating as
if they were dancing, as shown in the following screenshot:

9.	 Change the friction coefficient (FrictionCoefficient property's value) for
the geometry (Geom instances) that defines the edges of the UFO model
representation in the 2D physics simulator. Run the application many times
using the following values:s:

0.5f

1.5f

3.5f

10.	Make the UFOs collide with each different value. Using the higher friction
coefficient, the UFOs will move up together once they collide, because it is difficult
to move each one relative to the other, as shown in the following screenshot::

11.	Restore the original friction coefficient value and run the experience again. You will
be able to understand the friction coefficient incidence on collisions controlled by
the physics simulator.

What just happened?
When the UFOs collide, the physics simulator updates the bodies according to their
properties—their friction coefficient and the combination of forces, impulses, and torques
applied. The response offered by the application when the UFOs crash is very attractive
because they behave like real objects colliding.

This material is copyright and is licensed for the sole use by Vadim Kudria on 4th October 2009

6352 108th St, , Forest Hills, , 11375

Download at WoweBook.Com

Applying Artificial Intelligence

[2�2]

Working with advanced responses to collisions
By default, when two geometries collide with each other, the physics simulator triggers a
collision response. An arbiter calculates the impulses to be applied to each body associated
with a geometry that has collided. The impulses create reactions to the collision, trying to
reproduce the behavior of real physics.

As we had already created a geometry (a Geom instance) and associated it to a body (a Body
instance) to represent the UFO's mesh in the 2D physics simulator, we did not have to code
specific collision detection algorithms. As the physics simulator applies forces, impulses,
and torques, it updates the positions and rotations of the bodies and executes collision
detection algorithms to determine whether different geometries collide with each other. As
aforementioned, if this happens, an arbiter calculates the impulses to provide a response to
the collision and it fires the OnCollision event on the geometry. Therefore, we added an
event handler (CollisionEventHandler) to the Geom instance in the Ufo's constructor:

Geom.OnCollision += OnCollision;

When two geometries hit each other and we are using the physics simulator's default
options, the code programmed in the OnCollision event handler method must evaluate
the geometries that collide and return a bool value indicating whether to make the collision
happen or not. In our example, we were just working with two UFO's. However, in a more
complex game, there will be dozens of different 3D characters and geometries colliding at
the same time. As we are using a 2D physics simulator to detect collisions in a parallel 3D
world, the event handler is not prepared to work with 3D meshes. Thus, we must identify
the geometries. We used the flexible and well-known Tag property to assign a string that
identifies all the geometries related to UFOs:

Geom.Tag = Tag;

Using a string to identify the geometries is not exactly a best practice for all the
cases. When working with dozens of geometries, it would be more convenient to
work with an enum or numeric identifiers. We can also use the Tag property to
hold a Dictionary with multiple data. It can allow us to look up any custom
data or objects from the geometry's Tag property.

The OnCollision event handler receives three parameters, the two geometries
(Geom instances) that collide and a list of contacts (ContactList):

private bool OnCollision(Geom geom1, Geom geom2, ContactList
 contactList)

This material is copyright and is licensed for the sole use by Vadim Kudria on 4th October 2009

6352 108th St, , Forest Hills, , 11375

Download at WoweBook.Com

Chapter 10

[2�3]

We wanted our UFOs to offer a response when colliding with the other UFOs. Therefore, we
evaluated the Tag property values for both the geometries. If both were related to an UFO,
we returned true to allow the physics simulator to update the bodies with the impulses
generated by the collision response:

if ((((string) geom1.Tag) == Tag) && (((string) geom2.Tag) == Tag))
 return true;

Using this event, we can determine the collision responses according to the geometries that
collide and their points of contact.

We update our 3D world considering the representation in the physics simulator's 2D
world. The physics simulator uses its geometries to detect collisions, as shown in the
following diagram:

Controlling collision moments using events
The 2D physics simulator fires additional events when a geometry hits another geometry.
Creating additional event handlers allows us to have more control over the responses when
collisions occur.

This material is copyright and is licensed for the sole use by Vadim Kudria on 4th October 2009

6352 108th St, , Forest Hills, , 11375

Download at WoweBook.Com

Applying Artificial Intelligence

[2�4]

After an enabled collision occurs, the impulses applied to each body can make both
geometries to separate. When the geometries are no longer hitting after a collision, the
physics simulator fires the OnSeparation event for the geometries. The OnSeparation
event handler receives two parameters—the two geometries (Geom instances) that are not
colliding anymore:

private void OnSeparation(Geom geom1, Geom geom2)

Hence, we can add a specific behavior for the characters when the collision ends.

The physics simulator uses advanced 2D collision detection algorithms to reduce the work
needed to detect geometries that hit or intersect. There is a broad phase collision detection,
which uses efficient algorithms to detect whether geometries are colliding or not. When
the engine detects a collision in this phase, it fires the OnBroadPhaseCollision on the
physics simulator (the PhysicsSimulator instance). The OnBroadPhaseCollision
event handler receives two parameters—the two geometries (Geom instances) that
are colliding:

private bool OnBroadPhaseCollision(Geom geom1, Geom geom2)

When two geometries collide and we are using the physics simulator's default options, the
code programmed in the OnBroadPhaseCollision event handler method, must evaluate
the geometries that collide and return a bool value indicating whether to let the engine
create an arbiter and go into the narrow phase collision or not. By default, if there is no
event handler programmed for OnBroadPhaseCollision, the engine will go into the
narrow phase collision and it will fire the previously explained OnCollision event on
the geometry.

Sometimes, we do not want to go into the narrow phase collision when some geometries
collide. If we can make this decision without needing to know the list of contacts, we should
program the OnBroadPhaseCollision to evaluate the geometries involved and return
false. Creating the arbiter and going into the narrow phase collision requires a huge
amount of work. Thus, it is important to avoid wasting processing power, especially when
we have dozens of geometries being analyzed for each frame.

If the OnBroadPhaseCollision event handler returns false, the simulator neither
creates the arbiter nor fires the OnCollision event for the geometries involved in this
collision. Therefore, it does not apply impulses to the related bodies.

We can also disable the collision response for a specific geometry by setting
its CollisionResponseEnabled property to false. In this case, the
geometry will not respond to any collisions.

This material is copyright and is licensed for the sole use by Vadim Kudria on 4th October 2009

6352 108th St, , Forest Hills, , 11375

Download at WoweBook.Com

Chapter 10

[2�5]

Working with collision categories
The physics simulator offers the possibility to group the geometries that can collide into
categories. This technique simplifies and optimizes the collision detection process and the
code programmed in the previously explained event handlers.

We can specify one or more collision categories for a geometry (a Geom instance) assigning
a value to its CollisionCategories property. The CollisionCategory enum offers
31 categories in addition to None (do not collide with any geometry) and All (collide with
all categories). By default, its value is CollisionCategory.All.

The CollisionCategories property works in combination with the CollidesWith
property. It specifies the collision categories that will respond to collisions with
this geometry. It also uses the CollisionCategory enum and its default value is
CollisionCategory.All (collide with all categories).

For example, the following lines define that a geometry belongs to the collision category
number 2 and it will respond to collisions with geometries belonging to categories 1, 2,
and 3:

Geom.CollisionCategories = CollisionCategory.Cat2;
Geom.CollidesWith = CollisionCategory.Cat1 & CollisionCategory.Cat2 &
 CollisionCategory.Cat3;

We can also use bitwise operations to indicate that a geometry collides with all categories
but category number 5, as in the following line:

Geom.CollidesWith = CollisionCategory.All & ~CollisionCategory.Cat5;

Using engines to improve collision detection precision
Collision detection is one of the most complex problems related to 3D game development.
We are taking advantage of the power offered by Farseer Physics Engine 2.1, a 2D physics
simulator, to add 2D collision detection capabilities to our 3D world. However, our collision
detection is not as accurate as expected. If we want to improve the collision detection
precision in a 3D world, we would need to emulate a complete 3D world working with three
2 axes physics simulators. This technique adds a lot of complexity to the game. However, it is
not an impossible mission.

This material is copyright and is licensed for the sole use by Vadim Kudria on 4th October 2009

6352 108th St, , Forest Hills, , 11375

Download at WoweBook.Com

Applying Artificial Intelligence

[2�6]

A real 3D collision detection algorithm should perform a broad phase collision detection
using 3D bounding boxes. The following diagram shows the UFO's model represented as
a 3D bounding box:

If the broad phase collision detection detects a hit using the 3D bounding boxes, a narrow
phase collision detection should be performed between these 3D models. The algorithm
should test each polygon in the 3D model located near the hit area, using their current
positions in the 3D world, and detect intersections with all the other polygons in the hit area
belonging to other 3D models. The following diagram shows the polygons that represent the
mesh for the UFO's model:

As these algorithms are very complex and they require important optimizations, we used
the 2D physics simulator to keep thing simple. Using the appropriate geometries, the physics
simulator is able to add specific behaviors when the models collide. However, it requires a lot
of work to create the geometries that accurately represent the model in 2 axes.

Have a go hero – 3D Moon Lander
There is a great opportunity to create a small game remake—a 3D Moon Lander. You already
know how to work with gravity, physics, and collision detection. You also have a 3D spaceship
model. You should be able to create a 3D Moon Lander game in a few hours. You will have to
use everything we have learned so far.

The idea is very simple. A spaceship has to land safely over a specified area. The player can
control the engine (impulses and forces) to beat gravity force and to move the ship in the X
and Y axis. You will use 3D models, but you will just work with the X and Y axis to move the
ship. The mouse must move and rotate the camera to allow the player to watch the scene
from different angles.

This material is copyright and is licensed for the sole use by Vadim Kudria on 4th October 2009

6352 108th St, , Forest Hills, , 11375

Download at WoweBook.Com

Chapter 10

[2�7]

The spaceship does not have to collide with three UFOs that will be flying over the
moon's surface. If this happens, the spaceship will be destroyed. The UFOs can collide
between themselves.

The main goal is to land the spaceship safely with a certain maximum horizontal and
vertical speed (you can check the physics simulator body's LinearVelocity property—a
2D vector). If the speed is too high when touching the landing area, the spaceship will
be destroyed.

If the spaceship touches the rocks (3D spheres represented as circle geometries in the
physics simulator), it explodes.

You can use collision groups (collision categories) to detect whether the spaceship is colliding
with the landing area (the small rocks) or with the big harmful rocks.

Create a version using Balder and Farseer Physics Engine, running in Silverlight. Then,
create another version using an XBAP WPF application. Use the previously explained
object-oriented designs to create the classes for the 3D characters.

The following diagram shows the main characters and a simple diagram to understand the
game's components:

This material is copyright and is licensed for the sole use by Vadim Kudria on 4th October 2009

6352 108th St, , Forest Hills, , 11375

Download at WoweBook.Com

Applying Artificial Intelligence

[2��]

The safe landing zone is composed of six small rocks. You can create a collision category for
these six models and their geometries.

The big and the small rocks are not pulled by gravity. Remember to set their
IgnoreGravity property to false.

The following diagram shows the possible collision groups to understand how to distribute
the geometries related to 3D models in the game:

You can do it. Your project manager has already sold the game to an online gaming community.

Using artificial intelligence in games to control
3D characters
So far, we have been adding physics and collision detection capabilities to the 3D characters
in our 3D scenes. We were able to simulate real-life effects when 3D characters collide.
However, games require some life and action. Players want to play against the computer.
They want to evade an enemy that is threatening their main character. How can we create
intelligent characters capable of chasing or evading other characters?

This material is copyright and is licensed for the sole use by Vadim Kudria on 4th October 2009

6352 108th St, , Forest Hills, , 11375

Download at WoweBook.Com

Chapter 10

[2��]

We can do this by adding artificial intelligence (AI) algorithms to our characters. We have
to add chasing algorithms. If there is a character chasing, there should be another evading.
However, real-life situations are not perfect. If we create perfect algorithms, the computer is
always going to win. Most players are not as smart as Garry Kasparov (the well-known chess
champion). He needed IBM to create a specialized supercomputer, Deep Blue, to beat him.
Besides, he was able to beat many supercomputers. We cannot create unbeatable games.
They would be really boring for the average player.

AI algorithms have to introduce random imperfections according to a
predefined skill level. This way, the player is going to be able to win sometimes.
This imperfection (noise) is one of the most complex topics related to AI. We
have to make the characters wander under certain circumstances, instead of
chasing or evading. We have to introduce random situations.

Time for action – using chasing algorithms
Your project manager wants to test the results offered by many AI algorithms. He wants you
to create an AI algorithm to make one UFO chase the other. However, the algorithm has to
make the UFO wander randomly in the middle of the chase.

Now, we are going to add AI to the game in order to make one UFO pursue the other:

1.	 Stay in the 3DInvadersSilverlight project.

2.	 Open Ufo.cs.cs.

3.	 Add the following enum to define AI states for the Ufo's instances
(after the namespace and before the class definition):

public enum UfoAIState
{
 // Wandering because the other character is too far away
 Wandering,
 // Chasing another character
 Chasing,
 // Evading another character
 Evading,
 // It is not necessary to chase or evade the other character
anymore
 Captured
}

4.	 Add the following field to determine whether the Ufo is going to chase or evade:

public bool Evade = false;

This material is copyright and is licensed for the sole use by Vadim Kudria on 4th October 2009

6352 108th St, , Forest Hills, , 11375

Download at WoweBook.Com

Applying Artificial Intelligence

[2�0]

5.	 Add the following property to hold the enemy's instance:

public Ufo Enemy { get; set; }Ufo Enemy { get; set; }

6.	 Add the following protected variable to hold the AI state:

protected UfoAIState _state = UfoAIState.Wandering;;

7.	 Add the following protected variable to hold a random number generator instance:

protected Random _random = new Random();

8.	 Add the following protected method to make the character randomly wander:

protected void AIWander()
{
 _state = UfoAIState.Wandering;
 switch (_random.Next(1, 4))
 {
 case 1:
 Body.ApplyImpulse(new Vector2(0.5f, 0));
 break;
 case 2:
 Body.ApplyImpulse(new Vector2(-0.5f, 0));
 break;
 case 3:
 Body.ApplyImpulse(new Vector2(0, -0.5f));
 break;
 case 4:
 Body.ApplyImpulse(new Vector2(0, 0.5f));
 break;
 }
}

9.	 Add the following method to make the character pursue an enemy taking into
account its distance in two axes:

protected void AIChase(Ufo enemy)
{
 // We use a parameter in order to leave this procedure prepared
for additional enemies
 _state = UfoAIState.Chasing;
 Vector2 distance = (Body.Position - enemy.Body.Position);
 if ((Math.Abs(distance.X)) > (Math.Abs(distance.Y)))
 {
 if (distance.X > 0)
 Body.ApplyImpulse(new Vector2(-0.5f, 0));
 else
 Body.ApplyImpulse(new Vector2(0.5f, 0));

This material is copyright and is licensed for the sole use by Vadim Kudria on 4th October 2009

6352 108th St, , Forest Hills, , 11375

Download at WoweBook.Com

Chapter 10

[2�1]

 }
 else
 {
 if (distance.Y > 0)
 Body.ApplyImpulse(new Vector2(0, -0.5f));
 else
 Body.ApplyImpulse(new Vector2(0, 0.5f));
 }
}

10.	Add the following empty protected method, as we do not want the character
to evade its hunter yet.

protected void AIEvade(Ufo enemy)
{
}

11.	Add the following protected method to call the previously added method that
uses some AI to chase, evade, or wander:

protected void ApplyAIAlgorithms()
{
 if (_state == UfoAIState.Captured)
 // Nothing to do
 return;
 if (Evade)
 {
 if (_random.Next(1, 5) == 4)
 // A lazy evader (wandering too many times)
 AIWander();
 else
 AIEvade(Enemy);
 }
 else
 {
 if (_random.Next(1, 10) == 4)
 AIWander();
 else
 AIChase(Enemy);
 }
}

12.	Add the following line of code after the line base.Update(); in the Update
method. (We have to apply the AI algorithms to the Ufo instance.):

ApplyAIAlgorithms();;

This material is copyright and is licensed for the sole use by Vadim Kudria on 4th October 2009

6352 108th St, , Forest Hills, , 11375

Download at WoweBook.Com

Applying Artificial Intelligence

[2�2]

13.	Open InvadersGame.cs.cs.

14.	Add the following lines of code before the end of the Initialize method to
define the enemy for each Ufo instance and define its role, setting the value
for their Evade field:

_ufo1.Enemy = _ufo2;
_ufo1.Evade = false;
_ufo2.Enemy = _ufo1;
_ufo2.Evade = true;

15.	Replace the line that sets the initial position for _ufo2 in the Loaded method with
the following one. (We want the UFOs to be nearer.):

_ufo2.SetPosition(8, -4, 0);

16.	Build and run the solution. The default web browser will appear, displaying the two
UFOs. The UFO located on the left will begin pursuing the other UFO, which will be
always wandering. However, the chase will not be perfect, because the hunter is
also going to wander sometimes during the chase. The hunter will finally collide with
the other UFO and it will begin pushing it around the scene, as if they were dancing,
as shown in the following screenshot:

17.	Run the application several times. You will notice that the chase behavior is different
each time, because we have added a random behavior in the AI algorithms.

18.	Use the keys to apply impulses, forces, and torques to the UFO that is being pursued.

19.	Use the keys to apply impulses to both UFOs and watch the hunter's behavior.

This material is copyright and is licensed for the sole use by Vadim Kudria on 4th October 2009

6352 108th St, , Forest Hills, , 11375

Download at WoweBook.Com

Chapter 10

[2�3]

What just happened?
Your project manager is very happy, because you were able to add AI to the game. One UFO
tries to hunt the other and each time the application runs, it offers a different behavior. This
kind of AI is great for a game like the one you are trying to develop.

We added a very simple AI algorithm to one UFO. It can calculate the distance with the other
UFO and pursue it. It has intelligence. However, we also added a random lack of common
sense to this intelligence. Sometimes, the UFO that is chasing the other does not follow the
most convenient path and it adds an impulse to a random direction. We worked with 2 axes
to keep things simple. We can apply a similar technique working with 3 axes.

We worked with impulses because we wanted to let the physics simulator control the speed
and the overall movement of our characters. Thus, gravitational force and everything related
to physics is still working.

Working with states for the characters
While working with AI algorithms, it is very important to use states. Sometimes, we have to
know what the character is doing and why is it doing so. Clear states offer us this information
and they let the algorithm take decisions considering those states.

We defined four possible states for an UFO:

Wandering

Chasing

Evading

Captured

The Update method now calls the ApplyAIAlgorithms procedure. It is the heart of the
UFO's automatic behavior. It makes the UFO wander when a random number generator
returns a certain number. By changing the range for this random number generator, we can
define skill levels. The higher the probability that the UFO wanders during the chase, the
easier it is for the other UFO to escape successfully:

if (_random.Next(1, 10) == 4)
 AIWander();
else
 AIChase(Enemy);

If the random number generator, between 1 and 10, returns a 4, the UFO will wander
without intelligence.

This material is copyright and is licensed for the sole use by Vadim Kudria on 4th October 2009

6352 108th St, , Forest Hills, , 11375

Download at WoweBook.Com

Applying Artificial Intelligence

[2�4]

If it is a number that is not 4, it will apply the necessary impulses to chase the enemy. We
send the Ufo instance to chase as a parameter because it will make it simpler to call this
method many times for different enemies.

Each AI method changes the AI state for the UFO.

Pursuing an enemy
The AIChase method is very easy to understand. It changes the state for the UFO and it
then calculates the distance between its body and the enemy's body:

Vector2 distance = (Body.Position - enemy.Body.Position);

Once it knows the distance, it removes the sign from the distances to take decisions
according to them. It checks the axis on which the enemy is farther away and it tries to
reduce the distance on that axis:

if ((Math.Abs(distance.X)) > (Math.Abs(distance.Y)))

It applies impulses using a fixed number only on one axis at a time.

if (distance.X > 0)
 Body.ApplyImpulse(new Vector2(-0.5f, 0));
else
 Body.ApplyImpulse(new Vector2(0.5f, 0));

In this case, we used numbers in the code to apply the different impulses
and to specify the random situations. It is convenient to use different
variables for each axis. This way, we are able to change their values to
easily create different skill levels.

Generating and controlling random situations
As previously explained, a good AI algorithm has to include random situations. It is good to
see the UFO losing its enemy and then going back to chase it again. It looks realistic, and we
want to create realistic scenes in our games.

During the pursuit, based on fast and accurate distance calculations, under certain random
conditions, we call the AIWander method to apply a random impulse to the UFO. This
impulse could either favor the chase or not favor it.

This material is copyright and is licensed for the sole use by Vadim Kudria on 4th October 2009

6352 108th St, , Forest Hills, , 11375

Download at WoweBook.Com

Chapter 10

[2�5]

We used another random number between 1 and 4 to decide which direction to apply the
impulse in:

switch (_random.Next(1, 4))

Adding more complexity to this method, we can create behaviors that are even more realistic
and offer many skill levels to a game based on pursuits.

Time for action – using evasion algorithms
You created a very good chase algorithm. It is time to make the other UFO evade its hunter.

Now, we are going to add more AI to the game in order to make one UFO run away from
the other:

1.	 Stay in the 3DInvadersSilverlight project.

2.	 Open Ufo.cs.cs.

3.	 Replace the AIEvade method with the following:

protected void AIEvade(Ufo enemy)
{
 Vector2 distance = (Body.Position - enemy.Body.Position);
 if ((Math.Abs(distance.X) < (Width * 2)) ||
 (Math.Abs(distance.Y) < (Height * 2)))
 {
 // The Ufo can wander without problems because the enemy is
 too far
 _state = UfoAIState.Wandering;
 AIWander();
 }
 _state = UfoAIState.Evading;
 if ((Math.Abs(distance.X)) > (Math.Abs(distance.Y)))
 {
 if (distance.X > 0)
 Body.ApplyImpulse(new Vector2(0.2f, 0));
 else
 Body.ApplyImpulse(new Vector2(-0.2f, 0));
 }
 else
 {
 if (distance.Y > 0)
 Body.ApplyImpulse(new Vector2(0, 0.2f));
 else
 Body.ApplyImpulse(new Vector2(0, -0.2f));
 }
}

This material is copyright and is licensed for the sole use by Vadim Kudria on 4th October 2009

6352 108th St, , Forest Hills, , 11375

Download at WoweBook.Com

Applying Artificial Intelligence

[2�6]

4.	 Build and run the solution. The default web browser will appear displaying the two
UFOs. The UFO located on the left will begin pursuing the other UFO, which will be
wandering until the hunter gets near it. Then, the pursuit begins with two intelligent
but also lazy characters, as shown in the following screenshot:

5.	 As the UFO that evades the hunter applies lower impulses, the hunter will finally
collide with the other UFO and it will begin pushing it around the scene.

6.	 Run the application many times. You will notice that the behavior is different each
time one UFO pursues the other, because we have added random behaviors
to all the AI algorithms.

7.	 Use the keys to apply impulses, forces, and torques to the UFO that is being pursued
and watch how the hunter is always trying to chase this UFO, as shown in the
following screenshot:

8.	 Use the keys to apply impulses to both the UFOs and analyze the behavior for both
the hunter and the evader.

This material is copyright and is licensed for the sole use by Vadim Kudria on 4th October 2009

6352 108th St, , Forest Hills, , 11375

Download at WoweBook.Com

Chapter 10

[2�7]

What just happened?
You could create realistic AI algorithms. The chase between the two UFOs behaves randomly.
However, your project manager is adding more tasks to your games. Now, he knows you can
add artificial intelligence combined with physics simulation to any character.

We added another very simple AI algorithm to the other UFO. It can calculate the distance
with the other chasing UFO and evade it. It has intelligence. However, we also added
a random lack of common sense to this intelligence and we used a lower speed for
the impulses. Sometimes, the UFO that is evading the other, does not follow the most
convenient path and it adds an impulse to a random direction.

Evading an enemy
We completed the code for the AIEvade method. It is very easy to understand. It adds some
logic to the previously explained AIChase method. However, it works in a very similar way,
using an inverse logic (evading the enemy instead of chasing it).

It changes the state for the UFO and it then calculates the distance between its body and
the enemy's body. Once it knows the distance of separation, it waits until the enemy is at a
certain distance to begin running away from it:

if ((Math.Abs(distance.X) < (Width * 2)) || (Math.Abs(distance.Y) <
 (Height * 2)))
{
 _state = UfoAIState.Wandering;
 AIWander();
}

If the enemy is near the UFO, it takes the absolute values of the distances to make decisions
according to them. It checks the axis on which the enemy is nearest and it tries to increase
the distance on this axis:

if ((Math.Abs(distance.X)) > (Math.Abs(distance.Y)))

It applies impulses using a fixed number only in one axis at a time. The logic of the code is
inverse of the one found in the AIChase method:

if (distance.X > 0)
 Body.ApplyImpulse(new Vector2(0.2f, 0));
else
 Body.ApplyImpulse(new Vector2(-0.2f, 0));

In this case, we used lower impulses. Hence, if there are no additional impulses
applied, the hunter will always chase this UFO.

This material is copyright and is licensed for the sole use by Vadim Kudria on 4th October 2009

6352 108th St, , Forest Hills, , 11375

Download at WoweBook.Com

Applying Artificial Intelligence

[2��]

The advantages of using an AI engine
We used simple but efficient algorithms to add some AI to the game. However, AI algorithms
can become really complex when working with dozens of characters in an interactive scene.
Therefore, it is very convenient to create an AI framework or an AI engine.

An AI engine can encapsulate all the needs for adding realistic behaviors to our characters.
For example, the chase and evade techniques are nearly the same. They are opposite
behaviors. It is very easy to generalize and encapsulate these algorithms.

While working with complex games, an AI engine is necessary to simplify the addition of skill
levels and to allow the player to tailor the game to their skill level.

Have a go hero – adding complex AI algorithms
Do you remember that your project manager has a Ph.D. in Physics? He has many ideas
about complex AI algorithms and he wants you to add them to the games.

He wants you to create a spaceship character, encapsulating its behavior. UFOs will chase
the spaceships.

You have to improve the existing AI algorithms to work with more than one enemy. The
player has to control one spaceship. A second spaceship is going to be controlled by the
computer, using evasion algorithms.

A dozen of UFOs have to chase the spaceships. You have to change the state of each
spaceship when it is chased by an UFO.

Do not forget to work with forces, impulses, torques, and gravity.

Pop quiz – working with collision detection and artificial intelligence
1. When two 2D geometries hit, the first event fired by the physics simulator instance

before creating the arbiter is:

a. OnBroadPhaseCollision

b. OnNarrowPhaseCollision

c. OnGeometriesCollision

2. Once a collision occurs, the broad phase collision is accepted and the arbiter
created, it calculates the impulses to provide a response to the collision and it fires:

a. The OnSeparation event on the geometry.

b. The OnCollision event on the physics simulator instance.

c. The OnCollision event on the geometry.

