

Microsoft Silverlight 5
Data and Services
Cookbook

Over 100 practical recipes for creating rich, data-driven,
business applications in Silverlight 5

Gill Cleeren

Kevin Dockx

 BIRMINGHAM - MUMBAI

D
ow

n
lo

a
d
 f
ro

m
 W

o
w

!
e
B
o
o
k

<
w

w
w

.w
o
w

e
b
o
o
k.

co
m

>

Microsoft Silverlight 5 Data and
Services Cookbook

Copyright © 2012 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval system, or
transmitted in any form or by any means, without the prior written permission of the publisher,
except in the case of brief quotations embedded in critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy of the
information presented. However, the information contained in this book is sold without
warranty, either express or implied. Neither the authors, nor Packt Publishing and its dealers
and distributors will be held liable for any damages caused or alleged to be caused directly or
indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the companies
and products mentioned in this book by the appropriate use of capitals. However, Packt
Publishing cannot guarantee the accuracy of this information.

First Edition: April 2010

Second Edition: April 2012

Production Reference: 2130412

Published by Packt Publishing Ltd.
Livery Place
35 Livery Street
Birmingham B3 2PB, UK.

ISBN 978-1-84968-350-0

www.packtpub.com

Cover Image by David Gimenez (bilbaorocker@yahoo.co.uk)

Credits

Authors
Gill Cleeren

Kevin Dockx

Reviewers
Mario Van Hissenhoven

Evan Hutnick

Kris van der Mast

Dennis Miscoria

Acquisition Editor
Kerry George

Lead Technical Editor
Hyacintha D'Souza

Technical Editors
Ankita Shashi

Manasi Poonthottam

Sakina Kaydawala

Project Coordinator
Vishal Bodwani

Proofreaders
Chris Smith

Josh Toth

Indexers
Tejal Daruwale

Monica Ajmera Mehta

Graphics
Manu Joseph

Production Coordinator
Nilesh Mohite

Cover Work
Nilesh Mohite

About the Authors

Gill Cleeren is a Microsoft Regional Director, Silverlight MVP (former ASP.NET MVP), and
Telerik MVP. He lives in Belgium where he works as .NET architect at Ordina. Passionate
about .NET, he's always playing with the newest bits. In his role as Regional Director, Gill
has given many sessions, webcasts, and trainings on new as well as existing technologies,
such as Silverlight, ASP.NET, and WPF at conferences including TechEd Europe, TechDays
Belgium—Switzerland—Sweden, DevDays NL, NDC Oslo Norway, Silverlight Roadshow in
Sweden, Telerik RoadShow UK, and so on. He organizes the yearly Community Day event in
Belgium and leads Visug, the largest .NET user group in Belgium. You can find his blog at
www.snowball.be and on Twitter, you can follow him via @gillcleeren.

Gill published his first book, Silverlight 4 Data and Services Cookbook, with
Packt Publishing. He also authored a chapter for Real World .NET, C#, and Silverlight:
Indispensible Experiences from 15 MVPs and also authored numerous articles and
eBooks for SilverlightShow.net.

After the publication of my first book with Packt, I was very happy with
its success. It quickly got a lot of positive reviews on blogs and sites
such as Amazon. This was for me the trigger to start writing again. What
you're holding here is another year's work of two devoted people who love
developing applications with Silverlight and want to share that love with you.
Reading it will certainly help you figure out complex problems that you may
encounter in your life as a Silverlight developer. Or maybe more generally
as an XAML developer, since most of the content can be used in all places
where XAML is used as the development language.

Of course, this book is not the work of only the authors. Without the team
at Packt and the reviewers, it wouldn't even be possible to complete such a
project. And of course, without the patience and love of my girlfriend (and
wife-to-be from September 2012) and my mother, I wouldn't be able to walk
into a bookstore and be able to hold my work in my hands!

Kevin Dockx lives in Belgium and works at RealDolmen, one of Belgium's biggest ICT
companies, where he is a 30-year old technical specialist/project leader on .NET web
applications, mainly Silverlight, and a solution manager for Rich Applications (Silverlight,
Windows Phone 7, WPF, Surface, HTML5). His main focus lies on all things Silverlight, but
he still keeps an eye on the new developments concerning other products from the Microsoft
.NET (Web) Stack. As a Silverlight enthusiast, he's a regular speaker at various national
and international events, like Microsoft DevDays in The Netherlands, Microsoft Techdays
in Portugal, BESUG events (the Belgian Silverlight User Group), Simplicity Day, Community
Day, and so on. Next to that, he also writes articles for various Silverlight-related sites. His
blog, which contains various tidbits on Silverlight, .NET, and the occasional rambling, can
be found at http://blog.kevindockx.com/, and you can contact him on Twitter
via @KevinDockx.

He has worked on other books like Silverlight 4 Data and Services Cookbook (Packt
Publishing). He has also worked on various articles and ebooks for SilverlightShow.net
and other Silverlight-related sites.

I could come up with a long list of people I'd like to thank, and with a bunch
of reasons to write this book. But I guess it all boils down to one thing:
passion. Passion for technology. Passion to share knowledge. And passion
for the next big thing. So I'm going to keep this short: one quote, that's all
there is to it:

"Wandering along the lines of another next big thing, remember: there's
always room for more ice cream."

About the Reviewers

Mario Van Hissenhoven is a certified Microsoft SQL Server Professional with more than
10 years of experience. His specialties are development in transact SQL.

Mario also has extended his knowledge to the .NET framework 2.0, 3.0, and 3.5 during the
last 5 years. His interest has always been to be on top of the new Microsoft technologies such
as Silverlight, WCF, and SQLCLR.

Nowadays, Mario is focusing on SQL Server 2008R2 Development and the Beta features of
SQL Server 2012.

I would like to thank my wife and kids for the time spent on reviewing this book
while I should have been spending time with them. And I promise I will make
it up to them.

Evan Hutnick is a Developer Evangelist working for Telerik in the XAML space covering
Silverlight, WPF, Windows Phone, and the up-and-coming WinRT platform. Evan is also a
Silverlight MVP and recognized throughout the community for his contributions on best
practices, designer/developer concepts, as well as general architecture guidance. While
focusing on XAML technologies, Evan often specializes in enterprise development scenarios
and best practices for solution structure and architecture.

I thank my wife Jennifer and my daughter Keira for tolerating my insane
love of technology and for putting up with the long hours and late nights, I
couldn't do it without them.

Kris van der Mast is a Microsoft MVP since 2007, Microsoft ASP Insider, and a respected
member and moderator on the official ASP.NET forums where he ranks at the number
one position.

After he became an engineer he followed an extensive path into the magical world of web.
Besides his work, Kris plays a very active role in the community by delivering articles for
magazines, being a board member of the Belgian Windows Azure user group (www.azug.be),
presenting or teaching about the latest (web) technologies. More recently Kris became a part
of MEET (Microsoft Extended Experts Team).

You can follow him on Twitter via @KvdM or his blog at http://blog.krisvandermast.
com to find out about Windows Azure, ASP.NET (MVC), WebMatrix, jQuery, Orchard CMS,
and so on.

Dennis Miscoria is an enthusiastic .NET developer living in Belgium. Over the past six
years, he has built up an extensive knowledge in the mobile world starting from the Compact
Framework up to the latest Windows Phone and Silverlight technology.

Dennis is currently working for the Belgian consultancy company Ordina (www.ordina.be) as
senior .NET engineer. Due to his mobile background, he is also in charge of the .NET Mobile
Competence Center.

www.PacktPub.com
Support files, eBooks, discount offers, and more
You might want to visit www.PacktPub.com for support files and downloads related to
your book.

Did you know that Packt offers eBook versions of every book published, with PDF and ePub
files available? You can upgrade to the eBook version at www.PacktPub.com and as a print
book customer, you are entitled to a discount on the eBook copy. Get in touch with us at
service@packtpub.com for more details.

At www.PacktPub.com, you can also read a collection of free technical articles, sign up for a
range of free newsletters and receive exclusive discounts and offers on Packt books and eBooks.

http://PacktLib.PacktPub.com

Do you need instant solutions to your IT questions? PacktLib is Packt's online digital book
library. Here, you can access, read and search across Packt's entire library of books.

Why Subscribe?
 f Fully searchable across every book published by Packt

 f Copy and paste, print and bookmark content

 f On demand and accessible via web browser

Free Access for Packt account holders
If you have an account with Packt at www.PacktPub.com, you can use this to access PacktLib
today and view nine entirely free books. Simply use your login credentials for immediate access.

Instant Updates on New Packt Books
Get notified! Find out when new books are published by following @PacktEnterprise on
Twitter, or the Packt Enterprise Facebook page.

Table of Contents
Preface 1
Chapter 1: Learning the Nuts and Bolts of Silverlight 5 7

Introduction 7
Getting our environment ready to start building Silverlight applications 8
Creating our first service-enabled and data-driven Silverlight 5 application
using Visual Studio 2010 10
Using the workflow between Visual Studio 2010 and Blend 5 20
Using source control in Visual Studio 2010 and Blend 5 29
Deploying a Silverlight application on the server 32

Chapter 2: An Introduction to Data Binding 37
Introduction 37
Displaying data in Silverlight applications 40
Creating dynamic bindings 49
Binding data to another UI element 52
Binding collections to UI elements 56
Enabling a Silverlight application to automatically update its UI 60
Obtaining data from any UI element it is bound to 68
Using the different modes of data binding to allow persisting data 73
Debugging data binding expressions in Visual Studio 77
Data binding from Expression Blend 5 81
Using Expression Blend 5 for sample data generation 84

Chapter 3: Advanced Data Binding 87
Introduction 87
Hooking into the data binding process 88
Replacing converters with Silverlight 5 BindingBase properties 93
Validating data-bound input 97
Validating data input using attributes 101

D
ow

n
lo

a
d
 f
ro

m
 W

o
w

!
e
B
o
o
k

<
w

w
w

.w
o
w

e
b
o
o
k.

co
m

>

ii

Table of Contents

Validating using IDataErrorInfo and INotifyDataErrorInfo 104
Using templates to customize the way data is shown by controls 109
Using implicit data templates 115
Using the Ancestor RelativeSource binding 119
Creating custom markup extensions 123
Building a change-aware collection type 127
Combining converters, data binding, and DataContext into a
custom DataTemplate 130

Chapter 4: The Data Grid 139
Introduction 139
Displaying data in a customized DataGrid 140
Inserting, updating, and deleting data in a DataGrid 146
Sorting and grouping data in a DataGrid 151
Filtering and paging data in a DataGrid 156
Using custom columns in the DataGrid 160
Implementing master-detail in the DataGrid 167
Validating the DataGrid 171

Chapter 5: Working with Local Data 175
Introduction 175
Reading data from and storing data in the isolated storage 176
Working with IsolatedStorageSettings 186
Caching data between different Silverlight applications using
isolated storage 190
Using the Sterling database 192

Chapter 6: MVVM 205
Introduction 205
Creating a basic MVVM application 206
Using MVVM Light to enable MVVM applications 214
Connecting a View to a ViewModel using a ViewModelLocator 219
Connecting a View to a ViewModel using MEF 224
Using commands to pass your events to the ViewModel 229
Communicating between different ViewModels 235
Leveraging a messenger to wrap application-wide messages 239

Chapter 7: Working with Services 243
Introduction 243
Connecting and reading from a standardized service 244
Persisting data using a standardized service 250
Configuring cross-domain calls 254

iii

Table of Contents

Working cross-domain from a trusted Silverlight application 262
Reading XML using HttpWebRequest 265
Reading out an RSS feed 271
Accessing a database in the cloud 274
Accessing a service in the cloud 279
Running a Silverlight application from the cloud 284
Using socket communication in Silverlight 288

Chapter 8: Talking to WCF and ASMX Services 301
Introduction 301
Invoking a service that exposes data 302
Invoking a service such as Bing.com 312
Optimizing performance using binary XML 315
Debugging a service in Silverlight 318
Using ASP.NET Authentication in Silverlight 325
Uploading files to a WCF service 332
Displaying images as a stream from a WCF service 338

Chapter 9: Talking to WCF and ASMX Services—One Step Beyond 345
Introduction 345
Using duplex communication over HTTP 346
Using duplex communication with the WCF net.tcp binding 355
Ensuring data is encrypted 363
Securing service communication using message-based security 369
Integrating Windows Identity Foundation in Silverlight 374
Calling a WCF service from Silverlight using ChannelFactory 383

Chapter 10: Talking to REST and WCF Data Services 387
Introduction 388
Reading data from a REST service 389
Parsing REST results with LINQ To XML 395
Persisting data using a REST service 399
Working with the ClientHttp stack 406
Communicating with a REST service using JSON 408
Using WCF Data Services with Silverlight 411
Reading data using WCF Data Services 416
Persisting data using WCF Data Services 421
Talking to Flickr 426
Talking to Twitter over REST 434
Passing credentials and cross-domain access to Twitter from a
trusted Silverlight application 439

iv

Table of Contents

Chapter 11: Using WCF RIA Services 451
Introduction 451
Setting up a data solution to work with WCF RIA Services 452
Using a WCF RIA Services class library 455
Getting data on the client 460
Using LoadBehavior to control what happens to your data once
it's sent to the client 472
Controlling the server-side query from the client 476
Sorting and filtering data on the server 481
Paging through your data 485
Persisting a change set/unit of work 490
Working with concurrency and transactions 496

Chapter 12: Advanced WCF RIA Services 503
Introduction 504
Tracking a user's identity – default Windows authentication 504
Tracking a user's identity – a custom authentication service 507
Integrating Windows Identity Foundation with WCF RIA Services 513
Controlling a user's access to services and service methods 517
Validating data: using data annotations 521
Validating data: writing a custom validator 524
Validating data: server-side validation with client-side feedback 532
Validating data: triggering validation when needed 536
Validating data: using the ValidationContext 541
Handling errors on the server 545
Using SQL Azure with WCF RIA Services 548
Exposing WCF RIA Domain Services as OData endpoints 550
Exposing WCF RIA Domain Services for other technologies 553

Chapter 13: Windows Phone 7 557
Introduction 557
Getting our environment ready to start building Windows
Phone 7 applications 562
Building your first data-driven Windows Phone 7 application 562
Getting data on your Windows Phone 7 using WCF 578
Accessing REST services from Windows Phone 7 using XML 587
Accessing REST services from Windows Phone 7 using JSON 591
Working with push notifications using the cloud 597
Storing data in a local SQL CE database 609
Using the background transfer service 616

v

Table of Contents

Appendix 623
Creating a REST service from WCF 623
Installing an SQL Server database 625
Working with Fiddler 625
Working with the Silverlight control toolkit 626
Working with WIF 627
Installing the WCF RIA Services Toolkit 627
Installing and using NuGet 627

Index 629

Preface
About 2 years ago, in the spring of 2010, Microsoft released Silverlight 4. Silverlight 4 proved
to be a platform ready for Line-of-Business application development. Numerous developers
learned how to build great apps with it, which can run both within the browser and as a
stand-alone application on the user's machine. Silverlight 5 was the logical successor and
extended the platform again with an extensive list of new features.

Soon after the launch of the Silverlight 4, the first edition of this book was released. Its
success convinced us to write an updated version that focuses on Silverlight 5. While all
existing content is updated to match the new version, a lot of new content is added. This can
be found in recipes covering Silverlight 5-specific features as well as complete new chapters,
covering other aspects of working with data such as MVVM (Model-View-ViewModel) or even
from Windows Phone 7.

In this practical cookbook, you'll learn how to build data-rich business applications with
Silverlight that draw on multiple sources of data. Although the book focuses on Silverlight 5,
many of the recipes will work on Silverlight 4 projects as well. A large number will also work in
Silverlight 3. This is indicated for each recipe.

Packed with reusable, real-world recipes, the book begins by introducing you to general
principles for programming Silverlight. It then dives deep into the world of data services,
covering all the options available to access data and communicate with services to make the
most out of data in your Silverlight business applications, whilst at the same time providing
a rich user experience. Chapters cover data binding, data controls, concepts of talking to
services, communicating with WCF, ASMX, REST services, and much more. The chapter on
accessing data and services from Windows Phone 7 applications discusses how to leverage
your knowledge on the mobile platform.

By following the practical recipes in this book, which are of varying difficulty levels, you
will learn concepts for creating data-rich business applications—from the creation of a
Silverlight application, to displaying data in the Silverlight application and upgrading your
existing applications to use Silverlight. Each recipe will cover a data services topic, starting
from the description of the problem, covering a conceptual solution and a solution containing
sample code.

Preface

2

What this book covers
Chapter 1, Learning the Nuts and Bolts of Silverlight 5, will get you up and running with
Silverlight. While this book is aimed at developers who already have a basic knowledge of
Silverlight, this chapter can act as a refresher. We'll also look at getting your environment
correctly set up so that you enjoy developing Silverlight applications.

Chapter 2, An Introduction to Data Binding, will explore how data binding works. We'll start
by building a small data-driven application that contains the most important data binding
features, to get a grip of the general concepts. We'll also see that data binding isn't tied to
just binding single objects to an interface; binding an entire collection of objects is supported
as well. We'll also be looking at the binding modes. They allow us to specify how the data will
flow (from source to target, target to source, or both). Visual Studio enables debugging data
binding statements in version 5, which we'll dive into, and we'll finish this chapter by looking at
the support that Blend 5 provides to build applications that use data binding features. In the
next chapter, we'll be looking at the more advanced concepts of data binding.

Chapter 3, Advanced Data Binding, teaches you advanced data binding concepts that can
be used for customization, validations, and applying templates to data bound controls. New
Silverlight 5 features such as custom markup extensions, Ancestor Relative Source binding,
and implicit data templates are discussed in this chapter as well. We also have a look at
converters, which can be seen as hooks in the data binding process.

Chapter 4, The Data Grid, covers recipes on how to work with the DataGrid. This is an
essential control for applications that rely on (collections of) data.

Chapter 5, Working with Local Data, covers storing data locally. The concept of local data is
essential in many scenarios, varying from saving local user settings to entire blocks of data.
Silverlight has always included the concept of Isolated Storage; we'll see how to use that.

Chapter 6, MVVM, explains all you need to get started with the Model-View-ViewModel design
pattern, the de facto standard for XAML-based applications. Using this pattern to build
Silverlight applications will result in better separation of concerns, code that's easier to test
and maintain, and it ensures you leverage the true power of XAML.

Chapter 7, Working with Services, talks about the rich set of options that Silverlight provides
to communicate with services. We'll see also how Silverlight and Azure can be used together
for more powerful solutions.

Chapter 8, Talking to WCF and ASMX Services, discovers Silverlight's built-in support for
communicating with Windows Communication Foundation (WCF) and classic ASMX web
services. Integration with the ASP.NET Membership API as well as uploading and downloading
files is covered in this chapter as well.

Preface

3

Chapter 9, Talking to WCF and ASMX Services—One Step Beyond, takes us on a tour of more
complex WCF problems and their solutions. Perform unidirectional as well as bidirectional
communication with much better performance using net.tcp binding in WCF using the recipes
in this chapter. Security is vital when working with services and is explained as well through
several recipes.

Chapter 10, Talking to REST and WCF Data Services, takes advantage of REST, which can
be significant in the case of Silverlight. We will also look at how we can work with WCF Data
Services. You will abstract away a lot of plumbing code with the use of the client-side library
that is available for use with Silverlight.

Chapter 11, Using WCF RIA Services, is all about the framework built by Microsoft, to simplify
and reduce development time for Line-of-Business RIA development. In this chapter, we look
into the basics: how it works behind the scenes, how to fetch data, how to sort, filter, and page
through your data, how to submit data, and how to structure your project.

Chapter 12, Advanced WCF RIA Services, tackles the more advanced techniques concerning
WCF RIA Services: you'll learn all about authentication (Windows, Forms, and through WIF),
various validation scenarios, error handling, and how you can expose your domain services for
use with other technologies.

Chapter 13, Windows Phone 7, explains how Windows Phone 7 applications, which are by
default built with Silverlight, can communicate with services and get access to server-side. In
this chapter, recipes can be found which cover connecting to services that communicate with
XML and JSON as well as SOAP over WCF. We'll also take a look at working with a local SQL
CE database. Finally, a recipe on push notifications explains how a cloud service can connect
with an application on a device, opening push-like scenarios.

The Appendix talks about creating a REST service from WCF, installing a SQL Server database,
working with Fiddler and the Silverlight control toolkit, WCF RIA Services and WIF.

What you need for this book
To work with the recipes in this book, you should have Visual Studio installed. This book
targets Silverlight 5, for which you need Visual Studio 2010 (or later). Many of the recipes
in the book will also work in Silverlight 3 and 4, so for these recipes, you have the choice of
Visual Studio 2008 (for Silverlight 3) or 2010 (Silverlight 3 and 4). We do recommend using
Visual Studio 2010, as it features a lot of enhancements for developing with Silverlight. In
both cases, you'll of course need to install the Silverlight Tools, which will update your Visual
Studio instance to work with Silverlight. Some recipes also require Blend 5 to be installed on
your machine (again, if working with Silverlight 3, Blend 3 will suffice here as well; Silverlight
4 applications can be built using Blend 4). For the Windows Phone recipes, you could use the
specific phone-enabling Express edition of Visual Studio, which is bundled with the Windows
Phone SDK & Tools.

Preface

4

The first recipe of Chapter 1, Getting our environment ready to start developing Silverlight
applications, explains in detail how to get these tools and how to install them.

Who this book is for
If you are a .NET developer who wants to build professional data-driven applications with
Silverlight, then this book is for you. Basic Silverlight experience and familiarity with
accessing data using ADO.NET in regular .NET applications is required.

Conventions
In this book, you will find a number of styles of text that distinguish between different kinds of
information. Here are some examples of these styles, and an explanation of their meaning.

Code words in text are shown as follows: "Finally, the DataReader and connection are closed
and the StoreDTO object is returned."

A block of code is set as follows:

<TextBlock x:Name="AmountTextBlock"
 Text="{Binding ElementName=AmountSlider, Path=Value}">
</TextBlock>

When we wish to draw your attention to a particular part of a code block, the relevant lines or
items are set in bold:

<TextBlock x:Name="AmountTextBlock"
 Text="{Binding ElementName=AmountSlider, Path=Value}">
</TextBlock>

Any command-line input or output is written as follows:

xmlns:controlsToolkit="clr-namespace:System.Windows.
Controls;assembly=System.Windows.Controls.Toolkit"

New terms and important words are shown in bold. Words that you see on the screen, in
menus or dialog boxes for example, appear in our text like this: "Do this by right-clicking,
selecting Add New Item, and then selecting LINQ TO SQL Classes."

Warnings or important notes appear in a box like this.

Tips and tricks appear like this.

Preface

5

Reader feedback
Feedback from our readers is always welcome. Let us know what you think about this
book—what you liked or may have disliked. Reader feedback is important for us to develop
titles that you really get the most out of.

To send us general feedback, simply send an e-mail to feedback@packtpub.com, and
mention the book title through the subject of your message.

If there is a topic that you have expertise in and you are interested in either writing or
contributing to a book, see our author guide on www.packtpub.com/authors.

Customer support
Now that you are the proud owner of a Packt book, we have a number of things to help you to
get the most from your purchase.

Downloading the example code
You can download the example code files for this book you have
purchased from your account at http://www.packtpub.com/
files/code/3500_Code.zip. If you purchased this book
elsewhere, you can visit http://www.packtpub.com/support
and register to have the files e-mailed directly to you.

Errata
Although we have taken every care to ensure the accuracy of our content, mistakes do
happen. If you find a mistake in one of our books—maybe a mistake in the text or the code—
we would be grateful if you would report this to us. By doing so, you can save other readers
from frustration and help us improve subsequent versions of this book. If you find any errata,
please report them by visiting http://www.packtpub.com/support, selecting your book,
clicking on the errata submission form link, and entering the details of your errata. Once your
errata are verified, your submission will be accepted and the errata will be uploaded to our
website, or added to any list of existing errata, under the Errata section of that title.

Piracy
Piracy of copyright material on the Internet is an ongoing problem across all media. At Packt,
we take the protection of our copyright and licenses very seriously. If you come across any
illegal copies of our works, in any form, on the Internet, please provide us with the location
address or website name immediately so that we can pursue a remedy.

Preface

6

Please contact us at copyright@packtpub.com with a link to the suspected
pirated material.

We appreciate your help in protecting our authors, and our ability to bring you
valuable content.

Questions
You can contact us at questions@packtpub.com if you are having a problem with any
aspect of the book, and we will do our best to address it.

1
Learning the Nuts and

Bolts of Silverlight 5

In this chapter, we will cover the following topics:

 f Getting our environment ready to start building Silverlight applications

 f Creating our first service-enabled and data-driven Silverlight 5 application using
Visual Studio 2010

 f Using the workflow between Visual Studio 2010 and Blend 5

 f Using source control in Visual Studio 2010 and Blend 5

 f Deploying a Silverlight application on the server

Introduction
While we assume you have some basic knowledge of Silverlight, we also know that developers
have very little time to grasp all the new technologies that keep coming out. Therefore, this
first chapter contains all that we need to know to get going with Silverlight. We'll also guide you
through the required tools and installations for a perfect Silverlight development environment.

Silverlight was released in the first half of 2007, and since then it has created a lot of buzz.
While ASP.NET is a server-side development platform, with the arrival of Silverlight, the focus
has shifted to the client side again. A Silverlight application runs in the browser of the client
and on a specific version of the Common Language Runtime (CLR).

Learning the Nuts and Bolts of Silverlight 5

8

A big benefit for developers is that Silverlight uses .NET from version 2 onwards. It has a
trimmed-down version of the Base Class Library (BCL), which is impressively extended,
considering the size of the Silverlight plugin (about 6 MB). Because of the similarities, many
skills achieved from developing applications in the full .NET framework can be leveraged for
the creation of Silverlight applications.

Silverlight itself can be considered as a trimmed-down version of its desktop counterpart,
Windows Presentation Foundation (WPF). While there are some differences between the two
platforms, it's not difficult to make the transition from the one to the other, since they share
the same concepts. They both use XAML and patterns like MVVM (which is covered deeply in
this book), which are applied the same way in both technologies.

With the release of Silverlight 2, Microsoft made it clear that Silverlight is aimed at both
creating rich and interactive applications and next-generation enterprise applications in the
browser. The latter can be easily seen with the addition of a rich control set, support for many
types of services and platform features, such as data binding.

Due to its client-side characteristics, Silverlight applications need to perform particular tasks
to get data. It doesn't support client-side databases—not even in version 5, the latest version.
The way to retrieve data is through services. Silverlight 3 brought some interesting features
to the platform in this area, such as support for binary XML, the WCF RIA services, and
simplified duplex service communication. Silverlight 4 continued in the same manner, with
improvements in data binding, support for net.tcp communication, cross-domain access to
services by means of Trusted Silverlight applications, and much more. With Silverlight 5, we
can see that Microsoft is continuing along the same path. Some really interesting features
made it into this release, including data-binding debugging (which was perhaps the most
anticipated feature), new data-binding feature support, such as Ancestor RelativeSource,
deeper support for the MVVM pattern, PInvoke support, multiple windows, and so on.

In this chapter, we'll get you up and running with Silverlight. While this book is aimed at
developers who already have a basic knowledge of Silverlight, this chapter can act as a
refresher. We'll also look at getting your environment correctly set up, so that you can enjoy
developing Silverlight applications.

Getting our environment ready to start
building Silverlight applications

To start building Silverlight applications, we need more than just Notepad. In this recipe, we'll
look at what we need to install to start developing Silverlight applications like a pro.

Chapter 1

9

How to do it...
To start developing Silverlight applications, we'll need to install the necessary tools and SDKs.
We will also need to carry out the following steps in order to get started:

1. We need to make sure that we install Visual Web Developer Express 2010
(available for free at http://www.microsoft.com/express/downloads/)
or Visual Studio 2010 (trial version available at
http://www.microsoft.com/visualstudio/en-us/download). If you
already have any version of Visual Studio 2010 installed, you can skip this step.
From a developer's perspective, the free Express edition will give you all you need
to build applications with Silverlight, although some features are missing.

2. Go to http://www.silverlight.net/getstarted/ to download and install the
Silverlight 5 Tools for Visual Studio 2010. Visual Studio 2010 ships with Silverlight
3 templates installed out of the box; Silverlight 4 and 5 can be added to the IDE by
installing the tools.

3. A trial of Expression Blend 5 can be downloaded from
http://www.microsoft.com/expression/.

How it works...
For Silverlight development, the minimum that we need are the developer tools. If we want
to develop Silverlight 4 or 5 applications, Visual Studio 2010 is required (if you are still using
Silverlight 3, Visual Studio 2008 will do). In Visual Studio 2010, a visual designer is added
for editing our XAML code. When installing the developer tools for Silverlight 5, the following
components are automatically downloaded and installed:

 f Silverlight 5 developer runtime

 f Silverlight 5 software development kit and Visual Studio project support

 f WCF RIA services SP2

We can write XAML code using Visual Studio. However, if you're serious about designing,
you might want to consider using Microsoft Expression Blend. This tool, primarily aimed at
designers, should be seen as an application that generates XAML for us by means of a rich
number of options and an easy-to-use interface. It also integrates nicely with Visual Studio
and source control software integration is available as well.

See also
After having installed all the necessary tools, it might be worth taking a look at the recipe
Creating our first service-enabled and data-driven Silverlight 5 application using Visual Studio
2010, as well as the recipe Using the workflow between Visual Studio 2010 and Blend 5. In
these recipes, we create an entire application in Visual Studio 2010 and Blend 5, respectively.

http://www.microsoft.com/visualstudio/en-us/download)
http://www.microsoft.com/visualstudio/en-us/download)

Learning the Nuts and Bolts of Silverlight 5

10

Creating our first service-enabled and
data-driven Silverlight 5 application using
Visual Studio 2010

Applies to Silverlight 4 and 5

In this recipe, we'll build a very simple Silverlight application that uses techniques that are
explained in much more detail later on in the book. We'll be using data binding, which is
a technique to easily connect data to the User Interface (UI), and connect to a Windows
Communication Foundation (WCF) service.

However, the main goal is to get a grip on the basics of Silverlight by trying to answer questions,
such as how a Silverlight application is built, what the project structure looks like, what files are
created, and what their uses are.

Getting ready
To get started with Silverlight application development, make sure you have installed Visual
Studio along with the necessary tools and libraries as outlined in the previous recipe.

We are building this application from the ground up. However, the finished product can be
found in the Chapter01/SilverlightHotelBrowser folder in the code bundle that is
available on the Packt website.

How to do it...
Our first Silverlight application allows the user to view the details of a hotel that is selected
in a ComboBox control. The hotel information is retrieved over a service and is used for
filling the ComboBox. The details are shown in several TextBlock controls, which are
placed in a Grid.

The following screenshot shows the interface of the application:

Chapter 1

11

To start building any Silverlight application, we'll need to perform the following steps:

1. Open Visual Studio 2010 with the Silverlight 5 tools installed. Once inside the
Integrated Development Environment (IDE), go to File | New | Project.... In the New
Project dialog that appears, select the Silverlight node under Visual C#, and select
Silverlight Application. Name the application SilverlightHotelBrowser and click the
OK button. In the dialog that appears as shown in the following image select ASP.
NET Web Application Project as the type of web project that will be used to host the
Silverlight application. Also, make sure that Silverlight 5 is selected as the target
version of Silverlight:

2. After Visual Studio has finished executing the project template, two projects are
created in the solution: the Silverlight project and a web application project that is
responsible for hosting the Silverlight content. The created solution structure can be
seen in the following screenshot:

Learning the Nuts and Bolts of Silverlight 5

12

3. Our service will return the hotel information. A hotel can be represented by
an instance of the Hotel class. This class should be included in the web
project—SilverlightHotelBrowser.Web. To add it, right-click on the project in
the Solution Explorer, and select Add | Class. In the Add new item dialog,
set the name of the class to Hotel.

There are a few things to note about this class that are as follows:

 � This class has a DataContract attribute attached to it. This attribute is
required to specify that this class can be serialized, when sent over the wire
to the client application.

 � Each property is attributed with the DataMember attribute. When adding this
attribute to a property, we specify that this property is a part of the contract,
and that it should be included in the serialized response that will be sent to
the client.

The following code defines the Hotel class:

[DataContract]
public class Hotel
{
 [DataMember]
 public string Name { get; set; }
 [DataMember]
 public string Location { get; set; }
 [DataMember]
 public string Country { get; set; }
 [DataMember]
 public double Price { get; set; }
}

4. We'll now add a WCF service to the web project as well. Right-click on
SilverlightHotelBrowser.Web and select Add | New Item.... Add a
Silverlight-enabled WCF Service by selecting the Silverlight node under
Visual C#, naming it HotelService. Click the Add button. Two files
are added, namely, HotelService.svc and HotelService.svc.cs.

5. In this service class, we can now add a method that returns a hard-coded list of
hotels. Remove the DoWork method and replace it with the following code:
[ServiceContract(Namespace = "")]
[AspNetCompatibilityRequirements(RequirementsMode =
AspNetCompatibilityRequirementsMode.Allowed)]
public class HotelService
{
 [OperationContract]
 public List<Hotel> GetHotels()

Chapter 1

13

 {
 return new List<Hotel>
 {
 new Hotel
 {
 Name = "Brussels Hotel",
 Price = 100,
 Location = "Brussels",
 Country = "Belgium"
 },
 new Hotel
 {
 Name = "London Hotel",
 Price = 200,
 Location = "London",
 Country = "United Kingdom"
 },
 new Hotel
 {
 Name = "Paris Hotel",
 Price = 150,
 Location = "Paris",
 Country = "France"
 },
 new Hotel
 {
 Name = "New York Hotel",
 Price = 230,
 Location = "New York",
 Country = "USA"
 }
 };
 }
}

Note the attributes that have been used in this class. The ServiceContract
attribute specifies that the class contains a service contract that defines what
functionality the service exposes. The OperationContract attribute is added to
operations, which can be invoked by clients on the service. This effectively means
that if you add methods to the service without this attribute, it can't be invoked from
a client.

Learning the Nuts and Bolts of Silverlight 5

14

6. Now we'll build the solution, and if no errors are encountered, we're ready for writing
Silverlight code. Should you get any errors, make sure to check that you entered the
previous code correctly.

7. Let's first make the service known to the Silverlight application. Right-click on the
Silverlight application, and select Add Service Reference.... In the dialog box that
appears, as shown in the following screenshot, click on Discover and select your
service. As it is in the same solution, the service will appear. Enter HotelService in
the Namespace field, shown as follows:

Click on the OK button to confirm. The service is now usable from the Silverlight
application.

8. The UI was shown earlier and is quite easy. The XAML code for the Grid named
LayoutRoot inside the MainPage.xaml file is as follows:
<Grid x:Name="LayoutRoot" Width="400" Height="300"
 Background="LightGray">
 <Grid.RowDefinitions>
 <RowDefinition Height="50"></RowDefinition>
 <RowDefinition></RowDefinition>
 </Grid.RowDefinitions>
 <ComboBox x:Name="HotelComboBox" Width="250"
 SelectionChanged="HotelComboBox_SelectionChanged"

Chapter 1

15

 DisplayMemberPath="Name"
 VerticalAlignment="Center">
 </ComboBox>
 <Grid x:Name="HotelDetailGrid" Grid.Row="1"
 VerticalAlignment="Top">
 <Grid.RowDefinitions>
 <RowDefinition></RowDefinition>
 <RowDefinition></RowDefinition>
 <RowDefinition></RowDefinition>
 <RowDefinition></RowDefinition>
 </Grid.RowDefinitions>
 <Grid.ColumnDefinitions>
 <ColumnDefinition></ColumnDefinition>
 <ColumnDefinition></ColumnDefinition>
 </Grid.ColumnDefinitions>
 <TextBlock x:Name="NameTextBlock"
 Grid.Row="0"
 Grid.Column="0"
 FontWeight="Bold"
 Text="Name: "
 HorizontalAlignment="Right">
 </TextBlock>
 <TextBlock x:Name="NameValueTextBlock"
 Grid.Row="0"
 Grid.Column="1"
 Text="{Binding Name}">
 </TextBlock>
 <TextBlock x:Name="LocationTextBlock"
 Grid.Row="1"
 Grid.Column="0"
 FontWeight="Bold"
 Text="Location: "
 HorizontalAlignment="Right">
 </TextBlock>
 <TextBlock x:Name="LocationValueTextBlock"
 Grid.Row="1"
 Grid.Column="1"
 Text="{Binding Location}">
 </TextBlock>
 <TextBlock x:Name="CountryTextBlock"
 Grid.Row="2"
 Grid.Column="0"
 FontWeight="Bold"
 Text="Country: "

D
ow

n
lo

a
d
 f
ro

m
 W

o
w

!
e
B
o
o
k

<
w

w
w

.w
o
w

e
b
o
o
k.

co
m

>

Learning the Nuts and Bolts of Silverlight 5

16

 HorizontalAlignment="Right">
 </TextBlock>
 <TextBlock x:Name="CountryValueTextBlock"
 Grid.Row="2"
 Grid.Column="1"
 Text="{Binding Country}">
 </TextBlock>
 <TextBlock x:Name="PriceTextBlock"
 Grid.Row="3"
 Grid.Column="0"
 FontWeight="Bold"
 Text="Price: "
 HorizontalAlignment="Right">
 </TextBlock>
 <TextBlock x:Name="PriceValueTextBlock"
 Grid.Row="3"
 Grid.Column="1"
 Text="{Binding Price}">
 </TextBlock>
 </Grid>
</Grid>

9. In the code-behind class, MainPage.xaml.cs, we connect to the service and the
results are used in a data binding scenario. We won't focus here on what's actually
happening with the service call and the data binding; all this is covered in detail later
in this book. Add the following code in the code-behind of MainPage.xaml:
public MainPage()
{
 InitializeComponent();
 HotelService.HotelServiceClient proxy = new
 SilverlightHotelBrowser.HotelService.HotelServiceClient();
 proxy.GetHotelsCompleted += new EventHandler
 <SilverlightHotelBrowser.HotelService.
 GetHotelsCompletedEventArgs>
 (proxy_GetHotelsCompleted);
 proxy.GetHotelsAsync();
}
void proxy_GetHotelsCompleted(object sender,
 SilverlightHotelBrowser.HotelService.
 GetHotelsCompletedEventArgs e)
{
 HotelComboBox.ItemsSource = e.Result;
}

Chapter 1

17

private void HotelComboBox_SelectionChanged(object sender,
 SelectionChangedEventArgs e)
{
 HotelDetailGrid.DataContext = (sender as ComboBox)
 .SelectedItem as HotelService.Hotel;
}

10. We will compile the solution again and then press the F5 button. When running the
application, select a hotel in the ComboBox. Each selection change will trigger an
event that shows the details of the selected item using data binding.

How it works...
Silverlight applications always have to run in the context of the browser. That's the reason why
Visual Studio prompts us initially by asking how we want to host the Silverlight content.

Starting with Silverlight 3, applications can run in the so-called
out-of-browser mode, thereby allowing applications to run standalone.
Silverlight 4 added the option to run a Silverlight application out of browser
with elevated permissions, giving it more permissions on the local system.
Silverlight 5 extended on this model even further. We'll be looking at
out-of-browser applications later in this book.

The default option is the ASP.NET Web Application Project. This option gives us the
maximum number of possibilities for the configuration of the host project. It's the option
that we will be using the most throughout this book, because of the configuration options
it offers for working with services. The second option is ASP.NET Web Site and is a
file-based website known from ASP.NET 2.0. Finally, we can also uncheck the Host the
Silverlight application in a new Web site checkbox. This will result in Visual Studio
generating an empty HTML page containing the Silverlight application when we build our
solution. This option is not well-suited for building Silverlight applications that work with
services, as we have no control over the generation process.

Learning the Nuts and Bolts of Silverlight 5

18

The solution and project structure
A new Silverlight solution contains normally two projects—a Silverlight project and a hosting
application, which is nothing more than a website with a page that references the Silverlight
application. Let's first take a look at the Silverlight project:

Silverlight applications contain XAML and C# (or VB.NET) files, among others. The XAML files
contain the UI, and are linked at runtime to the partial classes that make up the code-behind.
By default, one page is added for free—called MainPage. It's not really a page, but a user
control that is hosted. We can add UI code (such as controls, grids, and so on) to this file. We
add UI logic in the code-behind.

One special case is the App.xaml file. It's the entry point of an application and is responsible
for loading an instance of MainPage, executing logic when an error occurs, and so on. Also, it
can contain global resources, such as, styles that should be available over the
entire application.

While building the solution, the Silverlight project is compiled into an assembly. In turn, this
assembly—along with a manifest file that contains general information about the application
and possible other resources—are wrapped into an XAP file. This XAP file is then copied into
the hosting application. It shows up under the ClientBin directory in the web project, as
shown in the following screenshot:

Chapter 1

19

The XAP file is basically a ZIP (archive) file. When renaming the SilverlightHotelBrowser.
xap file to SilverlightHotelBrowser.zip, we can see the original files (manifest and assembly).
The following screenshot shows the contents of the ZIP file:

The generated ASPX page as well as the HTML page refer to the XAP file located in the
ClientBin directory.

Services
Data is not readily available to a Silverlight application on the client side, so we need
to retrieve it from the server. In Silverlight, this is done using services. Services need
to be accessed asynchronously in Silverlight, hence the declaration of the callback
method—proxy_GetHotelsCompleted. Silverlight has many options to communicate
with services. These are covered in the following recipes of this book.

Data binding
We use the rich data binding features available in Silverlight to connect the data with the
UI in this application. Data binding allows us to bind properties of objects (the data) to
properties of controls. In this particular example, we bind a list of Hotel instances to the
ComboBox, using the ItemsSource property. While changing the selection in the control, the
HotelComboBox_SelectionChanged event handler fires and the selected item—a Hotel
instance—is set as the DataContext for the HotelDetailGrid. This Grid contains the
controls in which we want to show the details. Each of these controls uses a Binding markup
extension in XAML to specify which property needs to be bound.

See also
Data binding was used in this application. It's also the topic of Chapter 2, An Introduction to
Data Binding and Chapter 3, Advanced Data Binding, where we delve deep into what data
binding has to offer. We also connected with a WCF service. Connecting and communicating
with services is covered in Chapter 7, Talking to Services, through Chapter 10, Talking to REST
and WCF Data Services.

Learning the Nuts and Bolts of Silverlight 5

20

Using the workflow between Visual Studio
2010 and Blend 5

Applies to Silverlight 4 and 5

Expression Blend (currently at version 5) is part of Microsoft's Expression Suite. It's a
designer tool that allows designers to create compelling user experiences for use with WPF and
Silverlight. While aimed at designers, it's a tool that should be in a Silverlight developer's toolbox
as well. In some areas, it offers a richer designer experience than that of Visual Studio. One of
the best examples of this is the timeline that makes it easy to create time-based animations.

In this recipe, we'll look at how Visual Studio and Blend integrate. When used together, they
help us create our applications faster. In Chapter 2, An Introduction to Data Binding, we'll take
another look at Blend—namely at its features that support data binding.

Getting ready
After having read the recipe Getting our environment ready to start developing Silverlight
applications, you should have Expression Blend 5 installed.

In this recipe, we are creating the sample from scratch. The completed solution can be found
in the Chapter01/Blend folder in the code bundle that is available on the Packt website.

How to do it...
In this recipe, we'll recreate the Hotel Browser application. However, we'll do most of the work
from Blend and switch back to Visual Studio when it is recommended. We'll need to carry out
the following steps:

1. Although we can start a new solution from Blend, we'll let Visual Studio create the
solution for us. The main reason is that we'll be using services later on in this sample,
and working with services is easier if the hosting site is an ASP.NET web application.
Adding an ASP.NET web application is possible from Visual Studio, but not from
Blend. Therefore, open Visual Studio 2010 and create a new Silverlight solution.
Name it SilverlightHotelBrowser, and make sure to select ASP.NET Web Application
Project as the hosting website.

2. With the solution created in Visual Studio, right-click on one of the XAML files in the
Silverlight project. In the context menu, select Open in Expression Blend... as shown
in the following screenshot:

Chapter 1

21

3. Expression Blend will open up and its workspace will be shown. The following is an
image of the interface containing some named references:

Learning the Nuts and Bolts of Silverlight 5

22

The following table describes some of the most important items in the
Blend workspace:

Item Name Description
1 Projects window Provides an overview of the loaded solution and its projects.

It is comparable to the Solution Explorer in Visual Studio.
2 Objects and Timeline By default, this window gives an overview of all the XAML

objects in the currently loaded document. When we want
to perform any action on an item (such as giving it a
background color), we select it in the Objects and Timeline
window. This opens the properties window for that item.

3 Toolbox Comparable to what we know from Visual Studio, the toolbox
contains all the tools available. Since Blend is a design tool,
tools such as a Pen, Paint Bucket, and so on are available in
the toolbox.

4 Assets window The Assets window contains all controls (assets) that we can
drag onto the design surface, such as buttons, ComboBoxes,
and so on.

5 Design workspace This is where all the action takes place! We can drag items
from the Toolbox or the Assets window, rearrange them, and
so on, to create a compelling user experience.

6 Properties window The Properties window allows us to change the properties
of the selected item. We can change the color, layout
properties, transform properties, and so on.

4. Now that we know our way around the designer, we can get creative. We'll start with
MainPage.xaml and split the main Grid (LayoutRoot) into two rows. Instead of
writing the XAML code for this, we'll do this in the designer. Click on the icon on the
top left of the user control in the designer, so that the Grid will be in the Grid layout
mode. This can be seen in the following screenshot:

5. Now, click on the left bar next to the user control to add a row. It's possible to change
the height of the created row by dragging the handle. The following screenshot shows
a row added to the Grid:

Chapter 1

23

6. Select the ComboBox in the Assets window. Use the search function in this
window to find it more quickly. On the designer, drag to create an instance of
the ComboBox and place it on the top row that was just created. This can be
seen in the following screenshot:

7. In the Properties window, give this ComboBox the name HotelComboBox and set
the DisplayMemberPath property to Name. In the following screenshot, note that
we are making use of the Search functionality within the Properties window. Simply
enter part of the name of the property you are looking for (here displ), and Blend
will filter the available properties:

Learning the Nuts and Bolts of Silverlight 5

24

8. With the ComboBox still selected in the Properties window, change to the Events
view (top arrow in the following image). In the list of events, double-click on the
SelectionChanged event, so Blend will create an event handler (bottom arrow in
the following image):

9. Let's now move back to the Design view of MainPage.xaml. Select the Grid item in
the Toolbox. In the bottom cell of the LayoutRoot (the main Grid control), drag to
create a nested Grid. Create four rows and two columns using the same technique
as before. Columns are created quite-logically by clicking on the top bar of the control.
The result is shown in the following screenshot:

Chapter 1

25

10. With this Grid still selected, change the name to HotelDetailGrid in the
Properties window.

11. In each of the cells, drag a TextBlock from the ToolBox. For the TextBlock
controls in the first column, change the Text property as shown in the following
screenshot. Don't change the Text property of the controls in the second column;
we'll look at these in the coming steps:

12. Let's now change the background color of the LayoutRoot grid. To do this, select
the LayoutRoot node in the Objects and Timeline window, and in the Properties
window, change the background by selecting a different color in the editor.

13. In Chapter 2, An Introduction to Data Binding, we'll look at how we can make data
binding in Blend easier. As of now, we'll just type the XAML code from Blend. In the
top-right corner of the Design Surface, select either the Split view or the XAML view.
Blend shows us the XAML code that it created in the background. Search for the
TextBlock controls in the second column of the HotelDetailGrid and change
it as shown in the following code. Note that the generated code might not always be
exactly the same, as values such as Margin could be different:
<TextBlock
 Margin="49,8,40,8"
 Grid.Column="1"
 Text="{Binding Name}"
 TextWrapping="Wrap"/>
<TextBlock
 Margin="49,8,40,8"
 Grid.Column="1"
 Grid.Row="1"
 Text="{Binding Location}"
 TextWrapping="Wrap"/>
<TextBlock
 Margin="49,8,40,8"
 Grid.Column="1"

Learning the Nuts and Bolts of Silverlight 5

26

 Grid.Row="2"
 Text="{Binding Country}"
 TextWrapping="Wrap"/>
<TextBlock
 Margin="49,8,40,8"
 Grid.Column="1"
 Grid.Row="3"
 Text="{Binding Price}"
 TextWrapping="Wrap"/>

14. The workflow between Blend and Visual Studio allows us to jump to Visual Studio
for the tasks we can't achieve in Blend, for example, adding a WCF service and
referencing it in the Silverlight project. In the Projects window, right-click on a file or a
project and select Edit in Visual Studio. If Visual Studio is still open, it will reactivate.
If not, a new instance will get launched with our solution.

15. In the website that was created with the project initialization
(SilverlightHotelBrowser.Web), we need to have a service that will return the hotel
information. A hotel is represented by an instance of the Hotel class. Include a
using statement for the System.Runtime.Serialization namespace as well:
[DataContract]
public class Hotel
{
 [DataMember]
 public string Name { get; set; }
 [DataMember]
 public string Location { get; set; }
 [DataMember]
 public string Country { get; set; }
 [DataMember]
 public double Price { get; set; }
}

16. Of course, we need to add the service as well. To do this, add a Silverlight-enabled
WCF service called HotelService. Replace the DoWork sample method with the
following code:
[OperationContract]
public List<Hotel> GetHotels()
{
 return new List<Hotel>
 {
 new Hotel
 {
 Name = "Brussels Hotel",
 Price = 100,

Chapter 1

27

 Location = "Brussels",
 Country = "Belgium"
 },
 new Hotel
 {
 Name = "London Hotel",
 Price = 200,
 Location = "London",
 Country = "United Kingdom"
 },
 new Hotel
 {
 Name = "Paris Hotel",
 Price = 150,
 Location = "Paris",
 Country = "France"
 },
 new Hotel
 {
 Name = "New York Hotel",
 Price = 230,
 Location = "New York",
 Country = "USA"
 }
 };
}

17. Perform a build of the project, so that the service is built and is ready to be
referenced by the Silverlight application.

18. In the Silverlight project, add a service reference by right-clicking on the project and
selecting Add Service Reference.... Click on the Discover button and the service
should be found. Set the namespace to HotelService.

19. In the MainPage.xaml.cs, add the following code to load the hotels in the
ComboBox control:
public MainPage()
{
 InitializeComponent();

 HotelService.HotelServiceClient proxy = new
 SilverlightHotelBrowser.HotelService.HotelServiceClient();
 proxy.GetHotelsCompleted += new
 EventHandler<SilverlightHotelBrowser.HotelService.
 GetHotelsCompletedEventArgs>(proxy_GetHotelsCompleted);
 proxy.GetHotelsAsync();

Learning the Nuts and Bolts of Silverlight 5

28

}
void proxy_GetHotelsCompleted(object sender,
 SilverlightHotelBrowser.HotelService.
 GetHotelsCompletedEventArgs e)
{
 HotelComboBox.ItemsSource = e.Result;
}

20. In the SelectionChanged event handler of the ComboBox, add the following code
to load the details of a hotel, once the user selects a different option:
private void HotelComboBox_SelectionChanged(object sender,
 System.Windows.Controls.SelectionChangedEventArgs e)
{
 HotelDetailGrid.DataContext = (sender as ComboBox).SelectedItem
 as HotelService.Hotel;
}

21. Build and run the application in Visual Studio.

With these steps completed, we have created the application using both Blend and Visual
Studio. For an application as easy as this one, there is less profit in switching between the two
environments. However, with larger applications requiring large teams, both developers and
designers, this strong integration can turn out to be very helpful.

How it works...
Visual Studio and Blend integrate nicely with each other. It's easy to jump from one application
to the other. This allows a great workflow between designers and developers.

Designers can work in Blend and the changes made in this tool are automatically picked
up by Visual Studio, and vice versa. This is achieved through the use of the same files (both
code files and project files) by the two tools. A Silverlight solution created in Blend will open
in Visual Studio. The same holds true for a Silverlight solution created in Visual Studio; Blend
can work with it.

See also
In Chapter 2, An Introduction to Data Binding, we'll perform data binding directly from Blend.

Chapter 1

29

Using source control in Visual Studio
2010 and Blend 5

Applies to Silverlight 4 and 5

When working on slightly larger projects in teams, source control is an absolute necessity. By far,
the most popular source control system in the Microsoft world today is Team Foundation Server
(TFS). This recipe explains all that we need to get TFS to work with Silverlight applications in
Visual Studio and Blend. However, it doesn't explain how to work with TFS itself.

Note that for this recipe, access to a working instance of TFS is required.

Getting ready
Before getting started, make sure that you have installed Blend 5 and the necessary
developer tools as described in the recipe Getting our environment ready to start developing
Silverlight applications.

How to do it...
To start using TFS as a versioning system with a Silverlight-enabled solution, we need to
perform the following steps:

1. Using TFS source control with a Silverlight application in Visual Studio is exactly the
same as using it with any other type of Visual Studio project. Team Explorer is used
for this purpose, and this is automatically installed out of the box with Visual Studio
2010. (For Visual Studio 2008, it has to be separately installed from http://www.
microsoft.com/download/en/details.aspx?DisplayLang=en&id=16338)

2. Blend 5 also supports source control out-of-the-box.

Learning the Nuts and Bolts of Silverlight 5

30

3. Once these are installed, we can use TFS source control from within Blend for any
solution bound to the TFS source control. Right-click on any file in the Solution
Explorer window to view the source control options, just as we would do in Visual
Studio's Solution Explorer window. We can now check out, check in, and merge files
from Blend. The following screenshot shows the checkout process:

How it works...
Team Foundation Server source control is the preferred way of enabling version control on our
projects. Explaining in detail how to work with TFS is beyond the scope of this book, but the
following are a few basic steps and references:

1. We must make sure that we have the correct permissions on our Team Foundation
Server to handle the tasks we need to do. We need different permissions to (for
example) create projects than to check out files. Have a look at this MSDN article
to learn how to set these permissions: http://msdn.microsoft.com/en-us/
library/ms252587.aspx

2. Next, we'll need to connect to TFS using Team Explorer. Have a look at this MSDN
article to learn how to do that: http://msdn.microsoft.com/en-us/library/
ms181474.aspx

3. We'll now need to create a workspace on our machine. We can look at the workspace
as a local folder containing copies of the source-controlled files on the TFS. For more
information, have a look at this MSDN article: http://msdn.microsoft.com/en-
us/library/ms181384.aspx

Chapter 1

31

4. After we've created a local workspace, we can download the files from
TFS to that local folder. More information about this can be found at
http://msdn.microsoft.com/en-us/library/ms181385.aspx

5. We're now able to open our source-controlled solution in Blend and/or Visual Studio,
check out files, merge files, add projects, and so on, depending on the permissions.

There's more...
While working a lot with TFS, an interesting feature to download is the Team Foundation
Server Power Tools. This is a set of extra features that is added to TFS and is mainly aimed
at power users. It can be downloaded at http://msdn.microsoft.com/en-us/
teamsystem/bb980963.aspx

Commonly used terms in TFS
A complete glossary of TFS terms can be found at http://msdn.microsoft.com/en-us/
library/ms242882.aspx. As a reference, the following are a few of the more commonly
used ones along with a brief explanation:

Term Explanation
TFS workspace A location on the Team Foundation Server (TFS), where a record of

the changes between local files and corresponding repository files is
stored. It can also be thought of as a copy of the client-side directory, a
staging ground where local changes are persisted until they are checked
into the server, or a collection of working folder mappings that can be
viewed and edited.

Working folder A client-side representation of the TFS workspace. Binding the TFS
workspace to the client-side working folder is done through a TFS
workspace mapping.

Check in The task of committing a pending change/pending changes to a TFS
repository. When you check in pending changes, a new changeset is
created on the server.

Check out The task of notifying the TFS server that you are changing the status of
a resource from locked to writeable. When you check out for edit, TFS
appends an edit to that resource.

Get latest The task of retrieving the most recent version of a file from the TFS source
control to your local working folder.

Learning the Nuts and Bolts of Silverlight 5

32

Deploying a Silverlight application on
the server

Applies to Silverlight 4 and 5

Once we have a Silverlight application ready, we will want to show it to the rest of the world.
This means deploying it!

While Silverlight is a .NET technology, it doesn't require .NET to be installed on the server.
Remember that it's a client-side technology. The Silverlight plugin on the client will download
and run the application, using the version of the Common Language Runtime (CLR)
embedded in the Silverlight plugin. In this recipe, we'll look at how we can deploy a
Silverlight application.

How to do it...
Deploying a Silverlight application is easy; the Silverlight code is compiled and wrapped into
a *.xap file. Getting this file on the client side and running it from there is our only concern.
The following steps are to be carried out to deploy a Silverlight application:

1. We'll use the DeployHelloWorld application to demonstrate deployment, which
is available with the code downloads in the Chapter01/DeployHelloWorld
folder. Build the application and notice that Visual Studio has created a *.xap file
in the ClientBin directory. This file, which is nothing more than a *.zip file but
with another extension, contains the assembly (one or more) to which our Silverlight
application was compiled, optional resources, and the AppManifest.xaml file.

2. While looking at the files created by default by Visual Studio in the web
project, sample HTML (DeployHelloWorldTestPage.html) and ASPX
(DeployHelloWorldTestPage.aspx) pages are created for us as shown in the
following screenshot:

Chapter 1

33

3. Both pages have an object tag included. One of the parameters is named source
and it has a reference to the *.xap file in the ClientBin, as shown in the following
code. If we want to deploy the *.xap file to another location, we need to update this
reference. We'll use the default:
<object data="data:application/x-silverlight-2,"
 type="application/x-silverlight-2"
 width="100%"
 height="100%">
 <param name="source" value="ClientBin/DeployHelloWorld.xap"/>
 <param name="onError" value="onSilverlightError" />
 <param name="background" value="white" />
 <param name="minRuntimeVersion" value="5.0.60401.0" />
 <param name="autoUpgrade" value="true" />
 <a href="http://go.microsoft.com/fwlink/?LinkID=149156&v=4.0.4
 1108.0"
 style="text-decoration:none">
 <img src="http://go.microsoft.com/fwlink/?LinkId=161376"
 alt="Get Microsoft Silverlight"
 style="border-style:none"/>

</object>

Note that the value of minRuntimeVersion may differ slightly because of
different Silverlight version releases.

4. If using the HTML page, the following files need to be copied:

 � DeployHelloWorldTestPage.html

 � Silverlight.js

 � ClientBin/DeployHelloWorld.xap

5. If using the ASPX page, we need to copy the following files:

 � DeployHelloWorldTestPage.aspx

 � Silverlight.js

 � ClientBin/DeployHelloWorld.xap

 � bin directory, if using code-behind for the ASPX page
 � web.config

Learning the Nuts and Bolts of Silverlight 5

34

6. We'll need to test the page in a browser. If it fails to load, check the MIME types
served by the web server software. There should be *.xap and *.xaml in there.
(They are specified as the data type in the object tag).

How it works...
One of the best things about Silverlight is that it can run from any type of server. If we're using
ASP.NET, PHP, JSP, or plain-old HTML, Silverlight can still be embedded. Silverlight runs on the
client side. The plugin has a CLR embedded, so that it hosts our application. On the server
side, the only thing we need to do is to serve the files (most importantly, the *.xap file) that
will be downloaded to the client side when requested.

Configuration changes on the server
If the Silverlight application isn't being shown, it might be that the server software (IIS or
Apache) is not configured to serve the file types used by Silverlight (*.xap and *.xaml).
Windows Vista SP1 and Windows Server ship including Internet Information Services (IIS 7),
while Windows 7 and Windows Server 2008 R2 include IIS 7.5. On these OS versions, both
IIS 7 and IIS 7.5 are configured out-of-the-box to serve *.xap and *.xaml files. On Windows
Vista without SP1, we need to add these to the known MIME types. We can do this by opening
Internet Information Services (IIS) Manager and selecting MIME Types. Then, we simply
click on Add and add the following two items:

 f .xap in the File name extension: field, and application/x-silverlight-app
in the MIME type: field

 f .xaml in the File name extension: field, and application/xaml+xml in the
MIME type: field

Chapter 1

35

What if the server doesn't allow using XAP?
If the server environment doesn't allow adding MIME types (a shared hosting plan), there's
no reason to panic. As a *.xap file is nothing more than a *.zip file, but with another
extension, Silverlight supports the *.xap file being deployed as a *.zip file.

To get things working, start by renaming the *.xap file in the ClientBin to *.zip. Also,
replace the reference of the *.xap file to the new name as shown in the following code:

<object data="data:application/x-silverlight-2,"
 type="application/x-silverlight-2"
 width="100%"
 height="100%">
 <param name="source" value="ClientBin/DeployHelloWorld.zip"/>
</object>

2
An Introduction to

Data Binding

In this chapter, we will cover:

 f Displaying data in Silverlight applications

 f Creating dynamic bindings

 f Binding data to another UI element

 f Binding collections to UI elements

 f Enabling a Silverlight application to automatically update its UI

 f Obtaining data from any UI element it is bound to

 f Using the different modes of data binding to allow persisting data

 f Debugging data binding expressions in Visual Studio

 f Data binding from Expression Blend 5

 f Using Expression Blend 5 for sample data generation

Introduction
Data binding allows us to build data-driven applications in Silverlight in a much easier and
much faster way, compared to old-school methods of displaying and editing data. This chapter
and the following one will take a look at how data binding works. We'll start by looking at the
general concepts of data binding in Silverlight 5 in this chapter.

Analyzing the term data binding immediately reveals its intentions. It is a technique that allows
us to bind properties of controls to objects or collections thereof.

An Introduction to Data Binding

38

The concept is, in fact, not new. Technologies such as ASP.NET, Windows Forms, and even
older technologies, such as Microsoft Foundation Classes (MFC) include data binding
features. However, WPF's data binding platform has changed the way we perform data
binding; it allows loosely coupled bindings. The BindingSource control in Windows Forms has
to know of the type we are binding to at design time. WPF's built-in data binding mechanism
does not. We simply define which property of the source the target should bind. At runtime,
the actual data—the object to which we are binding—is linked. Luckily for us, Silverlight inherits
almost all data binding features from WPF, and thus has a rich way of displaying data.

A binding is defined by the following four items:

 f The source or source object: This is the data we are binding to. The data that is used
in data binding scenarios is in-memory data, that is, objects. Data binding itself has
nothing to do with the actual data access. It works with the objects that are a result
of reading from a database or communicating with a service. A typical example is a
Customer object.

 f A property on the source object: This can, for example, be the Name property of the
Customer object.

 f The target control: This is normally a visual control, such as a TextBox or a
ListBox control. In general, the target can be a DependencyObject. In Silverlight
2 and Silverlight 3, the target had to derive from FrameworkElement; this left out
some important types such as transformations.

 f A property on the target control: This will, in some way—directly or after a
conversion—display the data from the property on the source.

The data binding process can be summarized in the following image:

Dependency

Property

Synchronization

Conversion

Property

Control
Data Binding

Object

In the previous image, we can see that the data binding engine is also capable of
synchronization. This means that data binding is capable of updating the display of data
automatically. If the value of the source changes, Silverlight will change the value of the target
as well, without us having to write a single line of code. Data binding isn't a complete black
box either. There are hooks in the process, so we can perform custom actions on the data
flowing from source to target, and vice versa. These hooks are the converters and we'll look at
converters in the next chapter.

D
ow

n
lo

a
d
 f
ro

m
 W

o
w

!
e
B
o
o
k

<
w

w
w

.w
o
w

e
b
o
o
k.

co
m

>

Chapter 2

39

Our applications can still be created without data binding. However, the manual process—that
is, getting data and setting all values manually on controls from code-behind—is error-prone
and tedious to write. Using the data-binding features in Silverlight, we will be able to write
more maintainable code faster.

In this chapter, we'll explore how data binding works. We'll start by building a small data-driven
application, which contains the most important data binding features, to get a grasp of the
general concepts. We'll also see that data binding isn't tied to only binding single objects to an
interface; binding an entire collection of objects is also supported. We'll also be looking at the
binding modes. They allow us to specify how the data will flow (from source to target, target to
source, or both). With Silverlight 5, one of the most anticipated features was added: the ability
to debug XAML data binding statements using breakpoints in XAML. This enables us at run-
time to break into XAML code and look at the values within the data binding statement. We'll
learn how we can add breakpoints and what values we can see.

We'll finish this chapter by looking at the support that Blend 5 provides to build applications
that use data binding features. This feature has been available in Blend since version 3. In the
next chapter, we'll be looking at the more advanced concepts of data binding.

In the recipes of this chapter and the following one, we'll assume that we are building a simple
banking application using Silverlight. Each of the recipes in this chapter will highlight a part
of this application where the specific feature comes into play. The following image shows the
resulting Silverlight banking application:

An Introduction to Data Binding

40

If you want to take a look at the complete application, run the solution found in the
Chapter02/SilverlightBanking folder in the code bundle that is available on
the Packt website.

Displaying data in Silverlight applications
Applies to Silverlight 3, 4 and 5

When building Silverlight applications, we often need to display data to the end user.
Applications such as an online store with a catalogue and a shopping cart, an online banking
application and so on, need to display data of some sort.

Silverlight contains a rich data binding platform that will help us write data-driven applications
faster and with less code. In this recipe, we'll build a form that displays the data of a bank
account's owner using data binding.

Getting ready
To follow along with this recipe, you can use the starter solution located in the Chapter02/
SilverlightBanking_Displaying_Data_Starter folder in the code bundle available
on the Packt website. The finished application for this recipe can be found in the Chapter02/
SilverlightBanking_Displaying_Data_Completed folder.

How to do it...
Let's assume that we are building a form, part of an online banking application, in which
we can view the details of the owner of the account. Instead of wiring up the fields of the
owner manually, we'll use data binding. To get data binding up and running, carry out the
following steps:

1. Open the starter solution, as outlined in the Getting Ready section.

2. The form we are building will bind to data. Data in data binding is in-memory data, not
the data that lives in a database (it can originate from a database, though). The data
to which we are binding is an instance of the Owner class. The following is the code
for the class. Add this code in a new class file called Owner in the Silverlight project:
public class Owner
{
 public int OwnerId { get; set; }
 public string FirstName { get; set; }
 public string LastName { get; set; }
 public string Address { get; set; }
 public string ZipCode { get; set; }
 public string City { get; set; }

Chapter 2

41

 public string State { get; set; }
 public string Country { get; set; }
 public DateTime BirthDate { get; set; }
 public DateTime CustomerSince { get; set; }
 public string ImageName { get; set; }
 public DateTime LastActivityDate { get; set; }
 public double CurrentBalance { get; set; }
 public double LastActivityAmount { get; set; }
}

3. Now that we've created the class, we are able to create an instance of it in the
MainPage.xaml.cs file, the code-behind class of MainPage.xaml. In the
constructor, we call the InitializeOwner method, which creates an instance of
the Owner class and populates its properties as follows:
private Owner owner;
public MainPage()
{
 InitializeComponent();
 //initialize owner data
 InitializeOwner();
}
private void InitializeOwner()
{
 owner = new Owner();
 owner.OwnerId = 1234567;
 owner.FirstName = "John";
 owner.LastName = "Smith";
 owner.Address = "Oxford Street 24";
 owner.ZipCode = "W1A";
 owner.City = "London";
 owner.Country = "United Kingdom";
 owner.State = "NA";
 owner.ImageName = "man.jpg";
 owner.LastActivityAmount = 100;
 owner.LastActivityDate = DateTime.Today;
 owner.CurrentBalance = 1234.56;
 owner.BirthDate = new DateTime(1953, 6, 9);
 owner.CustomerSince = new DateTime(1999, 12, 20);
}

An Introduction to Data Binding

42

4. Let's now focus on the form itself and build its UI. For this sample, we're not making
the data editable. For every field of the Owner class, we'll use a TextBlock. To
arrange the controls on the screen, we'll use a Grid called OwnerDetailsGrid.
This Grid can be placed inside the LayoutRoot grid. We will want the Text
property of each TextBlock to be bound to a specific property of the Owner
instance. This can be done by specifying this binding using the Binding markup
extension on this property. A markup extension can be recognized by the surrounding
curly braces ({Binding CurrentBalance}) The following XAML code shows part
of the UI, refer to the downloads of the book for the complete listing:
<Grid x:Name="OwnerDetailsGrid"
 VerticalAlignment="Stretch"
 HorizontalAlignment="Left"
 Background="LightGray"
 Margin="3 5 0 0"
 Width="300" >
 <Grid.RowDefinitions>
 <RowDefinition Height="100"></RowDefinition>
 <RowDefinition Height="30"></RowDefinition>
 ...
 <RowDefinition Height="*"></RowDefinition>
 </Grid.RowDefinitions>
 <Grid.ColumnDefinitions>
 <ColumnDefinition></ColumnDefinition>
 <ColumnDefinition></ColumnDefinition>
 </Grid.ColumnDefinitions>
 <Image x:Name="OwnerImage"
 Grid.Row="0"
 Width="100"
 Height="100"
 Stretch="Uniform"
 HorizontalAlignment="Left"
 Margin="3"
 Source="/CustomerImages/man.jpg"
 Grid.ColumnSpan="2">
 </Image>
 <TextBlock x:Name="OwnerIdTextBlock"
 Grid.Row="1"
 FontWeight="Bold"
 Margin="2"
 Text="Owner ID:">
 </TextBlock>
 <TextBlock x:Name="FirstNameTextBlock"
 Grid.Row="2"
 FontWeight="Bold"

Chapter 2

43

 Margin="2"
 Text="First name:">
 </TextBlock>
 <TextBlock x:Name="LastNameTextBlock"
 Grid.Row="3"
 FontWeight="Bold"
 Margin="2"
 Text="Last name:">
 </TextBlock>
 ...
 </TextBlock>
 <TextBlock x:Name="CustomerSinceValueTextBlock"
 Grid.Row="10"
 Grid.Column="1"
 Margin="2"
 Text="{Binding CustomerSince}">
 </TextBlock>
 <Button x:Name="OwnerDetailsEditButton"
 Grid.Row="11"
 Grid.ColumnSpan="2"
 Margin="3"
 Content="Edit details..."
 HorizontalAlignment="Right"
 VerticalAlignment="Top">
 </Button>
 <TextBlock x:Name="CurrentBalanceValueTextBlock"
 Grid.Row="12"
 Grid.Column="1"
 Margin="2"
 Text="{Binding CurrentBalance}" >
 </TextBlock>
 <TextBlock x:Name="LastActivityDateValueTextBlock"
 Grid.Row="13"
 Grid.Column="1"
 Margin="2"
 Text="{Binding LastActivityDate}" >
 </TextBlock>
 <TextBlock x:Name="LastActivityAmountValueTextBlock"
 Grid.Row="14"
 Grid.Column="1"
 Margin="2"
 Text="{Binding LastActivityAmount}" >
 </TextBlock>
</Grid>

An Introduction to Data Binding

44

5. At this point, all the controls know what property they need to bind to. However, we
haven't specified the actual link. The controls don't know about the Owner instance
we want them to bind to. Therefore, we can use DataContext. We specify the
DataContext of the OwnerDetailsGrid to be the Owner instance. Each control
within that container can then access the object and bind to its properties. Setting
the DataContext is done using the following code:
public MainPage()
{
 InitializeComponent();
 //initialize owner data
 InitializeOwner();
 OwnerDetailsGrid.DataContext = owner;
}

6. The result can be seen in the following image:

Chapter 2

45

How it works...
Before we take a look at the specifics of data binding, let's see what code we would need to
write if Silverlight did not support data binding. The following is the ManualOwner class and
we will be binding an instance of this class manually:

public class ManualOwner
{
 public int OwnerId { get; set; }
 public string FirstName { get; set; }
 public string LastName { get; set; }
 public string Address { get; set; }
 public string ZipCode { get; set; }
 public string City { get; set; }
 public string State { get; set; }
 public string Country { get; set; }
 public DateTime BirthDate { get; set; }
 public DateTime CustomerSince { get; set; }
 public string ImageName { get; set; }
 public DateTime LastActivityDate { get; set; }
 public double CurrentBalance { get; set; }
 public double LastActivityAmount { get; set; }
}

The XAML code would look the same, apart from the binding markup extensions that are
absent, as we aren't using the data binding functionality. The following is a part of the code
that has no data binding markup extensions:

<TextBlock x:Name="OwnerIdValueTextBlock"
 Grid.Row="1
 Grid.Column="1"
 Margin="2" >
</TextBlock>
<TextBlock x:Name="FirstNameValueTextBlock"
 Grid.Row="2"
 Grid.Column="1"
 Margin="2" >
</TextBlock>
<TextBlock x:Name="LastNameValueTextBlock"
 Grid.Row="3"
 Grid.Column="1"
 Margin="2" >
</TextBlock>
<TextBlock x:Name="AddressValueTextBlock"
 Grid.Row="4"
 Grid.Column="1"
 Margin="2" >
</TextBlock>

An Introduction to Data Binding

46

Of course, the DataContext would also not be needed. Instead, we would manually have
to link all the TextBlock controls with a property of the ManualOwner from code-behind,
as shown in the following code. As you can be see, this is not the most exciting code one
can write:

public MainPage()
{
 InitializeComponent();
 //initialize owner data
 InitializeOwner();
 SetOwnerValues();
}
private void SetOwnerValues()
{
 OwnerIdValueTextBlock.Text = owner.OwnerId.ToString();
 FirstNameValueTextBlock.Text = owner.FirstName;
 LastNameValueTextBlock.Text = owner.LastName;
 AddressValueTextBlock.Text = owner.Address;
 //other values go here

}

It is also easy to make errors this way. When a field gets added to the ManualOwner, we need
to remember the places in which we have to update our code manually.