This material is copyright and is licensed for the sole use by Vadim Kudria on 4th October 2009

6352 108th St, , Forest Hills, , 11375

Download at WoweBook.Com

Chapter 10

[2��]

3. When geometries stop colliding after they had previously hit, the physics
simulator fires:

a. The OnSeparation event on the geometry.

b. The OnSeparation event on the physics simulator instance.

c. The OnFinishedCollision event on the geometry.

4. You can specify the collision category for a geometry by changing the value of:

a. Its CollisionCategory property.

b. Its CollisionGroup property.

c. Its CollisionCategories property.

5. You can specify the collision categories that will respond to collisions with a
geometry by changing the value of:

a. Its CollidesWithCategories property.

b. Its CollidesWith property.

c. Its CollidesGroupCollection property.

6. If we create perfect AI algorithms:

a. The player is really going to have fun.

b. The computer is always going to win.

c. The player is always going to win.

7. In order to create realistic AI algorithms, you must introduce:

a. Random situations.

b. Perfect behaviors.

c. Repetitive behaviors.

Summary
We have learnt a lot in this chapter about detecting collisions between characters and
adding action to our games. Specifically, we were able to determine whether a collision has
occurred between two characters. We used AI algorithms to simulate realistic behaviors and
to give the player the chance to win. We created chasing, evasion, and wandering algorithms
and we added them to existing 3D characters. We also understood how to generate and
control random situations.

Now that we've learnt to detect collisions and to apply artificial intelligence to win, we're
ready to apply special effects, which is the topic of the next chapter.

This material is copyright and is licensed for the sole use by Vadim Kudria on 4th October 2009

6352 108th St, , Forest Hills, , 11375

Download at WoweBook.Com

This material is copyright and is licensed for the sole use by Vadim Kudria on 4th October 2009

6352 108th St, , Forest Hills, , 11375

Download at WoweBook.Com

11
Applying Special Effects

A 3D game must be attractive. It has to offer amazing effects for the main
characters and in the background. A spaceship has to fly through a meteor
shower. An asteroid belt has to draw waves while a UFO pursues a spaceship.
A missile should make a plane explode. The real world shows us things moving
everywhere. Most of these scenes, however, aren't repetitive sequences. Hence,
we have to combine great designs, artificial intelligence (AI), and advanced
physics to create special effects.

In this chapter, we will add special effects to the scenes. By reading this chapter and
following the exercises we will learn to:

Add many background models, adding life to the game

Control many independent backgrounds

Simulate fluids with movement

Work with multiple concurrent physics simulators

Use advanced physics simulation to create waves

Learn to encapsulate complex effects using classes

Working with 3D characters in the background
So far, we have added physics, collision detection capabilities, life, and action to our 3D
scenes. We were able to simulate real-life effects for the collision of two 3D characters by
adding some artificial intelligence. However, we need to combine this action with additional
effects to create a realistic 3D world. Players want to move the camera while playing so that
they can watch amazing effects. They want to be part of each 3D scene as if it were a real life
situation. How can we create complex and realistic backgrounds capable of adding realistic
behavior to the game?

This material is copyright and is licensed for the sole use by Vadim Kudria on 4th October 2009

6352 108th St, , Forest Hills, , 11375

Download at WoweBook.Com

Applying Special Effects

[302]

We can do this combining everything we have learned so far with a good object-oriented
design. We have to create random situations combined with more advanced physics. We
have to add more 3D characters with movement to the scenes. We must add complexity
to the backgrounds.

We can work with many independent physics engines to work with parallel
worlds. In real-life, there are concurrent and parallel words. We have to
reproduce this behavior in our 3D scenes.

Time for action – adding a transition to start the game
Your project manager does not want the game to start immediately. He wants you to add a
button in order to allow the player to start the game by clicking on it. As you are using Balder,
adding a button is not as simple as expected.

We are going to add a button to the main page, and we are going to change Balder's default
game initialization:

1.	 Stay in the 3DInvadersSilverlight project.

2.	 Expand App.xaml in the Solution Explorer and open App.xaml.cs––the C# code
for App.xaml.

3.	 Comment the following line of code (we are not going to use Balder's services
in this class):

//using Balder.Silverlight.Services;

4.	 Comment the following line of code in the event handler for the Application_
Startup event, after the line this.RootVisual = new MainPage();:

//TargetDevice.Initialize<InvadersGame>();

5.	 Open the XAML code for MainPage.xaml and add the following lines of code after
the line <Grid x:Name="LayoutRoot" Background="White" > (You will see a
button with the title Start the game.):

<!-- A button to start the game -->
<Button x:Name="btnStartGame"
 Content="Start the game!"
 Canvas.Left="200" Canvas.Top="20"
 Width="200" Height="30" Click="btnStartGame_Click">
</Button>

6.	 Now, expand MainPage.xaml in the Solution Explorer and open
MainPage.xaml.cs––the C# code for MainPage.xaml.

This material is copyright and is licensed for the sole use by Vadim Kudria on 4th October 2009

6352 108th St, , Forest Hills, , 11375

Download at WoweBook.Com

Chapter 11

[303]

7.	 Add the following line of code at the beginning (As we are going to use many of
Balder's classes and interfaces.):

using Balder.Silverlight.Services;

8.	 Add the following lines of code to program the event handler for the button's
Click event (this code will initialize the game using Balder's services):

private void btnStartGame_Click(object sender, RoutedEventArgs e)
{
 btnStartGame.Visibility = Visibility.Collapsed;
 TargetDevice.Initialize<InvadersGame>();
}

9.	 Build and run the solution. Click on the Start the game! button and the UFOs will
begin their chase game. The button will make a transition to start the game,
as shown in the following screenshots:

What just happened?
You could use a Start the game! button to start a game using Balder's services. Now, you will
be able to offer the player more control over some parameters before starting the game.

We commented the code that started the game during the application start-up. Then, we
added a button on the main page (MainPage). The code programmed in its Click event
handler initializes the desired Balder.Core.Game subclass (InvadersGame) using just
one line:

TargetDevice.Initialize<InvadersGame>();

This initialization adds a new specific Canvas as another layout root's child, controlled by
Balder to render the 3D scenes. Thus, we had to make some changes to add a simple button
to control this initialization.

This material is copyright and is licensed for the sole use by Vadim Kudria on 4th October 2009

6352 108th St, , Forest Hills, , 11375

Download at WoweBook.Com

Applying Special Effects

[304]

Time for action – creating a low polygon count meteor model
The 3D digital artists are creating models for many aliens. They do not have the time to
create simple models. Hence, they teach you to use Blender and 3D Studio Max to create
simple models with low polygon count. Your project manager wants you to add dozens of
meteors, to the existing chase game. A gravitational force must attract these meteors and
they have to appear in random initial positions in the 3D world.

First, we are going to create a low polygon count meteor using 3D Studio Max. Then, we are
going to add a texture based on a PNG image and export the 3D model to the ASE format,
compatible with Balder. As previously explained, we have to do this in order to export the
ASE format with a bitmap texture definition enveloping the meshes.

We can also use Blender or any other 3D DCC tool to create this model. We have
already learned how to export an ASE format from Blender. Thus, this time, we
are going to learn the necessary steps to do it using 3D Studio Max.

1.	 Start 3D Studio Max and create a new scene.

2.	 Add a sphere with six segments.

3.	 Locate the sphere in the scene's center.

4.	 Use the Uniform Scale tool to resize the low polygon count sphere to 11.329 in
the three axis, as shown in the following screenshot:

This material is copyright and is licensed for the sole use by Vadim Kudria on 4th October 2009

6352 108th St, , Forest Hills, , 11375

Download at WoweBook.Com

Chapter 11

[305]

5.	 Click on the Material Editor button.

6.	 Click on the first material sphere, on the Material Editor window's upper-left corner.

7.	 Click on the small square at the right side of the Diffuse color rectangle, as shown in
the following screenshot:

8.	 Select Bitmap from the list shown in the Material/Map Browser window that
pops up and click on OK.

9.	 Select the PNG file to be used as a texture to envelope the sphere. You can use
Bricks.PNG, previously downloaded from http://www.freefoto.com/. You
just need to add a reference to a bitmap file. Then, click on Open. The Material
Editor preview panel will show a small sphere thumbnail enveloped by the selected
bitmap, as shown in the following screenshot:

This material is copyright and is licensed for the sole use by Vadim Kudria on 4th October 2009

6352 108th St, , Forest Hills, , 11375

Download at WoweBook.Com

Applying Special Effects

[306]

10.	Drag the new material and drop it on the sphere. If you are facing problems,
remember that the 3D digital artist created a similar sphere a few days ago
and he left the meteor.max file in the following folder
(C:\Silverlight3D\Invaders3D\3DModels\METEOR).

11.	Save the file using the name meteor.max in the previously mentioned folder.

12.	Now, you have to export the model to the ASE format with the reference to the
texture. Therefore, select File | Export and choose ASCII Scene Export (*.ASE) on
the Type combo box. Select the aforementioned folder, enter the file name
meteor.ase and click on Save.

13.	Check the following options in the ASCII Export dialog box. (They are unchecked
by default):

Mesh Normals

Mapping Coordinates

Vertex Colors

The dialog box should be similar to the one shown in the following screenshot:

This material is copyright and is licensed for the sole use by Vadim Kudria on 4th October 2009

6352 108th St, , Forest Hills, , 11375

Download at WoweBook.Com

Chapter 11

[307]

14.	Click on OK. Now, the model is available as an ASE 3D model with reference to the
texture. You will have to change the absolute path for the bitmap that defines the
texture in order to allow Balder to load the model in a Silverlight application.

What just happened?
We used a different 3D DCC tool (3D Studio Max) to add a texture based on an image bitmap
and link it to a material to envelope the meshes. Then we converted the 3D model to the ASE
file format, using 3D Studio Max ASCII Export.

Now, we know how to export models enveloped by textures in both Blender
and 3D Studio Max. We do not need 3D digital artists anymore to create simple
models. However, we do need them to create complex models.

Time for action – from 3D Studio Max to Silverlight
Now, we are going to add the meteor's ASE 3D model exported from 3D Studio Max in our
Silverlight game with Balder's help.

1.	 Open the 3DInvadersSilverlight project.

2.	 Right-click on the Assets folder and selectand select Add | Existing item… from the context
menu that appears.

3.	 Go to the folder in which you saved the meteor's 3D model, including the
link to the texture, in the ASE format (C:\Silverlight3D\Invaders3D\
3DModels\METEOR). Select the new ASE file (meteor.ase) and click on Add.

4.	 Click on the ASE file added in the previous step. Change its Build Action property
to Resource.

5.	 Open the code for the recently added ASE file (meteor.ase).

6.	 Search for the line that begins with *BITMAP.

This material is copyright and is licensed for the sole use by Vadim Kudria on 4th October 2009

6352 108th St, , Forest Hills, , 11375

Download at WoweBook.Com

Applying Special Effects

[30�]

7.	 Replace the full path and the file name that follows the *BITMAP (C:\
Silverlight3D\Invaders3D\3DModels\SPACESHIP01\Textures\Bricks.
png) with the desired PNG bitmap, Bricks.png, as shown in the
following screenshot:

What just happened?
The meteor's 3D model is ready to be loaded using Balder. We added it to the assets and we
changed the texture's path.

Time for action – creating a subclass for a 3D meteor
Now, we are going to create a specialized subclass of Actor (Balder.Core.Runtime.
Actor) to define a meteor. Each meteor will be a 3D character.

1.	 Stay in the 3DInvadersSilverlight project.

2.	 Create a new class—Meteor (a subclass of Actor)—using the following declaration:

public class Ufo : Actor

This material is copyright and is licensed for the sole use by Vadim Kudria on 4th October 2009

6352 108th St, , Forest Hills, , 11375

Download at WoweBook.Com

Chapter 11

[30�]

3.	 Add the following lines of code at the beginning (as we are going to use many
classes and interfaces from Balder and Farseer Physics Engine):

using Balder.Core;
using Balder.Core.Geometries;
using Balder.Core.Math;
using Balder.Core.Runtime;
using FarseerGames.FarseerPhysics;
using FarseerGames.FarseerPhysics.Collisions;
using FarseerGames.FarseerPhysics.Dynamics;
using FarseerGames.FarseerPhysics.Factories;
using FarseerGames.FarseerPhysics.Mathematics;

4.	 Add the following protected variables to hold references for the RealTimeGame
and the Scene instances:

protected RealTimeGame _game;
protected Scene _scene;

5.	 Add the following protected variable to hold the meteor's 3D model
(an instance of Mesh):

protected Mesh _mesh;

6.	 Add the following public properties related to the physics simulator:

public Body Body { get; private set; }
public Geom Geom { get; private set; }
public float Radius { get; private set; }
public float Mass { get; private set; }

7.	 Add the following constructor with three parameters, the RealTimeGame,
the Scene, and the and the PhysicsSimulator instances:

public Meteor(RealTimeGame game, Scene scene,
 PhysicsSimulator physicsSimulator)
{
 _game = game;
 _scene = scene;
 Radius = 1f;
 Mass = 1f;
 // Create the body and set its linear drag coefficient
 Body = BodyFactory.Instance.CreateCircleBody(physicsSimulator,
 Radius, Mass);
 Body.LinearDragCoefficient = 0.4f;
 // The meteor is going to rotate forever
 Body.RotationalDragCoefficient = 0f;
 // Create the geometry (Geom) and set its friction coefficient

This material is copyright and is licensed for the sole use by Vadim Kudria on 4th October 2009

6352 108th St, , Forest Hills, , 11375

Download at WoweBook.Com

Applying Special Effects

[310]

 Geom = GeomFactory.Instance.CreateCircleGeom(physicsSimulator,
 Body, Radius, 6);
 Geom.FrictionCoefficient = 0.2f;
 // Add a collision event handler
 Geom.OnCollision += OnCollision;
}

8.	 Override the LoadContent method to load the meteor's mesh, set its initial
position and assign it to the Body instance::

public override void LoadContent()
{
 base.LoadContent();
 _mesh = _game.ContentManager.Load<Mesh>("meteor.ase");
 _scene.AddNode(_mesh);
 _mesh.Position.X = 0;
 _mesh.Position.Y = 0;
 _mesh.Position.Z = 0;
 Body.Position = new Vector2(_mesh.Position.X, _mesh.Position.Y);
}

9.	 Override the Update method to update the meteor's position copying the values
for the associated Body's position and to rotate it:

public override void Update()
{
 base.Update();
 _mesh.Position.X = Body.Position.X;
 _mesh.Position.Y = Body.Position.Y;
 _mesh.World = Balder.Core.Math.Matrix.CreateRotationY(
 FarseerGames.FarseerPhysics.Mathematics.MathHelper.
 ToDegrees(Body.Rotation));
}

10.	Add the following public method to change the position for both the mesh in the
3D world and the 2D body representing the circle for the meteor in the 2D physics
engine world:

public void SetPosition(float x, float y, float z)
{
 _mesh.Position.X = x;
 _mesh.Position.Y = y;
 _mesh.Position.Z = z;
 Body.Position = new Vector2(x, y);
}

This material is copyright and is licensed for the sole use by Vadim Kudria on 4th October 2009

6352 108th St, , Forest Hills, , 11375

Download at WoweBook.Com

Chapter 11

[311]

11.	Add the following private method to accept collisions between meteors:

private bool OnCollision(Geom geom1, Geom geom2, ContactList
 contactList)
{
 // We're just working with meteors
 return true;
}

What just happened?
Now, we have a subclass of Actor that loads the meteor's model and updates its position
according to an associated physics simulator.

This class is very similar to the Ufo class. However, in this case, we are working with a
circular body and a circular geometry.

We created the body associated with the 3D model using the CreateCircleBody function,
as shown in the following line:

Body = BodyFactory.Instance.CreateCircleBody(physicsSimulator,
 Radius, Mass);

As we want the meteor to rotate forever, we assigned a 0 to the associated body's rotational
drag coefficient:

Body.RotationalDragCoefficient = 0f;

Time for action – creating and controlling a meteor rain
Now, we are going to add another physics simulator with a different gravitational force to
control dozens of meteors and to create the illusion of a meteors rain.

1.	 Stay in the 3DInvadersSilverlight project,.

2.	 Open InvadersGame.cs.cs for the C# code.

3.	 Add the following private variable in the public class InvadersGame :
RealTimeGame, to hold another PhysicsSimulator (FarseerGames.
FarseerPhysics.PhysicsSimulator) instance:

private PhysicsSimulator _meteorsPhysicsSimulator;

4.	 Add the following lines of code at the beginning of the class definition (as we are
going to use the System.Collections.Generic.List.List class):

using System.Collections.Generic;

This material is copyright and is licensed for the sole use by Vadim Kudria on 4th October 2009

6352 108th St, , Forest Hills, , 11375

Download at WoweBook.Com

Applying Special Effects

[312]

5.	 Add the following private variables to hold the list of meteors, the number of
meteors to create and a random number generator:

protected List<Meteor> _meteors;
// A random generator
protected Random _random = new Random();
// The number of meteors to create
private int _meteorsNumber = 30;

6.	 Add the following private method to initialize the meteors physics simulator,
specifying a specific desired gravitational force as a 2D vector parameter:

private void InitializeMeteorsPhysicsSimulator()
{
 _meteorsPhysicsSimulator = new PhysicsSimulator(new
 Vector2(0.15f, 0.35f));
 //50 pixels = 1 meter
 ConvertUnits.SetDisplayUnitToSimUnitRatio(50);
}

7.	 Add the following private method to create and add a certain number of
Meteor instances to a list and to add these new actors to the scene:

private void AddMeteors()
{
 _meteors = new List<Meteor>(_meteorsNumber);
 for (int i = 0; i < _meteorsNumber; i++)
 {
 Meteor meteor = new Meteor(this, Scene,
 _meteorsPhysicsSimulator);
 _meteors.Add(meteor);
 AddActor(meteor);
 }
}

8.	 Add the following lines of code before the end of the Initialize method:

InitializeMeteorsPhysicsSimulator();
AddMeteors();

9.	 Add the following line of code before the end of the UpdateWithTime method:

_meteorsPhysicsSimulator.Update((float)_elapsedTime.TotalSeconds);

10.	Add the following private method to define initial random locations for each
meteor in the list and to apply a torque to let them roll forever while they move:

private void SetMeteorsPositions()
{
 for (int i = 0; i < _meteorsNumber; i++)

This material is copyright and is licensed for the sole use by Vadim Kudria on 4th October 2009

6352 108th St, , Forest Hills, , 11375

Download at WoweBook.Com

Chapter 11

[313]

 {
 _meteors[i].SetPosition(_random.Next(-20, 10), _random.Next(-
 20, 10), _random.Next(-20, 30));
 _meteors[i].Body.ApplyTorque(1.5f);
 }
}

11.	Add the following lines of code before the end of the overridden Loaded method
to set the initial positions and torques for the meteors:

SetMeteorsPositions();

12.	Build and run the solution. Click on the Start the game! button and the UFOs will
begin their chase game while 30 meteors rain. The models representing the meteors
will fall and rotate according to the gravitational force specified in the new physics
simulator and the torque applied to them, as shown in the following screenshot:

This material is copyright and is licensed for the sole use by Vadim Kudria on 4th October 2009

6352 108th St, , Forest Hills, , 11375

Download at WoweBook.Com

Applying Special Effects

[314]

13.	Click on the web browser's viewport to activate its focus. Move the mouse left and
right. You will see the entire scene, including the raining meteors, rotating as the
mouse is moved. Use the cursor keys to control the camera. Remember that you
can also use your gamepad to control the camera. While rotating the camera, the
meteors and the UFOs will go on moving, as shown in the following screenshot:

What just happened?
You could add an exciting background to the game. Now, there are meteors raining in the 3D
world. Your project manager is astonished with your work.

Using another instance of the 2D physics engine, you could simulate real-life physics for 30
meteors. Now, the game has an attractive 3D background that offers a realistic rain effect.

Advantages of using multiple physics engines
We added a new physics simulator instance to control the 30 meteors' positions and
rotations. This way, we could use a different gravitational force than the one applied to the
UFOs. In this case, we used a gravitational force that attracts the bodies to positive X and Y
values (X = 0.15 and Y = 035):

_meteorsPhysicsSimulator = new PhysicsSimulator(new Vector2(0.15f,
 0.35f));

This material is copyright and is licensed for the sole use by Vadim Kudria on 4th October 2009

6352 108th St, , Forest Hills, , 11375

Download at WoweBook.Com

Chapter 11

[315]

We were not interested in collision detections between the meteors and the
UFOs. Thus, we could use two independent physics simulators without problems.

The AddMeteors method creates the number of Meteor instances defined in the
_meteorsNumber private variable and adds them to the _meteors list. We already
explained the importance of lists in the control of multiple models during the game. Besides,
it adds the Meteor as a new actor for the scene using the AddActor method:

for (int i = 0; i < _meteorsNumber; i++)
{
 Meteor meteor = new Meteor(this, Scene, _meteorsPhysicsSimulator);
 _meteors.Add(meteor);
 AddActor(meteor);
}

The new independent physics simulator (_meteorsPhysicsSimulator) is going to take
control of these actors during the updates. The following line is necessary to update this
independent engine in the UpdateWithTime method:

_meteorsPhysicsSimulator.Update((float)_elapsedTime.TotalSeconds);

The SetMeteorsPosition method defines the initial positions for the meteors using a
random number generator with boundaries. This way, we introduced random backgrounds.
Each time the player runs the game, the background will be slightly different.

Time for action – simulating fluids with movement
Your project manager is amazed with the shower of dozens of meteors in the background.
However, he wants to add a more realistic background.

He shows you a water simulation sample using Farseer Physics Engine. He wants you to
use the wave simulation capabilities offered by this powerful physics simulator to create
an asteroids belt.

This material is copyright and is licensed for the sole use by Vadim Kudria on 4th October 2009

6352 108th St, , Forest Hills, , 11375

Download at WoweBook.Com

Applying Special Effects

[316]

First, we are going to create a new class to define a fluid model capable of setting the initial
parameters and updating a wave controller provided by the physics simulator.

We will use Farseer Physics Engine's wave controller to add real-time fluids withFarseer Physics Engine's wave controller to add real-time fluids with
movement for our games. The following code is based on the Silverlight water
sample offered with the physics simulator. However, in this case, we are not
interested in collision detection capabilities because we are going to create an
asteroid belt in the background.

1.	 Stay in the 3DInvadersSilverlight project.

2.	 Create a new class—FluidModel.

3.	 Replace the default using declarations with the following lines of code (we
are going to use many classes and interfaces from Farseer Physics Engine):

using System;
using FarseerGames.FarseerPhysics;
using FarseerGames.FarseerPhysics.Controllers;
using FarseerGames.FarseerPhysics.Mathematics;

4.	 Add the following public property to hold the WaveController instance:

public WaveController WaveController { get; private set; }

5.	 Add the following public properties to define the wave generator parameters:

public float WaveGeneratorMax { get; set; }
public float WaveGeneratorMin { get; set; }
public float WaveGeneratorStep { get; set; }

6.	 Add the following constructor without parameters:

public FluidModel()
{
 // Assign the initial values for the wave generator parameters
 WaveGeneratorMax = 0.20f;
 WaveGeneratorMin = -0.15f;
 WaveGeneratorStep = 0.025f;
}

7.	 Add the Initialize method to create and configure the WaveController
instance using the PhysicsSimulator instance received as a parameter:

public void Initialize(PhysicsSimulator physicsSimulator)
{
 // The wave controller controls how the waves move
 // It defines how big and how fast is the wave

This material is copyright and is licensed for the sole use by Vadim Kudria on 4th October 2009

6352 108th St, , Forest Hills, , 11375

Download at WoweBook.Com

Chapter 11

[317]

 // It is represented as set of points equally spaced
 horizontally along the width of the wave.
 WaveController = new WaveController();
 WaveController.Position = ConvertUnits.ToSimUnits(-20, 5);
 WaveController.Width = ConvertUnits.ToSimUnits(30);
 WaveController.Height = ConvertUnits.ToSimUnits(3);
 // The number of vertices that make up the surface of the wave
 WaveController.NodeCount = 40;
 // Determines how quickly the wave will dissipate
 WaveController.DampingCoefficient = .95f;
 // Establishes how fast the wave algorithm runs (in seconds)
 WaveController.Frequency = .16f;
 //The wave generator parameters simply move an end-point of the
 WaveController.WaveGeneratorMax = WaveGeneratorMax;
 WaveController.WaveGeneratorMin = WaveGeneratorMin;
 WaveController.WaveGeneratorStep = WaveGeneratorStep;
 WaveController.Initialize();
}

8.	 Add the Update method to update the wave controller and
update the points that draw the waves shapes:

public void Update(TimeSpan elapsedTime)
{
 WaveController.Update((float) elapsedTime.TotalSeconds);
}

What just happened?
We now have a FluidModel class that creates, configures, and updates a WaveController
instance according to an associated physics simulator. As we are going to work with different
gravitational forces, we are going to use another independent physics simulator to work with
the FluidModel instance in our game.

Simulating waves
The wave controller offers many parameters to represent a set of points equally spaced
horizontally along the width of one or many waves. The waves can be:

Big or small

Fast or slow

Tall or short

This material is copyright and is licensed for the sole use by Vadim Kudria on 4th October 2009

6352 108th St, , Forest Hills, , 11375

Download at WoweBook.Com

Applying Special Effects

[31�]

The wave controller's parameters allow us to determine the number of vertices that make
up the surface of the wave assigning a value to its NodeCount property. In this case, we
are going to create waves with 40 nodes and each point is going to be represented by
an asteroid:

WaveController.NodeCount = 40;

The Initialize method defines the position, width, height and other parameters for the
wave controller. We have to convert our position values to the simulator values. Thus, we use
the ConvertUnits.ToSimUnits method. For example, this line defines the 2D Vector for
the wave's upper left corner (X = -20 and Y = 5):

WaveController.Position = ConvertUnits.ToSimUnits(-20, 5);

The best way to understand each parameter is changing its values and running
the example using these new values. Using a wave controller we can create
amazing fluids with movement.

Time for action – creating a subclass for a complex
asteroid belt

Now, we are going to create a specialized subclass of Actor (Balder.Core.Runtime.
Actor) to load, create an update a fluid with waves. This class will enable us to encapsulate
an independent asteroid belt and add it to the game. In this case, it is a 3D character
composed of many models (many instances of Mesh).