However, we can do better using data binding. Data binding enables us to write less code and
have fewer opportunities to make errors.

Silverlight's data binding features allow us to bind the properties of the Owner instance to
the Text property of the TextBlock controls using the Binding markup extension. A markup
extension can be recognized by a pair of curly braces ({}). It's basically a signal for the XAML
parser that more needs to be done than simple attribute parsing. In this case, an instance of
the System.Windows.Data.Binding needs to be created for data binding to happen. The
created Binding instance will bind the source object with the target control.

Looking back at the XAML code, we find that this binding is achieved for each TextBlock
using the following code:

<TextBlock Text="{Binding CustomerSince}" />

This is, in fact, the shortened format. We could have written it as the following code:

<TextBlock Text="{Binding Path=CustomerSince}" />

The format for the binding is generally the following:

<TargetControl TargetProperty="{Binding SourceProperty,

 SomeBindingProperties}" />

Chapter 2

47

Note that using SomeBindingProperties, more options can be specified when creating
the binding. For example, we can specify that data should not only flow from source object
to target control, but also vice versa. We'll explore a whole list of extra binding properties in
the next recipes.

Are we missing something? Each control knows what it should bind to, but we haven't
specified the actual source of the data. This is done using the DataContext. We set the
Owner instance to be the DataContext of the Grid containing the controls. All controls
within the Grid can access the data. We'll look at the DataContext in a later recipe.

Finally, there is one important point to note; we can't just bind everything. Basically, there are
two rules we must follow:

1. The target object must be a DependencyObject (System.Windows.
DependencyObject). In Silverlight 2 and Silverlight 3, the target could be a
FrameworkElement instance only. FrameworkElement is lower in the class
hierarchy than DependencyObject. Because of this, some important objects could
not be used in data binding scenarios, such as Transformations. Since Silverlight 4,
this problem has been solved.

2. The target property must be a dependency property. Again, don't panic, as
almost all properties on UI controls (such as text, foreground, and so on) are
dependency properties.

Dependency properties were introduced with WPF and can be considered
as properties on steroids. They include a mechanism that at any point
in time determines what the value of the property should be, based on
several influences working on the property, such as data binding, styling,
and so on. They can be considered the enabler for animations, data
binding, styling, and so on.
More on dependency properties can be found at http://msdn.
microsoft.com/en-us/library/system.windows.
dependencyproperty.aspx.

There's more...
Instead of creating the Owner instance in code, we can create it from XAML as well. First, we
need to map the CLR namespace to an XML namespace as follows:

xmlns:local="clr-namespace:SilverlightBanking"

An Introduction to Data Binding

48

In the Resources collection of the container (the UserControl), we instantiate the
type like:

<UserControl.Resources>
 <local:Owner x:Key="localOwner"
 City="London"
 Country="United Kingdom"
 FirstName="John"
 LastName="Smith"
 OwnerId="1234567 ...>
 </local:Owner>
</UserControl.Resources>

The actual binding is almost the same, apart from specifying the source. We are not using the
DataContext now, but we need to use the Source in each binding, referring to the item in
the Resources as follows:

<TextBlock x:Name="OwnerIdValueTextBlock"
 Grid.Row="1"
 Grid.Column="1"
 Margin="2"
 Text="{Binding OwnerId,
 Source={StaticResource localOwner}}" >
</TextBlock>
<TextBlock x:Name="FirstNameValueTextBlock"
 Grid.Row="2"
 Grid.Column="1"
 Margin="2"
 Text="{Binding FirstName,
 Source={StaticResource localOwner}}" >
</TextBlock>
<TextBlock x:Name="LastNameValueTextBlock"
 Grid.Row="3"
 Grid.Column="1"
 Margin="2"
 Text="{Binding LastName,
 Source={StaticResource localOwner}}" >
</TextBlock>

Whether binding from XAML is useful or not depends on the scenario. In most scenarios, we
bind to objects that are created at runtime from the code-behind. Binding to objects that get
created from XAML can be useful in scenarios where design-time data is required. This then
enables us to view sample data during the design of the application, both from Visual Studio
and Blend.

Chapter 2

49

See also
The DataContext makes its first appearance in this recipe, but we'll look at it in more detail
in the Obtaining data from any UI element it is bound to recipe in this chapter.

Creating dynamic bindings
Applies to Silverlight 3, 4 and 5

In the previous recipe, you learned how to use data binding in XAML. This is often useful
because it allows you to show data easily to your user, for example, showing user information
or a list of products. In this recipe, you'll learn how to do exactly the same in C# code instead
of XAML. This can be useful in situations where you want to bind a dependency property to the
property of an object that you'll know only at runtime.

Getting ready
For this recipe, we can continue from the solution that was completed in the previous
recipe. Alternatively, you can find the starter solution in the Chapter02/
SilverlightBanking_Dynamic_Bindings_Starter folder in the code bundle
that is available on the Packt website. Also, the completed solution can be found in the
Chapter02/SilverlightBanking_Dynamic_Bindings_Completed folder.

How to do it...
We're going to change the code from the previous recipe, so we can create the bindings in C#,
instead of XAML. To do this, we'll carry out the following steps:

1. Open the solution created in the previous recipe, Displaying data in Silverlight
applications, locate the grid named OwnersDetailsGrid in MainPage.xaml, and
remove the Binding syntax from the XAML code for each TextBlock as shown in
the following code:
<TextBlock x:Name="OwnerIdValueTextBlock"
 Grid.Row="1"
 Grid.Column="1"
 Margin="2">
</TextBlock>
<TextBlock x:Name="FirstNameValueTextBlock
 Grid.Row="2"
 Grid.Column="1"
 Margin="2">
</TextBlock>
<TextBlock x:Name="LastNameValueTextBlock"

An Introduction to Data Binding

50

 Grid.Row="3"
 Grid.Column="1"
 Margin="2">
</TextBlock>
<TextBlock x:Name="AddressValueTextBlock"
 Grid.Row="4"
 Grid.Column="1"
 Margin="2">
</TextBlock>
<TextBlock x:Name="ZipCodeValueTextBlock"
 Grid.Row="5"
 Grid.Column="1"
 Margin="2">
</TextBlock>
<TextBlock x:Name="CityValueTextBlock"
 Grid.Row="6"
 Grid.Column="1"
 Margin="2">
</TextBlock>
<TextBlock x:Name="StateValueTextBlock"
 Grid.Row="7"
 Grid.Column="1"
 Margin="2">
</TextBlock>
<TextBlock x:Name="CountryValueTextBlock"
 Grid.Row="8"
 Grid.Column="1"
 Margin="2">
</TextBlock>
<TextBlock x:Name="BirthDateValueTextBlock"
 Grid.Row="9"
 Grid.Column="1"
 Margin="2">
</TextBlock>
<TextBlock x:Name="CustomerSinceValueTextBlock"
 Grid.Row="10"
 Grid.Column="1"
 Margin="2">
</TextBlock>

2. Open the code-behind MainPage.xaml.cs file. Here, we're going to
create the same bindings in the C# code. In the constructor, after the call to
InitializeComponent(), add the following code:
OwnerIdValueTextBlock.SetBinding(TextBlock.TextProperty,
 new Binding("OwnerId"));
FirstNameValueTextBlock.SetBinding(TextBlock.TextProperty,
 new Binding("FirstName"));
LastNameValueTextBlock.SetBinding(TextBlock.TextProperty,
 new Binding("LastName"));

Chapter 2

51

AddressValueTextBlock.SetBinding(TextBlock.TextProperty,
 new Binding("Address"));
ZipCodeValueTextBlock.SetBinding(TextBlock.TextProperty,
 new Binding("ZipCode"));
CityValueTextBlock.SetBinding(TextBlock.TextProperty,
 new Binding("City"));
StateValueTextBlock.SetBinding(TextBlock.TextProperty,
 new Binding("State"));
CountryValueTextBlock.SetBinding(TextBlock.TextProperty,
 new Binding("Country"));
BirthDateValueTextBlock.SetBinding(TextBlock.TextProperty,
 new Binding("BirthDate"));
CustomerSinceValueTextBlock.SetBinding(TextBlock.TextProperty,
 new Binding("CustomerSince"));

A using statement to System.Windows.Data must be added to make this
code compile.

3. We can now build and run the application, and you'll notice that the correct data is
still displayed in the details form. The result can be seen in the following image:

An Introduction to Data Binding

52

How it works...
This recipe shows you how to set the binding using C# syntax. Element.SetBinding
expects two parameters, a dependency property, and a binding object. The first parameter
defines the DependencyProperty of the element you want to bind. The second parameter
defines the binding by passing a string that refers to the property path of the object to which
you are binding.

There's more...
In our example, we've used new Binding("path") as the syntax. The binding object,
however, has different properties that you can set and which can be of interest. A few of
these properties are Converter, ConverterParameter, ElementName, Path, Mode,
and ValidatesOnExceptions.

To know when and how to use these properties, have a look at the other recipes in this
chapter, and the next recipe will explain all the possibilities in detail. They are, however,
already mentioned in this recipe to make it clear that you can do everything that is required
as far as bindings are concerned in both C# and XAML.

Binding data to another UI element
Applies to Silverlight 3, 4 and 5

Sometimes the value of the property of an element is directly dependent on the value of
the property of another element. In this case, you can create a binding in XAML called an
element binding or element-to-element binding. This binding links both values. If
needed, the data can flow bi-directionally.

In the banking application, we can add a loan calculator that allows the user to select an
amount and the number of years in which they intend to pay the loan back to the bank,
including (of course) interest.

Getting ready
To follow this recipe, you can either continue with your solution from the previous recipe or
use the provided solution that can be found in the Chapter02/SilverlightBanking_
Element_Binding_Starter folder in the code bundle that is available on the Packt
website. The finished application for this recipe can be found in the Chapter02/
SilverlightBanking_Element_Binding_Completed folder.

Chapter 2

53

How to do it...
To build the loan calculator, we'll use Slider controls. Each Slider is bound to a
TextBlock using an element-to-element binding to display the actual value. Let's take a
look at the steps that we need to follow to create this binding:

1. We will build the loan calculator as a separate screen in the application. Add a new
child window called LoanCalculation.xaml. To do so, right-click on the Silverlight
project in the Solution Explorer, select Add | New Item..., and choose Silverlight
Child Window under Visual C#.

2. Within MainPage.xaml, add a Click event on the LoanCalculationButton, as
shown in the following code:
<Button x:Name="LoanCalculationButton"
 Click="LoanCalculationButton_Click" />

3. In the code-behind's event handler for this Click event, we can trigger the display of
this new screen with the following code:
private void LoanCalculationButton_Click(object sender,
 RoutedEventArgs e)
{
 LoanCalculation loanCalculation = new LoanCalculation();
 loanCalculation.Show();
}

4. The UI of the LoanCalculation.xaml is quite simple—it contains two Slider
controls. Each Slider control has set values for its Minimum and Maximum values
(not all UI code is included here; the complete listing can be found in the finished
sample code), as shown in the following code:
<Slider x:Name="AmountSlider"
 Minimum="10000"
 Maximum="1000000"
 SmallChange="10000"
 LargeChange="10000"
 Width="300" >
</Slider>
<Slider x:Name="YearSlider"
 Minimum="5"
 Maximum="30"
 SmallChange="1"
 LargeChange="1"
 Width="300"
 UseLayoutRounding="True">
</Slider>

An Introduction to Data Binding

54

5. As dragging a Slider does not give us proper knowledge of where we are exactly
between the two values, we add two TextBlock controls. We want the TextBlock
controls to show the current value of the Slider control, even while dragging.
This can be done by specifying an element-to-element binding, as shown in the
following code:
<TextBlock x:Name="AmountTextBlock"
 Text="{Binding ElementName=AmountSlider, Path=Value}">
</TextBlock>
<TextBlock x:Name="MonthTextBlock"
 Text="{Binding ElementName=YearSlider, Path=Value}">
</TextBlock>

6. Add a Button that will perform the actual calculation called CalculateButton,
and a TextBlock called PaybackTextBlock to show the results. This can be done
using the following code:
<Button x:Name="CalculateButton"
 Content="Calculate"
 Click="CalculateButton_Click">
</Button>
<TextBlock x:Name="PaybackTextBlock"></TextBlock>

7. The code for the actual calculation that is executed when the CalculateButton is
clicked uses the actual value for either the Slider or the TextBlock. This is shown
in the following code:

private double percentage = 0.0345;
private void CalculateButton_Click(object sender,
 RoutedEventArgs e)
{
 double requestedAmount = AmountSlider.Value;
 int requestedYears = (int)YearSlider.Value;
 for (int i = 0; i < requestedYears; i++)
 {
 requestedAmount += requestedAmount * percentage;
 }
 double monthlyPayback =
 requestedAmount / (requestedYears * 12);
 PaybackTextBlock.Text =
 "€" + Math.Round(monthlyPayback, 2);
}

Chapter 2

55

Having carried out the previous steps, we now have successfully linked the value of the
Slider controls and the text of the TextBlock controls. The following screenshot shows the
LoanCalculation.xaml screen, as it is included in the finished sample code containing
some extra markup:

How it works...
An element binding links two properties of two controls directly from XAML. It allows us to
create a Binding, where the source object is another control. For this to work, we need to
create a Binding and specify the source control using the ElementName property. This is
shown in the following code:

<TextBlock Text="{Binding ElementName=YearSlider, Path=Value}" >
</TextBlock>

Element bindings were added in Silverlight 3. Silverlight 2 did not support this type of binding.

There's more...
An element binding can also work in both directions, that is, from source to target and target
to source. This can be achieved by specifying the Mode property on the Binding and setting
it to TwoWay.

Take a look at the following code, where we replaced the TextBlock by a TextBox. When
entering a value in the latter, the Slider will adjust its position:

<TextBox x:Name="AmountTextBlock"
 Text="{Binding ElementName=AmountSlider, Path=Value,
 Mode=TwoWay}" >
</TextBox>

An Introduction to Data Binding

56

Element bindings without bindings
Achieving the same effect in Silverlight 2—which does not support this feature—is also
possible, but only through the use of an event handler, as shown in the following code.
Element bindings eliminate this need:

private void AmountSlider_ValueChanged(object sender,
 RoutedPropertyChangedEventArgs<double> e)
{
 AmountSlider.Value = Math.Round(e.NewValue);
 AmountTextBlock.Text = AmountSlider.Value.ToString();
}

See also
Element-to-element bindings can be easily extended to use converters. For more
information on TwoWay bindings, take a look at the recipe Using the different modes of data
binding to allow persisting data, in this chapter.

Binding collections to UI elements
Applies to Silverlight 3, 4 and 5

Often, you'll want to display lists of data in your application, such as a list of shopping items, a
list of users, a list of bank accounts, and so on. Such a list typically contains many items of a
certain type that have the same properties and need to be displayed in the same fashion.

We can use data binding to easily bind a collection to a Silverlight control (such as a ListBox
or DataGrid), and use the same data binding possibilities to define how every item in the
collection should be bound. This recipe will show you how to achieve this.

Getting ready
For this recipe, you can find the starter solution in the Chapter02/SilverlightBanking_
Binding_Collections_Starter folder and the completed solution in the Chapter02/
SilverlightBanking_Binding_Collections_Completed folder in the code bundle
that is available on the Packt website.

Chapter 2

57

How to do it...
In this recipe, we'll create a ListBox bound to a collection of activities. To complete this task,
carry out the following steps:

1. We'll need a collection of some kind. We'll create a new type, AccountActivity.
Add the AccountActivity class to your Silverlight project as shown in the
following code:
public class AccountActivity
{
 public int ActivityId {get; set;}
 public double Amount { get; set; }
 public string Beneficiary { get; set; }
 public DateTime ActivityDate { get; set; }
 public string ActivityDescription { get; set; }
}

Add an ObservableCollection of AccountActivity to MainPage.xaml.cs,
using the following code:
private ObservableCollection<AccountActivity>
 accountActivitiesCollection;

2. Now we'll instantiate accountActivitiesCollection and fill it with data. To do
this, add the following code to MainPage.xaml.cs:
private void InitializeActivitiesCollection()
{
 accountActivitiesCollection = new
 ObservableCollection<AccountActivity>();
 AccountActivity accountActivity1 = new AccountActivity();
 accountActivity1.ActivityId = 1;
 accountActivity1.Amount = -33;
 accountActivity1.Beneficiary = "Smith Woodworking Shop London";
 accountActivity1.ActivityDescription = "Paid by credit card";
 accountActivity1.ActivityDate = new DateTime(2009, 9, 1);
 accountActivitiesCollection.Add(accountActivity1);
 AccountActivity accountActivity2 = new AccountActivity();
 accountActivity2.ActivityId = 2;
 accountActivity2.Amount = 1000;
 accountActivity2.Beneficiary = "ABC Infrastructure";
 accountActivity2.ActivityDescription = "Paycheck September
 2009";
 accountActivity2.ActivityDate = new DateTime(2009, 9, 1);
 accountActivitiesCollection.Add(accountActivity2);
}

This creates a collection with two items. You can add more if you want to.

An Introduction to Data Binding

58

3. Add the following code to the MainPage constructor to call the method you created
in the previous step:
InitializeActivitiesCollection();

4. We're going to need a control to display these AccountActivity items. To do
this, add a ListBox called AccountActivityListBox. This ListBox defines a
DataTemplate that defines how each AccountActivity is displayed:
<Grid Background="DarkGray" Grid.Row="2" Grid.Column="1"
VerticalAlignment="Stretch">
 <ListBox x:Name="AccountActivityListBox"
 Width="600"
 Grid.Row="1">
 <ListBox.ItemTemplate>
 <DataTemplate>
 <Grid>
 <Grid.RowDefinitions>
 <RowDefinition></RowDefinition>
 <RowDefinition></RowDefinition>
 </Grid.RowDefinitions>
 <Grid.ColumnDefinitions>
 <ColumnDefinition Width="150" />
 <ColumnDefinition Width="330" />
 <ColumnDefinition Width="100" />
 </Grid.ColumnDefinitions>
 <TextBlock
 Grid.Row="0"
 Grid.Column="0"
 Grid.RowSpan="2"
 Text="{Binding ActivityDate}">
 </TextBlock>
 <TextBlock
 Grid.Row="0"
 Grid.Column="1"
 Text="{Binding Beneficiary}"
 FontWeight="Bold">
 </TextBlock>
 <TextBlock
 Grid.Row="0"
 Grid.Column="2"
 HorizontalAlignment="Right"
 Text="{Binding Amount}">
 </TextBlock>
 <TextBlock
 Grid.Row="1"

Chapter 2

59

 Grid.Column="1"
 Text="{Binding ActivityDescription}">
 </TextBlock>
 </Grid>
 </DataTemplate>
 </ListBox.ItemTemplate>
 </ListBox>

5. In the MainPage constructor, set the ObservableCollection of
AccountActivity you created in step 2 as the ItemsSource of the ListBox, as
shown in the following code:
AccountActivityListBox.ItemsSource = accountActivitiesCollection;

6. If we build and run the application now, we'll see that a list of AccountActivity
items is displayed, as shown in the following image:

How it works...
The first three steps aren't important for people who have worked with collections before.
A class is created to define the type of items that are held by the collection, which is
initialized and then items are added to it. The default collection type to use in Silverlight is
ObservableCollection. We're using this collection type here. (For more information about
this, have a look at the There's more... section in this recipe.)

An Introduction to Data Binding

60

The real magic happens in step 4 and step 5. In step 4, we are creating a ListBox,
which has an ItemTemplate property. This ItemTemplate property should contain a
DataTemplate, and it's this DataTemplate that defines how each item of the collection
should be visualized. The DataTemplate corresponds to one item of your collection that one
AccountActivity. This means we can use the data binding syntax that binds to properties
of an AccountActivity in this DataTemplate.

When the ItemsSource property of the ListBox gets set to the ObservableCollection
of AccountActivity, each AccountActivity in the collection is evaluated and visualized
as defined in the DataTemplate.

There's more...
An ObservableCollection is the default collection type you'll want to use in a Silverlight
application, because it's a collection type that implements the INotifyCollectionChanged
interface. This makes sure that the UI can automatically be updated when the collection is
changed (by adding or deleting an item). More on this can be found in the recipe Enabling a
Silverlight application to automatically update its UI, next in this chapter.

The same principle applies for the properties of classes that implement the
INotifyPropertyChanged interface. More on this can be found in the same recipe,
Enabling a Silverlight application to automatically update its UI.

In this recipe, we're using a ListBox to visualize our ObservableCollection. However,
every control that inherits the ItemsControl class (directly or indirectly) can be used in
this way, such as a ComboBox, TreeView, DataGrid, WrapPanel, and so on. For more
information on what operations can be performed using DataGrid, have a look at Chapter 4,
The Data Grid.

See also
To learn how an ObservableCollection enables a UI to be automatically updated,
have a look at the recipe Enabling a Silverlight application to automatically update its UI.

Enabling a Silverlight application to
automatically update its UI

Applies to Silverlight 3, 4 and 5

In the previous recipes, we looked at how we can display data more easily using data binding
for both single objects as well as collections. However, there is another feature that data
binding offers us for free, automatic synchronization between the target and the source.
This synchronization will make sure that when the value of the source property changes, this
change will be reflected in the target object as well (being a control on the user interface).

Chapter 2

61

This also works in the opposite direction—when we change the value of a bound control, this
change will be pushed to the data object as well. Silverlight's data binding engine allows us to
opt-in to this synchronization process. We can specify if we want it to work—and if so, in which
directions—using the mode of data binding.

The synchronization works for both single objects bound to the UI as well as entire collections.
For it to work, an interface needs to be implemented in either case. This synchronization
process is what we'll be looking at in this recipe.

Getting ready
If you want to follow along with this recipe, you can either use the code from the previous
recipes or use the provided solution in the Chapter02/SilverlightBanking_Update_
UI_Starter folder in the code bundle that is available on the Packt website. The finished
solution for this recipe can be found in the Chapter02/SilverlightBanking_Update_
UI_Completed folder.

How to do it...
In this recipe, we'll look at how Silverlight does automatic synchronization, both for a single
object and for a collection of objects. To demonstrate both types of synchronization, we'll
use a timer that adds another activity on the account, every 10 seconds. A single instance
of the Owner class is bound to the UI. However, the newly-added activities will cause the
CurrentBalance, LastActivity, and LastActivityAmount properties of the Owner
class to get updated. Also, these activities on the account will be reflected in the list of
activities. Following are the steps to achieve automatic synchronization:

1. For the data binding engine to notice changes on the source object, the source needs
to send a notification that the value of one of its properties has changed. By default,
the Owner class does not do so. The original Owner class is shown by the following
code:
public class Owner
{
 public int OwnerId { get; set; }
 public string FirstName { get; set; }
 public string LastName { get; set; }
 public string Address { get; set; }
 public string ZipCode { get; set; }
 public string City { get; set; }
 public string State { get; set; }
 public string Country { get; set; }
 public DateTime BirthDate { get; set; }
 public DateTime CustomerSince { get; set; }
 public string ImageName { get; set; }

An Introduction to Data Binding

62

 public DateTime LastActivityDate { get; set; }
 public double CurrentBalance { get; set; }
 public double LastActivityAmount { get; set; }
}

2. To make this class support notifications, an interface has to be implemented, namely
the INotifyPropertyChanged interface. This interface defines one event, that is,
the PropertyChanged event. Whenever one of the properties change, this event
should be raised. The changed Owner class is shown in the following code (Only two
properties are shown as they are all similar; the rest can be found in the finished
solution in the book sample code):
public class Owner : INotifyPropertyChanged
{
 private double currentBalance;
 private string firstName;
 public event PropertyChangedEventHandler PropertyChanged;
 public string FirstName
 {
 get
 {
 return firstName;
 }
 set
 {
 firstName = value;
 if(PropertyChanged != null)
 PropertyChanged(this, new
 PropertyChangedEventArgs("FirstName"));
 }
 }
 public double CurrentBalance
 {
 get
 {
 return currentBalance;
 }
 set
 {
 currentBalance = value;
 if(PropertyChanged != null)
 PropertyChanged(this, new
 PropertyChangedEventArgs("CurrentBalance"));
 }
 }

Chapter 2

63

}

3. To simulate updates, we'll use a DispatcherTimer in the MainPage. With
every tick of this timer, a new activity on the account is created. We'll count the
new value of the CurrentBalance with every tick, and update the value of the
LastActivityDate and LastActivityAmount, as shown in the following code:
private DispatcherTimer timer;
private int currentActivityId = 11;
public MainPage()
{
 InitializeComponent();
 //initialize owner data
 InitializeOwner();
 OwnerDetailsGrid.DataContext = owner;
 timer = new DispatcherTimer();
 timer.Interval = new TimeSpan(0, 0, 10);
 timer.Tick += new EventHandler(timer_Tick);
 timer.Start();
}
void timer_Tick(object sender, EventArgs e)
{
 currentActivityId++;
 double amount = 0 - new Random().Next(100);
 AccountActivity newActivity = new AccountActivity();
 newActivity.ActivityId = currentActivityId;
 newActivity.Amount = amount;
 newActivity.Beneficiary = "Money withdrawal";
 newActivity.ActivityDescription = "ATM In Some Dark Alley";
 newActivity.ActivityDate = new DateTime(2009, 9, 18);
 owner.CurrentBalance += amount;
 owner.LastActivityDate = DateTime.Now;
 owner.LastActivityAmount = amount;
}

4. In XAML, the TextBlock controls are bound as mentioned before. If no Mode is
specified, OneWay is assumed. This causes updates of the source to be reflected in
the target, as shown in the following code:
<TextBlock x:Name="CountryValueTextBlock"
 Grid.Row="8"
 Grid.Column="1"
 Margin="2"
 Text="{Binding Country}" >
</TextBlock>

An Introduction to Data Binding

64

<TextBlock x:Name="BirthDateValueTextBlock"
 Grid.Row="9"
 Grid.Column="1"
 Margin="2"
 Text="{Binding BirthDate}" >
</TextBlock>
<TextBlock x:Name="CustomerSinceValueTextBlock"
 Grid.Row="10"
 Grid.Column="1"
 Margin="2"
 Text="{Binding CustomerSince}" >
</TextBlock>

5. If we run the application now, after 10 seconds, we'll see the values changing. The
new values can be seen in the following image:

6. In the previous recipe, Binding collections to UI elements, we saw how to bind
a list of AccountActivity items to a ListBox. If we want the UI to update
automatically when changes occur in the list (when a new item is added or an
existing item is removed), then the list to which we bind should implement the
INotifyCollectionChanged interface. Silverlight has a built-in list that
implements this interface, namely the ObservableCollection<T>. If we were
binding to a List<T>, then these automatic updates wouldn't work. Working with an
ObservableCollection<T> is no different than working with a List<T>. In the
following code, we're creating the ObservableCollection<AccountActivity>
and adding items to it:
private ObservableCollection<AccountActivity>
 accountActivitiesCollection;
private void InitializeActivitiesCollection()
{
 accountActivitiesCollection = new
 ObservableCollection<AccountActivity>();
 AccountActivity accountActivity1 = new AccountActivity();
 accountActivity1.ActivityId = 1;
 accountActivity1.Amount = -33;
 accountActivity1.Beneficiary = "Smith Woodworking Shop London";
 accountActivity1.ActivityDescription = "Paid by credit card";
 accountActivity1.ActivityDate = new DateTime(2009, 9, 1);
 accountActivitiesCollection.Add(accountActivity1);
}

Chapter 2

65

7. Update the Tick event, so that each new Activity is added to the collection:
void timer_Tick(object sender, EventArgs e)
{
 ...
 AccountActivity newActivity = new AccountActivity();
 ...
 accountActivitiesCollection.Add(newActivity);
}

8. To bind this collection to the ListBox, we use the ItemsSource property. The
following code can be added to the constructor to create the collection and perform
the binding:

InitializeActivitiesCollection();
AccountActivityListBox.ItemsSource = accountActivitiesCollection;

When we run the application now, we see that all added activities appear in the
ListBox control. With every tick of the Timer, a new activity is added and the UI
refreshes automatically.

How it works...
In some scenarios, we might want to view changes to the source object in the user interface
immediately. Silverlight's data binding engine can automatically synchronize the source and
target for us, both for single objects and for collections.

Single objects
If we want the target controls on the UI to update automatically a property value of
an instance changes, then the class to which we are binding should implement the
INotifyPropertyChanged interface. This interface defines just one
event—PropertyChanged. It is defined in the System.ComponentModel
namespace, using the following code:

public interface INotifyPropertyChanged
{
 event PropertyChangedEventHandler PropertyChanged;

}

This event should be raised whenever the value of a property changes. The name
of the property that has changed, is passed as the parameter for the instance of
PropertyChangedEventArgs.

An Introduction to Data Binding

66

A binding in XAML is set to OneWay by default. OneWay allows updates to be passed on to the
target. If we had set the binding to Mode=OneTime, then only the initial values would have
been loaded. For more information on binding modes, refer to the recipe Using the different
modes of data binding to allow persisting data.

Now, what exactly happens when we bind to a class that implements this interface? Whenever
we do so, Silverlight's data binding engine will notice this and will automatically start to check
if the PropertyChanged event is raised by an instance of the class. It will react to this event,
thereby resulting in an update of the target.

Collections
Whenever a collection changes, we might want to get updates of this collection as well. In this
example, we want to view the direct information of all the activities on the account. Normally,
we would have placed these in a List<T>. However, List<T> does not raise an event when
items are being added or deleted. An interface similar to INotifyPropertyChanged exists,
so that a list/collection should implement for data binding to pick up those changes. This
interface is known as INotifyCollectionChanged.

We didn't directly create a class that implements this interface. However, we used an
ObservableCollection<T>. This collection already implemented this interface for us.

Whenever items are being added, deleted, or the collection gets refreshed, an event will be
raised to which the data binding engine will bind itself. As for single objects, changes will be
reflected in the UI immediately.

Cleaning up the code
In the code for the Owner class, we have inputted all the properties as shown in the following
code:

public double CurrentBalance
{
 get
 {
 return currentBalance;
 }
 set
 {
 currentBalance = value;
 if(currentBalance != null)
 PropertyChanged(this, new
 PropertyChangedEventArgs("CurrentBalance"));
 }
}

Chapter 2

67

In the previous code, we are raising the PropertyChanged event from each property. It's a
good idea to move this to a separate method as shown in the following code:

public void OnPropertyChanged(string propertyName)
{
 if (PropertyChanged != null)
 {
 PropertyChanged(this, new
 PropertyChangedEventArgs(propertyName));
 }
}
public double CurrentBalance
{
 get
 {
 return currentBalance;
 }
 set
 {
 if (currentBalance != value)
 {
 currentBalance = value;
 OnPropertyChanged("CurrentBalance");
 }
 }
}

It may also be a good idea to move this method to a base class and have the entities inherit
from this class, as shown in the following code:

public class BaseEntity : INotifyPropertyChanged
{
 public event PropertyChangedEventHandler PropertyChanged;
 public void OnPropertyChanged(string propertyName)
 {
 if (PropertyChanged != null)
 {
 PropertyChanged(this, new
 PropertyChangedEventArgs(propertyName));
 }
 }
}
public class Owner : BaseEntity
{
}

D
ow

n
lo

a
d
 f
ro

m
 W

o
w

!
e
B
o
o
k

<
w

w
w

.w
o
w

e
b
o
o
k.

co
m

>

An Introduction to Data Binding

68

While automatic synchronization is a nice feature that comes along with data binding for free,
it's not always needed. Sometimes it's not even wanted. Therefore, implement the interfaces
that are described here only when the application needs them. It's an opt-in model.

Obtaining data from any UI element it is
bound to

Applies to Silverlight 3, 4 and 5

When a user who is working with your application performs a certain action, it's often
essential to know on what object this action will be executed. For example, if a user clicks on
a Delete button on an item, it's essential that you know which item is clicked, so that you can
write the correct code to delete that item. Also, when a user wants to edit an item in a list, it's
necessary that you—the programmer—know which item in the list the user wants to edit.

In Silverlight, there is a very easy mechanism called DataContext that helps us with this
task. In this recipe, we're going to use the DataContext to get the data when we need it.

Getting ready
If you want to follow along with this recipe, you can either use the code from the previous
recipes or use the provided solution in the Chapter02/SilverlightBanking_
Obtaining_Data_Starter folder in the code bundle that is available on the Packt
website. The completed solution for this recipe can be found in the Chapter02/
SilverlightBanking_Obtaining_Data_Completed folder.

How to do it...
We're going to create a Details... button for each item in the ListBox containing
AccountActivities. This Details... button will open a new ChildWindow that will display
details about the selected AccountActivity. To achieve this, carry out the following steps:

1. We will start by opening the solution we have created by following all the steps of the
recipe Binding data to collections. We add a new item to the Silverlight project—a
ChildWindow named ActivityDetailView, and add the following code to the
XAML defining this new control:
<Grid x:Name="LayoutRoot" Margin="2">
 <Grid.RowDefinitions>
 <RowDefinition />
 <RowDefinition Height="Auto" />
 </Grid.RowDefinitions>
<Grid x:Name="OwnerDetailsGrid">
 <Grid.RowDefinitions>
 <RowDefinition Height="30"></RowDefinition>

Chapter 2

69

 <RowDefinition Height="30"></RowDefinition>
 <RowDefinition Height="30"></RowDefinition>
 <RowDefinition Height="30"></RowDefinition>
 <RowDefinition Height="30"></RowDefinition>
 <RowDefinition Height="30"></RowDefinition>
 <RowDefinition Height="30"></RowDefinition>
 <RowDefinition Height="30"></RowDefinition>
 <RowDefinition Height="30"></RowDefinition>
 <RowDefinition Height="30"></RowDefinition>
 <RowDefinition Height="30"></RowDefinition>
 <RowDefinition Height="*"></RowDefinition>
 </Grid.RowDefinitions>
 <Grid.ColumnDefinitions>
 <ColumnDefinition></ColumnDefinition>
 <ColumnDefinition></ColumnDefinition>
 </Grid.ColumnDefinitions>
 <TextBlock x:Name="ActivityIdTextBlock"
 Grid.Row="0"
 FontWeight="Bold"
 Margin="2"
 Text="Activity ID:">
 </TextBlock>
 <TextBlock x:Name="BeneficiaryTextBlock"
 Grid.Row="1"
 FontWeight="Bold"
 Margin="2"
 Text="Beneficiary:">
 </TextBlock>
 <TextBlock x:Name="AmountTextBlock"
 Grid.Row="2"
 FontWeight="Bold"
 Margin="2"
 Text="Amount:">
 </TextBlock>
 <TextBlock x:Name="ActivityDateTextBlock"
 Grid.Row="3"
 FontWeight="Bold"
 Margin="2"
 Text="Date:">
 </TextBlock>
 <TextBlock x:Name="DescriptionTextBlock"
 Grid.Row="4"
 FontWeight="Bold"
 Margin="2"
 Text="Description:">
 </TextBlock>
 <TextBlock x:Name="ActivityIdTextBlockValue"
 Grid.Row="0"
 Grid.Column="1"
 Margin="2"

An Introduction to Data Binding

70

 Text="{Binding ActivityId}" >
 </TextBlock>
 <TextBlock x:Name="BeneficiaryTextBlockValue"
 Grid.Row="1"
 Grid.Column="1"
 Margin="2"
 Text="{Binding Beneficiary}" >
 </TextBlock>
 <TextBlock x:Name="AmountTextBlockValue"
 Grid.Row="2"
 Grid.Column="1"
 Margin="2"
 Text="{Binding Amount}" >
 </TextBlock>
 <TextBlock x:Name="ActivityDateTextBlockValue"
 Grid.Row="3"
 Grid.Column="1"
 Margin="2"
 Text="{Binding ActivityDate}" >
 </TextBlock>
 <TextBlock x:Name="DescriptionTextBlockValue"
 Grid.Row="4"
 Grid.Column="1"
 Margin="2"
 Text="{Binding ActivityDescription}"
 TextWrapping="Wrap">
 </TextBlock>
</Grid>
 <Button x:Name="btnOK"
 Content="OK"
 Click="btnOK_Click"
 Width="75"
 Height="23"
 HorizontalAlignment="Right"
 Margin="0,12,0,0"
 Grid.Row="1" />
</Grid>

2. Next, we open ActivityDetailView.xaml.cs and add the following code:
public ActivityDetailView(AccountActivity activity)
{
 InitializeComponent();
 this.DataContext = activity;
}

Chapter 2

71

3. Now we open the MainPage.xaml, locate the ListBox named
AccountActivityListBox, and add a button named btnDetails to the
DataTemplate of that ListBox. This is shown in the following code:
<Button x:Name="btnDetails"
 Grid.Row="1"
 Grid.Column="2"
 HorizontalAlignment="Right"
 Content="Details..."
 Click="btnDetails_Click">
</Button>

4. Add the following C# code to MainPage.xaml.cs to handle the Click event of the
button that we've added in the previous step:
private void btnDetails_Click(object sender, RoutedEventArgs e)
{
 ActivityDetailView activityDetailView = new ActivityDetailView
 ((AccountActivity)((Button)sender).DataContext);
 activityDetailView.Show();
}

5. We can now build and run the solution. When you click on the Details... button, you'll
see the details of the selected AccountActivity in a ChildWindow. You can see
the result in the following screenshot:

An Introduction to Data Binding

72

How it works...
Once the DataContext of a general control has been set (any CLR object can be used as
DataContext), each child item of that control refers to the same DataContext.

For example, if we have a UserControl containing a Grid that has three columns, with a
TextBox in the first two columns and a Button in the last column, and if the DataContext
of the UserControl gets set to an object of the Person type, then the Grid, TextBox, and
Button would have that same Person object as their DataContext. In general, when the
DataContext of an item hasn't been set, Silverlight will find out if the parent of that item
in the visual tree has its DataContext set to an object, and use that DataContext as the
DataContext of the child item. Silverlight keeps on walking up to the visual tree right up to
the uppermost level of the application.

If you use an ItemsControl, such as a ListBox, and give it a collection as an
ItemsSource, then the DataContext of that ListBox is the collection you bound it to.

Following the same logic, the DataContext of one ListBoxItem is one item from
the collection. In our example, one item is defined by a DataTemplate containing a
Grid, various TextBlock instances, and a Button. Due to the fact that Silverlight
keeps on trickling up to look for a valid DataContext, the DataContext of the Grid,
all the TextBlock instances, and the Button are the same; they're one item from the
ItemsSource collection of the ListBox.

With this in mind, we can now access the data that is bound to any UI element of our
ListBoxItem. The data we need is the DataContext of the button that we're clicking.

The Click event of this button has a sender parameter—the Button itself. To access the
DataContext, we cast the sender parameter to a Button object. As we know that the
ListBox is bound to an ObservableCollection of AccountActivity, we can cast the
DataContext to type AccountActivity. To show the details window, all we need to do
now is pass this object to the constructor of the details ChildWindow.

See also
The DataContext is important when you're working with data binding, as it's the
DataContext of an element that's looked at as the source of the binding properties. You can
learn more about data binding and the various possibilities it offers by looking at almost any
recipe in this chapter.

Chapter 2

73

Using the different modes of data
binding to allow persisting data

Applies to Silverlight 3, 4 and 5

Until now, the data has flowed from the source to the target (the UI controls). However, it can
also flow in the opposite direction from the target towards the source. This way, not only can
data binding help us in displaying data, but also in persisting data. The direction of the flow
of data in a data binding scenario is controlled by the Mode property of the Binding. In this
recipe, we'll look at an example that uses all the Mode options, and in one go we'll push the
data that we enter ourselves to the source.

Getting ready
This recipe builds on the code that was created in the previous recipes, so if you're following
along, you can keep using that codebase. You can also follow this recipe from the provided
start solution. It can be found in the Chapter02/SilverlightBanking_Binding_
Modes_Starter folder in the code bundle that is available on the Packt website. The
Chapter02/SilverlightBanking_Binding_Modes_Completed folder contains the
finished application of this recipe.

How to do it...
In this recipe, we'll build the OwnerDetailsEdit window of the Owner class. In this window,
part of the data is editable, while some isn't. The editable data will be bound using a TwoWay
binding, whereas the non-editable data is bound using a OneTime binding. The Current
balance of the account is also shown—which uses the automatic synchronization—based
on the INotifyPropertyChanged interface implementation. This is achieved using
OneWay binding.

An Introduction to Data Binding

74

The following is an image of the details screen:

Let's go through the required steps to work with the different binding modes:

1. Add a new Silverlight child window called OwnerDetailsEdit.xaml to the
Silverlight project.

2. In the code-behind of this window, change the default constructor so that it accepts
an instance of the Owner class, as shown in the following code:
private Owner owner;
public OwnerDetailsEdit(Owner owner)
{
 InitializeComponent();
 this.owner = owner;
}

3. In the MainPage.xaml, add a Click event on the OwnerDetailsEditButton as
follows:
<Button x:Name="OwnerDetailsEditButton"
 Click="OwnerDetailsEditButton_Click" >

4. In the event handler, add the following code, which will create a new instance of the
OwnerDetailsEdit window, passing in the created Owner instance:
private void OwnerDetailsEditButton_Click(object sender,
 RoutedEventArgs e)
{

Chapter 2

75

 OwnerDetailsEdit ownerDetailsEdit = new OwnerDetailsEdit(owner);
 ownerDetailsEdit.Show();
}

5. The XAML of the OwnerDetailsEdit is pretty simple. Take a look at the completed
solution (Chapter02/ SilverlightBanking_Binding_Modes_Completed)
for a complete listing. Don't forget to set the passed Owner instance as the
DataContext for the OwnerDetailsGrid. This is shown in the following code:
OwnerDetailsGrid.DataContext = owner;

6. For the OneWay and TwoWay bindings to work, the object to which we are binding
should be an instance of a class that implements the INotifyPropertyChanged
interface. In our case, we are binding an Owner instance. This instance implements
the interface correctly. The following code illustrates this:
public class Owner : INotifyPropertyChanged
{
 public event PropertyChangedEventHandler PropertyChanged;
}

7. Some of the data may not be updated on this screen and it will never change. For this
type of binding, the Mode can be set to OneTime. This is the case for the OwnerId
field. The users should neither be able to change their ID nor should the value of this
field change in the background, thereby requiring an update in the UI. The following is
the XAML code for this binding:
<TextBlock x:Name="OwnerIdValueTextBlock"
 Text="{Binding OwnerId, Mode=OneTime}" >
</TextBlock>

8. The CurrentBalance TextBlock at the bottom does not need to be edited by the
user (allowing a user to change his or her account balance might not be beneficial
for the bank), but it does need to change when the source changes. This is the
automatic synchronization working for us and it is achieved by setting the Binding
to Mode=OneWay. This is shown in the following code:
<TextBlock x:Name="CurrentBalanceValueTextBlock"
 Text="{Binding CurrentBalance, Mode=OneWay}">
</TextBlock>

9. The final option for the Mode property is TwoWay. TwoWay bindings allow us to persist
data by pushing data from the UI control to the source object. In this case, all other
fields can be updated by the user. When we enter a new value, the bound Owner
instance is changed. TwoWay bindings are illustrated using the following code:

<TextBox x:Name="FirstNameValueTextBlock"
 Text="{Binding FirstName, Mode=TwoWay}" >
</TextBox>

An Introduction to Data Binding

76

We've applied all the different binding modes at this point. Notice that when you
change the values in the pop-up window, the details on the left of the screen are
also updated. This is because all controls in the background are bound to the same
source object as shown in the following image:

How it works...
When we looked at the basics of data binding, we saw that a binding always occurs between
a source and a target. The first one is normally an in-memory object, but it can also be a UI
control. The second one will always be a UI control.

Normally, data flows from source to target. However, using the Mode property, we have the
option to control this.

A OneTime binding should be the default for data that does not change when displayed to
the user. When using this mode, the data flows from source to target. The target receives the
value initially during loading, and the data displayed in the target will never change. Quite
logically, even if a OneTime binding is used for a TextBox, changes done to the data by the
user will not flow back to the source. IDs are a good example of using OneTime bindings. Also,
when building a catalogue application, OneTime bindings can be used, as we won't change
the price of the items that are displayed to the user (or should we?).

We should use a OneWay binding for binding scenarios in which we want an up-to-date display
of data. Data will flow from source to target here also, but every change in the values of the
source properties will propagate to a change of the displayed values. Think of a stock market
application where updates are happening every second. We need to push the updates to the
UI of the application.

The TwoWay bindings can help in persisting data. The data can now flow from source to target
and vice versa. Initially, the values of the source properties will be loaded in the properties of
the controls. When we interact with these values (type in a textbox, drag a slider, and so on),
these updates are pushed back to the source object. If needed, conversions can be done in
both directions.

Chapter 2

77

There is one important requirement for the OneWay and TwoWay bindings. If we want
to display up-to-date values, then the INotifyPropertyChanged interface should be
implemented. The OneTime and OneWay bindings would have the same effect, even if
this interface is not implemented on the source. The TwoWay bindings would still send the
updated values if the interface was not implemented; however, they wouldn't notify about
the changed values. It can be considered as a good practice to implement the interface,
unless there is no chance that the updates of the data would be displayed somewhere in the
application. The overhead created by the implementation is minimal.

There's more...
Another option in a binding is the UpdateSourceTrigger. It allows us to specify when a
TwoWay binding will push the data to the source. By default, this is determined by the control.
For a TextBox, this is done on the LostFocus event; for most other controls, it's done on the
PropertyChanged event.

The value can also be set to Explicit. This means that we can manually trigger the update
of the source as follows:

BindingExpression expression = this.FirstNameValueTextBlock.
 GetBindingExpression(TextBox.TextProperty);
expression.UpdateSource();

See also
Changing the values that flow between source and target can be done using converters. We'll
look at these in Chapter 3, Advanced Data Binding.

Debugging data binding expressions in
Visual Studio

Applies to Silverlight 5 (after installation of Silverlight 5 tools, will also work on
Silverlight 4 projects)

While data binding is one of, if not the most powerful features in Silverlight, data binding
statements can be quite difficult to write. Since data binding is mostly written in XAML, we
have limited IntelliSense support. A single typo will break the entire data binding statement,
however we won't be notified about it at compile time. On top of that, most data binding errors
aren't bubbling to the surface by default (the data binding engine is quite a forgiving piece of
software), so finding errors is not straightforward. We're also limited in the options we have to
fix errors, since we have no debugging support in Silverlight.

An Introduction to Data Binding

78

That has now changed: with Silverlight 5, it's possible to place breakpoints in XAML code that
give us access to the values involved in the data binding as well as information about an error
that may have occurred while Silverlight tried to apply the binding. In this recipe, we'll look at
how these breakpoints can be used.

Getting ready
Any project with data binding statements can be used to test how the debugging process in
Silverlight 5 works. For this recipe, you can use your finished solution from the previous recipe.
Alternatively, you can use the solution located in the Chapter02/SilverlightBanking_
Debugging folder.

How to do it...
Since data binding statements in XAML have to be written manually without a lot of support
from IntelliSense, it's a common place for errors. With Silverlight 5, placing breakpoints on
data binding statements has become possible. Let's see how we can work with this new
feature in the following steps:

1. With the solution open as outlined in the Getting ready section for this recipe, we are
going to introduce an error for a change, so that the data binding fails. In MainPage.
xaml, change the binding statement of the BirthDate property to BirthDay, as
shown in the following code:
<TextBlock x:Name="BirthDateValueTextBlock"
 Text="{Binding BirthDay}"></TextBlock>

2. Like we are used to doing in C# code, place a breakpoint on the line in the XAML
code of MainPage.xaml, containing the data binding expression, as shown in the
following screenshot:

3. Run the application now and notice that Visual Studio will hit the
breakpoint immediately.

4. With the breakpoint hit, open the Locals window in Visual Studio. If this window isn't
open, you can find it under Debug | Windows | Locals.

Chapter 2

79

5. In the Locals window, we get a lot of information about the binding. In this case,
Silverlight explains what went wrong with the data binding. The following is the exact
message copied from the BindingState in the Locals window:

BindingExpression path error: 'BirthDay' property not found
on 'SilverlightBanking.Owner' 'SilverlightBanking.Owner'
(HashCode=53517805). BindingExpression: Path='BirthDay'
DataItem='SilverlightBanking.Owner' (HashCode=53517805); target
element is 'System.Windows.Controls.TextBlock' (Name='BirthDateVal
ueTextBlock'); target property is 'Text' (type 'System.String')

The error message is clear in saying that the BirthDay property can't be found,
which is indeed the cause of the error.

How it works
Apart from the error message itself, the Locals window has more interesting information that
we can use to learn more about failing data binding expressions.

If we use a BindingBase property (which we cover in Chapter 3, Advanced Data Binding, in
the recipe Replacing converters with Silverlight 5 BindingBase properties), we can see the
values of these properties in the debugger window. The following screenshot shows that the
FallbackValue for this binding was set to NA:

An Introduction to Data Binding

80

Under the FinalSource property, we see the object that we are binding. In this case, an
instance of the Owner class. This is shown in the following screenshot:

Finally, under the System.Windows.Data.Debugging.UpdateTargetPipeline node,
some more values are available. As we'll see in the next chapter, we can hook into the data
binding process using converters or properties, such as FallbackValue. This process is
like a pipeline of operations that are acting on the original value. It's possible that something
goes wrong along the way. Through this option in the Locals window, we can clearly see all the
intermediate values. The following screenshot shows this node expanded:

See also
In this recipe, we touched on concepts that are covered in more detail in the next chapter. We
talked about BindingBase properties, which are covered in the recipe Replacing converters
with Silverlight 5 BindingBase properties. Converters are covered in the next chapter in the
recipe Hooking into the data binding process.

Chapter 2

81

Data binding from Expression Blend 5
Applies to Silverlight 5 (works similarly for Silverlight 4 together with Expression Blend 4)

While creating data bindings is probably a task mainly reserved for the developers in the
team, Blend 5—the design tool for Silverlight applications—also has strong support for creating
and using bindings.

In this recipe, we'll build a small, data-driven application that uses data binding. We won't
manually create the data binding expressions; we'll use Blend 5 for this task.

How to do it...
For this recipe, we'll create a small application from scratch that allows us to edit the details
of a bank account owner. In order to achieve this, carry out the following steps:

1. We'll need to open Blend 5 and go to File | New Project.... In the New Project
dialog box, select Silverlight 4 Application + Website. Name the project
SilverlightOwnerEdit and click on the OK button. Blend will now create a
Silverlight application and a hosting website.

2. We'll start by adding a new class called Owner. Right-click on the Silverlight project
and select Add New Item.... In the dialog box that appears, select the Class template
and click on the OK button. The following is the code for the Owner class, and it can
be edited inside Blend 5:
public class Owner
{
 public string Name {get; set;}
 public int CurrentBalance {get;set;}
 public DateTime LastActivityDate {get;set;}
}

3. In the code-behind of MainPage.xaml, create an instance of the Owner class and
set it as the DataContext for the LayoutRoot of the page as follows:
public partial class MainPage : UserControl
{
 public Owner owner;
 public MainPage()
 {
 // Required to initialize variables
 InitializeComponent();
 owner = new Owner()
 {
 Name="Gill Cleeren",
 CurrentBalance=300,

An Introduction to Data Binding

82

 LastActivityDate=DateTime.Now.Date
 };
 LayoutRoot.DataContext = owner;
 }
}

4. Build the solution so that the Owner class is known to Blend and it is able to use the
class in its dialog boxes.

5. Now, in the designer, add a Grid containing three TextBlock instances and three
TextBox controls, as shown in the following image:

6. We're now ready to add the data binding functionality. Select the first TextBox and
in the Properties window, search for the Text property. Instead of typing a value,
click on the small square for the Advanced property options next to the text field.
Select Data Binding... in the menu. The following screenshot shows how to access
this option:

Chapter 2

83

7. In the dialog box that appears, we can now couple the Name property of the Owner
type to the Text property of the TextBox. Under the Explicit Data Context tab,
mark the Use a custom path expression checkbox and enter Name as the value.
Click on the down arrow so that the advanced properties are expanded and mark
TwoWay as the Binding direction. The other properties are similar, as shown in the
following screenshot:

How it works...
Let's look at the resulting XAML code for a moment. Blend created the bindings for us
automatically, taking into account the required options, such as Mode=TwoWay. This is
shown in the following code:

<TextBox Grid.Column="1"
 Text="{Binding Name, Mode=TwoWay,
 UpdateSourceTrigger=Default}"
 TextWrapping="Wrap"/>
<TextBox Grid.Column="1"
 Grid.Row="2"
 Text="{Binding LastActivityDate, Mode=TwoWay,
 UpdateSourceTrigger=Default}"
 TextWrapping="Wrap"/>
<TextBox Grid.Column="1"
 Grid.Row="1"
 Text="{Binding CurrentBalance, Mode=TwoWay,
 UpdateSourceTrigger=Default}"
 TextWrapping="Wrap"/>

An Introduction to Data Binding

84

When we have to create many bindings, it's often easier to do so through these dialog boxes
than typing them manually in Visual Studio.

Using Expression Blend 5 for sample
data generation

Applies to Silverlight 5 (works similarly for Silverlight 4 together with Expression Blend 4)

Expression Blend 5 contains a sample data generation feature, which can come in handy
during the development of an application. It visualizes the data on which we are working, and
provides us with an easier way to create an interface for a data-driven application. This feature
was added to Blend in version 3.

How to do it...
In this recipe, we'll build a small management screen for the usage of the bank employees. It
will show an overview of the bank account owners. We wouldn't want to waste time with the
creation of (sample) data, so we'll hand over this task to Blend. The following are the steps we
need to follow for the creation of this data:

1. Open Blend 5 and go to File | New Project.... In the dialog box that
appears, select Silverlight 5 Application + Website. Name the project as
SilverlightBankingManagement and click on the OK button. Blend will now
create a Silverlight application and a hosting website.

2. With MainPage.xaml open in either the Design View or the Split View, go to the
Data window. In this window, click on the Add sample data source icon and select
Define New Sample Data…, as shown in the following screenshot:

3. In the Define New Sample Data dialog box that appears, specify the Data source
name as OwnerDataSource. We have the option to either embed this data source
in the usercontrol (This document), or make it available for the entire project
(Project). Select the latter option by selecting the Project radio button and clicking
on the OK button.

Chapter 2

85

4. The last option in this window—Enable sample data when application is running—
allows us to switch off the sample data while running the compiled application. If we
leave the checkbox checked, then the sample data will be used for the design time as
well as the runtime. We'll keep this option enabled. Blend will now generate the data
source for us. The result is shown in the following screenshot:

5. By default, a Collection is created and it contains items with two properties. Each
property has a type. Start by adding two more properties by clicking on the + sign next
to the Collection, and select the Add simple property option. Rename Property1 to
Name. Now, change the type options by clicking on the Change property type icon,
and selecting Name as the format. The other properties are similar and are shown in
the following screenshot:

6. For the Image type, we can select a folder that contains images. Blend will then copy
these images to the SampleData subfolder inside the project.

An Introduction to Data Binding

86

7. We're now ready to use the sample data—for example—in a master-detail scenario. A
ListBox will contain all the Owner data, from which we can select an instance. The
details are shown in a Grid, using some TextBlock controls. Make sure that the
Data window is set to List Mode, and drag the collection on to the design surface.
This will trigger the creation of a ListBox in which the items are formatted, so we
can see the details.

8. Now to view the details, we have to set the Data window to Details Mode. Then,
instead of dragging the collection, we select the properties that we want to see in the
detail view and drag those onto the design surface. The result should be similar to
the following image:

Thus, Blend created all the data binding code in XAML as well as the sample data. For
each different type, it generated different values.

3
Advanced Data

Binding

In this chapter, we will cover:

 f Hooking into the data binding process using converters

 f Replacing converters with Silverlight 5 BindingBase properties

 f Validating data bound input

 f Validating data input using attributes

 f Validating using IDataErrorInfo and INotifyDataErrorInfo

 f Using templates to customize the way data is shown by controls

 f Using implicit data templates

 f Using the Ancestor RelativeSource binding

 f Creating custom markup extensions

 f Building a change-aware collection type

 f Combining converters, data binding, and DataContext into a custom
DataTemplate

Introduction
In the previous chapter, we explained in detail the concepts behind data binding and its
implementation in Silverlight 5. Reflecting on what we learned in the previous chapter, we may
start to think that data binding works as some kind of black box into which we insert the data
and it displays it. However, this is not the case. The data binding engine gives us many points
where we can extend or change this process.

Advanced Data Binding

88

The most obvious hooks we have in data binding are Converters. Converters allow us to grab
a value when it's coming in from a source object, perform some action on it, and then pass
it to the target control. The most obvious action that we can take is formatting, though many
more are possible. We'll look at converters and their possibilities in this chapter.

With Silverlight 5, extra features were introduced in the platform in the data binding area
which were already available in WPF but weren't in Silverlight. Ancestor RelativeSource
and custom markup extensions are now available in Silverlight.

Data binding also allows us to perform validations. When entering data in data-bound
controls such as a TextBox, it's important that we validate the data before it's sent back to
the source. Silverlight has quite a few options to perform this validation. We'll look at these in
this chapter as well.

We can also change the way our data is being displayed using data templates. Data
templates allow us to override the default behavior of controls such as a ListBox. We
will build some templates in this chapter to complete the look of the Silverlight Banking
application. Silverlight 5 also introduces the notion of implicit data templates, which is also
inherited from WPF. These allow us to define a template for a type which will be used by
Silverlight to visualize an instance of that type. We'll use this in the Banking application as well
to display particular types of data.

This chapter continues to use the same sample application—Silverlight Banking—which we
have already used in the previous chapter. If you want to run the complete application, take
a look at the code within the Chapter02/SilverlightBanking folder in the code bundle
that is available on the Packt website.

Hooking into the data binding process
Applies to Silverlight 3, 4 and 5

We may want to perform some additional formatting for some types of data that we want to
display using data binding. Think of a date. Normally, a date is stored in the database as a
combination of a date and time. However, we may only want to display the date part—perhaps
formatted according to a particular culture. Another example is a currency; the value is
normally stored in the database as a double. In an application, we may want to format it by
putting a dollar or a euro sign in front of it.

Silverlight's data binding engine offers us a hook in the data binding process, thereby allowing
us to format, change, or do whatever we want to do with the data in both directions. This is
achieved through the use of a converter.

D
ow

n
lo

a
d
 f
ro

m
 W

o
w

!
e
B
o
o
k

<
w

w
w

.w
o
w

e
b
o
o
k.

co
m

>

Chapter 3

89

Getting ready
This recipe builds on the code that was created in the recipes of the previous chapter. If you
want to follow along, you can keep using your own code or use the provided starter solution
that is located in the Chapter03/SilverlightBanking_Converters_Starter folder.
The Chapter03/SilverlightBanking_Converters_Completed folder contains the
complete solution for this recipe.

How to do it...
In this recipe, we'll build two converters. We'll start with a currency converter. This is quite
basic. It will take a value and format it as a currency using the currency symbol based on the
current culture. The second converter will be more advanced; it will convert from a numeric
value to a color.

In the sample code of the book, some more converters have been added.

Carry out the following steps in order to get converters to work in a Silverlight application:

1. We'll start by creating the currency converter. A converter is nothing more than
a class, in this sample called CurrencyConverter, which implements the
IValueConverter interface. This interface defines two methods, Convert
and ConvertBack. Place the CurrencyConverter class in a folder called
Converters within the Silverlight project. The following is the code for this class:
public class CurrencyConverter : IValueConverter
{
 public object Convert(object value, Type targetType, object
 parameter, System.Globalization.CultureInfo culture)
 {
 throw new NotImplementedException();
 }
 public object ConvertBack(object value, Type targetType, object
 parameter, System.Globalization.CultureInfo culture)
 {
 throw new NotImplementedException();
 }
}

Advanced Data Binding

90

2. The code in the Convert method will be applied to the data when it flows from the
source to the target. Similarly, the ConvertBack method is called when the data
flows from the target to the source, so when a TwoWay binding is active. The original
value is passed in the value parameter. We have access to the current culture
via the culture parameter. Also, we add a "minus" sign to the string value that is
returned if the value is less than zero. This is shown in the following code:
public object Convert(object value, Type targetType, object
 parameter, System.Globalization.CultureInfo culture)
{
 double amount = double.Parse(value.ToString());
 if (amount < 0)
 return "- " + amount.ToString("c", culture);
 else
 return amount.ToString("c", culture);
}

3. Simply creating the converter doesn't do anything. An instance of the converter has
to be created and passed along with the binding using the Converter property. This
is to be done in the resources collection of the XAML file in which we will be using the
converter or in App.xaml. The following code shows this instantiation in App.xaml.
Note that we also need to add the namespace mapping. The latter is required to
make the namespace in which the converter is declared, known from XAML code.
<Application
 xmlns="http://schemas.microsoft.com/winfx/2006/xaml/
 presentation"
 xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml"
 x:Class="SilverlightBanking.App"
 xmlns:converters="clr-namespace:SilverlightBanking.Converters">
 <Application.Resources>
 <converters:CurrencyConverter x:Key="localCurrencyConverter">
 </converters:CurrencyConverter>
 </Application.Resources>
</Application>

4. After that, we specify this converter as the value for the Converter property in the
Binding declaration. This is shown in the following code:
<TextBlock Text="{Binding CurrentBalance,
 Converter={StaticResource localCurrencyConverter}}"
 FontSize="12"
 FontWeight="Bold">
</TextBlock>

5. While this simple converter converts a double into a string, more advanced
conversions can be performed. What if, for example, we want to display negative
amounts in red and positive amounts in green? The Convert method looks quite
similar, except that it now returns a SolidColorBrush. This is shown in the
following code:

Chapter 3

91

public object Convert(object value, Type targetType, object
 parameter, System.Globalization.CultureInfo culture)
{
 double amount = (double)value;
 if (amount >= 0)
 return new SolidColorBrush(Colors.Green);
 else
 return new SolidColorBrush(Colors.Red);
}

6. This type of converter can be applied in a Binding expression on a property that
expects a SolidColorBrush, for example, the Foreground. This is shown in the
following code:

<TextBlock Text="{Binding CurrentBalance,
 Converter={StaticResource localCurrencyConverter}}"
 Foreground="{Binding CurrentBalance,
 Converter={StaticResource
 localAmountToColorConverter}}">
</TextBlock>

The result of the conversion can be seen in the following image. The balance is positive, so
the value is colored green.

How it works...
A Converter is a handy way of allowing us to get a hook in the data binding process. It allows
us to change a value to another format or even another type (for example, a double value into
a SolidColorBrush).

A converter is nothing more than a class that implements an interface called
IValueConverter. This interface defines two methods: Convert and ConvertBack.
When a binding specifies a converter, the Convert method is called automatically when
the data flows from the source to the target. The same holds true for the ConvertBack
method: this method is applied when the binding is happening, with data flowing from the
target to the source. Thus the latter happens when the Mode of the binding is set to TwoWay
and can be used to convert a value back into a format that is understood by the data store.

Advanced Data Binding

92

The ConverterParameter
The Convert as well as the ConvertBack methods of the IValueConverter interface
also define an extra parameter that can be used to pass extra information into the converter
to influence the conversion process. Take for example a DateConverter, which would
require an extra parameter that defines the formatting of the date to be passed in. The
following code shows the Convert method of such a converter:

public object Convert(object value, Type targetType, object
 parameter, System.Globalization.CultureInfo culture)
{
 DateTime dt = (DateTime)value;
 return dt.ToString(parameter.ToString(), culture);
}

The ConverterParameter is used in the Binding expression to pass the value to the
parameter. This is shown in the following code:

<TextBlock x:Name="CustomerSinceValueTextBlock"
 Text="{Binding CustomerSince,
 Converter={StaticResource localDateConverter},
 ConverterParameter='dd-MMM-yyyy'}" >
</TextBlock>

Here, we are specifying to the converter that a date should be formatted as dd-MMM-yyyy.

Displaying images based on a URL with converters
Another nice way of using a converter is shown in the following code. Let's assume that in
the database, we store the name of an image of the user. Of course, we want to display
the image, not the name of the image. The Source property of an Image control is of type
ImageSource. The class best suited for this is the BitmapImage. The converter that we
need for this type of conversion is shown in the following code:

public class ImageConverter:IValueConverter
{
 private string baseUri = "http://localhost:1234/CustomerImages/";
 public object Convert(object value, Type targetType, object
 parameter, System.Globalization.CultureInfo culture)
 {
 if (value != null)
 {
 Uri imageUri = new Uri(baseUri + value);
 return new BitmapImage(imageUri);
 }
 else

Chapter 3

93

 return "";
 }
 ...
}

Using the converter in the XAML binding code is similar.

Replacing converters with Silverlight 5
BindingBase properties

Applies to Silverlight 4 and 5

In the previous recipe, we saw that using converters in data binding expressions can help
us with a variety of things we want to do with the value that's being bound. It helps us in
formatting the value as well as switching between colors. However, creating the converter can
be a bit cumbersome for some tasks. To use it, we have to create the class that implements
the IValueConverter interface, instantiate it, and change the binding expression. With
Silverlight 4, some extra properties were added on the BindingBase class that can relieve
us from writing a converter in some occasions. In Silverlight 5, no changes were made.

In this recipe, we'll look at how these three new properties, namely TargetNullValue,
StringFormat, and FallbackValue, can be used instead of writing a converter.

Getting ready
This recipe builds on the code that was created in the previous recipe. If you want to follow
along with this recipe, you can continue using your own code. Alternatively, you can use the
start solution that can be found in the Chapter03/SilverlightBanking_BindingBase_
Properties_Starter folder. The complete solution for this recipe can be found in the
Chapter03/SilverlightBanking_BindingBase_Properties_Completed folder.

How to do it...
The BindingBase properties that are at our disposal since Silverlight 4 allow us to skip
writing a converter during specific scenarios. We wrote quite a few in the previous example,
some of which can be replaced by applying one or more of the new properties on the data
binding expression. Let's take a look at how we can use these properties.