1.	 Stay in the 3DInvadersSilverlight project.

2.	 Create a new class, FluidWithWaves (a subclass of Actor) using the
following declaration:

public class FluidWithWaves : Actor

3.	 Replace the default using declarations with the following lines of code (we are going
to use many classes and interfaces from Balder, Farseer Physics Engine and lists):

using System.Windows;
using System.Windows.Controls;
using System.Windows.Media;
using System.Windows.Shapes;
// BALDER
using Balder.Core;
using Balder.Core.Geometries;
using Balder.Core.Math;
using Balder.Core.Runtime;

This material is copyright and is licensed for the sole use by Vadim Kudria on 4th October 2009

6352 108th St, , Forest Hills, , 11375

Download at WoweBook.Com

Chapter 11

[31�]

// FARSEER PHYSICS
using FarseerGames.FarseerPhysics;
using FarseerGames.FarseerPhysics.Collisions;
using FarseerGames.FarseerPhysics.Dynamics;
using FarseerGames.FarseerPhysics.Factories;
using FarseerGames.FarseerPhysics.Mathematics;
// LISTS
using System.Collections.Generic;

4.	 Add the following protected variables to hold references for the RealTimeGame
and the Scene instances:

protected RealTimeGame _game;
protected Scene _scene;

5.	 Add the following private variables to hold the associated FluidModel instance,
the collection of points that define the wave and the list of meshes (asteroids):

private FluidModel _fluidModel;
private PointCollection _points;
private List<Mesh> _meshList;

6.	 Add the following constructor with three parameters—the RealTimeGame,
the Scene, and the PhysicsSimulator instances:

public FluidWithWaves(RealTimeGame game, Scene scene,
 PhysicsSimulator physicsSimulator)
{
 _game = game;
 _scene = scene;
 _fluidModel = new FluidModel();
 _fluidModel.Initialize(physicsSimulator);
 int count = _fluidModel.WaveController.NodeCount;
 _points = new PointCollection();
 for (int i = 0; i < count; i++)
 {
 _points.Add(new Point(ConvertUnits.ToDisplayUnits
 (_fluidModel.WaveController.XPosition[i]),
 ConvertUnits.ToDisplayUnits
 (_fluidModel.WaveController.CurrentWave[i])));
 }
}

This material is copyright and is licensed for the sole use by Vadim Kudria on 4th October 2009

6352 108th St, , Forest Hills, , 11375

Download at WoweBook.Com

Applying Special Effects

[320]

7.	 Override the LoadContent method to load the meteors' meshes and set their
initial positions according to the points that define the wave:

public override void LoadContent()
{
 base.LoadContent();
 _meshList = new List<Mesh>(_points.Count);
 for (int i = 0; i < _points.Count; i++)
 {
 Mesh mesh = _game.ContentManager.Load<Mesh>("meteor.ase");
 _meshList.Add(mesh);
 _scene.AddNode(mesh);
 mesh.Position.X = (float) _points[i].X;
 mesh.Position.Y = (float) _points[i].Y;
 mesh.Position.Z = 0;
 }
}

8.	 Override the Update method to update the fluid model and then change the
meteors' positions taking into account the points that define the wave according
to the elapsed time:

public override void Update()
{
 base.Update();
 // Update the fluid model with the real-time game elapsed time
 _fluidModel.Update(_game.ElapsedTime);
 _points.Clear();
 for (int i = 0; i < _fluidModel.WaveController.NodeCount; i++)
 {
 Point p = new Point(ConvertUnits.ToDisplayUnits
 (_fluidModel.WaveController.XPosition[i]),
 ConvertUnits.ToDisplayUnits
 (_fluidModel.WaveController.CurrentWave[i])
 +ConvertUnits.ToDisplayUnits
 (_fluidModel.WaveController.Position.Y));
 _points.Add(p);
 }
 // Update the positions for the meshes that define the wave's
 points
 for (int i = 0; i < _points.Count; i++)
 {
 _meshList[i].Position.X = (float)_points[i].X;
 _meshList[i].Position.Y = (float)_points[i].Y;
 }
}

This material is copyright and is licensed for the sole use by Vadim Kudria on 4th October 2009

6352 108th St, , Forest Hills, , 11375

Download at WoweBook.Com

Chapter 11

[321]

What just happened?
Now, we have a subclass of Actor that loads the models of the meteors and updates their
position according to the fluids with movement simulation. It will load as many meteors as
points used to draw the waves.

Creating subclasses of Actor and overriding its methods, we can encapsulate the
complexities of the physics involved in complex backgrounds like our asteroid belt.

Using an Actor to represent a wave in the background
The most appropriate way to represent a 3D background component in Balder is by creating
a new subclass of the Actor class. By doing this, we can keep the main game's code easy to
understand and maintain.

The constructor creates a FluidModel instance and initializes it. It creates
PointCollection (_points) that will hold the 2D position for each point that
composes the wave:

for (int i = 0; i < count; i++)
{
 _points.Add(new Point(ConvertUnits.ToDisplayUnits
 (_fluidModel.WaveController.XPosition[i]),
 ConvertUnits.ToDisplayUnits
 (_fluidModel.WaveController.CurrentWave[i])));
 }
}

Then, the Update method calls the Update method for the fluid model in order to renew
the positions for the points that define the wave:

_fluidModel.Update(_game.ElapsedTime);

Once the fluid model updates the points, it creates the new collection of points taking into
account the new positions. Then, it is time to update the meshes' locations according to
these points that define the wave:

for (int i = 0; i < _points.Count; i++)
{
 _meshList[i].Position.X = (float)_points[i].X;
 _meshList[i].Position.Y = (float)_points[i].Y;
}

This technique does not offer the best performance. However, in this case, we
are interested in a clear code. We can improve the game's performance later.

This material is copyright and is licensed for the sole use by Vadim Kudria on 4th October 2009

6352 108th St, , Forest Hills, , 11375

Download at WoweBook.Com

Applying Special Effects

[322]

Time for action – adding an asteroid belt background
to the game

Now, we are going to add another physics simulator with a different gravitational force to
control the fluid model as an actor, with a predefined behavior.

1.	 Stay in the 3DInvadersSilverlight project.

2.	 Open InvadersGame.cs.cs.

3.	 Add the following private variable in the public class InvadersGame
: RealTimeGame, to hold another PhysicsSimulator (FarseerGames.
FarseerPhysics.PhysicsSimulator) instance:

private PhysicsSimulator _fluidPhysicsSimulator;

4.	 Add the following private variable to hold the newto hold the new FluidWithWaves instance:

private FluidWithWaves _fluidWithWaves;

5.	 Add the following private method to initialize the fluids physics simulator,
specifying a specific desired gravitational force as a 2D vector parameter:

private void InitializeFluidPhysicsSimulator()
{
 fluidPhysicsSimulator = new PhysicsSimulator(new Vector2(0,4f));
 //50 pixels = 1 meter
 ConvertUnits.SetDisplayUnitToSimUnitRatio(50);
}

6.	 Add the following lines of code before the end of the Initialize method:

InitializeFluidPhysicsSimulator();
_fluidWithWaves = new FluidWithWaves(this, Scene,
 _fluidPhysicsSimulator);
AddActor(_fluidWithWaves);

7.	 Add the following line of code before the end of the UpdateWithTime method:

_fluidPhysicsSimulator.Update((float)_elapsedTime.TotalSeconds);

8.	 Build and run the solution. Click on the Start the game! button. The UFOs
will begin their chase game while 30 meteors rain. An asteroid belt will
create waves in the background, as shown in the following screenshot:

This material is copyright and is licensed for the sole use by Vadim Kudria on 4th October 2009

6352 108th St, , Forest Hills, , 11375

Download at WoweBook.Com

Chapter 11

[323]

9.	 Click on the web browser's viewport to activate its focus. Move the mouse left
and right. You will see the entire scene, including the asteroid belt, rotating as
the mouse is moved. Use the cursor movement keys to control the camera.
The 3D background will go on moving, as shown in the following screenshot:

This material is copyright and is licensed for the sole use by Vadim Kudria on 4th October 2009

6352 108th St, , Forest Hills, , 11375

Download at WoweBook.Com

Applying Special Effects

[324]

What just happened?
You can add an even more exciting background to the game. Now, there is an asteroid belt
creating waves in the 3D scene. You can create any moving fluid model by changing just a
few parameters to define a different behavior for the wave controller.

Using a third instance of the 2D physics engine, you could simulate moving fluid models
for 40 asteroids (actually represented by meteors). Now, the game has 3D waves as a
background offering a realistic effect.

Working with encapsulated physics controllers
We added a new physics simulator instance to manage the wave controller. This way, we
could use a gravitational force that was different to the ones applied to the UFOs and
the raining meteors.

Also, we used an Actor subclass to encapsulate the complexities behind the wave effect.
We just added the new actor to the game associated to the new physics simulator and we
followed the necessary steps to update it.

We can change parameters and we can use different backgrounds
according to the game's level or stage.

The FluidWithWaves class creates, loads, and updates the asteroids to follow the wave
that is created and updated by the FluidModel instance.

The FluidModel class creates, configures, and updates a WaveController instance.

The WaveController class works with the associated PhysicsSimulator instance to
define the points that draw a wave according to many parameters, physics properties, and
the elapsed time.

Have a go hero – adding dissolutions, fire, smoke, and explosions
The new backgrounds are amazing. However, a great game needs more special effects and
even more advanced physics.

The meteors should become smaller as they fall. Add dissolutions using formulas to calculate
the meteor's erosion. It is not as difficult as it seems to be. You just have to scale down the
meshes. Add a random behavior to this erosion.

Add an explosion when the UFOs collide. It should work as a very big wave. Then, create
additional models to add smoke and fire. Use the wave controller to add amazing effects
to the collision.

This material is copyright and is licensed for the sole use by Vadim Kudria on 4th October 2009

6352 108th St, , Forest Hills, , 11375

Download at WoweBook.Com

Chapter 11

[325]

Pop quiz – working with special effects
1. A single game can use:

a. Only one PhysicsSimulator instance.instance.

b. Up to two PhysicsSimulator instances.

c. Many PhysicsSimulator instances.

2. A WaveController's NodeCount property defines:

a. The number of waves that are going to be drawn.

b. The number of vertices that make up the surface of the wave.

c. The number of vertices that make up the surface of an ellipse.

3. Using a WaveController, we can change the parameters to make the
waves appear:

a. Big or small; fast or slow, and tall or short.

b. Big or small and fast or slow.

c. Big or small; fast or quick, and tall or short.

4. A subclass of Actor:

a. Cannot encapsulate many background characters.

b. Can encapsulate just one background character per instance.

c. Can encapsulate many background characters.

5. Many independent PhysicsSimulator instances:

a. Share a global gravitational force.

b. Share a global gravitational force matrix.

c. Define independent gravitational forces.

Summary
We learned a lot in this chapter about adding special effects to our games. Specifically,
we were able to add characters raining in the background with an independent behavior.
We used physics controller to emulate fluids with movement and we were able to work
with different gravitational forces. We created 3D backgrounds with many layers. We also
understood the importance of encapsulating complex physics using many classes.

Now that we've learned to apply special effects, we're ready to control statistics and scoring,
which is the topic of the next chapter.

This material is copyright and is licensed for the sole use by Vadim Kudria on 4th October 2009

6352 108th St, , Forest Hills, , 11375

Download at WoweBook.Com

This material is copyright and is licensed for the sole use by Vadim Kudria on 4th October 2009

6352 108th St, , Forest Hills, , 11375

Download at WoweBook.Com

12
Controlling Statistics and Scoring

A game must provide information to its players. It has to offer statistics for the
main characters and for the enemies. This information is vital for informing the
players' decisions. On the one hand, if the player has three remaining lives, he
can take risks. On the other hand, if he has just one remaining life, he cannot.
Therefore, we have to use great designs for the gauges that show information
to the player. At the same time, the information must be accurate because the
player is going to take important decisions using it.

In this chapter we will add statistics and scoring to the game. By reading it and following the
exercises we will learn to:

Use special fonts to display information

Learn to create different kinds of gauges to display information

Work with multiple gauges in 3D scenes

Learn to encapsulate complex gauges using classes

Update multiple gauges in a game

Control the layout for the gauges

Showing gauges and scorecards
So far, we have added special effects, fluids with movement, real-life backgrounds, and
advanced physics to our 3D games. We created 3D backgrounds with many layers and we
were able to add random situations. However, we need to provide some information about
the game in the scene. Players always want to know the score, their remaining lives, the
potential bonus, the lap number, and so on. They want some feedback about their situation
in the game. How can we add nice gauges capable of providing information as text and
graphics to the players?

This material is copyright and is licensed for the sole use by Vadim Kudria on 4th October 2009

6352 108th St, , Forest Hills, , 11375

Download at WoweBook.Com

Controlling Statistics and Scoring

[32�]

We can do this by combining everything that we have learnt so far with some new
techniques. We have to create attractive gauges, and we have to show them in the
3D viewports. We have to add information about the game to the scenes.

Time for action – using special fonts
Your project manager wants you to add the following four gauges showing statistics about
one of the UFOs in the pursuit game:

A score counter

A bonus counter

A remaining lives gauge

A fuel gauge

He wants you to display them aligned as shown in the following screenshot:

However, he does not like the standard fonts provided by Windows. He wants you to use a
special font. You have to work with the 3D digital artists to find the most appropriate font
for the gauges.

This material is copyright and is licensed for the sole use by Vadim Kudria on 4th October 2009

6352 108th St, , Forest Hills, , 11375

Download at WoweBook.Com

Chapter 12

[32�]

Now, we are going to download an attractive free font file and embed it into the project
using Expression Blend:

1.	 Download an attractive font to use in the gauges' labels. You can download free
fonts from http://www.fontfreak.com. We are going to use the 3t font,
downloaded from http://www.fontfreak.com/charactermaps/no/3T.htm.
Its website preview is shown in the following screenshot:

The 3t font was created by 2TheLeft typefaces (http://www.fontfreak.
com/authors/2theleft.htm). It does not offer the complete Unicode
character set. It just provides 67 out of 128 Basic Latin characters and 4 out
of 128 Latin-1 Supplement characters. However, we are going to use the font
to display a few words in English, and some numbers. Thus, we do not need full
Unicode support.

2.	 Save the uncompressed file (3T______.TTF) in a new folder
(C:\Silverlight3D\Invaders3D\Fonts). Then, copy this file to the Fonts
folder (by default, C:\Windows\Fonts or C:\WINNT\Fonts) in order to install
the font on Windows.

This material is copyright and is licensed for the sole use by Vadim Kudria on 4th October 2009

6352 108th St, , Forest Hills, , 11375

Download at WoweBook.Com

Controlling Statistics and Scoring

[330]

3.	 Open the projectproject 3DInvadersSilverlight in Expression Blend.

4.	 Select Tools | Font Manager…. A new dialog box will appear. It will allow youA new dialog box will appear. It will allow you
to choose the fonts to embed in the application.

5.	 Activate the checkbox on the left of the recently installed font (3t).

6.	 Activate the checkboxes Uppercase, Numbers, and and Punctuation, as shown in the
following picture:

7.	 Save the changes and open the project in Visual Studio or Visual C#.

This material is copyright and is licensed for the sole use by Vadim Kudria on 4th October 2009

6352 108th St, , Forest Hills, , 11375

Download at WoweBook.Com

Chapter 12

[331]

8.	 Expand the new folder (Fonts) and select the new file (3T______.TTF)
in the Solution Explorer. Its Build Action property will show the value
as BlendEmbeddedFont, as shown in the following screenshot:

What just happened?
You found an amazing font to display the gauges's labels. Now, you can dazzle the players
using a score label like the one shown in the following picture:

This material is copyright and is licensed for the sole use by Vadim Kudria on 4th October 2009

6352 108th St, , Forest Hills, , 11375

Download at WoweBook.Com

Controlling Statistics and Scoring

[332]

Embedding fonts in the project
The 3t font is great for the game. However, as our game is a Silverlight application, there
is not going to be an installation program for it. Hence, we cannot install the font in the
player's operating system. The players will access the game using their web browser with the
appropriate Silverlight plug-in installed. Therefore, if we do not use a standard font available
in any Windows version, we have to embed the additional font in the project. This way, we
will be sure that all the players will be able to see the text with the desired font.

First, we installed the font in our development operating system. Then, we used Expression
Blend's Font Manager to choose the font to embed in the project. We selected specific
subsets because we are not going to use all the font's characters. This way, we do not
include unnecessary characters in the embedded resource.

We can use any compatible font in our Silverlight applications embedding their
necessary character subsets. For this reason, we do not have to be limited
to the standard fonts included in most Windows versions. Nevertheless, it
is always convenient to embed limited character subsets, to avoid creating
Silverlight applications (the XAP output file) with a huge size.

Time for action – creating a score gauge showing text
Now, we are going to create a new UserControl to display a score gauge. In this case, we
will use 2D gauges. Later, we will have to use this UserControl in the 3D scene.

1.	 Open the projectproject 3DInvadersSilverlight in Expression Blend.

2.	 Click on 3DInvadersSilverlight in the Projects palette.

3.	 Select File | New Item… from the main menu. A dialog box will appear.

4.	 Select UserControl in the list, enter the name ScoreGauge for this
new UserControl and click on OK. A new item will be added to the
3DInvadersSilverlight project, named ScoreGauge.xaml.xaml.

5.	 Change the LayoutRoot Grid size properties:

Width: 300

Height: 49

6.	 Draw a rectangle aligned to the LayoutRoot Grid's borders.

This material is copyright and is licensed for the sole use by Vadim Kudria on 4th October 2009

6352 108th St, , Forest Hills, , 11375

Download at WoweBook.Com

Chapter 12

[333]

7.	 Click on Brushes | Fill | Gradient brush | Linear gradient and define both the
desired start and stop colors. Then, apply a drop shadow effect. The rectangle will
display a nice background linear gradient, as shown in the following screenshot:

In order to apply a drop shadow effect, expand Appearance,
click on the New button on the right side of Effect and select
DropShadowEffect from the list that appears in a new dialog
box, as shown in the following picture:

8.	 Add a TextBlock control and set its name to tbkLabel. Set its Text property
to SCORE.

In order to add a TextBlock control, click on Asset Library at the bottom
of the Toolbox. Click on the Controls tab and select TextBlock. Then, draw the
rectangle for the desired TextBlock area.

This material is copyright and is licensed for the sole use by Vadim Kudria on 4th October 2009

6352 108th St, , Forest Hills, , 11375

Download at WoweBook.Com

Controlling Statistics and Scoring

[334]

9.	 Click on Brushes | Foreground | Gradient brush | Linear gradient and define
both the start and the stop colors. The text will use a linear gradient as a brush.

10.	Expand Text and activate the Font tab. Select the 3t font in the combo box list. The
list will display the icon Font added to the project at the right side of this item,
as shown in the following screenshot:

11.	Select 48 for FontSize. Activate thectivate the Paragraph tab and select and select Left for TextAlignment.
Then, apply a drop shadow effect.

12.	Expand Layout and set the following values for its Margin related properties:

Left: 8

Right: 140

Up: 0

Bottom: 8

13.	Add a TextBlock control and set its name to tbkScore. Set its Text property to 0.

14.	Click on Brushes | Foreground | Gradient brush | Linear gradient and define
both the start and the stop colors. The text will use a linear gradient as a brush.

15.	Expand Text and activate the Font tab. Select the 3t font in the combo box list.

16.	Select 48 for FontSize. Activate thectivate the Paragraph tab and select and select Right for
TextAlignment. Then, apply a drop shadow effect.Then, apply a drop shadow effect.

17.	Expand Layout and set the following values for its Margin related properties:

Left: 140

Right: 8

Up: 0

Bottom: 8

This material is copyright and is licensed for the sole use by Vadim Kudria on 4th October 2009

6352 108th St, , Forest Hills, , 11375

Download at WoweBook.Com

Chapter 12

[335]

18.	Make the necessary changes in the gradient's colors to make the text visible while
the background remains attractive, as shown in the following screenshot:

What just happened?
You created a UserControl to display an attractive score gauge using Expression Blend's
visual design features.

Using Expression Blend to create 2D gauges
We used a linear gradient brush to fill the background rectangle and the text blocks. Besides,
we added a drop shadow effect. We can create the same effects writing XAML or C# code.
For example, the following XAML lines define the TextBlock displaying SCORE and apply
the desired brush and effects:

<TextBlock x:Name="tbkLabel" Margin="8,0,140,8" Text="SCORE"
 TextWrapping="Wrap" FontFamily="./Fonts/Fonts.zip#3t"
 FontSize="48">
 <TextBlock.Effect>
 <DropShadowEffect/>
 </TextBlock.Effect>
 <TextBlock.Foreground>
 <LinearGradientBrush EndPoint="0.5,1" StartPoint="0.5,0">
 <GradientStop Color="#FF6D6D6D"/>
 <GradientStop Color="#FFFFFFFF" Offset="1"/>
 </LinearGradientBrush>
 </TextBlock.Foreground>
</TextBlock>

The value assigned to the TextBlock's FontFamily property is ./Fonts/Fonts.zip#3t.
The Fonts.zip compressed file is going to include all the embedded fonts once we compile
the project. Thus, this value indicates to the TextBlock to use the 3t embedded font found
in the compressed file Fonts.zip.

This material is copyright and is licensed for the sole use by Vadim Kudria on 4th October 2009

6352 108th St, , Forest Hills, , 11375

Download at WoweBook.Com

Controlling Statistics and Scoring

[336]

If we open the project in Visual Studio or Visual C#, we will not be able to obtain an accurate
preview for the new UserControl, because it uses an embedded font. However, the
UserControl will appear as expected in the application. The following screenshot shows
an inaccurate preview replacing our font with a simple standard font:

The great advantages of working with Expression Blend to create 2D user
controls are the possibilities to obtain accurate previews and to work with
complex effects without having to write XAML code. We work with WYSIWYG
(What You See Is What You Get). We can also make changes to the XAML
code as needed.

Time for action – showing a score gauge
We combined multiple gradients and effects to create an attractive 2D gauge. Now, we are
going to make the necessary changes to calculate and show a score while running the 3D game:

1.	 Open the projectproject 3DInvadersSilverlight in Visual Studio or Visual C#.

2.	 Expand ScoreGauge.xaml in the Solution Explorer and open ScoreGauge.xaml.
cs—the C# code for ScoreGauge.xaml. We need to add a method.

This material is copyright and is licensed for the sole use by Vadim Kudria on 4th October 2009

6352 108th St, , Forest Hills, , 11375

Download at WoweBook.Com

Chapter 12

[337]

3.	 Add the following lines of code in the public partial class ScoreGauge :
UserControl, to change the score shown in the gauge:

public void SetScore(int newScore)
{
 tbkScore.Text = newScore.ToString();
}

4.	 Now, expand MainPage.xaml in the Solution Explorer and open
MainPage.xaml.cs—the C# code for MainPage.xaml.

5.	 Add the following private variable in the public partial class
MainPage : UserControl, to hold a ScoreGauge instance:

private ScoreGauge _scoreGauge;

6.	 Add the following public method to update the score shown in the
ScoreGauge instance::

public void SetScore(int newScore)
{
 _scoreGauge.SetScore(newScore);
}

7.	 Add the following lines of code before the end of the btnStartGame button's
Click event, to create and add a new ScoreGauge to the main Grid:

// Hold the main Grid
Grid display = this.LayoutRoot;
// Create and add a new ScoreGauge
_scoreGauge = new ScoreGauge();
_scoreGauge.VerticalAlignment = VerticalAlignment.Top;
_scoreGauge.HorizontalAlignment = HorizontalAlignment.Left;
display.Children.Add(_scoreGauge);

8.	 Now, open InvadersGame.cs.cs for the C# code.

9.	 Add the following private variables:

// The game's main page
private MainPage _mainPage;
// The score value
private double _score;

10.	Add the following private method to initialize (reset), calculate, and show the
statistics related to the game:

private void InitializeStatistics()
{
 _score = 0;

This material is copyright and is licensed for the sole use by Vadim Kudria on 4th October 2009

6352 108th St, , Forest Hills, , 11375

Download at WoweBook.Com

Controlling Statistics and Scoring

[33�]

}
private void CalculateStatistics()
{
 _score += _elapsedTime.TotalSeconds;
}
private void ShowStatistics()
{
 _mainPage.SetScore((int) _score);
}

11.	Add the following lines of code after the line base.Initialize(); in the
Initialize method (we must hold a reference to the MainPage that initialized
the game):

_mainPage = (Application.Current.RootVisual as MainPage);
InitializeStatistics();

12.	Now, add the following lines of code before the end of the UpdateWithTime
method:

CalculateStatistics();
ShowStatistics();

13.	Build and run the solution. Click on the button. Whilst the UFOs begin their chase
game with the previously added background, the score gauge will be increasing the
number shown once every second, as shown in the following screenshot:

This material is copyright and is licensed for the sole use by Vadim Kudria on 4th October 2009

6352 108th St, , Forest Hills, , 11375

Download at WoweBook.Com

Chapter 12

[33�]

14.	Click on the web browser's viewport to activate its focus. Move the mouse to the
left and the right. You will see the entire scene, including the asteroids belt, rotating
as the mouse is moved. However, the 2D score gauge will remain in the same
position, as shown in the following screenshot:

What just happened?
You combined a 3D scene with a 2D gauge. Now, the game can use attractive gauges to
display information to the player. However, your project manager is very interested in the
fuel gauge. This gauge requires a complex and accurate formula to determine the rate of fuel
consumption according to the UFO's speed and the torque, impulse, and force applied on it.

Calculating, saving, and showing statistics
When the player clicks the btnStartGame button, we obtain the main Grid (LayoutRoot)
and we save it in the local variable display:

Grid display = this.LayoutRoot;

This material is copyright and is licensed for the sole use by Vadim Kudria on 4th October 2009

6352 108th St, , Forest Hills, , 11375

Download at WoweBook.Com

Controlling Statistics and Scoring

[340]

Once we have the reference to this Grid, we can add new instances to it that are the
children of the UIElement instance. We create and add a new ScoreGauge, aligned to
the top-left corner:

_scoreGauge = new ScoreGauge();
_scoreGauge.VerticalAlignment = VerticalAlignment.Top;
_scoreGauge.HorizontalAlignment = HorizontalAlignment.Left;
display.Children.Add(_scoreGauge);

The ScoreGauge class offers a SetScore method to change the value for the TextBlock
responsible of showing the current score (tbkScore).

The MainPage class also offers a method with both the same name and parameter. It calls
the SetScore method for the ScoreGauge instance previously saved in _scoreGauge. The
InvadersGame instance uses this public method to update the score whenever necessary.

Balder.Core.Game superclass does not offer a predefined mechanism to access the page
where the Balder's viewport is created. Therefore, we added a private variable to hold a
reference to the MainPage instance (_mainPage) in the InvadersGame subclass.