1. Let's first take a look at the TargetNullValue property. The value that we
specify for TargetNullValue will be applied in the data binding expression
if the value of the property is null. For the purpose of this example, let's say that
a customer can also leave the bank. This DateTime value can be stored in the
NoMoreCustomerSince property, which is a part of the Owner class. Add the
following field and accompanying property to the Owner class:

Advanced Data Binding

94

private DateTime? noMoreCustomerSince;
public DateTime? NoMoreCustomerSince
{
 get
 {
 return noMoreCustomerSince;
 }
 set
 {
 if (noMoreCustomerSince != value)
 {
 noMoreCustomerSince = value;
 OnPropertyChanged("NoMoreCustomerSince");
 }
 }
}

2. For active customers, this value will be null. If we do not change anything in the
initialization of the Owner instance in the MainPage.xaml.cs, then the value will
be equal to null—that is, its default value. To display a value in the UI in any manner,
we can use TargetNullValue and set it to NA (Not Available) using the following
data binding expression:
<TextBlock x:Name="NoMoreCustomerSinceValueTextBlock"
 Text="{Binding NoMoreCustomerSince,
 TargetNullValue='NA'}" >
</TextBlock>

3. Very often, converters need to be written to format a value (as we did in the previous
recipe). Formatting a currency or formatting a date is a task that we often encounter
in business applications. Some of these can be replaced with another property of the
BindingBase, that is, the StringFormat property. Instead of writing a converter
to format all the dates, we use this property as shown in the following code. (We're
showing CustomerSince here, but all others are similar.)
<TextBlock x:Name="CustomerSinceValueTextBlock
 Text="{Binding CustomerSince, StringFormat='MM-dd-yyyy'}" >
</TextBlock>

4. StringFormat can also be used for currency formatting. The
LastActivityAmount is formatted using this property as shown in the following
code:
<TextBlock
 x:Name="LastActivityAmountValueTextBlock"
 Text="{Binding LastActivityAmount, StringFormat=C}" >
</TextBlock>

Chapter 3

95

5. If we're binding to a property that does not exist, then the data binding engine will
swallow the error and not display anything. This can be annoying in some situations.
In such situations, the FallbackValue property can help. For example, assume that
we have a class called PreferredOwner that inherits from Owner as shown in the
following code:
public class PreferredOwner: Owner
{
 private DateTime preferredSince { get; set; }
 public DateTime PreferredSince
 {
 get
 {
 return preferredSince;
 }
 set
 {
 if (preferredSince != value)
 {
 preferredSince = value;
 OnPropertyChanged("PreferredSince");
 }
 }
 }
}

6. A situation may arise when an interface would bind to either an instance of
Owner or PreferredOwner. The PreferredSince property is available only
on PreferredOwner. If we are binding an Owner instance, no value would be
displayed for this property. The FallbackValue can be used in this case to indicate
that if the property is not found, a fallback value should be used. This can be seen in
the following code:

<TextBlock x:Name="PreferredSinceValueTextBlock"
 Text="{Binding PreferredSince,
 StringFormat='MM-dd-yyyy', FallbackValue='NA'}" >
</TextBlock>

Advanced Data Binding

96

With these three new properties in action, the UI looks like the following screenshot when an
Owner instance is bound:

How it works...
Converters are a way of hooking into the data binding process. They allow operations to
be executed on the data before it is displayed. While converters can be used for all kinds
of operations, they require quite some code to be written.

Starting with Silverlight 4, the BindingBase class—the abstract base class for the Binding
class—has been extended with some properties that can do some particular tasks for which
we would have needed to write a converter.

The TargetNullValue property allows us to react to the value of the source property being
null. If the value for the property is null, then the value specified for the TargetNullValue
will be displayed.

StringFormat makes it possible to perform the formatting of the value of the source
property. Formatting parameters such as percentage, currency and dates can be formatted
without the need of writing a converter.

Finally, the FallbackValue allows us to display a value when the data binding fails. Assume
that we are binding to a property that is not defined on the type. Data binding will fail, but it
will not cause an exception. No value will be displayed, but the application will keep running. If
we specify the FallbackValue, this value will be displayed.

See also
In the previous recipe, we looked at writing converters.

Chapter 3

97

Validating data-bound input
Applies to Silverlight 3, 4 and 5

Validation of your data is a requirement for almost every application. By using validation, you
make sure that no invalid data is (eventually) persisted in your data store. When you don't
implement validation, there is a risk that a user will input wrongly-formatted or plain incorrect
data on the screen and even persist this data in your data store. This is something you should
definitely avoid.

In this recipe, we'll learn about implementing client-side validation on the bound fields
in the UI.

Getting ready
To get ready for this recipe, you can either use the code from one of the previous recipes or
use the provided starter solution in the Chapter03/SilverlightBanking_Validation_
Starter folder in the code bundle available on the Packt website. The complete solution
for this recipe can be found in the Chapter03/SilverlightBanking_Validation_
Completed folder.

How to do it...
We're going to add validation logic to the OwnerDetailsEdit screen you created by following
all the steps of the Using the different modes of data binding to allow persisting data recipe
in the previous chapter (Alternatively, you can use the starter solution.). To achieve this, we'll
carry out the following steps:

1. Open the solution that you created in the Using the different modes of data
binding to allow persisting data recipe (or the starter solution) and locate
the OwnerDetailsEdit.xaml file. In this XAML file, locate and change the
LastNameValueTextBlock and the BirthDateValueTextBlock by adding
NotifyOnValidationError=true and ValidatesOnExceptions=true to
the Binding syntax. This is shown in the following code:
<TextBox x:Name="LastNameValueTextBlock"
 Grid.Row="3"
 Grid.Column="1"
 Margin="2"
 Text="{Binding LastName, Mode=TwoWay,
 NotifyOnValidationError=true,
 ValidatesOnExceptions=true}" >
</TextBox>

Advanced Data Binding

98

<TextBox x:Name="BirthDateValueTextBlock"
 Grid.Row="9"
 Grid.Column="1"
 Margin="2"
 Text="{Binding BirthDate, Mode=TwoWay,
 NotifyOnValidationError=true,
 ValidatesOnExceptions=true}" >
</TextBox>

2. Add a handler to the surrounding Grid, that is, OwnerDetailsGrid. This is shown
in the following code:
<Grid x:Name="OwnerDetailsGrid"
 BindingValidationError="OwnerDetailsGrid_
 BindingValidationError">

3. Add the following C# code to OwnerDetailsEdit.xaml.cs. This implements the
handler we defined in the previous step.
private void OwnerDetailsGrid_BindingValidationError(object
 sender, ValidationErrorEventArgs e)
{
 if (e.Action == ValidationErrorEventAction.Added)
 OwnerDetailsGrid.Background = new
 SolidColorBrush(Color.FromArgb(25, 255, 0, 0));
 if (e.Action == ValidationErrorEventAction.Removed)
 OwnerDetailsGrid.Background = new
 SolidColorBrush(Color.FromArgb(0, 0, 0, 0));
}

4. Locate the Owner.cs file, which represents the type of DataContext of
the OwnerDetailsEdit control. Add the following code to the set accessor
of LastName to make sure that a validation error is thrown when needed.
set
{
 if (lastName != value)
 {
 if (value.Length > 20)
 {
 throw new Exception("Length must be <= 20");
 }
 else
 {
 lastName = value;
 OnPropertyChanged("LastName");
 }
 }
}

Chapter 3

99

5. We can now build and run the solution. When invalid data is inputted (a string
that's too long for the Last name field or a value that isn't in a correct format for
the Birthdate field), a validation error will occur.

The result can be observed in the following screenshot:

How it works...
Silverlight automatically reports a validation error in a few cases. These include when type
conversion fails on binding, when an exception is thrown in a property's set accessor, or when
a value doesn't correspond to the applied validation attribute (more on this can be found in
the next recipe, Validating data input using attributes).

In our example, we're throwing an exception in the property's set accessor. This means
Silverlight will report the error. Next to that, Silverlight will also report an error when you try to
input a value that doesn't correspond with the underlying type (you can try to input an invalid
date value in the Birthdate field)

If you look at the Binding syntax in XAML, you'll see that we've added a few things,
ValidatesOnExceptions and NotifyOnValidationError are set to true.

Setting ValidatesOnExceptions to true makes sure that Silverlight will provide visual
feedback for the validation errors it reports. Setting NotifyOnValidationError to true
makes sure that the binding engine raises the BindingValidationError event when a
validation error occurs.

In the parent grid, this BindingValidationError event gets handled. We've the written code
that will change the background color of the complete box if an error occurs (this is optional).

Advanced Data Binding

100

Client-side validation is easily implemented by bringing these three principles together in the
example you've just created.

There's more...
Along with reporting a validation error when type conversion fails on binding or when an
exception is thrown in a property's set accessor, Silverlight also reports an error when a
value doesn't correspond to the applied validation attribute. More on this can be found in
the next recipe.

As you've noticed while running the solution we've created, Silverlight has a default style for
showing the validation error. This can, of course, be customized by changing the control's
default ControlTemplate. More information on customizing templates can be found in the
Using templates to customize the way data is shown by controls recipe.

And last but not least, we can provide more detailed validation reporting by using the
ValidationSummary control. This ValidationSummary control will automatically
receive the BindingValidationError events of its parent container. On each
BindingValidationError, the ValidationSummary receives a newly-created
ValidationSummaryItem (added to ValidationSummary.Errors) with corresponding
Message, MessageHeader, ItemType, and Context properties. Next to that, a new
ValidationSummaryItemSource is created (and added to ValidationSummaryItem.
Sources) with corresponding Control and PropertyName properties.

To use a ValidationSummary in the example created in this recipe, we have to add a
reference to System.Windows.Controls.Data.Input in the Silverlight project and
add the following code to the OwnerDetailsEdit control:

xmlns:datainput="clr-namespace:System.Windows.Controls;
assembly=System.Windows.Controls.Data.Input"

This will make sure that we can use ValidationSummary. Next, we'll have to locate
the OK button and add a ValidationSummary control. This is shown in the following code:

<datainput:ValidationSummary Grid.Row="1"
 Margin="2,5,2,5">
</datainput:ValidationSummary>
<Button x:Name="OKButton"
 Content="OK"
 Click="OKButton_Click"
 Width="75"
 Height="23"
 HorizontalAlignment="Right"
 Margin="0,12,0,0"
 Grid.Row="2" />

Chapter 3

101

When we run our solution and input invalid data, a validation summary will be shown. This can
be seen in the following screenshot:

See also
If you want to learn more about validation, you might want to take a look at the next two
recipes, Validating data input using attributes and Validating using IDataErrorInfo and
INotifyDataErrorInfo. To learn more about two-way data binding, have a look at the Using the
different modes of data binding to allow persisting data recipe in Chapter 2, An Introduction
to Data Binding.

Validating data input using attributes
Applies to Silverlight 4 and 5

Validation of your data is a requirement for almost every application. By using validation, you
make sure that no invalid data is (eventually) persisted in your data store. When you don't
implement validation, there's a risk that a user will input wrongly-formatted or plain incorrect
data on the screen and even persist this data in your data store. This is something you should
definitely avoid.

In this recipe, we'll learn about implementing client-side validation on the bound fields in the
UI using attributes (Data Annotations).

Advanced Data Binding

102

Getting ready
To get ready for this recipe, you can either use the code from the previous recipe or use
the provided starter solution in the Chapter03/SilverlightBanking_Validation_
Attributes_Starter folder in the code bundle available on the Packt website. The
complete solution for this recipe can be found in the Chapter03/SilverlightBanking_
Validation_Attributes_Completed folder.

How to do it...
In this recipe, we're going to replace the validation on LastName by using attributes or, to be
more specific, by using data annotations. To achieve this, we'll carry out the following steps:

1. We have to add a reference to System.ComponentModel.DataAnnotations in
our Silverlight project.

2. Locate Owner.cs and add the following using statement:
using System.ComponentModel.DataAnnotations;

3. Next, we should locate the LastName property and change it by adding a data
annotation attribute to limit the maximum length. Add the following code to actually
validate this property:
[StringLength(20, ErrorMessage="Length must be <= 20")]
public string LastName
{
 get
 {
 return lastName;
 }
 set
 {
 if (lastName != value)
 {
 Validator.ValidateProperty(value,
 new ValidationContext(this, null, null)
 { MemberName ="LastName" });
 lastName = value;
 OnPropertyChanged("LastName");
 }
 }
}

Chapter 3

103

4. We can now build and run the solution. When a string having more than 20
characters in length is inputted in the Last name field, the correct error message will
be shown. This can be seen in the following screenshot:

How it works...
Silverlight automatically reports a validation error in a few cases such as when type
conversion fails on binding, when an exception is thrown in a property's set accessor, or
when a value doesn't correspond to the applied validation attribute. To learn about the first
two cases, have a look at the previous recipe, Validating data-bound input.

In our example, we've added a StringLength attribute to the LastName property, hereby
passing in the length and the error message that should be shown. Next to that, we've added
a ValidateProperty call. This will make sure that the property is validated. When you don't
add this, no data validation using attributes occurs.

If you look at the Binding syntax in XAML, you'll see that we've added a few things,
ValidatesOnExceptions and NotifyOnValidationError are set to true.

Setting ValidatesOnExceptions to true makes sure that Silverlight will provide visual
feedback for the validation errors it reports. Setting NotifyOnValidationError to true
makes sure that the binding engine raises the BindingValidationError event when a
validation error occurs.

Client-side validation is easily implemented by bringing these principles together in the
example we've just created.

There's more...
In this example, we've only used one data annotation attribute for validation—
StringLength—to explain the principle. However, there are some more attributes
you can use such as CustomValidation, DataType, EnumDataType, Range,
RegularExpression, and Required.

Next to that, you'll notice we've inputted only one NamedParameter value,
ErrorMessage. Most validation attributes accept more NamedParameter
values that can be used to customize the way validation is handled such as
ErrorMessageResourceName, ErrorMessageResourceType, and so on
depending on the validation attribute you're using.

Advanced Data Binding

104

Other uses of data annotations
There are various other data annotations that can be used for validation, such as displaying
attributes and modeling attributes. These are used to control how certain information should
be displayed or how certain properties should relate to each other. Data annotations are
heavily used by RIA Services and the DataForm control. You can learn more about this by
looking at the corresponding chapters in this book.

See also
If you want to know more about validation, you might want to take a look at the previous
recipe, Validating data bound input or the next recipe, Validating using IDataErrorInfo and
INotifyDataErrorInfo. To learn more about two-way data binding, have a look at the Using the
different modes of data binding to allow persisting data recipe in Chapter 2.

Validating using IDataErrorInfo and
INotifyDataErrorInfo

Applies to Silverlight 4 and 5

Validation of your data is a requirement for almost every application. By using validation, you
make sure that no invalid data is (eventually) persisted in your datastore. When you don't
implement validation, there's a risk that a user will input wrongly formatted or plain incorrect
data on the screen and even persist this data in your datastore. This is something you should
definitely avoid.

Starting with Silverlight 4, validating your data is possible by using IDataErrorInfo or
INotifyDataErrorInfo. This allows us to invalidate the properties without throwing
exceptions and the validation code doesn't have to reside in the set accessor of the property.
It can be called whenever it's needed.

In this recipe, we'll learn about implementing validation on the bound fields in the UI using
IDataErrorInfo and INotifyDataErrorInfo.

Getting ready
To get ready for this recipe, you can either use the code from one of the previous recipes
such as the Using the different modes of data binding to allow persisting data recipe in
Chapter 2 or use the provided starter solution in the Chapter03/SilverlightBanking_
Validation_DataError_Starter folder in the code bundle available on the
Packt website. The complete solution for this recipe can be found in the Chapter03/
SilverlightBanking_Validation_DataError_Completed folder.

Chapter 3

105

How to do it...
We're going to add validation logic to the OwnerDetailsEdit screen, just as we did in
the previous validation recipes. However, this time we're going to notify the UI through
INotifyDataErrorInfo, instead of throwing exceptions. To achieve this, carry out
the following steps:

1. Open the solution you created in the Using the different modes of data binding
to allow persisting data recipe in Chapter 2 (or the starter solution) and locate
the OwnerDetailsEdit.xaml file. In this XAML file, locate and change the
LastNameValueTextBlock by adding NotifyOnValidationError=true to the
Binding syntax. This can be seen in the following code:
<TextBox x:Name="LastNameValueTextBlock"
 Grid.Row="3"
 Grid.Column="1"
 Margin="2"
 Text="{Binding LastName, Mode=TwoWay,
 NotifyOnValidationError=true }" >
</TextBox>

2. Add a button named ValidateButton next to the OKButton as shown in the
following code:
<StackPanel Orientation="Horizontal"
 Grid.Row="1">
 <Button x:Name="ValidateButton"
 Content="Validate"
 Click="ValidateButton_Click"
 Width="75"
 Height="23"
 HorizontalAlignment="Right"
 Margin="0,12,0,0" />
 <Button x:Name="OKButton"
 Content="OK"
 Click="OKButton_Click"
 Width="75"
 Height="23"
 HorizontalAlignment="Right"
 Margin="0,12,0,0"
 Grid.Row="1" />
</StackPanel>

Advanced Data Binding

106

3. Add the following C# code to OwnerDetailsEdit.xaml.cs. This implements the
ValidateButton handler we defined in the previous step.
private void ValidateButton_Click(object sender,
 RoutedEventArgs e)
{
 owner.FireValidation();
}

4. Locate the Owner.cs file, which represents the type of DataContext of the
OwnerDetailsEdit control, and let it implement the INotifyDataErrorInfo
interface as shown in the following code:
public class Owner : INotifyPropertyChanged, INotifyDataErrorInfo
{
 private Dictionary<string, string> FailedRules
 { get; set; }
 public event EventHandler<DataErrorsChangedEventArgs>
 ErrorsChanged;
 public IEnumerable GetErrors(string propertyName)
 {
 if (FailedRules.ContainsKey(propertyName))
 return FailedRules[propertyName];
 else
 return FailedRules.Values;
 }
 public bool HasErrors
 {
 get { return FailedRules.Count > 0; }
 }
 private void NotifyErrorsChanged(string propertyName)
 {
 if (ErrorsChanged != null)
 ErrorsChanged(this, new
 DataErrorsChangedEventArgs(propertyName));
 }
}

5. Add a constructor to Owner.cs to initialize the FailedRules dictionary as shown in
the following code:
public Owner()
{
 FailedRules = new Dictionary<string, string>();
}

Chapter 3

107

6. Implement the FireValidation method, which is called in OwnerDetailsEdit.
xaml.cs, as shown in the following code:
internal void FireValidation()
{
 if (lastName.Length > 20)
 {
 if (!FailedRules.ContainsKey("LastName"))
 FailedRules.Add("LastName",
 "Last name cannot have more than 20 characters");
 }
 else
 {
 if (FailedRules.ContainsKey("LastName"))
 FailedRules.Remove("LastName");
 }
 NotifyErrorsChanged("LastName");
}

7. We can now build and run the solution. When the Validate button is clicked and
there are more than 20 characters entered in the Last name field, a validation
error will be shown.

The result can be observed in the following screenshot:

Advanced Data Binding

108

How it works...
The Silverlight controls observe the INotifyDataErrorInfo interface automatically. This
means the control will display the correct error (invalid state) when a validation rule is violated
by an entity.

In this example, we're validating the LastName property when the Validate button is clicked.
If the Last name field contains too many characters, then the validation rule will be violated
and the UI will show the typical "invalid value" tooltip automatically.

We could have achieved the same result by throwing an exception in the LastName property's
set accessor. However, the main difference is that we can now validate and have the UI react
to it without having to write the validation code in the LastName property's set accessor.
We can call it from anywhere and the UI will still react to it. This is how we can use the
INotifyDataErrorInfo to perform server-side validation and make our UI react to it. You
could call a server-side method in your property's set accessor and notify the UI through the
INotifyDataErrorInfo in the callback of that method.

Nevertheless, in this case, the property's set accessor is probably a better place to do the
validation (through INotifyDataErrorInfo). But for demonstration purposes, it's done in
the click handler of the button.

When we implement the INotifyDataErrorInfo interface, we get an ErrorsChanged
event handler, a GetErrors method that must return the correct error message as
IEnumerable, and a HasErrors method. We need to implement these methods. To
do this, we create a Dictionary called FailedRules, which we initialize in the class
constructor and which will contain a list of errors. The GetErrors method, which accepts
a propertyName parameter, fetches the correct error (or errors, if you keep a list of errors)
from the FailedRules dictionary, while the HasErrors method is implemented by
returning whether or not there are errors in the dictionary.

On clicking the button, the FireValidation method is called. This method will check
if the LastName has more than 20 characters and will add an error to the FailedRules
dictionary if the validation fails (or remove the error if the validation succeeds). After this,
the NotifyErrorsChanged method is called, which fires the ErrorsChanged event.
This event will make sure that the UI is notified (if the Binding syntax states that
NotifyOnValidationError should be true) and will let Silverlight display errors
where applicable.

Chapter 3

109

There's more...
In this recipe, we've implemented validation using the INotifyDataErrorInfo interface.
However, another interface of the same family exists, the IDataErrorInfo interface. The
INotifyDataErrorInfo interface is typically used for more complex scenarios such as the
need for async(hronous) server-side validation to which the UI has to react, or when multiple
errors have to be represented with different messages. The IDataErrorInfo interface is
used for simpler, client-side validation.

When you implement the IDataErrorInfo interface, you get an Item property (accessible
through an indexer in C#) and an Error property. The first one is used to get a specific error
message on a certain property of your entity, while the second one is typically used to get an
error message related to the complete entity.

See also
If you want to learn more about validation, you might want to take a look at the previous
two recipes, Validating data bound input and Validating data input using attributes.
To learn more about two-way data binding, have a look at the Using the different modes
of data binding to allow persisting data recipe in Chapter 2.

Using templates to customize the way
data is shown by controls

Applies to Silverlight 3, 4 and 5

Normally when we ask Silverlight to visualize an object, for example a person or a customer,
it will simply display the result of the ToString() method—which is, of course, a string.
This can be seen when we're binding a collection of items to a ListBox. If we don't specify
a value for the DisplayMemberPath property, we simply see the name of the type (unless
we overloaded the ToString() method). However, it's possible to specify a template called
a DataTemplate, which will be used to visualize an object. It's in fact nothing more than a
block of XAML code that gets rendered when an item of a particular type is visualized.

In this recipe, we'll build a DataTemplate to render the activities in a ListBox occurring
on an account.

Advanced Data Binding

110

Getting ready
To follow along with this recipe, you can either use your own code that has been created
from the previous recipes or use the starter solution that is located in the Chapter03/
SilverlightBanking_DataTemplates_Starter folder in the code bundle available on
the Packt website. The complete solution for this recipe can be found in the Chapter03/
SilverlightBanking_DataTemplates_Completed folder.

How to do it...
Instead of immediately building the template, we'll go through a few steps. We'll start from the
simple text representation and finish with a complete DataTemplate. Let's get started!

1. The collection of AccountActivity items is displayed in a ListBox. The following
is the XAML code for this control:
<ListBox x:Name="AccountActivityListBox"
 Width="600"
 Grid.Row="1">
</ListBox>

2. Getting the items in the ListBox is achieved through setting the ItemsSource
property to the ObservableCollection<AccountActivity> called
accountActivitiesCollection. This is shown in the following code:
AccountActivityListBox.ItemsSource = accountActivitiesCollection;

3. When populating this ListBox with AccountActivity objects and omitting any
information that tells the ListBox what to display (as we did here), it will simply call
the ToString() implementation of the object. This mostly results in displaying the
string representation of the type of the object, as shown in the following screenshot:

4. We can tell the ListBox which property it should display through the
DisplayMemberPath. For example, we can ask it to display the Amount
property. This is shown in the following code:
<ListBox x:Name="AccountActivityListBox"
 DisplayMemberPath="Amount">
</ListBox>

Chapter 3

111

The ListBox now displays the value of the Amount property, as can be seen in the
following screenshot:

5. We can all agree that this is not the best way of displaying data! Now, let's start by
creating an easy DataTemplate. Such a template is in fact nothing more than some
XAML that contains some data binding statements. (Although it's not mandatory,
it won't make sense to create a template without data binding.) Our first simple
template contains a StackPanel with three TextBlock controls and a Button. We
specify this template as a value for the ItemTemplate. This is shown in the following
code. Note that the DisplayMemberPath property was removed.
<ListBox x:Name="AccountActivityListBox">
 <ListBox.ItemTemplate>
 <DataTemplate>
 <StackPanel Orientation="Horizontal">
 <TextBlock Text="{Binding Beneficiary}"
 FontSize="12" >
 </TextBlock>
 <TextBlock Text=" - "
 FontSize="12">
 </TextBlock>
 <TextBlock Text="{Binding Amount,
 Converter={StaticResource
 localCurrencyConverter}}"
 FontSize="12"
 FontWeight="Bold">
 </TextBlock>
 <Button x:Name="DetailButton"
 Click="DetailButton_Click"
 Content="More..."
 Margin="3 0 0 0">

Advanced Data Binding

112

 </Button>
 </StackPanel>
 </DataTemplate>
 </ListBox.ItemTemplate>
</ListBox>

The following screenshot shows the template in action:

6. If we want to reuse the template several times throughout the application, then it
should be moved to the Resources collection of the App.xaml file. If we want to
limit the scope, we can also place it in the Resources of a container such as a Grid
or the UserControl. However, when placing the template in the Resources, we
need to give it a name using the x:Key property. This key is then used for specifying
which template is to be used. This can be seen in the following code:
<UserControl.Resources>
 <DataTemplate x:Key="SimpleTemplate">
 ...
 </DataTemplate>
</UserControl.Resources>
The following code shows how we should apply the template in a
ListBox:
<ListBox x:Name="AccountActivityListBox"
 ItemTemplate="{StaticResource SimpleTemplate}">
</ListBox>

7. A template can also contain complex controls along with the simple controls placed
in a StackPanel. The following code shows a more complex template named
ComplexTemplate. It contains a Border with a LinearGradientBrush.
Nested inside this border is a Grid, which contains some TextBlock controls,
bound to a specific property. Note that we can also specify events such as the
MouseLeftButtonDown inside the template.

Chapter 3

113

<DataTemplate x:Key="ComplexTemplate">
 <Border BorderBrush="LightGray"
 BorderThickness="1"
 CornerRadius="2"
 Margin="0 3 0 1"
 Padding="2" >
 <Border.Background>
 <LinearGradientBrush EndPoint="1.207,0.457"
 StartPoint="-0.017,0.467">
 <GradientStop Color="#FF807777"/>
 <GradientStop Color="White" Offset="0.949"/>
 </LinearGradientBrush>
 </Border.Background>
 <Grid Width="580" >
 <Grid.RowDefinitions>
 <RowDefinition></RowDefinition>
 <RowDefinition></RowDefinition>
 </Grid.RowDefinitions>
 <Grid.ColumnDefinitions>
 <ColumnDefinition Width="40"></ColumnDefinition>
 <ColumnDefinition></ColumnDefinition>
 <ColumnDefinition></ColumnDefinition>
 </Grid.ColumnDefinitions>
 <TextBlock Grid.Row="0"
 Grid.Column="0"
 Grid.RowSpan="2"
 Text="{Binding ActivityDate,
 Converter={StaticResource
 localShortDateConverter}}">
 </TextBlock>
 <TextBlock Grid.Row="0"
 Grid.Column="1"
 Text="{Binding Beneficiary}"
 FontWeight="Bold">
 </TextBlock>
 <TextBlock Grid.Row="0"
 Grid.Column="2"
 HorizontalAlignment="Right"
 Text="{Binding Amount,
 Converter={StaticResource
 localCurrencyConverter}}"
 Foreground="{Binding Amount,
 Converter={StaticResource
 localAmountToColorConverter}}">
 </TextBlock>

D
ow

n
lo

a
d
 f
ro

m
 W

o
w

!
e
B
o
o
k

<
w

w
w

.w
o
w

e
b
o
o
k.

co
m

>

Advanced Data Binding

114

 <TextBlock Grid.Row="1"
 Grid.Column="1"
 Text="{Binding ActivityDescription}">
 </TextBlock>
 <TextBlock x:Name="DetailsTextBlock"
 Grid.Row="1"
 Grid.Column="2"
 HorizontalAlignment="Right"
 Text="Details..."
 Tag="{Binding ActivityId}"
 MouseLeftButtonDown=
 "DetailsTextBlock_MouseLeftButtonDown"
 TextDecorations="Underline"
 Foreground="Blue" >
 </TextBlock>
 </Grid>
 </Border>
</DataTemplate>

The result of this template is shown in the following screenshot:

How it works...
A DataTemplate allows us to define how a data object should be visualized. They work really
well when binding data to an ItemsControl, such as a ListBox. By default, while binding
the items to this control, it will render the items as a string, coming from the ToString()
method. When specifying a DataTemplate, for each item bound to the ListBox, Silverlight
will render the XAML code specified in the template by taking into account the data binding
expressions contained in the template.

Chapter 3

115

A DataTemplate can contain all types of controls, varying from grids to buttons. Events
such as a click on a Button or a MouseLeftButtonDown on a TextBlock from within
a template are supported as well. To find out which item was clicked, we can use the
DataContext. The DataContext for each item in the list is an AccountActivity.
The following line of code displays a detail window based on the selected item:

ActivityDetailView activityDetailView = new
 ActivityDetailView(accountActivitiesCollection.
 Where<AccountActivity>(a => a.ActivityId ==
 ((AccountActivity)((TextBlock)sender).DataContext).
 ActivityId).First<AccountActivity>());

A DataTemplate can be specified on the control itself. For a ListBox, this is done by
specifying the template as a value for the ItemTemplate. However, it's more often useful
to specify the template at a higher level in the XAML hierarchy, such as the UserControl
or (even better) the App.xaml file. While using the latter, the template will be available
throughout the entire application. One thing to note here is that the template should then
be given a name that is specified through the x:Key property. This value is then used for
retrieving the correct template in the resources collection.

Using implicit data templates
Applies to Silverlight 5

In the previous recipe, we defined a data template in resources and referred to it from the
ListBox control that makes use of this template. With Silverlight 5, another type of data
template is added to Silverlight: the implicit data template. Using this type, we define a
template for a type and when Silverlight needs to visualize an instance of that type, it uses the
template. This functionality has been available in WPF and is now available in Silverlight as
well. In this recipe, we'll introduce implicit data templates to visualize data instances.

Getting ready
If you are following along with the recipes, you can continue using the code from
the previous recipe. Alternatively, a starter solution is provided in the Chapter03/
SilverlightBanking_Implicit_DataTemplates_Starter folder. The complete
solution can be found in the Chapter03/SilverlightBanking_Implicit_
DataTemplates_Completed folder.

Advanced Data Binding

116

How to do it...
Instead of using a regular data template, we are going to define an implicit data template
for the AccountActivity type. Also, we are going to create an inheriting type to show that
implicit data templates can give us more freedom when we have more than one type being
displayed in a ListBox. The following steps will show you how to do this:

1. Open the solution as outlined in the Getting ready section. First, let's refactor the
data template so that it becomes an implicit data template. Open MainPage.xaml
and look for the DataTemplate (in the resources block of the UserControl)
named ComplexTemplate. As we can see, it has a key, which is used to refer to it
from within the XAML code. Delete the key attribute and introduce the DataType
element as shown next:
<DataTemplate DataType="local:AccountActivity">
 ...
</DataTemplate>

2. The DataType refers to the AccountActivity type. Whenever we need to visualize
an instance of this type, Silverlight will pick this template automatically.

3. Still in the MainPage.xaml, in the AccountActivityListBox declaration near
the end of the page, remove the ItemTemplate attribute, so that you have the
following code:
<ListBox x:Name="AccountActivityListBox"
 Width="600" Grid.Row="1"></ListBox>

4. Run the application now. We are getting the same result as before: the ListBox
is filled with AccountActivity instances and Silverlight uses the implicit data
template to visualize these.

5. We are now going to introduce an inheriting type called
RecurringAccountActivity, which inherits from AccountActivity. Add a new
class and add the following code:
public class RecurringAccountActivity: AccountActivity
{
 public string RecurringActivityDescription { get; set; }
}

6. In the MainPage.xaml, we are now going to introduce a second implicit
data template for this type. Add the following template to the resources of the
UserControl:
<DataTemplate DataType="local:RecurringAccountActivity">
 <Border BorderBrush="LightGray"
 BorderThickness="1"
 CornerRadius="2"
 Background="LightGreen"

Chapter 3

117

 Margin="0 3 0 1"
 Padding="2" >
 <Grid Width="580" >
 <Grid.RowDefinitions>
 <RowDefinition></RowDefinition>
 <RowDefinition></RowDefinition>
 </Grid.RowDefinitions>
 <Grid.ColumnDefinitions>
 <ColumnDefinition Width="40"></ColumnDefinition>
 <ColumnDefinition></ColumnDefinition>
 <ColumnDefinition></ColumnDefinition>
 </Grid.ColumnDefinitions>
 <TextBlock Grid.Row="0" Grid.Column="0"
 Grid.RowSpan="2"
 Text="{Binding ActivityDate,
 Converter={StaticResource
 localShortDateConverter}}">
 </TextBlock>
 <TextBlock Grid.Row="0" Grid.Column="1"
 Text="{Binding Beneficiary}"
 FontWeight="Bold">
 </TextBlock>
 <TextBlock Grid.Row="0" Grid.Column="2"
 HorizontalAlignment="Right"
 Text="{Binding Amount, Converter={StaticResource
 localCurrencyConverter}}"
 Foreground="{Binding Amount,
 Converter={StaticResource
 localAmountToColorConverter}}">
 </TextBlock>
 <StackPanel Grid.Row="1"
 Grid.Column="1"
 Orientation="Horizontal">
 <TextBlock Text="{Binding ActivityDescription}">
 </TextBlock>
 <TextBlock Text=" - " ></TextBlock>
 <TextBlock Text="{Binding
 RecurringActivityDescription}">
 </TextBlock>
 </StackPanel>
 <TextBlock x:Name="DetailsTextBlock"
 Grid.Row="1"
 Grid.Column="2"
 HorizontalAlignment="Right"

Advanced Data Binding

118

 Text="Details..."
 Tag="{Binding ActivityId}"
 MouseLeftButtonDown="DetailsTextBlock_
 MouseLeftButtonDown"
 TextDecorations="Underline"
 Foreground="Blue" >
 </TextBlock>
 </Grid>
 </Border>
</DataTemplate>

7. As it can be seen, this template is based on the template for AccountActivity.
It has a green background instead of the gradient and it displays the
RecurringActivityDescription field as well.

8. In the Mainpage.xaml.cs, in the InitializeActivitiesCollection()
method, let's add an instance of this new type to the collection. Add the following
code after adding the first element to the collection:

RecurringAccountActivity recurringAccountActivity =
 new RecurringAccountActivity();
recurringAccountActivity.ActivityId = 101;
recurringAccountActivity.Amount = -120;
recurringAccountActivity.Beneficiary = "Silverlight Bank";
recurringAccountActivity.ActivityDescription = "Loan payment";
recurringAccountActivity.ActivityDate =
 new DateTime(2009, 9, 1);
recurringAccountActivity.RecurringActivityDescription = "Month
 September";
accountActivitiesCollection.Add(recurringAccountActivity);

Run the application now. As seen in the following screenshot, the correct template is being
loaded based on the type of the instance.

Chapter 3

119

How it works
When we want to display an instance in a control such as a ListBox and we don't want to
settle for the default way of displaying that instance, being a single line of data, we can use
data templates. When using regular data templates, we always have to refer to the key of
the template.

Also, within a single container such as the ListBox we are limited in that we don't have the
ability to visualize inheriting types in a different manner. Only one single template can be used.

In WPF, this issue could be solved using implicit data templates. With Silverlight 5, this feature
is now available as well. An implicit data template is associated with a type. When the type
needs to be visualized, Silverlight picks the correct template. Just like with other templates,
we can define these templates within a specific scope. This scope can be the UserControl,
a container such as a Grid or even the application itself, through the App.xaml.

If we have a collection of types and deriving types and we created templates for each of
these, Silverlight will pick the template for the inheriting type when needed. This gives us the
flexibility to use more than one template within a single container.

Not everything though that's possible in WPF in this area is available in Silverlight 5. WPF
has the DataTemplateSelector, which allows selecting a different template based on the
value of a specific property.

See also
In the previous recipe, Using templates to customize the way data is shown by controls, we
looked at regular data templates.

Using the Ancestor RelativeSource binding
Applies to Silverlight 5

In Silverlight 5, a new feature was introduced called the Ancestor RelativeSource binding.
This type was already available to WPF developers but with the introduction of version 5, also
made its appearance in Silverlight. Using this binding, we can bind to relative source elements
easily. This feature is useful in data templates. In this recipe, we'll extend the Silverlight
banking sample once again to including this binding type.

Getting ready
For this recipe, a starter solution is provided in the Chapter03/ SilverlightBanking_
Relative_Source_Starter folder. The complete solution can be found in the
Chapter03/SilverlightBanking_Relative_Source_Completed folder.

Advanced Data Binding

120

How to do it...
When we create a data template, for example for a ListBox control, we may want to bind
to a value of the ListBoxItem, for example the IsSelected property. Before Silverlight 5,
accessing that value was not easy. With the addition of the Ancestor RelativeSource binding,
this has become possible. The following steps will show how we can bind to the IsSelected
property from the data template.

1. Open the solution as outlined in the Getting ready section. In MainPage.xaml, in the
UserControl resources, we have defined a template named ComplexTemplate.
We'd like to change this template so that it displays a rectangle in the first column of
the Grid within the template. First, let's change the XAML to include this rectangle,
as shown next:
<DataTemplate x:Key="ComplexTemplate">
 <Border BorderBrush="LightGray"
 BorderThickness="1"
 CornerRadius="2"
 Margin="0 3 0 1"
 Padding="2">
 <Border.Background>
 <LinearGradientBrush EndPoint="1.207,0.457"
 StartPoint="-0.017,0.467">
 <GradientStop Color="#FF807777"/>
 <GradientStop Color="White" Offset="0.949"/>
 </LinearGradientBrush>
 </Border.Background>
 <Grid Width="580" >
 <Grid.RowDefinitions>
 <RowDefinition></RowDefinition>
 <RowDefinition></RowDefinition>
 </Grid.RowDefinitions>
 <Grid.ColumnDefinitions>
 <ColumnDefinition Width="20"></ColumnDefinition>
 <ColumnDefinition Width="40"></ColumnDefinition>
 <ColumnDefinition></ColumnDefinition>
 <ColumnDefinition></ColumnDefinition>
 </Grid.ColumnDefinitions>
 <Rectangle Grid.RowSpan="2"
 Grid.Row="0" Grid.Column="0"
 Stroke="Green"
 StrokeThickness="1"
 Width="10"
 Height="10"
 Fill="Red"

Chapter 3

121

 RadiusX="3"
 RadiusY="3" />
 <TextBlock Grid.Row="0" Grid.Column="1"
 Grid.RowSpan="2"
 Text="{Binding ActivityDate,
 Converter={StaticResource localShortDateConverter}}">
 </TextBlock>
 <TextBlock Grid.Row="0" Grid.Column="2"
 Text="{Binding Beneficiary}"
 FontWeight="Bold">
 </TextBlock>
 <TextBlock Grid.Row="0" Grid.Column="3"
 HorizontalAlignment="Right"
 Text="{Binding Amount,
Converter={StaticResource localCurrencyConverter}}"
Foreground="{Binding Amount, Converter={StaticResource
localAmountToColorConverter}}">
 </TextBlock>
 <TextBlock Grid.Row="1" Grid.Column="2"
 Text="{Binding ActivityDescription}">
 </TextBlock>
 <TextBlock x:Name="DetailsTextBlock" Grid.Row="1"
 Grid.Column="3" HorizontalAlignment="Right"
 Text="Details..."
 Tag="{Binding ActivityId}"
 MouseLeftButtonDown="DetailsTextBlock_
 MouseLeftButtonDown"
 TextDecorations="Underline"
 Foreground="Blue" >
 </TextBlock>
 </Grid>
 </Border>
</DataTemplate>

2. Note that the Grid has an extra column where the Rectangle was added.

3. We need to introduce a converter that will convert the value of IsSelected,
which is a Boolean, into a value of the Visibility enumeration. Add a class named
VisibilityConverter to the Converters folder and add the following code:
public class VisibilityConverter : IValueConverter
{
 public object Convert(object value, Type targetType, object
parameter, CultureInfo culture)
 {
 bool visible = (bool)value;
 if (visible)

Advanced Data Binding

122

 return System.Windows.Visibility.Visible;
 else
 return System.Windows.Visibility.Collapsed;
 }
 public object ConvertBack(object value, Type targetType, object
parameter, CultureInfo culture)
 {
 throw new NotImplementedException();
 }
}

4. Instantiate the converter in the resources of the MainPage.xaml as follows:
<localconverters:VisibilityConverter
x:Key="localVisibilityConverter">
</localconverters:VisibilityConverter>

5. We now want to show the rectangle only when the ListBoxItem is selected. We can
do this using the following code:
<Rectangle Grid.RowSpan="2" Grid.Row="0" Grid.Column="0"
 Visibility="{Binding RelativeSource={RelativeSource
 AncestorType=ListBoxItem}, Path=IsSelected,
 Converter={StaticResource localVisibilityConverter}}"
 Stroke="Green"
 StrokeThickness="1"
 Width="10"
 Height="10"
 Fill="Red"
 RadiusX="3"
 RadiusY="3" />

We are binding the Visibility of the Rectangle to the Visibility of the
ListBoxItem.

In the following screenshot, we can see that when an item gets selected, a
Retangle appears.

Chapter 3

123

How it works
Before Silverlight 5, it was difficult from within a data template to reach a value of a
property in the container. We could, in the case of a ListBoxItem, start changing the
ItemContainerStyle and then build a new template for the ListBoxItem from there.
It's easy to understand that this approach is quite cumbersome and not often used.

Version 5 introduced a solution in the form of the AncestorType on the RelativeSource.
The following code shows the usage of this:

<Rectangle
 Visibility="{Binding RelativeSource={RelativeSource
AncestorType=ListBoxItem},
 Path=IsSelected,
 Converter={StaticResource localVisibilityConverter}}">
</Rectangle>

When specifying the value of the AncestorType to a specific type, Silverlight will search up
the visual tree for the first occurrence of an instance of that type (here, the ListBoxItem).
This ListBoxItem then becomes the source for the rest of the binding: we are effectively
binding the Visibility of the Rectangle to the IsSelected property of the
ListBoxItem. The converter needs to be added since IsSelected is of type Boolean,
whereas the Visibility expects a value of the Visibility enumeration.

See also
In the Using templates to customize the way data is shown by controls recipe of this chapter,
we looked at working with data templates. Converters are covered in the Hooking into the data
binding process using converters recipe, also from this chapter.

Creating custom markup extensions
Applies to Silverlight 5

The binding statement we have been using up until now is a markup extension. Next to the
binding markup extension, StaticResource is a second one that's built-in in Silverlight.
Every time we see a notation that starts and ends with a curly brace ({}), we're working with a
markup extension.

Up until Silverlight 4, only the built-in markup extensions could be used. Starting with
Silverlight 5, it's now possible to create our own. In this recipe, we'll look at how we can
create a markup extension that is capable of returning a translated text.

Advanced Data Binding

124

Getting ready
If you have been following along with the recipes of this chapter, you can continue using
the recipe from the previous one. Alternatively, a starter solution is available from the
Chapter03/ SilverlightBanking_Custom_Markup_Extensions_Starter folder.
The complete solution can be found in the Chapter03/SilverlightBanking_Custom_
Markup_Extensions_Completed folder.

How to do it...
To show how we can create and use our own markup extension, we'll build one that gets a
translated value from a dictionary class. Let's look at the steps we need to perform:

1. With the solution open, create a new folder called Dictionaries in the
Silverlight project.

2. In this folder, create a class called DutchDictionary. This class contains a
Dictionary<string, string> which contains a list of translated text values.
It also contains a GetTranslation() method, which interrogates the
Dictionary for the translated text. If none is found, the default is returned.
The class is shown next:
public static class DutchDictionary
{
 public static Dictionary<string, string> Translations
 { get; set; }
 static DutchDictionary()
 {
 InitializeTranslations();
 }
 private static void InitializeTranslations()
 {
 Translations = new Dictionary<string, string>();
 Translations.Add
 ("ApplicationName", "Welkom bij Silverlight Bank");
 }
 public static string GetTranslation
 (string key, string defaultTranslation)
 {
 if (Translations.ContainsKey(key))
 return Translations[key];
 return defaultTranslation;
 }
}

Chapter 3

125

3. This code requires that you add a using statement to the System.Collections.
Generic namespace.

4. Create the FrenchDictionary and EnglishDictionary classes as well. The
code can be found in the finished solution.

5. Now we'll create the markup extension that will return a translated value. Start by
creating a folder in the solution named Extensions.

6. In this folder, create a class called TranslationExtension. This class should
inherit from MarkupExtension, a class added to Silverlight with version 5. The
class so far is shown next:
public class TranslatorExtension : MarkupExtension
{
}

7. If the MarkupExtension class can't be found, add a using statement for System.
Windows.Markup.

8. In this class, add two properties, Key and Default. These will be used as
parameters for our markup extension when used from XAML. Add the following code:
public string Key { get; set; }
public string Default { get; set; }

9. The most important part of the class is the override of the ProvideValue()
method. This method will return an object that is returned as the value of the
target property for where the markup extension is used. In this method, we are
checking which is the current culture. Based on this value, a translated text value
is returned from one of the available dictionaries. Add the following code to the
TranslatorExtension class:
public override object ProvideValue
 (IServiceProvider serviceProvider)
{
 string language =
 Thread.CurrentThread.CurrentCulture.ToString();
 if (language == "nl-BE")
 {
 return DutchDictionary.GetTranslation(Key, Default);
 }
 else if (language == "fr-BE")
 {
 return FrenchDictionary.GetTranslation(Key, Default);
 }
 else
 {

Advanced Data Binding

126

 return EnglishDictionary.GetTranslation(Key, Default);
 }
}

10. We can now use our extension. First, in the MainPage.xaml, add the following line,
which makes the namespace known inside XAML code:
xmlns:extensions="clr-namespace:SilverlightBanking.Extensions"

11. Search for the TitleTextBlock control and change its Text property as follows:

<TextBlock x:Name="TitleTextBlock"
 Text="{extensions:TranslatorExtension
 Key=ApplicationName, Default=Welcome}" >
</TextBlock>

If we run the application now, we'll get a translated value. On my personal machine,
my culture setting is nl-BE, so the Dutch translation is retrieved, as shown in the
following screenshot:

How it works
We've been using markup extensions throughout this and the previous chapter all along.
Every data binding we have created using the Binding between { and } is a markup
extension. A markup extension, as the word says, basically extends XAML. Using a markup
extension, we can pass information which can be used by the XAML parser when creating
the object.

Up until Silverlight 4, we were limited to using the markup extensions that came with the
framework. However, WPF already had the ability to allow developers to create their own
extensions. With Silverlight 5, the platform has been extended with the required base classes
and interfaces to support custom markup extensions.

Chapter 3

127

Custom markup extensions are useful in many scenarios. For example, we can wrap
functionality inside an extension, for which we would normally have to expose extra properties
from our data context. Also, functionality that we would normally add using a converter can be
wrapped in a markup extension. Finally, we also get access to static classes from XAML, which
isn't possible otherwise. This can be useful to access classes such as service locators which
are often static.

Creating a custom markup extension is possible by inheriting from the MarkupExtension
class. In our extension, we then have to override the ProvideValue() method. This method,
as the name implies, returns an object for the value of the property where we are using the
extension in XAML.

A custom markup extension can have parameters. We can create parameters by creating one
or more public properties on the extension class. From XAML, these are then available within
the markup extension. In the following code, both Key and Default are parameters.

Text="{extensions:TranslatorExtension Key=ApplicationName,
Default=Welcome}"

One important note for WPF developers is that positional parameters are not available in
Silverlight's implementation of custom markup extensions. This means that we always have to
specify the name of the parameter; we can't fall back on a default property.

Building a change-aware collection type
Applies to Silverlight 3, 4 and 5

We may not always have the option of binding to a collection that implements the
INotifyCollectionChanged interface. For example, what if we have a service that
returns IList<T>? Can't we use the automatic synchronization features that Silverlight's
data binding engine offers us?

The good news is that we can. For that, we need to build a wrapper class around the
IList<T>. This class will implement the necessary interface and will allow data binding
to work in the manner in which we are accustomed.

Getting ready
The complete solution for this recipe can be found in the Chapter03/CustomCollections
folder in the code bundle available on the Packt website.

Advanced Data Binding

128

How to do it...
For this recipe, we'll assume that we need to work with an external assembly called
UnchangeableCode in the sample code, which we simply can't change. Inside the assembly,
a class returns a list of Owner instances as IList<Owner>. However, in our Silverlight
application, we would still like to use the synchronization that data binding offers us. We'll
implement this by building a wrapper class. We need to perform the following steps in order to
achieve this:

1. The UnchangeableCode project contains a class called OwnerService. This class
contains a List<Owner> as shown in the following code:
public class OwnerService
{
 private List<Owner> owners;
 public List<Owner> Owners
 {
 get { return owners; }
 set { owners = value; }
 }
 public OwnerService()
 {
 owners = new List<Owner>();
 Owner o1 = new Owner()
 {
 Name = "Gill Cleeren",
 CurrentBalance = 100
 };
 Owner o2 = new Owner()
 {
 Name = "Kevin Dockx",
 CurrentBalance = 200
 };
 Owner o3 = new Owner()
 {
 Name = "Marina Smith",
 CurrentBalance = 300
 };
 Owner o4 = new Owner()
 {
 Name = "Lindsey Smith",
 CurrentBalance = 400
 };
 owners.Add(o1);
 owners.Add(o2);
 owners.Add(o3);
 owners.Add(o4);
 }
}

Chapter 3

129

2. In our Silverlight application, we would like to bind to the list of Owner instances
not only for displaying the data, but also for viewing any changes done to the list
immediately. We'll create a class that wraps around the List<Owner>. This class
will also implement the INotifyCollectionChanged interface as shown in the
following code:
public class CustomOwnerList : IList<Owner>,
 INotifyCollectionChanged
{
 private IList<Owner> owners;
 public CustomOwnerList(IList<Owner> owner)
 {
 this.owners = owner;
 }
}

3. We can now start implementing all the methods that are defined by both interfaces.
The INotifyCollectionChanged interface defines only one event, which is called
the CollectionChanged event. This is shown in the following line of code:
public event NotifyCollectionChangedEventHandler
 CollectionChanged;

4. The IList interface contains a lot of methods that we need to implement. The
following is the code for the Insert method. Notice that we're manually calling the
CollectionChanged event when something changes in the list. We wrap the call
of the CollectionChanged event in the OnCollectionChanged method. This
method includes checking that the event isn't null. The other methods are similar
and the code for these methods can be found in the code bundle available on the
Packt website.
public void Insert(int index, Owner item)
{
 owners.Insert(index, item);
 OnCollectionChanged(new NotifyCollectionChangedEventArgs
 (NotifyCollectionChangedAction.Add, item, index));
}
private void OnCollectionChanged(NotifyCollectionChangedEventArgs
 notifyCollectionChangedEventArgs)
{
 if (CollectionChanged != null)
 CollectionChanged(this,notifyCollectionChangedEventArgs);
}

5. Now that we have the wrapper, we can work with the list as if it's a regular
ObservableCollection. Whenever we add, remove, or change items in the list,
we'll see those changes directly in the UI. The following code shows the instantiation
of the new collection and sets it as the DataContext for a ListBox control:

Advanced Data Binding

130

OwnerService someOldClass = new OwnerService();
CustomOwnerList list = new CustomOwnerList(someOldClass.Owners);
OwnerListBox.ItemsSource = list;

How it works...
If we want to make use of the automatic synchronization offered by Silverlight's data binding
for a collection, then this collection should implement the INotifyCollectionChanged
interface. If it doesn't do this, we can still bind and show the items in the collection.
However, changes to the collection won't be propagated into the UI. Although using the
ObservableCollection is advised, sometimes we need to work with a service or an
assembly from a third party that returns, for example, a generic list.

If we want the data of the generic list to be bound to the UI and the changes to the list to
be visualized, then we need to build a class that wraps around the list. This class needs to
implement the IList<T> interface. As a result, while implementing the methods, we work
with the original list itself. For example, while implementing the Insert method, we insert an
item in a specific location in the underlying list.

Also, the class needs to implement the INotifyCollectionChanged interface. For every
change that is done in the list (such as adding an item), our wrapper class will raise the
CollectionChanged event.

Now, whenever we want to bind, we bind to an instance of our wrapper class. Silverlight
notices that this class implements the INotifyCollectionChanged interface, so it will
register for the events that are raised by an instance of the wrapper class.

See also
Binding to regular collections is explained in the Binding collections to UI elements recipe of
the previous chapter.

Combining converters, data binding, and
DataContext into a custom DataTemplate

Applies to Silverlight 3, 4 and 5

A lot of things we've talked about in this chapter are great features on their own, but they
really shine when you combine them and let them work together. This recipe will show
you how to bring some of the most powerful and built-in features of the Silverlight SDK
together or, to put it differently, how to program "The Silverlight Way". We're going to create
an editable ComboBox of people using a custom DataTemplate, the DataContext, an
ObservableCollection with two-way data binding, and Converters to make the UI fluid,
interactive, and responsive.

Chapter 3

131

Getting ready
We're starting off with a completely new, blank Silverlight solution for this recipe. So, to get
started, make sure you have one of those. To create an empty Silverlight solution, start a
new Silverlight project in Visual Studio by selecting File | New | Project... and let it create an
accompanying web application automatically for hosting the Silverlight application. Name the
project Editable_Combobox.

You can find the complete solution for this recipe in the Chapter03/Combining_
Converters_Databinding_And_DataContext_Completed folder in the code bundle
available on the Packt website.

How to do it...
We want to end up with a ComboBox that displays the names of a few people. Each person's
name should be editable from inside the list of items in the ComboBox. To achieve this, we'll
need to carry out the following steps:

1. We're going to start by adding a new class to our Silverlight project. This class
is named Person and it has three properties: an ID, a Name, and a field that
represents the current edit state of the person—InEditMode. This class implements
the INotifyPropertyChanged interface as shown in the following code:
using system.ComponentModel;

public class Person : INotifyPropertyChanged
{
 public int PersonID { get; set; }
 private bool pInEditMode;
 public bool InEditMode
 {
 get
 {
 return pInEditMode;
 }
 set
 {
 pInEditMode = value;
 NotifyPropertyChanged("InEditMode");
 }
 }
 private string pName;
 public string Name
 {
 get

Advanced Data Binding

132

 {
 return pName;
 }
 set
 {
 pName = value;
 NotifyPropertyChanged("Name");
 }
 }
 #region INotifyPropertyChanged Members
 public event PropertyChangedEventHandler PropertyChanged;
 public void NotifyPropertyChanged(string propertyName)
 {
 if (PropertyChanged != null)
 {
 PropertyChanged(this, new
 PropertyChangedEventArgs(propertyName));
 }
 }
 #endregion
}

2. Next, we're going to add another class to our Silverlight project. This class is
named BoolToVisibilityConverter. It will implement the IValueConverter
interface and convert a Boolean value to a Visibility value. This is shown in the
following code:
public class BoolToVisibilityConverter : IValueConverter
{
 #region IValueConverter Members
 public object Convert(object value, Type targetType,
 object parameter, System.Globalization.CultureInfo culture)
 {
 bool normalDirection = true;
 if (parameter != null)
 {
 if (parameter.ToString().Trim().ToLower() ==
 "trueiscollapsed")
 normalDirection = false;
 }
 if (value is bool)
 {
 if ((bool)value)
 {
 return normalDirection ?
 Visibility.Visible : Visibility.Collapsed;

Chapter 3

133

 }
 else
 {
 return normalDirection ?
 Visibility.Collapsed : Visibility.Visible;
 }
 }
 else
 {
 return Visibility.Visible;
 }
 }
 public object ConvertBack(object value, Type targetType,
 object parameter, System.Globalization.CultureInfo culture)
 {
 bool normalDirection = true;
 if (parameter.ToString().Trim().ToLower() == "trueiscollapsed")
 normalDirection = false;
 if (value is Visibility)
 {
 if ((Visibility)value == Visibility.Visible)
 {
 return normalDirection ? true : false;
 }
 else
 {
 return normalDirection ? false : true;
 }
 }
 else
 {
 return true;
 }
 }
 #endregion
}

3. Add the following using statements to that class:
using System;
using System.Windows;
using System.Windows.Data;

Advanced Data Binding

134

4. Open the MainPage.xaml file. We'll add the following code to represent our UI. It
includes the Binding syntax for the person objects visible in our ComboBox, the
necessary Converter syntax, and an event handler for the Click events of our Edit
and Save buttons.
<UserControl x:Class="Editable_Combobox.MainPage"
 xmlns="http://schemas.microsoft.com/winfx/2006/
 xaml/presentation"
 xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml"
 xmlns:d="http://schemas.microsoft.com/expression/blend/2008"
 xmlns:mc="http://schemas.openxmlformats.org/markup-
 compatibility/2006"
 mc:Ignorable="d" d:DesignWidth="640" d:DesignHeight="480"
 xmlns:local="clr-namespace:Editable_Combobox">
 <UserControl.Resources>
 <local:BoolToVisibilityConverter
 x:Name="BoolToVisibilityConverter" />
 </UserControl.Resources>
 <Grid x:Name="LayoutRoot" Margin="10" >
 <Grid.RowDefinitions>
 <RowDefinition Height="30"></RowDefinition>
 <RowDefinition></RowDefinition>
 </Grid.RowDefinitions>
 <TextBlock Text="An editable ComboBox"
 HorizontalAlignment="Left"
 VerticalAlignment="Top" >
 </TextBlock>
 <ComboBox x:Name="cmbPersons" Grid.Row="1"
 Width="220" Height="30"
 HorizontalAlignment="Left"
 VerticalAlignment="Top">
 <ComboBox.ItemTemplate>
 <DataTemplate>
 <Grid Width="280" Height="30">
 <Grid.ColumnDefinitions>
 <ColumnDefinition Width="200"></ColumnDefinition>
 <ColumnDefinition></ColumnDefinition>
 </Grid.ColumnDefinitions>
 <TextBlock Text="{Binding Name, Mode=TwoWay}"
 HorizontalAlignment="Left"
 VerticalAlignment="Center"
 IsHitTestVisible="False"
 Width="180"
 Visibility="{Binding InEditMode,
 Converter={StaticResource
 BoolToVisibilityConverter},
 ConverterParameter=trueiscollapsed}"/>

Chapter 3

135

 <TextBox Text="{Binding Name, Mode=TwoWay}"
 Width="180" HorizontalAlignment="Left"
 VerticalAlignment="Center"
 Visibility="{Binding InEditMode,
 Converter={StaticResource
 BoolToVisibilityConverter},
 ConverterParameter=trueisvisible}"/>
 <Button x:Name="btnEdit" Width="70" Height="20"
 Click="btnEditSave_Click"
 Content="Edit" Grid.Column="1"
 Visibility="{Binding InEditMode,
 Converter={StaticResource
 BoolToVisibilityConverter},
 ConverterParameter=trueiscollapsed}" />
 <Button x:Name="btnSave" Width="70" Height="20"
 Click="btnEditSave_Click"
 Content="Save" Grid.Column="1"
 Visibility="{Binding InEditMode,
 Converter={StaticResource
 BoolToVisibilityConverter}}"/>
 </Grid>
 </DataTemplate>
 </ComboBox.ItemTemplate>
 </ComboBox>
 </Grid>
</UserControl>

5. Open the MainPage.xaml.cs file. This is our code-behind file in which we'll write
the following code to handle the Click events of our buttons as well as to initialize
an ObservableCollection of the Person type:

public partial class MainPage : UserControl
{
 public ObservableCollection<Person> Persons
 { get; set; }
 public MainPage()
 {
 InitializeComponent();
 InitializeCollection();
 }
 private void InitializeCollection()
 {
 Persons = new ObservableCollection<Person>()
 {
 new Person()
 {

Advanced Data Binding

136

 PersonID=1, Name="Gill Cleeren", InEditMode = false
 },
 new Person()
 {
 PersonID=2, Name="Kevin Dockx", InEditMode = false
 }
 };
 cmbPersons.ItemsSource = Persons;
 }
private void btnEditSave_Click(object sender, RoutedEventArgs e)
{
 Person p = (Person)(((Button)sender).DataContext);
 p.InEditMode = !p.InEditMode;
}

We can now build and run this project. The result can be observed in the following screenshot:

How it works...
This recipe brings together quite a few Silverlight principles into one project. Let's start with
the Person class. This class represents the people shown in our editable ComboBox. It
implements the INotifyPropertyChanged interface, which makes sure that the UI is
notified when one of the properties changes.

Our converter converts a Boolean value to a Visibility value. We bind the visibility
property of our TextBlock, TextBox, and Buttons to the InEditMode property of
the Person class. This is done by using the converter to convert the Boolean value to a
Visibility value and by using the ConverterParameter to decide how the value should
be converted. As a result of this, the TextBlock and the Edit button will be Visible when
the InEditMode property is false, and Collapsed when it's true. On the other hand, the
TextBox and the Save button will be Collapsed when the InEditMode property is false
and Visible when it's true.

Chapter 3

137

Next, we've got the Click event handler on our buttons. In this handler, we can get the
DataContext of the sender. Due to the fact that the ItemsSource in a ComboBox is a
collection of persons, the DataContext of this Button is always exactly one person. We
can then cast this DataContext in the Person and change its InEditMode property.

Bringing it all together, the ObservableCollection of the Person represents the data
shown in the ComboBox. The Converter makes sure that the correct pieces of the UI are
shown. Due to the DataContext, we can easily access our Person object on the click
of a button. Also, as the INotifyPropertyChanged interface is implemented on the
InEditMode property, the UI is updated when we change this property. Finally, the TwoWay
data binding makes sure that the changes we make to a person's name are automatically
persisted in the underlying object.

See also
This recipe brought together most of the principles that are covered in this book. To learn
more about data binding, have a look at the following recipes in Chapter 2:

 f Displaying data in Silverlight applications

 f Creating dynamic bindings

 f Binding data to another UI element

 f Binding collections to UI elements

 f Enabling a Silverlight application to automatically update its UI

To learn more about the DataContext, you can refer to the Obtaining data from any
UI element it is bound to recipe in Chapter 2. Additionally, converters are covered in the
Hooking into the data binding process recipe in this chapter. For more information
on the ObservableCollection, have a look at the Binding collections to UI elements
recipe in Chapter 2.

4
The Data Grid

This chapter takes an in-depth look at working with the DataGrid using the following recipes:

 f Displaying data in a customized DataGrid

 f Inserting, updating, and deleting data in a DataGrid

 f Sorting and grouping data in a DataGrid

 f Filtering and paging data in a DataGrid

 f Using custom columns in the DataGrid

 f Implementing master-detail in the DataGrid

 f Validating the DataGrid

Introduction
If we want to build applications that deal with large amounts of data, then a control such as a
data grid is vital. This control shows the data in a tabular format and allows for adding, editing,
and deleting the data inline. It allows the sorting of data into columns by clicking on a column
header. Finally, a data grid should support grouping, so that we can create levels in the data.

Silverlight included a data grid from version 2 onwards, even before Windows Presentation
Foundation (WPF) had one. It's very powerful, supports all the features outlined previously,
and is thus a good solution to work with large amounts of data in the browser. It lives in
the System.Windows.Controls namespace. However, it's not included in the default
assemblies that are installed with the Silverlight core. When using it in our application,
Visual Studio will embed several assemblies into the XAP file.

The Data Grid

140

In order to maintain its performance, Silverlight's DataGrid control features UI virtualization.
This feature means that Silverlight will only create the items that are currently visible. As a
result of this, even if we are displaying thousands or even millions of rows, the DataGrid
control will still keep running smoothly.

In the recipes of this chapter, we'll look at how to work with the DataGrid. This is an essential
control for applications that rely on (collections of) data.

Displaying data in a customized DataGrid
Applies to Silverlight 3, 4 and 5

Displaying data is probably the most straightforward task we can ask the DataGrid to do
for us. In this recipe, we'll create a collection of data and hand it over to the DataGrid for
display. While the DataGrid may seem to have a rather fixed layout, there are many options
available on this control that we can use to customize it.

In this recipe, we'll focus on getting the data to show up in the DataGrid and customize it to
our likings.

Getting ready
In this recipe, we'll start from an empty Silverlight application. The finished solution for this
recipe can be found in the Chapter04/Datagrid_Displaying_Data_Completed folder
in the code bundle that is available on the Packt website.

How to do it...
We'll create a collection of Book objects and display this collection in a DataGrid. However,
we want to customize the DataGrid. More specifically, we want to make the DataGrid
fixed. In other words, we don't want the user to make any changes to the bound data or move
the columns around. Also, we want to change the visual representation of the DataGrid
by changing the background color of the rows. We also want the vertical column separators
hidden and the horizontal ones a different color. Finally, we'll hook into the LoadingRow
event, which will give us access to the values that are bound to a row and
based on that value, the LoadingRow event will allow us to make changes to the visual
appearance of the row.

Chapter 4

141

To create this DataGrid, you'll need to carry out the following steps:

1. Start a new Silverlight solution called DatagridDisplayingData in Visual Studio. We'll
start by creating the Book class. Add a new class to the Silverlight project in the
solution and name this class Book. Note that this class uses two enumerations—one
for the Category and the other for the Language. These can be found in the sample
code. The following is the code for the Book class:
public class Book
{
 public string Title { get; set; }
 public string Author { get; set; }
 public int PageCount { get; set; }
 public DateTime PurchaseDate { get; set; }
 public Category Category { get; set; }
 public string Publisher { get; set; }
 public Languages Language { get; set; }
 public string ImageName { get; set; }
 public bool AlreadyRead { get; set; }
}

2. In the code-behind of the generated MainPage.xaml file, we need to create
a generic list of Book instances (List<Book>) and load data into this collection.
This is shown in the following code:
private List<Book> bookCollection;
public MainPage()
{
 InitializeComponent();
 LoadBooks();
}
private void LoadBooks()
{
 bookCollection = new List<Book>();
 Book b1 = new Book();
 b1.Title = "Book AAA";
 b1.Author = "Author AAA";
 b1.Language = Languages.English;
 b1.PageCount = 350;
 b1.Publisher = "Publisher BBB";
 b1.PurchaseDate = new DateTime(2009, 3, 10);
 b1.ImageName = "AAA.png";
 b1.AlreadyRead = true;
 b1.Category = Category.Computing;
 bookCollection.Add(b1);
 ...
}

The Data Grid

142

3. Next, we'll add a DataGrid to the MainPage.xaml file. For now, we won't add any
extra properties on the DataGrid. It's advisable to add it to the page by dragging it
from the toolbox, so that Visual Studio adds the correct references to the required
assemblies in the project, as well as adds the namespace mapping in the XAML
code. The following line of code shows a default DataGrid with its name set to
BookDataGrid:
<sdk:DataGrid x:Name="BookDataGrid"></sdk:DataGrid>

4. Currently, no data is bound to the DataGrid. To make the DataGrid show the
book collection, we set the ItemsSource property from the code-behind in the
constructor. This is shown in the following code:
public MainPage()
{
 InitializeComponent();
 LoadBooks();
 BookDataGrid.ItemsSource = bookCollection;
}

5. Running the code now shows a default DataGrid that generates a column
for each public property of the Book type. This happens because the
AutoGenerateColumns property is True by default.

6. Let's continue by making the DataGrid look the way we want it to look. By
default, the DataGrid is user-editable, so we may want to change this feature.
Setting the IsReadOnly property to True will make it impossible for a user to
edit the data in the control. We can lock the display even further by setting both
the CanUserResizeColumns and the CanUserReorderColumns properties to
False. This will prohibit the user from resizing and reordering the columns inside
the DataGrid, which are enabled by default. This is shown in the following code:
<sdk:DataGrid x:Name="BookDataGrid"
 AutoGenerateColumns="True"
 CanUserReorderColumns="False"
 CanUserResizeColumns="False"
 IsReadOnly="True">
</sdk:DataGrid>

7. The DataGrid also offers quite an impressive list of properties that we can use
to change its appearance. By adding the following code, we specify alternating the
background colors (the RowBackground and AlternatingRowBackground
properties), column widths (the ColumnWidth property), and row heights
(the RowHeight property). We also specify how the gridlines should be displayed (the
GridLinesVisibility and HorizontalGridLinesBrush properties). Finally,
we specify that we also want a row header to be added
(the HeadersVisibility property):

Chapter 4

143

<sdk:DataGrid x:Name="BookDataGrid"
 AutoGenerateColumns="True"
 CanUserReorderColumns="False"
 CanUserResizeColumns="False"
 RowBackground="#999999"
 AlternatingRowBackground="#CCCCCC"
 ColumnWidth="90"
 RowHeight="30"
 GridLinesVisibility="Horizontal"
 HeadersVisibility="All"
 HorizontalGridLinesBrush="Blue">
</sdk:DataGrid>

8. We can also get a hook into the loading of the rows. For this, the LoadingRow event
has to be used. This event is triggered when each row gets loaded. Using this event,
we can get access to a row and change its properties based on custom code. In the
following code, we are specifying that if the book is a thriller, we want the row to have
a red background:
private void BookDataGrid_LoadingRow(object sender,
 DataGridRowEventArgs e)
{
 Book loadedBook = e.Row.DataContext as Book;
 if (loadedBook.Category == Category.Thriller)
 {
 e.Row.Background = new SolidColorBrush(Colors.Red);
 //It's a thriller!
 e.Row.Height = 40;
 }
 else
 {
 e.Row.Background = null;
 }
}

9 To link the event handler with the event from XAML, make sure the DataGrid instance
in XAML contains the following code:

LoadingRow="BookDataGrid_LoadingRow"

The Data Grid

144

After completing these steps, we have the DataGrid that we wanted. It displays the
data (including headers), fixes the columns, and makes it impossible for the user to edit
the data. Also, the color of the rows and alternating rows is changed, the vertical grid lines
are hidden, and a different color is applied to the horizontal grid lines. Using the LoadingRow
event, we have checked whether the book being added is of the Thriller category, and if
so, a red color is applied as the background color for the row. The result can be seen in the
following image:

How it works...
The DataGrid allows us to display the data easily, while still offering us many customization
options to format the control as needed.