We added a simple line to the InvadersGame Initialize method in order to save the
reference to the MainPage instance:

_mainPage = (Application.Current.RootVisual as MainPage);

This way, we were able to access public methods that produce changes in the MainPage.
Hence, we could update the score gauge by calling the SetScore public method defined
in MainPage:

_mainPage.SetScore((int) _score);

We defined three methods to structure the mechanism to calculate, save, and show statistics
for the game:

InitializeStatistics: It resets the statistics data for the game (resets the score
to its initial value.)

CalculateStatistics: It calculates the new values for the statistics data.
(increases or reduces the score).

ShowStatistics: It updates the gauges with the new values for the statistics data
(calls the SetScore method in the MainPage instance to change the value of theinstance to change the value of the
score TextBlock).

The algorithm used to calculate the score is very simple; each elapsed second adds 1 to the
score. Of course, we should improve it before your project manager looks at the code.

This material is copyright and is licensed for the sole use by Vadim Kudria on 4th October 2009

6352 108th St, , Forest Hills, , 11375

Download at WoweBook.Com

Chapter 12

[341]

Using this technique and methods, we can add many 2D gauges and other
interactive 2D content while Balder renders 3D frames.

Time for action – creating a bonus gauge showing text
Now, we are going to create a new UserControl to display a bonus gauge. In this case, we
will use the previously created ScoreGauge as a baseline to create this new gauge, making a
few small changes.

1.	 Open the projectproject 3DInvadersSilverlight in Visual Studio or Visual C#.

2.	 Select ScoreGauge.xaml in thethe Solution Explorer.

3.	 Copy and paste the ScoreGauge.xaml. The IDE will add an item named
Copy of ScoreGauge.xaml.

4.	 Select the new item (Copy of ScoreGauge.xaml) in thethe Solution Explorer.

5.	 Rename it to BonusGauge.xaml.

6.	 Open BonusGauge.xaml (the XAML code) and replace the text ScoreGauge with
BonusGauge, as shown in the following line:

x:Class="_3DInvadersSilverlight.BonusGauge"

7.	 Replace the text tbkScore with tbkBonus, as shown in the following line:

<TextBlock x:Name="tbkBonus" Margin="140,0,8,8" Text="0"

 TextWrapping="Wrap" FontFamily="./Fonts/Fonts.zip#3t"
 FontSize="48" TextAlignment="Right">

8.	 Open BonusGauge.xaml.cs and replace the text ScoreGauge with BonusGauge
in the first lines that define the class and the constructor, as shown in the following:

public partial class BonusGauge : UserControl
{
 public BonusGauge()

9.	 Delete the SetScore method.

10.	Add the following public method to change the bonus shown in the gauge:

public void SetBonus(int newBonus)
{
 tbkBonus.Text = newBonus.ToString();
}

This material is copyright and is licensed for the sole use by Vadim Kudria on 4th October 2009

6352 108th St, , Forest Hills, , 11375

Download at WoweBook.Com

Controlling Statistics and Scoring

[342]

11.	Now, open the projectpen the projectproject 3DInvadersSilverlight in Expression Blend.

12.	Select tbkLabel and change its Text property to BONUS.

13.	Change both the start and the stop colors for the linear gradients for the texts
and the background rectangle, as shown in the following screenshot:

What just happened?
You created a new UserControl based on the previously designed ScoreGauge.

We just had to change a few names, properties, and methods.

Time for action – creating a fuel gauge
Now, we are going to create a new UserControl to display a fuel gauge. We will use
the previously created ScoreGauge as a baseline to create this new gauge, making
many changes.

1.	 Open the projectproject 3DInvadersSilverlight in Visual Studio or Visual C#.

2.	 Repeat the previously explained steps to create a new gauge based on
ScoreGauge.xaml. Instead of using Instead of usingInstead of using BonusGauge as the new name,
use FuelGauge.

3.	 Open FuelGauge.xaml.cs and replace the text ScoreGauge with FuelGauge
in the first lines that define the class and the constructor, as shown in the
following lines:

public partial class FuelGauge : UserControl
{
 public FuelGauge()

This material is copyright and is licensed for the sole use by Vadim Kudria on 4th October 2009

6352 108th St, , Forest Hills, , 11375

Download at WoweBook.Com

Chapter 12

[343]

4.	 Delete the SetScore method.

5.	 Add the following public method to change the fuel level shown in the gauge:

public void SetFuelLevel(int newFuelLevel)
{
 pbgFuelLevel.Value = newFuelLevel;
}

6.	 Now, open the projectpen the projectproject 3DInvadersSilverlight in Expression Blend.

7.	 Delete the TextBlock named tbkScore.

8.	 Select tbkLabel and change its Text property to FUEL.

9.	 Select 24 for FontSize.

10.	Expand Layout and set the following values for its Margin related properties:

Left: 8

Right: 0

Up: 0

Bottom: 24

11.	Add a ProgressBar control and set its name to pbgFuelLevel. Set its Height
property to 16.

In order to add a ProgressBar control, click onlick on Asset Library at the bottom
of the Toolbox. Click on the Controls tab and select ProgressBar. Then, draw the
rectangle for the desired ProgressBar area.

12.	Expand Layout and set the following values for its Margin related properties:

Left: 8

Right: 8

Up: 0

Bottom: 8

This material is copyright and is licensed for the sole use by Vadim Kudria on 4th October 2009

6352 108th St, , Forest Hills, , 11375

Download at WoweBook.Com

Controlling Statistics and Scoring

[344]

13.	Click on Brushes | Background | Gradient brush | Linear gradient and define the
three colors (red, yellow, and green) to use in a linear gradient as a brush. Then,
click on Show Advanced Properties (the small arrow at the bottom of the Brushes
panel). Click on Rotate and enter 270 in Rotation Angle. This way, the gradient will
go from left (red) to right (green), with yellow in the middle, as shown in the
following screenshot:

14.	Click on Brushes | Foreground | Gradient brush | Linear gradient and define the
desired colors for the progress bar.

This material is copyright and is licensed for the sole use by Vadim Kudria on 4th October 2009

6352 108th St, , Forest Hills, , 11375

Download at WoweBook.Com

Chapter 12

[345]

15.	Change both the start and the stop colors of the linear gradients for the text and the
background rectangle, as shown in the following screenshot:

What just happened?
You created a new UserControl capable of showing a colorful progress bar displaying the
fuel level for an UFO or a spaceship.

The SetFuelLevel method changes the value for the ProgressBar
control (pbgFuelLevel).

Time for action – creating a remaining lives gauge
Now, we are going to create a new UserControl to display the remaining lives in a gauge.
We will use the previously created ScoreGauge as a baseline to create this new gauge,
making many changes. We will use our well-known blue alien as an icon to specify the
remaining lives.

1.	 Open the projectproject 3DInvadersSilverlight in Visual Studio or Visual C#.

2.	 Repeat the previously explained steps to create a new gauge based on
ScoreGauge.xaml. Instead of using Instead of usingInstead of using BonusGauge as the new name,
use LifeGauge.

3.	 Open LifeGauge.xaml.cs (the C# code for LifeGauge.xaml) and replace the
text ScoreGauge with LifeGauge in the first lines that define the class and the
constructor, as shown in the following:

public partial class LifeGauge : UserControl
{
 public LifeGauge()

4.	 Delete the SetScore method.

This material is copyright and is licensed for the sole use by Vadim Kudria on 4th October 2009

6352 108th St, , Forest Hills, , 11375

Download at WoweBook.Com

Controlling Statistics and Scoring

[346]

5.	 Add the following public method to change the number of icons shown
to represent the remaining lives in the gauge:

public void SetLives(int newLives)
{
 WrapPanel.Children.Clear();
 for (int i = 0; i < newLives; i++)
 {
 BlueAlien ghost = new BlueAlien();
 WrapPanel.Children.Add(ghost);
 }
}

6.	 Right-click on 3DInvadersSilverlight (the main project) in the Solution
Explorer and select Add | Existing item… from the context menu that appears.

7.	 Select the file BlueAlien.xaml from the previously created
SilverlightInvaders2DVector project. Then, click on Add.

8.	 Open the XAML code for BlueAlien.xaml and replace the text
SilverlightInvaders2DVector with _3DInvadersSilverlight,
as shown in the following line:

<UserControl x:Class="_3DInvadersSilverlight.BlueAlien"

9.	 Replace the line that defines the scale transformation with the following one:

<ScaleTransform ScaleX="0.25" ScaleY="0.25"/>

10.	Open BlueAlien.xaml.cs (the C# code for BlueAlien.xaml) and replace
the text SilverlightInvaders2DVector with _3DInvadersSilverlight
in the first line that defines the namespace, as shown in the following one:

namespace _3DInvadersSilverlight

11.	Now, open thepen the 3DInvadersSilverlight project in Expression Blend.

12.	Delete the two TextBlocks named tbkScore and tbkLabel.

13.	Add a WrapPanel control and set its name to WrapPanel.

In order to add a WrapPanel control, click onlick on Asset Library at the bottom
of the Toolbox. Click on the Controls tab and select WrapPanel. Then, draw
the rectangle for the desired WrapPanel area.

This material is copyright and is licensed for the sole use by Vadim Kudria on 4th October 2009

6352 108th St, , Forest Hills, , 11375

Download at WoweBook.Com

Chapter 12

[347]

14.	Expand Layout and set the following values for its Margin related properties:

Left: 0

Right: 0

Up: 0

Bottom: 0

15.	Expand Common Properties and set the specified values for the properties,
as shown in the following screenshot:

ItemHeight: 60

ItemWidth: 45

16.	Change both the start and the stop colors of the linear gradient for the
background rectangle.

What just happened?
You created a new UserControl capable of displaying the remaining lives as icons
(small ghosts).

Using a panel to show many aligned user controls
We added a WrapPanel control to enable a specific layout in the gauge. We want to arrange
the ghost icons (UserControl subclasses) in a horizontal list. The WrapPanel control's
default value for its Orientation property is Horizontal. Thus, its elements will be
added from left to right, in rows.

This material is copyright and is licensed for the sole use by Vadim Kudria on 4th October 2009

6352 108th St, , Forest Hills, , 11375

Download at WoweBook.Com

Controlling Statistics and Scoring

[34�]

If we add five ghost icons to the WrapPanel, they will be arranged from left to right,
as shown in the following screenshot:

The SetLives method clears the elements that are a child of WrapPanel and adds as many
BlueAlien instances to it as the number of lives received as a parameter:

WrapPanel.Children.Clear();
for (int i = 0; i < newLives; i++)
{
 BlueAlien ghost = new BlueAlien();
 WrapPanel.Children.Add(ghost);
}

We did not have to worry about the layout, because WrapPanel does this job.

Time for action – showing and updating multiple gauges
Finally, it is time to combine the three new gauges with the 3D scenes and add the necessary
update logic to the game.

1.	 Open the projectproject 3DInvadersSilverlight in Visual Studio or Visual C#.

2.	 Open MainPage.xaml.cs the C# code for MainPage.xaml.

3.	 Add the following private variable in the public partial class MainPage :
UserControl, to hold instances for each new UserControl subclass that
defines a gauge:

private BonusGauge _bonusGauge;
private FuelGauge _fuelGauge;
private LifeGauge _lifeGauge;

4.	 Add the following public method to update the values shown in the
different gauges:

public void SetBonus(int newBonus)
{
 _bonusGauge.SetBonus(newBonus);
}
public void SetFuelLevel(int newFuelLevel)

This material is copyright and is licensed for the sole use by Vadim Kudria on 4th October 2009

6352 108th St, , Forest Hills, , 11375

Download at WoweBook.Com

Chapter 12

[34�]

{
 _fuelGauge.SetFuelLevel(newFuelLevel);
}
public void SetLives(int newLives)
{
 _lifeGauge.SetLives(newLives);
}

5.	 Add the following lines of code before the end of the btnStartGame button's
Click event, to create and add each new UserControl subclass that defines a
gauge to the main Grid:

// Create and add a new BonusGauge
_bonusGauge = new BonusGauge();
_bonusGauge.VerticalAlignment = VerticalAlignment.Top;
_bonusGauge.HorizontalAlignment = HorizontalAlignment.Right;
display.Children.Add(_bonusGauge);
// Create and add a new FuelGauge
_fuelGauge = new FuelGauge();
_fuelGauge.VerticalAlignment = VerticalAlignment.Bottom;
_fuelGauge.HorizontalAlignment = HorizontalAlignment.Right;
display.Children.Add(_fuelGauge);
// Create and add a new LifeGauge
_lifeGauge = new LifeGauge();
_lifeGauge.VerticalAlignment = VerticalAlignment.Bottom;
_lifeGauge.HorizontalAlignment = HorizontalAlignment.Left;
display.Children.Add(_lifeGauge);

6.	 Now, open InvadersGame.cs.cs.

7.	 Add the following private variables:

// The bonus value
private double _bonus;
// The fuel level value
private double _fuelLevel;
// The number of lives left
private int _lives;
// Is it necessary to update the remaining lives gauge?
private bool _updateLives = false;

This material is copyright and is licensed for the sole use by Vadim Kudria on 4th October 2009

6352 108th St, , Forest Hills, , 11375

Download at WoweBook.Com

Controlling Statistics and Scoring

[350]

8.	 Add the following private methods to start a new life and calculate the level of
remaining fuel:

private void StartNewLife()
{
 _lives -= 1;
 _fuelLevel = 100;
 _updateLives = true;
}
private void CalculateFuelLevel()
{
 _fuelLevel -= (((Math.Abs(_ufo1.Body.LinearVelocity.X) * 0.35) +
 (Math.Abs(_ufo1.Body.LinearVelocity.Y) * 0.55))
 *_elapsedTime.TotalSeconds);
}

9.	 Add the following lines of code before the end of the
InitializeStatistics method:

_bonus = 5000;
_lives = 6;
StartNewLife();

10.	Add the following lines of code before the end of the
CalculateStatistics method:

if (_bonus > 0)
 _bonus -= _elapsedTime.TotalSeconds;
if (_fuelLevel > 0)
 CalculateFuelLevel();
else
 StartNewLife();

11.	Add the following lines of code before the end of the ShowStatistics method:

private void ShowStatistics()
{
 _mainPage.SetScore((int) _score);_mainPage.SetScore((int) _score);
 _mainPage.SetBonus((int)_bonus);
 _mainPage.SetFuelLevel((int)_fuelLevel);_mainPage.SetFuelLevel((int)_fuelLevel);
 if (_updateLives)
 {
 _mainPage.SetLives(_lives);
 _updateLives = false;
 }

}

This material is copyright and is licensed for the sole use by Vadim Kudria on 4th October 2009

6352 108th St, , Forest Hills, , 11375

Download at WoweBook.Com

Chapter 12

[351]

12.	Build and run the solution. Click on the button. While the UFOs perform their
chase game:

The score gauge increases its value

The bonus gauge reduces its value.

The remaining fuel decreases

The remaining lives are displayed as icons, as shown in the
following screenshot:

13.	Wait until the fuel level enters the red zone. Once the fuel level reaches nil,
an icon will be removed from the remaining lives gauge.

This material is copyright and is licensed for the sole use by Vadim Kudria on 4th October 2009

6352 108th St, , Forest Hills, , 11375

Download at WoweBook.Com

Controlling Statistics and Scoring

[352]

14.	Click on the web browser's viewport to activate its focus. Move the mouse left and
right. You will see the entire scene, including the asteroid belt, rotating as the mouse
is moved. However, the four gauges remain, in the same position, as shown in
the following screenshot:

What just happened?
You combined a 3D scene with four real-time 2D gauges. Now, the game can display amazing
gauges to show real-time information to the player. Besides, you were also able to use the
same techniques to interact with the player, using the mouse. These gauges are very flexible
UserControl subclasses. Your project manager likes the gauges. However, he is not happy
with the rate of fuel consumption. You will have to work harder on the update logic.

Working with multiple gauges
Once we have a UserControl subclass that defines the gauge or the 2D element that
we want to show combined with a Balder game, the steps to interact with them are
the following:

1. Add a variable in the MainPage to hold an instance of the UserControl subclass.

2. Add a public method in the MainPage to update the values in this instance, or to
interact with it.

This material is copyright and is licensed for the sole use by Vadim Kudria on 4th October 2009

6352 108th St, , Forest Hills, , 11375

Download at WoweBook.Com

Chapter 12

[353]

3. Create and add the new instance of the UserControl subclass in the event thatsubclass in the event that
initializes the game (the btnStartGame button's Click event).

4. Initialize the values for the statistics once the game is initialized or reset.

5. Add the code to calculate the new statistics. The game should collect the final
statistics to update the gauges. However, the characters (actors) can also calculate
their own values based on elapsed time, collisions, forces, torques, and so on.

6. Update the gauges only when necessary.

The game updates the remaining lives gauge only when there is a change in
the _lives variable. Therefore, it uses the _updateLives boolean flag
to determine whether to call the MainPage SetLives method or not.

Have a go hero – adding gauges for multiplayer games
The new gauges are amazing. However, they are only displaying information about one UFO.
Two UFOs participate in the simple pursuit game.

Make the necessary changes to display the four gauges for the both UFOs.

Eight gauges would to use too much space. Therefore, add a combo box embedded in one
of the gauges to allow the player to select the desired UFO. Once the player selects a new
value, the gauges should display the information on statistics for the desired UFO.

Add a 50% transparent analog clock gauge. It must display the elapsed time.

Pop quiz – working with special fonts and gauges
1. In order to display text, a Silverlight application can use:

a. Only the standard Windows fonts.

b. Only the Arial font.

c. Any compatible font. If it is not standard, it should be embedded.

2. An embedded font will be compressed to:

a. ./Fonts/Fonts.zip

b. ./Fonts/EmbeddedFonts.zip

c. ./Fonts/TruetypeFonts.zip

This material is copyright and is licensed for the sole use by Vadim Kudria on 4th October 2009

6352 108th St, , Forest Hills, , 11375

Download at WoweBook.Com

Controlling Statistics and Scoring

[354]

3. A WrapPanel control with its Orientation property value set to
Horizontal will:

a. Display elements added as children from top to bottom, in columns.

b. Display elements added as children from right to left, in rows.

c. Display elements added as children from left to right, in rows.

4. The information shown in the gauges should be updated:

a. When a significant value changes.

b. Always.

c. Never.

5. The following line saves the reference to the MainPage instance:

a. _mainPage = (Application.LayoutRoot as MainPage);

b. _mainPage = (Application.Current.RootVisual as
 MainPage);

c. _mainPage = (Application.MainPage);

Summary
We learnt a lot in this chapter about controlling statistics and scoring. Specifically, we were
able to use Expression Blend to embed special fonts and show them in text gauges. We
combined many controls to create complex gauges that display information using graphics.
We were able to update the gauges from the main game class. We also learned how to
create and add many gauges to an existing game, controlling their layout.

Now that we've learnt to control statistics and scoring, we're ready to add environments and
scenarios, which is the topic of the next chapter.

This material is copyright and is licensed for the sole use by Vadim Kudria on 4th October 2009

6352 108th St, , Forest Hills, , 11375

Download at WoweBook.Com

13
Adding Environments and Scenarios

A good film has always gone through an accurate editing process. A high
quality game has to have interesting environments and scenarios. It has to
show an appealing introductory screen to motivate the player. A modern game
must offer the player the possibility to configure many parameters. It has to use
stages and skill levels. Therefore, we have to use great designs for the different
2D screens that become part of the entire gaming experience.

In this chapter, we will add skill levels that change the environments and the behaviors.

We will also create dazzling transition effects to organize the different screens that compose
the game. By reading it and following the exercises we will learn to:

Use special libraries to create transition effects

Learn to work with user interface elements to design multiple screens for the game

Define animations for the transitions

Take snapshots to provide a starting point for the effects

Work with multiple screens, transitions, and effects, combined with the 3D scenes

Define, load, and save flexible configuration data for the game

This material is copyright and is licensed for the sole use by Vadim Kudria on 4th October 2009

6352 108th St, , Forest Hills, , 11375

Download at WoweBook.Com

Adding Environments and Scenarios

[356]

Working with levels and stages
So far, we have added statistics and scoring to the game. We created nice gauges to
display information to the player in real-time. However, we need to organize the game. We
have to define dozens of parameters, new behaviors, maps, levels, stages, introductions,
instructions, interactive menus with animations, and setup screens, among other things.
Players want to take control of modern games. They like spending time creating their own
gaming experiences, changing parameters, defining new skill levels and competing against
other players to be in the top of the hall of fame. How can we add new behaviors, stages,
introductory screens, and configuration options without boring the players?

We can do this by combining dazzling transition effects with nice screen designs. We have to
work with bitmaps at a pixel level and organize the screens using a powerful design tool.

Time for action – installing Windows Presentation Foundation
Pixel Shader Effects Library

Your project manager wants you to add exciting transitions, taking full advantage of
Silverlight 3 shader effects, also known as pixel shaders. They allow you to modify the
rendered pixels of any user interface element (UI Element) before Silverlight shows them on
the web browser's viewport.

Pixel shaders usually run on the GPU. However, so far, Silverlight 3 does not
use the GPU to render pixel shaders. Therefore, we must watch performance
because we will be using software rendering.

You do not have experience with pixel shaders. Your project manager knows this and he
suggests using a high-level pixel shader effects library, which has been prepared to work
with Silverlight 3. Wait! Do not run away! You won't need to learn complex HLSL (High-Level
Shading Language) sentences. Remember that you have already added a drop shadow effect
to the gauges. This effect also used pixel shaders.

Windows Presentation Foundation Pixel Shader Effects Library (http://wpffx.
codeplex.com/) is an easy to use open source library with sample HLSL effects for WPF
and Silverlight 3 applications.

We will use Windows Presentation Foundation Pixel Shader Effects Library to add
transition effects to Silverlight for our games.

This material is copyright and is licensed for the sole use by Vadim Kudria on 4th October 2009

6352 108th St, , Forest Hills, , 11375

Download at WoweBook.Com

Chapter 13

[357]

Now, we are going to update our Silverlight application adding the necessary references to
use WPFSLFx 2.0:

1.	 Download Shader Effects BuildTask and Templates from http://www.codeplex.
com/wpf/Release/ProjectReleases.aspx?ReleaseId=14962.

2.	 Save all the uncompressed files in a new folder
(C:\ Shader Effects BuildTask and Templates).

3.	 Run ShaderBuildTaskSetup.msi, located inside the aforementioned folder
and perform the installation.

4.	 Download Windows Presentation Foundation Pixel Shader Effects Library
release 2.0 for Silverlight 3, from http://wpffx.codeplex.com/
Release/ProjectReleases.aspx?ReleaseId=25285.

The Windows Presentation Foundation Pixel Shader Effects Library is an
active project. Thus, it frequently releases new versions adding additional
features and fixing bugs. Sometimes, a new version can introduce changes
to classes or methods. In the following examples, we will use version 2.0,
change set # 19,891. This version has some incompatibilities with Silverlight
3. Thus, we are going to make some changes to solve them.

5.	 Save all the uncompressed files in a new folder (C:\ WPFSLFx).

6.	 Open the solution, HLSLMeetsXaml.sln, in Expression Blend, located in thein Expression Blend, located in the, located in the
MainSolution sub-folder (C:\WPFSLFx\MainSolution), inside the
aforementioned folder.

7.	 Expand the SLEffectHarness project. SelectSelect Project | Add Reference...,
browse to the Silverlight Toolkit Bin sub-folder (by default, C:\Program Files\
Microsoft SDKs\Silverlight\v3.0\Toolkit\Jul09\Bin) and select the
System.Windows.Controls.Toolkit.dll library.

8.	 Open MainPage.xaml.

9.	 Replace the code xmlns:controlsToolkit="clr-namespace:System.
Windows.Controls;assembly=System.Windows.Controls.Toolkit"
with the following code:

xmlns:controlsToolkit="clr-namespace:System.Windows.Controls;
 assembly=System.Windows.Controls.Toolkit"

10.	Now, find ctl: and replace all occurences of it with controlsToolkit:.
This way, the XAML code will refer to the right Silverlight Toolkit library.

This material is copyright and is licensed for the sole use by Vadim Kudria on 4th October 2009

6352 108th St, , Forest Hills, , 11375

Download at WoweBook.Com

Adding Environments and Scenarios

[35�]

11.	Open MainPage.xaml.

12.	Add the following code after the line xmlns:System="clr-
namespace:System;assembly=mscorlib":

xmlns:controlsToolkit="clr-namespace:System.Windows.Controls;
 assembly=System.Windows.Controls.Toolkit"

13.	Now, find controls:Expander and replace all occurences of it with
controlsToolkit:Expander. This way, the XAML code will refer to the
right Silverlight Toolkit library.

14.	Replace the line <Setter Property="FilterMode" Value="StartsWith"/>
with the following code. (The SearchMode property is now FilterMode.):

<Setter Property="FilterMode" Value="StartsWith"/>

15.	Build the solution (it will use the default build configuration).

16.	Run the default project (SLEffectHarness). The default web browser will appear,
showing a list of effects to apply with their related parameters on the left side, an
image and a Start Transitions button. You can discover the effects offered by this
library clicking on each checkbox and changing the desired parameters to view a
real-time effect on the image, as shown in the following screenshot:

This material is copyright and is licensed for the sole use by Vadim Kudria on 4th October 2009

6352 108th St, , Forest Hills, , 11375

Download at WoweBook.Com

Chapter 13

[35�]

17.	Click on the Start Transitions button. The application will begin a slideshow using all
its available transition effects. The transition effect name will appear on the bottom
right corner of the viewport. Watch the transition effects and then click on the Stop
Transitions button. Another transition effect will be applied while returning to the
original screen, as shown in the following picture:

18.	Now, you will find two new libraries—SLShaderEffectLibrary.dll
(in the SL\SLShaderEffectLibrary\Bin\Release sub-folder) and
SLTransitionEffects.dll (in the SL\SLTransitionEffects\Bin\Release
sub-folder).

19.	Open the 3DInvadersSilverlight project.

20.	Click on 3DInvadersSilverlight in the Solution Explorer.

21.	Select Project | Add Reference..., browse to the C:\WPFSLFx\SL\
SLShaderEffectLibrary\Bin\Release folder and select the
SLShaderEffectLibrary.dll library.

22.	Select Project | Add Reference… again, browse to the C:\WPFSLFx\SL\
SLTransitionEffects\Bin\Release folder and select the
SLTransitionEffects.dll library.

This material is copyright and is licensed for the sole use by Vadim Kudria on 4th October 2009

6352 108th St, , Forest Hills, , 11375

Download at WoweBook.Com

Adding Environments and Scenarios

[360]

23.	Now, the project will list the reference to the aforementioned DLLs in the
Solution Explorer, as shown in the following screnshot:

What just happened?
We downloaded Windows Presentation Foundation Pixel Shader Effects Library 2.0 and we
added the necessary references to use it in a Silverlight project. The previously explained
steps are the only ones required to access the classes, types, and functions that allow us to
use the amazing transition effects offered by this library in any new Silverlight application.