The DataGrid is defined in the System.Windows.Controls namespace, which is
located in the System.Windows.Controls.Data assembly. By default, this assembly
is not referenced while creating a new Silverlight application. Therefore, the following extra
references are added while dragging the control from the toolbox for the first time:

 f System.ComponentModel.DataAnnotations

 f System.Windows.Controls.Data

 f System.Windows.Controls.Data.Input

 f System.Windows.Data

D
ow

n
lo

a
d
 f
ro

m
 W

o
w

!
e
B
o
o
k

<
w

w
w

.w
o
w

e
b
o
o
k.

co
m

>

Chapter 4

145

While compiling the application, the corresponding assemblies are added to the XAP file
(as can be seen in the following image, which shows the contents of the XAP file). These
assemblies need to be added because while installing the Silverlight plugin, they aren't
installed as a part of the CLR. This is done in order to keep the plugin size small. However,
when we use them in our application, they are embedded as part of the application. This
results in an increase of the download size of the XAP file (around 200 KB of compressed
DLLs are added to XAP). In most circumstances, this is not a problem. However, if the file
size is an important requirement, then it is essential to keep an eye on this.

Also, Visual Studio will include the following namespace mapping into the XAML file:

xmlns:sdk="clr-namespace:System.Windows.Controls;
 assembly=System.Windows.Controls.Data"

From then on, we can use the control as shown in the following line of code:

<sdk:DataGrid x:Name="BookDataGrid"> </sdk:DataGrid>

Once the control is added on the page, we can use it in a data binding scenario. To do so, we
can point the ItemsSource property to any IEnumerable implementation. Each row in the
DataGrid will correspond to an object in the collection.

When AutoGenerateColumns is set to True (the default), the DataGrid uses a
reflection on the type of objects bound to it. For each public property it encounters, it
generates a corresponding column. Out of the box, the DataGrid includes a text column,
a checkbox column, and a template column. For all the types that can't be displayed, it uses
the ToString method and a text column.

If we want the DataGrid to feature automatic synchronization, the collection should
implement the INotifyCollectionChanged interface. If changes to the objects are to be
reflected in the DataGrid, then the objects in the collection should themselves implement
the INotifyPropertyChanged interface.

The Data Grid

146

There's more…
While loading large amounts of data into the DataGrid, the performance will still be very
good. This is the result of the DataGrid implementing UI virtualization, which is enabled
by default.

Let's assume that the DataGrid is bound to a collection of 1,000,000 items (whether or
not this is useful is another question). Loading all of these items into memory would be a
time-consuming task as well as a big performance hit. Due to UI virtualization, the control
loads only the rows it's currently displaying. (It will actually load a few more to improve the
scrolling experience.) While scrolling, a small lag appears when the control is loading the
new items. Starting with Silverlight 3, the ListBox also features UI virtualization.

See also…
In the recipe Using custom columns in the DataGrid of this chapter, we'll look at how we can
specify which columns should be included in the DataGrid.

Inserting, updating, and deleting data
in a DataGrid

Applies to Silverlight 3, 4 and 5

The DataGrid is an outstanding control to use while working with large amounts of data at
the same time. Through its Excel-like interface, not only can we easily view the data, but also
add new records or update and delete existing ones.

In this recipe, we'll take a look at how to build a DataGrid that supports all of these actions
on a collection of items.

Getting ready
This recipe builds on the code that was created in the previous recipe. To follow along
with this recipe, you can keep using your code or use the starter solution located in the
Chapter04/Datagrid_Editing_Data_Starter folder in the code bundle available
on the Packt website. The complete solution for this recipe can be found in the Chapter04/
Datagrid_Editing_Data_Completed folder.

Chapter 4

147

How to do it...
In this recipe, we'll work with the same Book class as in the previous recipe. Through the
use of a DataGrid, we'll manage an ObservableCollection<Book>. We'll make it
possible to add, update, and delete the items in the collection through the DataGrid.
An ObservableCollection raises an event when items are added, removed, and so on,
and Silverlight will listen for this event. The existing data will be edited by doing inline edits to
the rows, which will be pushed back to the underlying collection. We'll allow the user to add or
delete an item in the DataGrid by clicking on a button. Behind the scenes, an item is added
to or removed from the underlying collection. We'll also include a detail panel where the user
can view more properties on the selected item in the DataGrid.

The following are the steps we need to perform:

1. In the MainPage.xaml.cs file, we bind to a generic list of Book instances
(List<Book>). For the DataGrid to react to the changes in the bound collection,
the collection itself should implement the INotifyCollectionChanged interface.
Thus, instead of a List<Book>, we'll use an ObservableCollection<Book> as
shown in the following line of code:
ObservableCollection<Book> bookCollection =
 new ObservableCollection<Book>();

2. Let's first look at deleting the items. We may want to link the hitting of the Delete key
on the keyboard with the removal of a row in the DataGrid. In fact, we're asking to
remove the currently selected item from the bound collection. For this, we register for
the KeyDown event on the DataGrid as shown in the following code:
<sdk:DataGrid x:Name="BookDataGrid"
 KeyDown="BookDataGrid_KeyDown" ...>

3. In the event handler, we'll need to check whether the key was the Delete key. Also, the
required code for inserting the data—triggered by hitting the Insert key—is included.
This is shown in the following code:
private bool cellEditing = false;
private void BookDataGrid_KeyDown(object sender, KeyEventArgs e)
{
 if (e.Key == Key.Delete && !cellEditing)
 {
 RemoveBook();
 }
 else if (e.Key == Key.Insert && !cellEditing)
 {
 AddEmptyBook();
 }
}

The Data Grid

148

4. Note the !cellEditing in the previous code. It's a Boolean field that we are
using to check whether we are currently editing a value that is in a cell or we
simply have a row selected. In order to carry out this check, we should add both the
BeginningEdit and the CellEditEnded events in the DataGrid as shown in the
following code. These will be triggered when the cell enters or leaves the edit mode
respectively.
<sdk:DataGrid x:Name="BookDataGrid"
 BeginningEdit="BookDataGrid_BeginningEdit"
 CellEditEnded="BookDataGrid_CellEditEnded" ...>

5. In the event handlers, we change the value of the cellEditing variable as shown
in the following code:
private void BookDataGrid_BeginningEdit(object sender,
 DataGridBeginningEditEventArgs e)
{
 cellEditing = true;
}
private void BookDataGrid_CellEditEnded(object sender,
 DataGridCellEditEndedEventArgs e)
{
 cellEditing = false;
}

6. Next, we need to write the code either to add an empty Book object or to remove an
existing one. Here, we're actually working with the ObservableCollection<Book>.
We're adding items to the collection or removing them from it. If you've used the starter
solution for this recipe, two Button controls are already included. If you're using your
own code from the previous recipe, simply add two Button instances to the XAML file.
We can add two Click event handlers that will trigger adding or removing an item
using the following code. Note that while deleting, we are checking whether an item
is selected.
private void AddButton_Click(object sender, RoutedEventArgs e)
{
 AddEmptyBook();
}
private void DeleteButton_Click(object sender, RoutedEventArgs e)
{
 RemoveBook();
}
private void AddEmptyBook()

Chapter 4

149

{
 Book b = new Book();
 bookCollection.Add(b);
}
private void RemoveBook()
{
 if (BookDataGrid.SelectedItem != null)
 {
 Book deleteBook = BookDataGrid.SelectedItem as Book;
 bookCollection.Remove(deleteBook);
 }
}

7. Finally, let's take a look at updating the items. In fact, simply typing in new values
for the existing items in the DataGrid will push the updates back to the bound
collection. Add a Grid containing the TextBlock controls in order to see this. The
entire Grid should be bound to a selected row of the DataGrid. This is done by
means of an element data binding. The following code is a part of this code. The
remaining code can be found in the completed solution in the code bundle.

<Grid DataContext="{Binding ElementName=BookDataGrid,
 Path=SelectedItem}" >
 <TextBlock Text="Title:"
 FontWeight="Bold"
 Grid.Row="1"
 Grid.Column="0">
 </TextBlock>
 <TextBlock Text="{Binding Title}"
 Grid.Row="1"
 Grid.Column="1">
 </TextBlock>
</Grid>

The Data Grid

150

We now have a fully-working application to manage the data of the Book collection. We
have a data-entry application that allows us to perform CRUD (create, read, update, and
delete) operations on the data using the DataGrid. The final application is shown in the
following screenshot:

How it works...
The DataGrid is bound to an ObservableCollection<Book>. This way, changes
to the collection are reflected in the control immediately because of the automatic
synchronization that data binding offers on collections that implement the
INotifyCollectionChanged interface. If the class (in our case, the Book class)
itself implements the INotifyPropertyChanged interface, then the changes to the
individual items are also reflected. Implicitly, a DataGrid implements a TwoWay binding.
We don't have to specify this anywhere.

To remove an item by hitting the Delete key, we first need to check that we're not editing
the value of the cell. If we are, then the row shouldn't be deleted. This is done using the
BeginningEdit and CellEditEnded events. The former one is called before the user can
edit the value. It can also be used to perform some action on the value in the cell such as
formatting. The latter event is called when the focus moves away from the cell.

Chapter 4

151

In the end, managing (inserting, deleting, and so on) the data in the DataGrid comes down
to managing the items in the collection. We leverage this here. We aren't adding any items to
the DataGrid itself, but we are either adding items to the bound collection or removing items
from the bound collection.

See also…
For more information on the data binding features, take a look at Chapter 2, An Introduction
to Data Binding and Chapter 3, Advanced Data Binding, where we look in much detail at all
the features offered by Silverlight in this area.

Sorting and grouping data in a DataGrid
Applies to Silverlight 3, 4 and 5

Sorting the values within a column in a control such as a DataGrid is something that we
take for granted. Silverlight's implementation has some very strong sorting options working
out of the box for us. It allows us to sort by clicking on the header of a column, amongst
other things.

Along with sorting, the DataGrid enables the grouping of values. Items possessing a
particular property (that is, in the same column) and having equal values can be visually
grouped within the DataGrid.

All of this is possible by using a view on top of the bound collection. In this recipe, we'll look
at how we can leverage this view to customize the sorting and grouping of data within the
DataGrid.

Getting ready
This sample continues with the same code that was created in the previous recipes of this
chapter. If you want to follow along with this recipe, you can continue using your code or
use the provided start solution located in the Chapter04/Datagrid_Sorting_And_
Grouping_Starter folder in the code bundle that is available on the Packt website. The
finished code for this recipe can be found in the Chapter04/Datagrid_Sorting_And_
Grouping_Completed folder.

The Data Grid

152

How to do it...
We'll be using the familiar list of Book items again in this recipe. This list, which is
implemented as an ObservableCollection<Book>, will not be directly bound to the
DataGrid in this case. Instead, we'll use a PagedCollectionView that acts as a view
on top of the collection. We'll change the way the DataGrid is sorted by default as well
as introduce grouping within the control. The following are the steps to achieve all of this:

1. Instead of using the AutoGenerateColumns feature, we'll define the columns that
we want to see manually. We'll make use of several DataGridTextColumns, a
DataGridCheckBoxColumn, and a DataGridTemplateColumn. The following is
the code for the DataGrid:
<sdk:DataGrid x:Name="CopyBookDataGrid"
 AutoGenerateColumns="False" ... >
 <sdk:DataGrid.Columns>
 <sdk:DataGridTextColumn x:Name="CopyTitleColumn"
 Binding="{Binding Title}"
 Header="Title">
 </sdk:DataGridTextColumn>
 <sdk:DataGridTextColumn x:Name="CopyAuthorColumn"
 Binding="{Binding Author}"
 Header="Author">
 </sdk:DataGridTextColumn>
 <sdk:DataGridTextColumn x:Name="CopyPublisherColumn"
 Binding="{Binding Publisher}"
 Header="Publisher">
 </sdk:DataGridTextColumn>
 <sdk:DataGridTextColumn x:Name="CopyLanguageColumn"
 Binding="{Binding Language}"
 Header="Language">
 </data:DataGridTextColumn>
 <data:DataGridTextColumn x:Name="CopyCategoryColumn"
 Binding="{Binding Category}"
 Header="Category">
 </sdk:DataGridTextColumn>
 <sdk:DataGridCheckBoxColumn x:Name="CopyAlreadyReadColumn"
 Binding="{Binding AlreadyRead,
 Mode=TwoWay}"
 Header="Already read">
 </sdk:DataGridCheckBoxColumn>
 <sdk:DataGridTemplateColumn Header="Purchase date"
 x:Name="CopyPurchaseDateColumn">
 <sdk:DataGridTemplateColumn.CellTemplate>
 <DataTemplate>
 <controls:DatePicker SelectedDate="{Binding
 PurchaseDate}">

Chapter 4

153

 </controls:DatePicker>
 </DataTemplate>
 </sdk:DataGridTemplateColumn.CellTemplate>
 </sdk:DataGridTemplateColumn>
 </sdk:DataGrid.Columns>
</sdk:DataGrid>

In this code, we are using the DatePicker control. It's prefixed with the controls
prefix, which maps to the System.Windows.Controls namespace in the System.
Windows.Controls assembly. Therefore, if not yet added in your XAML, add the
following xmlns namespace mapping at the UserControl level:

<UserControl
 xmlns:controls="clr-namespace:System.Windows.Controls;
 assembly=System.Windows.Controls"
... />

2. In order to implement both sorting and grouping, we'll use the
PagedCollectionView. It offers us a view on top of our data and allows the data
to be sorted, grouped, and filtered without changing the underlying collection. The
PagedCollectionView is instantiated using the following code. We pass in the
collection (in this case, the bookCollection) on which we want to put the view.
private PagedCollectionView view;

public MainPage()
{
 InitializeComponent();

 LoadBooks();
 view = new PagedCollectionView(bookCollection);
}

3. In order to change the manner of sorting from the code, we need to add a new
SortDescription to the SortDescriptions collection of the view. In the
following code, we are specifying that we want the sorting to occur on the Title
property of the books in a descending order:
view.SortDescriptions.Add(new SortDescription("Title",
 ListSortDirection.Descending));

4. If we want our data to appear in groups, we can make it so by adding a new
PropertyGroupDescription to the GroupDescriptions collection of the
view. In this case, we want the grouping to be based on the value of the Language
property. This is shown in the following code:
view.GroupDescriptions.Add(new
 PropertyGroupDescription("Language"));

The Data Grid

154

5. The DataGrid will not bind to the collection, but to the view. We specify this by
setting the ItemsSource property to the instance of PagedCollectionView.
The following code should be placed in the constructor as well:

public MainPage()
{
 InitializeComponent();
 LoadBooks();
 view = new PagedCollectionView(bookCollection);
 view.SortDescriptions.Add(new SortDescription("Title",
 ListSortDirection.Descending));
 view.GroupDescriptions.Add(new
 PropertyGroupDescription("Language"));
 BookDataGrid.ItemsSource = view;
}

We have now created a DataGrid that allows the user to sort the values in a column as well
as group the values based on a value in the column. The resulting DataGrid is shown in the
following image:

Chapter 4

155

How it works...
The actions such as sorting, grouping, filtering, and so on don't work on an actual collection
of data. They are applied on a view that sits on top of the collection (either a List<T> or
an ObservableCollection<T>). This way, the original data is not changed. Due to this,
we can show the same collection more than once in a different format on the same screen.
Different views are applied on the same source data (for example, sorted in one DataGrid
by Title and in another one by Author). This view is implemented through the
PagedCollectionView class.

To change the sorting, we can add a new SortDescription to the SortDescriptions
collection that the view encapsulates. Note that SortDescriptions is a collection in which
we can add more than one sort field. The second SortDescription value will be used only
when equal values are encountered for the first SortDescription value.

Grouping (using the PropertyGroupDescription) allows us to split the grid into different
levels. Each section will contain items that have the same value for a particular property.
Similar to sorting, we can add more than one PropertyGroupDescription, which results
in nested groups.

There's more...
From the code, we can control all the groups to expand or collapse. The following code shows
us how to do so:

private void CollapseGroupsButton_Click(object sender,
 RoutedEventArgs e)
{
 foreach (CollectionViewGroup group in view.Groups)
 {
 BookDataGrid.CollapseRowGroup(group, true);
 }
}
private void ExpandGroupsButton_Click(object sender,
 RoutedEventArgs e)
{
 foreach (CollectionViewGroup group in view.Groups)
 {
 BookDataGrid.ExpandRowGroup(group, true);
 }
}

The Data Grid

156

Sorting a template column
If we want to sort a template column, we have to specify which value needs to be taken
into account for the sorting to be executed. Otherwise, Silverlight has no clue which field
it should take.

This is done by setting the SortMemberPath property as shown in the following code:

<sdk:DataGridTemplateColumn x:Name="PurchaseDateColumn"
 SortMemberPath="PurchaseDate">

We'll look at the DataGridTemplateColumn in more detail in the recipe Using custom
columns in the DataGrid of this chapter.

See also
In the next recipe, we'll use the PagedCollectionView once more.

Filtering and paging data in a DataGrid
Applies to Silverlight 3, 4, and 5

Along with offering us support for the sorting and filtering of data, the
PagedCollectionView has more tricks up its sleeve. It is also the enabler for filtering
rows in a DataGrid and in combination with the DataPager control (a control added
with Silverlight 3); it allows us to spread the data over several pages within the DataGrid.

In this recipe, we'll look at how we can filter based on a value specified by the user and we'll
page the results based on the number of returned results, if needed.

Getting ready
This recipe builds on the code that was created in the previous recipes. You can continue
using your code to follow this recipe. Alternatively, you can use the start solution located in
the Chapter04/Datagrid_Filtering_And_Paging_Starter folder in the code bundle
that is available on the Packt website. The complete code for this recipe can be found in the
Chapter04/Datagrid_Filtering_And_Paging_Completed folder.

How to do it...
For this recipe, we'll again work with the Book class for which an
ObservableCollection<Book> is created. This collection is then used as input for
the PagedCollectionView, which offers a view on the collection. We'll add a search
functionality on the collection of books using a filter and a paging functionality using the
DataPager. Following are the steps to get this up and running:

Chapter 4

157

1. We'll add some XAML controls to the filter. These include a TextBlock for indicating
the purpose of a field, a TextBox in which the user can enter a value, and a Button.
This is shown in the following code:
<TextBlock x:Name="FilterTextBlock"
 Text="Search book titles"
 Margin="3"
 VerticalAlignment="Center"
 Foreground="White">
</TextBlock>
<TextBox x:Name="FilterTextBox"
 Width="200"
 VerticalAlignment="Center"
 HorizontalAlignment="Center"
 Margin="3">
</TextBox>
<Button x:Name="FilterButton"
 Content="Search"
 Margin="3"
 HorizontalAlignment="Center"
 VerticalAlignment="Center"
 Click="FilterButton_Click">
</Button>

2. The DataGrid is bound to the PagedCollectionView, which is a view over
the items of a used collection. This is shown in the following code:
PagedCollectionView view = new
 PagedCollectionView(bookCollection);
BookDataGrid.ItemsSource = view;

3. Upon clicking on the Button, we need to search the collection. Searching means
looping over the collection and checking whether or not each item satisfies the query.
This sounds like a perfect job for a predicate and that's exactly how it's implemented.
In the predicate, we'll check whether a book title contains the value entered by the
user. This is shown in the following code:
private void FilterButton_Click(object sender, RoutedEventArgs e)
{
 view.Filter = null;
 view.Filter = new Predicate<object>(Search);
}
private bool Search(object b)
{
 Book book = b as Book;
 bool foundSearchHit = false;
 if (book != null)
 {
 if (book.Title.Contains(FilterTextBox.Text))

The Data Grid

158

 foundSearchHit = true;
 }
 return foundSearchHit;
}

4. Finally, let's add paging support to the DataGrid. Paging is the job of the
DataPager. This control adds paging support to controls such as the ListBox
and the DataGrid. We simply add a DataPager on the XAML page and specify
the PageSize property as 5, shown in the following code:
<sdk:DataPager x:Name="BookPager"
 PageSize="5"
 DisplayMode="PreviousNextNumeric">
</sdk:DataPager>

5. To make the DataPager control display the pages, we need to set its Source to the
same PagedCollectionView as the DataGrid. The following code shows how to
do this:

public MainPage()
{
 InitializeComponent();
 LoadBooks();
 view = new PagedCollectionView(bookCollection);
 BookDataGrid.ItemsSource = view;
 BookPager.Source = view;
}

We have now implemented a filter on the DataGrid using the PagedCollectionView.
A user can search for a value and filtering of the in-memory data will be done. The resulting
DataGrid is paged using a DataPager. The following image shows the result:

Chapter 4

159

How it works...
Just like sorting and grouping, filtering is not done on the collection itself, but it's done using
a view on top of the collection. This way, the original collection remains intact and can be used
on the same screen with different filter values more than once.

Filtering is done using a predicate. Silverlight will loop over all the items of the view and
execute the method (in this case the Search method) being passed in as the parameter
for each item. This method contains the logic that will check whether or not the item
should be included in the result set.

Paging is not directly done by the DataGrid. A second control, the DataPager, comes to
the rescue. This control does not have a direct link to the DataGrid. Both the DataGrid.
ItemsSource and the DataPager.Source properties point to the same instance of the
PagedCollectionView. This way, the DataPager knows on which
control it should add the paging functionality.

The DataPager control has a DisplayMode property that requires a value of the
PagerDisplayMode enumeration. The following table shows the different options
in action:

PagerDisplayMode value Visualization
FirstLastNumeric

FirstLastPreviousNext

FirstLastPreviousNextNumeric

Numeric

PreviousNext

PreviousNextNumeric

The Data Grid

160

There's more...
The DataPager is not exclusively tied to the DataGrid; it can also be used with the
ListBox. The following image shows a DataPager working together with a ListBox:

There is no difference code-wise. Both the ListBox and the DataPager refer to the same
PagedCollectionView instance.

See also…
In the previous recipe, Sorting and grouping the data in a DataGrid, we used the
PagedCollectionView for sorting and grouping the data in a DataGrid. In the next recipe,
we'll explain more about defining the columns that we want to appear in the DataGrid.

Using custom columns in the DataGrid
Applies to Silverlight 3, 4 and 5

By default, the DataGrid will generate columns for us based on the type of objects that
we pass to the control. We looked at this in Displaying the data in a customized DataGrid.
However, we'll want more control over what is being displayed most of the time. We'll want to
make decisions such as which columns should be shown, in what order and so on. In addition
to that, we may want to allow the user to select a value from a ComboBox for a particular
column or entirely reformat a value.

In this recipe, we'll take full control over what will be displayed by the DataGrid by creating a
number of columns ourselves.

Chapter 4

161

Getting ready
To follow along with this recipe, you can continue using the code that was created in
the previous recipes of this chapter. You can also use the start solution located in the
Chapter04/Datagrid_Custom_Columns_Starter folder in the code bundle that is
available on the Packt website. The completed solution for this recipe can be found in the
Chapter04/Datagrid_Custom_Columns_Completed folder.

How to do it...
There are three types of columns from which we can choose—the DataGridTextColumn,
the DataGridCheckBoxColumn, and the DataGridTemplateColumn. We can either
declare columns from XAML by adding them to the Columns collection of the DataGrid
or add them from the code-behind. We'll again work with the Book class. We'll create an
ObservableCollection<Book> in the code-behind and bind this to the DataGrid.
We'll create a few custom columns in the following list of steps:

1. The AutoGenerateColumns property defaults to True. Therefore, in the
declaration of the DataGrid, we set the property to False. The custom-created
columns will be added to the Columns collection. This is shown in the following code:
<sdk:DataGrid x:Name="BookDataGrid"
 AutoGenerateColumns="False">
 <sdk:DataGrid.Columns>
 </sdk:DataGrid.Columns>
</sdk:DataGrid>

2. In order to display plain textual values such as the Title, the Author, and the
Publisher, we can use the DataGridTextColumn as shown in the following code.
We need to specify the Binding for each column. Note that we now need to set the
Mode property to TwoWay. If we omit this, the value will not be pushed back to the
underlying collection.
<sdk:DataGridTextColumn x:Name="TitleColumn"
 Binding="{Binding Title}"
 Header="Title">
</sdk:DataGridTextColumn>
<sdk:DataGridTextColumn x:Name="AuthorColumn"
 Binding="{Binding Author}"
 Header="Author">
</sdk:DataGridTextColumn>
<sdk:DataGridTextColumn x:Name="PublisherColumn"
 Binding="{Binding Publisher,
 Mode=TwoWay}"
 Header="Publisher">
</sdk:DataGridTextColumn>

The Data Grid

162

3. The AlreadyRead property of our Book class is of the bool type. We can bind such
a value to a DataGridCheckBoxColumn as shown in the following code:
<sdk:DataGridCheckBoxColumn x:Name="AlreadyReadColumn"
 Binding="{Binding AlreadyRead,
 Mode=TwoWay}"
 Header="Already read">
</sdk:DataGridCheckBoxColumn>

4. The DataGridTemplateColumn is the most powerful column type. Using this
type, we can specify the template for the column manually. The following is the code
for the ImageName property. We specify a converter, which is used to convert the
ImageName property of type string into a BitmapImage. This BitmapImage can
then be used for setting the Source property of the Image control. The code for the
converter can be found in the code bundle that is available on the Packt website.
<sdk:DataGridTemplateColumn x:Name="ImageColumn">
 <sdk:DataGridTemplateColumn.CellTemplate>
 <DataTemplate>
 <Image Source="{Binding ImageName,
 Converter={StaticResource localImageConverter}}"
 Margin="2">
 </Image>
 </DataTemplate>
 </sdk:DataGridTemplateColumn.CellTemplate>
</sdk:DataGridTemplateColumn>

5. A CellTemplate was defined in the previous template. However, we can also define
a CellEditingTemplate. The cell will switch to the editing template when the
user starts editing inside the cell. For the Language property in edit mode, we want
to offer the user a ComboBox containing the available languages. First, we need
to make it possible to retrieve the different languages. We can do so by creating a
helper class called LanguageHelper, which defines a property. The return value of
this property is a list of Language instances. This is shown in the following code:
public class LanguageHelper
{
 public List<string> LanguageList
 {
 get
 {
 List<string> languages = new List<string>();
 Type languageType = typeof(Languages);
 var fields = from c in languageType.GetFields()
 where c.IsLiteral
 select c;

 foreach (var f in fields)

Chapter 4

163

 {
 var value = f.GetValue(languageType);
 languages.Add(value.ToString());
 }
 return languages;
 }
 }
}

6. We can instantiate this class in MainPage.xaml as shown in the following code:
<UserControl.Resources>
 <local:LanguageHelper x:Key="localLanguageHelper">
 </local:LanguageHelper>
</UserControl.Resources>

7. We can now use this instance to fill the ComboBox. The following is the code for the
Language column. The normal, non-editing template shows a TextBlock and the
editing template shows a ComboBox. The ItemsSource property defines the data
binding between the ComboBox and the LanguageList property on the instance of
the LanguageHelper class:

<sdk:DataGridTemplateColumn x:Name="LanguageColumn"
 Header="Language">
 <sdk:DataGridTemplateColumn.CellTemplate>
 <DataTemplate>
 <TextBlock Text="{Binding Language}"
 VerticalAlignment="Center">
 </TextBlock>
 </DataTemplate>
 </sdk:DataGridTemplateColumn.CellTemplate>
 <sdk:DataGridTemplateColumn.CellEditingTemplate>
 <DataTemplate>
 <ComboBox VerticalAlignment="Center"
 SelectedItem="{Binding Language,
 Converter={StaticResource localEnumConverter},
 Mode=TwoWay}"
 ItemsSource="{Binding LanguageList,
 Source={StaticResource localLanguageHelper}}" >
 </ComboBox>
 </DataTemplate>
 </sdk:DataGridTemplateColumn.CellEditingTemplate>
</sdk:DataGridTemplateColumn>

The Data Grid

164

Not all columns are shown here, but they are all similar to the previous samples.
The completed sample code contains the remaining ones. All the columns have
been added to the DataGrid as shown in the following image:

How it works...
In most cases, we will not use the auto-generate function of the DataGrid. We can specify
the columns ourselves by adding them to the Columns collection. Three types are available,
of which the DataGridTemplateColumn is the most powerful.

If we need to display plain text, then we can use the DataGridTextColumn. However,
we only have limited control over the formatting of the text. For example, we can change the
ForeGround, the FontSize, and the FontWeight properties. However, if we want the text
to wrap, we need to use the ElementStyle property as shown in the following code:

<sdk:DataGridTextColumn x:Name="PublisherColumn"
 Binding="{Binding Publisher, Mode=TwoWay}"
 Header="Publisher">
 <sdk:DataGridTextColumn.ElementStyle>
 <Style TargetType="TextBlock">
 <Setter Property="TextWrapping"
 Value="Wrap">
 </Setter>

Chapter 4

165

 </Style>
 </sdk:DataGridTextColumn.ElementStyle>
</sdk:DataGridTextColumn>

While displaying a boolean property, we can use a DataGridCheckboxColumn, which will
render a checkbox per item.

As mentioned before, the real power lies in the DataGridTemplateColumn because we
can specify how a column will render its contents. We specify a DataTemplate containing
the data binding statements for the CellTemplate property. In this template, we can use
whichever control we want (for example, a DateTimePicker, an Image, or a ComboBox).

Each column can have a CellTemplate as well as a CellEditingTemplate. When
both are specified, the column renders the editing template when the user starts editing
its content.

In this editing template, we can offer the user a way to make a selection from several
options. We have allowed this using a ComboBox. However, we need some way to bind
the list of possible options to this ComboBox. To do so, we can create a helper class that
exposes a property that returns a List<T>. We can then instantiate this helper class in
XAML and perform a data binding with this instance as the source.

There's more...
Starting with Silverlight 4, more sizing options were added for the columns of a DataGrid.
Silverlight 2 and Silverlight 3 offered us two options. Under these options, we either needed
to specify a width for a column, or else had to leave this task for Silverlight. In the latter case,
Silverlight would basically do an auto-sizing (sizing a column according to its contents).

With Silverlight 4, three new options were added, bringing the total to five options to size the
columns. No changes were made in this area with the release of Silverlight 5. The following
table shows an overview of these size options:

Size option Function
Auto Sized to content and header
Pixel (Fixed) Fixed width in pixels
SizeToCells Sized to fit content of cells
SizeToHeader Sized to fit header
Star Size is a weighted proportion of the available space

The Data Grid

166

The most interesting option is the star option, which works similarly to the star in a regular
Grid. Using this option, we can now, for example, specify a cell to either take all of the
remaining space or become twice as wide as another cell. The following image shows how the
TitleColumn is set to take all the remaining space, the PurchaseDateColumn and the
ImageColumn are set to a size according to their cells, and the AlreadyReadColumn is set
to a size according to its header.

The following code shows how the cells are sized using these sizing options (only the relevant
part of the code is posted here):

<sdk:DataGrid>
 <sdk:DataGrid.Columns>
 <sdk:DataGridTextColumn x:Name="TitleColumn"
 Width="*">
 </sdk:DataGridTextColumn>
 <sdk:DataGridTextColumn x:Name="AuthorColumn"
 Width="100">
 </sdk:DataGridTextColumn>
 <sdk:DataGridTextColumn x:Name="PublisherColumn"
 Width="150">
 </sdk:DataGridTextColumn>
 <sdk:DataGridTemplateColumn x:Name="LanguageColumn"
 Width="100">
 </sdk:DataGridTemplateColumn>
 <sdk:DataGridTemplateColumn x:Name="CategoryColumn"
 Width="100">
 </sdk:DataGridTemplateColumn>
 <sdk:DataGridCheckBoxColumn x:Name="AlreadyReadColumn"
 Width="SizeToHeader>
 </sdk:DataGridTemplateColumn>

Chapter 4

167

 <sdk:DataGridCheckBoxColumn x:Name="PurchaseDateColumn"
 Width="SizeToCells>
 </sdk:DataGridTemplateColumn>
 <sdk:DataGridTemplateColumn x:Name="ImageColumn"
 Width="SizeToCells">
 </sdk:DataGridTemplateColumn>
 </sdk:DataGrid.Columns>
</sdk:DataGrid>

Implementing master-detail in the DataGrid
Applies to Silverlight 3, 4 and 5

In order to save screen space, not creating too many columns in a DataGrid may be a good
idea. A better solution in this case is to create a master-detail implementation. The master,
being the original row in the DataGrid, would then contain a few columns only. When clicking
on any row, the details of that row are shown. In the Silverlight DataGrid, this is possible due
to the RowDetailsTemplate.

Getting ready
To follow along with this recipe, you can continue using the code that was created
in the previous recipes. Alternatively, you can use the starter solution located in the
Chapter04/Datagrid_Master_Detail_Starter folder in the code bundle that
is available on the Packt website. The finished solution for this recipe can be found
in the Chapter04/Datagrid_Master_Detail_Completed folder.

How to do it...
For this recipe, we'll again use an ObservableCollection<Book>, which is bound to a
DataGrid. However, we'll display only the Title and the Author in the default view. When
clicking on an item, the details would be shown using a RowDetailsTemplate. The following
are the steps we need to follow in order to implement this:

1. We want the DataGrid to contain only two columns. One of the columns is needed
for the Title property and the other one for the Author property. In the following
code, both of these columns are declared as a DataGridTextColumn and they
contain a Binding to the respective properties of the Book class:
<sdk:DataGrid x:Name="BookDataGrid"
 AutoGenerateColumns="False">
 <sdk:DataGrid.Columns>
 <sdk:DataGridTextColumn x:Name="TitleColumn"
 Binding="{Binding Title}"
 Header="Title">

The Data Grid

168

 </sdk:DataGridTextColumn>
 <sdk:DataGridTextColumn x:Name="AuthorColumn"
 Binding="{Binding Author}"
 Header="Author">
 </sdk:DataGridTextColumn>
 </sdk:DataGrid.Columns>
</sdk:DataGrid>

2. A detail template is defined on the DataGrid itself as shown in the following code:
<sdk:DataGrid>
 <sdk:DataGrid.RowDetailsTemplate>
 </sdk:DataGrid.RowDetailsTemplate>
</sdk:DataGrid>

3. Similar to the CellTemplate, a RowDetailsTemplate is a DataTemplate that
we can define ourselves. The following code defines a DataTemplate containing a
Border. Inside this Border, a Grid is nested containing an Image control, several
TextBlock controls, and a DatePicker. All of these are data bound to display the
value of the selected Book.

<DataTemplate>
 <Border Background="AntiqueWhite"
 BorderThickness="2"
 BorderBrush="Blue"
 CornerRadius="5">
 <Grid>
 <Grid.RowDefinitions>
 ...
 </Grid.RowDefinitions>
 <Grid.ColumnDefinitions>
 ...
 </Grid.ColumnDefinitions>
 <Image Grid.Row="0"
 Grid.Column="0"
 Grid.RowSpan="2"
 Source="{Binding ImageName,
 Converter={StaticResource localImageConverter}}"
 Margin="2">
 </Image>
 <StackPanel Grid.Row="0"
 Grid.Column="1"
 Orientation="Horizontal">
 <TextBlock Text="Publisher:"
 FontWeight="Bold"
 HorizontalAlignment="Left">
 </TextBlock>
 <TextBlock Text="{Binding Publisher}"

Chapter 4

169

 HorizontalAlignment="Left"
 Margin="1">
 </TextBlock>
 </StackPanel>
 <StackPanel Grid.Row="1"
 Grid.Column="1"
 Orientation="Horizontal">
 <TextBlock Text="Language:"
 FontWeight="Bold"
 HorizontalAlignment="Left">
 </TextBlock>
 <TextBlock Text="{Binding Language}"
 HorizontalAlignment="Left"
 Margin="1">
 </TextBlock>
 </StackPanel>
 <StackPanel Grid.Row="0"
 Grid.Column="2"
 Orientation="Horizontal">
 <TextBlock Text="Category:"
 FontWeight="Bold"
 HorizontalAlignment="Left">
 </TextBlock>
 <TextBlock Text="{Binding Category}"
 HorizontalAlignment="Left"
 Margin="1">
 </TextBlock>
 </StackPanel>
 <StackPanel Grid.Row="1"
 Grid.Column="2"
 Orientation="Horizontal">
 <TextBlock Text="Purchase date:"
 FontWeight="Bold"
 HorizontalAlignment="Left">
 </TextBlock>
 <controls:DatePicker SelectedDate="{Binding PurchaseDate}"
 VerticalAlignment="Top"
 Margin="1">
 </controls:DatePicker>
 </StackPanel>
 <StackPanel Grid.Row="0"
 Grid.Column="3"
 Orientation="Horizontal">
 <TextBlock Text="Already read:"
 FontWeight="Bold"
 HorizontalAlignment="Left">
 </TextBlock>

The Data Grid

170

 <CheckBox IsChecked="{Binding AlreadyRead}">
 </CheckBox>
 </StackPanel>
 </Grid>
 </Border>
</DataTemplate>

We have now created a master-detail scenario. This can be seen in the following image:

How it works...
For an easy way of implementing a master-detail scenario, the RowDetailsTemplate of
the DataGrid is a perfect fit. It allows the user to view more details of a record when
clicking on it.

The template is defined as a DataTemplate on the RowDetailsTemplate of
the DataGrid control. Inside this template—just like other implementations of the
DataTemplate—we can place whatever controls we want. We can use data binding to get the
values inside the controls. Each detail template gets the object to which the selected row is
bound as the input for this data binding. Inside the data template, the selected row serves as
a data source for the data binding expressions within the template.

Chapter 4

171

There's more...
What if we want to add a Button in the template and based on the selected item, want
to perform a custom action such as navigating to an edit screen where we can edit the
selected item?

This can be solved by binding the Tag property of the Button as shown in the following code:

<Button x:Name="SelectButton"
 Content="Select"
 Click="SelectButton_Click"
 Tag="{Binding Title}">
</Button>

In the Click event handler, we can cast the sender to a Button and get access to the value
of a Tag. In the following code, we bound the Title:

private void SelectButton_Click(object sender, RoutedEventArgs e)
{
 Button templateButton = sender as Button;
 if (templateButton.Tag != null)
 {
 //do something
 }
}

Validating the DataGrid
Applies to Silverlight 4 and 5

Validation of your data is a requirement for almost every application in order to make sure
that no invalid input is possible. If you're using a DataGrid, then you can easily implement
validation by using data annotations on your classes or properties. This control picks up
these validation rules automatically and even provides visual feedback. In this recipe, you'll
learn how to get your DataGrid to implement this kind of validation.

Getting ready
You can find a starter solution for this recipe located in the Chapter04\DataGrid_
Validation_Starter folder in the code bundle that is available on the Packt website.
The complete solution for this recipe can be found in the Chapter04\DataGrid_
Validation_Completed folder.

The Data Grid

172

How to do it...
If you're starting from a blank solution, you'll need to create a Person class having an ID,
FirstName, LastName, and DateOfBirth properties. The MainPage should contain
an ObservableCollection of Person.

We're going to add a DataGrid to this project and we'll make sure that it reacts to the
validation attributes that we'll add to the Person class. To achieve this, carry out the
following steps:

1. Open MainPage.xaml and add a DataGrid to this control. Your LayoutRoot
grid looks as shown in the following code:
<Grid x:Name="LayoutRoot">
 <Grid.RowDefinitions>
 <RowDefinition Height="40" ></RowDefinition>
 <RowDefinition></RowDefinition>
 </Grid.RowDefinitions>
 <TextBlock Text="Working with the DataGrid"
 Margin="10"
 FontSize="14" >
 </TextBlock>
 <data:DataGrid x:Name="myDataGrid"
 Grid.Row="1"
 Width="400"
 Height="300"
 Margin="10"
 HorizontalAlignment="Left"
 VerticalAlignment="Top">
 </data:DataGrid>
</Grid>

Add the following namespace import to MainPage.xaml to make sure that the
DataGrid can be used:

xmlns:data="clrnamespace:System.Windows.Controls;
 assembly=System.Windows.Controls.Data"

2. Make sure your project has a reference to the System.ComponentModel.
DataAnnotations assembly.

3. Open the Person class and add the following attributes to the FirstName property
of this class:
[StringLength(30, MinimumLength=3,
 ErrorMessage="First name should have between 3 and 30
 characters")]
[Required(ErrorMessage="First name is required")]
public string FirstName { get; set; }

Chapter 4

173

4. We can now build and run our solution. When you enter invalid data into the
FirstName field, you notice that you get visual feedback for these validation errors
and you aren't able to retain your changes unless they are valid. This can be seen in
the following image:

How it works...
This recipe starts by adding a DataGrid and a corresponding namespace import
to MainPage.xaml. As this is done, we can see how it reacts to data annotations.

In the Person class, we've added data annotations to the FirstName property—the
RequiredAttribute and the StringLengthAttribute. These data annotations
tell that the FirstName is required and should have between 3 and 30 characters to
any control that can interpret them. We've also added a custom error message by filling
out the ErrorMessage NamedParameter.

As a DataGrid is automatically able to look for these validation rules, it will show the
validation errors if validation fails. This feature comes out of the box with a DataGrid,
without us having to do any work. Therefore, you can easily enable validation by just using
data annotations.

By using the named parameters in the constructors of your attributes, you can further
customize how an attribute should behave. For example, an ErrorMessage enables
you to customize the message that is shown when validation fails.

The Data Grid

174

There's more...
In this recipe, we've used just a few of the possible data annotations. Others that are
available are:

 f DataTypeAttribute

 f RangeAttribute

 f RegularExpressionAttribute

 f RequiredAttribute

 f StringLengthAttribute

 f CustomValidationAttribute

For all of these attributes, named parameters are available to further customize the
way validation should occur. ErrorMessage, ErrorMessageResourceName, and
ErrorMessageResourceType are available on all the attributes, but many more are
available depending on the attribute you use. You can check these parameters by looking
at the IntelliSense tool tip that you get on the attribute constructor.

See also…
If you want to learn more about the various uses of data annotations, have a look at Chapter
10, Talking to REST and WCF Data Services and Chapter 11, Using WCF RIA Services.

5
Working with

Local Data

In this chapter, we will cover the following:

 f Reading data from and storing data in the isolated storage

 f Working with IsolatedStorageSettings

 f Caching data between different Silverlight applications using Isolated Storage

 f Using the Sterling database

Introduction
By default, Silverlight applications cannot access the local file system. This is because
Silverlight applications run under partial-trust: if running inside the browser, they can't escape
from the sandbox of the browser (things are different with out-of-the-browser applications
with elevated permissions: this type of application has access to the local disk). This is quite
logical, as it wouldn't be a good thing if just any Silverlight application you're running could
access the files on your local drive without any limitation! However, Silverlight has the ability
to use Isolated Storage. In fact, isolated storage is not specific to Silverlight: it also exists in
regular .NET and Windows Phone 7 (which we are covering in Chapter 13, Windows Phone 7)
also has support for it.

Working with Local Data

176

Isolated storage can somewhat be compared to cookies, since it has the same characteristic
that it can be used to save data for an application between sessions on the client. However,
while a cookie can only store plain text, isolated storage can store just about everything that
your application may want to persist, varying from user settings (perhaps serialized into an XML
file) to an image that we want to cache instead of downloading it again. Being isolated, isolated
storage basically means that storage is specific to an application: a Silverlight application can
only access its own storage and not the storage of another application. There is an exception
to this rule, at which we'll look in this chapter as well. It also offers a complete file system,
which can be described as a virtual file system. From the root of this file system, we can build a
directory and file hierarchy, just like you would do with your hard drive. We can create (nested)
directories and files in there. While isolated storage is intended to be used solely from the
Silverlight application that created it, it should be noted that it is nothing more than a physical
directory on the hard disk. Being a normal directory, it can be located by a user. That should
ring an alarm bell! It is not safe to put any sensitive data in isolated storage. Encryption of data
stored in isolated storage can help make sure that no one can simply read out the information.
If the data is vital for the application, a good solution might be to back it up on the server over a
service for the case when it gets deleted on the client machine.

In the first recipe of this chapter, we will start by looking at how we can practically use the
isolated storage using the IsolatedStorageFile class, for example to cache data from
a service. Data that doesn't change doesn't need to be downloaded every time. Caching it
in isolated storage brings down the load on the server as well as improves the performance
of the application since the service doesn't need to be invoked every time. A second way of
using isolated storage is through the IsolatedStorageSettings class, which is basically
a dictionary we can use to persist any kind of object (using serialization) and reload objects
from (using deserialization). This class is really helpful if you don't want to be in charge of
writing all the persistence logic yourself.

Although isolated storage is limited to the application creating the store, it's possible to have
applications running from the same site to access a shared version of the storage. We'll see
how we can activate and use this as well.

We'll finish off the chapter by looking at Sterling, a NoSQL object-oriented database that uses
isolated storage for persistence of objects and allows LINQ-to-Objects queries to be executed
on the data.

Reading data from and storing data in the
isolated storage

Applies to Silverlight 3, 4, and 5

As we've seen in the introduction, isolated storage allows our Silverlight applications to store
data, files, and so on to a persistent store. Even after the application is shut down, the data
remains intact, allowing us to write code that checks for the presence of stored data upon
startup of the application.

Chapter 5

177

Isolated storage can be handy to store files such as images, user settings such as selected
theme, or even the data the user was entering on a screen when the application was shut
down for some reason. In this recipe, we'll look at how we can store and read data.

Getting ready
For this recipe, a starter solution that contains the service we're using has been created. It
can be found in the Chapter05/IsoStore_Starter folder. The finished solution for this
recipe can be found in the Chapter05/IsoStore_Completed folder.

How to do it...
To demonstrate the use of isolated storage, we'll use it in a scenario where we are accessing a
service that returns data. The application mimics the use of a hotel booking application where
the user first gets a list of cities. After selecting a city, hotels for the selected city is listed.

Instead of hammering the server every time the user arrives on the application for the same
city data, we'll store the data on the local machine after first retrieval using isolated storage.
From the second request on, the data will be loaded from the disk rather than from the
service. You will need to complete the following steps to learn how to use isolated storage:

1. Open the solution in the starter solution and note that there's a Silverlight-enabled
WCF service in the web project (IsoStore.Web) called CityHotelService.cs.
This service uses LINQ-to-Entities code using an Entity Model (CityHotelModel.
edmx), which can also be found in this project.

2. In the Silverlight project, a service reference has already been created. This reference
can be found under the Service References node in the Solution Explorer.

3. Under the Views folder, add a Silverlight page and call it CityView.xaml.
The XAML code for this page is shown next. It uses a simple DataGrid and two
Button instances that allow the user to load the hotels and refresh the list from the
service, respectively.
<Grid x:Name="LayoutRoot">
 <Grid.RowDefinitions>
 <RowDefinition Height="100"></RowDefinition>
 <RowDefinition></RowDefinition>
 </Grid.RowDefinitions>
 <StackPanel Orientation="Horizontal">
 <Button Content="Load All Cities"
 VerticalAlignment="Center"
 Name="LoadAllCitiesButton"
 Click="LoadAllCitiesButton_Click">
 </Button>
 <Button Content="Refresh cities"

Working with Local Data

178

 VerticalAlignment="Center"
 Name="RefreshCitiesButton"
 Click="RefreshCitiesButton_Click">
 </Button>
 </StackPanel>
 <sdk:DataGrid AutoGenerateColumns="False"
 Grid.Row="1"
 HorizontalAlignment="Stretch"
 Name="CityDataGrid"
 VerticalAlignment="Stretch">
 <sdk:DataGrid.Columns>
 <sdk:DataGridTemplateColumn Header="">
 <sdk:DataGridTemplateColumn.CellTemplate>
 <DataTemplate>
 <Button Content="+"
 Click="NavigateHotelButton">
 </Button>
 </DataTemplate>
 </sdk:DataGridTemplateColumn.CellTemplate>
 </sdk:DataGridTemplateColumn>
 <sdk:DataGridTemplateColumn
 x:Name="imageUrlColumn"
 Header="Image Url"
 Width="SizeToHeader">
 <sdk:DataGridTemplateColumn.CellTemplate>
 <DataTemplate>
 <Image
 Source="{Binding Path=ImageUrl,
 Converter={StaticResource
 localImageConverter}}" />
 </DataTemplate>
 </sdk:DataGridTemplateColumn.CellTemplate>
 </sdk:DataGridTemplateColumn>
 <sdk:DataGridTextColumn
 x:Name="cityNameColumn"
 Binding="{Binding Path=CityName}"
 Header="City Name"
 Width="SizeToHeader" />
 <sdk:DataGridTextColumn
 x:Name="areaColumn"
 Binding="{Binding Path=Area}"
 Header="Area"
 Width="SizeToHeader" />
 <sdk:DataGridTextColumn

D
ow

n
lo

a
d
 f
ro

m
 W

o
w

!
e
B
o
o
k

<
w

w
w

.w
o
w

e
b
o
o
k.

co
m

>

Chapter 5

179

 x:Name="cityIdColumn"
 Binding="{Binding Path=CityId}"
 Header="City Id"
 Width="SizeToHeader" />
 <sdk:DataGridTextColumn
 x:Name="countryColumn"
 Binding="{Binding Path=Country}"
 Header="Country"
 Width="SizeToHeader" />
 <sdk:DataGridTextColumn
 x:Name="languageColumn"
 Binding="{Binding Path=Language}"
 Header="Language"
 Width="SizeToHeader" />
 <sdk:DataGridTextColumn
 x:Name="populationColumn"
 Binding="{Binding Path=Population}"
 Header="Population"
 Width="SizeToHeader" />
 <sdk:DataGridTextColumn
 x:Name="websiteColumn"
 Binding="{Binding Path=Website}"
 Header="Website"
 Width="SizeToHeader" />
 </sdk:DataGrid.Columns>
 </sdk:DataGrid>
</Grid>

4. When we click on LoadCitiesButton, we want to show the user a list of all the
cities. This list is initially retrieved from the service and the resulting data is stored in
isolated storage. To bring down the load on the service, subsequent requests will not
load the data again from the service; the data will be read from isolated storage if
present. In the following code, in the LoadAllCities() method, we can see
this functionality:
private void LoadAllCitiesButton_Click
 (object sender, RoutedEventArgs e)
{
 LoadCities();
}

private void LoadCities()
{
 using (var isoStore =
 IsolatedStorageFile.GetUserStoreForApplication())

Working with Local Data

180

 {
 if (isoStore.FileExists("CityInfo.xml"))
 {
 CityDataGrid.ItemsSource = LoadCitiesFromXml();
 }
 else
 {
 LoadCitiesFromService();
 }
 }
}

5. Using the static GetUserStoreForApplication on the IsolatedStorageFile
class, we can check if a file called CityInfo.xml exists. If it does, we'll read it out
using the LoadCitiesFromXml() method to load in the cities. If it doesn't, we will
need to go ahead and load the cities from the service. Both these methods will be
implemented next.

6. Let's first look at what should happen with the initial call. The
LoadCitiesFromService() calls the service and in the callback, the resulting
list is used as ItemsSource for the DataGrid. A call is made to the SaveToXml()
method, which we'll see next.
private void LoadCitiesFromService()
{
 CityHotelService.CityHotelServiceClient proxy =
 new CityHotelServiceClient();
 proxy.GetCitiesCompleted +=
 new EventHandler<GetCitiesCompletedEventArgs>(
 proxy_GetCitiesCompleted);
 proxy.GetCitiesAsync();
}

void proxy_GetCitiesCompleted
 (object sender, GetCitiesCompletedEventArgs e)
{
 if (e.Error == null)
 {
 CityDataGrid.ItemsSource = e.Result;
 SaveToXml(e.Result);
 }
}

Chapter 5

181

7. In the SaveToXml() method, we are using LINQ-to-XML code to create an XML
representation of the data that we want to store. More importantly, we need to store
this data. We can do so using the IsolatedStorageFileStream class, which
accepts the filename, FileMode, and IsolatedStorageFile instance to work
with. With this stream, we can save the XML to disk. This is shown in the following
code sample:
private void SaveToXml(ObservableCollection<City> cities)
{
 var doc = new XDocument(new XElement("Cities"));

 foreach (var item in cities)
 {
 doc.Element("Cities").Add(
 new XElement("CityInfo",
 new XElement("CityId", item.CityId),
 new XElement("ImageUrl", item.ImageUrl),
 new XElement("Area", item.Area),
 new XElement("CityName", item.CityName),
 new XElement("Country", item.Country),
 new XElement("Language", item.Language),
 new XElement("Population", item.Population),
 new XElement("Website", item.Website)
));
 }

 using (var isoStore =
 IsolatedStorageFile.GetUserStoreForApplication())
 {
 using (var isoStream =
 new IsolatedStorageFileStream
 ("CityInfo.xml", FileMode.Create, isoStore))
 {
 doc.Save(isoStream);
 }
 }
}

Working with Local Data

182

8. When the page is called again, we'll want to load the data from the isolated storage.
Again, we can use the IsolatedStorageFileStream class to load in a file in this
case. The following code shows the LoadCitiesFromXml() method where we read
in the XML and parse it using LINQ-to-XML methods:
private ObservableCollection<City> LoadCitiesFromXml()
{
 ObservableCollection<City> cities =
 new ObservableCollection<City>();

 using (var isoStore =
 IsolatedStorageFile.GetUserStoreForApplication())
 {
 using (var isoStream =
 new IsolatedStorageFileStream
 ("CityInfo.xml", FileMode.Open, isoStore))
 {
 var document = XDocument.Load(isoStream);
 IEnumerable<XElement> elements =
 document.Element("Cities").Elements("CityInfo");

 foreach (var item in elements)
 {
 cities.Add(
 new City()
 {
 CityId =
 Int32.Parse(item.Element("CityId").Value),
 Area = Int32.Parse(item.Element("Area").Value),
 CityName = item.Element("CityName").Value,
 Country = item.Element("Country").Value,
 ImageUrl = item.Element("ImageUrl").Value,
 Language = item.Element("Language").Value,
 Population =
 Int32.Parse(item.Element("Population").Value),
 Website = item.Element("Website").Value
 });
 }
 }
 }
 return cities;
}

Chapter 5

183

9. When the user wants to refresh the data, they can click on RefreshButton. In this
case, we want to delete the file. As isolated storage works with simple IO methods, we
can do so using the DeleteFile() method of the IsolatedStorageFile class,
as shown next:

private void RefreshCitiesButton_Click
 (object sender, RoutedEventArgs e)
{
 using (var isoStore =
 IsolatedStorageFile.GetUserStoreForApplication())
 {
 isoStore.DeleteFile("CityInfo.xml");
 }
 LoadCities();
}

With these steps executed, we have an application which now uses isolated storage as a
local caching mechanism that helps bring down the load on the service and speeds up the
application as data is read locally - we don't have to wait for a service to respond. Note that
this technique is a good fit for data that doesn't change often; caching rapidly-changing data
on the client might not be a good solution.

In the completed solution, you can look at the code for the HotelView page as well, which is
similar to the page we created here.

How it works...
Isolated storage in Silverlight is the way to store information locally on the user's machine.
Each application gets its own location within the isolated storage. For an application, it's as if
it has its own file system where it can store files, create directories or perform other IO-related
operations. The term isolated actually refers to the way the storage is built: each application
has its own storage which is isolated from the rest. Also, from this location, it's impossible to
browse to the rest of the file system (there's no way that using ..\..\.. could allow access
to files and folders such as Program Files or the Windows directory).

Using the GetUserStoreForApplication method on the IsolatedStorageFile class,
we get access to the store (which is nothing more than a directory which is hidden deep in the
physical file system), specific for the application and the executing user. In fact, there are two
types of stores: the user + application store (which we have been using here) and the user +
site store (which we'll look at in the Caching data between different Silverlight applications
using isolated storage recipe).

Working with Local Data

184

Isolated storage can be used to store any type of data in. In this recipe, we used it as a
caching mechanism: on the local machine, we stored the data coming back from the service
so that each page load of the CityView page doesn't make a request to the service. Instead,
after initial loading of the data, we load the data from the isolated storage. Here, we used
LINQ-to-XML to read and write the data to an XML file. Using XML isn't mandatory; we can use
any file type we want, we can write code that saves an image to a jpg file inside the isolated
storage. Note that since isolated storage is limited in size, you could fill up the available space
quickly when working with images. We'll look at isolated storage size further.

Once we have the data we want to store, we use the IsolatedStorageFileStream class
to perform the actual reading and writing of the data. This class extends the FileStream,
which means that familiar IO methods can be used in combination with this class, such as
EndRead, Seek, WriteByte (for a complete list, see http://msdn.microsoft.com/en-
us/library/system.io.isolatedstorage.isolatedstoragefilestream.aspx.

Where's my data
Although obscured deep in the file system, it's possible to locate the files created by
isolated storage. To do so, put a breakpoint on a line that uses IsolatedStorageFile.
GetUserStoreForApplication(). In the properties, we can see the physical path, as
shown in the following screenshot:

While it's not really obvious where the data is stored, it should be easy to see that this is not
secure at all. Therefore, isolated storage is certainly not a good location to store sensitive
information such as passwords! As mentioned before, encrypting the data can be useful
here as well to increase security.

http://msdn.microsoft.com/en-us/library/system.io.isolatedstorage.isolatedstoragefilestream(v=vs.95).aspx)
http://msdn.microsoft.com/en-us/library/system.io.isolatedstorage.isolatedstoragefilestream(v=vs.95).aspx)

Chapter 5

185

Isolated storage size
Isolated storage is limited in size, which is quite logical. If it wasn't limited, an application
could start filling the entire disk without the user knowing. By default, an in-browser
application is limited to 1 MB (out-of-browser applications get 25 MB). One megabyte is not
a lot of space and it certainly won't be enough if you start storing images in isolated storage.
Therefore, it's possible to include in our code a check for the currently available size as well as
a prompt to the user to request more space. The following code shows how we can do this:

public void GetMoreSpace()
{
 try
 {
 using (var store =
 IsolatedStorageFile.GetUserStoreForApplication())
 {
 long increaseAmount = 1048576;
 long currentlyAvailable = store.AvailableFreeSpace;

 if (currentlyAvailable < increaseAmount)
 {
 if (store.IncreaseQuotaTo
 (store.Quota + increaseAmount))
 {
 MessageBox.Show ("Thanks for increasing the quota!");
 }
 }
 }
 }
 catch (IsolatedStorageException)
 {
 }
}

The following screenshot shows the prompt that Silverlight shows the user, asking to increase
the quota:

Working with Local Data

186

Note that an exception will occur if the requested amount is smaller than what the application
already has. Also note that requesting more space can only be triggered after a user-initiated
action took place, such as Click on a button. It's therefore not possible to prompt the user in
the Load event handler.

See also
In the Working with IsolatedStorageSettings recipe, we'll see another way of working with
isolated storage.

Working with IsolatedStorageSettings
Applies to Silverlight 3, 4, and 5

In the previous recipe, we used the IsolatedStorageFile class to manually perform the
saving to and reading from isolated storage. While this option is the most powerful one—it
allows us to save anything varying from raw data to images—it's quite a cumbersome task to
perform all the serializing and deserializing of objects ourselves. Although we used the easy-
to-work-with LINQ-to-XML, there is an even easier solution: letting Silverlight take care of this
detail. In this recipe, we'll do just that by using the IsolatedStorageSettings class.

Getting ready
In this recipe, we are going to refactor the code from the previous recipe. You can therefore
continue working on that codebase. Alternatively, you can use the starter solution provided
with this book, which is located in the Chapter05/IsolatedStorageSettings_
Starter folder. The complete solution for this recipe can be found in the Chapter05/
IsolatedStorageSettings_Completed folder.

How to do it...
Instead of doing all the save and read operations manually through the use of LINQ-to-
XML, we are going to make use of the IsolatedStorageSettings class that comes
with Silverlight. This class offers us a Dictionary<string, object> through the
ApplicationSettings property, which we can use to save and retrieve any type of object.
In the following steps, we are going to refactor the previous recipe to make use of this simpler
approach:

1. As mentioned in the Getting ready section, open the starter solution or use your
solution from the previous project. Start by adding a class to the Silverlight project
and name it IsoStoreSettingsHelper. This class will be our wrapper around
IsolatedStorageSettings.ApplicationSettings. Make the class static
as follows:

Chapter 5

187

public static class IsoStoreSettingsHelper
{
}

2. In the IsoStoreSettingsHelper class, add the following code to allow us to save
objects by key:
public static void SaveObject<T>(string key, T value)
{
 IsolatedStorageSettings.ApplicationSettings[key] = value;
 IsolatedStorageSettings.ApplicationSettings.Save();
}

3. To this generic method, we are passing a key and a value, which can basically be of
any type we want. Inside the method, we use the ApplicationSettings property,
which implements the IDictionary<string, object> to add a value to the
dictionary. Finally, we call Save() to persist the changes to isolated storage.

4. Again in the IsoStoreSettingsHelper class, add the following method to be able
to retrieve a value based on a given key:
public static T GetObject<T>(string key) where T : class
{
 if (IsolatedStorageSettings.ApplicationSettings
 .Contains(key))
 {
 return IsolatedStorageSettings.ApplicationSettings[key]
 as T;
 }
 return default(T);
}

5. This method first checks using the Contains() method if a value is present for the
key. If so, the value is searched and cast to the passed-in type. If not, the default for
the given type is returned.

6. Also add the following methods to the IsoStoreSettingsHelper class to perform
a delete and a check to see if a value for a given key is present:
public static void DeleteObject(string key)
{
 if (IsolatedStorageSettings.ApplicationSettings
 .Contains(key))
 {
 IsolatedStorageSettings.ApplicationSettings.Remove(key);
 }
}

public static bool ContainsObject(string key)

Working with Local Data

188

{
 if (IsolatedStorageSettings.ApplicationSettings
 .Contains(key))
 {
 return true;
 }
 return false;
}

7. Let's now look at the code behind the CityView class, CityView.xaml.
cs. We'll change this class to use our newly-created wrapper class instead of
doing the persisting itself. Up first is the LoadAllCities() method, which
is shown next. As can be seen, this method now uses ContainsObject from
IsoStoreSettingHelper to check for the presence of a value for the key Cities.
If this method returns true, the value is retrieved using the GetObject() method.
private void LoadCities()
{
 if (IsoStoreSettingsHelper.ContainsObject("Cities"))
 {
 CityDataGrid.ItemsSource =
 IsoStoreSettingsHelper.
 GetObject<ObservableCollection<City>>("Cities");
 }
 else
 {
 LoadCitiesFromService();
 }
}

8. The callback from the LoadCitiesFromService,
proxy_GetCitiesCompleted()can also be changed. Instead of
saving to XML, it can now use the IsoStoreSettingsHelper to
save the cities. This is shown in the following code:
void proxy_GetCitiesCompleted
 (object sender, GetCitiesCompletedEventArgs e)
{
 if (e.Error == null)
 {
 CityDataGrid.ItemsSource = e.Result;

 IsoStoreSettingsHelper.SaveObject
 <ObservableCollection<City>>("Cities", e.Result);
 }
}

Chapter 5

189

9. Finally, we can change the refresh functionality so that it uses the DeleteObject()
method as follows:

private void RefreshCitiesButton_Click
 (object sender, RoutedEventArgs e)
{
 using (var isoStore =
 IsolatedStorageFile.GetUserStoreForApplication())
 {
 IsoStoreSettingsHelper.DeleteObject("Cities");
 }
 LoadCities();
}

With this code in place, we are now letting Silverlight take care of saving and retrieving the
data from isolated storage using IsolatedStorageSettings.ApplicationSettings.
In the completed solution, you can also see the use of this class in the code-behind for the
HotelView page.

How it works...
While IsolatedStorageFile allows us to write and read any file from and to isolated
storage, it can be a lot of work to do this task ourselves. As shown in the previous recipe, we
as developers needed to take care of serialization of the data.

For this purpose, the IsolatedStorageSettings.ApplicationSettings exists. With it,
we get access to an IDictionary<string, object> that's being persisted automatically
for us to isolated storage. Silverlight itself takes care of saving the object that we pass it and it
associates the object with a key. This key can then later be used to retrieve the value again.

Behind the scenes, Silverlight is creating a text file named __LocalSettings where the
data can be read. This file is in the same location as where the data in isolated storage is
being stored. As this is again a plain text/XML file, it's not a best practice to store sensitive
data such as passwords in the IsolatedStorageSettings.

See also
In the previous recipe, we looked at working with the IsolatedStorageFile which shows
another way of working with isolated storage.

Working with Local Data

190

Caching data between different Silverlight
applications using isolated storage

Applies to Silverlight 3, 4 and 5

The isolated part of isolated storage means that the data is isolated. Up until now we said that
data is stored per-user and only the application that stored the data has access to it. This is
the default when we use IsolatedStorageFile.GetUserStoreForApplication or
IsolatedStorageSettings.ApplicationSettings. However, there's another option that
allows sharing of data between applications if the applications are originating from the same
website. In this recipe, we'll change the code created in the first recipe of this chapter so that the
data in isolated storage is also accessible from other Silverlight applications that run from the
same hosting website.

Getting ready
In this recipe, we are refactoring the code from the first recipe of this chapter. You can use
your own codebase or use the sample code from the code of the book. The starter solution
for this recipe is located in the Chapter05/IsoSiteStore_Starter folder; the complete
solution can be found in the Chapter05/IsoSiteStore_Completed folder.

How to do it...
In this recipe, we'll take a look at the refactoring we need to apply to the code of the first
recipe of this chapter so that the data stored in isolated storage is available to other
applications running from the same site. Follow along with the following steps to lean more:

1. As outlined in the Getting ready section, open either your solution from the first
recipe of this chapter or use the starter solution provided for this recipe. This
Silverlight application uses isolated storage through the IsolatedStorageFile.
GetUserStoreForApplication() method.

2. In the SaveToXml() method, refactor your code so that we are using the static
GetUserStoreForSite() method of the IsolatedStorageFile class, as
shown next:
...
using (var isoStore =
 IsolatedStorageFile.GetUserStoreForSite())
{
 using (var isoStream =
 new IsolatedStorageFileStream
 ("CityInfo.xml", FileMode.Create, isoStore))
 {
 doc.Save(isoStream);

Chapter 5

191

 }
}
...

3. Throughout the entire CityView.xaml.cs file, change every occurrence of
GetUserStoreForApplication() to GetUserStoreForSite().

4. In the HotelView.xaml.cs file, also change every occurrence of
GetUserStoreForApplication() to GetUserStoreForSite().

If we run the application now, we'll see that the application runs the exact same way. However,
the isolated storage is now shared between applications that originate from the same site. In
the completed solution of this recipe, a test project named IsoStore_Reader is added to
the solution. It allows you to read out the information from isolated storage shared with the
other Silverlight applications running from the same site.

How it works...
By default, isolated storage uses a per-user, per-application location where an application can
store and access data. This data is then only accessible for the application which created the
data; no other application can access that data. It's easy to understand why this limitation is
in place; if any application could access any other's information, a lot of security issues would
be raised.

However, there are situations where you may want this approach a bit less strict. Assume you
have more than one Silverlight application running from your site. Each of these applications
needs a list of countries on some particular form. It would be a good step for each application
to cache that data in isolated storage, helping to bring the load on the server down as well
as to speed up the application as it doesn't have to access the service for this data. However,
we can go one step further and let these applications share this cached country list. It's
possible that a Silverlight application opens up (part of) its data in isolated storage for other
applications running from the same site.

To have an application share the data, it should use the static
GetUserStoreForSite() method of the IsolatedStorageFile class instead of
GetUserStoreForApplication(). The application reading the shared data should also
use GetUserStoreForSite(). This effectively means that we have an opt-in model: the
developer can choose to allow other applications from the same site to use the data. Because
this is limited to the bounds of the site, no real security issues arise from this: it's assumed
that no one that has access to the site will mess around with your data.

What about IsolatedStorageSettings?
Just like IsolatedStorageFile has a site option, IsolatedStorageSettings has
one as well. Through IsolatedStorageSettings.SiteSettings, which is again an
IDictionary<string, object>, we can store information that's accessible for other
Silverlight applications running from the same site.

Working with Local Data

192

Using the Sterling database
Applies to Silverlight 4 and 5

Up until now, we've seen several ways of storing data locally on the system using isolated
storage. With IsolatedStorageSettings, we are handing our object over to Silverlight
which does the serialization to XML itself. There's little we have to say in this process. When
using IsolatedStorageFile, we are in charge of serialization of the data. We have the
option to save as XML, JSON or even as binary. The latter isn't supported out-of-the-box since
Silverlight doesn't have a BinaryFormatter on board, so we are on our own to write the
code for this ourselves.

Instead of doing so, we can use a library called Sterling. Sterling provides us with an object-
oriented, NoSQL database, based on isolated storage that writes data in a binary format to
isolated storage. On top of that, we get the ability to write LINQ-to-Objects queries to query our
data and it handles things such as foreign keys and indexes as well. In this recipe, we'll look at
how we can work with this component.

Getting ready
This recipe creates an application from scratch, so there's no starter solution provided. The
finished solution for this recipe can be found in the Chapter05/SterlingIsoStore_
Completed folder.