This material is copyright and is licensed for the sole use by Vadim Kudria on 4th October 2009

6352 108th St, , Forest Hills, , 11375

Download at WoweBook.Com

Chapter 13

[361]

Time for action – adding screens to organize the game
Now, we are going to improve the game's initial screen using Expression Blend.

1.	 Open the project 3DInvadersSilverlight in Expression Blend.

2.	 Double-click on MainPage.xaml in the Projects palette.

3.	 Draw a Canvas aligned to the LayoutRoot Grid's borders. You can draw a Canvas
by clicking on the Grid button in the Toolbox and selecting the Canvas icon from
the graphical context menu that appears, as shown in the following screenshot:

4.	 Set its name to cnvMainScreen.

5.	 Expand Layout and set the following values for its Margin related properties:

Left: 0

Right: 0

Up: 0

Bottom: 0

6.	 Click on Brushes | Background | Gradient Brush | Linear Gradient and define both
the start and the stop colors. The Canvas will use a linear gradient as a brush.

This material is copyright and is licensed for the sole use by Vadim Kudria on 4th October 2009

6352 108th St, , Forest Hills, , 11375

Download at WoweBook.Com

Adding Environments and Scenarios

[362]

7.	 Add a TextBlock control and set its name to tbkGameName.
Set its Text property to 3D INVADERS GAME.

8.	 Expand Text and activate the Font tab. Select the 3t font in the combo box list.

9.	 Enter 140 for FontSize. Activate the Paragraph tab and select Center for
TextAlignment. Then, apply a drop shadow effect.

10.	Click on Brushes | Foreground | Gradient Brush | Radial Gradient and define both
the start and the stop colors. The TextBlock will use a radial gradient as a brush.

11.	Locate the TextBlock on the top center of the container Canvas.

12.	Click on the button named btnStartGame under Objects and Timeline and drag it to
the Canvas cnvMainScreen. This way, the Canvas will be the new button's
parent (container), as shown in the following picture:

13.	Make the necessary changes to the gradient's colors to make the text visible
while the background remains attractive, as shown in the following screenshot:

This material is copyright and is licensed for the sole use by Vadim Kudria on 4th October 2009

6352 108th St, , Forest Hills, , 11375

Download at WoweBook.Com

Chapter 13

[363]

What just happened?
You added a Canvas with a background Brush to contain all the UI Elements that define the
initial screen for the game.

The TextBox and the Button have the same parent, the new Canvas—cnvMainScreen.
This way, we will be able to collapse this Canvas to display the game.

By collapsing and making visible different Canvas controls containing many
UI elements, we can organize several initialization and configuration screens,
without leaving the original XAML page.

Time for action – applying transition effects
Now we are going to add a blood effect transition before the game starts. This is our first
attempt to add transition effects using Windows Presentation Foundation Pixel Shader
Effects Library.

1.	 Open the project 3DInvadersSilverlight in Visual Studio or Visual C#.

2.	 Expand MainPage.xaml in the Solution Explorer and open MainPage.xaml.cs.

3.	 Add the following lines of code at the beginning of the class definition:

using TransitionEffects;
using System.Windows.Media.Imaging;

4.	 Add the following private method, StartGame:

private void StartGame()
{
}

5.	 Copy the code inside the Click event of the Button btnStartGame and paste it
into the previously mentioned method. Then, comment the first line that collapses
the button's visibility:

//btnStartGame.Visibility = Visibility.Collapsed;

6.	 Add the following private methods to create and apply the transition effect:

private Storyboard CreateTransition(TransitionEffect
transitionEffect, UIElement element, TimeSpan duration, double
from, double to, Brush oldBrush)
{
 // Create a DoubleAnimation to handle the animation for the
 effect
 DoubleAnimation doubleAnimation = new DoubleAnimation();
 doubleAnimation.Duration = new Duration(duration);

This material is copyright and is licensed for the sole use by Vadim Kudria on 4th October 2009

6352 108th St, , Forest Hills, , 11375

Download at WoweBook.Com

Adding Environments and Scenarios

[364]

 doubleAnimation.From = from;
 doubleAnimation.To = to;
 doubleAnimation.FillBehavior = FillBehavior.HoldEnd;
 // Create a new StoryBoard to handle the transition effect
 Storyboard transitionSB = new Storyboard();
 transitionSB.Children.Add(doubleAnimation);
 Storyboard.SetTarget(doubleAnimation, transitionEffect);
 Storyboard.SetTargetProperty(doubleAnimation,

 new PropertyPath("(TransitionEffect.
Progress)"));
 // Set the old image for the transition effect
 transitionEffect.OldImage = oldBrush;
 // Assign the desired transition effect effect
 element.Effect = transitionEffect;
 return transitionSB;
}
private void ApplyTransition()
{
 // Create a WriteableBitmap to represent the current screen
 WriteableBitmap currentBitmap = new WriteableBitmap(
 LayoutRoot, null);
 ImageBrush currentBrush = new ImageBrush();
 currentBrush.ImageSource = currentBitmap;
 BloodTransitionEffect bloodEffect = new BloodTransitionEffect();
 // Create the StoryBoard to handle the transition effect
 Storyboard transitionSB = CreateTransition(bloodEffect,
 LayoutRoot, TimeSpan.FromSeconds(1),
 0, 1, currentBrush);
 transitionSB.Completed += new
 EventHandler(transitionSB_Completed);
 // Hide the Canvas that contains the UI elements that define the
 initial screen
 cnvMainScreen.Visibility = Visibility.Collapsed;
 // Start the StoryBoard
 transitionSB.Begin();
}

7.	 Add the following lines of code to program the event handler that will start the
game once the transition effect has finished its animation:

private void transitionSB_Completed(object sender, EventArgs e)
{
 // Once the transition has finished, start the game
 StartGame();
}

This material is copyright and is licensed for the sole use by Vadim Kudria on 4th October 2009

6352 108th St, , Forest Hills, , 11375

Download at WoweBook.Com

Chapter 13

[365]

8.	 Now, add the following lines of code in the btnStartGame button's Click event
(you previously left its code empty). This code will start the transition effect:

ApplyTransition();

9.	 Build and run the solution. The new start-up screen will appear in the default web
browser. Click on the button and a blood effect transition will run before the game
begins, as shown in the following screenshot:

What just happened?
The application uses a nice transition effect to switch from the main 2D screen to the game's
3D viewport.

When the player clicks on the button, the code programmed in its event handler does not
start the game anymore. Now, it calls the ApplyTransition method. This procedure
takes a snapshot from the main container (LayoutRoot Grid) and modifies its rendered
pixels using a pixel shader. In order to do so, it uses the WriteableBitmap introduced
in Silverlight 3, a StoryBoard to control an animation, and the classes provided by the
Windows Presentation Foundation Pixel Shader Effects Library.

This material is copyright and is licensed for the sole use by Vadim Kudria on 4th October 2009

6352 108th St, , Forest Hills, , 11375

Download at WoweBook.Com

Adding Environments and Scenarios

[366]

Rendering a WriteableBitmap and using it as an ImageBrush
The ApplyTransition method creates a WriteableBitmap (System.Windows.Media.
Imaging.WriteableBitmap) instance, using the same dimensions as the LayoutRoot
Grid and four channels (blue, green, red, and alpha) to define each pixel:

WriteableBitmap currentBitmap = new WriteableBitmap(LayoutRoot, null);

This line takes a snapshot for all the UI elements contained in the LayoutRoot Grid and
saves it in currentBitmap using the aforementioned pixel format.

The WriteableBitmap class allows the creation of a read and write bitmap
buffer that can be used as a bitmap source object.

There is no additional transformation applied in the rendering process. The
WriteableBitmap instance creates a copy of what is seen on the screen.

Once the desired snapshot is saved in the bitmap buffer, it creates an ImageBrush instance
and it uses the previously rendered WriteableBitmap (currentBitmap) as an
ImageSource for this brush (currentBrush) based on a bitmap buffer:

ImageBrush currentBrush = new ImageBrush();
currentBrush.ImageSource = currentBitmap;

Creating a StoryBoard
Once the procedure has created the ImageBrush instance, it is time to begin applying the
desired transition effect to the desired source. The following line creates an instance of the
BloodTransitionEffect (TransitionEffects.BloodTransitionEffect).

BloodTransitionEffect bloodEffect = new BloodTransitionEffect();

Then, it creates a StoryBoard instance (transitionSB) calling the
CreateTransition function:

Storyboard transitionSB = CreateTransition(bloodEffect, LayoutRoot,
 TimeSpan.FromSeconds(1), 0, 1,
 currentBrush);

The third parameter defines the transition effect's duration, expressed in seconds,
TimeSpan.FromSeconds(1).

This material is copyright and is licensed for the sole use by Vadim Kudria on 4th October 2009

6352 108th St, , Forest Hills, , 11375

Download at WoweBook.Com

Chapter 13

[367]

A StoryBoard instance allows you to control one or multiple
animations with a timeline. It is very powerful. However, we were not
using StoryBoard instances for our games because we needed more
accurate control over the animations.

When the transition effect's animation ends, the game must start. Thus, the method attaches
an event handler to be triggered when the transitionSB ends:

transitionSB.Completed += new EventHandler(transitionSB_Completed);

The code programmed in the transitionSB_Completed event handler calls
the StartGame method—the code previously programmed on the button's Click
event handler).

Before starting the animation controlled by the transitionSB, the method hides the
Canvas that contains the UI elements defining the initial screen (cnvMainScreen),
previously added using Expression Blend:

cnvMainScreen.Visibility = Visibility.Collapsed;
transitionSB.Begin();

However, this code does not make these UI elements disappear immediately. As there is
a snapshot stored in the WriteableBitmap instance and it is used as a bitmap source in
currentBrush, the effect will begin running using the original rendered image of all the UI
elements contained in the parent Canvas (cnvMainScreen).

Working with a StoryBoard to animate an effect
The CreateTransition function creates and returns a StoryBoard instance, ready to
begin running the effect.

It creates a new DoubleAnimation instance using the initial and last value of the timeline,
and the duration received as parameters:

DoubleAnimation doubleAnimation = new DoubleAnimation();
doubleAnimation.Duration = new Duration(duration);
doubleAnimation.From = from;
doubleAnimation.To = to;

Once the timeline reaches the end of its active period, it will hold the last value
(FillBehavior.HoldEnd).

doubleAnimation.FillBehavior = FillBehavior.HoldEnd;

This material is copyright and is licensed for the sole use by Vadim Kudria on 4th October 2009

6352 108th St, , Forest Hills, , 11375

Download at WoweBook.Com

Adding Environments and Scenarios

[36�]

A DoubleAnimation instance allows animation of the value of a
Double property over a specified duration. It uses linear interpolation to
calculate the intermediate values at specific time intervals. In this case, the
ApplyTransition method calls the CreateTransition function to
animate the effect using a Double property from 0 to 1, increasing many times
in 1 second. Once the timeline reaches 1 second, the Double property will hold
the last value (1).

Then, it is time to create a new StoryBoard instance to handle the transition effect using
the DoubleAnimation that controls the progress value. The transitionSB adds the
previously created doubleAnimation as a child and sets transitionEffect, the effect
received as a parameter, as the target to change its progress:

Storyboard transitionSB = new Storyboard();
transitionSB.Children.Add(doubleAnimation);
Storyboard.SetTarget(doubleAnimation, transitionEffect);
Storyboard.SetTargetProperty(doubleAnimation, new PropertyPath("(Trans
itionEffect.Progress)"));

The current image brush will become the old image (the old brush based on a bitmap
snapshot) for the transition effect.

transitionEffect.OldImage = oldBrush;

Then, the function assigns the desired transition effect received as a parameter (effect)
to the Effect property for the UIElement instance (element) also received as
another parameter:

element.Effect = transitionEffect;

The function returns the new StoryBoard instance (transitionSB), ready to begin
running the transition effect.

We can also define effects, storyboards, and animations using XAML code.

Time for action – changing the transition effect
Your project manager liked the transition effect. However, he has been watching the demo
application included with the library and he wants you to test other effects. As he is going to
ask you to test dozens of effects, you want to prepare the code to make it simple to change a
transition effect.

This material is copyright and is licensed for the sole use by Vadim Kudria on 4th October 2009

6352 108th St, , Forest Hills, , 11375

Download at WoweBook.Com

Chapter 13

[36�]

Now, we are going to use different transition effects before the game starts:

1.	 Stay in the 3DInvadersSilverlight project.

2.	 Open MainPage.xaml.cs.

3.	 Replace the line that creates the BloodTransitionEffect instance in the
ApplyTransition method with the following one. (We want to apply a swirl
transition effect.):

var transitionEffect = new
 TransitionEffects.WaterTransitionEffect();

4.	 Replace the line that calls the CreateTransition function in
the previously mentioned method with the following one. (We
want to simplify the process used to change the effect.):

Storyboard transitionSB = CreateTransition(transitionEffect,
 LayoutRoot, TimeSpan.FromSeconds(3),
 0, 1, currentBrush);

5.	 Build and run the solution. The new initial screen will appear on the default web
browser. Click on the button and a water effect transition will run before the game
begins, and it will last for three seconds, as shown in the following screenshot:

This material is copyright and is licensed for the sole use by Vadim Kudria on 4th October 2009

6352 108th St, , Forest Hills, , 11375

Download at WoweBook.Com

Adding Environments and Scenarios

[370]

6.	 Now, replace the WaterTransitionEffect class name with
SwirlTransitionEffect in the ApplyTransition method (we want to apply a
swirl transition effect). The line that assigns the transitionEffect variable
will be like this one:

var transitionEffect = new
 TransitionEffects.SwirlTransitionEffect();

7.	 Build and run the solution again. Click on the button and a swirl effect transition will
run before the game begins, and it will last for three seconds, as shown in the
following screenshot:

What just happened?
Now, you can test different transition effects by changing just one word in the code. The 3D
digital artists also want to test different transition effects for the game's diverse stages. You
will have to teach them how to change the effect class and build the solution.

Exploring transition effects
We changed two lines of code in order to simplify the replacement of transition effects.
We used the var keyword to instruct the compiler to infer the type of the variable that is
evaluated from the expression on the right side of the effect initialization statement:

var transitionEffect = new TransitionEffects.SwirlTransitionEffect();

This material is copyright and is licensed for the sole use by Vadim Kudria on 4th October 2009

6352 108th St, , Forest Hills, , 11375

Download at WoweBook.Com

Chapter 13

[371]

This way, we do not have to explicitly change the type each time we change the effect.
Thus, we send the new transitionEffect local variable as a parameter to the
CreateTransition function.

We can explore the different transition effects presented by Windows Presentation
Foundation Pixel Shader Effects Library by checking the classes offered by
TransitionEffects and testing them with the sample application. The following table
shows the names for all the transition effects offered in release 2.0:

Transition effect Transition effect

BandedSwirlTransitionEffect BlindsTransitionEffect

BloodTransitionEffect CircleRevealTransitionEffect

CircleStretchTransitionEffect CircularBlurTransitionEffect

CloudyTransitionEffect CrumbleTransitionEffect

DisolveTransitionEffect DropFadeTransitionEffect

FadeTransitionEffect LeastBrightTransitionEffect

LineRevealTransitionEffect MostBrightTransitionEffect

PixelateInTransitionEffect PixelateOutTransitionEffect

PixelateTransitionEffect RadialBlurTransitionEffect

RadialWiggleTransitionEffect RandomCircleRevealTransitionEffect

RandomizedTransitionEffect RippleTransitionEffect

RotateCrumbleTransitionEffect SaturateTransitionEffect

ShrinkTransitionEffect SlideInTransitionEffect

SmoothSwirlGridTransitionEffect SwirlGridTransitionEffect

SwirlTransitionEffect TransitionEffect

WaterTransitionEffect WaveTransitionEffect

Working with multiple transition effects
Once we have a Canvas that groups the UI elements that we want to hide, the steps needed
to apply a transition effect are as following:

1. Create a new ImageBrush using a WriteableBitmap to hold a snapshot of the
desired initial picture in the transition.

2. Create a StoryBoard holding a DoubleAnimation, targeting the
TransitionEffect Progress property.

3. Define the initial picture (OldImage) for the TransitionEffect subclass instance.

4. Assign the TransitionEffect subclass instance to the Canvas or parent UI
element (Effect).

This material is copyright and is licensed for the sole use by Vadim Kudria on 4th October 2009

6352 108th St, , Forest Hills, , 11375

Download at WoweBook.Com

Adding Environments and Scenarios

[372]

5. Attach the event handler to the StoryBoard instance with the actions to be
performed once the transition ends.

6. Collapse the Canvas or parent's UI visibility.

7. Start the StoryBoard timeline.

Time for action – using skill levels
Your project manager wants you to add four skill levels to the game:

Rookie

Beginner

Intermediate

Advanced

Each skill level has to define different parameters for the game. The player must be able to
select the desired skill level and the game must consider its related parameter values.

Now, we are going to create an XML file to define some values for a few parameters:

1.	 Stay in the 3DInvadersSilverlight project.

2.	 Right-click on 3DInvadersSilverlight (the main project) in the Solution
Explorer and select Add | New item… from the context menu that appears.
A dialog box will then appear.

3.	 Select XML File from the list, enter the name SkillLevels.xml for this new file,
and click on Add. A new item will be added to the 3DInvadersSilverlight
project, named SkillLevels.xml, with the following line of XML code:

<?xml version="1.0" encoding="utf-8" ?>

4.	 Add the following line to start defining SkillLevels:

<skillLevels>

5.	 Add the following lines to define the first level—Rookie:

<skillLevel levelId="0">
 <title>Rookie</title>
 <meteorsNumber>10</meteorsNumber>
 <impulseX>25</impulseX>
 <impulseY>-25</impulseY>
 <bonus>10000</bonus>
 <lives>6</lives>
 <fuelLevel>100</fuelLevel>
</skillLevel>

This material is copyright and is licensed for the sole use by Vadim Kudria on 4th October 2009

6352 108th St, , Forest Hills, , 11375

Download at WoweBook.Com

Chapter 13

[373]

6.	 Add the following lines to define the second level—Beginner.

<skillLevel levelId="1">
 <title>Beginner</title>
 <meteorsNumber>20</meteorsNumber>
 <impulseX>20</impulseX>
 <impulseY>-20</impulseY>
 <bonus>7000</bonus>
 <lives>5</lives>
 <fuelLevel>90</fuelLevel>
</skillLevel>

7.	 Add the following lines to define the third level—Intermediate.

<skillLevel levelId="2">
 <title>Intermediate</title>
 <meteorsNumber>24</meteorsNumber>
 <impulseX>15</impulseX>
 <impulseY>-15</impulseY>
 <bonus>5000</bonus>
 <lives>4</lives>
 <fuelLevel>70</fuelLevel>
</skillLevel>

8.	 Add the following lines to define the fourth level—Advanced.

<skillLevel levelId="3">
 <title>Advanced</title>
 <meteorsNumber>36</meteorsNumber>
 <impulseX>10</impulseX>
 <impulseY>-10</impulseY>
 <bonus>2000</bonus>
 <lives>2</lives>
 <fuelLevel>50</fuelLevel>
</skillLevel>

9.	 Add the following line to close SkillLevels:

</skillLevels>

This material is copyright and is licensed for the sole use by Vadim Kudria on 4th October 2009

6352 108th St, , Forest Hills, , 11375

Download at WoweBook.Com

Adding Environments and Scenarios

[374]

10.	You will be able to toggle the outlining expansion for these groups, as shown in
the following screenshot:

What just happened?
We added an XML file to the project with the definitions of the four skill levels. Now, the
application can access the following parameter values for each skill level:

levelId

title

meteorsNumber

impulseX

impulseY

bonus

lives

fuelLevel

Now, we have everything we need to begin changing the game's behavior according to the
skill level.

This material is copyright and is licensed for the sole use by Vadim Kudria on 4th October 2009

6352 108th St, , Forest Hills, , 11375

Download at WoweBook.Com

Chapter 13

[375]

Time for action – changing and improving the environments
according to the skill level

Now, we have to make some changes to the main game class to configure many behaviors
according to the selected skill level.

1.	 Stay in the project, 3DInvadersSilverlight.

2.	 Click on 3DInvadersSilverlight in the Solution Explorer.

3.	 Select Project | Add Reference… and select System.Xml.Linq. Then, click on OK.

4.	 Open InvadersGame.cs.

5.	 Add the following lines of code at the beginning. We are going to use LINQ
(Language-Integrated Query) to XML:

using System.Linq;
using System.Xml.Linq;

C# 3.0 (Visual C# 2008) introduced LINQ. It is very useful for processing queries
for many different data sources. The features of LINQ and its usage in real-
life scenarios are described in-depth in LINQ Quickly (A Practical Guite to
Programming Language Integrated Query with C#) by N. Satheesh Kumar,
Packt Publishing.

6.	 Add the following private variables to hold the values for the parameters that
define a specific skill level for the game:

// The active skill level id
private int _levelId;
private int _levelMeteorsNumber;
private Vector2 _levelImpulse;
private int _levelBonus;
private int _levelLives;
private int _levelFuelLevel;

7.	 Add the following private method to initialize the values for the parameters
according to the values stored in the previously added XML file, using LINQ to XML:

private void InitializeSkillLevel()
{
 // Load the skill levels definitions from an XML file
 XDocument docLevels = XDocument.Load("SkillLevels.xml");
 // Query the data and obtain the descendants for the desired
 skill level id
 var q = from el in docLevels.Descendants("skillLevel")

This material is copyright and is licensed for the sole use by Vadim Kudria on 4th October 2009

6352 108th St, , Forest Hills, , 11375

Download at WoweBook.Com

Adding Environments and Scenarios

[376]

 where (int)el.Attribute("levelId") == _levelId
 select el;
 var first = q.ElementAt(0);
 _levelMeteorsNumber = (int)first.Element("meteorsNumber");
 _levelImpulse = new Vector2(((float)
 (int)first.Element("impulseX") / 100),
 ((float)(int)first.Element("impulseY") / 100));
 _levelBonus = (int)first.Element("bonus");
 _levelLives = (int)first.Element("lives");
 _levelFuelLevel = (int)first.Element("fuelLevel");
}

8.	 Add the following lines of code after the line base.Initialize(); in the
Initialize method (we must retrieve the values for a specific skill level and
assign them to the corresponding game's parameters):

_levelId = 1;
InitializeSkillLevel();

9.	 Add the following lines of code at the beginning of the AddMeteors method:

_meteorsNumber = _levelMeteorsNumber;

10.	Replace the line that applies an impulse to _ufo1.Body with the following,
in the CheckKeyboard method:

//_ufo1.Body.ApplyImpulse(new Vector2(0.25f, -0.25f));
_ufo1.Body.ApplyImpulse(_levelImpulse);

11.	Replace the lines that define the initial values for _bonus and _lives with the
following, in the InitializeStatistics method:

//_bonus = 5000;
//_lives = 6;
_bonus = _levelBonus;
_lives = _levelLives;

12.	Replace the line that assigns the initial value for _fuelLevel with the following,
in the StartNewLife method:

//_fuelLevel = 100;
_fuelLevel = _levelFuelLevel;

This material is copyright and is licensed for the sole use by Vadim Kudria on 4th October 2009

6352 108th St, , Forest Hills, , 11375

Download at WoweBook.Com

Chapter 13

[377]

13.	Build and run the solution. Click on the button and the game will begin after
displaying the transition effect. It will show 20 meteors raining in the background,
a bonus of 7,000 points, a fuel level of 90 , and the other parameters defined
for the Beginner level (levelId = 1), as shown in the following screenshot:

14.	Now, replace _levelId = 1; with _levelId = 3; (we want to start the
game in the Advanced level). As was noted earlier, this is set in the first line of
code after the line base.Initialize(); in the Initialize method.

This material is copyright and is licensed for the sole use by Vadim Kudria on 4th October 2009

6352 108th St, , Forest Hills, , 11375

Download at WoweBook.Com

Adding Environments and Scenarios

[37�]

15.	Build and run the solution again. Click on the button and the game will begin after
playing the transition effect. It will show 36 meteors raining in the background,
a bonus of 2,000 points, a fuel level of 50, and the other parameters defined
for the Advanced level (levelId = 3), as shown in the following sceenshot:

What just happened?
The simple pursuit game is capable of adjusting many behaviors according to the skill level.
The complexity increases, the background changes and the scoring rules differ. Now, you can
use XML files to define many aspects of games by applying the same technique.

Retrieving values for parameters using LINQ to XML
First, we added the XML file with the definitions for the levels. Then, we added the variables
that hold the specific values for the active skill level's parameters. The private variable
_levelId holds the active level identifier (as a primary key).

The InitializeSkillLevel method loads the skill levels definitions from the
SkillLevels.xml XML file (embedded and compressed in the .xap file):

XDocument docLevels = XDocument.Load("SkillLevels.xml");

This material is copyright and is licensed for the sole use by Vadim Kudria on 4th October 2009

6352 108th St, , Forest Hills, , 11375

Download at WoweBook.Com

Chapter 13

[37�]

Then, it uses a LINQ query against docLevels to obtain the descendants for the desired skill
level id, where (int)el.Attribute("levelId") == _levelId. As we are sure that
each level has a unique SkillLevel definition, it holds the first element in the first
 local variable:

var first = q.ElementAt(0);

Finally, the method assigns the values for the private variables using a level prefix,
typecasting when necessary, as in the following line:

_levelBonus = (int)first.Element("bonus");

If _levelId = 3, the previous line will assign the value defined in the following XML line,
corresponding to <skillLevel levelId="3">:

<bonus>2000</bonus>

As the code in the game was not taking into account the possibility to use parameters, we
had to assign the values retrieved from the XML file to each part of code that defined a
specific behavior related with those parameters.

XML files and LINQ to XML are very powerful to define even the most
complex maps for games.

Time for action – saving configurations
Your project manager likes the possibility to use levels by configuring them using an easy to
understand XML file. Now he wants you to find a way to let a player save his own desired skill
level. The game must use this skill level. However, he does not want you to use a variable,
he wants the values to persist in an isolated storage—without adding security risks for
the player.

Now, we are going to add the possibility to save and retrieve configurations values to and
from an isolated storage in a sandbox.