How to do it...
In this recipe, we'll build a small note application, allowing us to save notes and view a list of
notes we've already created. Instead of using isolated storage directly, we'll use the Sterling
database. Follow along with the steps given to learn how to use the component:

1. Create a new Silverlight Navigation Application and name it SterlingIsoStore.
Make sure you select the navigation application template.

2. As Sterling is an external component, we need to add it to the Silverlight project. You
can do so in two ways. Either you can go to http://sterling.codeplex.com,
download the binaries from there and add a reference to the downloaded assemblies
from your Silverlight project. Alternatively, you can use NuGet (http://www.nuget.
org), a package manager for Visual Studio from Microsoft. In the Appendix, you can
find information on installing and using NuGet.

With NuGet installed, right-click on your Silverlight project and select Manage NuGet
Packages. In the dialog shown, search for Sterling and select the non-Windows
Phone 7 version to add to your project:

http://www.nuget.org

Chapter 5

193

3. Let's first create the XAML for the two pages our application needs. In the
Home.xaml file, which is under the Views folder, add the following code:
<navigation:Page.Resources>
 <DataTemplate x:Key="NoteTemplate">
 <Grid>
 <Grid.RowDefinitions>
 <RowDefinition></RowDefinition>
 <RowDefinition></RowDefinition>
 </Grid.RowDefinitions>
 <TextBlock
 Text="{Binding NoteName}"
 FontWeight="Bold">
 </TextBlock>
 <TextBlock
 Text="{Binding NoteContents}"
 Grid.Row="1">
 </TextBlock>
 </Grid>
 </DataTemplate>
</navigation:Page.Resources>
<Grid x:Name="LayoutRoot">
 <StackPanel
 x:Name="ContentStackPanel"
 Margin="20"

Working with Local Data

194

 HorizontalAlignment="Left">
 <TextBlock
 Text="My notes"
 FontSize="14"
 FontWeight="Bold">
 </TextBlock>
 <ListBox
 Width="200"
 Height="200"
 Name="NotesListBox"
 ItemTemplate="{StaticResource NoteTemplate}"
 HorizontalAlignment="Left">
 </ListBox>
 <HyperlinkButton
 NavigateUri="/CreateNote"
 Content="Create new note"
 Margin="10">
 </HyperlinkButton>
 </StackPanel>
</Grid>

This code should look familiar, there's nothing new being introduced here.

4. Add another page to the Views folder and name it CreateNote.xaml. Add the
following code to create a form to add a new note:
<Grid x:Name="LayoutRoot">
 <Grid
 Width="400"
 HorizontalAlignment="Left"
 Margin="20">
 <Grid.RowDefinitions>
 <RowDefinition Height="30"></RowDefinition>
 <RowDefinition Height="30"></RowDefinition>
 <RowDefinition Height="30"></RowDefinition>
 <RowDefinition Height="30"></RowDefinition>
 </Grid.RowDefinitions>
 <Grid.ColumnDefinitions>
 <ColumnDefinition Width="*"></ColumnDefinition>
 <ColumnDefinition Width="*"></ColumnDefinition>
 </Grid.ColumnDefinitions>
 <TextBlock
 Text="Add new note"
 FontWeight="Bold"
 FontSize="14"
 Grid.ColumnSpan="2">

Chapter 5

195

 </TextBlock>
 <TextBlock
 Text="Name"
 Grid.Row="1"
 Grid.Column="0">
 </TextBlock>
 <TextBlock
 Text="Contents"
 Grid.Row="2"
 Grid.Column="0">
 </TextBlock>
 <TextBox
 Name="NoteNameTextBox"
 Grid.Column="1"
 Grid.Row="1"
 Width="200"
 Height="25">
 </TextBox>
 <TextBox
 Name="NoteContentsTextBox"
 Grid.Column="1"
 Grid.Row="2"
 Width="200"
 Height="25">
 </TextBox>
 <HyperlinkButton
 Content="Save note"
 Grid.Column="1"
 Grid.Row="3"
 Name="SaveNoteButton"
 Click="SaveNoteButton_Click">
 </HyperlinkButton>
 </Grid>
</Grid>

5. Create a new folder and name it Model. Inside the folder, create a new interface
called IBaseModel. Add the following code to this interface:
public interface IBaseModel
{
 int Id { get; set; }
}

Working with Local Data

196

6. We can now create our Note class and let it implement the IBaseModel interface.
The Note class only contains a few properties, as outlined next:
public class Note : IBaseModel
{
 public int Id { get; set; }
 public string NoteName { get; set; }
 public string NoteContents { get; set; }
 public DateTime CreationDate { get; set; }
}

7. We have now arrived at the point at which we can really start using Sterling. Create
a folder called Database and inside of it, create a class and call it NoteDatabase.
The code for this class is shown next:
public class NoteDatabase : BaseDatabaseInstance
{
 public const string NOTE_NOTEID = "Note_NoteId";

 public override string Name
 {
 get { return "NoteDatabase"; }
 }

 protected override List<ITableDefinition> RegisterTables()
 {
 return new List<ITableDefinition>()
 {
 CreateTableDefinition<Note, int>(n => n.Id)
 .WithIndex<Note, int, int>
 (NOTE_NOTEID, fd =>fd.Id)
 };
 }
}

8. The class that represents the database needs to inherit from
BaseDatabaseInstance. An application can contain more than one database;
each one needs to be represented with a single class. In this class, we override two
members: Name and RegisterTables. Inside the RegisterTables() method, we
can define how our data needs to be saved. Using the CreateTableDefinition()
method, we are indicating that we want to save the Note class. Also, we are defining
the key for this table, which is the Id property. Finally, we are creating an index on the
Id property as well.

Chapter 5

197

9. Now that we have the database, we need a way to work with it. We are going to create
a class called DatabaseService inside the Database folder which interacts with
our created database. In this DatabaseService class, add the following code:
public static class DatabaseService
{
 private static SterlingEngine _sterlingEngine;
 public static ISterlingDatabaseInstance CurrentDatabase
 { get; private set; }

}

10. We are creating a SterlingEngine here, as our application needs one of these.
The CurrentDatabase member will be used to access the database from outside
this class.

11. We need to write code to start the database engine. Add a method named
ActivateEngine() to the DatabaseService class, as shown next:

public static void ActivateEngine()
{
 _sterlingEngine = new SterlingEngine();

 _sterlingEngine.Activate();

 CurrentDatabase =
 _sterlingEngine.SterlingDatabase
 .RegisterDatabase<NoteDatabase>
 (new IsolatedStorageDriver());

}

12. To start the engine, we call the Activate() method on it. After activation,
we can register our database with the engine. We are passing in an
IsolatedStorageDriver instance, which will cause Sterling to use isolated
storage to save its data. By default, data is stored in-memory and is thus not
persisted between application runs.

13. With databases, we mostly don't want to worry about indexing the key ourselves. With
Sterling, we need to create what is called a Trigger to generate the identity key. Add a
class called IdentityTrigger to the Database folder in your project and add the
following code:
public class IdentityTrigger<T> : BaseSterlingTrigger<T, int>
 where T : class, IBaseModel, new()
{
 private static int _idx = 1;

Working with Local Data

198

 public IdentityTrigger(ISterlingDatabaseInstance database)
 {
 if (database.Query<T, int>().Any())
 {
 _idx =
 database.Query<T, int>().Max(key => key.Key) + 1;
 }
 }

 public override bool BeforeSave(T instance)
 {
 if (instance.Id < 1)
 {
 instance.Id = _idx++;
 }

 return true;
 }

 public override void AfterSave(T instance)
 {
 return;
 }

 public override bool BeforeDelete(int key)
 {
 return true;
 }
}

14. The trigger needs to be registered with our database so it will fire when we add a new
instance. Add the following line as the last line in the ActivateEngine() method in
the DatabaseService class:
CurrentDatabase.RegisterTrigger
 (new IdentityTrigger<Note>(CurrentDatabase));

15. We now have everything in place to work with the database. Of course, we need to
start it as well. It's a good practice to have the App class start the service. In the
App.xaml.cs in the constructor, add the following line:
DatabaseService.ActivateEngine();

16. Also in the constructor, register a handler for the Application's Exit event as follows:
this.Exit += new EventHandler(Application_Exit);

Chapter 5

199

17. In the handler, we dispose of the engine by calling the DeactivateEngine()
method as follows:
void Application_Exit(object sender, EventArgs e)
{
 DatabaseService.DeactivateEngine();
}

18. With the database engine running, we can now in a very easy way use it from our
application. In the code-behind of the Home.xaml, in the OnNavigatedTo()
method, add the following code:
private ObservableCollection<Note> _notes =
 new ObservableCollection<Note>();

foreach (var item in DatabaseService.CurrentDatabase
 .Query<Note, int>())
{
 _notes.Add(item.LazyValue.Value);
}

NotesListBox.ItemsSource = _notes;

19. We are querying for all notes that can be found in the database and add them to an
ObservableCollection. This collection is then set as the ItemsSource for the
ListBox.

20. In the CreateNode.xaml.cs file, in the event handler of the Save button, we
create a new instance of the Note class and save this to the database.

private void SaveNoteButton_Click
 (object sender, RoutedEventArgs e)
{
 Note note = new Note()
 {
 NoteName=NoteNameTextBox.Text,
 NoteContents = NoteContentsTextBox.Text,
 CreationDate=DateTime.Now
 };
 DatabaseService.CurrentDatabase.Save(note);
 DatabaseService.CurrentDatabase.Flush();

 NavigationService.Navigate(
 new Uri("/Home", UriKind.Relative));
}

Working with Local Data

200

With this code in place, we can save notes and persist them between application reboots. The
following screenshot shows some notes already added to the database.

How it works...
Instead of performing manual serialization like we did when we used the
IsolatedStorageFile or have Silverlight serialize our data to XML like we did with the
IsolatedStorageSettings, we can use Sterling. Sterling is a NoSQL object-oriented
database for use with Silverlight (an implementation also exists for Windows Phone 7, which
works in a similar way).

Sterling saves data in a binary format. While we can do so manually as well using a
BinaryFormatter, Sterling does all of that for us. On top of that, it fully supports LINQ-to-Objects,
giving us a familiar way of working with our data. Although the data isn't stored in the same way
as a database, we are getting a comparable behavior for our Silverlight applications.

In the following paragraphs, we'll dig a bit deeper into the several aspects that make up how
we work with Sterling.

Getting Sterling
Sterling is free and open-source. That means that we get full access to the source code and
can make changes if we want. The project is hosted on CodePlex (http://sterling.
codeplex.com) where the source code, binaries, and documentation can be found.

Using Sterling in our projects requires that we reference the Sterling assemblies. We can
do this manually from the Silverlight project by using Add Reference. Alternatively, we can
use NuGet (see the appendix for guidance on working with NuGet) to have the assemblies
downloaded and referenced automatically for us.

Chapter 5

201

Creating a database
When we say we are creating a database with Sterling, we are not going to start by creating
a schema in SQL Server Management Studio. Creating a database is done using code. To
do so, every "table" we want needs to be represented by a class. We are in fact creating the
database model via code.

The database is a class which inherits from BaseDatabaseInstance. In this class, we can
override the Name property as well as the RegisterTables() method. The latter is very
important as it allows us to build up the database schema. In our sample application, we had
just one table. Most applications will have more than one, of course. In that case, we can use
the RegisterTable() several times to create more than one table, as shown next:

protected override List<ITableDefinition> RegisterTables()
{
 return new List<ITableDefinition>()
 {
 CreateTableDefinition<Note, int>(n => n.Id)
 .WithIndex<Note, int, int>(NOTE_NOTEID, fd =>fd.Id),
 CreateTableDefinition<NoteTag, int>(n => n.Id)
 .WithIndex<NoteTag, int, int>
 (NOTETAG_NOTETAGID, fd =>fd.Id)
 };

}

Note that in one application, we aren't limited to just one database. Each database is simply
another class.

The Sterling engine
Once the database is created, an engine needs to be instantiated. In the sample code, we
did this in the DatabaseService.ActivateEngine() method. The engine is the heart
of Sterling, so activating the engine should be the first step. Once up and running, we need to
register the database(s) with the engine.

The engine uses what is known as a database driver. The default one is an in-memory driver,
which never saves to isolated storage but instead keeps all data in-memory. This isn't all that
useful; we'll mostly want to store and persist data, just like with regular isolated storage. We
can achieve this by passing an IsolatedStorageDriver instance to the registration of
the database.

When we are finished with the application, we need to dispose of the database object.
To do so properly, we wrote a DeactivateEngine() method that is called from the
ApplicationExit event, which is called always when the Silverlight application shuts down.
Of course, all the data that is inside our database remains intact in the isolated storage.

D
ow

n
lo

a
d
 f
ro

m
 W

o
w

!
e
B
o
o
k

<
w

w
w

.w
o
w

e
b
o
o
k.

co
m

>

Working with Local Data

202

Saving and loading data
A database isn't very useful without its ability to save and load data. Saving data with Sterling
is very easy. The following line of code allows us to save a note:

DatabaseService.CurrentDatabase.Save(note);

Sterling itself will decide if we are updating or inserting data, based on the lambda expression
we defined for the key (n => n.Id). If the key already exists, it will perform an update to the
already existing Note instance. Otherwise, a new instance will be created.

After the call to the Save() method, we call the Flush()method on the database. This causes
the data to be written. When doing a single save, it's recommended to call the Flush()directly
after. If we are doing more than one save operation, we can call the Flush() at the end.

Loading data is simple as well. We can use the following line to retrieve a single
Note instance:

var myNote = DatabaseService.CurrentDatabase.Load<Note>(1);

The only things we need to specify are the type (here, the Note type) and the key. Sterling will
retrieve the selected Note, if present.

Next to loading by ID, we have access to LINQ-to-Objects, allowing us to perform queries on
the data. The following sample query retrieves all IDs greater than two:

var range =
 from n in
 DatabaseService.CurrentDatabase.Query<Note, int>()
 where n.Key > 2
 orderby n.Key
 select n.LazyValue.Value;

The reason this works is that keys and indexes, like we created with the RegisterTable()
method, are in-memory and are exposed as a list. On this list, we can then execute LINQ-
to-Objects code. An important aspect to this is that the actual objects aren't loaded (in our
case, the Notes instances) until we really need them. If we would add a search option in the
application that allows searching on NoteTitle, a simple index would be enough since it
would cause this list of NoteTitles to be in-memory, thus allowing us to perform a query
onto the data, without loading all the Note data.

Triggers
In some cases, we may want some more control over how the saving of an instance is executed.
In our case, we don't want to search manually for the next available ID each time we save an
instance. For this very purpose, the notion of a trigger exists in Sterling. A trigger is a class that
inherits from BaseSterlingTrigger<TInstanceType, TKeyType>. In our trigger, we
override three methods: BeforeSave, AfterSave, and BeforeDelete.

Chapter 5

203

In our implementation, we check what's the highest available ID in the constructor and in
the BeforeSave, we add one to that value and set this value as the ID for the instance we
are saving.

See also
Take a look at the Sterling site on CodePlex (http://sterling.codeplex.com) and the
Sterling documentation site (http://www.sterlingdatabase.com) for more information.

6
MVVM

In this chapter, we will cover the following topics:

 f Creating a basic MVVM application

 f Using MVVM Light to enable MVVM applications

 f Connecting a View to a ViewModel using a ViewModelLocator

 f Connecting a View to a ViewModel using MEF

 f Using commands to pass your events to the ViewModel

 f Communicating between different ViewModels

 f Leveraging a messenger to wrap application-wide messages

Introduction
MVVM or Model-View-ViewModel is a design pattern that has rapidly gained popularity in
the XAML community. Based on Martin Fowler's MVP (Model-View-Presenter) pattern, and
related to the MVC (Model-View-Controller) pattern, this pattern is targeted at UI development
platforms (WPF, Silverlight, but more recently it's also emerging in JavaScript-based solutions)
where the developer roles can have quite different requirements: the UX developer (or
devigner) has another set of responsibilities than the more traditional developer, but they
both work on the same code base, at the same time.

In this chapter, you'll learn about what is needed to enable MVVM in your application, how
you can use it, and what parts it typically consists of. After this chapter, you should have a
thorough understanding of MVVM and how to use it.

MVVM

206

Creating a basic MVVM application
Applies to Silverlight 3, 4, 5 and WP7

Before we can start with MVVM, the concepts have to be explained. So we're going to start
from scratch, assuming you have no knowledge of MVVM, and you're not using any MVVM-
enabling framework or library.

In this recipe, you'll learn about the basic concepts of the MVVM pattern, and you'll see how
easy it is to get a bare-bones MVVM application up and running.

Getting ready
The first question that pops up when talking about Model-View-ViewModel is typically: Why
would you want to use it? The logical answer to that question would be: separation of
concerns, which in turn leads to better testability and code maintainability.

But besides that, another important advantage is that it forces you, as a developer, to
leverage the power of Silverlight: you have to make good use of Data Binding and the Data
Context to get your application to be operational. This, in turn, allows the designer and the
developer to work on their own parts of the project, respectively the View and the ViewModel/
Model, without too much interference.

To better understand this pattern, let's have a look at the following figure:

View
View

Model

Binding

Command

Exposes Model

In this image, the different parts of the pattern are immediately visible:

 f The View: This can be seen as the UI of your application: your Silverlight User Controls
or Pages, containing all the UI elements. This is typically designed by the designer.

 f The ViewModel: This serves as the bridge between the View and the Model. It's
the responsibility of the ViewModel to transform the Model into data that is useable
by the View, typically through public properties and commands that can be utilized
through the binding system.

Chapter 6

207

 f The Model: this should be seen as an object-based representation of your data. In
some projects, your model comes from generated code: (through proxy generation) or
via the client-side version of your entities (when working with RIA Services). However,
in other implementations a business layer is injected, for example to parse your DTOs
to usable objects. Whichever approach you choose, the main point is: The model is an
object-based representation of your data.

To start with this recipe, you can use the starter solution, found in
Chapter 6\Basic_MVVM_Starter.

A completed solution can be found in Chapter 6\Basic_MVVM_Completed.

How to do it...
We're starting from the starter solution, and we're going to add the necessary classes and
code to create a basic MVVM application. To achieve this, we'll complete the following steps:

1. In the Models folder, add a new class, Person, by right-clicking the folder and
selecting Add | New class.

2. Implement the class with properties Name, FirstName, and Age as follows:
public class Person : NotifyPropertyChangedBase
{

 private string _name;
 /// <summary>
 /// The Name property
 /// </summary>
 public string Name
 {
 get
 {
 return _name;
 }
 set
 {
 _name = value;
 RaisePropertyChanged("Name");
 }
 }

 private string _firstName;
 /// <summary>
 /// The FirstName property

MVVM

208

 /// </summary>
 public string FirstName
 {
 get
 {
 return _firstName;
 }
 set
 {
 _firstName = value;
 RaisePropertyChanged("FirstName");
 }
 }

 private int _age;
 /// <summary>
 /// The Age property
 /// </summary>
 public int Age
 {
 get
 {
 return _age;
 }
 set
 {
 _age = value;
 RaisePropertyChanged("Age");
 }
 }

}

3. In the ViewModels folder, add a new class, ViewModel, by right-clicking the folder
and selecting Add | New class.

4. Implement the class as follows:
using System.ComponentModel;

public class ViewModel : INotifyPropertyChanged
{
 public event PropertyChangedEventHandler PropertyChanged;

 public void RaisePropertyChanged(string propertyName)
 {

Chapter 6

209

 if (PropertyChanged != null)
 {
 PropertyChanged.Invoke(this, new PropertyChangedEventA
rgs(propertyName));
 }
 }
}

5. In the same folder, create a new class, PersonViewModel, by right-clicking the
folder and selecting Add | New class.

6. Add the following using statement to this class:
using MVVM.Client.Models;
using System;
using System.Collections.ObjectModel;

7. In this class, we'll add two properties: People and LastAddedDate. Besides that,
we'll also add the code that will be executed to generate the data, and to add a new
Person to the People collection:
public class PersonViewModel : ViewModel
{

 private ObservableCollection<Person> _people;
 /// <summary>
 /// The People property
 /// </summary>
 public ObservableCollection<Person> People
 {
 get
 {
 return _people;
 }
 set
 {
 _people = value;
 RaisePropertyChanged("People");
 }
 }

 private DateTime? _lastAddedDate;
 /// <summary>
 /// The LastAddedDate property
 /// </summary>
 public DateTime? LastAddedDate

MVVM

210

 {
 get
 {
 return _lastAddedDate;
 }
 set
 {
 _lastAddedDate = value;
 RaisePropertyChanged("LastAddedDate");
 }
 }

 public PersonViewModel()
 {
 LoadData();
 }

 private void LoadData()
 {
 People = DataLoader.GeneratePeople();
 }

 public void AddPerson()
 {
 People.Add(new Person() { FirstName = "Sven", Name =
"Vercauteren", Age = 25 });
 LastAddedDate = DateTime.Now;
 }
}

8. Open PeopleView.xaml, and add a Button, TextBlock, and ListBox to it,
bound to the properties we've just created on our PersonViewModel:
<Grid x:Name="LayoutRoot">
 <Grid.RowDefinitions>
 <RowDefinition Height="Auto"></RowDefinition>
 <RowDefinition></RowDefinition>
 </Grid.RowDefinitions>

 <StackPanel Orientation="Horizontal">
 <Button x:Name="btnAddPerson"
 Content="Add person"

Chapter 6

211

 Width="200"
 Height="30"
 Click="btnAddPerson_Click"
 Margin="0,0,5,5"></Button>
 <TextBlock Text="{Binding LastAddedDate,
StringFormat='Last person was added on {0}', FallbackValue=''}"
 Margin="10,0,0,0">

 </TextBlock>
 </StackPanel>

 <ListBox ItemsSource="{Binding People}"
 Grid.Row="1">
 <ListBox.ItemTemplate>
 <DataTemplate>
 <StackPanel Orientation="Vertical">
 <StackPanel Orientation="Horizontal">
 <TextBlock Text="{Binding Name}" />
 <TextBlock Text="{Binding FirstName}"
 Margin="5,0,0,0" />
 </StackPanel>
 <TextBlock Text="{Binding Age}"
 FontSize="12" />
 </StackPanel>
 </DataTemplate>
 </ListBox.ItemTemplate>
 </ListBox>

</Grid>

9. Implement it by adding the instantiation of PersonViewModel in Peopleview.
xaml.cs and a button-click handler, as such:
public PeopleView()
{
 InitializeComponent();
 this.DataContext = new PersonViewModel();
}

private void btnAddPerson_Click(object sender, RoutedEventArgs e)
{
 ((PersonViewModel)DataContext).AddPerson();
}

MVVM

212

10. Add a using statement to PeopleView.xaml.cs:
using MVVM.Client.ViewModels;

11. You can now build and run the application.

How it works...
In step 3, we created a ViewModel base class. This class implements the
INotifyPropertyChanged interface. Through this interface, notifications can be sent when
a property is changed, telling Silverlight that the UI should be updated (this of course depends
on how you've created your bindings).

After this, we've created a PersonViewModel class, inheriting the ViewModel
base class we've just created, and we've added two properties to it: People (an
ObservableCollection<Person>) and LastAddedDate. Both properties raise the
NotifyChanged event in their property setters, which makes sure the UI is updated when
these properties are set or changed.

In this example, our Model is the Person class, and we fill it with dummy
data in the PersonViewModel constructor. The Person class implements
NotifyPropertyChangedBase so the UI can be updated when the property is changed.

Chapter 6

213

On to the View: our View contains a ListBox, bound to the People collection, and a
TextBlock, bound to the LastAddedDate. In the View's constructor, the DataContext
of the View is set to a new instance of our PersonViewModel class. This is crucial; as the
DataContext of the View is now a PersonViewModel instance, our binding syntax to
properties on the PersonViewModel works. In an MVVM pattern, the ViewModel is always
the DataContext of the View.

There's also a button, btnAddPerson defined on the View. When this button is clicked, the
method AddNewPerson() is executed on the ViewModel. This adds a new Person instance
to the People list, and sets the LastAddedDate to the current date.

Bringing it all together, it works as follows:

 f The View is instantiated, and its DataContext is set to a new PersonViewModel
instance.

 f In the constructor, the People collection of PersonViewModel is initialized. The
ViewModel is thus responsible for converting the Model (the Person class) to a
representation that is useable by the View. Sometimes, the ViewModel is called a
converter on steroids—the reason is obvious.

 f As the properties on the ViewModel fire a NotifyChanged event in their setters,
the View (which is bound to these properties) is correctly updated.

 f When the Add Person button is pressed, a Person instance is added to People,
and the LastAddedDate is changed. The View is notified of this change (thanks to
the INotifyCollectionChanged and INotifyPropertyChanged interfaces)
and is, again, updated accordingly.

And there we go: our first, very simple MVVM application is up and running. However, this is
just the beginning. We've used this application as an example, and a few crucial features are
still missing. There are other ways to connect your View to your ViewModel, and for the sake of
simplicity, Commanding (to bind your events, such as the click event, to the ViewModel) was
omitted. Make sure you read the next recipes for a better understanding of these concepts.

See also
For more on data binding, see Chapter 2, Introduction to Data Binding and Chapter 3,
Advanced Data Binding. For more information on MVVM, have a look at the other recipes
in this chapter.

MVVM

214

Using MVVM Light to enable
MVVM applications

Applies to Silverlight 3, 4, 5 and WP7

Not all necessary building blocks are available out of the box in Silverlight when you want to
start using the MVVM pattern. Certain base classes and/or components have to be written—
your basic ViewModel classes, ICommand implementations, a way to connect your View to
your ViewModel, a way to communicate between ViewModels, and so on. Doing all of this by
yourself would quickly result in quite a workload.

Due to the popularity of the pattern, quite a few MVVM-enabling frameworks have popped up,
of which the best-known are probably Caliburn, Prism (more than just MVVM), and the MVVM
Light Toolkit by Laurent Bugnion.

In this recipe (and the following ones), we will use the MVVM Light Toolkit to enable MVVM
in our projects: it's open, it's lightweight, it's extensible, and it's very easy to use with little to
no learning curve. Instead of using project templates (delivered with the MVVM Light Toolkit),
we will only use the base classes in these recipes, so as offer a better understanding of how
things work and can be set up.

Getting ready
We're going to recreate the application from the previous recipe, Creating a basic MVVM
application, but this time by using the MVVM Light Toolkit base classes. This means you
might have to download the necessary files and install them. They can be found at
http://mvvmlight.codeplex.com/.

You can start with the provided starter solution, which already includes these necessary
dependencies: Chapter 6\Using_MVVMLight_Starter.

The completed solution can be found at Chapter 6\Using_MVVMLight_Completed.

How to do it...
We're going to create an MVVM application that will display a list of persons and allows us to
add a Person to that ListBox. To achieve this, we'll complete the following steps:

1. Add a new class to the ViewModels folder in MVVM.Client. Right-click the folder,
select Add | New class, and create a new class named PersonViewModel,
inheriting ViewModelBase.

Chapter 6

215

2. Add the following using statements to this class:
using GalaSoft.MvvmLight;
using MVVM.Client.Models;

3. Add two properties to PersonViewModel:
private ObservableCollection<Person> _people;
/// <summary>
/// The People property
/// </summary>
public ObservableCollection<Person> People
{
 get
 {
 return _people;
 }
 set
 {
 _people = value;
 RaisePropertyChanged("People");
 }
}

private DateTime? _lastAddedDate;
/// <summary>
/// The LastAddedDate property
/// </summary>
public DateTime? LastAddedDate
{
 get
 {
 return _lastAddedDate;
 }
 set
 {
 _lastAddedDate = value;
 RaisePropertyChanged("LastAddedDate");
 }
}

MVVM

216

4. Change the constructor of PersonViewModel and add the LoadData() method:
public PersonViewModel()
{
 LoadData();
}
private void LoadData()
{
 People = DataLoader.GeneratePeople();
}

5. Add the AddPerson method to PersonViewModel:
public void AddPerson()
{
 People.Add(new Person() { FirstName = "Sven"
 , Name = "Vercauteren"
 , Age = 25 });
 LastAddedDate = DateTime.Now;
}

6. Open PeopleView.xaml, and implement the bindings to LastAddedDate and
People such as:
<Grid x:Name="LayoutRoot">
 <Grid.RowDefinitions>
 <RowDefinition Height="Auto"></RowDefinition>
 <RowDefinition></RowDefinition>
 </Grid.RowDefinitions>
 <StackPanel Orientation="Horizontal">
 <Button x:Name="btnAddPerson"
 Content="Add person"
 Width="200"
 Height="30"
 Click="btnAddPerson_Click"></Button>
 <TextBlock Text="{Binding LastAddedDate,
StringFormat='Last person was added on {0}', FallbackValue=''}"
 Margin="10,0,0,0">
 </TextBlock>
 </StackPanel>
 <ListBox ItemsSource="{Binding People}"
 Grid.Row="1">
 <ListBox.ItemTemplate>
 <DataTemplate>
 <StackPanel Orientation="Vertical">
 <StackPanel Orientation="Horizontal">
 <TextBlock Text="{Binding Name}" />

Chapter 6

217

 <TextBlock Text="{Binding FirstName}"
 Margin="5,0,0,0" />
 </StackPanel>
 <TextBlock Text="{Binding Age}"
 FontSize="12" />
 </StackPanel>
 </DataTemplate>
 </ListBox.ItemTemplate>
 </ListBox>
</Grid>

7. In the constructor of PeopleView.xaml.cs, set its DataContext to an instance of
PersonViewModel:
public PeopleView()
{
 InitializeComponent();
 this.DataContext = new PersonViewModel();
}

8. Add the following using statement to PeopleView.xaml.cs:
using MVVM.Client.ViewModels;

9. Implement the click handler of btnAddPerson in PeopleView.xaml.cs:
private void btnAddPerson_Click(object sender, RoutedEventArgs e)
{
 ((PersonViewModel)DataContext).AddPerson();
}

10. You can now build and run the application, and add a Person by clicking the
Add person button.

MVVM

218

How it works...
We've started out by creating the PersonViewModel class, which inherits MVVM Light's
ViewModelBase class. Among other things (which will be talked about in later recipes), this
ViewModelBase class implements INotifyPropertyChanged. Through this interface,
notifications can be sent when a property is changed, telling Silverlight that the UI should be
updated (this of course depends on how you've created your bindings).

In the PersonViewModel class, we've added two properties: People (an Observable
Collection<Person>) and LastAddedDate. Both properties raise the NotifyChanged
event in their property setters, which makes sure the UI is updated when these properties are
set or changed.

The starter solution already includes a Person class (inheriting NotifyProperty
ChangedBase, which implements INotifyPropertyChanged). This is the business
object that is our model. In the PersonViewModel, we fill this with dummy data by
calling DataLoader.GeneratePeople() via the constructor.

On to the View—PeopleView. PeopleView contains a ListBox, bound to the People
collection, and a TextBlock, bound to the LastAddedDate. In the View's constructor, the
DataContext of the View is set to a new instance of our PersonViewModel class. This is
crucial; as the DataContext of PeopleView is now a PersonViewModel instance, our
binding syntax to properties on the PersonViewModel works. In an MVVM pattern, the
ViewModel is always the DataContext of the View. There's also a button, btnAddPerson,
defined on the View. When this button is clicked, the method AddNewPerson() is executed
on the ViewModel. This adds a new Person to the People list, and sets the LastAddedDate
to the current date.

Bringing it all together, it works as follows:

 f The View is instantiated, and its DataContext is set to a new PersonViewModel
instance.

 f In the constructor, the People collection of PersonViewModel is initialized. The
ViewModel is thus responsible for converting the Model (the Person class) to a
representation that is useable by the View. Sometimes, the ViewModel is called a
converter on steroids—the reason is obvious.

 f As the properties on the ViewModel fire a NotifyChanged event in their setters, the
View (which is bound to these properties) is correctly updated.

 f When the Add Person button is pressed, a Person instance is added to People,
and the LastAddedDate is changed. The View is notified of this change (thanks to
the INotifyCollectionChanged and INotifyPropertyChanged interfaces)
and is, again, updated accordingly.

Chapter 6

219

There's more...
This is just the beginning, we've now got a very basic MVVM application up and running, but
a few crucial features are still missing—connecting the View to the ViewModel can be done
differently (built-in in MVVM Light), Commanding can be used to bind Events to Commands
in the ViewModel, and there's a way to send messages between ViewModels. Make sure you
read the next recipes for a better understanding of these concepts.

See also
For more information on MVVM, have a look at the other recipes in this chapter.

Connecting a View to a ViewModel using
a ViewModelLocator

Applies to Silverlight 3, 4, 5 and WP7

One of the first things you'll have to decide on when working with the MVVM design pattern is
how you're going to connect your Views to your ViewModels. The simplest method by far is by
just instantiating the ViewModel in the View's constructor, but this of course breaks the idea
that we're trying to work as loosely coupled as possible (even though a View and ViewModel
are somewhat coupled by design, as a ViewModel needs to have the properties used in the
View's binding syntax).

The approach used in MVVM Light is that of the ViewModelLocator. In this recipe, we'll
learn how to use this ViewModelLocator to tie your View and ViewModel together.

Getting ready
We're starting with the solution we completed in the previous recipe, Using MVVM Light
to enable MVVM applications. Or alternatively, you can start with the provided starter
solution, which can be found at Chapter 6\Connecting_View_ViewModel_
ViewModelLocator_Starter.

The completed solution can be found in Chapter 6\Connecting_View_ViewModel_
ViewModelLocator_Completed.

MVVM

220

How to do it...
We're going to adjust the solution from the previous recipe, Using MVVM Light to enable
MVVM applications, or the starter solution, so it uses the ViewModelLocator to tie the View
and ViewModel together. To achieve this, we should complete the following steps:

1. Add a new class to the ViewModel namespace by right-clicking the ViewModel
directory and selecting Add new class. Name this class ViewModelLocator.

2. Implement the class as such:
public class ViewModelLocator
{
 private static PersonViewModel _personVM;

 /// <summary>
 /// Initializes a new instance of the ViewModelLocator class.
 /// </summary>
 public ViewModelLocator()
 {
 CreatePersonVM();
 }

 /// <summary>
 /// Gets the PersonVM property.
 /// </summary>
 public static PersonViewModel PersonVMStatic
 {
 get
 {
 if (_personVM == null)
 {
 CreatePersonVM();
 }
 return _personVM;
 }
 }

 /// <summary>
 /// Gets the PersonVM property.
 /// </summary>
 [System.Diagnostics.CodeAnalysis.SuppressMessage("Microsoft.
Performance",
 "CA1822:MarkMembersAsStatic",
 Justification = "This non-static member is needed for data
binding purposes.")]

D
ow

n
lo

a
d
 f
ro

m
 W

o
w

!
e
B
o
o
k

<
w

w
w

.w
o
w

e
b
o
o
k.

co
m

>

Chapter 6

221

 public PersonViewModel PersonVM
 {
 get
 {
 return PersonVMStatic;
 }
 }

 /// <summary>
 /// Provides a deterministic way to delete the PersonVM
property.
 /// </summary>
 public static void ClearPersonVM()
 {
 _personVM.Cleanup();
 _personVM = null;
 }

 /// <summary>
 /// Provides a deterministic way to create the PersonVM
property.
 /// </summary>
 public static void CreatePersonVM()
 {
 if (_personVM == null)
 {
 _personVM = new PersonViewModel();
 }
 }

 /// <summary>
 /// Cleans up all the resources.
 /// </summary>
 public static void Cleanup()
 {
 ClearPersonVM();
 }
}

3. Open App.xaml, and add the following xmlns import:
xmlns:vm="clr-namespace:MVVM.Client.ViewModels"

MVVM

222

4. Add the following code to App.xaml, right below the <ResourceDictionary>
statement:
<vm:ViewModelLocator x:Key="Locator" />

5. Open PeopleView.xaml.cs, and change the constructor to this:
public PeopleView()
{
 InitializeComponent();
}

6. Open PeopleView.xaml, and add the following code right below the xmlns import
statements:
DataContext="{Binding Source={StaticResource Locator},
Path=PersonVM}"

7. You can now build and run your application.

How it works...
The ViewModelLocator allows us to use binding syntax in the View to tie it to the
ViewModel. The ViewModelLocator itself has a property PersonVM. When this
property's getter is called, it ties back to a static property, PersonVMStatic, in which the
PersonViewModel is instantiated.

With that in mind, we now make the ViewModelLocator available for binding by adding it as
a StaticResource to the application, in the App.xaml ResourceDictionary. If we now
use the binding syntax we've added to PeopleView.xaml, the following will happen:

 f The View is instantiated once we navigate to it.

Chapter 6

223

 f The View's DataContext is bound to a property of our ViewModelLocator,
PersonVM. This binding works because the ViewModelLocator is made available
through the App.xaml ResourceDictionary.

 f PersonVM ties back to PersonVMStatic. This in turn calls the
CreatePersonVM() method, which returns a new instance of PersonViewModel.
This instance is now the DataContext of our PeopleView, so the bindings all work.

Important to know is that, every time we re-navigate to PeopleView, the same
PersonViewModel instance is reused. This is different from how it worked in the previous
recipe, Using MVVM Light to enable MVVM applications. There, the PersonViewModel was
re-instantiated every time.

Typically, in a Silverlight application you want to save the state of a View (kept through
the ViewModel), so reusing this PersonViewModel instance is expected, and mostly
required, behavior.

Finally, if you need to clean up the PersonViewModel, you can use the respective
Cleanup() method.

There's more...
In MVVM, there are two ways of binding your View to your ViewModel. What we've done here
is called the View First-approach—when the View gets instantiated, the ViewModel gets
instantiated (or reused). In this case, a View is quite strictly tied to a specific ViewModel—we're
essentially saying 'View A will always have ViewModel A as its DataContext' (have a look at
the next recipe, Connecting a View to a ViewModel using MEF, for a more flexible approach).

The ViewModel First-approach works just the other way around—the ViewModel is instantiated,
and this takes care of instantiating the View for which it is the DataContext.

There is no real right or wrong way to do this—both approaches are valid, and the one you'll
choose typically depends on the needs of your application or architecture. The View First-
approach is often done with Data Binding and a ViewModelLocator (as seen in this recipe).
ViewModel First is typically achieved through the use of an Inversion of Control container—the
ViewModel is instantiated by passing in the View (or rather, a contract the View must obey)
in its constructor. This easily enables you to, for example, reuse the same ViewModel for
different Views.

Have a look at the following code:

public PersonViewModel(IView view)
{
 // execution
}

MVVM

224

This is a ViewModel first-approach in which any View (abiding by the IView contract) can be
injected and used.

Other approaches and mixes of both exist—for example, to reach the ability to use a View
First-approach in which one View can be tied to a variety of ViewModels, depending on
certain rules, you can use the approach detailed in the next recipe, Connecting a View to
a ViewModel using MEF.

See also
For more information on MVVM, have a look at the other recipes in this chapter.

Connecting a View to a ViewModel
using MEF

Applies to Silverlight 4 and 5

In the previous recipe, we used the ViewModelLocator to connect our Views to our
ViewModels. Another approach you can take is to use the Managed Extensibility Framework
(MEF) to do this for you.

One of the advantages of this approach is that besides relaying the responsibility of providing
the ViewModels to MEF, you can now use multiple ViewModel instances of the same type
without having to create a ViewModelLocator property for each, for example: you can use
this approach if you don't know in advance how many instances you'll need (amongst some
other advantages, which will be described in this recipe).

In this recipe, you'll learn how to use MEF for tying your Views to your ViewModels.

Getting ready
We're starting with the solution we completed in the previous recipe, Connecting a View
to a ViewModel using a ViewModelLocator. Or alternatively, you can start with the provided
starter solution, which can be found in Chapter 6\Connecting_View_ViewModel_
MEF_Starter.

The completed solution can be found in Chapter 6\Connecting_View_ViewModel_
MEF_Completed.

Chapter 6

225

How to do it...
We're going to adjust the solution from the previous recipe, Connecting a View to a ViewModel
using a ViewModelLocator, or the starter solution, so it uses MEF to tie the View and
ViewModel together. To achieve this, we should complete the following steps:

1. Right-click on MVVM.Client, select Add Reference, and add references to
System.ComponentModel.Composition and System.ComponentModel.
Composition.Initialization.

2. Remove ViewModelLocator.cs from MVVM.Client.

3. Open App.xaml, and remove the ViewModelLocator resource:
 <vm:ViewModelLocator x:Key="Locator" />

4. Add a new folder to MVVM.Client, Contracts, by right-clicking MVVM.Client and
selecting Add | New Folder. In this folder, add a new interface, IPersonViewModel,
as such:
public interface IPersonViewModel
 { }

5. Open PersonViewModel.cs, and add the following using statements:
using System.ComponentModel.Composition;
using MVVM.Client.Contracts;

6. Add the following attributes to the class signature:
[Export(typeof(IPersonViewModel))]
[PartCreationPolicy(CreationPolicy.Shared)]
public class PersonViewModel : ViewModelBase

7. Open PeopleView.xaml and remove the DataContext binding statement:
DataContext="{Binding Source={StaticResource Locator},
Path=PersonVM}"

8. Open PeopleView.xaml.cs, and add the following using statements:
using GalaSoft.MvvmLight;
using System.ComponentModel.Composition;
using MVVM.Client.Contracts;

9. Change the constructor and add a ViewModel property as such
(IsInDesignModeStatic isn't necessary, but it's added to ensure the design view
still works):
public PeopleView()
{
 InitializeComponent();

MVVM

226

 if (!(ViewModelBase.IsInDesignModeStatic))
 {
 // load VM through MEF
 CompositionInitializer.SatisfyImports(this);
 }
}

[Import(typeof(IPersonViewModel))]
public ViewModelBase ViewModel
{
 set
 {
 this.DataContext = value;
 }
 get
 {
 return this.DataContext as ViewModelBase;
 }

}

10. You can now build and run your application.

Chapter 6

227

How it works...
In our PeopleView.xaml.cs, we've added a property ViewModel, which is decorated with
an import statement as such:

[Import(typeof(IPersonViewModel))]
public ViewModelBase ViewModel

With this import statement, we're stating that the ViewModel property should be of
type IPersonViewModel. In the constructor of the PeopleView, we've added a call to
CompositionInitializer.SatisfyImports(this). This means that whenever the
View is instantiated, all the imports in this View should be satisfied. As we've added an
import statement on the ViewModel property, that import will be satisfied.

To satisfy this, MEF will go and look for anything that has been exported as an
IPersonViewModel (which is used as a marker interface—regular strings are also
accepted, but are prone to type errors). If it finds one, it will instantiate (the composition),
and set it as the value of the ViewModel property in PeopleView.xaml.cs. The setter of
that ViewModel property sets the View's DataContext to that imported value, for example:
to an instance of anything that is exported as IPersonViewModel.

In this case, we've exported the PersonViewModel as something of type
IPersonViewModel. This means that MEF will set the ViewModel property on our
View to an instance of PersonViewModel. That is thus the DataContext of our View,
so the View and ViewModel are connected now, and everything works as it should.

There's more...
There's a lot more to MEF than this simple example, but let's start with an explanation of
what MEF does. MEF, or the Managed Extensibility Framework, was designed to simplify the
design of extensible applications and components. A lot of applications have requirements
that change frequently, and it might become difficult to extend the application with new
functionality after some amount of time; MEF tries to solve this problem by making it easy to
plug new functionality into your application.

 f The first keyword is Composition: you start by telling MEF where it can find the
parts of the application it needs to provide by creating a catalog (this might be, for
example, a catalog of all types in the currently executing assembly). From this catalog,
you then create a CompositionContainer. This container will do the work for you
from now on.

 f The second keyword is Export: by exporting a component with the Export attribute,
you tell MEF you want to export this component (type, property), so it can be
composed via the container.

MVVM

228

 f The third keyword is Import (or ImportMany), which tells MEF what type
of components should be imported via the container in a specific part of
your application.

These three simple concepts are the heart and brains of MEF. While
this isn't a book on MEF, this should give you a basic understanding
of what MEF is and what it does. A lot more information can be found
at http://mef.codeplex.com/.

With that in mind, we can look at some of the specifics of this recipe: what about the
PartCreationPolicy attribute we've used on PersonViewModel? We've exported our
ViewModel with a CreationPolicy of Shared—this means the same ViewModel instance
will be reused whenever it is asked for by an Import statement. However, if you want to
ensure new instances are used every time (typically the case when you want to reuse the
same View/ViewModel combination for an unknown number of times), you can make it
NonShared. Have a look at the following code example:

[Export(typeof(IPersonViewModel))]
[PartCreationPolicy(CreationPolicy.NonShared)]
public class PersonViewModel : ViewModelBase

The preceding code will ensure a new instance is created each time an Import on this type
is called.

But what about tying different Views to the same ViewModel type? Well, the same approach
can be used: identify your ViewModel as Exported in a Shared way, and the same
ViewModel instance (holding the state) will be reused as DataContext for whichever View
imports it. This makes it very easy to reuse the same underlying data, but presenting it in a
different way. And if you need different instances of the same ViewModel type for different
Views, simply export the ViewModel as NonShared.

Note that, in essence, we're using MEF for dependency injection in this approach. Not
everyone (as with almost all patterns, frameworks, and building blocks) agrees that this is a
correct approach, or something that should be done. If you don't want to use MEF, you can
easily use an IoC container, such as Castle (http://www.castleproject.org/) or Ninject
(http://ninject.org/), to get this result; that will, however, require external references to
those containers, while MEF is part of the core .NET Silverlight CLR.

MEF is not an Inversion of Control container, but it of course uses IoC to do its business. And it
even allows you to do more than your typical IoC container: an IoC container typically works on
known dependencies. MEF was designed to manage your unknown dependencies, hence the
plugability promise. However, that doesn't mean you can't manage your known dependencies
with it as well—at least up to a certain point. Some applications use MEF as a replacement for
their standard IoC containers like Castle or Ninject, other applications use both: an IoC container
for known dependencies, MEF for unknown ones. The choice is yours, but for more demanding,
enterprise-grade applications, a mix of an IoC container and MEF is often the way to go.

http://ninject.org/

Chapter 6

229

See also
For more information on MVVM, have a look at the other recipes in this chapter.

Using commands to pass your events to
the ViewModel

Applies to Silverlight 3, 4, 5 and WP7

Up until now, we've passed through click events (or other events) by setting up a handler in the
code behind of our View. In this view, we then cast the DataContext to a specific ViewModel
type, which contains the implementation of the handler.

This is easy, but it's not the way to go in MVVM. By doing this, you're adding in some extra
tight coupling between your View and ViewModel, which is exactly what MVVM tries to avoid. A
better way to tackle this problem is by using commands. This will allow you to bind an event on
your View to a command on your ViewModel, thus eliminating the need to pass through events
via the code behind your View.

In this recipe, we'll see how we can use commands to pass events to the ViewModel.

Getting ready
We're starting with the solution we completed in the recipe Connecting a View to a ViewModel
using a ViewModelLocator. Or alternatively, you can start with the provided starter solution,
which can be found in Chapter 6\Using_Commands_Starter.

The completed solution can be found in at Chapter 6\Using_Commands_Completed.

How to do it...
We're going to adjust the solution from the recipe Connecting a View to a ViewModel using
a ViewModelLocator, or the starter solution, to use commanding. To achieve this, we should
complete the following steps:

1. Open PeopleView.xaml.cs, and remove the button-click handler.
2. Open PeopleView.xaml, locate the Add Person button, and change the

tag as follows:
<Button x:Name="btnAddPerson"
 Content="Add person"
 Width="200"
 Height="30"
 Command="{Binding AddPersonCommand}"></Button>

MVVM

230

3. Open PersonViewModel.cs, and remove the AddPerson() method.

4. Add the following using statement to the top of PersonViewModel.cs:
using GalaSoft.MvvmLight.Command;

5. Add the following command definition:
public RelayCommand AddPersonCommand
{
 get;
 private set;
}

6. Add an InstantiateCommand() method with the following implementation, and
change the constructor so it calls this method:
public PersonViewModel()
{
 InstantiateCommands();
 LoadData();
}

private void InstantiateCommands()
{
 AddPersonCommand = new RelayCommand(() =>
AddPersonExecution(), () => true);
}

7. Add the implementation of AddPersonExecution as such:
private void AddPersonExecution()
{
 People.Add(new Person() { FirstName = "Sven", Name =
"Vercauteren", Age = 25 });
 LastAddedDate = DateTime.Now;
}

Chapter 6

231

8. You can now build and run your application.

How it works...
The Command property of a Button can be bound to any class that implements ICommand, so
that's the first thing we need—an implementation of ICommand. ICommand looks as follows:

public interface ICommand
{
 // Summary:
 // Occurs when changes occur that affect whether the command
should execute.
 event EventHandler CanExecuteChanged;

 // Summary:
 // Defines the method that determines whether the command can
execute in its
 // current state.
 //
 // Parameters:
 // parameter:
 // Data used by the command. If the command does not require
data to be passed,
 // this object can be set to null.
 //
 // Returns:
 // true if this command can be executed; otherwise, false.
 bool CanExecute(object parameter);
 //
 // Summary:

MVVM

232

 // Defines the method to be called when the command is
invoked.
 //
 // Parameters:
 // parameter:
 // Data used by the command. If the command does not require
data to be passed,
 // this object can be set to null.
 void Execute(object parameter);
}

To have a valid implementation of ICommand, we'd need to implement an Execute method,
a CanExecute method, and an EventHandler. If needed, you can do this by yourself, but
MVVM Light already includes an implementation of this interface, named RelayCommand, so
we can use that one.

When you instantiate a RelayCommand, two parameters can be passed into the constructor:
the first one is of type Action—typically, you will pass in (a call to) the code that is to be
executed when the command is activated. The second parameter, a Func<bool>, allows you
to add a condition, which will state whether or not the command can be executed. If this Func
returns true, the command will be executed, if it returns false, it will not. This last one is an
optional parameter. If you do not pass it in, it will return true by default, so the command will
always be executed.

There's also a RelayCommand implementation that accepts a
typed parameter—have a look at the There's More... section for
more information on this.

Back to our solution: we've created a command on our PersonViewModel,
AddPersonCommand, and provided it with code that must be executed
(AddPersonExecution) and a Func<bool> that always returns true (meaning
the command will always be executed).

In PersonView, we've added a Command={Binding AddPersonCommand} property to the
Add Person button tag.

By doing these two things, we've successfully implemented commanding in our project: when
the user clicks the button, the AddPersonExecution method will be executed.

Chapter 6

233

There's more...
The approach we've used here is easy and fast. Use the Command property on the Button
and bind a command to it, which will get executed when you click the button. However, not
all controls have a Command property (the controls that inherit from ButtonBase do). And
in some cases, you might want to bind to another event than the Click event. Examples are
binding to a SelectionChanged event on a ListBox, or to a Loaded event on a Button.

In these cases, another approach can be used: you can use the triggers collection from the
System.Windows.Interactivity assembly.

First, import the System.Windows.Interactivity assembly (add a reference to it if
there isn't one already—you will have it if you've installed Microsoft Expression Blend, or
alternatively, it's provided in the Dependencies folder of the solution provided with this
recipe) and import the Command namespace from MVVM Light:

xmlns:i="clr-namespace:System.Windows.Interactivity;assembly=System.
Windows.Interactivity"
xmlns:cmd="clr-namespace:GalaSoft.MvvmLight.Command;assembly=GalaSoft.
MvvmLight.Extras.SL4"

Then, change the Button tag as such:

<Button x:Name="btnAddPerson"
 Content="Add person"
 Width="200"
 Height="30">
 <i:Interaction.Triggers>
 <i:EventTrigger EventName="Click">
 <cmd:EventToCommand Command="{Binding
AddPersonCommand}"></cmd:EventToCommand>
 </i:EventTrigger>
 </i:Interaction.Triggers>
</Button>

With this syntax, you can bind any event to a command. The Interaction.Triggers
collection can contain multiple event triggers: you can bind different commands to different
events and handle the same event through different commands.

Besides a regular command, you also have commands that allow you to pass in a parameter.
For example, you might want to pass through the selected item on the command used to
handle the SelectionChanged event of a ListBox. This is possible as well. Let's take our
completed solution, and change the following:

1. In PeopleView, change the ListBox opening tag to this:
<ListBox ItemsSource="{Binding People}"
 Margin="0,5,0,0"

MVVM

234

 x:Name="lstPeople"
 Grid.Row="1">
 <i:Interaction.Triggers>
 <i:EventTrigger EventName="SelectionChanged">
 <cmd:EventToCommand Command="{Binding
SelectedPersonChangedCommand}"
 CommandParameter="{Binding
SelectedItem, ElementName=lstPeople}"></cmd:EventToCommand>
 </i:EventTrigger>
 </i:Interaction.Triggers>

2. In PersonViewModel, define a new command,
SelectedPersonChangedCommand:
public RelayCommand<Person> SelectedPersonChangedCommand
{
 get;
 private set;
}

3. Instantiate and implement it as such:
private void InstantiateCommands()
{
… //(existing code)
 SelectedPersonChangedCommand = new RelayCommand<Person>((p) =>
SelectedPersonChangedExecution(p), (p) => true);
}

private void SelectedPersonChangedExecution(Person selectedPerson)
{
 // implementation
}

Now, when the selection in the ListBox is changed, the
SelectedPersonChangedExecution method will be executed,
passing in the newly selected person.

4. Lastly, MVVM Light also allows you to pass through the event parameters as
command parameters. To achieve this, you can use the following code:

 <Button x:Name="btnAddPerson"
 Content="Add person"
 Width="200"
 Height="30">
 <i:Interaction.Triggers>
 <i:EventTrigger EventName="Click">

Chapter 6

235

 <cmd:EventToCommand Command="{Binding
AddPersonCommand}"
 PassEventArgsToCommand="True"></
cmd:EventToCommand>
 </i:EventTrigger>
 </i:Interaction.Triggers>
</Button>

See also
For more information on MVVM, have a look at the other recipes in this chapter.

Communicating between different
ViewModels

Applies to Silverlight 3, 4, 5 and WP7

Often, you'll find yourself in need of sending messages between ViewModels. A very typical
example would be: you've got a View with a ListBox, and once an item is selected, you
want that item to be displayed in detail in another View. In other words, the standard
master-detail requirement.

How do you achieve this with MVVM? If you didn't follow the pattern, you could easily say:
"well, I need to execute a method on ViewModel B when something happens in ViewModel
A, so I'll keep a reference to ViewModel B in ViewModel A, so I can call the method when
appropriate". This, of course, is tight coupling—your ViewModels aren't independent of
each other anymore, and ViewModel A now knows that ViewModel B exists. What's more:
if ViewModel B is removed, or heavily changed somehow, you'll need to update ViewModel A
as well.

This is, of course, not a good approach. In this recipe, we'll see how to tackle this problem. We
will use MVVM Light's Messenger to communicate between ViewModels.

Getting ready
We're starting with the provided starter solution, which can be found in
Chapter 6\Communicating_Between_ViewModels_Starter.

The completed solution can be found in Chapter 6\Communicating_Between_
ViewModels_Completed.

MVVM

236

How to do it...
We're going to start from the provided starter solution, which includes two Views
(PeopleView and PersonEditView) with their respective ViewModels, and we're going to
ensure that once a person is selected in PeopleView, it is sent to PersonEditView and
displayed on that View. We will use MVVM Light's Messenger for this. To achieve this, we'll
complete the following steps:

1. Open LocalStateContainer.cs and add the following:
public static Messenger PersonMessenger = new Messenger();

2. Right-click on the Messages folder, select Add New class, and add a class named
PersonSelectedMessage. Implement it as such:
public class PersonSelectedMessage
{
 public Person SelectedPerson { get; set; }
 public PersonSelectedMessage(Person person)
 {
 SelectedPerson = person;
 }
}

3. Open PersonViewModel.cs, and add the following code to the
InstantiateCommands() method:
SelectedPersonChangedCommand = new RelayCommand<Person>((p) => Sel
ectedPersonChangedExecution(p), (p) => true);

4. Add the following method:
private void SelectedPersonChangedExecution(Person selectedPerson)
{
 // send a message to notify anyone who's registered that the
selection
 // has changed
 LocalStateContainer.PersonMessenger.
Send<PersonSelectedMessage>(new PersonSelectedMessage(selectedPers
on));
}

5. Open PersonEditViewModel.cs, and add the following method:
private void InstantiateMessenger()
{
 LocalStateContainer.PersonMessenger.Register<PersonSelectedMes
sage>(this, (msg) => PersonSelectedMessageReceived(msg));
}

Chapter 6

237

6. Call this method from the PersonEditViewModel constructor.

7. Add the following method:
private void PersonSelectedMessageReceived
(PersonSelectedMessage msg)
{
 CurrentPerson = msg.SelectedPerson;
}

8. You can now build and run your application.

How it works...
The Messenger is a classic messaging service provided by MVVM Light. It works via
subscription/broadcasting principles. If you want to receive a message of a certain type,
you have to subscribe yourself to receive that type of message through the messenger.
Once a message of the type you've subscribed to is broadcasted through that same
messenger, you will receive it and can execute the necessary code.

In our example, the Messenger mediates between PersonViewModel and
PersonEditViewModel. They can communicate with each other, without knowing each
other's existence. Like this, our loose coupling is kept in place.

In the first steps of our example, we're instantiating a Messenger: PersonMessenger.
This instance will be used to send messages between PersonViewModel and
PersonEditViewModel.

MVVM

238

We want to pass a Person instance from PersonViewModel to PersonEditViewModel,
so we start out by creating a PersonSelectedMessage, which can be instantiated by
passing in a Person instance. The PersonEditViewModel must be able to receive a
message of this type, and execute the necessary code to set its CurrentPerson property
to the Person instance it received. That's what the code in steps 5 and 6 is for: we're using
our PersonMessenger instance, and telling it that it should register this ViewModel to
receive messages of type PersonSelectedMessage. When such a message is received, the
PersonSelectedMessageReceived method is executed.

Only one thing is left now—sending the actual message. We're handling the
SelectionChanged event of the ListBox on PeopleView through commanding
and, in the handler, we're creating a new message of type PersonSelectedMessage,
instantiating it by passing in the currently selected Person. This is then broadcasted
via PersonMessenger, and will be received by our PersonEditViewModel, as this
ViewModel is registered to receive messages of that type from our PersonMessenger.

There's more...
The Messenger we've used in this case was an instance we created to communicate
between two specific ViewModels: PersonViewModel and PersonEditViewModel.
This is perfect if you're sure certain messages should only be sent between a specific set of
ViewModel instances (for example, if your application consists of a Reporting module and
a User Management module, messages concerning the one or the other will typically only
be sent between ViewModels belonging to that specific module), you would use a self-created
Messenger instance.

You've also got the possibility to send application-wide messages, as every ViewModel in
MVVM Light has access to the default Messenger. Have a look at the recipe Leveraging a
messenger to wrap application-wide messages, for an implementation of this.

See also
For more information on MVVM, have a look at the other recipes in this chapter.

Chapter 6

239

Leveraging a messenger to wrap
application-wide messages

Applies to Silverlight 3, 4, 5 and WP7

Sending messages between ViewModel instances is something that will have to be done
in almost every application, as the previous recipe, Communicating between different
ViewModels, explained in detail. However, most applications also need a way to send general
messages, which should be able to be sent from everywhere in the application to a specific
place. One fine example would be an error-handling message, and how to show this via a
MessageBox to the user.

In MVVM Light, every ViewModel has access to the default Messenger instance and a few
built-in message types, which can be used for this purpose. In this recipe, we'll learn how
to do that.

Getting ready
We're starting from the starter solution provided in
Chapter 6\Leveraging_Messenger_Starter.

The completed solution can be found in
Chapter 6\Leveraging_Messenger_Completed.

How to do it...
We're going to adjust the starter solution so it will accept DialogMessages in a central
location in our application. To achieve this, we'll complete the following steps:

1. Open MainPage.xaml.cs and add the following code to the constructor:
Messenger.Default.Register<DialogMessage>(this, (msg) =>
HandleDialogMessage(msg));

2. Add the following code:
private void HandleDialogMessage(DialogMessage msg)
{
 MessageBoxResult msgBox = MessageBox.Show(msg.Content,
"Error", msg.Button);
 msg.ProcessCallback(msgBox);

}

MVVM

240

3. Open PersonViewModel.cs and change the AddPersonExecution() method:
private void AddPersonExecution()
{
 // simulate an error
 Messenger.Default.Send<DialogMessage>(new DialogMessage("Add
person error"
 , (result) => ExecuteLoadErrorCallback(result)));
}

4. Add the following code:
private void ExecuteLoadErrorCallback(System.Windows.
MessageBoxResult result)
{
 // action to execute on this VM, depending on the messagebox
result
}

5. You can now build and run your application.

How it works...
We're trying to end up with a central place in the application to handle DialogMessages
(used to show a message to the user), without having to create a specific Messenger
instance nor a message type.

Chapter 6

241

We're starting out by creating a central place to handle messages of this type—the MainPage.
MainPage is registered in steps 1 and 2 to receive messages of type DialogMessage
through the default Messenger.

Next, we have to create a message to send; this is done in PersonViewModel. We also pass
in a method that will be executed on callback. This is code that's executed once a user has
closed the MessageBox.

This message is sent through the default Messenger, available throughout the application
(as you notice, we do not have to instantiate this ourselves). Once the message is received
in MainPage, the MessageBox is shown. After this MessageBox is closed by the user, the
callback is processed. This takes us back to our ViewModel, where we can now execute code
depending on what the user clicked in the MessageBox.

What we've reached now is a central place to handle messages of this type, and we
didn't have to create a new Messenger instance as we're using the default built-in static
Messenger instance, available throughout all ViewModels.

There's more...
This example was written to show you how to use the default Messenger instance,
accessible throughout the application, using a built-in DialogMessage type. Other
types are built-in as well:

 f NotificationMessage: built-in type to send a notification to any recipient

 f NotificationMessage<T>: built-in type to send a notification (string) and generic
content to any recipient

 f NotificationMessageAction: built-in type to send a message that provides a
callback

 f NotificationMessageAction<T>: generically typed version of
NotificationMessageAction

 f PropertyChangedMessage<T>: used to propagate a property changed notification
to any recipient; OldValue (T) and NewValue (T) can be passed via this message

Besides that, the Messenger can actually be used to communicate between any two loosely
coupled types—not only ViewModels, as you have seen in this recipe.

And finally, the default Messenger can, just like any Messenger instance, receive and send
messages of any type, not just built-in types.

See also
For more information on MVVM, have a look at the other recipes in this chapter.

7
Working with Services

In this chapter, we will cover:

 f Connecting and reading from a standardized service

 f Persisting data using a standardized service

 f Configuring cross-domain calls

 f Working cross-domain from a trusted application

 f Reading XML using HttpWebRequest

 f Reading out an RSS feed

 f Accessing a database in SQL Azure

 f Accessing a service in Windows Azure

 f Running a Silverlight application hosted in Windows Azure

 f Using socket communication

Introduction
Looking at the namespaces and classes in the Silverlight assemblies, it's easy to see that
there are no ADO.NET-related classes available in Silverlight. Silverlight does not contain
a DataReader, a DataSet, or any option to connect to a database directly. Thus, it's not
possible to simply define a connection string for a database and let Silverlight applications
connect with that database directly.

The solution adds a layer on top of the database in the form of services. The services that talk
directly to a database (or, more preferably, to a business and data access layer) can expose
the data so that Silverlight can work with it. However, the data that is exposed in this way does
not always have to come from a database. It can come from a third-party service, by reading a
file, or be the result of an intensive calculation executed on the server.

Working with Services

244

Silverlight has a wide range of options to connect with services. This is important as it's the
main way of getting data into our applications. In this chapter, we'll look at the concepts of
connecting with several types of services and external data. In Chapter 8 through Chapter 10,
we'll take a detailed look at communicating with WCF and REST services respectively, which
are the most widely-used types of services when working with Silverlight.

We'll start our journey by looking at how Silverlight connects and works with a regular service.
We'll see the concepts that we use here recur for other types of service communications
as well. One of these concepts is cross-domain service access. In other words, this means
accessing a service on a domain that is different from the one where the Silverlight
application is hosted. We'll see why Microsoft has implemented cross-domain restrictions in
Silverlight and what we need to do to access externally hosted services.

Next, we'll talk about working with the Windows Azure Platform. More specifically, we'll talk
about how we can get our Silverlight application to get data from a SQL Azure database, how
to communicate with a service in the cloud, and even how to host the Silverlight application in
the cloud, using a hosted service or serving it from Azure Storage.

Finally, we'll finish this chapter by looking at socket communication. This type of
communication is rare and chances are that you'll never have to use it. However, if your
application needs the fastest possible access to data, sockets may provide the answer.

Connecting and reading from a
standardized service

Applies to Silverlight 3, 4 and 5

If we need data inside a Silverlight application, chances are that this data resides in a
database or another data store on the server. Silverlight is a client-side technology, so when
we need to connect to data sources, we need to rely on services. Silverlight has a broad
spectrum of services to which it can connect.

In this recipe, we'll look at the concepts of connecting with services, which are usually very
similar for all types of services Silverlight can connect with. We'll start by creating an ASMX
webservice—in other words, a regular web service. We'll then connect to this service from the
Silverlight application and invoke and read its response after connecting to it.

Getting ready
In this recipe, we'll build the application from scratch. However, the completed code for this
recipe can be found in the Chapter07/SilverlightJackpot_Read_Completed folder in
the code bundle that is available on the Packt website.

Chapter 7

245

How to do it...
We'll start to explore the usage of services with Silverlight using the following scenario.
Imagine we are building a small game application in which a unique code belonging to a user
needs to be checked to find out whether or not it is a winning code for some online lottery.
The collection of winning codes is present on the server, perhaps in a database or an XML
file. We'll create and invoke a service that will allow us to validate the user's code with the
collection on the server. The following are the steps we need to follow:

1. We'll build this application from scratch. Our first step is creating a new Silverlight
application called SilverlightJackpot. As always, let Visual Studio create a hosting
website for the Silverlight client by selecting the Host the Silverlight application in
a new Web site checkbox in the New Silverlight Application dialog box. This will
ensure that we have a website created for us, in which we can create the service as
well.

2. We need to start by creating a service. For the sake of simplicity, we'll create a basic
ASMX web service. To do so, right-click on the project node in the SilverlightJackpot.
Web project and select Add | New Item... in the menu. In the Add New Item dialog,
select the Web Service item. We'll call the new service as JackpotService. Visual
Studio creates an ASMX file (JackpotService.asmx) and a code-behind file
(JackpotService.asmx.cs).

3. To keep things simple, we'll mock the data retrieval by hardcoding the winning
numbers. We'll do so by creating a new class called CodesRepository.cs in the
web project. This class returns a list of winning codes. In real-world scenarios, this
code would go out to a database and get the list of winning codes from there. The
code in this class is very easy. The following is the code for this class:
public class CodesRepository
{
 private List<string> winningCodes;
 public CodesRepository()
 {
 FillWinningCodes();
 }
 private void FillWinningCodes()
 {
 if (winningCodes == null)
 {
 winningCodes = new List<string>();
 winningCodes.Add("12345abc");
 winningCodes.Add("azertyse");
 winningCodes.Add("abcdefgh");
 winningCodes.Add("helloall");
 winningCodes.Add("ohnice11");

Working with Services

246

 winningCodes.Add("yesigot1");
 winningCodes.Add("superwin");
 }
 }

 public List<string> WinningCodes
 {
 get
 {
 return winningCodes;
 }
 }
}

4. At this point, we need only one method in our JackpotService. This method should
accept the code sent from the Silverlight application, check it with the list of winning
codes, and return whether or not the user is lucky to have a winning code. Only the
methods that are marked with the WebMethod attribute are made available over the
service. The following is the code for our service:
[WebService(Namespace = "http://tempuri.org/")]
[WebServiceBinding(ConformsTo = WsiProfiles.BasicProfile1_1)]
[System.ComponentModel.ToolboxItem(false)]
public class JackpotService : System.Web.Services.WebService
{
 List<string> winningCodes;
 public JackpotService()
 {
 winningCodes = new CodesRepository().WinningCodes;
 }
 [WebMethod]
 public bool IsWinningCode(string code)
 {
 if(winningCodes.Contains(code))
 return true;
 return false;
 }
}

5. Build the solution at this point to ensure that our service will compile and can be
connected from the client side.

6. Now that the service is ready and waiting to be invoked, let's focus on the Silverlight
application. To make the service known to our application, we need to add a
reference to it. This is done by right-clicking on the SilverlightJackpot project node,
and selecting the Add Service Reference... item.

Chapter 7

247

7. In the dialog that appears, we have the option to enter the address of the service
ourselves. However, we can click on the Discover button as the service lives in the
same solution as the Silverlight application. Visual Studio will search the solution for
the available services. If there are no errors, our freshly created service should show
up in the list. Select it and rename the Namespace: as JackpotService, as shown in
the following screenshot. Visual Studio will now create a proxy class:

8. The UI for the application is kept quite simple. An image of the UI can be seen a little
further ahead. It contains a TextBox, where the user can enter a code, a Button
that will invoke a check, and a TextBlock that will display the result. This can be
seen in the following code:
<StackPanel>
 <TextBox x:Name="CodeTextBox"
 Width="100"
 Height="20">
 </TextBox>
 <Button x:Name="CheckForWinButton"
 Content="Check if I'm a winner!"
 Click="CheckForWinButton_Click">
 </Button>

Working with Services

248

 <TextBlock x:Name="ResultTextBlock">
 </TextBlock>
</StackPanel>

9. In the Click event handler, we'll create an instance of the proxy class that was
created by Visual Studio as shown in the following code:
private void CheckForWinButton_Click(object sender,
 RoutedEventArgs e)
{
 JackpotService.JackpotServiceSoapClient client = new
 SilverlightJackpot.JackpotService.JackpotServiceSoapClient();
}

10. All service communications in Silverlight happen asynchronously. Therefore, we need
to provide a callback method that will be invoked when the service returns:
client.IsWinningCodeCompleted += new EventHandler
 <SilverlightJackpot.JackpotService.
 IsWinningCodeCompletedEventArgs>
 (client_IsWinningCodeCompleted);

11. To actually invoke the service, we need to call the IsWinningCodeAsync method
as shown in the following line of code. This method will make the actual call to the
service. We pass in the value that the user entered:
client.IsWinningCodeAsync(CodeTextBox.Text);

12. Finally, in the callback method, we can work with the result of the service via the
Result property of the IsWinningCodeCompletedEventArgs instance. Based
on the value, we display another message as shown in the following code:
void client_IsWinningCodeCompleted(object sender,
 SilverlightJackpot.JackpotService.
 IsWinningCodeCompletedEventArgs e)
{
 bool result = e.Result;
 if (result)
 ResultTextBlock.Text = "You are a winner! Enter your data
 below and we will contact you!";
 else
 ResultTextBlock.Text = "You lose... Better luck next time!";
}

Chapter 7

249

13. We now have a fully working Silverlight application that uses a service for its data
needs. The following screenshot shows the result from entering a valid code:

How it works...
As it stands, the current version of Silverlight does not have support for using a local
database. Silverlight thus needs to rely on external services for getting external data. Even if
we had local database support, we would still need to use services in many scenarios. The
sample used in this recipe is a good example of data that would need to reside in a secure
location (meaning on the server). In any case, we should never store the winning codes in a
local database that would be downloaded to the client side.

Silverlight has the necessary plumbing on board to connect with the most common types
of services. Services such as ASMX, WCF, REST, RSS, and so on, don't pose a problem for
Silverlight. While the implementation of connecting with different types of services differs, the
concepts are similar.

In this recipe, we used a plain old web service. Only the methods that are attributed with
the WebMethodAttribute are made available over the service. This means that even if
we create a public method on the service, it won't be available to clients if it's not marked
as a WebMethod. In this case, we only create a single method called IsWinningCode,
which retrieves a list of winning codes from a class called CodesRepository. In real-world
applications, this data could be read from a database or an XML file. Thus, this service is the
entry point to the data.

For Silverlight to work with the service, we need to add a reference to it. When doing so, Visual
Studio will create a proxy class. Visual Studio can do this for us because the service exposes a
Web Service Description Language (WSDL) file. This file contains an overview of the methods
supported by the service. A proxy can be considered a copy of the server-side service class,
but without the implementations. Instead, each copied method contains a call to the actual
service method. The proxy creation process carried out by Visual Studio is the same as adding
a service reference in a regular .NET application.

Working with Services

250

However, invoking the service is somewhat different. All communication with services in
Silverlight is carried out asynchronously. If this wasn't the case, Silverlight would have had to
wait for the service to return its result. In the meantime, the UI thread would be blocked and
no interaction with the rest of the application would be possible.

To support the asynchronous service call inside the proxy, the IsWinningCodeAsync
method as well as the IsWinningCodeCompleted event is generated. The
IsWinningCodeAsync method is used to make the actual call to the service. To
get access to the results of a service call, we need to define a callback method.
This is where the IsWinningCodeCompleted event comes in. Using this event,
we define which method should be called when the service returns (in our case, the
client_IsWinningCodeCompleted method). Inside this method, we have access
to the results through the Result parameter, which is always of the same type as the
return type of the service method.

See also
Apart from reading data, we also have to persist data. In the next recipe, Persisting data using
a standardized service, we'll do exactly that.

Persisting data using a standardized service
Applies to Silverlight 3, 4 and 5

In the previous recipe, we connected with the service and read the result of the service call.
However, we can also send data back to the service as a type known by the service. If a type
is used as the type for a parameter or as the return type for a service method, that type will
be exposed by the service as well. Through the proxy generation, we have access to this type
inside the Silverlight application as well.

In this recipe, we'll add another method to the web service that uses a custom type as the
type for its parameter.

Getting ready
This recipe builds on the code from the previous recipe. If you want to follow along with this
recipe, you can either continue using your code or use the provided starter solution located
in the Chapter07/SilverlightJackpot_Persist_Starter folder in the code bundle
that is available on the Packt site. The finished solution for this recipe can be found in the
Chapter07/SilverlightJackpot_Persist_Completed folder.

Chapter 7

251

How to do it...
We'll extend the SilverlightJackpot solution that we built in the previous recipe. When the
user enters a valid code, a registration form appears that allows the user to enter his or
her credentials. We'll extend the service as well, so that it accepts this data and stores it
accordingly. Let's look at the way this is done in the following steps:

1. We will start by adding a new class called Winner in the web project. This class will
be used to store the information about a winner:
public class Winner
{
 public string FirstName { get; set; }
 public string LastName { get; set; }
 public string Email { get; set; }
}

2. We'll also create another class called WinnerRepository. This class would allow us
to store all the winners in a static List<Winner>. Just as the previous recipe, this
data would be stored in a database in real-world scenarios:
public static class WinnerRepository
{
 private static List<Winner> winners = new List<Winner>();
 public static void AddWinner(Winner newWinner)
 {
 winners.Add(newWinner);
 }
}

3. We can now extend the service (JackpotService.asmx.cs), so that it includes a
method (again marked as WebMethod) that accepts a Winner, and stores it in the
List<Winner> of the WinnerRepository class. This is shown in the following
code:
[WebMethod]
public void SaveWinner(Winner winner)
{
 WinnerRepository.AddWinner(winner);
}

4. Build the solution to make sure that the service works correctly.

5. To make the new method available in the Silverlight application, we need to right-click
on the JackpotService node within the Silverlight project in the Solution Explorer,
and select the Update Service Reference item. Visual Studio will reconnect to the
service and rebuild the proxy. It will also include our extra method.

Working with Services

252

6. We need to add some XAML code to add the fields to collect the required information.
For the complete listing, refer to the MainPage.xaml file in the sample code. The
following is the most relevant part of the XAML code, as it contains the fields in which
the user can enter his/her details:
<TextBlock x:Name="NameTextBlock"
 Text="Name: ">
</TextBlock>
<TextBox x:Name="NameTextBox">
</TextBox>
<TextBlock x:Name="FirstNameTextBlock">
</TextBlock>
<TextBox x:Name="FirstNameTextBox">
</TextBox>
<TextBlock x:Name="EmailTextBlock">
</TextBlock>
<TextBox x:Name="EmailTextBox">
</TextBox>
<Button x:Name="SubmitButton"
 Click="SubmitButton_Click">
</Button>
<TextBlock x:Name="SubmissionResultTextBlock">
</TextBlock>

7. In the Click event handler, we start off by creating an instance of the proxy similar
to the previous recipe. We'll define the callback method when the service call
completes, as well as make the asynchronous call. However, the latter requires
an instance of the Winner class, which was originally created on the server. This
instance is now sent to the service. In the callback method, we'll update the user
interface, so that the result of the service call is shown:
private void SubmitButton_Click(object sender, RoutedEventArgs e)
{
 JackpotService.JackpotServiceSoapClient client = new
 SilverlightJackpot.JackpotService.JackpotServiceSoapClient();
 client.SaveWinnerCompleted += new
 EventHandler<System.ComponentModel.AsyncCompletedEventArgs>
 (client_SaveWinnerCompleted);
 client.SaveWinnerAsync(
 new JackpotService.Winner()
 {
 FirstName = FirstNameTextBox.Text,
 LastName = NameTextBox.Text,
 Email = EmailTextBox.Text
 }
);

Chapter 7

253

}
void client_SaveWinnerCompleted(object sender,
 System.ComponentModel.AsyncCompletedEventArgs e)
{
 if (e.Error == null)
 {
 ResultTextBlock.Text = string.Empty;
 SubmissionResultTextBlock.Text = "Submission successful!";
 UserDetailGrid.Visibility = Visibility.Collapsed;
 }
}

8. After completing these steps, we have successfully allowed the user to send data
from the Silverlight application to the service. In turn, the service can store this
data in any data store. The following screenshot shows the expanded fields. The
application will bundle the entered information into a Winner object and send it to
the service:

How it works...
Apart from reading data, we also need to send data back to a service. Behind this service
façade, code can be used to store data into a database or any other data store. An important
thing to understand here is that persisting data can be carried out by passing in values for the
parameters of a service method.

Working with Services

254

When the service uses a particular class (such as the Winner class in this recipe) as a
parameter type, this class gets sent down the wire to the Silverlight application as well. On
generating the proxy based on the WSDL file, a local copy of this class will be generated in
the Silverlight application as well. This class can be used in the same way as a normal class.
In this sample, we have created an instance of this class using the following code:

client.SaveWinnerAsync(new JackpotService.Winner()
 { FirstName = FirstNameTextBox.Text, LastName = NameTextBox.Text,
 Email = EmailTextBox.Text });

This instance is then serialized in a SOAP message (because of the ASMX service), and sent
to the service. On the service side, the instance is rebuilt and used as a parameter for the
service method through deserialization.

See also
We have looked at connecting with a service and reading data from it in the first recipe of this
chapter, Connecting and reading from a standardized service.

Configuring cross-domain calls
Applies to Silverlight 3, 4 and 5

In the previous recipes, we have used services that were hosted within the same website
(and consequently the same domain) as the Silverlight application itself. However, more often
than not, this will not be the case in real-world scenarios. We may need to connect to a third-
party service (such as Flickr's API services) from Silverlight. Even if we wrote the service layer
ourselves, it may be hosted on a different domain.

Silverlight imposes restrictions on communication with external services. However, Silverlight
allows services to opt-in to allow being called from a Silverlight application. In this recipe, we'll
look at the actions we need to take to make it possible to connect to a self-written service that
is hosted in a different domain.

Getting ready
To follow along with this recipe, a starter solution is provided in the Chapter07/
SilverlightCrossDomain_Starter folder in the code bundle that is available on
the Packt site. The finished solution for this recipe can be found in the Chapter07/
SilverlightCrossDomain_Completed folder.

D
ow

n
lo

a
d
 f
ro

m
 W

o
w

!
e
B
o
o
k

<
w

w
w

.w
o
w

e
b
o
o
k.

co
m

>

Chapter 7

255

How to do it...
In this recipe, we'll build a Silverlight application that shows flight information based on
the values entered by the user. However, this information is located in a service hosted
by the airline companies, which means it runs externally and on a different domain than
our Silverlight application. In the following steps, we'll see what we need to change so that
Silverlight can access externally hosted services:

1. Start by opening the solution as outlined in the Getting Ready section. The solution
contains two projects: SilverlightCrossDomain (the Silverlight project) and
SilverlightCrossDomain.Web (the hosting web project).

2. In this solution, add a new ASP.NET Web Application and name it as
FlightInformation. You can do this by right-clicking on the solution in the Solution
Explorer and selecting Add | New Project.... In the dialog that appears, select ASP.
NET Web Application under the Visual C# | Web node.

3. We'll create a WCF service in this web application. Add a new WCF
service called FlightInformationService.svc. Visual Studio
will create the FlightInformationService.svc file, the
IFlightInformationService.cs interface, and the concrete
implementation—FlightInformationService.svc.cs (Note that
we'll be using more WCF services in Chapter 8, Talking to WCF and ASMX
Services and Chapter 9, Talking to WCF and ASMX Services - One Step Beyond).

4. To make the service accessible from Silverlight, we need to change the binding type
from wsHttpBinding to basicHttpBinding in the web.config of the project.
The change we need to make is shown in the following code:
<endpoint address=""
 binding="basicHttpBinding"
 contract="FlightInformation.IFlightInformationService">
 <identity>
 <dns value="localhost" />
 </identity>
</endpoint>

5. Let's now define the contract of the service in the IFlightInformationService
interface. We'll keep it simple by making it possible for the service to return only a list
of Flight instances.
[ServiceContract]
public interface IFlightInformationService
{
 [OperationContract]
 List<Flight> GetFlights(string fromAirport, string toAirport,
 DateTime date);
}

Working with Services

256

6. The Flight class is not yet defined, so we should go ahead and create this class as
shown in the following code:
[DataContract]
public class Flight
{
 [DataMember]
 public string Airway { get; set; }
 [DataMember]
 public DateTime DepartureTime { get; set; }
 [DataMember]
 public DateTime ArrivalTime { get; set; }
 [DataMember]
 public double Price { get; set; }
}

7. We can now add the implementation method for the service in the
FlightInformationService class. For now, we'll create a hard-coded list of
Flight instances. In real-world scenarios, this data would come from a real data
store, such as a database. The following is the code for the service:
public class FlightInformationService : IFlightInformationService
{
 public List<Flight> GetFlights(string fromAirport, string
 toAirport, DateTime date)
 {
 //some data access code here...
 return new List<Flight>()
 {
 new Flight()
 {
 Airway = "Silverlight Airways",
 DepartureTime = DateTime.Now,
 ArrivalTime = DateTime.Now.AddHours(3),
 Price=300
 },
 new Flight()
 {
 Airway = "Packt Airways",
 DepartureTime = DateTime.Now.AddHours(5),
 ArrivalTime = DateTime.Now.AddHours(10),
 Price=1000
 },
 new Flight()
 {

Chapter 7

257

 Airway = "New Airways",
 DepartureTime = DateTime.Now,
 ArrivalTime = DateTime.Now.AddHours(9),
 Price=1200
 },
 new Flight()
 {
 Airway = "Silverlight Airways",
 DepartureTime = DateTime.Now.AddHours(3),
 ArrivalTime = DateTime.Now.AddHours(5),
 Price=200
 }
 };
 }
}

8. Build the solution at this point.

9. Now that the external service is ready, we can use it from our Silverlight
application. Or can we? Let's try and see how it goes! Add a service reference in
the Silverlight application by right-clicking on the Silverlight project in the Solution
Explorer and selecting Add Service Reference.... In the dialog, search for the
FlightInformationService using the Discover button. Once it's located, set
FlightInformationService as the namespace.

10. In the Silverlight application, we create a basic UI (shown in the image a bit later in
this recipe). The most important element of the UI is a ListBox control, which we'll
use to bind the flight information. The UI also contains a Button that will trigger a
request to the service. Refer to the sample code for the complete listing.

11. In the Click event of the Button, we perform an asynchronous call to the service.
This is shown in the following code:
private void SearchButton_Click(object sender, RoutedEventArgs e)
{
 FlightInformationService.FlightInformationServiceClient proxy =
 new SilverlightCrossDomain.FlightInformationService.
 FlightInformationServiceClient();
 proxy.GetFlightsCompleted += new
 EventHandler<SilverlightCrossDomain.
 FlightInformationService.GetFlightsCompletedEventArgs>
 (proxy_GetFlightsCompleted);
 proxy.GetFlightsAsync("New York", "London",
 DateTime.Now.Date);
}

Working with Services

258

12. In the proxy_GetFlightsCompleted event handler, we can read the results
from the e.Result property and bind them to the ListBox, as shown in the
following code:
void proxy_GetFlightsCompleted(object sender,
 SilverlightCrossDomain.FlightInformationService.
 GetFlightsCompletedEventArgs e)
{
 FlightListBox.ItemsSource = e.Result;
}

13. On running this code now, we'll get an exception telling us that we're most
likely trying to do a cross-domain service call. The exception is of the
CommunicationException type.

14. To solve this, we need to add a file called clientaccesspolicy.xml to our web
project (the project where the service resides). Silverlight will check for the existence
of this file in the root of the service domain when performing a cross-domain call. The
content of this file is shown in the following code:
<?xml version="1.0" encoding="utf-8"?>
<access-policy>
 <cross-domain-access>
 <policy>
 <allow-from http-request-headers="*">
 <domain uri="*"/>
 </allow-from>
 <grant-to>
 <resource path="/" include-subpaths="true"/>
 </grant-to>
 </policy>
 </cross-domain-access>
</access-policy>

Chapter 7

259

15. When trying to run the code again, Silverlight will make the call to the service and the
results are displayed as shown in the following screenshot:

How it works...
When talking to services that are not hosted in the same domain as the Silverlight application,
Silverlight is quite restrictive. By default, it does not allow so-called cross-domain calls. This is
purely for security reasons. Let's look at what would happen if Silverlight would allow making
cross-domain calls.

Let's assume that a website hosted on SomeFriendlySite.com requires the user to log
in. The credentials are stored on the user's PC, so that on the next visit they wouldn't need to
log in again. This site also exposes a service that contains secret information about the user,
which is only accessible when logged in to the site.

Working with Services

260

An attacker could create a Silverlight application that would try to retrieve this secret
information and host this application on SomeFakeSite.com. Unaware of any danger,
the user accesses the Silverlight application on SomeFakeSite.com, and thereby installs
the hacker's Silverlight application on his machine. This application can now try to make a
request to the SomeFriendlySite.com service using the stored credentials and can send
the secret information to BadAttackerSite.com. Worst of all, the user would not even
know of all this happening as it would take place behind the scenes. This type of attack from
Silverlight is comparable to a cross-site scripting attack, in which the same technique is used.
To make it impossible for these kinds of attacks to occur, Silverlight does not make a request
to an external service; that is, unless this service explicitly allows us to do so (usually because
it does not expose any sensitive data).

When making a call to such an external service, Silverlight will first check the existence of a
file called clientaccesspolicy.xml. If this file exists, it will be analyzed by Silverlight. If
the file allows all domains to call the service (domain uri="*"), or if the domain in which
the Silverlight application is running is in the specified list, Silverlight will make the service
call. The following listing shows a clientaccesspolicy.xml file, which allows only some
domains to call it:

<?xml version="1.0" encoding="utf-8"?>
<access-policy>
 <cross-domain-access>
 <policy>
 <allow-from http-request-headers="*">
 <domain uri="http://www.snowball.be"/>
 <domain uri="http://api.snowball.be"/>
 <domain uri="http://www.codeflakes.com"/>
 </allow-from>
 <grant-to>
 <resource path="/" include-subpaths="true"/>
 </grant-to>
 </policy>
 </cross-domain-access>
</access-policy>

The approach that Silverlight uses here is similar to what Flash does. Flash also does
not allow cross-domain calls. When making a request to an external service, it will check
for the existence of a file called crossdomain.xml. The following is a sample
crossdomain.xml file:

<?xml version="1.0" encoding="utf-8"?>
<cross-domain-policy>
 <allow-access-from domain="*" />
</cross-domain-policy>

Chapter 7

261

Silverlight can work with both clientaccesspolicy.xml as well as crossdomain.xml.
When calling a service, Silverlight will first check if clientaccesspolicy.xml exists at the
root of the domain. If it does not, it will check if crossdomain.xml is located at the root.
If neither of the files is present, the request is blocked. The following screenshot shows that
Silverlight searched for clientaccesspolicy.xml before allowing the call to the service:

Of course, the need for one of these two files is bad news when we are creating mashups.
Mashups are applications that are composed of data coming from different services.
However, the good news is that several services (such as, Flickr) expose a file that allows
cross-domain calls. That said, some services do not, while others are restrictive (such as
Twitter). Nothing is lost in this case, but we are required to do some additional work. We
need to create an extra service layer in the same domain as the one in which the Silverlight
application is hosted. These services can connect with every service (as this is not a cross-
domain call from a client). Thus, when calling the external service, we would actually call the
local service from Silverlight, which would in turn call the external service. The local service
acts as a pass-through for data.

Please note that while this is a good solution, it will put extra load on
the server as every service call will pass by that server. In Chapter 10,
Talking to REST and WCF Data Services, the Talking to Twitter recipe,
looks at how to do this using the Twitter API.

Working with Services

262

Working cross-domain from a trusted
Silverlight application

Applies to Silverlight 4 and 5

In the previous recipe, we looked at the restrictions enforced by the Silverlight runtime
when accessing services that do not live in the same domain as the Silverlight application.
These are called cross-domain restrictions. To access a service that lives in another
domain, a cross-domain policy file should be in place. If not, Silverlight won't communicate
with the service.

Starting with Silverlight 4, a new application model was added, namely trusted applications.
A trusted application or an application with elevated permissions is similar to an out-
of-browser application. However, it gets more permissions on the system. One of these
permissions is accessing services in a cross-domain manner without requiring a cross-
domain file to be in place. In Silverlight 5, in-browser applications can also run with elevated
permissions. The concepts explained in this recipe therefore apply for both in-browser and
out-of-browser trusted applications.

In this recipe, we'll make cross-domain calls from a trusted Silverlight application.

Getting ready
For this recipe, you can use any of the other Silverlight applications. In the following
steps, we use the starter solution for this recipe that can be found in the Chapter07/
Silverlight_TrustedCrossDomain_Starter folder in the code bundle that is available
on the Packt site. The completed solution can be found in the Chapter07/Silverlight_
TrustedCrossDomain_Completed folder.

How to do it...
To allow a Silverlight application to make cross-domain calls without having a cross-domain
file in place, the application should run as an out-of-browser application having elevated
permissions. The following are the steps we need to perform to get this working:

1. Open a Silverlight project (starter solution or your own project) as outlined in the
Getting ready section of this recipe.

2. Right-click on the SilverlightCrossDomain project and select the Properties item to
open the Project Properties window.

Chapter 7

263

3. In this window, select the Enable running application out of the browser option.
This will allow us to install the application locally, so that it can run as a standalone
application and will not require a browser to be opened:

4. Running without a browser is not enough; the application should run with elevated
permissions. To enable this, click on the Out-of-Browser Settings... button as shown
in the previous screenshot, and mark the Require elevated trust when running
outside the browser option in the dialog box that appears. This is shown in the
following screenshot:

5. In the FlightInformation project, we don't need the clientaccesspolicy.xml
anymore. It can be deleted from the project.

6. You can now run the application. Make sure that the hosting web application,
SilverlightCrossDomain.Web, is set as the startup project for the solution. Before
interacting with it, right-click on the interface and choose the second option—Install
SilverlightCrossDomain Application onto this computer. As shown in the following
screenshot, Silverlight will display a prompt warning that the application requires
elevated permissions and thus has access to system resources. Click on the Install
button to finish installing the application on the local machine:

Working with Services

264

7. Our application now runs as a trusted application and can access the service located
on another domain, without cross-domain restrictions preventing us from accessing
this service. The running application is shown in the following screenshot:

How it works...
The default behavior of Silverlight is that it will check for the existence of a cross-domain
policy file, when accessing services that are hosted on a domain different from the one the
Silverlight application itself is hosted on.

Starting with Silverlight 4, a new option was added: an application that runs with elevated
permissions. This so-called trusted application has permissions that regular in-browser or
regular out-of-browser Silverlight applications don't have. For example, it can access the local
filesystem, perform COM interop or P/Invoke calls, and also perform cross-domain service
access without checking for the policy file.

COM interop is a technology, part of .NET, that makes it possible to
interact with COM objects, directly from .NET code. This way, .NET code
can call into existing COM components without these components
needing to be changed. Working with Microsoft Office components
requires that COM interop code is written.

Chapter 7

265

P/Invoke (short for Platform Invocation Services) is another CLR
feature that allows .NET code to invoke native (for example, C++) code.

With Silverlight 5, the concept of trusted applications is extended into the browser:
in-browser applications can run with elevated permissions as well. In case you are building
this type of application, it will also be able to access a service in a cross-domain manner
without a cross-domain file being in place.

See also
In the previous recipe, we looked at the default cross-domain behavior, where Silverlight
restricts the access to services that are not hosted in the same domain. In Chapter 10, Talking
to REST and WCF Data Services, the recipe Talking to Twitter from a non-trusted application
applies the concepts learned in this recipe by communicating with Twitter.

Reading XML using HttpWebRequest
Applies to Silverlight 3, 4 and 5

The services we used in the first two recipes of this chapter were self-describing services. By
this we mean that the service itself exposes information about its methods and data types by
means of a WSDL file.

However, often we might need to access data that is not exposed by such a service. For
example, we may need to read out XML data. This data could be available as a physical file
on the server. It could perhaps be dumped by a process in a specific location. Alternatively,
while sending a request to a specific URL, some services, such as REST services, return XML
data. Communicating with REST services is the topic of Chapter 10, Talking to REST and
WCF Data Services.

Whether the XML comes from a REST service or lives in a file on the server, reading out XML is
done using the WebClient class most of the time. We'll use this class extensively in Chapter
8, Talking to WCF and ASMX Services. However, if we need more control over the call, we
should use the HttpWebRequest class. Everything we can do with the WebClient class can
also be done using the HttpWebRequest class, but not vice-versa.

In this recipe, we'll look at how we can use the HttpWebRequest class to read out the XML
data returned by a handler file.

Working with Services

266

Getting ready
If you want to follow along with this recipe, you can use the starter solution located in the
Chapter07/SilverlightHttpWebRequest_Starter folder in the code bundle that
is available on the Packt site. The completed solution for this recipe can be found in the
Chapter07/SilverlightHttpWebRequest_Completed folder.

How to do it...
To find out how to work using the HttpWebRequest class, we'll develop a handler that
generates an XML string containing news items. Our Silverlight client will create an
HttpWebRequest instance to request news items newer than a specified date from the
handler and receive a response, the XML literal. We can use such a literal in a data binding
scenario by parsing it using LINQ to XML. Following are the steps we need to execute to get
the HttpWebRequest class working:

1. Open the starter solution as outlined in the Getting Ready section of this recipe.
In the web project, add a new Generic Handler in the Add new item dialog named
NewsHandler.ashx. A handler can be recognized by its .ASHX file extension and
is comparable to an ASP.NET webform as both implement the IHttpHandler
interface and act like an endpoint. The IHttpHandler interface defines one
method (ProcessRequest) and one boolean property (IsReusable). The
ProcessRequest method will be executed when sending a request to the handler.

2. Before we add the code to the handler, let's create a class named NewsRepository
that represents a data access layer containing some hardcoded data (which is
news items here). This class is located in the NewsRepository.cs file in the web
project, and can be found in the samples. The most relevant part is shown in the
following code. It contains the GetNewsAsXml method, which accepts the start date
parameter. The method will carry out a LINQ query to retrieve the news items and
return them in an XML format using the XElement class (part of LINQ to XML). The
rest of the code for this class can be found in the completed solution of the code
bundle:
public string GetNewsAsXml(DateTime startDate)
{
 XElement element = new XElement("news");
 var result = from n in CreateNews()
 where n.DatePosted > startDate
 select n;
 foreach (var newsItem in result.ToList())
 {
 element.Add(new XElement("newsitem",
 new XElement("newsitemid", newsItem.NewsItemId),
 new XElement("title", newsItem.Title),
 new XElement("content", newsItem.Content),

Chapter 7

267

 new XElement("dateposted", newsItem.DatePosted),
 new XElement("image", newsItem.Image)
));
 }
 return element.ToString();
}

For compiling this code, a reference has to be made to the System.Xml.Linq
assembly.

3. Let's now look back at the handler. In the ProcessRequest method, we'll call the
previous method, which required a parameter of the DateTime type. We can get
access to objects such as Server and Request using the context parameter of the
ProcessRequest method. In this case, we'll use it to get the value sent from the
client. In the following steps, we'll write the code that passes a DateTime object.
Finally, we'll use the same Context instance to send the result back to the caller in
an XML format. All this can be achieved using the following code:
public void ProcessRequest(HttpContext context)
{
 string news;
 using (System.IO.StreamReader reader = new
 System.IO.StreamReader(context.Request.InputStream))
 {
 string input = reader.ReadToEnd();
 DateTime startDate = DateTime.Parse(input);
 news = new NewsRepository().GetNewsAsXml(startDate);
 }
 context.Response.ContentType = "text/xml";
 context.Response.Write(news);
}

4. That's all for the server side! The next stop is the client side. The UI for the application
is quite simple. The code can be found in the MainPage.xaml file of the code
bundle. It mainly contains a Button that will load the news items into a ListBox
when clicked. The ListBox has a DataTemplate applied to it, which uses data
binding features to tie the items to the template.

5. When clicking on the button, we need to send a request to the URI of the handler
and later work with the response. We can use the Create method of the
HttpWebRequest class to create the request. This method accepts a URI as a
parameter and returns a WebRequest instance. We can use this instance to call the
service. The following code creates a WebRequest using the Create method of the
HttpWebRequest class:
private void LoadButton_Click(object sender, RoutedEventArgs e)
{
 WebRequest request = HttpWebRequest.Create(new

Working with Services

268

 Uri("http://localhost:61639/NewsHandler.ashx",
 UriKind.Absolute));
}

6. We need a stream to send data to a service (the start date). Getting this stream is
carried out asynchronously using the BeginGetRequestStream method of the
request. We also need to specify that we'll be sending data, so we need to set the
Method to POST. This is shown in the following code:
request.ContentType = "text/xml";
request.Method = "POST";
request.BeginGetRequestStream(RequestCallback, request);

7. The callback method implements the AsyncCallback delegate. It has an
IAsyncResult parameter. The AsyncState property of the IAsyncResult
instance is cast to HttpWebRequest. Using this instance, we retrieve the
EndGetRequestStream method to get the request stream. We use a
StreamWriter instance to write the current date as shown in the following code:
void RequestCallback(IAsyncResult result)
{
 HttpWebRequest request = result.AsyncState as HttpWebRequest;
 Stream stream = request.EndGetRequestStream(result);
 using (StreamWriter writer = new StreamWriter(stream))
 {
 writer.Write(new DateTime(2009, 12, 1));
 }
}

8. We can now use the request to invoke the service and get its result asynchronously.
This is done using the BeginGetResponse method. The invocation is carried
out using the following line of code, which again specifies a callback method—
ResponseCallback.
request.BeginGetResponse(ResponseCallback, request);

9. The ResponseCallback method is similar to the RequestCallback. It has
the same IAsyncResult parameter as the RequestCallback had. We get
access to the HttpWebRequest object again using the AsyncState property
of the IAsyncResult. On this instance, we call the EndGetResponse to get an
HttpWebResponse instance. This is shown in the following code:
void ResponseCallback(IAsyncResult result)
{
 HttpWebRequest request = result.AsyncState as HttpWebRequest;
 HttpWebResponse response = request.EndGetResponse(result) as
 HttpWebResponse;
}

Chapter 7

269

10. We invoke the GetResponseStream method on the HttpWebResponse instance.
This call returns a Stream that can be used in combination with a StreamReader to
read out the response from the service. This is shown in the following lines of code:
using(StreamReader reader = new
 StreamReader(response.GetResponseStream()))
{
 string responseMessage = reader.ReadToEnd();
}

11. This string now contains the XML data as returned from the service. We can parse it
and generate instances of a custom class called NewsItem using LINQ to XML. This
is shown in the following code:
public class NewsItem
{
 public int NewsItemId { get; set; }
 public string Title { get; set; }
 public string Content { get; set; }
 public DateTime DatePosted { get; set; }
 public string NewsImage { get; set; }
}

12. The parsing of the XML code generates a List<NewsItem>. The code uses the
XDocument and the XElement classes that are located in the System.Xml.
Linq namespace. This namespace lives in the corresponding System.Xml.Linq
assembly to which we need to create a reference. The parsing process is shown in
the following lines of code:
XDocument document = XDocument.Parse(responseMessage);
var query = from n in document.Descendants("newsitem")
 select n;
List<NewsItem> newsItems = new List<NewsItem>();
foreach (XElement element in query)
{
 NewsItem newsItem = new NewsItem();
 newsItem.NewsItemId = int.Parse
 (element.Descendants("newsitemid").First().Value);
 newsItem.Title = element.Descendants("title").First().Value;
 newsItem.Content = element.Descendants("content").First().Value;
 newsItem.DatePosted = DateTime.Parse
 (element.Descendants("dateposted").First().Value);
 newsItem.NewsImage= element.Descendants("image").First().Value;
 newsItems.Add(newsItem);
}

Working with Services

270

13. Now that we have a collection of items, we want to display them in a ListBox.
However, the asynchronous service call operates in the background thread and
thus cannot directly access the controls in the UI that live in the UI thread. However,
we can use the Dispatcher class to invoke the code in the UI thread from the
background thread, as shown in the following line of code:
this.Dispatcher.BeginInvoke(() => NewsListBox.ItemsSource =
 newsItems);

14. At this point, we have successfully communicated with a service using the
HttpWebRequest class.

How it works...
Silverlight can connect with several types of services. They can be categorized into two types—
services that describe themselves and services that do not describe themselves. The latter
can be used from Silverlight by using either the WebClient class or the HttpWebRequest
class. Most of the time, the more easy-to-use WebClient class will suffice. It contains all that
is needed to carry out communication with most services.

However, if more control is needed over the call to the service, the HttpWebRequest class
can be used. It has more options than the WebClient class. In spite of that, the WebClient
class does use the HttpWebRequest class under the hood. In Chapter 10, Talking to
REST and WCF Data Services, we will be using the WebClient class where we will discuss
communication with REST services. However, all those samples can be performed using the
HttpWebRequest class as well.

All calls carried out using the HttpWebRequest class take place asynchronously. Using the
HttpWebRequest class, we can send data to the service using the request as well as read
out data using the response.

The request
A WebRequest instance is created using the Create method of the HttpWebRequest
class. This method accepts one parameter, which is the URI of the service. On the created
WebRequest instance, we can specify the HTTP verb. Silverlight's HttpWebRequest
class supports the GET and the POST methods. If we want to send data to the service
(for example a search term), we need to get the request stream. This can be done using
the BeginGetRequestStream method of the HttpWebRequest class, which starts an
asynchronous call to get the request. This method requires two parameters—a callback
method and a state. The callback method is executed when the request stream is ready. For
the state, we pass in the request itself, so that we have access to it in the callback.

In the callback method, we can get the request by casting the AsyncResult property of the
IAsyncState interface back into the HttpWebRequest class. On this instance, we can call
the EndGetRequestStream method that gives us access to the request stream. We can
write to this stream using a StreamWriter.

Chapter 7

271

The response
The request instance can be used to invoke a service and get back its result. To carry out
this invocation, we use the BeginGetResponse method on the request, which is, quite
logically, also asynchronous. In the specified callback, we can use the EndGetResponse
method, which will give us an HttpWebResponse instance. On this instance, we can use the
GetResponseStream method, which returns a stream. This stream can then be used to read
the textual response from the server.

Threading headaches
Calls using the HttpWebRequest class take place on the background thread. The code that
runs in this thread has no access to the UI and its controls. This means that we can't update
the UI from the callback method. Luckily, we can use the Dispatcher class. Using the
Dispatcher, we can cross threads quite easily by means of the BeginInvoke method. The
Dispatcher.BeginInvoke method allows us to call from the background thread code that
will be executed on the UI thread.

See also
In Chapter 10, Talking to REST and WCF Data Services, we'll use the WebClient class
intensively while working with REST services.

Reading out an RSS feed
Applies to Silverlight 3, 4 and 5

Most modern, regularly updated websites (such as, news sites, blogs, and so on) allow the
users of these sites to subscribe to a Really Simple Syndication (RSS) feed (which is in fact
an XML file that follows a certain schema), which will typically contain excerpts of site updates.
A lot of people use specialized RSS readers for this (such as Google Reader) or integrate the
RSS feeds into applications that they use on a day-to-day basis (such as Outlook).

Silverlight includes a few classes to make it very easy to write your own RSS reader. In this
recipe, we'll learn how to achieve this.

Getting ready
We'll need to start from a Silverlight solution that contains a few sample feeds and some
code to show the feeds you're going to read on screen. You can find a starter solution in
the Chapter07\Reading_RSS_Starter folder in the code bundle that is available on
the Packt site. The completed solution can be found in the Chapter07\Reading_RSS_
Completed folder.

Working with Services

272

How to do it...
We're going to add code to our Silverlight project to read out and show an RSS feed. To
achieve this, carry out the following steps:

1. Open MainPage.xaml and have a look at the code. This file contains the code
for a ListBox with data binding that will be used to visualize the RSS feed. Also,
familiarize yourself with the project layout. It contains the RSS XML files that will be
parsed, which contain the RSS updates.

2. Add a new class to the Silverlight project and name it
SimpleSyndicationItem.cs.

3. Add the following code to this new class:
public class SimpleSyndicationItem
{
 public DateTimeOffset Date { get; set; }
 public string Title { get; set; }
 public Uri Link { get; set; }
 public SimpleSyndicationItem(DateTimeOffset Date, string Title,
 Uri Link)
 {
 this.Date = Date;
 this.Title = Title;
 this.Link = Link;
 }
}

4. Open MainPage.xaml.cs and add a new property to it, which will be used to store
a collection of SimpleSyndicationItem. This is shown in the following line of
code:
public ObservableCollection<SimpleSyndicationItem>
 lstSimpleItems { get; set; }

5. Locate the FetchItems() method and add the following code to the method body:
XmlReader reader = XmlReader.Create("rssicecream.xml");
SyndicationFeed feed = new SyndicationFeed();
feed = SyndicationFeed.Load(reader);
lstSimpleItems = new
 ObservableCollection<SimpleSyndicationItem>();
foreach (var item in feed.Items)
{
 lstSimpleItems.Add (new SimpleSyndicationItem(item.PublishDate,
 item.Title.Text, item.Links[0].Uri));
}
lstbxRSS.ItemsSource = lstSimpleItems;

Chapter 7

273

6. You can now build and run the application. You'll notice a ListBox with all the
updates from our RSS file. This can be seen in the following screenshot:

How it works...
Silverlight contains classes that make it very easy to work with RSS feeds. These classes are
contained in the System.ServiceModel.Syndication assembly. The Silverlight project
requires a reference to this assembly.

One of these useful classes is the SyndicationFeed class. With this class, you can
easily load RSS feeds and work with them. The statement used to do this is
SyndicationFeed.Load. This statement accepts an XmlReader. We created
an XmlReader that points to the RSS feed XML we want to parse, and passed
this reader to the SyndicationFeed.Load method.

Now, our SyndicationFeed instance contains all the items from the RSS feed, which are
nicely organized. We run through this collection to create SimpleSyndicationItem objects
(which are simplified objects that contain only the data we want to visualize), and add these
items to an ObservableCollection of SimpleSyndicationItem.

Finally, we set this collection as an ItemsSource of our ListBox. Our collection is now
nicely visualized because of Silverlight's data binding abilities.

There's more...
You can't just read out any RSS feed (XML file). Silverlight doesn't allow you to access any
domain you want. The owner of the domain has to allow you to access files/services on it by
publishing a clientaccesspolicy.xml or a crossdomain.xml file in which the owner
can describe who has access to what. If this file is missing, Silverlight will not be able to
communicate with the requested service.

Working with Services

274

A way to work around this would be to design an RSS reader that doesn't communicate with
RSS feeds directly, but communicates with a service that in turn talks to the RSS feeds. The
service, which you'd write yourself, can then be published on your own web server along
with a clientaccesspolicy.xml or a crossdomain.xml file to allow your Silverlight
application to access your service, if this service lives in a different domain than the
Silverlight application.

RSS versions
There are different versions of RSS available. But luckily, most of these versions are
supported by most RSS readers. You can find out more about these different versions at
http://en.wikipedia.org/wiki/RSS#Variants.

Accessing a database in the cloud
Applies to Silverlight 3, 4 and 5

Cloud computing is a hot topic nowadays. Microsoft introduced Windows Azure as its cloud
platform a couple of years ago, and we are starting to see a lot of businesses moving their
applications and data to the cloud.

Windows Azure itself is a combination of several components. We can host services in the
cloud as a Hosted Service (the component is often referred to as Windows Azure Compute).
An implementation of SQL server in the cloud, namely SQL Azure is a second component part
of the Azure platform. Azure Storage is another component, which offers us (nearly) unlimited
storage of files and non-relational data. Other components, such as the Service Bus and
Access Control exist as well, but they are out of the scope of this book.

Silverlight applications can benefit from Windows Azure as well. In this and the two following
recipes, we'll take a look at some practical uses. We'll start this recipe by looking at how we
can set up and use a database hosted in SQL Azure.

Getting ready
To work with Windows Azure, you'll need an account. You can register for an account at
http://windows.azure.com. This account will then give you access to the previously
mentioned components, such as SQL Azure. At the moment of writing, you can create a test
account; however, you do need a credit card to sign up.

During development, you can use the local development cloud, known as Windows Azure
Emulator. This tool allows you to do most of your testing on your local machine during
development, before moving your application to the real cloud.

A sample database, SilverlightAirways.mdf, is included with the source code for this
recipe. This database needs to be attached to your local SQL server instance.

Chapter 7

275

To follow along with this recipe, a starter solution is provided in Chapter07/
Database_Cloud_Starter folder. The finished solution can be found in the
Chapter07/Database_Cloud_Completed folder.

How to do it...
In this recipe, we are starting from a rather basic solution. We have a Silverlight application
that reads out flight information from a service. In the default setup, this service reads data
from a local SQL server database (this database can be on a physically different server than
where the service is hosted).

Since we expect a lot of load on our database and we don't want to be bothered by managing
our database servers ourselves, we decide to move the database to SQL Azure instead. Let's
look at the steps we need to do on the database and see what changes, if any, are required
for the Silverlight application using the service.

1. We first want to move the database (which is initially installed locally or on a
database server that is not in the cloud) to SQL Azure. The first step is creating
a database in the cloud from within the Windows Azure portal. To do so, go to
http://windows.azure.com, log on with your account, and click on Database,
as shown in the following screenshot:

Working with Services

276

2. In the Database page, in the menu, click on the Create button in the Server tab to
create a database server, as indicated in the following screenshot:

3. With the server created, click on the Create button in the Database tab, shown
as follows:

4. Give the database a name (here, SilverlightAirways). The other fields can keep their
default value:

The database will now appear in the list of databases on your SQL Azure
database server.

5. We are now ready to execute the migration of the local database to SQL Azure. To
perform this migration, we'll use an open-source tool called SQL Azure Migration
Wizard. This tool can be downloaded from http://sqlazuremw.codeplex.com/.
When downloaded, run the tool.

Chapter 7

277

6. In the first window, indicate you want to perform Analyze/Migrate of a SQL database.

7. In the next window, enter your credentials for your local database. Select the local
SilverlightAirways database from the list.

8. Next, indicate you want to script all database objects. The tool will prompt you, asking
to generate SQL script. Note that the tool also will migrate data for you. After this
step, you'll get an overview, indicating whether or not issues were found.

9. With the local database scripted and ready to be migrated, we can move on to the
cloud part. Enter the data for your SQL Azure database, as shown in the following
screenshot. The data you need is shown in the Database page in the Azure portal.
Note that your User name should be followed by @<YOUR_SERVER_NAME>. Click on
Connect to connect with the database in the cloud:

10. In the next screen, select your database that you created earlier in SQL Azure.
The tool will now prompt you to execute the script. After clicking OK, you'll see the
progress. Any errors that may occur are shown here as well. We're now ready with the
migration of the database.

D
ow

n
lo

a
d
 f
ro

m
 W

o
w

!
e
B
o
o
k

<
w

w
w

.w
o
w

e
b
o
o
k.

co
m

>

Working with Services

278

11. With the database moved to the cloud, we can now turn our attention to the
application. In the web.config of the SilverlightAirwaysInTheCloud.
Services project, we can change the connection string (the service is using
EntityFramework here). Currently, this string is pointing to the localhost. Change
it, so it points to your SQL Azure database as follows:
data source=YOUR_DATABASE_NAME.database.windows.net;initial
catalog=SilverlightAirways;user id=YOUR_USER_NAME;password=
YOUR_PASSWORD;multipleactiveresultsets=True;App=EntityFramework

12. Run the application now. You'll get a list of data, served directly from the cloud, as
shown in the following screenshot:

How it works
SQL Azure is one of the components of Windows Azure. It's SQL server, but then in the cloud.
Since it's hosted by Microsoft as a service, we get all the benefits such as scalability.

If we have a scenario where Silverlight, the service layer, and the database are hosted on
our own managed servers, we can perform a migration of just the database to the cloud. The
database is available using a connection string. By adding this new connection string to the
configuration of the service, the service can communicate with the cloud-hosted database in
the exact same way as it did with the local database.

For the Silverlight application, this process is entirely transparent. It continues to communicate
with the service layer, which in turn communicates with the database in the cloud.

It should be clear that a migration to the cloud does not require an all-in approach: if we want
to move just one tier to the cloud, we can do so.

Chapter 7

279

Accessing a service in the cloud
Applies to Silverlight 3, 4 and 5

In the previous recipe, we moved the database, exposed over a service layer and used by
a Silverlight application, to the cloud. This way, we leverage the power of the cloud on the
database tier.

We can, however, go one step further. Instead of hosting the service layer on our own servers,
we can also move the service layer into the cloud. In this case, the Silverlight application will
communicate with the services, hosted in the cloud. These services in turn connect with the
database, hosted in SQL Azure (as we looked at in the previous recipe).

In this recipe, we'll look at how we can move the services to become a Hosted Service in
Windows Azure.

Getting ready
Just like the previous recipe, you'll need a Windows Azure account. You also
need the Windows Azure SDK installed. You can download these from
http://www.microsoft.com/windowsazure/sdk

This recipe builds on the previous recipe, where we moved the SQL server database
into SQL Azure. It's required that you follow that recipe first.

To follow along with this recipe, you can continue with the solution from the
previous recipe. The finished solution for this recipe can be found in the
Chapter07/Service_Cloud_Completed.

How to do it...
To benefit more from the advantages, such as the reliability offered by cloud computing,
we can decide to move the service layer to Windows Azure as well. In this case, we can
create a hosted service in Windows Azure, host the services there, and have a Silverlight
application still hosted on our own servers, then connect to the cloud-hosted services. During
development, we can use the local Windows Azure Emulator to test our development. Let's
look at how we can move the service layer to Azure:

1. Make sure you have the solution open as outlined in the Getting ready section from
this recipe. We'll first make changes to this solution to make the service ready to be
hosted in Azure.

Working with Services

280

2. For each service project we want to host, we must add a Windows Azure project. With
the tools installed, right-click on the solution and select Add | New Project. In the
Add New Project window, select Visual C# | Cloud to add a new cloud project to your
solution. Name it SilverlightAirwaysInTheCloud.Cloud. In the dialog that appears
titled New Windows Azure Project, don't select anything and just click OK.

3. In the Solution Explorer, right-click the Roles folder in the newly added project, and
select Add | Web Role Project in Solution. Select the SilverlightAirwaysInTheCloud.
Services project. A role is added for the service project. You can consider a role as an
instance that will execute code for you:

4. Test that the service still works as previously. Right-click on the project and select
Debug | Start New Instance. The Windows Azure Compute Emulator now starts
(you may only see an icon in your task bar, which you can click to show the emulator
UI). This emulator can be seen as a local cloud, allowing you to test your applications.
The emulator is shown as follows:

Chapter 7

281

5. Browse to http://127.0.0.1:81/FlightService.svc (the port number
may vary on your system, normally a browser window will open for you).You are now
accessing the service hosted locally.

6. We're ready to create the package that we'll upload to the cloud. Right-click on the
project and click on Publish. Select Create Service Package Only, as indicated in
the following screenshot, so Visual Studio will create a Service Package file and a
configuration file:

7. We are now going to move this service to the cloud. First, we need to create a
hosted service in the Azure portal. Go to http://windows.azure.com and click
on Hosted Services, Storage accounts and CDN. Select your subscription and
click on New Hosted Service. Enter values in the dialog as shown in the following
screenshot. Finish by selecting both the package and the configuration file created in
the previous step:

Working with Services

282

8. After clicking OK, the service will be deployed. Note that this can take up to 20
minutes. If you get a dialog warning your service will only be deployed on one server,
just ignore it for now (a Service Level Agreement only applies if the service is at least
deployed on two machines). When ready, you can access your service in the cloud.
The root address of the service can be found in the DNS name field. The service itself
can be accessed by appending /FlightService.svc:

Chapter 7

283

9. Now that the service is hosted in the cloud, we can use it from our Silverlight
application. Remove the existing service reference and add a new one, pointing to the
address of the service in Azure.

The Silverlight application is now communicating with a service hosted in Windows Azure. The
database is still hosted in SQL Azure.

How it works
One of, if not the most important aspect of Windows Azure is the ability to run code in
the cloud. This is possible using a Hosted Service. A Hosted Service can basically host an
application for you. Since it's in the cloud, you benefit again from things such as reliability and
reduced Total Cost of Ownership (TCO).

In a Hosted Service, we can run WCF services and ASP.NET applications. However, we can do
more than that. WCF and ASP.NET are executed in what is known as a web role. A web role
is basically an instance of IIS running in the cloud, executing your code. On the other hand,
worker roles exist. These allow you to run any executable applications or code, even non-.NET
code. This way, you can set up a custom database engine, such as MySQL or a web server,
such as Apache. These in turn will then let you run non-managed code such as PHP.

Working with Services

284

Developing .NET applications or services to run in the cloud isn't difficult. In many cases,
we just add a web role to the project, point to the service/web project. After publication, a
configuration file and a package are created that you can upload to the Windows Azure portal.
Azure will then create a virtual machine, running your code.

During the development, we have the ability to test our cloud projects locally in the
Windows Azure Compute Emulator. This local cloud allows testing Hosted Services "
and Azure Storage solutions.

Once deployed, the Silverlight application needs to update its service reference to now point
to the service in the cloud. The application itself doesn't need any changes; it will just work in
the same way with the service in Azure as it did with the service on our own servers.

See also
In the previous recipe, where we moved the database to SQL Azure, you can learn more
about how to configure the data tier in Azure so that a Silverlight application can access
data in the cloud.

Running a Silverlight application from
the cloud

Applies to Silverlight 3, 4 and 5

In the two previous recipes, we moved both the database and the service layer into the cloud.
So far, the Silverlight application still runs from a locally-hosted page. This means that both
the XAP as well as the page (which can be ASPX, HTML, or even PHP) are still running from our
own servers, while the service and the database being accessed are in the cloud already.

In this recipe, we'll take things one last step further—we will host the website hosting the
Silverlight application in the cloud as well.

Getting ready
For this recipe, of course you need an account on Windows Azure as well. To follow along
with this recipe, you need to complete the two previous recipes as well in order to have the
database and the service already hosted in the cloud. The finished solution for this recipe can
be found in the Chapter07/Silverlight_Cloud_Completed folder.

Chapter 7

285

How to do it…
With the service hosted as a Hosted Service in Windows Azure and the database already
running in SQL Azure, we can create a second Hosted Service, running the application that
hosts Silverlight. The Silverlight XAP file will be packaged as well and run from the cloud. Let's
take a look at the steps we need to take to set this up:

1. To accomplish running the site from the cloud, we have two options. Either we create
another cloud project or we add a second web role to the already-existing project. For
simplicity, let's take the latter here. In the Solution Explorer, right-click on the Roles
folder in the SilverlightAirwaysInTheCloud.Cloud project, and select Add | Web Role
Project in solution. Select the SilverlightAirwaysInTheCloud.Web project. The result
is a new role being added.

2. Run the Publish wizard by right-clicking on the cloud project and selecting Publish. In
the dialog that appears, select Create Service Package Only. Windows Explorer will
open and show you the location of the files.

3. Go to the Azure Management portal (windows.azure.com) and remove the current
deployment. Create a new one (as outlined in the previous recipe).

4. Upload (again as outlined in the previous recipe) the Service Package and the
configuration file.

After your deployment is ready, you can browse to the test page hosting your Silverlight
application (you can still navigate to the service as well). Note that it is accessible only when
adding a port to the URL. In the How it works section, we will look at why this is.

How it works
Running a Silverlight application hosted in the cloud comes down to publishing the site/page
that does the hosting to the cloud as well. The XAP file is packaged as well and gets unpacked
on the cloud server. From then on, the page requests the XAP from the ClientBin directory,
which is now on the cloud server as well.

In the previous steps, we created a second cloud project and pointed this to the Silverlight-
hosting site. Because of the fact that we are adding more than one role to the same cloud
project, they are accessible individually by adding a port number. Why this happens is quite
logical: we have one unique URI pointing to the single server now hosting two sites. This isn't
an ideal situation in real life—we now have two sites (one for the services and one for the
website hosting Silverlight) running on one server. This is the cheapest solution, but also the
one that's the least able to scale!

Working with Services

286

This may not be what you want. You may want two separate machines, hosting one site
each and also both accessible via a URI not appended with a port number. This is perfectly
possible. Simply create a second cloud project and point it to the Silverlight-hosting site. You
now need to create two separate Hosted Services in the Azure portal, one for each site. Note
that this solution requires two machines, therefore doubling the cost.

There's more
In the way of working we choose, the XAP file was packaged in the Service Package file
created by the Publish option. Now if we want to upgrade only the XAP file, we need to re-
package and re-publish again.

An easier approach might be placing the XAP file in Azure Storage. Azure Storage is an almost
infinite file storage where we can place images, videos, documents, and why not, the XAP file.
Files are stored in what is known as blob storage.

In the Azure Management Portal, go to Hosted Services | Storage accounts. If none have
been created, create a new Storage account by clicking on the New Storage Account button
at the top. Note that on the right, keys are generated, which you'll need next:

Managing files and folders (known as Containers in Azure Storage) can't be done with
the portal. You can do so from code (programmatic access is possible), although for
our case, we'll use an external tool called CloudBerry Explorer (available for free via
http://www.cloudberrylab.com/free-microsoft-azure-explorer.aspx).

Chapter 7

287

In this tool, add a new account (the name of the storage account you just created) and copy
the Primary Keys from the Azure Portal.

CloudBerry will now give you an Explorer-like interface of your storage account. Create a new
container and name it XAP. In the container, upload your XAP file of your application (don't
upload the Azure package file!). In the case of our sample application, the result is as shown
in the following screenshot:

Now we need to change the HTML/ASPX file so that it points to the XAP file hosted in Azure
storage. From the Azure portal, copy the URL for your blob storage (in the form of NAME_OF_
STORAGE_ACCOUNT.blob.core.windows.net).

In the HTML code, change the value of the source parameter as follows:

<div id="silverlightControlHost">
 <object
 data="data:application/x-silverlight-2,"

Working with Services

288

 type="application/x-silverlight-2"
 width="100%"
 height="100%">
 <param name="source"
 value="http://NAME_OF_STORAGE_ACCOUNT.blob.core.windows.
net/xap/SilverlightAirwaysInTheCloud.xap" />

When you publish and run the application again, the XAP file will be downloaded from blob
storage, instead of being serviced from the Hosted Service itself.

See also
In the two previous recipes, we looked at moving the database to SQL Azure and moving the
external service to a Hosted Service in Windows Azure.

Using socket communication in Silverlight
Applies to Silverlight 3, 4 and 5

Until now, all the communication with services has been initialized by the client. The Silverlight
application makes a call to a service, which can be a WCF service, an ASMX service, or an
RSS feed. After receiving the call, the service will start working by sending the response back
to the Silverlight application. This kind of communication is typically carried out by HTTP, which
is based on a request model. A response will be sent based on a request.

Sometimes, we need the opposite. The initiative needs to be taken by the server by pushing
data to its clients. Initially, this client should register with the server, but from then on, the
server can decide when it needs to send data to the connected applications.

This type of communication can be achieved using sockets in Silverlight. Sockets are the
endpoints on both sides. The server and the client can both send data to an endpoint, making
it possible for the server to push data back into the socket on the client side.

Sockets aren't used often (we'll take a look at the reason for this in the How it works...
section), but they have their advantages, such as speed, less overhead, bi-directional
communication, and so on. In this recipe, we'll take a look at what we need to do to get
sockets working in a Silverlight application.

Getting ready
We're building the entire application in this recipe from scratch. The finished code for this
recipe can be found in the Chapter07/SilverlightStockSocket_Completed folder in
the code bundle that is available on the Packt site.

Chapter 7

289

How to do it...
In this recipe, we'll build a service that sends up-to-date stock information and is similar to
a stock ticker. It's possible that more than one client is connected simultaneously. In this
case, all connected clients will receive updates from the server. We'll see that some of the
techniques we used to communicate with a socket service are similar to connecting with
a regular service, such as WCF. However, some are entirely different. For example, socket
services also require a clientaccesspolicy.xml to be present. On the other hand, socket
services can push data to the clients, which is typical for this type of communication.

We need to carry out the following steps to get a working socket service and client:

1. We'll start from scratch and build the application. Create a new Silverlight solution in
Visual Studio called SilverlightStockSocket.

2. Every Silverlight application (unless it runs as a trusted application having elevated
permissions) that calls a service in a domain, other than the one in which it is
hosted requires a clientaccesspolicy.xml or a crossdomain.xml file (as
we saw in the Configuring cross-domain calls recipe). The same holds true for a
socket-based application. When dealing with services hosted by a web server,
serving the clientaccesspolicy.xml is handled by the server software itself.
This isn't the case with a socket server. With that being said, our first task will be to
build a policy server, which is a piece of software that will open a socket and serve
the clientaccesspolicy.xml when requested. We'll build the policy server as
a Console application. To do this, add a new Console application to the solution and
name it StockSocketPolicyServer.

3. In this new project, we'll first include the policy file itself. Add a new XML file to the
project and name it as clientaccesspolicy.xml. In the Properties window, set
its Build Action to None and Copy to Output Directory to Copy Always. Due to this,
while building, the XML file is copied to the same directory as the executable of the
application. The following code represents the content of the file:
<?xml version="1.0" encoding ="utf-8"?>
<access-policy>
 <cross-domain-access>
 <policy>
 <allow-from>
 <domain uri="*" />
 </allow-from>
 <grant-to>
 <socket-resource port="4530" protocol="tcp" />
 </grant-to>
 </policy>
 </cross-domain-access>
</access-policy>

Working with Services

290

4. To serve this file, we need a policy server containing the code that reads out the file
and sends its contents to the connecting Silverlight application. The policy server's
main task is to listen for incoming connections and respond with the contents of the
policy file. Add a new class called PolicyServer.cs to the project.

5. The policy server reads the content of the XML file when it starts up. The content is
loaded into a byte array as shown in the following code:
public class PolicyServer
{
 private byte[] clientaccesspolicy;
 public void StartPolicyServer()
 {
 using (FileStream stream = new
 FileStream("clientaccesspolicy.xml", FileMode.Open))
 {
 clientaccesspolicy = new byte[stream.Length];
 stream.Read(clientaccesspolicy, 0,
 clientaccesspolicy.Length);
 }
 }
}

6. After reading out the content, the policy server has to start listening for
incoming requests for the policy file. A TcpListener object is required to
do this. These requests will always be sent to port 943. So, we configure the
TcpListener instance to listen to that port. As shown in the following code, the
BeginAcceptTcpClient method starts a new thread on which the actual listening
is done. Because of this, it returns immediately:
private TcpListener tcpListener;
public void StartPolicyServer()
{
 ...
 tcpListener = new TcpListener(IPAddress.Any, 943);
 tcpListener.Start();
 tcpListener.BeginAcceptTcpClient(new AsyncCallback
 (OnBeginAcceptTcpClient), null);
}

7. When a client eventually connects, the OnBeginAcceptTcpClient callback will be
invoked. In this method, we begin the process of receiving data asynchronously using
the resulting TcpClient instance. The data that will be sent by the client is the
request for the policy file:
private TcpClient tcpClient;
private byte[] receivedBytes;
private static string policyRequestString =

Chapter 7

291

 "<policy-file-request/>";
private void OnBeginAcceptTcpClient(IAsyncResult ar)
{
 receivedBytes = new byte[policyRequestString.Length];
 tcpClient = tcpListener.EndAcceptTcpClient(ar);
 tcpClient.Client.BeginReceive(receivedBytes, 0,
 policyRequestString.Length, SocketFlags.None,
 new AsyncCallback(OnReceive), null);
}

8. The OnReceive callback is invoked when the operation is complete. In this method,
we check if the received string data is equal to <policy-file-request/>. This
string data is a request for the policy file. Now, we find out that the request was a
policy request, and we start sending the content of the clientaccesspolicy.xml
file. Finally, we need to start listening again for new incoming requests. This is shown
in the following code:
private void OnReceive(IAsyncResult ar)
{
 int receivedLength = tcpClient.Client.EndReceive(ar);
 string policyRequest = Encoding.UTF8.GetString
 (receivedBytes, 0, receivedLength);
 if (policyRequest.Equals(policyRequestString))
 {
 tcpClient.Client.BeginSend(clientaccesspolicy, 0,
 clientaccesspolicy.Length, SocketFlags.None,
 new AsyncCallback(OnSend), null);
 }
 tcpListener.BeginAcceptTcpClient(new
 AsyncCallback(OnBeginAcceptTcpClient), null);
}
private void OnSend(IAsyncResult ar)
{
 tcpClient.Client.Close();
}

9. The policy server also needs to close at some point. The Stop method is used for this
as shown in the following code:
public void StopPolicyServer()
{
 tcpListener.Stop();
}

Working with Services

292

10. Managing the policy server (starting and stopping) can be carried out from the Main
method in the Program.cs file that was added automatically when we created the
project. This is shown in the following code:
class Program
{
 static void Main(string[] args)
 {
 Console.WriteLine("Starting policy server");
 PolicyServer policyServer = new PolicyServer();
 policyServer.StartPolicyServer();
 Console.WriteLine("Policy server successfully started");
 Console.WriteLine("Press any key to exit the server");
 Console.ReadLine();
 policyServer.StopPolicyServer();
 }
}

11. Now that the policy server is in place, it's time to build the real socket server. The
code for this is quite similar to the code of the policy server. Add another Console
application to the solution and name it as StockSocketServer. Add a new class to
this project called SocketServer.

12. A client connects to the socket server to receive updates on stock quotes. We'll
simulate this using a Timer that sends new, random stock data to all connected
clients every two seconds. Also, all the clients that are connected to the socket server
at any given point of time need to be stored by the server. As shown in the following
code, we create a List<StreamWriter> to achieve this:
Timer stockTimer;
List<StreamWriter> clientConnections;
public SocketServer()
{
 stockTimer = new Timer();
 clientConnections = new List<StreamWriter>();
}
public string GetStockInfo()
{
 double randomStockValue =
 30 + Math.Round(10 * new Random().NextDouble(), 2);
 return "MSFT: " + randomStockValue.ToString();
}

The Timer instance in this code, requires adding a using statement to the System.
Timers namespace.

Chapter 7

293

13. Just like the policy server, the socket server will listen for incoming requests
using the TcpListener. However, here the listener needs to work on a port
between 4502 and 4532. Instantiating and starting the listener is carried out in
the StartSocketServer method. We also configure the Timer instance in this
method, as shown in the following code:
private TcpListener tcpListener;
public void StartSocketServer()
{
 stockTimer.Interval = 2000;
 stockTimer.Enabled = true;
 stockTimer.Elapsed += new
 ElapsedEventHandler(stockTimer_Elapsed);
 stockTimer.Start();
 tcpListener = new TcpListener(IPAddress.Any, 4530);
 tcpListener.Start();
 tcpListener.BeginAcceptTcpClient
 (OnBeginAcceptTcpClient, null);
}

14. In the BeginAcceptTcpClient callback, we access the stream associated
with the client connection. This stream is first stored in the previously mentioned
List<StreamWriter>. We push data from the server to the client using the Write
method. Finally, we start listening for new incoming requests. All this is shown in the
following code:
private TcpClient tcpClient;
public void OnBeginAcceptTcpClient(IAsyncResult ar)
{
 Console.WriteLine("Client connected successfully");
 tcpClient = tcpListener.EndAcceptTcpClient(ar);
 StreamWriter streamWriter = new
 StreamWriter(tcpClient.GetStream());
 clientConnections.Add(streamWriter);
 streamWriter.AutoFlush = true;
 streamWriter.Write(GetStockInfo());
 //wait again for new connection
 tcpListener.BeginAcceptTcpClient(OnBeginAcceptTcpClient,
 null);
}

Working with Services

294

15. When the Elapsed event of the Timer triggers, we want to update all clients by
sending new data. To do this, we loop over the List<StreamWriter> and call the
Write method again, thereby passing new data to the clients. This is shown in the
following code:
void stockTimer_Elapsed(object sender, ElapsedEventArgs e)
{
 if (clientConnections != null)
 {
 foreach (var clientConnection in clientConnections)
 {
 if (clientConnection != null)
 clientConnection.Write(GetStockInfo());
 }
 }
}

16. Closing the socket server consists of two things—closing each StreamWriter
instance followed by stopping the listener as shown in the following code:
public void StopSocketServer()
{
 foreach (var streamWriter in clientConnections)
 {
 streamWriter.Close();
 }
 tcpListener.Stop();
}

17. Similar to the policy server, the socket server is managed from the Main method in
the Program.cs file, as shown in the following code:
class Program
{
 static void Main(string[] args)
 {
 Console.WriteLine("Starting socket server");
 SocketServer socketServer = new SocketServer();
 socketServer.StartSocketServer();
 Console.WriteLine("Socket server successfully started");
 Console.WriteLine("Press any key to exit the server");
 Console.ReadLine();
 socketServer.StopSocketServer();
 }
}

Chapter 7

295

18. Finally, we have created both the policy server and the socket server. Let's now turn
our attention to the Silverlight application that needs to connect with this socket
server. The UI layout is pretty straightforward and can be found in the code bundle.
Its primary components are a Button and a TextBlock. We want to connect with
the socket server, once the Button has been clicked. The results sent back from the
server should be shown in the TextBlock.

19. In the Click event of the Button, we start by defining the socket endpoint using the
DnsEndPoint class. Due to this, the Silverlight application knows where the host is
located. It then creates the Socket object as well as the SocketAsyncEventArgs
instance as shown in the following code. The latter represents the asynchronous
operation with the socket:
private void StartButton_Click(object sender, RoutedEventArgs e)
{
 DnsEndPoint endPoint = new DnsEndPoint
 (Application.Current.Host.Source.DnsSafeHost, 4530);
 Socket socket = new Socket(AddressFamily.InterNetwork,
 SocketType.Stream, ProtocolType.Tcp);
 SocketAsyncEventArgs args = new SocketAsyncEventArgs();
 args.UserToken = socket;
 args.RemoteEndPoint = endPoint;
 args.Completed += new
 EventHandler<SocketAsyncEventArgs>(OnSocketConnected);
 socket.ConnectAsync(args);
}

20 The OnSocketConnected callback is fired when the client has finished attempting
to connect with the server socket. In this method, we check if the connection was
a success. If it was, we create a buffer that will contain the received data, and start
the receiving process using the ReceiveAsync method. This is shown
in the following code:
private void OnSocketConnected(object sender,
 SocketAsyncEventArgs e)
{
 if (e.SocketError == SocketError.Success)
 {
 byte[] response = new byte[1024];
 e.SetBuffer(response, 0, response.Length);
 e.Completed -= new
 EventHandler<SocketAsyncEventArgs>(OnSocketConnected);
 e.Completed += new
 EventHandler<SocketAsyncEventArgs>(OnSocketStartReceive);
 Socket socket = (Socket)e.UserToken;
 socket.ReceiveAsync(e);
 }
}

Working with Services

296

21. We can access the received data in the OnSocketStartReceive callback. We
can't update the UI directly as the code is now executing on a background thread.
Therefore, we need to use Dispatcher.BeginInvoke to get access to the UI
thread. To register to receive new updates coming from the server, we call the
ReceiveAsync again as shown in the following code:
private void OnSocketStartReceive(object sender,
 SocketAsyncEventArgs e)
{
 string data = Encoding.UTF8.GetString(e.Buffer, e.Offset,
 e.BytesTransferred);
 Dispatcher.BeginInvoke(() => StockTickingTextBlock.Text = data);
 Socket socket = (Socket)e.UserToken;
 socket.ReceiveAsync(e);
}

22. We have now arrived at a point where we can test the application. To test the
application, we need to start the Silverlight application, the policy server, and the
socket server. Starting these two servers is necessary, because they run as separate
projects and need to be available, so that the Silverlight application can connect
with them. To achieve this, first start the application by setting the web project as a
Startup project and running it by pressing the F5 key. Secondly, right-click on both
the policy server and the socket server projects in the Solution Explorer and select
Debug | Start new instance.

The following screenshot shows the Silverlight application as well as both the server
applications running:

Chapter 7

297

How it works...
When we need a type of service that is able to push data from the server to the client, a
socket-based application might be a good solution. Socket-based applications can also be
considered as an option when pure speed for communicating with a service is our top priority.
This can be explained by the TCP protocol they use. All other services use HTTP, which is a
higher layer on top of TCP. HTTP is slower than pure TCP, and it can't push data back to the
client as it requires a request for every response that goes out.

When would we actually need this increased performance or this bi-directional, push-enabled
communication? If raw data is all that passes over a wire, and it needs to move fast, a socket
can be used. A stock ticker is a great example of this. The client (some application) registers
with the socket server and starts receiving updates from then on without asking!

The policy server
Just like other service communications, Silverlight needs to know that the server allows
connecting from another domain. In other words, it will check for cross-domain restrictions.
For example, when connecting to a WCF service, Silverlight will send a request for the
clientaccesspolicy.xml file to the web server. If not found, it will request for the
crossdomain.xml file. If neither of these files is found, or the file enforces restrictions
on who can access the service (only requests from specific domains are allowed), Silverlight
will not allow the call to the service. Otherwise, it will go ahead and let us communicate with
the service.

In the case of a socket-based application, the server can be any type of application, ranging
from a console application to a Windows service. These types of applications aren't web
servers that will automatically serve the policy file when requested. Therefore, we need to
write a policy server.

This policy server uses a TcpListener to listen for incoming requests. Policy requests
always arrive at port 943. This port needs to be specified when creating the
TcpListener instance.

The BeginAcceptTcpClient method of the TcpListener class actually starts the
listening process on another thread. That is why this method returns immediately and then
waits for a client to connect. Once data is received, it is checked to see if the request is really
a policy request. If it is so, the contents of the clientaccesspolicy.xml file is sent back
to the requesting application (in our case, a Silverlight application). This way, Silverlight can
determine if the application can access the service.