1.	 Stay in the 3DInvadersSilverlight project.

2.	 Open InvadersGame.cs.

3.	 Add the following lines of code at the beginning (as we are going to use the
IsolatedStorageSettings class):

using System.IO.IsolatedStorage;

This material is copyright and is licensed for the sole use by Vadim Kudria on 4th October 2009

6352 108th St, , Forest Hills, , 11375

Download at WoweBook.Com

Adding Environments and Scenarios

[3�0]

4.	 Add the following private variable to access the isolated application settings:

private IsolatedStorageSettings _appSettings =
 IsolatedStorageSettings.ApplicationSettings;

5.	 Add the following private static variable to define a string that represents
the key to save the desired skill level for the player:

private static String ISKeySkillLevel = "skillLevel";

6.	 Add the following private methods to save and load the desired skill level id as
an isolated application settings key:

private void SaveDesiredSkillLevel()
{
 try
 {
 if (_appSettings.Contains(ISKeySkillLevel))
 // The key already exists
 _appSettings[ISKeySkillLevel] = _levelId;
 else
 // The key does not exist
 _appSettings.Add(ISKeySkillLevel, _levelId);
 }
 catch (ArgumentException ex)
 {
 // Something went wrong
 }
}
private void LoadDesiredSkillLevel()
{
 try
 {
 _levelId = (int)_appSettings[ISKeySkillLevel];
 }
 catch (System.Collections.Generic.KeyNotFoundException ex)
 {
 // Something went wrong, use a default level
 _levelId = 0;
 }
}

This material is copyright and is licensed for the sole use by Vadim Kudria on 4th October 2009

6352 108th St, , Forest Hills, , 11375

Download at WoweBook.Com

Chapter 13

[3�1]

What just happened?
Now, we have two simple methods to save and load the desired skill level in isolated storage.
We can offer the players the ability to save their favorite initial skill level for the game.

The isolated storage enables Silverlight applications to create and maintain a
safe client-side virtual file system for partial trust applications. It is useful to save
some persistent configuration data for our applications when necessary.

The SaveDesiredSkillLevel method checks whether the key already exists or not. If it
exists, it updates its value:

_appSettings[ISKeySkillLevel] = _levelId;

If it does not exist, it creates the new key:

_appSettings.Add(ISKeySkillLevel, _levelId);

The LoadDesiredSkillLevel method tries to get the value for the key. If something goes
wrong, it uses a default level id (0).

In this case, to keep things simple, we did not consider some problems that
might occur while accessing the isolated storage, like space problems and quotas
being exceeded. Therefore, we did not check for specific exceptions. This is not
good practice in critical applications.

Have a go hero – displaying amazing menus with configuration options
You have to exploit the transition effects offered by Windows Presentation Foundation Pixel
Shader Effects Library combined with the features offered by Expression Blend to create
amazing user interfaces.

You already know how to add new transitions. You can create many Canvas instances in the
same XAML page, with many UI elements inside each one, and you can display configuration
menus using the powerful pixel shaders behind this easy-to-use library.

Your project manager wants you to add an animated menu to let the user configure all
the parameters for each skill level. The default parameters will be the ones defined in
the original XML file. However, the user can change each parameter to customize the
gaming experience.

This material is copyright and is licensed for the sole use by Vadim Kudria on 4th October 2009

6352 108th St, , Forest Hills, , 11375

Download at WoweBook.Com

Adding Environments and Scenarios

[3�2]

Have a go hero – showing stages
The transition effects are ideal to show different stages for the game.

Add another transition before the game begins displaying the titles of the different levels
(retrieved from the XML definition file) and the legendary READY! message. Remember to
use a Canvas to hold the UI elements and to hide it when the transition begins.

Balder offers a very simple way to stop a game that is running. You can call the Stop
method. Then, you can create transitions taking a snapshot for the parent that displays
Balder's viewport.

Add a transition to a GAME OVER screen when the player has no more lives remaining.

Add a high score management system, using the isolated storage. The initial screen must
offer the player the possibility to check the game's hall of fame (the first top ten high scores).

Pop quiz – avoiding the GAME OVER screen
1. Pixel shaders allow you to:

a. Take a snapshot from any UI Element.

b. Modify the rendered pixels of any UI Element before Silverlight shows
them on the web browser viewport.

c. Apply an effect to the web browser main window's borders.

2. HLSL stands for:

a. High-Level Surface Land.

b. High-Lambda Studio Line.

c. High-Level Shading Language.

3. An XML file included in a Silverlight project will be:

a. Embedded and compressed in the .xap file.

b. Embedded in the .asp file

c. Embedded and compressed in the XML.zip file.

This material is copyright and is licensed for the sole use by Vadim Kudria on 4th October 2009

6352 108th St, , Forest Hills, , 11375

Download at WoweBook.Com

Chapter 13

[3�3]

4. The WriteableBitmap class allows:

a. Creating a HLSL file.

b. Creating a read and write bitmap buffer that can be used as a bitmap
source object.

c. Creating a buffered isolated storage.

5. A StoryBoard instance allows:

a. Controlling one or multiple animations with a timeline.

b. Controlling just one animation with a timeline.

c. Controlling a foreach loop with a WriteableBitmap.

6. The following line starts the sbTest StoryBoard instance:

a. sbTest.DoLoop();

b. sbTest.Begin();

c. sbTest.StartTimeline();

Summary
We learned a lot in this chapter about creating dazzling transition effects to organize
different screens for the game. Specifically, we were able to use specialized libraries to apply
pixel shaders without having to learn HLSL. We used Expression Blend to create nice screens
prepared for the transition effects controlled in C#. We combined many UI elements to group
them in order to hide or show them as necessary. We were able to define parameters using
XML files and we also understood how to save preferences in an isolated storage.

Now that we've learned to add environments, scenarios, configuration screens, and stages,
we're ready to add sound, music and video, which is the topic of the next chapter.

This material is copyright and is licensed for the sole use by Vadim Kudria on 4th October 2009

6352 108th St, , Forest Hills, , 11375

Download at WoweBook.Com

This material is copyright and is licensed for the sole use by Vadim Kudria on 4th October 2009

6352 108th St, , Forest Hills, , 11375

Download at WoweBook.Com

14
Adding Sound, Music, and Video

A game needs sound, music and video. It has to offer the player attractive
background music. It must also generate sounds associated with certain game
events. When a spaceship shoots a laser beam, a sound must accompany
this action. Reproducing videos showing high-quality previously rendered
animations is a good idea during transitions between one stage and the next.

In this chapter we will add sounds, music and videos to the game. By reading this chapter
and following the exercises we will learn how to:

Add background music to the game

Generate sounds associated to the game events

Take advantage of multiple channel audio

Control the reproduction of concurrent sounds

Organize the media elements for the game

Prepare our media elements for their use in Silverlight applications

Take advantage of Silverlight 3 performance enhancements for videos

Reproduce videos combined with animated projections

This material is copyright and is licensed for the sole use by Vadim Kudria on 4th October 2009

6352 108th St, , Forest Hills, , 11375

Download at WoweBook.Com

Adding Sound, Music, and Video

[3�6]

Hear the UFOs coming
So far, we have worked with 3D scenes showing 3D models with textures and different
kinds of lights. We took advantage of C# object-oriented capabilities and we animated 3D
models and moved the cameras. We have read values from many different input devices
and we added physics, artificial intelligence, amazing effects, gauges, statistics, skill levels,
environments, and stages. However, the game does not use the speakers at all because there
is no background music and there are no in-game sounds. Thus, we have to sort this issue
out. Modern games use videos to dazzle the player before starting each new stage. They use
amazing sound effects and music custom prepared for the game by renowned artists. How
can we add videos, music, and sounds in Silverlight?

We can do this by taking advantage of the powerful multimedia classes offered
by Silverlight 3. However, as a game uses more multimedia resources than
other simpler applications, we must be careful to avoid including unnecessary
resources in the files that must be downloaded before starting the application.

Time for action – installing tools to manipulate videos
The 3D digital artists used Blender to create an introductory video showing a high quality
rendered animation for five seconds. They took advantage of Blender's animation creation
features, as shown in the following screenshot:

This material is copyright and is licensed for the sole use by Vadim Kudria on 4th October 2009

6352 108th St, , Forest Hills, , 11375

Download at WoweBook.Com

Chapter 14

[3�7]

A spaceship flies in a starry universe for a few seconds. Then, the camera navigates through
the stars.

This material is copyright and is licensed for the sole use by Vadim Kudria on 4th October 2009

6352 108th St, , Forest Hills, , 11375

Download at WoweBook.Com

Adding Sound, Music, and Video

[3��]

Your project manager wants you to add this video as an introduction to the game. However,
as the video file is in AVI (Audio Video Interleave) format and Silverlight 3 does not support
this format, you have to convert the video to an appropriate format.

The creation of video animations for a game is very complex and
requires specialist skills. We are going to simplify this process by
using an existing video.

First, we must download and install an additional tool that will help us in converting an
existing video to the most appropriate file formats used in Silverlight 3:

The necessary tools will depend on the applications the digital
artists use to create the videos. However, we will be using some
tools that will work fine with our examples.

1. Download one of the following files:

Application's
name

Download link File name Description

Expression
Encoder 2

http://www.
microsoft.com/
expression/try-it/
try-it-v2.aspx

Encoder_Trial_
en.exe

This is a commercial tool,
but the trial offers a free
fully functional version
for 30 days. This tool will
enable us to encode videos
to the appropriate format
to use in Silverlight 3.

Expression
Encoder 3

http://www.
microsoft.com/
expression/try-it

Encoder_Trial_
en.exe

This is the newest
trial version of the
aforementioned
commercial tool.

2. Run the installers and follow the steps to complete the installation wizards.

3.	 If you installed Expression Encoder 2, download and install its Service Pack 1.
The download link for it is http://www.microsoft.com/expression/try-
it/try-it-v2.aspx#encodersp1 file name—EncoderV2SP1_en.exe.

4.	 Once you have installed one of the versions of Expression Encoder, you will
be able to load and encode many video files in different file formats, as shown in
the following screenshot:

This material is copyright and is licensed for the sole use by Vadim Kudria on 4th October 2009

6352 108th St, , Forest Hills, , 11375

Download at WoweBook.Com

Chapter 14

[3��]

What just happened?
We installed Expression Encoder. Now we have the necessary tool to convert existing video
clipart to the most appropriate file formats to use in Silverlight 3.

Time for action – preparing a video to use it in Silverlight
Now, we are going to use Expression Encoder to convert the video from an AVI format
to an HD 720p Intranet (High Definition, 1280X720 pixels) encoding profile, compatible
with Silverlight 3:

1. Save or copy the original video file (introduction_HD.avi) in a new folder
(C:\Silverlight3D\Invaders3D\Media).

2.	 Start Expression Encoder.

3.	 Select File | New Job.

4.	 Now, select File | Import…. Browse to the folder that holds the video file (C:\
Silverlight3D\Invaders3D\Media) and select the file introduction_
HD.avi to import. Then, click on Open. Expression Encoder will analyze the file for a
few seconds and then, the first frame for the video will appear on the preview area.

This material is copyright and is licensed for the sole use by Vadim Kudria on 4th October 2009

6352 108th St, , Forest Hills, , 11375

Download at WoweBook.Com

Adding Sound, Music, and Video

[3�0]

5. Expand Profile and select HD 720p Intranet from the Video combo box. This step
defines the desired video profile for the encoding process. The Video Profile options
will display the output video's width, height, and aspect ratio, among other
parameter values, as shown in the following screenshot:

6.	 Click on the Output tab, expand Job output and click on the Browse for output
folder button (…) on the right side of the Directory text box. Browse to the folder
that holds the original video file (C:\Silverlight3D\Invaders3D\Media)
and click on OK.

7.	 Select File | Encode or click on the Encode button. Expression Blend will
begin the encoding job and will display the overall progress as shown in the
following screenshot:

This material is copyright and is licensed for the sole use by Vadim Kudria on 4th October 2009

6352 108th St, , Forest Hills, , 11375

Download at WoweBook.Com

Chapter 14

[3�1]

8.	 After a few seconds (depending on the video length, resolution, and format),
Expression Blend will show Ready in the Status column.

9.	 Right-click on the item (C:\Silverlight3D\Invaders3D\Media\
introduction_HD.avi) under Media Content and select Open File Location
in the context menu that appears. A new Explorer window will appear
showing the folder with a new sub-folder with the default user name as a
prefix, the date and the time. Enter this sub-folder and move the new video
file (introduction_HD.wmv) to the previously mentioned parent folder.

10.	Double-click on the new video file (introduction_HD.wmv) and watch
it using your default media player (Windows Media Player or VLC Media
Player, among others). Check whether the video quality, resolution, and
reproduction are as good as expected, as shown in the following screenshot:

This material is copyright and is licensed for the sole use by Vadim Kudria on 4th October 2009

6352 108th St, , Forest Hills, , 11375

Download at WoweBook.Com

Adding Sound, Music, and Video

[3�2]

What just happened?
You used Expression Blend to encode the original AVI video into a WMV (Windows Media
Video) with an HD 720p Intranet encoding profile. Now, the video has a 1280X720 pixels
resolution and it is compatible with Silverlight 3.

In this case, we created a video prepared for an application that runs on the
Intranet because we want to test the game. However, we will have to choose
a different encoding profile according to the Internet bandwidth offered by
the hosting service and the average download speed available for the game's
potential players. The steps to encode the video using a different profile are the
same as the ones used in the previously explained procedure. The only step that
changes is the one in which we select the desired encoding profile.

Video formats supported in Silverlight 3
Silverlight 3 supports the video encodings shown in the following table:

Encoding name Description and restrictions

None Raw video
YV12 YCrCb(4:2:0)
RGBA 32-bits Red, Green, Blue, and Alpha
WMV1 Windows Media Video 7
WMV2 Windows Media Video 8
WMV3 Windows Media Video 9
WMVA Windows Media Video Advanced Profile

(non-VC-1)
WMVC1 Windows Media Video Advanced Profile (VC-1)
H.264
(ITU-T H.264 / ISO MPEG-4 AVC)

H.264 and MP43 codecs; base main and high
profiles; only progressive (non-interlaced) content
and only 4:2:0 chroma sub-sampling profiles

Silverlight 3 does not support interlaced video content.

If we want to use a video with an encoding format that does not appear in the previously
shown table, we will have to convert it to one of the supported formats.

This material is copyright and is licensed for the sole use by Vadim Kudria on 4th October 2009

6352 108th St, , Forest Hills, , 11375

Download at WoweBook.Com

Chapter 14

[3�3]

Using free applications to convert video formats
Expression Encoder is not the only application capable of converting videos to the encoding
profiles supported by Silverlight 3. We can also use many free or open source applications
and several online services to convert videos to any of the previously shown formats.

One example of a free and open source audio and video converter is
MediaCoder (http://mediacoder.sourceforge.net/).

One example of a free online service to convert audio and video from one format to other
is Media Convert (http://media-convert.com/). The advantage of online services
dedicated to converting video formats is that they do not require the installation of
additional software. Their trade-off is that we have to upload the original video file and then
download the converted output video file. If the video files are big, we will need a very fast
Internet connection.

If you have to convert too many big files and you do not have a fast Internet
connection, installing a free and open source video converter such as
MediaEncoder is a good choice.

Time for action – reproducing videos
Now, we are going to reproduce the video converted to a WMV format with an HD 720p
Intranet encoding profile, before starting the game:

1. Open the 3DInvadersSilverlight project.

2.	 Open 3DInvadersSilverlightTestPage.aspx (double-click on it in the
Solution Explorer, found under 3DInvadersSilverlight.Web project) and
enable hardware acceleration (GPU acceleration).

3.	 Create a new sub-folder in the ClientBin folder in the
3DInvadersSilverlight.Web project. Rename it to Media.

4.	 Right-click on the previously mentioned folder and select Add | Existing item… from
the context menu that appears.

This material is copyright and is licensed for the sole use by Vadim Kudria on 4th October 2009

6352 108th St, , Forest Hills, , 11375

Download at WoweBook.Com

Adding Sound, Music, and Video

[3�4]

5.	 Go to the folder in which you have copied the previously encoded video in the WMV
format (C:\Silverlight3D\Invaders3D\Media). Select the WMV file and click
on Add. This way, the video file will be part of the web project, in the new Media
folder, as shown in the following screenshot:

6.	 Open MainPage.xaml (double-click on it in the Solution Explorer) and insert the
following lines of code before the line that defines the cnvMainScreen Canvas:

 <Canvas x:Name="cnvVideo" Visibility="Collapsed" >
 <MediaElement x:Name="medIntroduction" Width="1366"
 Height="768" AutoPlay="False"
 CacheMode="BitmapCache" Stretch="UniformToFill"
 Source="Media/introduction_HD.wmv"
 MediaEnded="medIntroduction_MediaEnded"/>
 </Canvas>

7.	 Add the following lines of code to program the event handler for the
MediaElement's MediaEnded event (this code will start the game when
the video finishes):

 private void medIntroduction_MediaEnded(object sender,
 RoutedEventArgs e)
 {
 StartGame();
 }

8.	 Add the following private method to play the introductory video:

 private void PlayIntroductoryVideo()
 {
 // Show the Canvas that contains the MediaElement as a child
 cnvVideo.Visibility = Visibility.Visible;
 // Play the video
 medIntroduction.Play();
 }

This material is copyright and is licensed for the sole use by Vadim Kudria on 4th October 2009

6352 108th St, , Forest Hills, , 11375

Download at WoweBook.Com

Chapter 14

[3�5]

9.	 Replace the code in the transitionSB_Completed method with the following.
(We want to play the introductory video instead of starting the game, once the
transition finishes.):

 //StartGame();
 PlayIntroductoryVideo();

10.	Build and run the solution. Click on the button and the video will start its
reproduction after the transition effect, as shown in the following screenshot:

What just happened?
Now, the application shows an introductory video before starting the game. However,
your project manager wants you to add some kind of 3D effect to the video. Players must
understand that they are going to play a 3D game.

Locating videos in a related web site
First, we had to convert the original video to an encoding profile compatible with Silverlight
3. Then, we added it to a new Media sub-folder in the related website ClientBin folder.
This way, we do not embed the large video file in the application's .xap file.

This material is copyright and is licensed for the sole use by Vadim Kudria on 4th October 2009

6352 108th St, , Forest Hills, , 11375

Download at WoweBook.Com

Adding Sound, Music, and Video

[3�6]

The .xap file's size determines the time needed to download the Silverlight
application. We are using the application's website to hold the media files. This
way, we avoid generating a huge .xap file and the application downloads the
media files on-demand.

The Source property uses a relative Uri (Media/introduction_HD.wmv) because the
root folder for the .xap application is the ClientBin folder and the video is located in
ClientBin/Media.

The AutoPlay property was set to False because we did not want the video to begin its
reproduction until the transition ended.

Stretching videos
The video file prepared for Silverlight 3 uses a resolution of 1280X720 pixels. However, our
game was prepared for 1366X768 pixels. Therefore, we created added a Canvas (cnvVideo)
with a MediaElement instance (medIntroduction) as a child, using XAML code.

We defined the reproduction area to be 1366X768 pixels and we assigned the
UniformToFill value to the Stretch property. Thus, the MediaElement resizes the
original 1280X720 pixels video to fill its dimensions (1366X768 pixels) while preserving the
video's native aspect ratio.

The following diagram shows the results of using the four possible values in the Stretch
property with the same original video:

This material is copyright and is licensed for the sole use by Vadim Kudria on 4th October 2009

6352 108th St, , Forest Hills, , 11375

Download at WoweBook.Com

Chapter 14

[3�7]

The following table explains the results of using the previously mentioned values:

Stretch value Description Aspect ratio

None The video preserves its original size. Preserved.
Uniform The video is resized to fit in the destination

dimensions.
Preserved.

UniformToFill The video is resized to fill the destination
dimensions. The video content that does not fit
in the destination rectangle is clipped.

Preserved.

Fill The video is resized to fill the destination
dimensions.

Not preserved.

Taking advantage of GPU acceleration to scale videos
We configured the web project to start the Silverlight plug-in with hardware acceleration
capabilities. As we are using the UniformToFill value for the Stretch property, assigning
the BitmapCache value to the MediaElement's CacheMode property, Silverlight will try to
perform the resize operation using the GPU.

The GPU acceleration will work only when the MediaElement has to show the
video in a different size. If the value assigned to the Stretch property is None,
the video size will not change and there will be no GPU assistance during the
reproduction process.

First, we made cnvVideo visible and then we started reproducing the video calling
medIntroduction's Play method, in the PlayIntroductoryVideo method.

As we wanted the game to start once the video ended, we programmed the MediaEnded
event handler with the following line:

StartGame();

This material is copyright and is licensed for the sole use by Vadim Kudria on 4th October 2009

6352 108th St, , Forest Hills, , 11375

Download at WoweBook.Com

Adding Sound, Music, and Video

[3��]

Time for action – applying projections
We want players to understand that they are going to play a 3D game. Hence, we will add a
plane projection to the Canvas that contains the video (the MediaElement instance):

1. Stay in the 3DInvadersSilverlight project,.

2.	 Open MainPage.xaml and insert the following lines of code after the line that
defines the medIntroduction MediaElement:

 <Canvas.Projection>
 <PlaneProjection RotationX="-40" RotationY="15" RotationZ="-6"
 LocalOffsetX="-70" LocalOffsetY="-105" />
 </Canvas.Projection>

3.	 Build and run the solution. Click on the button and the video will start its
reproduction after the transition effect. However, this time, it will be displayed
projected using a perspective transform, as shown in the following screenshot:

What just happened?
Your project manager is amazed! The 3D digital artists are astonished! You could add a
3D perspective to the 2D video in just a few seconds. Now, the introductory video is even
more attractive.

This material is copyright and is licensed for the sole use by Vadim Kudria on 4th October 2009

6352 108th St, , Forest Hills, , 11375

Download at WoweBook.Com

Chapter 14

[3��]

We added a PlaneProjection instance to the Canvas (cnvVideo) that contains
the MediaElement (medIntroduction). Then, we assigned the following values to
its properties:

RotationX: -40

RotationY: 15

RotationZ: -6

LocalOffsetX: -70

LocalOffsetY: -105

The RotationX, RotationY, and RotationZ properties specify the number of degrees to
rotate the Canvas in the space. The LocalOffsetX and LocalOffsetY properties specify
the distance the Canvas is translated along each axis of the Canvas' plane.

We can apply a perspective transform to any UIElement by setting itsetting its
Projection property to a PlaneProjection instance. Then, we
can assign the desired values to the PlaneProjection's properties.

PlaneProjection is a subclass of the Projection class. The last one allows you to
describe how to project a 2D object in the 3D space using perspective transforms.

Time for action – animating projections
Your project manager wants you to animate the perspective transform applied to the video
while it is being reproduced.

We are going to add a StoryBoard in XAML code to animate the
PlaneProjection instance:

1. Stay in the project, 3DInvadersSilverlight.

2.	 Open MainPage.xaml and replace the PlaneProjection definition
with the following line (we have to add a name to refer to it):

 <PlaneProjection x:Name ="proIntroduction" RotationX="-40"
 RotationY="15" RotationZ="-6" LocalOffsetX="-70"
 LocalOffsetY="-105" />

This material is copyright and is licensed for the sole use by Vadim Kudria on 4th October 2009

6352 108th St, , Forest Hills, , 11375

Download at WoweBook.Com

Adding Sound, Music, and Video

[400]

3.	 Add the following lines of code before the end of the definition of the
cnvVideo Canvas:

 <Canvas.Resources>
 <Storyboard x:Name="introductionSB">
 <DoubleAnimation Storyboard.TargetName="proIntroduction"
 Storyboard.TargetProperty="RotationX"
 From="-40" To="0" Duration="0:0:5"
 AutoReverse="False" RepeatBehavior="1x" />
 </Storyboard>
 </Canvas.Resources>

4.	 Now, add the following line of code before the end of the
PlayIntroductoryVideo method (to start the animation):

 introductionSB.Begin();

5. Build and run the solution. Click on the button and the video will start its
reproduction after the transition effect. While the video is being played,
the projection will be animated, as shown in the following diagram:

What just happened?
Now, the projection that shows the video is animated while the video is being reproduced.

This material is copyright and is licensed for the sole use by Vadim Kudria on 4th October 2009

6352 108th St, , Forest Hills, , 11375

Download at WoweBook.Com

Chapter 14

[401]

Working with a StoryBoard in XAML to animate a projection
First, we added a name to the existing PlaneProjection (proIntroduction). Then, we
were able to create a new StoryBoard with a DoubleAnimation instance as a child, with
the StoryBoard's TargetName set to proIntroduction and its TargetProperty set to
RotationX. Thus, the DoubleAnimation controls proIntroduction's RotationX value.

The RotationX value will go from -40 to 0 in five seconds—the same time as the
video's duration:

From="-40" To="0" Duration="0:0:5"

The animation will run once (1x) and it won't reverse its behavior:

AutoReverse="False" RepeatBehavior="1x"

We added the StoryBoard inside <Canvas.Resources>. Thus, we were able to start it by
calling its Begin method, in the PlayIntroductionVideo procedure:

introductionSB.Begin();

We can define StoryBoard instances and different Animation (System.
Windows.Media.Animation) subclasses instances as DoubleAnimation,
using XAML code. This way, we can create amazing animations for many
properties of many other UIElements defined in XAML code.

Time for action – solving navigation problems
When the game starts, there is an undesired side effect. The projected video appears in the
right background, as shown in the following screenshot:

This material is copyright and is licensed for the sole use by Vadim Kudria on 4th October 2009

6352 108th St, , Forest Hills, , 11375

Download at WoweBook.Com

Adding Sound, Music, and Video

[402]

This usually happens when working with projections. Now, we are going to solve this
small problem:

1. Stay in the 3DInvadersSilverlight project.

2.	 Open MainPage.xaml.cs and add the following line before the first one in the
medIntroduction_MediaEnded method:

 cnvVideo.Visibility = Visibility.Collapsed;

3.	 Build and run the solution. Click on the button and after the video reproduction
and animation, the game will start without the undesired background, as shown
in the following screenshot:

What just happened?
Now, once the video finishes its reproduction and associated animation, we have hidden
the Canvas that contains it. Hence, there are no parts of the previous animation visible
when the game starts.

This material is copyright and is licensed for the sole use by Vadim Kudria on 4th October 2009

6352 108th St, , Forest Hills, , 11375

Download at WoweBook.Com

Chapter 14

[403]

Time for action – reproducing music
Great games have appealing background music. Now, we are going to search and add
background music to our game:

As with other digital content, sound and music have a copyright owner and a
license. Hence, we must be very careful when downloading sound and music
for our games. We must read licenses before deploying our games with these
digital contents embedded.

1. One of the 3D digital artists found a very cool electro music sample for reproduction
as background music. You have to pay to use it. However, you can download a free
demo (Distorted velocity. 1) from http://www.musicmediatracks.com
/music/Style/Electro/. Save the downloaded MP3 file
(distorted_velocity._1.mp3) in the previously created media
folder (C:\Silverlight3D\Invaders3D\Media).

You can use any other MP3 sound for this exercise.
The aforementioned MP3 demo is not included in the
accompanying source code.

2.	 Stay in the 3DInvadersSilverlight project.

3. Right-click on the Media sub-folder in the 3DInvadersSilverlight.Web
project and select Add | Existing item… from the context menu that appears.

4.	 Go to the folder in which you copied the downloaded MP3 file
(C:\Silverlight3D\Invaders3D\Media). Select the MP3 file and
click on Add. This way, the audio file will be part of the web project,
in the Media folder, as shown in the following screenshot:

This material is copyright and is licensed for the sole use by Vadim Kudria on 4th October 2009

6352 108th St, , Forest Hills, , 11375

Download at WoweBook.Com

Adding Sound, Music, and Video

[404]

5.	 Now, add the following lines of code at the beginning of the btnStartGame
button's Click event. This code will enable the new background music to
start playing:

 // Background music
 MediaElement backgroundMusic = new MediaElement();
 LayoutRoot.Children.Add(backgroundMusic);
 backgroundMusic.Volume = 0.8;
 backgroundMusic.Source =
 new Uri("Media/distorted_velocity._1.mp3", UriKind.Relative);
 backgroundMusic.Play();

6.	 Build and run the solution. Click on the button and turn on your speakers. You will
hear the background music while the transition effect starts.

What just happened?
You discovered that the speakers worked! Now, the game has attractive background music.
Leave the speakers on, because your project manager wants more sound effects in the game.

We created a new MediaElement instance (backgroundMusic). However, this time,
we used C# to create it, instead of working on XAML code. We had to add the new
MediaElement to a parent container:

LayoutRoot.Children.Add(backgroundMusic);

Then, we defined the desired Volume level and the Source as a new relative Uri (Uniform
Resource Identifier):

backgroundMusic.Volume = 0.8;
backgroundMusic.Source = new Uri("Media/distorted_velocity._1.mp3",
 UriKind.Relative);

The Volume ranges from 0 to 1. It uses a linear scale. We used 0.8 because we want the
future sound effects to be louder than the background music.

The first parameter for the new Uri is the relative path (ClientBin is our base path
in the web project). The second one is the UriKind. In this case, we are working with a
Relative Uri.

Once we set up all the necessary parameters, we called the Play method and Silverlight
started playing the MP3 file:

backgroundMusic.Play();

The code goes on running while the music file is being played. Hence, the game starts and
we can still hear the music.

This material is copyright and is licensed for the sole use by Vadim Kudria on 4th October 2009

6352 108th St, , Forest Hills, , 11375

Download at WoweBook.Com

Chapter 14

[405]

Time for action – preparing audio files to use them in Silverlight
As with video files, Silverlight 3 does not support all audio formats. Now, we are going to use
Expression Encoder to convert audio files video from WAV (WAVeform audio format) format
to a WMA (Windows Media Audio) format with an adaptive streaming audio encoding
profile, compatible with Silverlight 3:

1. Your project manager found two excellent WAV files to use as sound effects for
the game on The Freesound Project website (http://www.freesound.org/):

a. The first one is the Ufo atmosphere. This can be downloaded from
http://www.freesound.org/samplesViewSingle.php?id=235—
filename 235__Erratic__ufo_atmosphere.wav

b. The second one is that of a thunder clap. This can be downloaded from
http://www.freesound.org/samplesViewSingle.php?id=2525—
file name 2525__RHumphries__rbh_thunder_03.wav

The Freesound Project website offers high quality sounds with
a Creative Commons License. The website offers thousands of
samples. However, it does not offer songs.

2.	 Save or copy the original audio files (235__Erratic__ufo_
atmosphere.wav and 2525__RHumphries__rbh_thunder_03.wav)
in a new folder (C:\Silverlight3D\Invaders3D\Media).

3.	 Start Expression Encoder.

4.	 Select File | New Job.

5. Now, select File | Import…. Browse to the folder that holds the audio files
(C:\Silverlight3D\Invaders3D\Media) and select the files to import,
235__Erratic__ufo_atmosphere.wav and 2525__RHumphries__rbh_
thunder_03.wav. Then, click on Open. Expression Encoder will analyze the
files for a few seconds, and then it will display a Ready Status for both items.

This material is copyright and is licensed for the sole use by Vadim Kudria on 4th October 2009

6352 108th St, , Forest Hills, , 11375

Download at WoweBook.Com

Adding Sound, Music, and Video

[406]

6.	 Expand Profile and select WMA High Quality Audio from the Audio
combo box. This step defines the desired audio profile for the encoding
process. The expanded Audio options will display the output audio's
codec, mode, bitrate, sample rate, bits per sample, and channels, among
other parameter values, as shown in the following screenshot:

7.	 Click on the Output tab, expand Job output and click on the Browse for output
folder button (…) on the right side of the Directory text box. Browse to the folder
that holds the original audio files (C:\Silverlight3D\Invaders3D\Media)
and click on OK.

8.	 Select File | Encode or click on the Encode button. Expression Blend will
begin the encoding job and will display the overall progress as shown in the
following screenshot:

This material is copyright and is licensed for the sole use by Vadim Kudria on 4th October 2009

6352 108th St, , Forest Hills, , 11375

Download at WoweBook.Com

Chapter 14

[407]

9.	 After a few seconds (depending on the audio files length and format), Expression
Blend will show Ready in the Status columns.

10.	Right-click on one of the items (235__Erratic__ufo_atmosphere.wma) under
Media Content and select Open File Location in the context menu that appears. A
new Explorer window will appear showing the folder with a new sub-folder with
the default user name as a prefix, the date and the time. Enter in this sub-folder
and move the audio files (235__Erratic__ufo_atmosphere.wma and 2525__
RHumphries__rbh_thunder_03.wma) to the previously mentioned parent folder.

11.	Double-click on the new audio files and listen to them using your default media
player (Windows Media Player or VLC Media Player, among others). Check
whether audio quality, channels and sampling are as good as expected,
as shown in the following screenshot:

This material is copyright and is licensed for the sole use by Vadim Kudria on 4th October 2009

6352 108th St, , Forest Hills, , 11375

Download at WoweBook.Com

Adding Sound, Music, and Video

[40�]

What just happened?
You used Expression Blend to encode the original WAV audio files into WMA with adaptive
streaming audio encoding profiles. Now, the audio files are compatible with Silverlight 3.

In this case, we created audio files that were very high quality because
we want to test the game locally. However, we will have to choose a
different encoding profile according to the Internet bandwidth offered
by the hosting service and the average download speed available for the
game's potential players.

Audio formats supported in Silverlight 3
Silverlight 3 supports the audio encodings shown in the following table:

Encoding name Description and restrictions

LPCM Linear 8 or 16-bits Pulse Code Modulation.
WMA Standard Windows Media Audio 7, 8, and 9 Standard
WMA Professional Windows Media Audio 9 and 10 Professional; Multichannel

(5.1 and 7.1 surround) is automatically mixed down to stereo;
it supports neither 24 bit audio nor sampling rates beyond
48 kHz

MP3 ISO MPEG-1 Layer III
AAC ISO Advanced Audio Coding; AAC-LC (Low Complexity)

is supported at full fidelity (up to 48 kHz); HE-AAC (High
Efficiency) will decode only at half fidelity (up to 24 kHz);
Multichannel (5.1) audio content is not supported

If we want to use an audio file with an encoding that does not appear in the previously
shown table, we will have to convert it to one of the supported formats.

Using free applications to convert audio formats
Expression Encoder is not the only application capable of converting audio files to the
encoding profiles supported by Silverlight 3. We can also use many free or open source
applications and several online services to convert audio files to any of the previously
shown formats.

The same applications mentioned for converting video formats are capable of
converting audio files to the encoding profiles supported by Silverlight 3.

This material is copyright and is licensed for the sole use by Vadim Kudria on 4th October 2009

6352 108th St, , Forest Hills, , 11375

Download at WoweBook.Com

Chapter 14

[40�]

Time for action – creating a class to handle audio concurrency
Now, your project manager wants you to add different sound effects associated with
different game events. Sometimes, these sounds have to be played concurrently. For
example, a thunder can happen at the same time as the player applies an impulse to an UFO.

It is time to create a simple yet useful sound manager class. It must be able to handle many
concurrent sound banks:

1. Stay in the 3DInvadersSilverlight project.

2.	 Create a new class—SoundManager.

3.	 Add the following lines of code at the beginning of the class definition
(as we are going to use the System.Collections.Generic.List class):

 using System.Collections.Generic;

4.	 Add the following private and static variables:

 // The target for the new MediaElement instances (it must be a
 Panel subclass)
 private static Panel _target;
 // The last sound bank used
 private int _lastSoundBank = -1;
 // The number of sound banks available
 private static int SoundBanks = 5;
 // The default media folder
 public static String MediaFolder = "Media/";

5.	 Add the following private list of media elements that will hold many
MediaElement instances:

 // The list of media elements
 private List<MediaElement> _soundBanks;

6.	 Add the following property to control the Volume (it must be improved later with
additional code):

 public double Volume { get; set; }

7.	 Add the following constructor with a parameter:

 public SoundManager(Panel target)
 {
 _target = target;
 _soundBanks = new List<MediaElement>(SoundBanks);
 for (int i = 0; i < SoundBanks; i++)
 {

This material is copyright and is licensed for the sole use by Vadim Kudria on 4th October 2009

6352 108th St, , Forest Hills, , 11375

Download at WoweBook.Com

Adding Sound, Music, and Video

[410]

 _soundBanks.Add(new MediaElement());
 _target.Children.Add(_soundBanks[i]);
 }
}

8.	 Add the following public method to play a sound taking advantage of the banks
using a round robin algorithm:

 public void Play(Uri uri)
 {
 _lastSoundBank++;
 if (_lastSoundBank >= SoundBanks)
 {
 // A simple round robin algorithm
 _lastSoundBank = 0;
 }
 _soundBanks[_lastSoundBank].Stop();
 _soundBanks[_lastSoundBank].Source = uri;
 _soundBanks[_lastSoundBank].Volume = Volume;
 _soundBanks[_lastSoundBank].Play();
 }

9.	 Add the previously encoded audio files (235__Erratic__ufo_atmosphere.wma
and 2525__RHumphries__rbh_thunder_03.wma) to the Media folder in the
web project.

10.	Add the following two public methods to reproduce the previously added
audio files without the need to call the generic Play method specifying a Uri:

 public void PlayAtmosphere()
 {
 Play(new Uri(MediaFolder + "235__Erratic__ufo_atmosphere.wma",
 UriKind.Relative));
 }
 public void PlayThunder()
 {
 Play(new Uri(MediaFolder +
 "2525__RHumphries__rbh_thunder_03.wma",
 UriKind.Relative));
 }

What just happened?
The code to manage multiple concurrent audio playback is now held in the new
SoundManager class. It uses some static private variables because there will be just
one sound manager for the game. Thus, we will need just one instance of this class.

This material is copyright and is licensed for the sole use by Vadim Kudria on 4th October 2009

6352 108th St, , Forest Hills, , 11375

Download at WoweBook.Com

Chapter 14

[411]

The class is quite easy to understand. The constructor receives a Panel as a parameter. It
will use it as a container for the multiple MediaElement instances that it is going to create.

The _soundBanks list holds the number of MediaElement instances defined in the static
variable SoundBanks (5).

Using a round robin algorithm to work with concurrent sounds
The Play method is responsible of playing the audio file, which Uri receives as a parameter.
It uses a simple round robin algorithm to assign the available MediaElement instances
(sound banks) for each new audio file that has to be played.

Initially, there are 5 sound banks available.

If we call the Play method 7 times, the following sequence will take place:

1. Play audio file #1 with MediaElement instance #0 (_soundBanks[0]).

2. Play audio file #2 with MediaElement instance #1 (_soundBanks[1]).

3. Play audio file #3 with MediaElement instance #2 (_soundBanks[2]).

4. Play audio file #4 with MediaElement instance #3 (_soundBanks[3]).

5. Play audio file #5 with MediaElement instance #4 (_soundBanks[4]).

6. Play audio file #6 with MediaElement instance #0 (_soundBanks[0]). The round
starts again here.

7. Play audio file #7 with MediaElement instance #1 (_soundBanks[1]).

Each time the Play method is called, the value in the _lastSoundBank increases by 1:

_lastSoundBank++;

If the value is equal or greater than the maximum number of sound banks, it is time to start
using the first sound bank available again (a new round):

if (_lastSoundBank >= SoundBanks)
{
 _lastSoundBank = 0;
}

Then, it is time to play the new audio file using the assigned MediaElement instance
(sound bank).

This way, we can play many audio files concurrently. We do not have to
worry about MediaElement instances in the game because we can use
the SoundManager instance features.

This material is copyright and is licensed for the sole use by Vadim Kudria on 4th October 2009

6352 108th St, , Forest Hills, , 11375

Download at WoweBook.Com

Adding Sound, Music, and Video

[412]

Time for action – generating sounds associated to game events
Now, it is time to add concurrent sound effects associated to game events.

1. Stay in the 3DInvadersSilverlight project.

2.	 Open InvadersGame.cs.

3.	 Add the following private variable to hold the SoundManager instance:

 private SoundManager _soundManager;

4.	 Add the following private method to create and initialize the sound manger
related to the game:

 private void InitializeSoundManager()
 {
 _soundManager = new SoundManager(_mainPage.LayoutRoot);
 _soundManager.Volume = 1;
 }

5.	 Add the following lines of code after the line base.Initialize(); in the
Initialize method:

 InitializeSoundManager();

6.	 Now, add the following lines of code before the end of the
UpdateWithTime method (a random thunder):

 if (_random.Next(20) == 2)
 _soundManager.PlayThunder();

7.	 Replace the code that checks the Key.I key in the CheckKeyboard method
with these lines:

 if (KeyboardManager.IsKeyDown(Key.I))
 {
 _ufo1.Body.ApplyImpulse(_levelImpulse);
 // Play a sound when the user applies an impulse to the UFO
 _soundManager.PlayAtmosphere();
 }

8.	 Build and run the solution. Click on the button and turn on your speakers again.
You will hear the background music. Then, the game will start. If you wait for a
few seconds, you will hear the sound of many thunder claps. Sometimes, before
a thunder clap finishes, you will hear many others. The music will go on playing
in the background.

This material is copyright and is licensed for the sole use by Vadim Kudria on 4th October 2009

6352 108th St, , Forest Hills, , 11375

Download at WoweBook.Com

Chapter 14

[413]

9.	 Now, press the I key and you will hear a strange sound like the atmosphere of a
UFO. Another thunder clap will scare you. Press the I key again and you will enjoy
concurrent sound effects.

What just happened?
You are promoted from the position of a game developer to that of a senior game developer!

The game has background music and amazing concurrent sound effects thanks to the simple
use of a SoundManager class.

We created and initialized a SoundManager instance (_soundManager). Then, we used its
methods to play a random thunder sound and a UFO atmosphere effect when the player
presses the I key.

Using a sound manager it is very easy to fire sounds when
certain game events occur.

Have a go hero – animating the game over scene
Now that you have shown your project manager videos with animated projections, he wants
you to change the Game Over screen.

You have to use a VideoBrush to paint the GAME OVER text with an animated video.
You do not know how to do it. However, you know about brushes, videos, animations, and
timeline management. You can do it with some additional research!

Have a go hero – configuring sounds and music
Most games allow the players to configure the desired volume levels for the different sound
effects and the background music.

Your project manager wants you to add a new gauge with a button to the game. When the
player clicks on this button, the game has to pause and a Canvas with a control panel using
different sliders must allow the user to control the volumes for sounds and music.

You will have to make some changes to the SoundManager class to allow the user to change
some properties that define the volume for sounds organized by categories. Also, you have
to change the way you play the background music in the game.

This material is copyright and is licensed for the sole use by Vadim Kudria on 4th October 2009

6352 108th St, , Forest Hills, , 11375

Download at WoweBook.Com

Adding Sound, Music, and Video

[414]

Pop quiz – working with audio and video in Silverlight 3
1. In order to reproduce an AVI (Audio Video Interleave) video in Silverlight 3 using

MediaElement:

a. You just have to assign the Uri to the MediaElement's Source
property and Silverlight will recognize the video format.

b. You must convert it to one of the video formats supported by
Silverlight 3.

c. You must typecast Uri to AviUri and assign the result to the
MediaElement's Source property and Silverlight will recognize the
video format.

2. If you want a video or audio file to be available in a website instead of being
embedded in the application's .xap file:

a. You can add it to the ClientBin folder in the application's web
project.

b. You can add it to the Assets folder in the application's main project.

c. You can add it to the ClientBin folder in the application's
main project.

3. In order to start reproducing a video or audio file using a MediaElement instance,
you can:

a. Call its Reproduce method.

b. Call its Render method.

c. Call itsl its Start method.

4. When you reproduce multiple concurrent video or audio files using many different
MediaElement instances:

a. Silverlight reproduces only the last started MediaElement's audio.

b. Silverlight mixes the concurrent sounds.

c. Silverlight reproduces only the first started reproduces only the first started MediaElement's audio.

5. In order to reproduce a WAV audio in Silverlight 3 using MediaElement:

a. You just have to assign the Uri to the MediaElement's Source
property and Silverlight will recognize the audio format.

b. You must typecast Uri to WavUri and assign the result to the
MediaElement's Source property and Silverlight will recognize the
audio format.

c. You must convert it to one of the audio formats supported by
Silverlight 3.ight 3.

This material is copyright and is licensed for the sole use by Vadim Kudria on 4th October 2009

6352 108th St, , Forest Hills, , 11375

Download at WoweBook.Com

Chapter 14

[415]

6. TheThe Projection class allows describing:

a. How to project a 2D object in the 3D space using perspective transforms.

b. How to project a 2D object in the 2D space using perspective transforms.

c. How to project a 3D model in the 3D space using perspective transforms.

7. You can apply a perspective transform to a UIElement:

a. Setting its 3DEffects property to a PlaneProjection instance.

b. Setting its Projection property to a PlaneProjection instance.

c. Setting its Projection property to a Projection instance.

8. Silverlight 3 can use GPU acceleration to:

a. Reproduce videos on any size.

b. Reproduce audio files.

c. Scale or stretch videos.

9. When a MediaElement's Stretch property has the UniformToFill value:

a. It does not preserve the video's native aspect ratio.

b. It preserves the video's native aspect ratio.

c. It reproduces the video using a fixed 16:9 aspect ratio.

Summary
We learnt a lot in this chapter about adding and controlling sound, music, and videos.
Specifically, we were able to use Expression Encoder to convert many different audio and
video formats to the encoding profiles supported by Silverlight. We added animated plane
projections to videos. We created a simple sound manager class capable of reproducing
concurrent sound effects. Also, we learnt how to take advantage of hardware acceleration
when scaling or stretching videos.

We learnt a lot in this book about developing 3D games using Silverlight and many other
exciting applications, engines, libraries, and tools.

Now that we have learned to develop 3D games using Silverlight, we are ready to give life
to 3D models in Rich Internet Applications. We can create amazing 3D scenes and games.
Besides, when Silverlight is not enough, we have the option to switch to the more powerful
XBAP WPF applications.

This material is copyright and is licensed for the sole use by Vadim Kudria on 4th October 2009

6352 108th St, , Forest Hills, , 11375

Download at WoweBook.Com

This material is copyright and is licensed for the sole use by Vadim Kudria on 4th October 2009

6352 108th St, , Forest Hills, , 11375

Download at WoweBook.Com

Pop Quiz Answers
Chapter 1

Preparing the digital content

1 2 3 4 5 6 7

a c a b c a b

Chapter 2

Working with sprites and the GPU

1 2 3 4 5 6

b b b b c c

Chapter 3

Simplifying game loops

1 2 3 4 5

a b a c b

Chapter 4

3D models and real-time rendering

1 2 3 4 5

c b a a b

This material is copyright and is licensed for the sole use by Vadim Kudria on 4th October 2009

6352 108th St, , Forest Hills, , 11375

Download at WoweBook.Com

Pop Quiz Answers

[41�]

Chapter 5

Working with cameras in a 3D world

1 2 3 4 5 6

a b b c c a

Chapter 6

Working with gaming input devices

1 2 3 4 5 6 7
c a b c a b b

Chapter 7

Working with textures, materials, and lights

1 2 3 4 5 6 7

a c b a b a b

Chapter 8

Animating 3D characters in a scene

1 2 3 4 5 6 7 8 9 10 11

b a b c b a b c a c a

Chapter 9

Working with bodies, geometries, and physics

1 2 3 4 5 6 7 8

a b b b c a c a

This material is copyright and is licensed for the sole use by Vadim Kudria on 4th October 2009

6352 108th St, , Forest Hills, , 11375

Download at WoweBook.Com

Appendix

[41�]

Chapter 10

Working with collision detection and artificial intelligence

1 2 3 4 5 6 7

a c a c b b a

Chapter 11

Working with special effects

1 2 3 4 5

c b a c c
Chapter 12

Working with special fonts and gauges

1 2 3 4 5

c a c a b

Chapter 13

Avoiding the GAME OVER screen

1 2 3 4 5 6

b c a b a b

Chapter 14

Working with audio and video in Silverlight 3

1 2 3 4 5 6 7 8 9

b a c b c a b c b

This material is copyright and is licensed for the sole use by Vadim Kudria on 4th October 2009

6352 108th St, , Forest Hills, , 11375

Download at WoweBook.Com

This material is copyright and is licensed for the sole use by Vadim Kudria on 4th October 2009

6352 108th St, , Forest Hills, , 11375

Download at WoweBook.Com

Index
Symbols
2D and/or 3D real-time game

2D images, basic elements 18
3D models, basic elements 18
basic elements 18
effects definition, basic elements 18
maps, basic elements 18

2D characters
working with 43

2D games
creating, Silverlight 3 used 12
digital art assets, recognizing 12-14
programming responsibilities 19
raster digital content, creating 14-17

2D gauges
creating, Expression Blend used 335
score gauge, showing 336-339

2D physics
translating, to 3D world 269, 270

2D physics simulator
about 266
rotations, working with 267
torques, working with 267

2D vectors
diagrammatic representation 53
GPU-acceleration problems,

detecting 54, 55
using 53

3D background component
asteroids belt background, adding

to game 322, 324
representing, Actor class used 321

3D cameras
about 142
cameras, rotating around 3Dmodel 159

clipping planes, controlling 155-157
controlling, in XBAP WPF application 142
direction, controlling 146
Expression Blend used 142
orthographic camera 157
perspective camera 157, 158
perspective field of view, controlling 155
position, controlling 146
transformations, applying 150
transformations, defining 150
transformations, performing 147-149
up vector, controlling 146
working with 142-145
zooming in 151-154
zooming out 151-154

3D cameras, in Silverlight 3
about 160
camera, related to matrixes 161, 162
controlling , on fly 160, 161
multiple cameras, working with 162, 163
working, in 3D world 163

3D characters
animating 230, 418
geometries, adding 259
parallel physics bodies, adding 259
physical principles, using 256

3D characters animation
3D characters, moving 238
3D characters, rotating 239
3D characters, scaling 243
about 230
Actor class, adding to game 237, 238
Actor class, using for

representation 236, 237
bones and skeleton used 246, 249

This material is copyright and is licensed for the sole use by Vadim Kudria on 4th October 2009

6352 108th St, , Forest Hills, , 11375

Download at WoweBook.Com

[422]

compound transformations,
performing 243

game superclass, creating 232, 233
game superclass, specializing 233, 234
specialized XAML 3D character wrapper

class, creating 245
subclass, creating 234, 235
UFO, adding 230, 231
world matrix, using to perform

transformations to meshes 241, 243
world matrix, using to scale

meshes 244, 245
3D characters animation, bones and

skeletons used
3D character, animating 252, 253
3D character, animating in scene 253
about 246
actor, adding 250
complex 3D animation techniques 251
models, animating 247, 248

3D collision detection
3D Moon Lander 286-288
about 275, 276
between 3D characters 279-281
collision categories, working with 285
collision detection precision,

improving 285, 286
collision moments, controlling 283, 284
collision response, working with 282, 283
second UFO, adding 276-278

3D elements
3D models, exporting to Silverlight 212
interacting with, Expression Blend

used 131
preparing, textures used 207
textures, adding in DCC tools 208-210

3D game
background models, adding 301
backgrounds 301

3D games
tools, installing 386
video, preparing 389
videos, manipulating 386
developing 8
fonts, embedding 332

gauges, adding 327, 328
prerequisites 8
scoreboards, adding 327, 328
score gauge, creating 332-334
screen, adding 361, 362
stages, showing 382
transition effects, applying 363, 364
WriteableBitmap, rendering 366

3D model
converting, to XAML file format 108-111
displaying, in 2D screen with

Silverlight 138
displaying, in 2D screen with Silverlight

textures used 213
enveloping 214, 215
exporting 108
exporting from DCC tools,

to Silverlight 212
updating 262

3D model, updating
acceleration, working with 262-264
according to associated body

properties 262
forces, working with 262-264
impulses, working with 262-264
speed, working with 262-264

3D models and real time
rendering 417

3D Moon Lander 286, 288
3D vectors

3D models, with real-time
rendering 139, 140

about 139
multiple 3D characters, working with 139

3D world 121, 122
3D world, in Silverlight

3D model, displaying in 2D screen 138
3D model, exporting to ASE 132, 133
3D vectors, using 139
about 132
ASE 3D model, displaying 135, 137
Balder 3D engine, installing 133

3 shader effects 356
3t font 329

This material is copyright and is licensed for the sole use by Vadim Kudria on 4th October 2009

6352 108th St, , Forest Hills, , 11375

Download at WoweBook.Com

[423]

A
accelerated graphics cards 44
accelerated graphics viewport

2D vectors, using 53
blends, accelerating 52
creating 43
GPU acceleration limitations 56
hardware acceleration, enabling 44
loops, running faster 51
media, transforming 45
rendered content, caching 48
transforms, accelerating 52
vector-based illustration, rotating 49
vector-based illustration, scaling 49

AcquireJoystick method 202
AddActor method 315
AddMeteors method 315
AI algorithms 288
AI engine

about 298
advantages 298

ambient light 225
angular velocity 256
arbiter 282
artificial intelligence

working with 419
artificial intelligence algorithms

about 288
AI engine, advantages 298
chasing algorithms, chasing 289-292
complex AI algorithms, adding 298
enemy, invading 297
enemy, persuing 294
evasion algorithms, using 295, 296
random situations, controlling 294, 295
random situations, generating 294, 295
states, working with 293

ASE 3D model
adding 307
displaying, in Silverlight

application 135-137
audio and video, in Silverlight 3

working with 419
audio files

preparing, for use in Silverlight 405-407

audio formats
audio concurrency, handling 409, 410
class, creating 409
converting, free applications used 408

audio formats, Silverlight 3
audio formats, Silverlight 3about 408
audio formats, Silverlight 3encodings 408