However, since Silverlight 4, it is possible to have a Silverlight application connect over HTTP
port 80 instead of TCP port 443. In this case, the clientaccesspolicy.xml file should
also be at the root of the domain, just like with other cross-domain communication. This way,
we can have an HTTP server (such as IIS) authorize a socket connection from a Silverlight
application, without the need to deploy the policy server and without opening communication
on port 943.

Working with Services

298

To enable this, we should set the SocketAsyncEventArgs.
SocketClientAccessPolicyProtocol property to
SocketClientAccessPolicyProtocol.Http of the SocketAsyncEventArgs
instance, passed to the Socket.ConnectAsync. By default, the
SocketAsyncEventArgs.SocketClientAccessPolicyProtocol is set to
SocketClientAccessPolicyProtocol.Tcp.

The socket server
The actual socket-based communication will take place between the Silverlight application
and the socket server application. Just like the policy server, this server will also listen for
incoming requests using the TcpListener class. Multiple client applications can connect
to the server. To manage this, the server uses a List<StreamWriter>. In this list, we store
a StreamWriter that references the network stream to the connected client application.
Whenever new data needs to be sent to the clients, we move through the list and data is sent
over each encountered writer.

The socket server can listen for incoming requests on any port varying between 4502 and
4532. It's important that whenever a new client has connected, we start listening for new
incoming requests using the following line of code:

tcpListener.BeginAcceptTcpClient(OnBeginAcceptTcpClient, null);

Connecting the Silverlight application
When connecting to the socket server from the client side, we can perform three tasks:
connect to the server, send data, and receive data. We can do this using the ConnectAsync,
SendAsync, and ReceiveAsync methods respectively. In this sample, we haven't sent data
to the server. However, it's similar to receiving data. We can't work with the TcpClient as it's
not available in Silverlight. We need to use the Socket class directly.

A SocketAsyncEventArgs instance is required to communicate with the socket server. With
this instance, we can store a reference to the socket and the endpoint for the connection,
stored as a DnsEndPoint.

The ConnectAsync method on the Socket instance will make the actual call connecting
with the server, using the SocketAsyncEventArgs instance. The connection call is carried
out asynchronously and when it returns, we can check if the attempt to connect with the
server has succeeded. If it does succeed, we can create a buffer, so that some received data
can be stored inside it.

Using the following code:

Socket socket = (Socket)e.UserToken;
socket.ReceiveAsync(e);

Chapter 7

299

We can tell the client to start listening for any incoming messages from the server. The
callback method is invoked whenever a message is received. As we're now in a different
thread than the UI thread, we can no longer access the UI elements, such as the TextBlock
control. Thus, we need to use Dispatcher.BeginInvoke. This allows us to execute the
specified delegate on the thread that is associated with the Dispatcher (in this case, the UI
thread). The delegate is simply a call for updating the value of the TextBlock control.

D
ow

n
lo

a
d
 f
ro

m
 W

o
w

!
e
B
o
o
k

<
w

w
w

.w
o
w

e
b
o
o
k.

co
m

>

8
Talking to WCF and

ASMX Services

In this chapter, we will cover:

 f Invoking a service that exposes data

 f Invoking a service such as Bing.com

 f Optimizing performance using binary XML

 f Debugging WCF service errors with Silverlight

 f Using ASP.NET Membership authentication in Silverlight

 f Uploading files to a WCF service

 f Displaying images as a stream from a WCF service

Introduction
When building services in .NET, most developers will choose WCF (Windows Communication
Foundation). WCF was introduced with .NET 3.0 as an API that eased building service-oriented
applications. It aims at unifying several communication APIs, such as remoting, classic web
services, and so on.

Due to its wide adoption, it's easy to understand that Microsoft included support for
communication with WCF services in Silverlight. In version 5, the combination of Silverlight
and WCF has the most options when it comes to communicating with services from Silverlight.
When starting the development of an enterprise, WCF should default your choice (that is, if
you have the ability to influence the technology choice for the service layer).

Talking to WCF and ASMX Services

302

ASMX or classic web services are still widely used as well. We can also connect with classic
services from Silverlight, although not all options available with WCF are possible with these
types of services.

In this chapter, we'll look at communicating with services we create ourselves, as well as third-
party services. Sites such as Bing offer an API that includes service endpoints.

With Silverlight 3, support was added for binary encoding of the exchanged information, which
results in faster data transfer. Also, Silverlight supports fault handling. Until the introduction of
Silverlight 3, faults thrown by the service were not visible in Silverlight. This resulted in a bad
debugging experience. In this chapter, we'll see how we can leverage these features.

If you already have an existing ASP.NET site using ASP.NET Membership, and you now
want to build (part of) that site with Silverlight, you can allow Silverlight to connect to a
service implementation of the Membership API. We'll see how we can use these so-called
application services.

Services aren't limited to sending and receiving textual data. Silverlight can send or receive
an image from a service. In this case, the image is sent as binary data. We'll look at how we
can create a service that is capable of this type of communication and how Silverlight can
work with it.

Invoking a service that exposes data
Applies to Silverlight 3, 4 and 5

When working on a Silverlight project that involves services, WCF is the preferred choice for
building a service if we have to create both the service and the Silverlight client application
that will use it. Using WCF gives us complete control over what types will be sent to the client
and for each type. We can also specify whether or not a field should be included in the client-
side copy of the type.

When we want to build a Silverlight application that works with the data available on the
service (perhaps coming from a database or another external service), we need to ask
ourselves two questions. How should we design the service that exposes the data so that
it can be accessible from Silverlight? Secondly, how should we go about designing the
Silverlight application so that it communicates with the service?

In this recipe, we'll take a look at finding answers to both these questions.

Getting ready
We'll build the application in this recipe from scratch. However, the complete code for this
recipe can be found in the Chapter08/SilverlightEmployeeBrowser folder in the
downloads for this book.

Chapter 8

303

How to do it...
To show how we can connect from Silverlight to a WCF service that exposes data, we'll
start quite logically with designing the service itself. For this recipe, we'll assume that we
are building an easy employee overview screen, where the user can see all the employee
information. The employee data is exposed by the service. The Silverlight application will
connect to the service and work with the data on the client side. The following are the steps
we need to execute to get this working:

1. For this recipe, we'll start from an empty Silverlight application. Create a new
Silverlight solution in Visual Studio, and name it SilverlightEmployeeBrowser.
As usual, Visual Studio will create a solution containing both a Silverlight
application called SilverlightEmployeeBrowser and a hosting website called
SilverlightEmployeeBrowser.Web.

2. Let's first focus on the web application. The data we want to expose consists of
employee data. The following class diagram shows the relation. Add all the classes
and the CarType enumeration in a folder called Model within the project. Note that
Employee is an abstract base class:

Talking to WCF and ASMX Services

304

3. The following is the code for the Employee class. Note the attributes added to the
class. By specifying the DataContractAttribute, we state that this type can be
sent over the wire, therefore becoming available on the client-side. Also, we have
marked all fields with the DataMemberAttribute. Every field that is attributed
with the DataMemberAttribute will be included in the type being sent over the
wire to the client side. Finally, we also add the KnownTypeAttribute in the base
class. This attribute marks the types that should be included in the serialization
process as follows:
[DataContract]
[KnownType(typeof(Manager))]
[KnownType(typeof(Consultant))]
[KnownType(typeof(Maintenance))]
public abstract class Employee
{
 [DataMember]
 public int EmployeeId { get; set; }
 [DataMember]
 public string FirstName { get; set; }
 [DataMember]
 public string LastName { get; set; }
 [DataMember]
 public DateTime DateOfBirth { get; set; }
}

4. The new attributes require a new using statement for the System.Runtime.
Serialization added at the top of this class.

The following is the code for the Manager class that inherits from Employee:
public class Manager : Employee
{
 [DataMember]
 public CarType LeasedCar { get; set; }
 [DataMember]
 public double Bonus { get; set; }
}

The other classes in the hierarchy are similar and can be found in the
completed sample.

5. Next, we will create a class called EmployeeRepository that will load
in the sample data. In a real-world scenario, we would load data from a
database or an external service. The following is the code for this class.
It uses a static List<Employee> that is filled upon first creation of the
EmployeeRepository class:
public class EmployeeRepository

Chapter 8

305

{
 private static List<Employee> allEmployees;
 public EmployeeRepository()
 {
 FillEmployees();
 }
 private void FillEmployees()
 {
 if(allEmployees == null)
 {
 allEmployees = new List<Employee>()
 {
 new Manager()
 {
 EmployeeId=1,
 FirstName="Gill",
 LastName="Cleeren",
 LeasedCar=CarType.SportsCar,
 Bonus=10000.00,
 DateOfBirth=new DateTime(1980, 1, 1)
 },
 new Consultant()
 {
 EmployeeId=2,
 FirstName="John",
 LastName="Smith",
 LeasedCar=CarType.FamilyCar,
 DateOfBirth=new DateTime(1976, 11, 9)
 },
 new Consultant()
 {
 EmployeeId=3,
 FirstName="Jeff",
 LastName="Jones",
 LeasedCar=CarType.SecondHandCar,
 DateOfBirth=new DateTime(1983, 3, 12)
 },
 new Consultant()
 {
 EmployeeId=4,
 FirstName="Lindsey",
 LastName="Clarks",
 LeasedCar=CarType.FamilyCar,
 DateOfBirth=new DateTime(1984, 6, 7)

Talking to WCF and ASMX Services

306

 },
 new Maintenance()
 {
 EmployeeId=5,
 FirstName="Clay",
 LastName="Richards",
 DateOfBirth=new DateTime(1960, 9, 22)
 },
 new Maintenance()
 {
 EmployeeId=6,
 FirstName="Marie",
 LastName="Smith",
 DateOfBirth=new DateTime(1963, 2, 19)
 },
 };
 }
 }
 public List<Employee> AllEmployees
 {
 get
 {
 return allEmployees;
 }
 }
}

6. Now that we have the model and the repository, we're ready to add a WCF service
to this project. Right-click on the SilverlightEmployeeBrowser.Web project node in
the Solution Explorer and select Add | New Item.... In the Add New Item dialog, we
have two options for adding a WCF service—a regular WCF Service and a Silverlight-
enabled WCF Service. Select the latter and name the service EmployeeService.
Visual Studio will add a *.svc file, a *.svc.cs file, and make some changes in the
web.config file to make the service accessible.

7. The service exposes two methods. The first one retrieves all employees, while the
second one retrieves an employee based on the employee's ID. Each method or
operation that should be available on the client side needs to be attributed with
the OperationContract attribute. In a WCF scenario, the service itself should
have the ServiceContract attribute. The service with its two methods is shown
in the following code:
[ServiceContract(Namespace = "")]
[AspNetCompatibilityRequirements(RequirementsMode =
 AspNetCompatibilityRequirementsMode.Allowed)]
public class EmployeeService

Chapter 8

307

{
 [OperationContract]
 public List<Employee> GetAllEmployees()
 {
 return new Model.EmployeeRepository().AllEmployees;
 }
 [OperationContract]
 public Employee GetEmployeeById(int employeeId)
 {
 return new Model.EmployeeRepository().AllEmployees.Where
 (e => e.EmployeeId == employeeId).FirstOrDefault();
 }
}

8. We're now ready on the server side. Build the project before continuing.

9. In the Silverlight application, right-click on the project node in the Solution Explorer
and select Add Service Reference.... In the dialog box that appears, click on
the Discover button, and if the service can be connected to without errors, it will
appear in the list as shown in the following screenshot. Select the service and enter
EmployeeService in the Namespace: field. An error will occur if the service wasn't
built. After clicking on the OK button, Visual Studio will attempt to build a proxy that is
roughly a client-side copy of the service class:

Talking to WCF and ASMX Services

308

10. The UI of the application is very simple. The complete code list can be found in the
code downloads. As shown a bit later in this recipe, it contains a TextBox and a
Button, which should trigger a call to the GetEmployeeId service operation. The
retrieved details are to be shown in a detailed grid. Also, while loading the application
for the first time, a call to the GetAllEmployees method should be triggered and
the result of this call should be shown in the DataGrid. Here we'll focus on the
latter.

11. When the control has loaded, a call to the LoadEmployees method is invoked. In
this method, we create an instance of the proxy class, which was generated by Visual
Studio when we connected with the service. Next, we specify the callback method.
Communication with a WCF service, similar to all other types of service connections,
will take place asynchronously. Finally, we perform the actual invocation of the
service method. All this is shown in the following code:
private void UserControl_Loaded(object sender, RoutedEventArgs e)
{
 LoadAllEmployees();
}
private void LoadAllEmployees()
{
 EmployeeService.EmployeeServiceClient proxy = new
 SilverlightEmployeeBrowser.EmployeeService
 .EmployeeServiceClient();
 proxy.GetAllEmployeesCompleted +=
 proxy_GetAllEmployeesCompleted;
 proxy.GetAllEmployeesAsync();
}

12. If no errors occurred in the callback method, we get access to the result of the
service call via the Result property of the SilverlighttEmployeeBrowser.
EmployeeService.GetAllEmployeesCompletedEventArgs parameter. This
property is of the same type as returned by the service method (in this case a List
<SilverlighttEmployeeBrowser.EmployeeService.Employee>). For the
DataGrid, we set the list as ItemsSource as shown in the following code:
void proxy_GetAllEmployeesCompleted(object sender,
 SilverlightEmployeeBrowser.EmployeeService
 .GetAllEmployeesCompletedEventArgs e)
{
 if (e.Error == null)
 EmployeeDataGrid.ItemsSource = e.Result;
 else
 ErrorTextBlock.Text = "An error occurred while communicating
to the service";
}

Chapter 8

309

13. All employees should now be shown in the DataGrid, as shown in the following
screenshot. Calling the GetEmployeeById operation is similar. The code for this can
be found in the code downloads:

How it works...
WCF services are a preferred way of authoring services in the .NET framework. From the
Silverlight point of view, the WCF services are also the best choice. Let's take a look at the
specifics for both the service and the Silverlight application connecting to the service.

The WCF service
Adding a WCF service is possible using one of the two item templates available in Visual
Studio—the WCF Service template or the Silverlight-enabled WCF Service template. The first
one configures the service to use wsHttpBinding, which is the default for WCF. However,
Silverlight can't work with this type of binding. So, if we choose to use this template, we need
to configure the web.config manually, so that the service uses basicHttpBinding as
shown in the following code:

<system.serviceModel>
 <services>
 <service behaviorConfiguration="SilverlightEmployeeBrowser
 .Web.EmployeeServiceBehavior"
 name="SilverlightEmployeeBrowser.Web.EmployeeService">
 <endpoint address=""
 binding="basicHttpBinding"

Talking to WCF and ASMX Services

310

 contract="SilverlightEmployeeBrowser
 .Web.IEmployeeService">
 <identity>
 <dns value="localhost" />
 </identity>
 </endpoint>
 </service>
 </services>
</system.serviceModel>

However, if we use the Silverlight-enabled WCF Service template, the service will get
configured automatically, so that it'll work when accessed from a Silverlight application. This is
shown in the following code snippet:

<system.serviceModel>
 <behaviors>
 ...
 </behaviors>
 <bindings>
 <customBinding>
 <binding name="customBinding0">
 <binaryMessageEncoding/>
 <httpTransport>
 <extendedProtectionPolicy policyEnforcement="Never"/>
 </httpTransport>
 </binding>
 </customBinding>
 </bindings>
 <serviceHostingEnvironment aspNetCompatibilityEnabled="true"/>
 <services>
 <service behaviorConfiguration="SilverlighttEmployeeBrowser
 .Web.EmployeeServiceBehavior"
 name="SilverlighttEmployeeBrowser.Web.EmployeeService">
 <endpoint address=""
 binding="customBinding"
 bindingConfiguration="customBinding0"
 contract="SilverlighttEmployeeBrowser.Web
 .EmployeeService"/>
 <endpoint address="mex"
 binding="mexHttpBinding"
 contract="IMetadataExchange"/>
 </service>
 </services>
</system.serviceModel>

Chapter 8

311

Note that the service is using binary message encoding by default, so that the data will get
compressed when sent over the wire, resulting in quicker transfers.

When creating a WCF service, we need to specify what will be exposed over the service. In
more detail, we need to specify the operations that can be invoked on the service through
the use of a service contract and the types that will be sent over the wire for the client
application to use. Each class that should be available on the client side needs to be
marked with the DataContract attribute. In these classes, we can specify which fields
should go over the wire. Only those fields marked with the DataMemberAttribute will be
sent to the client. Thus, we have granular control over what will and what will not be sent to
the client-side application.

Connecting to the service
Once the service is in place, we can connect to it from the Silverlight application. This can
be done using the Add Service Reference dialog box. Visual Studio will create a proxy class
when the connection is made. This class contains a client-side copy of the types exposed by
the service (for example, the Employee and the Manager class) and a copy of the service
methods among others. However, code is generated for each service method that makes
it possible to call the service asynchronously. The actual service code is not copied to the
proxy. To view this code, click on the Show All Files button located at the top of the Solution
Explorer. Then, select the + sign in front of the service reference and expand it, so that the
Reference.cs file is shown, which contains the code for the proxy class.

The requirement of calling the service asynchronously can also be seen in the code that's
written in the Silverlight application itself. We start by instantiating the proxy class. On this
instance, we define the callback method for the XXX_Completed event. Finally, we perform
the service invocation by calling the XXX_Async method, which launches the request to the
service. If the call is not carried out asynchronously, the application will cause the UI thread to
hang until the service returns.

The callback method is invoked once the service returns. In this method, we have access to
the result via the e.Result property. This property will be of the same type as returned by
the service method (using the client-side copy of the data contracts).

See also
The communication with a WCF service is not very different from the general pattern used for
communicating with a service in Silverlight. Take a look at the Connecting and reading from a
standardized service recipe in the previous chapter, where we discussed all general aspects
of this topic.

Talking to WCF and ASMX Services

312

Invoking a service such as Bing.com
Applies to Silverlight 3, 4 and 5

Many (large) websites expose services that we can use in our applications. Some of these
expose a WSDL file, and thus expose metadata that we can use to develop an application
around them. One of these sites is Bing (www.bing.com), the search engine from Microsoft.
The Bing API allows us to connect in several ways and interact with its services using many
protocols. It also exposes a WSDL file to which we can connect from Visual Studio.

In this recipe, we'll build a Silverlight application that incorporates the services in Bing.

Getting ready
In this recipe, we're building the sample application from scratch. The finished solution for this
recipe can be found in the Chapter08/SilverBing folder.

How to do it...
We can integrate search functionalities into our Silverlight applications using the Bing
API. Bing exposes a WSDL file to which we can connect from Visual Studio. Visual Studio
can create a proxy based on the metadata in this file. Thus, we get IntelliSense on the types
and methods exposed by the service. The following are the steps we need to perform to get
this working:

1. We need an API key to interact with the Bing API. This key is required, so that Bing can
check that the request has arrived from a registered developer. A key can be obtained
for free at http://www.bing.com/developers/createapp.aspx.

2. To build the actual application, we'll start from a clean slate. Create a new Silverlight
application in Visual Studio and name it SilverBing.

3. We don't need to create a service ourselves; we just have to connect with the service
from Bing. To do this, right-click on the Silverlight project node in the Solution
Explorer and select Add Service Reference.... In the dialog box that appears,
enter the URL http://api.search.live.net/search.wsdl?AppID=XXX
for the WSDL file, where XXX needs to be replaced with the obtained API key. Enter
BingService in the Namespace: field. Visual Studio will create the proxy after you
click on the OK button.

4. The UI of the application consists of a search TextBox, a Button, and a templated
ListBox. The complete XAML listing can be found in the code downloads.

Chapter 8

313

5. When clicking on the previously mentioned Button, in the event handler, we need to
create a request to send to Bing. The request is encapsulated in a SearchRequest
object, which is a type exposed by the service for us to use in our application. It
contains the parameters we need to pass to the service (such as the API key) and
the type of search we want to conduct. After constructing the SearchRequest
instance, we define the callback method that should be executed when the service
call returns. Finally, we perform the search asynchronously. The following code is
used to illustrate this:
private void SearchButton_Click(object sender, RoutedEventArgs e)
{
 BingService.BingPortTypeClient soapClient =
 new SilverBing.BingService.BingPortTypeClient();
 SearchRequest request = new SearchRequest();
 request.AppId = "PERSONAL API KEY GOES HERE";
 request.Sources = new SourceType[] { SourceType.Web };
 if (SearchTextBox.Text != string.Empty)
 {
 request.Query = SearchTextBox.Text;
 soapClient.SearchCompleted +=
 new EventHandler<SearchCompletedEventArgs>
 (soapClient_SearchCompleted);
 soapClient.SearchAsync(request);
 }
}

6. We define a data-only class called BingSearchResult in the Silverlight project, in
order to work with the results. This class is shown in the following code:
public class BingSearchResult
{
 public string Title { get; set; }
 public string Uri { get; set; }
 public string Description { get; set; }
}

7. When the service returns, the results are packaged in a SearchResponse, which is
a type defined by Bing's service. We can loop through the results using a LINQ query
and build BingSearchResult instances as shown in the following code:

void soapClient_SearchCompleted(object sender,
 SearchCompletedEventArgs e)
{
 SearchResponse response = e.Result;
 if (response.Web.Results.Count() > 0)
 {
 var results = from result in response.Web.Results

Talking to WCF and ASMX Services

314

 select new BingSearchResult
 {
 Title = result.Title,
 Uri = result.Url,
 Description = result.Description
 };
 ResultListBox.ItemsSource = results.ToList();
 }
}

The results are now shown in a ListBox with a DataTemplate applied to it. The
following screenshot shows the results obtained on searching for Silverlight:

How it works...
Publicly accessible services, such as the services from Bing, allow us to integrate functionality
into our Silverlight applications. Some services expose a REST API (refer to Chapter 10,
Talking to REST and WCF Data Services, for more information about REST access), while
some expose SOAP services. Bing exposes both, and we used the latter option in this recipe.
If a service exposes both, using SOAP is recommended. One advantage is full IntelliSense,
because Visual Studio can generate a proxy in the project based on the WSDL file. This proxy
also contains all types and enumerations exposed by the service. Another advantage is that
we get deserializing of the SOAP response done automatically, and it does not require us to do
manual processing of XML.

Chapter 8

315

The entire API for Bing can be found at http://www.bing.com/developers/s/
APIBasics.html. Working with the API requires an API key, which Bing can use to tell if the
request is authorized. We can find the address of the WSDL file in the documentation as well.

To perform a search, we need to instantiate an object of the SearchRequest class. This
class is exposed by the service and is available on the client side because of the proxy
generation. When Visual Studio connects with the service, it reads the exposed metadata (in
the form of a WSDL file) and generates the client-side proxy. The SearchRequest class is
used to pass parameters to the service, such as the API key and the search term. Invoking the
service is done asynchronously, as with all other services.

The callback method is invoked once the service request is complete and the result is
available. The result is of the SearchResponse type. Looping through the Web.Results
property of the SearchResponse allows us to retrieve the results as returned by Bing.

There's more...
Bing exposes a SourceType enumeration that can be used to specify if we want to perform a
regular web search, an image search, a news search, and so on. Bing exposes a specific type
for some of the options of the enumerations. For example, it exposes the ImageRequest
class for SourceType.Image. This class exposes more specific properties related to image
searching. This ImageRequest can then be linked with the original request using its Image
property.

See also
Communicating with Bing's service is similar to what we did in the previous recipe of
this chapter.

Optimizing performance using binary XML
Applies to Silverlight 3, 4 and 5

When working with data in Silverlight, you'll typically get your data through some kind of
service call. This means that this data has to be sent over the wire. In some cases, the
data that is to be sent back and forth is relatively small, but in other cases, the amount of
transported data can become quite large, which means more bandwidth consumption and a
longer wait for the user.

When using WCF services with Silverlight, it's possible to compress this data, thus ensuring
lower bandwidth consumption. In this recipe, you'll learn how to achieve this.

Talking to WCF and ASMX Services

316

Getting ready
If you want to follow along with this recipe, you can use the provided starter solution located
in the Chapter08/UsingBinaryXML_Starter folder, in the downloads for the book. The
completed solution can be found in the Chapter08/UsingBinaryXML_Completed folder.

How to do it...
To look at how binary XML works, we're starting from a simple Silverlight solution that includes
a Silverlight project that calls a WCF service method. This method returns a Person object
and shows it on the screen. This starter solution uses basicHttpBinding. We're going to
encode our data to binary, so the bandwidth consumption is smaller. To achieve this, complete
the following steps:

1. Start by opening the solution as outlined in the Getting ready section of this recipe.

2. Open the web.config file and locate the endpoint exposed by MyWCFService. At
the moment, this endpoint uses basicHttpBinding. Change this endpoint to use a
custom binding to encode the data to binary as shown in the following code:
<bindings>
 <customBinding>
 <binding name="UsingBinaryXML.Web.MyWCFService
 .customBinding0">
 <binaryMessageEncoding />
 <httpTransport />
 </binding>
 </customBinding>
</bindings>
<serviceHostingEnvironment aspNetCompatibilityEnabled="true" />
<services>
 <service name="UsingBinaryXML.Web.MyWCFService">
 <endpoint address=""
 binding="customBinding"
 bindingConfiguration="UsingBinaryXML.Web
 .MyWCFService.customBinding0"
 contract="UsingBinaryXML.Web.MyWCFService" />
 <endpoint address="mex"
 binding="mexHttpBinding"
 contract="IMetadataExchange" />
 </service>
</services>

Chapter 8

317

3. Open the Silverlight application and update the Service Reference by right-clicking on
MyWCFServiceReference and selecting Update Service Reference.

4. You can now build and run the solution. The data will be sent over the wire, which will
be binary-encoded.

How it works...
When using a WCF service, changing the way data is encoded is a matter of defining the
correct binding in the corresponding config files. WCF takes care of the rest.

In the second step of this recipe, we've added a customBinding that defines the
binaryMessageEncoding element. This binding is then used by our endpoint (instead of
basicHttpBinding) to make sure that binary encoding will be used. In the third step, we
make sure that the correct corresponding client-side endpoint configuration is generated in
ServiceReferences.ClientConfig by updating the Service Reference.

The code doesn't have to be changed to achieve binary encoding.

The default configuration is different depending on the version of
Silverlight you're using
In Silverlight 3 and higher, a custom binding that provides binary encoding is automatically
generated. So, you don't need to execute the previous steps to get the advantages of
binary encoding.

Using binary encoding is not a security measure
Although the data sent over the wire isn't as easily readable as plain text, it's not that hard to
write a decoder. Thus, binary encoding should be used as a means of lowering your bandwidth
consumption, but never as a security measure!

See also
As mentioned before, using binary encoding is not a security measure. To learn how to secure
your communication, have a look at the Ensuring data is encrypted and Securing service
communication using message-based security recipes.

Talking to WCF and ASMX Services

318

Debugging a service in Silverlight
Applies to Silverlight 3, 4 and 5

One of the things that were missing in Silverlight 2 when it came to working with services
was the ability to debug them. In the event of an error occurring in the service code, it was
not possible to get information about this error in the Silverlight client application. The only
information we got when something went wrong was The remote server returned an error:
NotFound, and that was it. The user wasn't provided with any inner exception with a clue
about the real error on the service, any messages, and so on. While this was a problem during
development, it was a worse a problem that we could not give any indication to the end user
on what he/she should do to solve the issue. This was because we could not distinguish
let's say a divide-by-zero error from an error caused by the database being down inside the
Silverlight application.

If we are developing both the service and the Silverlight application, we can still debug
the service code and find out the eventual errors. However, it's a real show-stopper when
working with external, perhaps third-party services to which we don't have access as we can't
see what's happening on the service side.

Luckily, Silverlight has evolved quite a lot since version 2, as it now includes the option to
debug the service by displaying the returned error from the service side. In this recipe, we'll
look at how to set this up.

Getting ready
To try out this sample, a starter solution is provided in the Chapter08/
SilverlightServiceDebugging_Starter folder in the downloads available
on the Packt website. The finished solution can be found in the Chapter08/
SilverlightServiceDebugging_Completed folder.

How to do it...
To explain the way Silverlight makes it possible to debug a service, we'll start from an
application that could have been easily created in Silverlight 2, and we'll follow the changes
we need to make to both the service and the Silverlight application. We do this so that we can
debug the service and get error information in the Silverlight client.

The scenario is very simple. The application allows us to search for an employee or a list
of employees in a directory based on username. If a result is found, a DataGrid is shown
containing the results. Let's take a look at the steps we need to perform to make it possible
to debug this application:

Chapter 8

319

Note that this recipe requires either Fiddler or Web Development
Helper to view the traffic from and to the service. See the Appendix for
more info on these. We'll use Fiddler in this recipe.

1. Open the solution located in the Chapter08/SilverlightServiceDebugging_
Starter folder in the code downloads and take a look at the
SilverlightEmployeeLookup.Web/EmployeeLookupService.svc.cs file.
The RetrieveEmployeesByUserName(string userName) method has a bug
residing in this class. If no Employee items are found, we still try to retrieve the first
item. Of course, this will generate an error. The following code snippet shows the
faulty code:
if (results.Count<Employee>() == 0)
{
 Employee employee = results.First();
}

2. Let's try if we can see in the Silverlight application what went wrong. Run the
application and search for George. Visual Studio will show the sequence contains
no element's error inside the service code. However, on the client side, the error
information is not available anymore, and the dreaded NotFound exception is
thrown, as shown in the following screenshot:

3. At this point, even Fiddler is of no help. Let's run the application with Fiddler open
again. When the error occurs, a message with status 500 is shown, as well as the
following result is shown, containing no information about the error:
<s:Envelope xmlns:s="http://schemas.xmlsoap.org/soap/envelope/">
 <s:Body>
 <s:Fault>
 <faultcode xmlns:a="http://schemas.microsoft.com/
 net/2005/12/windowscommunicationfoundation/dispatcher">
 a:InternalServiceFault
 </faultcode>

Talking to WCF and ASMX Services

320

 <faultstring xml:lang="nl-BE">
The server was unable to process the request due to an
internal error. For more information about the error,
either turn on IncludeExceptionDetailInFaults (either from
ServiceBehaviorAttribute or from the <serviceDebug>
configuration behavior) on the server in order to send the
exception information back to the client, or turn on tracing as
per the Microsoft .NET Framework 3.0 SDK documentation and inspect
the server trace logs.
 </faultstring>
 </s:Fault>
 </s:Body>
</s:Envelope>

The previous message says that we need to turn on
IncludeExceptionDetailInFaults to receive information about the error. We'll
come to this later.

4. The reason that Silverlight can't read the error is that the message has a status 500.
Due to the browser networking stack that Silverlight uses under the covers, plugins
such as Silverlight don't get access to this message. Hence, we should try to change
the status to 200, so that Silverlight can access the error. This change can be brought
about by creating a WCF endpoint behavior for Silverlight faults. This will do the
conversion from HTTP status 500 to HTTP status 200.

5. We'll create this behavior in a class in a separate project. To do this, create a new
class library (not a Silverlight class library, as this library will be used by the web
project, not the Silverlight project). Name the new project FaultBehavior.

6. In this new project, we create a class containing the new behavior. The complete
code for this behavior can be found at http://msdn.microsoft.com/en-us/
library/dd470096(VS.95).aspx as well as in downloads of the book. The most
relevant part, which does the status conversion, is shown in the following code:
public void BeforeSendReply(ref Message reply,
 object correlationState)
{
 if (reply.IsFault)
 {
 HttpResponseMessageProperty property =
 new HttpResponseMessageProperty();
 // Here the response code is changed to 200.
 property.StatusCode = System.Net.HttpStatusCode.OK;
 reply.Properties[HttpResponseMessageProperty.Name] =
 property;
 }
}

Chapter 8

321

7. Build the class library and reference the project from the SilverlightEmployeeLookup.
Web web project.

8. We need to make some configuration changes in the web.config file, so that our
service can use the newly created behavior. Change the code in the web.config file
as shown in the following code (note that includeExceptionDetailInFaults is
set to true in this code):
<system.serviceModel>
 <extensions>
 <behaviorExtensions>
 <add name="silverlightFaults"
 type="FaultBehavior.SilverlightFaultBehavior,
 FaultBehavior, Version=1.0.0.0, Culture=neutral,
 PublicKeyToken=null" />
 </behaviorExtensions>
 </extensions>
 <behaviors>
 <endpointBehaviors>
 <behavior name="SilverlightFaultBehavior">
 <silverlightFaults />
 </behavior>
 </endpointBehaviors>
 <serviceBehaviors>
 <behavior name="SilverlightEmployeeLookup.Web
 .EmployeeLookupServiceBehavior">
 <serviceMetadata httpGetEnabled="true"/>
 <serviceDebug includeExceptionDetailInFaults="true"/>
 </behavior>
 </serviceBehaviors>
 </behaviors>
 <services>
 <service behaviorConfiguration="SilverlightEmployeeLookup.Web
 .EmployeeLookupServiceBehavior"
 name="SilverlightEmployeeLookup.Web
 .EmployeeLookupService">
 <endpoint address=""
 binding="basicHttpBinding"
 behaviorConfiguration="SilverlightFaultBehavior"
 contract="SilverlightEmployeeLookup.Web
 .IEmployeeLookupService">
 <identity>
 <dns value="localhost"/>
 </identity>
 </endpoint>

Talking to WCF and ASMX Services

322

 <endpoint address="mex"
 binding="mexHttpBinding"
 contract="IMetadataExchange"/>
 </service>
 </services>
</system.serviceModel>

9. Now that all the plumbing is done, we can focus on the service again. Let's start
by adding a new class called EmployeeFault. This class will contain information
on the error that occurred. The following code specifies our own fault type called
EmployeeFault. It contains two properties that will be filled with data when an error
occurs:
public class EmployeeFault
{
 public string Message { get; set; }
 public string AdditionalInfo { get; set; }
}

10. In the contract of the IEmployeeLookupService, we need to add the
FaultContract attribute. This is shown in the following code:
[ServiceContract]
public interface IEmployeeLookupService
{
 [OperationContract]
 [FaultContract(typeof(EmployeeFault))]
 List<Employee> RetrieveEmployeesByUserName(string userName);
}

11. In the service implementation, we can now create an instance of the
EmployeeFault when an exception occurs. In the following code, we check
if there are no results and if so, we return an instance of the EmployeeFault
that contains information regarding the results:
if (results.Count<Employee>() == 0)
{
 EmployeeFault fault = new EmployeeFault();
 fault.Message = "No results found.";
 fault.AdditionalInfo = "Perhaps try a different search term.";
 throw new FaultException<EmployeeFault>(fault,
 "Bad search term");
}

12. Build the solution again. We also need to update the service reference, so that the
client-side proxy code is recreated. To do this, right-click on the service reference and
select Update Service Reference. The generated code in the proxy class will now
also include the EmployeeFault.

Chapter 8

323

13. In the callback method of the Silverlight application, we can now check if the result
contains an error, and if it does, we can check the type of the returned fault. This fault
also includes relevant information that we can use to display to the user:

if (e.Error == null)
{
 EmployeesDataGrid.ItemsSource = e.Result;
}
else if (e.Error is FaultException<EmployeeFault>)
{
 FaultException<EmployeeFault> serviceFault =
 e.Error as FaultException<EmployeeFault>;
 ErrorTextBlock.Text = serviceFault.Detail.Message + " " +
 serviceFault.Detail.AdditionalInfo;
}

If we run the application now and search for a non-existing employee, we see
the information contained in the fault returned by the service, as shown in the
following screenshot:

How it works...
When a service encounters an error, it returns an HTTP status code 500. Silverlight can't
receive these responses, because of the browser networking stack. Due to this, when
working with services, we often encounter the The remote server returned an error:
NotFound error error message. This isn't very helpful, because no information on what
really went wrong is included.

To make it possible for Silverlight to read service faults, we need to change the status code
from 500 to 200. This can be achieved by adding a behavior that will do this for our WCF
service. When using this behavior on a service, we also need to make configuration changes
in the web.config file of the service project.

After this change, service faults are accessible in Silverlight. The fault—a SOAP fault—needs to
be translated into managed code. Silverlight 2 could not do this. However, this changed with
the introduction of Silverlight 3, and remained the same for Silverlight 4 and 5 as well. This
way, error information sent by the service can be translated into a managed exception that
can be inspected and used for error-handling purposes.

Talking to WCF and ASMX Services

324

Types of faults
There are two types of faults that can be sent by a service—a declared fault and an
undeclared fault.

Declared faults
Declared faults are the type of faults we should use in a production environment. These
define a custom type that will be sent back to the client-side application, containing
information on the error that occurred. Declared faults occur in operations annotated with
the FaultContractAttribute. By annotating an operation with this attribute, we specify
that this operation may throw this type of exception, and if it does, the resulting fault instance
should be sent to the client.

When building the proxy, the custom fault type will be generated on the client side as well.
This way, we can build code that will check if the returned error is an instance of the custom
fault type. If it is, we can get the error information from the instance.

Undeclared faults
During development, we often want all the information about an error that occurs. Remember
the error message we got earlier in this recipe using Fiddler (in step 3)? Hidden in the
response of the service, it was mentioned that we could get more information on the error
that occurred by setting IncludeExceptionDetailInFaults to true in the service
configuration. This is shown in the following line of code:

<serviceDebug includeExceptionDetailInFaults="true"/>

Doing this (and thus not using the declared faults), results in the original error being sent over
the wire. Silverlight will also be able to pick up this type of fault (assuming we still have the
behavior in place that converts status 500 to status 200). The following code can be used to
capture undeclared faults:

void proxy_RetrieveEmployeesByUserNameCompleted(object sender,
 SilverlightEmployeeLookup.EmployeeLookupService
 .RetrieveEmployeesByUserNameCompletedEventArgs e)
{
 if (e.Error == null)
 {
 EmployeesDataGrid.ItemsSource = e.Result;
 }
 else if (e.Error is FaultException<ExceptionDetail>)
 {
 FaultException<ExceptionDetail> serviceFault =
 e.Error as FaultException<ExceptionDetail>;
 ErrorTextBlock.Text = serviceFault.Detail.Message;
 }
}

Chapter 8

325

If we run this code, the Silverlight application will show the error message, as it was sent when
the error occurred on the service.

The main reason to favor declared faults for production code is that we don't want to show
real service errors to the end users. These might even include sensitive information, such as
database passwords.

Using ASP.NET Authentication in Silverlight
Applies to Silverlight 3, 4 and 5

When creating ASP.NET web applications, we often have to authenticate visitors. Not every
user has the permission to see just any information contained in the website. For example,
only paying subscribers have access to read all articles or perform searches on the site.
Also, an administrator should be able to log in to the application and make changes, such as
changing the content or adding an article.

This typical behavior is supported by some authentication mechanism. ASP.NET 2.0
introduced the ASP.NET Membership API, a built-in authentication system in ASP.NET that
supports user authentication, role management, profile management, and so on. Through
ASP.NET Application Services, added with ASP.NET 3.5, this system is exposed for client-
side use. Technologies, such as ASP.NET, AJAX, and Silverlight can use these services to
authenticate a user from a client-side application on the server side.

In this sample, we'll look at how Silverlight applications can integrate with an (existing)
authentication system built with ASP.NET Membership.

Getting ready
This recipe requires that SQL Server or SQL Server Express is installed on your machine,
since the code we are creating is talking to a database. The SQL Server service should be
started as well. You can check if the service is active via Control Panel | Administrative Tools
| View Local Services.

To follow along with this recipe, you can use a starter solution located in the Chapter08/
UserAuthentication_Starter folder in the code bundle available on the Packt
website. The completed code for this recipe can be found in the Chapter08/
UserAuthentication_Completed folder.

Talking to WCF and ASMX Services

326

How to do it...
For this recipe, we'll build an application where a user can log in. If the authentication
succeeds, he or she can view the employee information. Should he or she fail to provide
correct authentication information, the employee data will not be accessible for that user.
All the authentication data (usernames and passwords) is contained in a database and is
managed by the ASP.NET Membership API, and thus lives at the server side. However, we
will allow the user to log in from the client-side Silverlight application. Let's take a look at the
steps we need to follow to support ASP.NET Authentication from Silverlight:

1. Open the starter solution as outlined in the Getting Ready section.

2. To kick things off, we should first do some work on that website. We'll start by
adding a database that contains the user information. For this sample, we'll use the
default ASPNETDB.MDF database, but all that is explained here can be added to any
existing database. To have Visual Studio create this default database for us, select
any file in the website in the Solution Explorer and then go to Project | ASP.NET
Configuration. An administration website called ASP.NET Web Site Administration
Tool will appear, as shown in the following screenshot. Make sure that the SQL server
service is running for the next steps to succeed:

3. In this tool, head over to the Security tab. On this page, we must start by changing
the authentication type, which is by default set to Windows Authentication. Click on
the Select Authentication Type link, and in the page that appears next, select From
the internet. Confirm by clicking on Done.

Chapter 8

327

4. We are now sent back to the Security page. We can now add some users using this
tool. Click on the Create user link, and add the details for a user. For the sample, we
use the username normaljoe and the password normal?.

5. At this point, we are ready to start exposing the ASP.NET Membership information.
We can do so by creating a service. We'll want this service to expose the possibility
to authenticate a user from the client side by verifying his or her username and
password combination. However, this functionality is already available in ASP.NET in
the form of the ASP.NET Application Services. Thus, we only need to create a service
endpoint and enable the service (it is disabled by default). Let's start with the service
endpoint. Since we don't need to write any functionality for this service, we can add
an empty text file and rename it to have the .svc extension. Name the newly added
file as AuthService.svc.

6. In this file, we should now only add a line of code that will link the code already
available in ASP.NET with our service endpoint. Add the following line of code:
<%@ ServiceHost Language="C#"
 Service="System.Web.ApplicationServices.AuthenticationService" %>

7. Next, we need to configure this service as if it were a regular WCF service. As we
did not add the service as a service, but as a text file, Visual Studio did not add any
configuration code to the web.config file as it usually does. The following code
needs to be added between the <configuration></configuration> tags in the
web.config file.

Note that the basicHttpBinding is used as the binding type for the
communication between Silverlight and the ASP.NET Application service.
<system.serviceModel>
 <services>
 <service
 name="System.Web.ApplicationServices.AuthenticationService"
 behaviorConfiguration="AuthenticationServiceBehaviors">
 <endpoint
 contract="System.Web.ApplicationServices.AuthenticationService"
 binding="basicHttpBinding" />
 </service>
 </services>
 <serviceHostingEnvironment aspNetCompatibilityEnabled="true"/>
 <behaviors>
 <serviceBehaviors>
 <behavior name="AuthenticationServiceBehaviors">
 <serviceMetadata httpGetEnabled="true"/>
 </behavior>

Talking to WCF and ASMX Services

328

 </serviceBehaviors>
 </behaviors>
</system.serviceModel>

8. As already mentioned, the application services' functionality are not enabled by
default; we need to enable it using configuration code. Again in the web.config file,
add the following code between the <configuration></configuration> tags:
<system.web.extensions>
 <scripting>
 <webServices>
 <authenticationService enabled="true"
 requireSSL="false"/>
 </webServices>
 </scripting>
</system.web.extensions>

9. Finally, let's check that the authentication mode is set to Forms (it should be fine
already, since we set this using the ASP.NET Web Site Administration Tool).
<authentication mode="Forms" />

10. We're done with what concerns the server side. Let's turn our attention to the client
side. We'll start by adding a service reference. Adding this reference is nothing
different from any other service reference we have already added. Right-click on
the Silverlight project and select the Add service reference node. In the dialog box,
click on the Discover button, and the service should be located. Set the service
namespace to AuthenticationService.

11. The Silverlight application contains two screens. The first screen, the main window,
contains some Button instances and a DataGrid, which shows employee data. No
data is shown by default; the user has to click on the View Users button. However,
this button is only enabled after the user has authenticated. Authentication can be
done using the second screen, a ChildWindow called LoginWindow that contains
fields to enter username and password. Both screens can be seen at the end of this
recipe, and the XAML code can be found in the downloads of the book.

12. The application checks at startup if the user is already authenticated. It will do so
using the operations exposed by the authentication service, namely the IsLoggedIn
method. We create an instance of the AuthenticationServiceClient (the proxy
class), and call the IsLoggedInAsync method on it. An event handler is attached
on the IsLoggedInCompleted event as follows:
private void UserControl_Loaded(object sender, RoutedEventArgs e)
{
 AuthenticationService.AuthenticationServiceClient proxy = new
 UserAuthentication.AuthenticationService.
 AuthenticationServiceClient();

Chapter 8

329

 proxy.IsLoggedInCompleted += new EventHandler<UserAuthentication
 .AuthenticationService.IsLoggedInCompletedEventArgs>
 (proxy_IsLoggedInCompleted);
 proxy.IsLoggedInAsync();
}

13. In the callback method, we can check the result of the service call. If the result
is false, the user is asked to enter his or her credentials in the LoginWindow,
an instance of a Silverlight ChildWindow. If it is true, we enable the
ViewUsersButton as well as the LogoutButton. The following code performs the
check of the result:
void proxy_IsLoggedInCompleted(object sender, UserAuthentication
 .AuthenticationService.IsLoggedInCompletedEventArgs e)
{
 if (e.Result)
 {
 ViewUsersButton.IsEnabled = true;
 LogoutButton.IsEnabled = true;
 }
 else
 {
 var loginWindow = new LoginWindow();
 loginWindow.Closed += new EventHandler(loginWindow_Closed);
 loginWindow.Show();
 }
}

14. To actually log in the user in the LoginWindow, we can use the Login method. This
method is called when the user clicks on the OKButton. When the call is completed,
in the callback method, the DialogResult property of the ChildWindow class is
evaluated and set to true if the login attempt was successful. This can be seen in
the following lines of code:
private void OKButton_Click(object sender, RoutedEventArgs e)
{
 AuthenticationService.AuthenticationServiceClient proxy = new
 UserAuthentication.AuthenticationService.
 AuthenticationServiceClient();
 proxy.LoginCompleted += new EventHandler<UserAuthentication
 .AuthenticationService.LoginCompletedEventArgs>
 (proxy_LoginCompleted);
 proxy.LoginAsync(UserNameTextBox.Text, UserPasswordBox.Password,
 "", true);
}
void proxy_LoginCompleted(object sender,

Talking to WCF and ASMX Services

330

 UserAuthentication.AuthenticationService.LoginCompletedEventArgs
 e)
{
 if (e.Error != null)
 StatusTextBlock.Text = e.Error.ToString();
 else
 {
 this.DialogResult = true;
 }
}

15. The MainPage can now react according to the result of the login attempt in the
child window. In step 13, we added an event handler to the Closed event of the
LoginWindow instance. In this method, we can check what the DialogResult
property contains. If it is true, we enable the ViewUsersButton. This is shown in
the following code snippet:
void loginWindow_Closed(object sender, EventArgs e)
{
 LoginWindow loginWindow = (LoginWindow)sender;
 bool? result = loginWindow.DialogResult;
 if (result.HasValue && result.Value)
 {
 ViewUsersButton.IsEnabled = true;
 }
}

16. When the user wants to leave the application, he or she can use the LogoutButton.
The following code logs the user out of the application:

private void LogoutButton_Click(object sender, RoutedEventArgs e)
{
 AuthenticationService.AuthenticationServiceClient proxy = new
 UserAuthentication.AuthenticationService.
 AuthenticationServiceClient();
 proxy.LogoutCompleted += new EventHandler
 <System.ComponentModel.AsyncCompletedEventArgs>
 (proxy_LogoutCompleted);
 proxy.LogoutAsync();
}
void proxy_LogoutCompleted(object sender,
 System.ComponentModel.AsyncCompletedEventArgs e)
{
 if (e.Error == null)
 {
 LogoutButton.IsEnabled = false;

Chapter 8

331

 ViewUsersButton.IsEnabled = false;
 }
}

We have now created a Silverlight application that uses the ASP.NET Membership
API, more specifically ASP.NET authentication, to authenticate users. The following
screenshot shows the LoginWindow being displayed, because the user is not
logged in:

How it works...
When we want to add a Silverlight application to an already existing ASP.NET application that
uses ASP.NET Membership, we can easily reuse the authentication system. Since version 3.5,
ASP.NET has contained the so-called Application Services, which expose some functionality of
the server-side API to use by client-side platforms, such as Silverlight.

ASP.NET Membership uses cookies to validate a user request. When we use the API from
Silverlight, it creates the same cookies on the client side. When we are authenticated in
the Silverlight application, we are also authenticated for the ASP.NET application; the cookies
are identical.

Talking to WCF and ASMX Services

332

The functionality for the Application Services is already contained in the ASP.NET platform.
Therefore, we don't have to write any code: we only need to create an endpoint (*.svc file),
which links the endpoint with the code of ASP.NET. We do need to configure the service; we
need to add configuration code similar to a normal WCF service. Also, we need to enable the
Application Services using configuration code.

A Silverlight application works with this service just in the same way as it would with any other
service: Visual Studio creates a proxy when we add a service reference. This proxy class can
be instantiated to use the exposed methods. The service contains methods to check if the
user is already logged in and log the user in and out.

There's more
In this recipe, we've connected with the AuthenticationService. The ASP.NET
Membership API also has functionality to work with roles and profiles. Both are also
exposed through an application service, the RoleService and the ProfileService
respectively. Silverlight can connect to both these services in the same way as we did
with the AuthenticationService.

The RoleService gives us the ability in our client-side Silverlight application to verify if a
user is part of a certain role. Based on this information, we can enable or disable a particular
functionality in the application, or show or hide a screen from the user.

The ProfileService allows us to store typical user setting information. For example, we
can expose the functionality to let the user change the background color of the application. If
we want to persist this information between sessions, we can store it in the profile of the user.

Uploading files to a WCF service
Applies to Silverlight 3, 4 and 5

While most of the time we'll want to download files, such as images from a server, sometimes
a scenario may arise where we might need to send files to a server. For example, imagine
we are building a Silverlight image editor, where the user is editing an image locally. After
completion, the user may want to save this image on the server, perhaps in a folder or even
in a SharePoint library. In this case, the locally created file (in this case an image) somehow
needs to be transmitted to the server.

WCF services can help in implementing this scenario. At its heart, a file is nothing more than
binary data that can be sent to a service endpoint. In this recipe, we'll build such a service
and a client application that uses this service.

D
ow

n
lo

a
d
 f
ro

m
 W

o
w

!
e
B
o
o
k

<
w

w
w

.w
o
w

e
b
o
o
k.

co
m

>

Chapter 8

333

Getting ready
We'll build the application in this recipe from scratch. However, the finished solution can be
found in the Chapter08/SilverlightImageUpload folder in the downloads available on
the Packt website.

How to do it...
To start sending files to the server, we need to create a service that is capable of receiving
binary data. The service can take care of converting the binary data into a physical file that it
can store on the local file system. The client-side Silverlight application can then send data to
the service. The following are the steps we need to perform to complete this task:

1. We'll start from an empty Silverlight application in this recipe. Create a new Silverlight
solution in Visual Studio and name it as SilverlightImageUpload.

2. Let's first take a look at how to create a service. In the SilverlightImageUpload.Web
web project, add a new WCF service by right-clicking on the project and selecting
the Add | New Item... option. In the dialog box that appears, select the regular WCF
service template and name the service ImageUploadService.svc. Visual Studio
creates the ImageUploadService.svc, the ImageUploadService.svc.cs, and
the IImageUploadService.cs files. The latter contains the service contract.

3. The service contract in the IImageUploadService.cs file is quite simple,
containing only one operation. This is shown in the following code. The operation
accepts one parameter, namely an instance of the ImageUpload class that we'll
create in the next step:
[ServiceContract]
public interface IImageUploadService
{
 [OperationContract]
 bool Upload(ImageUpload imageUpload);
}

4. The ImageUpload class that is attributed with the DataContract attribute
contains a byte array as one of its members. This is shown in the following code:
[DataContract]
public class ImageUpload
{
 [DataMember]
 public string ImageName { get; set; }
 [DataMember]
 public byte[] Image { get; set; }
}

Talking to WCF and ASMX Services

334

5. Of course, we need to implement the service as well. The following code will convert
the byte array sent by the client application into a file. The code relies on classes in
the System.IO namespace, such as FileStream and BinaryWriter. Note that
we also add the AspNetCompatibilityRequirementsAttribute to this service.
Setting this attribute results in the service running in an ASP.NET compatibility mode.
This in turn results in the WCF service behaving like an ASMX service for some ASP.
NET features:
[AspNetCompatibilityRequirements(RequirementsMode =
 AspNetCompatibilityRequirementsMode.Required)]
public class ImageUploadService : IImageUploadService
{
 public bool Upload(ImageUpload imageUpload)
 {
 FileStream fileStream = null;
 BinaryWriter writer = null;
 string imagePath;
 try
 {
 imagePath = HttpContext.Current.Server.MapPath(".") +
 ConfigurationManager.AppSettings["ImageUploadDirectory"] +
 imageUpload.ImageName;
 if (imageUpload.ImageName != string.Empty)
 {
 fileStream = File.Open(imagePath, FileMode.Create);
 writer = new BinaryWriter(fileStream);
 writer.Write(imageUpload.Image);
 }
 return true;
 }
 catch (Exception)
 {
 return false;
 }
 finally
 {
 if (fileStream != null)
 fileStream.Close();
 if (writer != null)
 writer.Close();
 }
 }
}

Chapter 8

335

6. In the previous step, we used ConfigurationManager.AppSettings["Imag
eUploadDirectory"]. This line of code refers to an entry in the appSettings
collection in the web.config file, where we store settings that are specific to the
application. Add the following code in the web.config file (note that it is to be
inserted between the opening and closing appSettings tags):
<appSettings>
 <add key="ImageUploadDirectory"
 value="/Images/"/>
</appSettings>

7. Make sure the folder you want to store the images in exists before using it!

8. Finally, we need to tweak the configuration of the service to make it possible to
receive larger than normal messages. In the web.config file, change the system.
ServiceModel node so that it reflects the following code:
<system.serviceModel>
 <serviceHostingEnvironment aspNetCompatibilityEnabled="true"/>
 <bindings>
 <basicHttpBinding>
 <binding name="ImageUploadBinding"
 maxReceivedMessageSize="2000000"
 maxBufferSize="2000000">
 <readerQuotas maxArrayLength="2000000"
 maxStringContentLength="2000000"/>
 </binding>
 </basicHttpBinding>
 </bindings>
 <behaviors>
 ...
 </behaviors>
 <services>
 <service behaviorConfiguration="SilverlightImageUpload.Web
 .ImageUploadServiceBehavior"
 name="SilverlightImageUpload.Web.ImageUploadService">
 <endpoint address=""
 binding="basicHttpBinding"
 bindingConfiguration="ImageUploadBinding"
 contract="SilverlightImageUpload.Web
 .IImageUploadService">
 ...
 </service>
 </services>
</system.serviceModel>

Talking to WCF and ASMX Services

336

Note that the binding of the service is also set to
basicHttpBinding.

9. Now that the service is ready, build it.

10. Add a service reference to the Silverlight application by right-clicking on the project
node and selecting the Add Service Reference... option. In the dialog box that
appears, click on the Discover button. Visual Studio should find the service. Set the
namespace to ImageUploadService.

11. The UI of the application is very simple. The most important element is a Button.
The complete code can be found in the code bundle.

12. In the event handler of the Click event of the Button, an OpenFileDialog is
presented to the user, in which he or she can select an image file (only *.jpg files
are allowed in our scenario). The image is then converted into a byte array. This array
along with a filename is used for the creation of an ImageUpload instance. Finally,
an instance of the proxy class is created and a service call is made asynchronously,
passing in the ImageUpload instance. This is shown in the following code:
private void UploadButton_Click(object sender, RoutedEventArgs e)
{
 OpenFileDialog openFileDialog = new OpenFileDialog();
 openFileDialog.Filter = "JPEG files|*.jpg";
 if (openFileDialog.ShowDialog() == true)
 {
 Stream stream = (Stream)openFileDialog.File.OpenRead();
 byte[] bytes = new byte[stream.Length];
 stream.Read(bytes, 0, (int)stream.Length);
 string fileName = openFileDialog.File.Name;
 ImageUploadService.ImageUpload imageUpload = new
 SilverlightImageUpload.ImageUploadService.ImageUpload();
 imageUpload.ImageName = fileName;
 imageUpload.Image = bytes;
 ImageUploadService.ImageUploadServiceClient proxy =
 new SilverlightImageUpload.ImageUploadService
 .ImageUploadServiceClient();
 proxy.UploadCompleted += new EventHandler
 <SilverlightImageUpload.ImageUploadService
 .UploadCompletedEventArgs>(proxy_UploadCompleted);
 proxy.UploadAsync(imageUpload);
 }
}

Chapter 8

337

13. In the callback method, we have access to the result. We use this result to give
feedback to the user as shown in the following code:
void proxy_UploadCompleted(object sender, SilverlightImageUpload
 .ImageUploadService.UploadCompletedEventArgs e)
{
 if (e.Error == null)
 {
 if (e.Result)
 {
 ResultTextBlock.Text = "Image uploaded successfully!";
 }
 else
 {
 ResultTextBlock.Text = "An error occurred while uploading
 the image";
 }
 }
}

14. We have now successfully uploaded the image to the server using the WCF service.
The following screenshot shows the interface with the OpenFileDialog open,
thus allowing the user to select an image. The selected image will then be uploaded
to the service:

Talking to WCF and ASMX Services

338

How it works...
To upload files to the server, WCF services can be the solution. The process is actually quite
simple. We need to create a service that accepts a byte array. In the service code, this byte
array can then be converted into a file. In this recipe, we have used images, but the process
explained works for all types of files (a Word document, an Excel file, and so on).

By default, a WCF service does not accept incoming messages larger than 65536 bytes. This
is an issue when sending files, because most files will be larger than this limit. Due to this, we
need to configure the binding in the web.config file of the service, so that larger messages
aren't blocked. In our recipe, we specified the maximum file size to be 2 megabytes.

The client application can open a file on the user's hard drive by using OpenFileDialog. We
get a read-only stream to the file. This resulting stream can then be used to create a byte array
that is then passed to the service.

See also
In the next recipe, we carry out a similar operation, namely, displaying images sent to the
Silverlight application as binary data.

Displaying images as a stream from
a WCF service

Applies to Silverlight 3, 4 and 5

In the previous recipe, we looked at how we could send files to a server using a WCF service
that lies in between. The data is sent in that scenario as a stream of bytes.

Instead of uploading files, we may also come across a situation where a service sends data,
such as images in the form of binary data (instead of just sending a link to the file). This can
be the case if the files are stored in a database in binary format. In this recipe, we'll look at
exactly this.

Getting ready
A starter solution containing some sample images is provided in the code bundle
available on the Packt website. This solution can be found in the Chapter08/
SilverlightImageDownload_Starter directory. The complete code for this recipe can
be found in the Chapter08/SilverlightImageDownload_Completed directory.

Chapter 8

339

How to do it...
In this recipe, we'll build a simple image search application in which the user can enter a
value to find an image. This service will search for an image in a specific directory and if
found, it will return this image as binary data. This way, we can send images to the Silverlight
application that live on the server and not in a web folder. The following are the steps we need
to perform to get this working:

1. Open the starter solution as outlined in the Getting ready section of this recipe.

2. Let's first focus on the server side. Add a new regular WCF service and
name it ImageDownloadService.svc. Visual Studio will add three
files: the service endpoint (ImageDownloadService.svc), the service
contract (IImageDownloadService.cs), and the service implementation
(ImageDownloadService.cs).

The service contract defines the Download method that returns an ImageDownload
instance and accepts one parameter of the string type. This is the name of
the image that the user is searching for. This method is also attributed with the
OperationContract attribute as shown in the following code:
[ServiceContract]
public interface IImageDownloadService
{
 [OperationContract]
 ImageDownload Download(string imageName);
}

3. The ImageDownload class contains a string and a byte array. This is the data
contract for the service, and is attributed as shown in the following code:
[DataContract]
public class ImageDownload
{
 [DataMember]
 public string ImageName { get; set; }
 [DataMember]
 public byte[] Image { get; set; }
}

4. The service implementation searches for an image with a specific name in a specified
directory. If found, the image file is read and the bytes are placed in a byte array. This
byte array is then wrapped into an ImageDownload instance that can be returned to
the client side. The following code allows us to do this:
[AspNetCompatibilityRequirements(RequirementsMode =
 AspNetCompatibilityRequirementsMode.Required)]
public class ImageDownloadService : IImageDownloadService

Talking to WCF and ASMX Services

340

{
 public ImageDownload Download(string imageName)
 {
 FileStream fileStream = null;
 BinaryReader reader = null;
 string imagePath;
 byte[] imageBytes;
 try
 {
 imagePath = HttpContext.Current.Server.MapPath(".") +
 ConfigurationManager.AppSettings["ImageDirectory"] +
 imageName + ".jpg";
 if (File.Exists(imagePath))
 {
 fileStream = new FileStream(imagePath, FileMode.Open,
 FileAccess.Read);
 reader = new BinaryReader(fileStream);
 imageBytes = reader.ReadBytes((int)fileStream.Length);
 return new ImageDownload() { ImageName = imageName,
 Image = imageBytes };
 }
 return null;
 }
 catch (Exception)
 {
 return null;
 }
 }
}

Note that the service is attributed with
AspNetCompatibilityRequirementsAttribute.
This is done as we're using ASP.NET-specific features, such
as HttpContext.

5. We have used ConfigurationManager.AppSettings["ImageDirectory"]
in step 5. This line of code refers to an entry in the appSettings collection in the
web.config file, where we store settings that are specific to the application. Add the
following code in the web.config file (note that it is to be inserted in between the
opening and closing appSettings tags):
<appSettings>
 <add key="ImageDirectory"
 value="/Images/"/>
</appSettings>

Create the Image directory as a subdirectory within the web application.

Chapter 8

341

6. As the service runs in ASP.NET Compatibility mode, we need to allow this from the
configuration code. This is done by adding the following code in the web.config file:
<system.serviceModel>
 <serviceHostingEnvironment aspNetCompatibilityEnabled="true"/>
</system.serviceModel>

7. Finally, we need to change the type of binding for the server side. As we used a
regular WCF service as opposed to a Silverlight-enabled WCF service, the binding
added in the configuration was wsHttpBinding. Silverlight can't work with this
binding, so we need to change it to a basicHttpBinding. This is shown in the
following code:
<endpoint address=""
 binding="basicHttpBinding"
 contract="SilverlightImageDownload.Web
 .IImageDownloadService">

8. Compile the project, so that the service can be connected to it.

9. In the Silverlight project, add a service reference to the newly created service. If the
service was created correctly, Visual Studio will go ahead and add a proxy to the
Silverlight project. Set the namespace as ImageDownloadService.

10. The UI of the application is intentionally kept simple. It can be seen a bit further
in this recipe. It allows the user to enter a search term. In the Click event of the
Button, the service will be called and the image will be shown, if found. The code for
this UI can be found in the code bundle.

11. We instantiate the proxy in the Click event. In the asynchronous call, we pass in the
search term entered by the user. This is shown in the following code:
private void SearchButton_Click(object sender, RoutedEventArgs e)
{
 ImageDownloadService.ImageDownloadServiceClient proxy =
 new SilverlightImageDownload.ImageDownloadService
 .ImageDownloadServiceClient();
 proxy.DownloadCompleted += new EventHandler
 <SilverlightImageDownload.ImageDownloadService
 .DownloadCompletedEventArgs>(proxy_DownloadCompleted);
 proxy.DownloadAsync(SearchImageTextBox.Text);
}

12. In the code of the callback method, we have access to the image in binary format
(if one was returned by the service). The byte array in which the image data resides
is loaded into the memory using a MemoryStream instance. We then create a
BitmapImage and set its source to a loaded stream using the SetSource
method. This BitmapImage is finally set as the Source for the image. The code
for this is as follows:

Talking to WCF and ASMX Services

342

void proxy_DownloadCompleted(object sender,
 SilverlightImageDownload.ImageDownloadService
 .DownloadCompletedEventArgs e)
{
 NoImageTextBlock.Visibility = Visibility.Collapsed;
 BitmapImage image = new BitmapImage();
 if (e.Error == null)
 {
 if (e.Result != null)
 {
 ImageDownloadService.ImageDownload imageDownload = e.Result;
 MemoryStream stream = new MemoryStream(imageDownload.Image);
 image.SetSource(stream);
 ResultImage.Source = image;
 }
 else
 {
 NoImageTextBlock.Visibility = Visibility.Visible;
 }
 }
}

13. As shown in the following screenshot, when searching for a specific image, it is
loaded from the service and displayed in an Image control:

Chapter 8

343

How it works...
When images are stored in a non-accessible location on the server (meaning there's no URL
through which we can access them), or when an image is stored in a database, a service
that returns an image to the client as an array of bytes might be available. WCF services can
handle this type of traffic without problems.

Silverlight applications can capture this incoming binary data and recreate the original image
from that byte array. For this, it can create a stream from the bytes. This stream can be used
in combination with the BitmapImage class. The latter can then be used to set the Source
for an Image control from the code-behind.

See also
In the previous recipe, we also worked with images: we uploaded images as binary data
to a service.

9
Talking to WCF and

ASMX Services—One
Step Beyond

In this chapter, we will cover:

 f Using duplex communication over HTTP

 f Using duplex communication with the net.tcp protocol

 f Ensuring that data is encrypted

 f Securing service communication using message-based security

 f Integrating Windows Identity Foundation in Silverlight

 f Calling a WCF service from Silverlight using ChannelFactory

Introduction
In the previous chapter, we looked at the core concepts around communicating with WCF
services from a Silverlight standpoint. We've seen how proxies are generated in the Silverlight
application, so that we get typed access to the service types from within the Silverlight code
itself. This makes working with WCF and ASMX very enjoyable, since we are getting access to
a full IntelliSense experience while coding.

In .NET, WCF offers many options to the developer. From a Silverlight perspective, WCF
offers a lot of possibilities as well. We've seen some of the simpler concepts in the previous
chapter. The focus of this chapter is taking things further by looking at more complex ways of
interacting with WCF from Silverlight code.

Talking to WCF and ASMX Services—One Step Beyond

346

In some scenarios, services may want to initiate the communication with the client (instead of
traditional client-server communication). We've seen earlier how sockets are a way of allowing
this. However, WCF also has two ways of allowing duplex (also referred to as bidirectional)
communication, namely using HttpPollingDuplex and net.tcp bindings. In this chapter,
we'll take a deep look at how we can work with these, and when to choose which.

Another important but often complex aspect is security. WCF as a technology offers a wide
range of options in the security area. However, a lot of these aren't working in combination
with Silverlight. HTTPS, combined with message-based security, can be a good solution to
implement security in your projects. Next to this, in this chapter, we also take a look at working
with the Windows Identity Foundation (WIF).

We'll round up this chapter by looking at using the ChannelFactory itself to call a service.

Using duplex communication over HTTP
Applies to Silverlight 3, 4 and 5

Most types of communication between a client and a server are initiated by the client. The
client sends a request to the server and the server sends its response back to the client.
However, we may sometimes need to inform the client about the changes that take place
in the service. This will then be a server-initiated request to the client, as the server needs
to push information to the client. This leads us to the fact that sometimes we may need so-
called duplex communication, in which both the server and the client side can initiate the
communication. This isn't possible out of the box because of the HTTP stack. HTTP is based
on a client-initiated request, to which the server can respond.

PollingDuplexBinding was introduced to mimic this duplex communication. In this type
of binding, the client will almost continuously poll for new messages on the server, creating
the illusion of a duplex communication channel.

Silverlight 2 already had basic support for duplex communication. However, Silverlight 3
extended this model and dramatically reduced its complexity. It's now very easy to
create duplex communication using WCF. In Silverlight 4 and 5, the model remained
largely the same.

Getting ready
We'll build the application in this recipe from scratch. To follow along with this recipe, a
starter solution is provided in the Chapter09/DuplexStockService_Starter folder in
the code bundle that is available on the Packt site. This solution contains some images that
are used in the application code. The finished solution can be found in the Chapter09/
DuplexStockService_Completed folder.

Chapter 9

347

How to do it...
We'll build a stock ticker in this recipe. A stock ticker is a typical scenario in which the server
should be able to send new information to the client, when the value of a stock has changed.
We'll start by building the service and then we'll connect the Silverlight application to the
newly created service. Using PollingDuplexBinding, the client will receive updates as
they happen on the server. The following are the steps we need to complete to make duplex
communication work:

1. Open the starter solution as outlined in the Getting ready section. It's basically
a blank solution, but it already contains the correct images used further in the
XAML code.

2. Let's first focus on the service. The support for duplex communication, both
on the server and the client side, is provided by two assemblies that are
automatically installed with the Silverlight SDK. For the server side, there's the
System.ServiceModel.PollingDuplex.dll assembly that is located in the
%ProgramFiles%\Microsoft SDKs\Silverlight\v5.0\Libraries\Server
directory. Note that when using a 64-bit OS, such as Windows 7 64 bit, this file will be
located in the %ProgramFiles(x86)%\Microsoft SDKs\Silverlight\v5.0\
Libraries\Server directory. Add a reference to this assembly in the web project
of the solution.

3. To add the service, right-click on the web project and add a Silverlight-enabled WCF
Service. Name this service StockService.

4. We need to make some modifications to the service so that it can work as a duplex
service. First, add a new interface to the project by right-clicking on the web project,
and selecting the Interface item in the dialog. Name this interface IStockService.