AVI 388

B
background, 3D game

3D background component,
representing 321

3D characters, working with 301
ASE 3D model, adding 307
encapsulated physics controllers, working

with 324
fluids, simulating with movements 316, 317
fluids, s XE 315
low polygons count meteor model, creating

304-306
meteors rain, controlling 311-314
meteors rain, creating 311-314
multiple physics engines,

advantages 314, 315
multiple physics engines, using 314
subclass for a 3D meteor, creating 308-311
transition, adding 302, 303
waves, stimulating 317, 318

Balder 132
Balder 3D engine

installing 133
behavior

defining 63, 64
Blender

downloading 109
installing 109

bodies
creating 260
working with 418

bonus gauge
creating 341, 342

This material is copyright and is licensed for the sole use by Vadim Kudria on 4th October 2009

6352 108th St, , Forest Hills, , 11375

Download at WoweBook.Com

[424]

C
CalculateStatistics method 340
cameras

rotating, input devices used 185, 186
cameras, 3D world

working with 418
chasing algorithms

using, in AI algorithms 289
CheckJoystick method 202
clipping plane, 3D camera

controlling 155
far clipping plane 155
four-sided frustum 155
near clipping plane 155

collision categories
working with 285

collision detection
working with 419

collision detection precision
improving, engines used 285, 286

collision moments
controlling, events used 283, 284

collision response
working with 282

complex game loop
collisions between 2D characters,

detecting 99-102
managing 99

configuration values
saving 379
saving, in isolated storage 379, 380

CreateSpriteUC method 85

D
DCC tools

textures, adding 208-210
development environment, 3D games

preparing 8-12
digital content

preparing 417
Digital Content Creation tools

about 17
features 17

dimensions
understanding 65

DirectInput
analog axis, for gamepad 196
analog axis, for steering wheel 195
analog value, working with 204
buttons, checking 190, 191
deployment requirements 190
digital value, working with 204
gamepad, usage 196
gaming input devices, working with 205
input devices, testing with DirectInput

wrapper 193, 194
joystick manager, using 202, 203
joystick manager class, adapting 197, 198
multiple input devices, working with 203
other input devices 204
SDKs, downloading 189
SDKs, installing 189
steering wheel 192
steering wheel, usage 195
steering wheel,using in game loop 200-202
sticks, checking 190, 191
time, working with 204
using 188
Wiimote 204

directional light 226
DirectX 56
DirectX .x format

downloading 230
DirectX Software Development Kit

downloading 109
installing 109

Drag 261
dynamic objects

game loop, writing 94-97
managing 93, 94

E
EMF 22
encapsulated object-oriented characters

behavior, defining 63, 64
creating 56
dimensions, understanding 65
images, displaying 58-62
resolutions, managing 66
screen resolutions 67
sprite, showing on screen 62, 63

This material is copyright and is licensed for the sole use by Vadim Kudria on 4th October 2009

6352 108th St, , Forest Hills, , 11375

Download at WoweBook.Com

[425]

sprites, displaying 58, 60
User Control classes, creating 56, 58

encapsulated physics controllers
dissolutions, adding 324
explosions, adding 324
fire, adding 324
smoke, adding 324
working with 324

evasion algorithms
using, in AI algorithms 295, 296

event handlers
programming 35

event handlers, programming
about 35
digital content, preparing 41
prototype, creating for remake 40
XBAP WPF applications, building 38-40
XBAP WPF applications, creating 36
XBAP WPF applications, running 38, 39

Expression Blend
using, to create 2D gauges 335

Expression Design
about 27
installing 20

Expression Encoder
about 393
downloading 388
installing 388

eXtensible Application Markup Language.
See XAML

F
Farseer Physics Engine

about 256
installing 256

Farseer Physics Engine, in XBAP WPF
application

about 270
circles, creating 271
particle systems, applying 271, 272

Farseer Physics Engine 2.1
downloading 257

FindJoysticks function 202
FindName method 104
first remake assignment

about 71

complex game loop, managing 99
dynamic objects, managing 93, 94
multiple sprites, animating 98
object-oriented capabilities, taking advan-

tage of 80
objects, creating on fly 93
relative center point, defining 75
sprites, creating based on XAML vector

based graphics 72-74
sprites, painting colors used 103
SpriteWrapper class, preparing for

inheritance 81
UserControl, wrapping 81

fonts
embedding, in project 332

forces
applying 265

friction 261
fuel gauge

creating 342-345

G
game loops

simplifying 105, 417
game over scene

game over sceneanimating 413
game over screen

avoiding 419
gamepad

about 176, 177
advantages 188
analog axis 196
mouse manager class, creating 179, 180
usage 196
using 178
using, as mouse 184

gaming framework
preparing 29
Silverlight application, building 33
Silverlight application, creating 29-32
Silverlight application, running 34

gaming input devices
about 166
buttons 190
gamepad 176
keyboard, using 168

This material is copyright and is licensed for the sole use by Vadim Kudria on 4th October 2009

6352 108th St, , Forest Hills, , 11375

Download at WoweBook.Com

[426]

keyboard manager class, creating 166, 167
mouse 181
steering wheel 192
sticks 190
testing, with DirectInput wrapper 193
Wiimote 204
working with 203, 418

gauges
adding, for multiplayer games 353
adding, in 3D games 327
bonus counter 328
fonts, downloading 329
fuel gauge 328
remaining lives gauge 328
score counter 328

geometries
creating 261
working with 418

GIMP 15
GNU Image Manipulation Program. See

GIMP
GPU 3D acceleration 124
GPU acceleration

advantages 397
GPU acceleration limitations 56
gravity force

specifying 265

H
hardware acceleration

enabling 44, 45
HLSL 356

I
images

displaying 58
impulses

applying 266
inheritance 72
initialize method 318
InitializeStatistics method 340
Inkscape

installing 20

J
joystick manager

about 202
AcquireJoystick method 202
CheckJoystick method 202
FindJoysticks function 202

joystick manager class
adapting 197, 198

K
keyboard

gamepad, mapping to keyboard 173-176
input control, programming in game

loop 169-172
using 168, 169

keyboard manager class
creating 166-168

Kit3D 132

L
LayoutRoot parameter 104
lights

ambient light 225
directional light 225
effects, creating 226
point light 226
spot light 226
working with 222-226, 418

LoadContent method 160, 320
low polygons count meteor model

creating 304-306

M
materials

working with 226, 418
media

transforming, GPU used 45-47
MediaCoder 393
menus, with configuration options

displaying 381
meshes

3D elements, adding 128, 129
about 125, 126

This material is copyright and is licensed for the sole use by Vadim Kudria on 4th October 2009

6352 108th St, , Forest Hills, , 11375

Download at WoweBook.Com

[427]

XAML exporter, using for DCC
tools 126, 127

meteors rain
controlling 311-314
creating 311-314

methods, for game loop
creating 89-92

moment of inertia 261
mouse

cameras, rotating input deivce
used 185, 186

gamepad, advantages 188
gamepad, using as mouse 184, 185
mouse manager, using in game

loop 181-183
using 181

mouse manager
using, in game loop 181, 182

mouse manager class
creating 179, 180

multiple gauges
showing 347-352
updating 347-352
working with 352, 353

multiple physics engines
advantages 314
fuids, simulating with movements 316, 317

multiple sprites
animating 98

multiple transition effects
environments, changing 375-378
environments, improving 375-378
skill levels, using 372, 373
working with 371

music
reproducing 403, 404

N
navigation problems

solving 401, 402

O
objects

creating, on fly 93
OpenGL 56
orthographic camera 157

P
parameters value

retrieving, LINQ to XML used 378, 379
perspective camera 143, 157
perspective field of view, 3D camera

about 155
controlling 155

physical principles
using 256

physical principles, using in games
2D physics, translating to

3D world 269, 270
2D physics simulator, working with 266
3D model, updating 262
bodies, creating 260
Farseer Physics Engine, installing 256
Farseer Physics Engine, in XBAP WPF

application 270
forces, applying 265
geometries, adding to

3D characters 259, 260
geometries, creating 261
gravity force, specifying 265
impulses, applying 266
parallel physics bodies, adding to

3D characters 259, 260
torques, applying 268

physics
working with 418

physics engine 256
pixelation problems 25
pixel shaders 356
PNG 15
point light 226
programming responsibilities

about 19
drawing 19
loading 19
logic and control 19

projection matrix 162
projections

animating 399
applying 398

public abstract method 77

This material is copyright and is licensed for the sole use by Vadim Kudria on 4th October 2009

6352 108th St, , Forest Hills, , 11375

Download at WoweBook.Com

[428]

R
random situations, AI algorithms

controlling 294
generating 294

raster digital content, 2D games
creating 14
downloading 15
manipulating 16
resizing 16

relative center point
abstract class, creating 76-78
defining 75
specialized sprite management class,

creating 76
remaining lives gauge

creating 345, 347
rendered content

caching 48
resolutions

managing 66, 67
RIAs 8
rotational drag 268
rotational drag coefficient 256
round robin algorithm

using, for working with concurrent
sounds 411

S
score gauge

creating 332-334
showing 336-338

screen resolutions
about 67
animation, completing 68
GPU, working with 68
sprites, working with 68

screens
adding, to games 361

SDK
downloading 189
installing 189

second remake assignment
3D elements, interacting with 131
3D model, exporting 108
3D world 121
about 107

GPU 3D acceleration 124
meshes 125
three-dimensional coordinate system 123
XAML 3D models 113
XBAP WPF applications with

3D content 116
SetMeteorsPosition method 315
shadows 222-225
ShowStatistics method 340
Silverlight 3

audio, working with 414
video, working with 414

Silverlight 3 Tools
.NET RIA Services, downloading 10
Expression Blend 3 + SketchFlow,

downloading 10
installing 8, 10, 11
Silverlight 3 Offline Documentation,

downloading 9
Silverlight 3 Tools for Visual Studio,

downloading 9
Silverlight Toolkit, downloading 10

skill levels definition
loading 378

sounds, associated with game events
generating 412

sounds and music
configuring 413

special effects
working with 419

special fonts
using 328

special fonts and gauges
working with 419

spot light 226
sprite

about 56
showing, on screen 62, 63

sprites
backgrounds, using 104
displaying 58, 60
game loops, simplifying 105
Invaders 3000, preparing 104, 105
painting, colors used 103, 104

sprites, based on XAML vector-based
graphics

creating 72-74

This material is copyright and is licensed for the sole use by Vadim Kudria on 4th October 2009

6352 108th St, , Forest Hills, , 11375

Download at WoweBook.Com

[429]

sprites and the GPU
working with 417

SpriteWrapper class
preparing, for inheritance 81

stages
showing 382

states
working with 293

statistics, 3D games
bonus gauge, creating 341, 342
calculating 339, 340
fuel gauge, creating 342-344
remaining lives gauge, creating 345-347
saving 339, 340
showing 339, 340

steering wheel
about 192
analog axis 195
usage 195
using, in game loop 200, 201

StoryBoard
creating 366, 367
transition effect, changing 368-370
working with 367, 368

StoryBoard in XAML
audio files, preparing 405-407
music, reproducing 403, 404
navigation problems, solving 401, 402
projection, animating 401
working with 401

subclasses
creating, for characters 84-87

subclass for a 3D meteor
creating 308-311

superclass
creating, for characters 82, 83

SVG 22

T
textures

about 217
playing, with 221
repeating, as tiles 217
replacing 218-220
working with 226, 418

three-dimensional coordinate
system 123, 124

torques
applying 268

transition
adding, to background 302, 303

transition effects
applying 363, 364
exploring 370, 371

Turbomilk 15

U
UFO 230
Update method 79, 160
UpdateWithTime method 312, 315
UserControl

wrapping 81
User Control classes

creating 56, 58

V
vector-based illustration

many illustrations, shaking at same time
49, 50

vector illustrations
editing, Expression Design used 27, 28
scalable digital content, preparing for

remake 29
video formats, in Silverlight3

about 392
encodings 392

videos
converting, free applications used 393
locating, in related website 395
manipulating, Expression Encoder used

386, 387
preparing, for use in Silverlight 389, 390
projections, animating 399, 400
projections, applying 398
reproducing 393-395
scaling 397
scaling, GUI acceleration used 397
stretching 396, 397

view matrix 162

This material is copyright and is licensed for the sole use by Vadim Kudria on 4th October 2009

6352 108th St, , Forest Hills, , 11375

Download at WoweBook.Com

[430]

W
WAV 405
wave controller

about 317
subclass for a complex asteroids belt,

creating 318-320
Wiimote 204
Windows Presentation Foundation Pixel

Shader Effects Library
about 356, 357
downloading 357
installing 356-359

WMA 405
WMF 22
WriteableBitmap

rendering 366
using, as ImageBrush 366

WriteableBitmap class 366

X
XAML 22
XAML, working with Silverlight 3

about 22
scalable digital content, creating 22

scalable vector graphics, converting 23, 24
scalable vector graphics, downloading 22
scalable vector graphics, organizing 23

XAML 3D models
about 113
displaying, in XBAP WPF

application 115, 116
features 114

XAML Browser Application. See XBAP
XAML Exporter

downloading 110
XamlPad 26
XAML vector graphics

previewing 25
scalable digital content, testing 26, 27
scaling 25

XBAP 36
XBAP WPF applications

3D elements, adding 128
about 36

XBAP WPF applications, with 3D content
3D model, displaying in 2D screen 117-120
about 116

XHD (eXtreme High Definition) 20

This material is copyright and is licensed for the sole use by Vadim Kudria on 4th October 2009

6352 108th St, , Forest Hills, , 11375

Download at WoweBook.Com

Thank	you	for	buying		
3D	Game	Development	with	Microsoft	
Silverlight	3:	Beginner’s	Guide

About	Packt	Publishing
Packt, pronounced 'packed', published its first book "Mastering phpMyAdmin for Effective
MySQL Management" in April 2004 and subsequently continued to specialize in publishing
highly focused books on specific technologies and solutions.

Our books and publications share the experiences of your fellow IT professionals in adapting
and customizing today's systems, applications, and frameworks. Our solution based books
give you the knowledge and power to customize the software and technologies you're using
to get the job done. Packt books are more specific and less general than the IT books you have
seen in the past. Our unique business model allows us to bring you more focused information,
giving you more of what you need to know, and less of what you don't.

Packt is a modern, yet unique publishing company, which focuses on producing quality,
cutting-edge books for communities of developers, administrators, and newbies alike. For
more information, please visit our website: www.packtpub.com.

Writing	for	Packt
We welcome all inquiries from people who are interested in authoring. Book proposals
should be sent to author@packtpub.com. If your book idea is still at an early stage and you
would like to discuss it first before writing a formal book proposal, contact us; one of our
commissioning editors will get in touch with you.
We're not just looking for published authors; if you have strong technical skills but no writing
experience, our experienced editors can help you develop a writing career, or simply get some
additional reward for your expertise.

This material is copyright and is licensed for the sole use by Vadim Kudria on 4th October 2009

6352 108th St, , Forest Hills, , 11375

Download at WoweBook.Com

Papervision3D	Essentials
ISBN: 978-1-847195-72-2 Paperback: 428 pages

Create interactive Papervision 3D applications with
stunning effects and powerful animations

1. Build stunning, interactive Papervision3D
applications from scratch

2. Export and import 3D models from
Autodesk 3ds Max, SketchUp and Blender to
Papervision3D

3. In-depth coverage of important 3D concepts
with demo applications, screenshots and
example code.

4. Step-by-step guide for beginners and
professionals with tips and tricks based on the
authors' practical

Blender	3D	Architecture,	
Buildings,	and	Scenery
ISBN: 978-1-847193-67-4 Paperback: 332 pages

Create photorealistic 3D architectural visualizations
of buildings, interiors, and environmental scenery

1. Turn your architectural plans into a model

2. Study modeling, materials, textures, and light
basics in Blender

3. Create photo-realistic images in detail

4. Create realistic virtual tours of buildings
and scenes

Please check www.PacktPub.com for information on our titles

This material is copyright and is licensed for the sole use by Vadim Kudria on 4th October 2009

6352 108th St, , Forest Hills, , 11375

Download at WoweBook.Com

Unity	Game	Development	
Essentials	[RAW]
ISBN: 978-1-847198-18-1 Paperback: 300 pages

Build fully functional, professional 3D games with
realistic environments, sound, dynamic effects, and
more!

1. Kick start game development, and build ready-
to-play 3D games with ease

2. Understand key concepts in game design
including scripting, physics, instantiation,
particle effects, and more

3. Test & optimize your game to perfection with
essential tips-and-tricks

4. Written in clear, plain English, this book is
packed with working examples and innovative
ideas

Drupal	Multimedia
ISBN: 978-1-847194-60-2 Paperback: 264 pages

Create media-rich Drupal sites by learning to embed
and manipulate images, video, and audio

1. Learn to integrate multimedia in your
Drupal websites

2. Find your way round contributed modules for
adding media to Drupal sites

3. Tackle media problems from all points
of views: content editors, administrators,
and developers

Please check www.PacktPub.com for information on our titles

This material is copyright and is licensed for the sole use by Vadim Kudria on 4th October 2009

6352 108th St, , Forest Hills, , 11375

Download at WoweBook.Com

	Cover
	Table of Contents
	Preface
	Chapter 1: Lights, Camera, and Action!
	UFOs in the sky!: Invaders
	Time for action – preparing the development environment
	Time for action – recognizing digital art assets
	Time for action – creating the raster digital content
	Digital Content Creation tools
	Basic elements of a 2D and/or 3D real-time game
	Programming responsibilities

	Time for action – installing tools to manipulate
	scalable digital content
	XAML works fine with Silverlight 3

	Time for action – creating the scalable digital content in XAML
	Previewing and scaling XAML vector graphics

	Time for action – testing the scalable digital content
	using XamlPad
	Editing vector illustrations using Expression Design

	Preparing a gaming framework
	Time for action – creating Silverlight applications
	Time for action – building and running Silverlight applications
	Programming event handlers in the main page

	Time for action – creating XBAP WPF applications
	Time for action – building and running the
	XBAP WPF applications
	Summary

	Chapter 2: Working with 2D Characters
	Creating an accelerated graphics viewport
	Time for action – enabling hardware acceleration
	Time for action – transforming media using the GPU
	Caching rendered content
	Scaling and rotating a vector-based illustration

	Time for action – shaking many illustrations at the same time
	Running loops faster
	Accelerating transforms and blends
	Using 2D vectors

	Time for action – detecting GPU-acceleration problems
	Understanding GPU acceleration limitations

	Creating encapsulated object-oriented characters
	Time for action – creating User Control classes to hold images
	Time for action – displaying images and sprites
	Showing a sprite on the screen
	Defining the behavior
	Understanding dimensions
	Managing resolutions
	Screen resolutions

	Summary

	Chapter 3: Combining Sprites with Backgrounds
	The first remake assignment
	Time for action – creating sprites based on XAML
	vector-based graphics
	Defining the relative center point

	Time for action – creating a specialized sprite
	management class
	Taking full advantage of object-oriented capabilities
	Preparing the classes for inheritance
	Wrapping a UserControl to manage it

	Time for action – creating a superclass for some characters
	Time for action – creating the subclasses for the characters
	Time for action – creating methods for the game loop
	Creating objects on the fly
	Managing dynamic objects

	Time for action – writing the game loop
	Animating multiple sprites
	Managing a complex game loop

	Time for action – detecting collisions between 2D characters
	Using colors to paint sprites

	Summary

	Chapter 4: Working with 3D Characters
	The second remake assignment
	Time for Action – exporting a 3D model without
	considering textures
	XAML 3D models

	Time for action – from DCC tools to WPF
	XBAP WPF applications with 3D content

	Time for action – displaying a 3D model in a 2D screen
	with WPF
	Understanding the 3D world
	X, Y, and Z in practice
	GPU 3D acceleration
	Understanding meshes

	Time for action – using other XAML exporter for DCC tools
	Time for action – adding 3D elements and interacting with
	them using Expression Blend
	Interacting with 3D elements using Expression Blend

	Silverlight and the 3D world
	Time for action – exporting a 3D model to ASE
	Time for action – installing Balder 3D engine
	Time for action – from DCC tools to Silverlight
	Displaying a 3D model in a 2D screen with Silverlight
	Using 3D vectors

	Summary

	Chapter 5: Controlling the Cameras: Giving Life to Lights and Actions
	Understanding 3D cameras
	Time for action – when seeing is believing
	Controlling the position, the direction, and the up vector

	Time for action – performing transformations
	Defining and applying transformations

	Time for action – zooming in and out
	Controlling the perspective field of view
	Controlling the clipping planes

	Time for action – understanding perspective and
	orthographic cameras
	Silverlight and the cameras
	Time for action – controlling cameras on the fly
	Understanding cameras related to matrixes

	Summary

	Chapter 6: Controlling Input Devices to Provide Great Feedback
	Giving life to the game!
	Time for action – creating a keyboard manager class
	Using the keyboard

	Time for action – programming the input control
	in the game loop
	Time for action – mapping a gamepad to the keyboard
	Understanding the gamepad as an input device

	Time for action – using the gamepad
	Time for action – creating a mouse manager class
	Using the mouse

	Time for action – using the mouse manager in the game loop
	Time for action – using the gamepad as a mouse
	Time for action – rotating cameras using input devices
	Bridging with DirectInput capabilities
	Time for action – installing the necessary SDKs
	Considering deployment's additional requirements

	Time for action – understanding sticks and buttons
	Understanding the steering wheel as an input device

	Time for action – testing the input devices with
	a DirectInput wrapper
	Understanding the analog axis for a steering wheel
	Understanding the analog axis for a gamepad

	Time for action – adapting a joystick manager class
	Time for action – using the steering wheel in the game loop
	Using the joystick manager
	Working with many input devices
	Using other input devices

	Summary

	Chapter 7: Using Effects and Textures to Amaze
	Dressing characters using textures
	Time for action – adding textures in DCC tools
	Time for action – exporting 3D models from DCC tools
	to Silverlight
	Displaying a 3D model using textures in a 2D screen with Silverlight

	Time for action – enveloping 3D models
	Understanding textures
	Repeating textures as tiles

	Time for action – replacing textures
	Displaying lights, shadows, materials, and textures
	Time for action – working with lights and
	understanding shadows
	Understanding different kinds of lights

	Summary

	Chapter 8: Animating 3D Characters
	Invaders 3D
	Time for action – adding an UFO
	Time for action – creating a new game superclass to
	generalize time management capabilities
	Time for action – specializing a game superclass
	Time for action – creating a subclass for a 3D character
	Using an Actor to represent a 3D character

	Time for action – adding an actor to the game
	Moving 3D characters as actors

	Time for action – rotating 3D characters
	Using the World matrix in order to perform transformations to meshes
	Performing compound transformations

	Time for action – scaling 3D characters
	Using the World matrix in order to scale meshes

	Using bones and skeletons
	Time for action – animating models with skeletons and bones
	Using skeletons and bones

	Time for action – adding an actor with skeletons and
	bones to the game
	Understanding complex 3D animation techniques

	Summary

	Chapter 9: Adding Realistic Motions Using a Physics Engine
	Using physical principles in games to beat invaders
	Time for action – installing Farseer Physics Engine
	Time for action – adding parallel physics bodies and
	geometries to 3D characters
	Creating bodies
	Creating geometries
	Updating a 3D model according to the associated body's properties

	Time for action – working with forces, impulses, acceleration,
	and speed
	Specifying the gravitational force
	Applying forces
	Applying impulses
	Working with a 2D physics simulator in the game loop

	Time for action – working with torques and rotations
	Applying torques
	Translating 2D physics to a 3D world
	Working with Farseer Physics Engine in XBAP WPF applications

	Summary

	Chapter 10: Applying Artificial Intelligence
	Detecting collisions between 3D characters
	Time for action – adding a second UFO
	Time for action – detecting collisions between 3D characters
	Working with advanced responses to collisions
	Controlling collision moments using events
	Working with collision categories
	Using engines to improve collision detection precision

	Using artificial intelligence in games to control 3D characters
	Time for action – using chasing algorithms
	Working with states for the characters
	Pursuing an enemy
	Generating and controlling random situations

	Time for action – using evasion algorithms
	Evading an enemy
	The advantages of using an AI engine

	Summary

	Chapter 11: Applying Special Effects
	Working with 3D characters in the background
	Time for action – adding a transition to start the game
	Time for action – creating a low polygon count meteor model
	Time for action – from 3D Studio Max to Silverlight
	Time for action – creating a subclass for a 3D meteor
	Time for action – creating and controlling a meteors rain
	Advantages of using multiple physics engines

	Time for action – simulating fluids with movement
	Simulating waves

	Time for action – creating a subclass for a complex
	asteroids belt
	Using an Actor to represent a wave in the background

	Time for action – adding an asteroids belt background
	to the game
	Working with encapsulated physics controllers

	Summary

	Chapter 12: Controlling Statistics and Scoring
	Showing gauges and scorecards
	Time for action – using special fonts
	Embedding fonts in the project

	Time for action – creating a score gauge showing text
	Using Expression Blend to create 2D gauges

	Time for action – showing a score gauge
	Calculating, saving, and showing statistics

	Time for action – creating a bonus gauge showing text
	Time for action – creating a fuel gauge
	Time for action – creating a remaining lives gauge
	Using a panel to show many aligned user controls

	Time for action – showing and updating multiple gauges
	Working with multiple gauges

	Summary

	Chapter 13: Adding Environments and Scenarios
	Working with levels and stages
	Time for action – installing Windows Presentation Foundation
	Pixel Shader Effects Library
	Time for action – adding screens to organize the game
	Time for action – applying transition effects
	Rendering a WriteableBitmap and using it as an ImageBrush
	Creating a StoryBoard
	Working with a StoryBoard to animate an effect

	Time for action – changing the transition effect
	Exploring transition effects
	Working with multiple transition effects

	Time for action – using skill levels
	Time for action – changing and improving the environments
	according to the skill level
	Retrieving values for parameters using LINQ to XML

	Time for action – saving configurations
	Summary

	Chapter 14: Adding Sound, Music, and Video
	Hear the UFOs coming
	Time for action – installing tools to manipulate videos
	Time for action – preparing a video to use it in Silverlight
	Video formats supported in Silverlight 3
	Using free applications to convert video formats

	Time for action – reproducing videos
	Locating videos in a related website
	Stretching videos
	Taking advantage of GPU acceleration to scale videos

	Time for action – applying projections
	Time for action – animating projections
	Working with a StoryBoard in XAML to animate a projection

	Time for action – solving navigation problems
	Time for action – reproducing music
	Time for action – preparing audio files to use them in Silverlight
	Audio formats supported in Silverlight 3
	Using free applications to convert audio formats

	Time for action – creating a class to handle audio concurrency
	Using a round robin algorithm to work with concurrent sounds

	Time for action – generating sounds associated to game events
	Summary

	Appendix: Pop Quiz Answers
	Index