5. In this interface, we will define the contract the service exposes. In this case,
the service exposes one operation called Connect, which will be invoked from
the client application, passing in the stock symbol that we want to receive
updates from. However, we also have to specify a client callback interface called
IStockServiceClient. This is shown in the following code:
[ServiceContract(Namespace = "Silverlight", CallbackContract =
 typeof(IStockServiceClient))]
public interface IStockService
{
 [OperationContract(IsOneWay = true)]
 void Connect(string stockSymbol);
}

Talking to WCF and ASMX Services—One Step Beyond

348

Note that the OperationContract was defined with the
IsOneWay parameter set to true. This indicates that the operation
will not return a reply message and the updates will be pushed to the
client. Also, note that you may need to add a using statement for the
System.ServiceModel namespace.

6. In the IStockService.cs file, we still need to define the client interface called
IStockServiceClient. This interface defines that we can send a message of the
Update type to the client (we'll add the Update class in the next step). This is shown
in the following code:
[ServiceContract]
public interface IStockServiceClient
{
 [OperationContract(IsOneWay = true)]
 void SendUpdate(Update update);
}

7. The Update class contains information about the stock, such as the new value, the
percentage change, and an indication whether it increased or decreased. The status
of the stock is wrapped as an enumeration type called UpdateType as shown in the
following code:
public class Update
{
 public double Amount { get; set; }
 public UpdateType UpdateType { get; set; }
 public double Percentage { get; set; }
}
public enum UpdateType
{
 Increase,
 Decrease,
 NoChange
}

8. Let's now implement the IStockService interface. The implementation should
be added to the StockService.svc.cs file. We'll introduce a Timer (of the
System.Threading namespace) that will simulate new stock values coming in.
Using the OperationContext.Current.GetCallbackChannel, we get access
to the client callback interface. This instance is then used to send updates using
the SendUpdate method in the Tick event of the Timer as shown in the following
code:
public class StockService : IStockService
{

Chapter 9

349

 private IStockServiceClient client;
 private Timer updateTimer;
 private Update update;
 private Update previousUpdate;
 public void Connect(string stockSymbol)
 {
 client = OperationContext.Current.GetCallbackChannel
 <IStockServiceClient>();
 updateTimer = new Timer(new TimerCallback(TimerTick),
 null, 500, 5000);
 }
 void TimerTick(object state)
 {
 if (client != null)
 {
 try
 {
 RefreshUpdate();
 client.SendUpdate(update);
 }
 catch (Exception)
 {
 client = null;
 updateTimer.Dispose();
 }
 }
 }
 private void RefreshUpdate()
 {
 Random r = new Random();
 double value = Math.Round(30 + 10 * r.NextDouble(), 2);
 if (update == null)
 {
 update = new Update()
 {
 Amount = value,
 UpdateType = UpdateType.NoChange,
 Percentage = 0.0
 };
 previousUpdate = update;
 }
 else
 {
 //calculate difference

Talking to WCF and ASMX Services—One Step Beyond

350

 double diff = value > previousUpdate.Amount ? value -
 previousUpdate.Amount : previousUpdate.Amount - value;
 double percentage = diff / previousUpdate.Amount*100;
 UpdateType updateType = value > previousUpdate.Amount ?
 UpdateType.Increase : UpdateType.Decrease;
 update = new Update()
 {
 Amount = value,
 UpdateType = updateType,
 Percentage = Math.Round(percentage, 2)
 };
 previousUpdate = update;
 }
 }
}

9. The last step for the service is changing its configuration. In web.config, in the
system.serviceModel node, we need to specify that the service will be using
polling duplex communication. The code for the configuration is as follows:
<system.serviceModel>
 <extensions>
 <bindingExtensions>
 <add name="pollingDuplexHttpBinding"
 type="System.ServiceModel.Configuration
 .PollingDuplexHttpBindingCollectionElement,
 System.ServiceModel.PollingDuplex, Version=5.0.0.0,
 Culture=neutral, PublicKeyToken=31bf3856ad364e35"/>
 </bindingExtensions>
 </extensions>
 <behaviors>
 <serviceBehaviors>
 <behavior name="DuplexStockService.Web
 .StockServiceBehavior">
 <serviceMetadata httpGetEnabled="true"/>
 <serviceDebug includeExceptionDetailInFaults="false"/>
 </behavior>
 </serviceBehaviors>
 </behaviors>
 <bindings>
 <pollingDuplexHttpBinding>
 </pollingDuplexHttpBinding>
 </bindings>
 <serviceHostingEnvironment aspNetCompatibilityEnabled="false"/>
 <services>

Chapter 9

351

 <service behaviorConfiguration="DuplexStockService.Web
 .StockServiceBehavior"
 name="DuplexStockService.Web.StockService">
 <endpoint address=""
 binding="pollingDuplexHttpBinding"
 contract="DuplexStockService.Web.IStockService"/>
 <endpoint address="mex"
 binding="mexHttpBinding"
 contract="IMetadataExchange"/>
 </service>
 </services>
</system.serviceModel>

10. Working with a duplex service from a client-side perspective is not very different from
working with a regular WCF service. The biggest difference is that there's no support
for working with *.config files when working with duplex services. This results in
more manual work that needs to be done. Start by adding a service reference to
the service. To do this, right-click on the Service References node in the Silverlight
project and select Add Service Reference.... In the dialog box that appears, we can
find the service using the Discover button, as it's located in the same solution as
the Silverlight project itself. Enter StockService into the Namespace: field. This
process is entirely similar to a non-duplex service.

11. Similar to the service, we also need to add a reference to the System.
ServiceModel.PollingDuplex.dll file in the Silverlight application. This file
can be found in %ProgramFiles%\Microsoft SDKs\Silverlight\v5.0\
Libraries\Client directory (or %ProgramFiles(x86)%\Microsoft SDKs\
Silverlight\v5.0\Libraries\Client in the case of a 64-bit OS).

The UI for the application is simple and contains a few basic controls. The screenshot is
shown a bit further into this recipe, whereas the code can be found in the code bundle.

12. We want to receive updates when the user enters a stock symbol and clicks on the
button. We start by creating an EndPointAddress instance that points to the URI
of the service. After that, we create an instance of the CustomBinding class to
make communication with the service possible. The rest of the code consists of
instantiating the proxy, attaching the callback method, and invoking the Connect
operation using the ConnectAsync method. Note that the Connect will not return a
message and the callback is registered for the SendUpdateReceived event. This is
shown in the following code:
private StockService.StockServiceClient proxy;
private void StartButton_Click(object sender, RoutedEventArgs e)
{
 StockSymbolTextBlock.Text = StockSymbolTextBox.Text + ":";

 EndpointAddress address = new EndpointAddress
 ("http://localhost:6138/StockService.svc");

Talking to WCF and ASMX Services—One Step Beyond

352

 CustomBinding binding = new CustomBinding
 (new PollingDuplexBindingElement(),
 new BinaryMessageEncodingBindingElement(),
 new HttpTransportBindingElement());

 proxy = new DuplexStockService.StockService.
StockServiceClient(binding, address);

 proxy.SendUpdateReceived +=
 new EventHandler<DuplexStockService.StockService.
SendUpdateReceivedEventArgs>
 (proxy_SendUpdateReceived);

 proxy.ConnectAsync(StockSymbolTextBox.Text);
}

Note that the port number (localhost:6138) may be different in your
own project. You'll need to add a using statement for the System.
ServiceModel and the System.ServiceModel.Channels
namespaces as well.

13. We have access to the UI from the callback (so no crossing threads are needed
here). We can update the UI with a new value for every message that comes from the
server. This can be achieved using the following code:
void proxy_SendUpdateReceived(object sender, DuplexStockService
 .StockService.SendUpdateReceivedEventArgs e)
{
 this.DataContext = e.update;
}

We have now created a service that allows duplex communication with a Silverlight
application. The result is shown in the following image:

Chapter 9

353

How it works...
To explain how duplex communication works, we need to cover several items. Let's start with
what really happens behind the scenes.

PollingDuplexBinding: polling, binding, and assemblies
There's a real need of supporting two-way communication in real-world applications. In some
scenarios, in addition to requesting data from the client, the server must be capable of
initiating the action itself and sending data to the client side. In Silverlight 3, two options were
available: using sockets (which is explained in the Using socket communication in Silverlight
recipe in Chapter 7, Working with Services) and using duplex bindings. (In fact, a third option
was added with version 4, namely the net.tcp binding, which is the subject of the following
recipe.) While sockets can be a great solution, they have their disadvantages as well. They
communicate over an exotic range of ports, which may not always be accessible through
firewalls, making it impossible to use them.

However, duplex communication is implemented through PollingDuplexBinding in WCF.
By looking at the name of this binding, it's easy to see that it's implemented using some
sort of polling, sometimes referred as smart polling. The reason for this name is writing a
polling client is something we could do ourselves as well. In that case, the Silverlight client
application would contact the server quite often for new information. However, this would have
its complications. Finding a perfect poll interval would be rather difficult. If we set the interval
too small, we'll bring down the server. If we set it too large, we won't be notified about updates
in time. This solution would also be difficult to scale out, resulting in server overload, when too
many clients start polling.

Due to this, Microsoft introduced the smart polling technique. The client has to contact the
server to initiate the communication. The reason for this is that we're working over HTTP,
and HTTP first requires a request to start the communication. If the communication had
taken place over TCP, this wouldn't have been the case as TCP is a duplex protocol. Once a
connection is made, the PollingDuplexBinding allows a channel to remain connected
until a timeout occurs, disconnecting only to refresh the channel or to send received
messages to the client. In between that time, the client polls the service almost continuously.
The timeout is defined by the PollTimeout property on PollingDuplexBindingElement
and defaults to five minutes. When the timeout occurs, no exceptions are thrown if the
client and the server haven't aborted the session. If they have, a TimeoutException is
raised. When the channel needs to refresh, no exception is thrown; an empty response
is returned, and the channel is opened up again. As a result, the polling starts again. If
messages are created within this period, they are stored on the server and are sent to the
client on the first poll.

A second type of timeout called InactivityTimeout is also available. It defines the interval
of time that can pass without activity from either the client or the server. It has a default value
of ten minutes, after which the channel is set to a faulted state.

Talking to WCF and ASMX Services—One Step Beyond

354

To support duplex binding both on the server and the client side, we need to add a reference
to an assembly that provides support for duplex binding. This assembly is named System.
ServiceModel.PollingDuplex.dll on both sides. On the server side, this assembly
is located by default at %ProgramFiles%\Microsoft SDKs\Silverlight\v5.0\
Libraries\Server. On the client side, it is located at %ProgramFiles%\Microsoft
SDKs\Silverlight\v5.0\Libraries\Client. If you are using an older version of
Silverlight (3 or 4), simply replace the 5.0 directory with the correct version name to locate
these binaries.

The service
The service does not differ that much from a WCF service written for one-way
communication. However, some specifics need to be taken into account to make duplex
bindings work. Let's take a look at them. In the service contract (both IStockService
and IStockServiceClient), we specified the IsOneWay property as true in the
OperationContract attribute. The result of setting this value is that the client will not
wait for the service to return, which it would normally do in a one-way scenario. In this case,
the client calls the method, but returns immediately and does not wait for the service code
to execute. Due to this, the operations need to have void as the return type as no value can
be returned.

The service contract is attributed with the CallbackContract attribute. The specified
contract—IStockServiceClient—is used as a callback contract. This allows client
applications to listen to the incoming operation calls sent independently by the service.

Using the GetCallbackChannel method in the service, we get access to the client instance
that made the call to the service. This instance is of the IstockServiceClient type, and
the interface is defined as a callback contract. Because of this, we can call the SendUpdate
method on it, thus triggering the operation on the client side.

Finally, the service requires configuration. In this configuration, we specify that the service
will be communicating using duplex communication. The most important part in this is the
addition of pollingDuplexHttpBinding in the bindings collection:

<bindings>
 <pollingDuplexHttpBinding>
 </pollingDuplexHttpBinding>
</bindings>

This binding is then used as the binding for the endpoint of the service using the
following code:

<endpoint address=""
 binding="pollingDuplexHttpBinding"
 contract="DuplexStockService.Web.IStockService"/>

Chapter 9

355

The client
With the service in place, one or more clients can connect to the service. We need to define
an EndPointAddress instance in the client code. The EndPointAddress class contains
the address of the service endpoint that will be used for duplex communication. We need to
create the binding instance manually. To do this, we use CustomBinding. This instance is
initialized with a list of binding elements that define the binding when taken together.

The actual communication is carried out using a proxy similar to a normal service. However,
there are a few differences. The first one is the instantiation of the proxy. It requires both
the EndPointAddress and the CustomBinding instance to be passed in. Secondly,
the method we call asynchronously is not the same as the one we register to receive
callbacks from. This is quite logical. The asynchronously called method is used in this
example to connect to the service. The callbacks are received when the service invokes
the client operations.

See also
Duplex services are one way to perform duplex communication. Another way is to use socket
services, which are discussed in the Using socket communication in Silverlight recipe in
Chapter 7, Working with Services.

Using duplex communication with the
WCF net.tcp binding

Applies to Silverlight 4 and 5

So far, we have looked at two technologies that allow us to perform duplex communications.
In Chapter 7, Working with Services, we looked at how we could set this up using TCP sockets
communication. The biggest advantage of using sockets is their speed. The second option
is duplex WCF services, which is the focus of the previous recipe. Being WCF services, the
programming model is much simpler. Based on contracts, we get typed access to the objects
with which we're working. However, they rely on HTTP for their communication, resulting in
slower speeds.

With Silverlight 4, a new option was added which brings the best of both worlds—WCF
net.tcp binding. We can still use the same simple programming model from WCF, and
benefit from better transport speed. However, note that net.tcp isn't targeted only at
duplex communication. We can also use this binding for regular service communications.

In this recipe, we'll see how we can change the WCF duplex communication sample created in
the previous recipe to use the net.tcp binding.

Talking to WCF and ASMX Services—One Step Beyond

356

Getting ready
This recipe will change the code created in the previous recipe to use the WCF
net.tcp binding. However, it's advisable to use the starter solution located in the
Chapter09/DuplexCommunication_NetTcp_Starter folder in the code bundle
that is available on the Packt website. The finished solution for this recipe can be found
in the Chapter09/DuplexCommunication_NetTcp_Completed folder.

How to do it...
In this recipe, we'll start from the sample we created in the previous recipe that uses WCF
duplex communication over HTTP. Changing the application to use net.tcp, instead of
HTTP for its communication in itself, boils down to changing the configuration code within
web.config. However, we also need to make some changes in the way the services are
hosted. The following are the steps we need to perform:

1. Open the solution as outlined in the Getting ready section of this recipe.

2. To set up a net.tcp communication, we need to make some changes on the
web server software. The built-in ASP.NET Web Server of Visual Studio does not
support net.tcp communication. So, we'll need to use Internet Information
Services (IIS) for this.

3. Deploying the hosting site to IIS can be carried out in several ways. In this recipe,
we'll take the manual route. Open IIS and create a new application under the Default
Web Site node. Name this application StockService. The physical path of the site
should point to the folder of the web project of the solution. The result is shown in the
following image:

Chapter 9

357

4. When hosting WCF services with net.tcp in IIS 7, we need to enable Windows
Process Activation Service (WAS). Web applications are normally activated based
on incoming HTTP requests. With net.tcp communication, a web application will
be activated by a net.tcp request. This feature is not enabled on IIS by default.
To enable it, go to Windows Features and under Microsoft .NET Framework 3.5.1,
check Windows Communication Foundation Non-HTTP Activation. This is shown in
the following screenshot:

Talking to WCF and ASMX Services—One Step Beyond

358

5. In the IIS, we have to enable the net.tcp protocol. To do this, right-click on the
StockService application in the IIS Manager, and select Manage Application |
Advanced settings. In the Enabled Protocols field, add http,net.tcp as shown in the
following screenshot:

Chapter 9

359

6. We should also open the port for communication over net.tcp. The available ports
are the same as with TCP communication. To do this, right-click on the website
hosting the application (in our case, Default Web Site) and select Edit bindings. In
the dialog box that appears, add the port 4502 (lowest available port number) for the
net.tcp binding type, as shown in the following screenshot:

7. Now that we have IIS configured, we need to specify in Visual Studio that the
DuplexCommunication.Web website should start from this IIS site, instead of the
built-in ASP.NET server. To do this, right-click on the hosting website in the Solution
Explorer and select Properties. In the properties window, under the Web tab, select
the Use Local IIS Web server option and point to the web application in IIS (for
example, http://localhost/StockService).

8. We have to make changes to web.config, so that the service will support the net.
tcp binding. To do this, change the code in web.config as follows:
<system.serviceModel>
 <extensions>
 <bindingExtensions>
 <add name="pollingDuplexBinding"
 type="System.ServiceModel.Configuration
 .PollingDuplexHttpBindingCollectionElement,
 System.ServiceModel.PollingDuplex"/>
 </bindingExtensions>
 </extensions>
 <behaviors>
 <serviceBehaviors>
 <behavior name="DuplexCommunicationNetTcpBehavior">
 <serviceMetadata httpGetEnabled="true"/>
 <serviceDebug includeExceptionDetailInFaults="true"/>
 </behavior>
 </serviceBehaviors>

Talking to WCF and ASMX Services—One Step Beyond

360

 </behaviors>
 <bindings>
 <pollingDuplexBinding>
 <binding name="DuplexNetTcpBinding"
 useTextEncoding="true"/>
 </pollingDuplexBinding>
 <netTcpBinding>
 <binding name="DuplexNetTcpBinding">
 <security mode="None"/>
 </binding>
 </netTcpBinding>
 </bindings>
 <services>
 <service behaviorConfiguration="DuplexCommunication
 NetTcpBehavior"
 name="DuplexCommunication.Web.StockService">
 <endpoint address=""
 binding="pollingDuplexBinding"
 bindingConfiguration="DuplexNetTcpBinding"
 contract="DuplexCommunication.Web.IStockService"/>
 <endpoint address=""
 binding="netTcpBinding"
 bindingConfiguration="DuplexNetTcpBinding"
 contract="DuplexCommunication.Web.IStockService"/>
 <endpoint address="mex"
 binding="mexHttpBinding"
 contract="IMetadataExchange"/>
 </service>
 </services>
</system.serviceModel>

9. The service code (the IStockService contract and the StockService.svc.cs
implementation) doesn't need any changes. However, the Update class does need a
few changes. The new version is shown in the following code:
[MessageContract]
public class Update
{
 [MessageBodyMember]
 public double Amount { get; set; }

 [MessageBodyMember]
 public double Percentage { get; set; }
}

Chapter 9

361

10. You'll need to add a using statement to the System.ServiceModel namespace for
the MessageBodyMember attribute.

11. Just like TCP socket communication (refer to Chapter 7, Working with Services, for
more information), net.tcp communication needs a policy server. The code for this
is not included in this recipe. However, it can be found in the PolicyServer project
in the code bundle of this recipe.

12. As we're now ready with the service, we can build the solution.

13. Since we're communicating with a WCF service, we can create a proxy class using
the Add Service Reference... option inside the Silverlight application. Along with the
proxy generation, configuration code is also generated in the ServiceReferences.
ClientConfig code. The generated code refers to the service using net.tcp. It is
shown in the following code:
<configuration>
 <system.serviceModel>
 <bindings>
 <customBinding>
 <binding name="NetTcpBinding_IStockService">
 <binaryMessageEncoding />
 <tcpTransport maxReceivedMessageSize="2147483647"
 maxBufferSize="2147483647" />
 </binding>
 </customBinding>
 </bindings>
 <client>
 <endpoint address="net.tcp://localhost:4502/StockService/
 StockService.svc"
 binding="customBinding"
 bindingConfiguration="NetTcpBinding_IStockService"
 contract="StockService.IStockService"
 name="NetTcpBinding_IStockService" />
 </client>
 </system.serviceModel>
</configuration>

14. The Silverlight client code can be made easier than the code with regular duplex
WCF services. We can create an instance of the proxy by passing in the name of the
binding. This can be seen in the following code:
private void StartButton_Click(object sender, RoutedEventArgs e)
{
 StockService.StockServiceClient client = new
 StockService.StockServiceClient("NetTcpBinding
 _IStockService");
 client.SendUpdateReceived += new EventHandler
 <StockService.SendUpdateReceivedEventArgs>
 (client_SendUpdateReceived);

D
ow

n
lo

a
d
 f
ro

m
 W

o
w

!
e
B
o
o
k

<
w

w
w

.w
o
w

e
b
o
o
k.

co
m

>

Talking to WCF and ASMX Services—One Step Beyond

362

 client.ConnectAsync("MSFT");
}
void client_SendUpdateReceived(object sender,
 StockService.SendUpdateReceivedEventArgs e)
{
 AmountTextBlock.Text = (e.request as Update).Amount.ToString();
 PercentageTextBlock.Text = (e.request as
 Update).Percentage.ToString();
}

We have now completed the switch of the application to use net.tcp binding, instead of
duplex communication over HTTP.

How it works...
With Silverlight 2 and Silverlight 3, we were basically limited to using the BasicHttpBinding.
Silverlight 4 (and of course also Silverlight 5) have support for the net.tcp binding. The
major benefit of this binding is improved performance, while still using the easy programming
model offered by WCF.

Another advantage is the fact that it can also perform duplex communication. This results in
Silverlight now having the following three ways to perform two-way communication between a
service and a client:

 f Duplex WCF communication: This uses HTTP for its communication, but benefits
from the easy programming model of WCF.

 f TCP communication: This enables fast communication because of TCP. It's more
complex to set up.

 f Net.tcp: This combines the speed of TCP with the easy programming model of WCF.

net.tcp builds System.Net.Sockets underneath the covers. Due to this, it has the same
restrictions. Silverlight applications can connect to TCP services only on ports between 4502
and 4534. The same holds true for net.tcp. Due to this, like TCP, net.tcp is a good fit for
intranet applications and not for Internet applications. Also, as for TCP, when connecting with
net.tcp services, Silverlight requires the presence of a policy server.

On the client side, we can use the Add Service Reference... dialog box to build a proxy
class. The use of the net.tcp binding is detected and the configuration code is generated
as well. The actual code to perform the call to the service uses the same model, as used
for communication with other services. By specifying the name of the binding in the client
configuration code, we can instantiate the proxy using the following code:

StockService.StockServiceClient client = new
 StockService.StockServiceClient
("NetTcpBinding_IStockService");

Chapter 9

363

Running with elevated permissions
Since Silverlight 4, applications can run with elevated permissions. In Silverlight 4, this mode
was only supported in out-of-browser applications, whereas Silverlight 5 also allows running
in-browser applications with elevated permissions.

When you are building an application that runs with these permissions, you aren't limited to
connecting only to ports within the previously mentioned range (4502-4534). This makes it
possible to create Silverlight applications that use the net.tcp binding over the Internet.

Setup requirements
When working with net.tcp, we can't use the ASP.NET Development Server (built-in with
Visual Studio) or IIS Express. Neither of these supports the net.tcp protocol. Due to this, we
need to host the website containing the services in IIS. However, by default, IIS isn't configured
to support this protocol out-of-the-box.

See also
This recipe used the net.tcp binding for its communication and we used it for building
a duplex communication mechanism. In the Using duplex communication recipe, we built
the same application using duplex communication over HTTP. In the Using socket
communication in Silverlight recipe in Chapter 7, Working with Services, we used TCP
for this two-way communication.

Ensuring data is encrypted
Applies to Silverlight 4 and 5

In Silverlight, you'll typically work with services oriented through WCF services, REST services,
and so on. However, this implies that your data is sent over the wire in an unencrypted format.
This is not much of a problem in most controlled environments. But what if the data is sent
through an uncontrolled environment (for example the Internet)? It could be easily intercepted
by someone with bad intentions. While that's bad when you're sending confidential data, it's
even worse when your message header includes a username/password combination.

In this recipe, you'll learn how to make sure that the data sent over the wire is encrypted using
Secure Socket Layer communication (SSL).

Talking to WCF and ASMX Services—One Step Beyond

364

Getting ready
This recipe is mainly about configuring IIS and WCF, and it's much less about writing code.
What you need is a simple Silverlight application calling a WCF service and a correctly
configured/installed IIS web server, where your Silverlight application and service host are
hosted. A starter solution is located in the Chapter09/EnsuringDataIsEncrypted_
Starter folder in the code bundle available on the Packt website. The completed solution
can be found in the Chapter09/EnsuringDataIsEncrypted_Completed\ folder.

How to do it...
We're going to set up a website in IIS 7.0 to use SSL through a self-signed certificate. After
this, we're going to make sure that our WCF service is hosted on this website and securely
callable from Silverlight. To achieve this, carry out the following steps:

1. Open Internet Information Services (IIS) Manager and create a new website by
right-clicking on Sites on the left side of the IIS Manager and selecting Add Web
Site. We'll name this website as SSLServiceHost. This can be seen in the
following screenshot:

Chapter 9

365

2. We're going to need a security certificate to use with the SSL binding. For real
applications, you might want to get one from one of the many vendors on the Internet
(for example Verisign), but in this example, we're going to create a self-signed one for
testing purposes. Self-signed certificates are not meant to be used on live web sites;
however, they provide an easy way of working with certificates during development.
Click on the root machine node on the left side of your IIS Manager and double-click
on Server Certificates. This is shown in the following screenshot:

Talking to WCF and ASMX Services—One Step Beyond

366

3. In the right-hand pane, click on Create Self-Signed Certificate and complete the
wizard by providing SilverlightTestCertificate as a friendly name for this certificate.
This can be seen in the following screenshot:

4. Click on SSLServiceHost on the left side of your IIS Manager, click on Bindings…
on the right-hand pane, and add an SSL binding for this website using our
freshly-created security certificate:

Chapter 9

367

5. Our website is now set up for secure communication over https. We're now going to
host our WCF service on this site. Open the provided starter solution and navigate
to the Web tab in the project properties of the EnsuringDataIsEncrypted.Web
application. Select Use Local IIS Web server and make sure that the Project Url:
refers to the website (https) we've created in the previous steps:

Refer to the website by the server name and not using localhost. If you
use localhost, the certificate will throw a warning (computer name does
not match, because localhost isn't the same as your server name), and
you won't be able to access your service.

6. Open the web.config file, locate the custom binding with the name
EnsuringDataIsEncrypted.Web.MyWCFService.customBinding0, and
change the HttpTransport element to an HttpsTransport element.

7. Open your Silverlight application, add a Service Reference to MyWCFService, and
name it MyWCFServiceReference. If you get a warning concerning the security
certificate, ignore it (as this is a self-signed certificate).

8. Locate the btnCall_Click handler in MainPage.xaml.cs and replace it with the
following code:
private void btnCall_Click(object sender, RoutedEventArgs e)
{
 MyWCFServiceReference.MyWCFServiceClient client = new
 MyWCFServiceReference.MyWCFServiceClient();
 client.GetPersonCompleted += new EventHandler
 <MyWCFServiceReference.GetPersonCompletedEventArgs>
 (client_GetPersonCompleted);
 client.GetPersonAsync();
}
void client_GetPersonCompleted(object sender,
 MyWCFServiceReference.GetPersonCompletedEventArgs e)
{
 if (e.Error == null)
 {
 this.DataContext = e.Result;
 }
}

Talking to WCF and ASMX Services—One Step Beyond

368

9. You can now build and run your application. Your application will securely call the
WCF service over HTTPS as follows:

How it works…
To ensure communication is secure (using SSL), we need to complete two steps. The first one
is creating a website in IIS setup to use a certificate, either the one you bought (for production
sites) or the one you've created yourself (for testing purposes). This is done in steps 1 to 4.

When that's done, we need to configure our application to use this website and the correct
bindings. Configuring the application to use this website is done through the project properties
window. By changing the web server to our previously created virtual directory instead of the
development server, we ensure SSL communication is possible. It's impossible to use SSL
with the built-in Visual Studio development server.

Starting from step 6, we make changes to our application. To be able to use transport
security (SSL), we need to tell WCF to use this. This is done in step 6. We make sure that
communication with our endpoint is possible only through SSL (https), and not through regular
http by changing the transport element in the web.config to HttpsTransport.

Let's now go back to the Silverlight application. As we've done in previous recipes, we're
adding a service reference to the service at the https endpoint. When we do this, Visual
Studio generates the accompanying proxy classes, as well as generates the correct bindings
in ServiceReferences.ClientConfig. If you look at this file, you'll notice that the
generated binding is enabled for HttpsTransport security.

All that's left now is adding code to call the GetPerson() service operation.This is done in
step 8. If you build and run your solution now, all communication will be done through SSL
and your messages will be encrypted. You could use a tool like Fiddler to look at the network
traffic: you'll see the traffic isn't in a readable format anymore, it's encrypted instead. Have a
look at the appendix for more information about Fiddler.

Chapter 9

369

See also
If you want to learn how to use message-based security (through SSL), have a look at the
next recipe.

Securing service communication using
message-based security

Applies to Silverlight 4 and 5

Service-oriented solutions typically require the services to know which user is accessing them,
whether this user is authenticated or not, and even whether this user is authorized or not.
If you don't implement these checks and if your services are hosted in a publicly available,
uncontrolled environment, everyone will be able to access them. This is definitely something
you don't want, especially if confidential data is fetched or even edited using service calls.

To resolve this, we need to make sure that certain service methods are accessible only to
certain persons. A typical way of doing this is by using message-based security, which in this
case means that you'd include the username/password combination in every message that's
being sent to the service, where the received combination is then checked. If the combination
is valid, the service operation can be executed. If not, typically a fault is returned.

Note that it's not possible to implement full message-based security as
defined by the WS Security specification, as Silverlight does not support this.
Passing the credentials in the message header is the farthest we can go.

In this recipe, you'll learn how to do this with your Silverlight application using WCF services.

Getting ready
We're starting from a simple Silverlight solution that includes a Silverlight project that calls
a WCF service method through HTTPS. Make sure that you've set up your IIS for HTTPS as
explained in the previous recipe, because this recipe uses the website you've created in that
recipe for hosting your WCF Service. If you want to follow along with this recipe, you can find
a starter solution located in the Chapter09/MessageBasedSecurity_Starter folder in
the code bundle available on the Packt website. The completed solution for this recipe can be
found in the Chapter09/MessageBasedSecurity_Completed folder.

How to do it...
We're going to modify the starter solution to ensure that credentials are passed to the server
and are checked before allowing further execution of the service method. To achieve this,
complete the following steps:

Talking to WCF and ASMX Services—One Step Beyond

370

1. Navigate to the Web tab in the project properties of the web application and change
the virtual directory to a valid, SSL-enabled virtual directory on your computer.

Have a look at the recipe Ensuring data is encrypted in this chapter
to learn how to enable your applications for SSL.

2. Add a reference to System.IdentityModel and System.IdentityModel.
Selectors to the web application.

3. Open the web application and add a new class. Name this class
UsernamePWValidator, let it inherit UsernamePasswordValidator,
and implement it as shown in the following code:
using System;
using System.Collections.Generic;
using System.Linq;
using System.Web;
using System.ServiceModel;
using System.IdentityModel.Selectors;
namespace MessageBasedSecurity.Web
{
 public class UsernamePWValidator : UserNamePasswordValidator
 {
 public UsernamePWValidator()
 {
 }
 public override void Validate(string userName,
 string password)
 {
 if (userName != "Kevin" || password != "Dockx")
 {
 throw new FaultException("The provided credentials
 are invalid.");
 }
 }
 }
}

4. Open the web.config file, locate the included service behavior, and change it to the
following code:
<behavior name="MyServiceBehaviour">
<serviceMetadata httpGetEnabled="true" />
<serviceDebug includeExceptionDetailInFaults="false" />
 <serviceCredentials>
 <userNameAuthentication userNamePasswordValidationMode=
 "Custom"
 customUserNamePasswordValidatorType=
 "MessageBasedSecurity.Web

Chapter 9

371

 .UsernamePWValidator,
 MessageBasedSecurity.Web" />
 </serviceCredentials>
</behavior>

5. In the same file, locate the custom binding called MessageBasedSecurity.Web.
MyWCFService.customBinding0 and change the code as follows:
<customBinding>
 <binding name="MessageBasedSecurity.Web.MyWCFService
 .customBinding0">
 <security authenticationMode="UserNameOverTransport"/>
 <binaryMessageEncoding />
 <httpsTransport />
 </binding>
</customBinding>

6. In the same file, locate the service endpoint and change it as follows (remember to
replace the baseAddress with your local IIS server name):
<service name="MessageBasedSecurity.Web.MyWCFService"
 behaviorConfiguration="MyServiceBehaviour">
 <host>
 <baseAddresses>
 <add baseAddress="https://kev-pc"/>
 </baseAddresses>
 </host>
 <endpoint address=""
 binding="customBinding"
 bindingConfiguration="MessageBasedSecurity.Web
 .MyWCFService.customBinding0"
 contract="MessageBasedSecurity.Web.MyWCFService" />
 <endpoint address="mex"
 binding="mexHttpBinding"
 contract="IMetadataExchange" />
</service>

7. In your Silverlight project, add a service reference to MyWCFService and name it
MyWCFServiceReference.

8. Replace the Click handler of the btnWrongCredentials button with the
following code:
private void btnWrongCredentials_Click(object sender,
 RoutedEventArgs e)
{
 WebRequest.RegisterPrefix("https://",
 WebRequestCreator.ClientHttp);
 this.DataContext = null;
 MyWCFServiceReference.MyWCFServiceClient client = new
 MyWCFServiceReference.MyWCFServiceClient();

Talking to WCF and ASMX Services—One Step Beyond

372

 client.GetPersonCompleted += new EventHandler
 <MyWCFServiceReference.GetPersonCompletedEventArgs>
 (client_GetPersonCompleted);
 client.ClientCredentials.UserName.UserName = "WrongUsername";
 client.ClientCredentials.UserName.Password = "WrongPassword";
 client.GetPersonAsync();
}
void client_GetPersonCompleted(object sender,
 MyWCFServiceReference.GetPersonCompletedEventArgs e)
{
 if (e.Error == null)
 {
 this.DataContext = e.Result;
 }
 else
 {
 MessageBox.Show(e.Error.Message);
 }
}

9. Replace the Click handler of the btnCredentials button with the following code:
private void btnCredentials_Click(object sender,
 RoutedEventArgs e)
{
 WebRequest.RegisterPrefix("https://",
 WebRequestCreator.ClientHttp);
 this.DataContext = null;
 MyWCFServiceReference.MyWCFServiceClient client = new
 MyWCFServiceReference.MyWCFServiceClient();
 client.GetPersonCompleted += new EventHandler
 <MyWCFServiceReference.GetPersonCompletedEventArgs>
 (client_GetPersonCompletedWithCredentials);
 client.ClientCredentials.UserName.UserName = "Kevin";
 client.ClientCredentials.UserName.Password = "Dockx";
 client.GetPersonAsync();
}
void client_GetPersonCompletedWithCredentials(object sender,
 MyWCFServiceReference.GetPersonCompletedEventArgs e)
{
 if (e.Error == null)
 {
 this.DataContext = e.Result;
 }
 else
 {
 MessageBox.Show(e.Error.Message);
 }
}

Chapter 9

373

10. You can now build and run your solution. Depending on which button you click, the
right credentials will be sent and your service call will either succeed or fail.

How it works...
As you've noticed, most of the work is done through WCF configuration and not through code
changes. We want to make sure that our WCF service expects credentials and we need to
provide a way to validate these credentials.

In step 4, we've changed the behavior our endpoint uses to expect credentials. This is done
through the userNameAuthentication element. By providing this element, we make sure
that any endpoint using this behavior expects client credentials in the form of a username/
password combination.

As well as that, we define the way these credentials must be validated by setting the
value of the customUserNamePasswordValidatorType attribute to a custom
validator. This custom validator is the one that we've created in step 3. It must inherit the
UserNamePasswordValidator class and we override the Validate method to define our
own validation. In this specific example, validation will succeed when the username/password
combination is Kevin/Dockx. All other combinations will fail and will prevent the service
method from being executed. Of course, you can write your own way of validating by changing
the Validate method. For example, you could check your own custom user tables in an
underlying database.

We've already defined our custom behavior. What's next is defining the custom binding to be
used by our service endpoint. This is done in step 5. The binding is changed to expect the
UserNameOverTransport authentication and to use HttpsTransport (SSL).

We now need to bring this together, which is done in step 6. Our service is configured to use
the custom behavior that we created in step 4 by setting the BehaviorConfiguration
attribute on the service element to our custom behavior. The endpoint is configured to use our
custom binding by setting the bindingConfiguration attribute on the endpoint element.

After this, everything that is to be done on the service side of our application is done. Next
up is the client side. First, a service reference is added that will generate the necessary
proxy classes and a client config file. The two different buttons in our application are set to
include client credentials on the client proxy instance (this has to be done only once per proxy
instance). In the first button handler, the wrong credentials are set. In the second handler, the
correct credentials will be passed to the service.

When you call the GetPerson() service method, the client credentials are securely
sent over the wire in the message header (through SSL) and they're automatically
checked by the Validate method of our custom validator. Only if they check out will
the method be executed.

Talking to WCF and ASMX Services—One Step Beyond

374

Transport security is required
Due to security measures, Silverlight doesn't allow a binding as used in this recipe (with
credentials sent over the wire) to be used over regular HTTP. Allowing this would mean that
the credentials would be sent in clear text. When you're using a binding that expects client
credentials, you're obligated to use SSL (as defined by the HttpsTransport element in
the web.config file).

See also
To learn how to secure your communication using SSL, have a look at the previous recipe.

Integrating Windows Identity Foundation
in Silverlight

Applies to Silverlight 4 and 5

Authentication and authorization are the requirements for almost every serious Line of
Business application. There are quite a few options to get this up and running with Silverlight,
and one of them is by using Windows Identity Foundation (WIF). This consists of a set
of classes with which you can build identity-aware applications. It allows us to externalize
authentication and authorization: the application relies on an identity provider for this.

In this recipe, we'll learn how to use WIF with Silverlight, using an external Security Token
Service (the identity provider), which will take care of authentication/authorization for us.

Getting ready
This recipe relies on quite a few prerequisites. You'll have to have at least Windows Vista SP2
(Windows 7 or 2008 server advised), and IIS 7.0 (or better).

First of all, you'll need to install the Windows Identity Foundation Runtime, which can be
found at http://www.microsoft.com/download/en/details.aspx?id=17331.
Choose the correct version, depending on your system.

Next, you'll need to install the Windows Identity Foundation SDK, which can
be found at http://www.microsoft.com/download/en/details.
aspx?displaylang=en&id=4451. Choose the SDK version for .NET 4.0.

After this, you'll need to install the Windows Identity Foundation Developer Training Kit
(April 2011), which can be found at http://www.microsoft.com/download/en/
details.aspx?displaylang=en&id=14347. This kit contains sample implementations
of, amongst others, a Security Token Service, which is used in this recipe. But more
importantly, it also contains the necessary certificates, which you'll have to register to get
up and running.

Chapter 9

375

Note: these certificates and scripts are also included in this recipe, in
the \Setup folder of the sample solutions. If you do not want to install
the Developer Training Kit, you can use these to set up your system
by running the SetupCertificates.cmd file. However, as the
Developer Training Kit includes a lot of extra samples, guidelines, and
best practices, it's a good idea to completely install it.

You can check if the certificates are installed correctly in IIS: in the main overview, select
Server Certificates, and ensure the IdentityTKStsCert and localhost certificates are
available and valid:

Also, ensure the site binding on your default website is using the localhost certificate for
https (check this in IIS: select the Default website (or whichever site you're using to host this
solution) | SSL Settings | Bindings… (on the right-hand side)):

A starter solution can be found in Chapter09\Integrating_WIF_Starter. The
completed solution can be found in Chapter09\Integrating_WIF_Completed.

Talking to WCF and ASMX Services—One Step Beyond

376

How to do it...
We're going to set up our starter solution to use Windows Identity Foundation for
authentication/authorization. In order to do this, we need to complete the following steps:

1. First of all, we're using the provided STS (Security Token Service) from the Windows
Identity Foundation Training Kit. In case you haven't installed it, the STS has been
provided for you with this solution, but you'll have to add it to IIS manually. Add a new
application in IIS in the default website, naming it GymFabrikamP_Sts, and point it
to the location of the provided website. Do this before opening the starter solution:

Chapter 9

377

2. Right-click on WIF.WebHost, and select Add STS Reference…. Set the Application
Uri to https://localhost/WIF.WebHost/:

Talking to WCF and ASMX Services—One Step Beyond

378

3. On the next screen, choose to use an existing STS, and locate the Federation
metadata. If step one was executed correctly, this should point to https://localhost/
GymFabrikamP_Sts:

4. Complete the wizard, leaving all the other options on their default.

5. Locate the system.webServer-tag in the web.config file of the WIF.WebHost,
and add the following element:
 <validation validateIntegratedModeConfiguration="false" />

6. Include the provided SampleRequestvalidator.cs file in WIF.WebHost.

7. Locate the system.web-tag in the root of the web.config file of WIF.WebHost,
and add the following element:
<httpRuntime requestValidationType="SampleRequestValidator" />

8. Right-click WIF.WebHost, choose Add… New Item, and add a new
Silverlight-enabled WCF Service, naming it AuthenticationService.svc.
Delete AuthenticationService.svc.cs, open the svc file, and change its
contents to the following:
<%@ ServiceHost Language="C#" Debug="true"

Chapter 9

379

Factory="SL.IdentityModel.Server.
AuthenticationServiceServiceHostFactory" Service="SL.
IdentityModel.Server.SL.IdentityModel.Server"
%>

9. Add a new location-element to the configuration-tag of the web.config file of
WIF.WebHost:
<location path="AuthenticationService.svc">
 <system.web>
 <authorization>
 <allow users="*"/>
 </authorization>
 </system.web>
</location>

10. Open App.xaml in WIF.Client, and add the following xmlns directive:
xmlns:slid="clr-namespace:SL.IdentityModel.Services;assembly=
SL.IdentityModel"

11. Add the following code to App.xaml:
<Application.ApplicationLifetimeObjects>
 <slid:ClaimsIdentitySessionManager>
 <slid:ClaimsIdentitySessionManager.IdentityProvider>
 <slid:WSFederationSecurityTokenService />
 </slid:ClaimsIdentitySessionManager.IdentityProvider>
 </slid:ClaimsIdentitySessionManager>
</Application.ApplicationLifetimeObjects>

12. Open HomeViewModel.cs, and add the following code:
public HomeViewModel()
{
 ClaimsIdentitySessionManager.Current.GetClaimsIdentityComplete
+= new EventHandler<ClaimsIdentityEventArgs>(Current_
GetClaimsIdentityComplete);
}

void Current_GetClaimsIdentityComplete(object sender,
ClaimsIdentityEventArgs e)
{
 if (ClaimsIdentitySessionManager.Current.User.Identity.
IsAuthenticated)
 {

Talking to WCF and ASMX Services—One Step Beyond

380

 ClaimsInformation += "Welcome, " +
ClaimsIdentitySessionManager.Current.User.Identity.Name
 + "\n\nThese are the claims provided by the STS:\n\n";

 foreach (var item in ClaimsIdentitySessionManager.Current.
User.ClaimsIdentity.Claims)
 {
 // exclude the picture claim, as this is binary data
 if (item.ClaimType != pictureType)
 {
 ClaimsInformation += item.ClaimType + ": " + item.
Value + "\n";
 }
 }
 }
}

13. You can now build and run the application. When you log in, you'll see the claims for
the logged in user, provided by the STS:

How it works...
The general idea of using a technique like this is that the logic for authentication/
authorization isn't the responsibility of the Silverlight developer anymore; the STS
(Security Token Service) takes care of this for us, this is the identity provider. The
authentication process works the other way around, instead of having to write code
in your application to call a service for a token, it will receive this from the STS.

Chapter 9

381

In this recipe, we've used the example STS from the Windows Identity Foundation training kit,
but any STS can be used, providing it returns a correct token (this token is what is used by the
application to decide what to do). While you can write your own STS, it will take some time,
and it's generally advised to use an existing, proven, production-ready STS (like ADFS: Active
Directory Federation Services).

Next to the STS, there are two more projects in this solution that are of importance. By default,
WIF classes aren't available in Silverlight, so we need some plumbing to get this up and
running. SL.IdentityModel contains the claims object model: this is essentially a subset
of WIF, built against the Silverlight CLR. The resulting assembly is referenced in the Silverlight
client project. SL.IdentityModel.Server is referenced in the host project, and it contains
logic to trigger authentication when necessary.

After setting up the STS in the first step, the next few steps (2 to 4) are all about adding an
STS reference. This is essentially a wizard that helps us generate the necessary settings in the
web.config file of the webhost: the site hosting our Silverlight application, which we want to
secure with WIF. It establishes a trust relation between our webhost and the Security Token
Service. It will register the necessary assemblies in the web.config file, but the three most
important parts are these:

<federatedAuthentication>
 <wsFederation passiveRedirectEnabled="true" issuer="https://
localhost/GymFabrikamP_Sts" realm="https://localhost/WIF.WebHost/"
requireHttps="true" />
 <cookieHandler requireSsl="true" />
</federatedAuthentication>

This tells the application that it's going to use a Federation Authentication of type
wsFederation. It's going to be passive federation, and the issuer of the token is
GymFabrikamP_Sts (the provided Security Token Service). It's going to provide this token to
our webhost (WIF.WebHost).

The next important part is the one in which we define the required claims:

<claimTypeRequired>
 <claimType type="http://schemas.xmlsoap.org/ws/2005/05/
identity/claims/name" optional="true" />
 <claimType type="http://schemas.microsoft.com/ws/2008/06/
identity/claims/role" optional="true" />
</claimTypeRequired>

This code is generated depending on the metadata of our STS, but it can be changed
by editing this, so that we can ensure every user has the claims our application relies
on. If, for example, our applications needs the gender-claim of the logged in user, we
simply uncomment it (and change the optional attribute), so it becomes one of the
required claim types.

Talking to WCF and ASMX Services—One Step Beyond

382

And the last important part:

<trustedIssuers>
 <add thumbprint="40A1D2622BFBDAC80A38858AD8001E094547369B"
name="https://localhost/GymFabrikamP_Sts" />
</trustedIssuers>

This makes sure our application can only get a token from the GymFabrikamP_Sts—only this
STS is trusted (the thumbprint value originates from the certificate we use).

By bringing these three parts together, we've now defined which STS we're going to use
for federation, how we're going to do this (passive), and which claims are required by our
specific application.

If you would run the application at this point, it would work. What would happen? The site
hosting our Silverlight app now uses the STS for authentication. Because our Silverlight app
is hosted in this webhost, it is protected as well. However, the claims, sent by the STS in the
Security Token (which, if you look back at the wizard used to generate the STS Reference,
could be encrypted), are not received by the Silverlight application, but by the hosting website.
We need a way to get these claims from the WebHost to the Silverlight application.

That's what happens in the next steps. In step 8, we're adding an
AuthenticationService.svc file, changing its contents to:

<%@ ServiceHost Language="C#" Debug="true"
Factory="SL.IdentityModel.Server.
AuthenticationServiceServiceHostFactory"
Service="SL.IdentityModel.Server.SL.IdentityModel.Server"
%>

This means that the provided SL.IdentityModel.Server contains an implementation
of this service, and a Factory to create it. If we have a look at this service implementation
(source code is included in SL.IdentityModel.Server), we see the expected SignIn(),
SignOut(), and SignInWithIssuedToken(string xmlToken) methods, but also a
GetCurrentIdentity() method, which gets the current user from the HttpContext (our
IClaimsPrincipal), and returns his list of claims.

In step 9, we ensure this service is accessible for unauthenticated users (as it's the
authentication service used for signing in, we need to allow this).

Next, on the client. In step 10 and step 11, we're adding a
ClaimsIdentitySessionManager to the Application's ApplicationLifetimeObjects.
This class registers an object used for accessing claims from anywhere in the application
(much like you would do when you're adding the WebContext when using WCF RIA Services).
The IdentityProvider indicates where we expect the claims to originate from—in this
case, it's the hosting web application, so we do not need to provide any more information.

Chapter 9

383

The two last steps, 12 and 13, are standard Silverlight code, we're using the current
ClaimsIdentitySessionManager, adding a callback to be executed when the claims
have arrived on the client (remember, everything in Silverlight is async!). When we're in the
callback, we simply list the received claims, so they're visible on our view.

And like that, we've now got a WIF-enabled Silverlight application.

See also
Have a look at Chapter 12, Advanced WCF RIA Services, for an implementation of WIF in
combination with WCF RIA Services.

Calling a WCF service from Silverlight using
ChannelFactory

Applies to Silverlight 4 and 5

A lot of Silverlight applications using services are typically developed using the Add Service
Reference dialog box to add service references that generate the client-side proxy classes.
However, this isn't sufficient or advisable for some applications or pieces of code. You might
want to call variable endpoints, or you might be developing a library or a framework, in which
you wouldn't want to have service references for pluggability or for extension purposes (for
example, through a provider pattern).

This is where a ChannelFactory comes in handy. Through a ChannelFactory, you can
combine a binding and an address from the code with a contract to open a channel to a
service endpoint that implements a matching contract. This can be done without ever using
the Add Service Reference dialog box.

In this recipe, we'll learn how to achieve this.

Getting ready
We're starting from a simple Silverlight solution that includes a Silverlight project
containing our UI and a WCF service in a hosting web application project. If you want to
follow along with this recipe, you can use the provided starter solution located in the
Chapter09/UsingChannelFactory_Starter folder in the code bundle available
on the Packt website. The completed solution can be found in the Chapter09/
UsingChannelFactory_Completed folder.

Talking to WCF and ASMX Services—One Step Beyond

384

How to do it...
We're going to modify the starter solution to make sure that we can call WCF service using a
ChannelFactory. To achieve this, complete the following steps:

1. We're going to start by adding a new interface called the IPersonServiceClient
to the Silverlight application. This is an asynchronous representation of the
synchronous server-side IPersonService contract. Implement it as shown in
the following code:
[ServiceContract(Name = "IPersonService")]
public interface IPersonServiceClient
{
 [OperationContract(AsyncPattern = true)]
 IAsyncResult BeginGetPerson(int ID, AsyncCallback callback,
 Object state);
 Person EndGetPerson(IAsyncResult result);
}
Next, we'll add a Person class to the Silverlight application that
contains the following code:
public class Person
{
 public int ID { get; set; }
 public string Name { get; set; }
 public string FirstName { get; set; }
}

2. Locate the Click handler for btnFetch and implement it as shown in the
following code:
private void btnFetch_Click(object sender, RoutedEventArgs e)
{
 BasicHttpBinding basicHttpBinding = new BasicHttpBinding();
 EndpointAddress endpointAddress = new EndpointAddress
 ("http://localhost:2967/PersonService.svc");
 IPersonServiceClient personService =new ChannelFactory
 <IPersonServiceClient>(basicHttpBinding,
 endpointAddress).CreateChannel();
 var y = personService.BeginGetPerson(Convert.ToInt32(txtID.Text)
 , (asyncResult) =>
 {
 this.Dispatcher.BeginInvoke(delegate
 {

Chapter 9

385

 var returnedPerson = personService
 .EndGetPerson(asyncResult);
 this.DataContext = returnedPerson;
 });
 }
 , null);
}

3. We can now build and run the application. When a user inputs a value in the textbox
and clicks on the Fetch button, the GetPerson service method is called using a
channel factory. The result can be observed in the following image:

How it works...
We're starting from a solution that includes a WCF Service exposing an endpoint using
basicHttpBinding and the IPersonService service contract. When we want to use a
channel factory to access this service, we need to pass in the contract when we create the
channel factory. As Silverlight makes its service calls asynchronously, we just can't copy or use
the same IPersonService service contract, as this doesn't include asynchronous methods.
We need to define a new ServiceContract that consists of asynchronous method
signatures matching the synchronous GetPerson method, and that can be matched to the
server-side IPersonService contract.

We do this by defining a BeginGetPerson method (that accepts an ID parameter,
callback, and state, returns an IAsyncResult, and is decorated with the
[OperationContract(AsyncPattern = true)] attribute), an EndGetPerson
method (that accepts an IAsyncResult and returns a Person), and by setting the contract
name as IPersonService. This way, we can link our newly created asynchronous contract
to its matching synchronous contract, allowing us to create a channel factory using the
asynchronous, client-side IPersonServiceClient contract to communicate with a service
implementing the synchronous IPersonService contract.

Talking to WCF and ASMX Services—One Step Beyond

386

Next, we've created a Person class in the Silverlight application, which is a type returned
by the service method. There's one important thing to notice here. The Person class in the
Silverlight application and the Person class in the web application are essentially the same.
They exist in the same namespace and have a same name. You can check this by having a
look at the Person class in the web application. You'll notice that the namespace refers to
UsingChannelFactory and not to UsingChannelFactory.Web as you'd expect. If you
don't match these namespaces, the returned object will be null, as .NET does not know how to
cast a UsingChannelFactory.Web.Person class to a UsingChannelFactory.Person
class (you could alternatively extend your class to make it implicitly convertable).

The pieces are in place now, so all that's left to do is actually create the channel and calling
the service method. This is done in the Click handler of the Fetch button.

As you can see, the channel is created using the CreateChannel() method. Once this
is done, we can call the BeginGetPerson method and pass in the ID to fetch the correct
person. What's important is that we have to make a call to EndGetPerson in the callback.
The callback will be executed after the service method has run and EndGetPerson will
return the value the service method returns (in this case a Person).

Another important fact to notice is that the callback makes a call to Dispatcher.
BeginInvoke. We do this because we're accessing the UI thread (setting the DataContext)
in the callback. If we omit this, we'll get an invalid cross-thread access exception.

A ChannelFactory creates and manages the channels used by
clients to send messages to service endpoints. It's typically used
instead of a proxy when you share a common service contract
between client and server.

10
Talking to REST and
WCF Data Services

In this chapter, we will cover:

 f Reading data from a REST service

 f Parsing REST results with LINQ To XML

 f Persisting data using a REST service

 f Working with the ClientHttpStack

 f Communicating with a REST service using JSON

 f Using WCF Data Services from Silverlight

 f Reading data from WCF Data Services

 f Persisting data using WCF Data Services

 f Talking to Flickr

 f Talking to Twitter from a non-trusted application

 f Passing credentials and cross-domain access to Twitter from a trusted
Silverlight application

D
ow

n
lo

a
d
 f
ro

m
 W

o
w

!
e
B
o
o
k

<
w

w
w

.w
o
w

e
b
o
o
k.

co
m

>

Talking to REST and WCF Data Services

388

Introduction
While WCF and ASMX services are very powerful and can address almost every situation,
these services might be overkill for some scenarios. Sometimes a simple exchange of textual
information, preferably in XML or JSON (JavaScript Object Notation—an easy-to-read data
exchange format), might be enough.

The protocol used for this type of communication is REST (Representational State Transfer).
Compared to web services (WCF or ASMX), REST has some advantages that can be significant
in the case of Silverlight. The exchanged information is human-readable text, mostly in XML
format. The XML is clean, meaning there is not a lot of markup being added. SOAP, the format
for web services, is also XML, but a lot of extra overhead is added in the so-called SOAP
envelope. Using REST will result in less data being sent over the wire, resulting in
better performance from a bandwidth perspective. In general, REST is easier to use and
entirely platform-independent. It does not require any extra software as it relies on standard
HTTP methods.

Are RESTful services (a service that follows REST principles is often referred to as being
RESTful) a trend? Definitely! Today, many large web applications, such as Flickr, Facebook,
Twitter, YouTube, and so on, offer (part of) their functionality using a RESTful API (a collection
of REST services). In .NET, creating RESTful services is fully supported. Moreover, Silverlight
can easily connect to REST services.

In this chapter, we'll first look at talking with REST services from Silverlight. Secondly, we'll look
at how to work with WCF Data Services (formerly known as ADO.NET Data Services), which
are also pure REST services at their base. However, through the use of the client-side library
available for use with Silverlight, a lot of plumbing code (necessary to work with RESTful
services) is abstracted away, and we get typed access to the entities made available over the
service. In other words, it provides a wrapper around REST-based access.

Throughout this chapter, all recipes (except where we use Flickr or Twitter) use the same
scenario—the Computer Inventory application. This application could be used by an internal
IT department of an organization to keep track of PCs, laptops, and so on, as well as by the
users registered on a particular system. It consists of two parts—the User Management,
which we'll build using pure REST services, and the Computer Management, which will
be built through the use of WCF Data Services. The following image is the schema for
the database used. It shows that a Computer is of a certain ComputerType and has a
Manufacturer. Each Computer can be registered with one or more User instances:

Chapter 10

389

Reading data from a REST service
Applies to Silverlight 3, 4 and 5

Let's assume that we are writing a Silverlight application that needs to work with data exposed
by a RESTful service. The first question that comes to mind is: how can we communicate with
such a service and read out the data returned by the service?

This recipe focuses on the communication aspect of REST services, such as how we can
connect to a RESTful service from Silverlight and get data into our application.

In this recipe, we'll retrieve a list of all users in the Users table using a REST service. For now,
we'll show the results in the same format as they are returned, which is plain XML.

Talking to REST and WCF Data Services

390

Getting ready
The finished solution for this recipe can be found in the Chapter10/
TalkingToSimpleRESTServices_ReadingFromRest_Completed folder in the code
bundle available on the Packt website. To follow along with this recipe, the starter solution
located in the Chapter10/TalkingToSimpleRESTServices_ReadingFromRest_
Starter folder can be used.

In this recipe, we're working with a local REST service. The good thing is that building REST
services ourselves using WCF is pretty easy. In the sample code, some REST services have
already been constructed, such as a service that returns all users (GetAllUsers), a service
that retrieves a user based on the passed-in user ID (GetUserById), and a service that
searches for a user based on his/her username (GetUserByUserName). These services can
be found in the TalkingToSimpleRESTServices.Services project in both the starter
and the completed solution.

To find out how to create REST services from WCF, please refer to Appendix A.

For this sample (as well as the samples of the other recipes in this chapter) to work, we need
the ComputerInventory database. This database is included both as a Microsoft SQL
Server Database File (MDF), file (CompterInventory.mdf), and as a *.sql script file.
Both the files are located in the Chapter10 folder. For an explanation on how to install them,
refer to Appendix B.

How to do it...
This recipe will mainly focus on the aspect of communication with REST services. We'll call the
RESTful service that returns all users and display the result in its original format—plain XML.
The UI of this recipe is kept very basic, containing just enough to trigger a call to the service
and show the results, so it won't be in our way while exploring the communication features.
The following image shows the application containing a TextBox that displays the result of
a REST service call, namely an XML string. (Don't worry about any formatting. We'll look at
working with XML in the next recipe.):

Chapter 10

391

In order to begin reading data from a REST service, we'll need to complete the following steps:

1. Open the solution file in the Chapter10/TalkingToSimpleRESTServices_
ReadingFromRest_Starter folder. It will open a solution containing a Silverlight
application, a hosting website (TalkingToSimpleRESTServices.Web), and a
website where the REST services are located (TalkingToSimpleRESTServices.
Services).

2. The easiest way to communicate with a RESTful service is through the use of the
WebClient class. This class is part of the System.Net namespace, which resides
in the System.Net assembly. If you're still working with Visual Studio 2008 in
combination with Silverlight 3, this assembly reference has to be created manually.
To do so, right-click on the Silverlight project, select Add reference. In the dialog that
appears, on the tab titled .NET, select System.Net. For Silverlight 4 or 5 in Visual
Studio 2010, this isn't needed.

3. Let's add some XAML code to MainPage.xaml to build the necessary UI for the
Silverlight application. We'll add a Button that will trigger the call to the service. We'll
also add a non-editable Textbox, in which the results will be shown as plain text.
This can be achieved using the following code:
<Grid x:Name="LayoutRoot"
 Background="LightGray">
 <Grid.RowDefinitions>
 <RowDefinition Height="50"></RowDefinition>
 <RowDefinition Height="40"></RowDefinition>
 <RowDefinition ></RowDefinition>

Talking to REST and WCF Data Services

392

 </Grid.RowDefinitions>
 <TextBlock x:Name="TitleTextBlock"
 Text="Computer Inventory - User Management"
 FontSize="30"
 FontWeight="Bold"
 HorizontalAlignment="Left"
 Margin="5">
 </TextBlock>
 <StackPanel Grid.Row="1"
 Orientation="Horizontal" >
 <TextBlock x:Name="ControlsTextBlock"
 Text="Controls: "
 Margin="3"
 VerticalAlignment="Center">
 </TextBlock>
 <Button x:Name="ReLoadButton"
 Content="Reload data"
 Click="ReLoadButton_Click"
 HorizontalAlignment="Left"
 Margin="3"
 VerticalAlignment="Center">
 </Button>
 </StackPanel>
 <TextBox x:Name="ResultTextBox"
 Grid.Row="2"
 VerticalScrollBarVisibility="Visible"
 TextWrapping="Wrap"
 Width="600"
 IsReadOnly="True">
 </TextBox>
</Grid>

4. Let's now look at the service that will be called. The contract for this service is
located in the TalkingToSimpleRESTServices.Services project in the
IUserManagementService.svc.cs file. Calling a RESTful service is nothing
more than sending a request to the URI of the service and reading the returned
response. In this case, we're sending a request to our own service. In fact, we're
sending a request to a method of the service, each method has its own address
(a unique URI). The format of this URI is defined by the UriTemplate. For the
GetAllUsers method, the value of the UriTemplate is set to userlist as shown
in the following code:
[OperationContract]
[WebGet(UriTemplate = "userlist",
 BodyStyle = WebMessageBodyStyle.Bare,

Chapter 10

393

 RequestFormat = WebMessageFormat.Xml)]
List<DTO.User> GetAllUsers();

5. In our Silverlight code, we need to match this format. The URI is composed of the
base URI (the address of the service itself, assigned to the serviceBaseUrl
variable in the following code), appended with the userlist suffix (defined in the
previous code as the value for the UriTemplate and assigned to the getAllUser
variable in the following code). In our case, the complete URI will be http://
localhost:23960/UserManagementService.svc/userlist (note that the
port number, here 23960, may vary on your machine).
string serviceBaseUrl =
 "http://localhost:23960/UserManagementService.svc/";
string getAllUser = "userlist";

Ideally, in real-world applications, this URL would be stored in a configuration file.

6. Now that we have the URI, we need to actually make a call to it. For this, we use
the WebClient class. In the Reload Button's Click event handler, we first
create an instance of this type. Just like any other service calls, REST service
calls are asynchronous. Therefore, we need to register an event handler for the
DownloadStringCompleted event, which will be called whenever the service
returns. Finally, we perform the call by using the DownloadStringAsync method,
passing in the URI as the parameter. This is shown in the following code:
private void ReLoadButton_Click(object sender, RoutedEventArgs e)
{
 WebClient client = new WebClient();
 client.DownloadStringCompleted += new
 DownloadStringCompletedEventHandler
 (DownloadAllUsersCompleted);
 client.DownloadStringAsync(new Uri
 (serviceBaseUrl + getAllUser, UriKind.Absolute));
}

7. When the service call returns, the event handler defined in the previous
step will be called automatically. In this event handler, we have access to
the result of the call via the Result property on the instance of the
DownloadStringCompletedEventArgs named e. The response is plain XML.
Each returned User instance is serialized before being sent. If errors have occurred,
we can see them here as well. This is shown in the following code:

void DownloadAllUsersCompleted(object sender,
 DownloadStringCompletedEventArgs e)
{
 ResultTextBox.Text = e.Result;
}

Talking to REST and WCF Data Services

394

How it works...
Let's first take a look at some particulars of REST. One of the most important principles in
REST is the concept of resources. A resource is a container of information. Each resource can
be uniquely identified by a URI. One of the best examples of the REST architecture is the World
Wide Web itself. A page is a resource and it has a unique URI to access it.

While SOAP mainly uses the HTTP POST verb, RESTful services use GET, POST, PUT, and
DELETE. With the default HTTP stack (also known as BrowserHttpStack), Silverlight can
work only with GET and POST, because of the limitations of the browser networking APIs it
uses internally. In Silverlight 3, a second stack was introduced—the ClientHttpStack (we'll
be looking at the ClientHttpStack in a later recipe in this chapter).

Communicating with REST services differs from communicating with SOAP-based services,
as REST services don't expose a WSDL file that contains the functionalities of the service.
We can't add a reference to these kind of services in Visual Studio, so there will be no proxy
generation and no IntelliSense available.

The solution uses the WebClient class that is part of the full .NET framework as well.
The WebClient class has two important ways of requesting data—DownloadString
and OpenRead. DownloadString (which we used in this recipe) can be used when we're
reading textual information, such as XML returned by a REST service. OpenRead can be used
when we want to read the result into a stream. The WebClient class defines a pair of an
asynchronous method and a Completed event for both these ways of requesting data. This
Completed event is fired on the UI thread, which means that to update UI elements in the
event handler, we can do so directly and don't have to cross threads.

Instead of using the WebClient class, we can also use the HttpWebRequest class.
This class should be our choice if we need more control over the call to the service. The
WebClient class uses the HttpWebRequest class internally. We looked at working with
HttpWebRequest in the Reading XML using HttpWebRequest recipe in Chapter 7, Working
with Services.

Calling REST services is possible only asynchronously, because that is the only way
Silverlight allows calls to be made. This asynchronous behavior is reflected in both the actual
call to the service (DownloadStringAsync) and the registration of the event handler
(DownloadStringCompleted), which is called whenever the service returns.

Communication with REST services can be summarized as a three-step process:

 f Create a URI to which a request needs to be sent

 f Send the request

 f Get in the results and work with them (parsing and so on)

Chapter 10

395

The format of the URI is defined by the service itself. Each URI corresponds to a
specific method that will return data. The actual sending of a request is done in the
DownloadStringAsync method of the WebClient class. When the service returns,
the callback is invoked and the response is available through the Result property of
DownloadStringCompletedEventArgs.

See also
In the next recipe, we're going to work with the results of the service through the use
of LINQ To XML. The asynchronous way of working with services in general is explained
in the Connecting and reading from a standardized service recipe in Chapter 7, Working
with Services.

Parsing REST results with LINQ To XML
Applies to Silverlight 3, 4 and 5

We have successfully connected to a REST service from a Silverlight application in the
previous recipe. The response from the service is XML. Most of the time, showing pure
XML to the end user is not the goal of an application, so we'll want to parse the XML.
Silverlight contains several options to work with XML, which include XmlReader/XmlWriter,
XmlSerializer, and LINQ To XML (also known as XLinq). The latter is a preferred way to
parse XML.

In this recipe, we'll look at how we can use LINQ To XML to transform XML into real data. The
raw user data (originally in XML) will be transformed in User objects.

Getting ready
This recipe builds on the code created in the previous recipe, so you can continue using
that solution. Alternatively, you can use the starter solution for this recipe located in the
Chapter10/TalkingToSimpleRESTServices_LinqToXml_Starter folder in the code
bundle available on the Packt website. The finished solution for this recipe can be found in the
Chapter10/TalkingToSimpleRESTServices_LinqToXml_Completed folder.

How to do it...
In this recipe, we'll transform the plain XML returned by a RESTful service into real,
meaningful data. The XML will be parsed using LINQ To XML. Without a doubt, LINQ-To-XML is
the easiest and most efficient way for this task. To begin parsing the XML, we'll complete the
following steps:

1. Either continue working on the solution created in the previous recipe, or use the
provided solution as outlined in the Getting ready section.

Talking to REST and WCF Data Services

396

2. The assembly needed to use LINQ To XML in Silverlight applications is not added by
default. Therefore, we need to add a reference to the System.Xml.Linq assembly
in the Silverlight project. The basic features of LINQ, such as the select statement,
live in the System.Linq assembly that is added by default. (Note that the System.
Xml.Linq assembly is about 120KB in file size.)

3. As Visual Studio can't create a proxy for a REST service, we don't get types to work
with on the client side, although this would be a lot easier. Therefore, we'll manually
create a User class ourselves in the TalkingToSimpleRESTServices Silverlight
project that will contain the object representation of the XML data. This is a data-only
type. The User class is shown in the following code:
public class User
{
 public int UserId { get; set; }
 public string UserName { get; set; }
 public string FirstName { get; set; }
 public string LastName { get; set; }
 public string Email { get; set; }
 public string Department { get; set; }
 public string ReportsTo { get; set; }
}

4. Next, in the DownloadAllUsersCompleted callback method located in the code-
behind of MainPage.xaml, we'll need to load the XML into an XDocument using
the Parse method. An XDocument is able to load in the entire XML stream given
to it. With a query, we search for all User descendants of the root node using the
Descendants method. As we don't want to work with the XElement instances in our
client code, we read each User XElement and load its values into a new instance of
the User class. Note that we can use the Element or Descendants methods. Both
methods have the same result. This is shown in the following code:
void DownloadAllUsersCompleted(object sender,
 DownloadStringCompletedEventArgs e)
{
 XDocument xml = XDocument.Parse(e.Result);
 var users = from results in xml.Descendants("User")
 select new User
 {
 UserId = Int32.Parse(results.Element("UserId")
 .Value.ToString()),
 UserName = results.Descendants("UserName").First().Value,
 FirstName = results.Descendants("FirstName").First().Value,
 LastName = results.Descendants("LastName").First().Value,
 Department = results.Element("Department").Value.ToString(),
 Email = results.Element("Email").Value.ToString(),
 ReportsTo = results.Element("ReportsTo").V };
}

Chapter 10

397

5. We will then need to replace the ResultTextBox in MainPage.xaml with a
DataGrid called UsersDataGrid. The code for this control is as follows:
<UserControl xmlns:data="clr-namespace:System.Windows.Controls;
 assembly=System.Windows.Controls.Data"
 x:Class="TalkingToSimpleRESTServices.MainPage"

<data:DataGrid x:Name="UsersDataGrid"
 Grid.Row="2"
 AutoGenerateColumns="False"
 Width="600"
 Height="500"
 HorizontalAlignment="Left"
 VerticalAlignment="Top"
 Margin="3">
 <data:DataGrid.Columns>
 <data:DataGridTextColumn Binding="{Binding UserId}"
 Header="UserId"/>
 <data:DataGridTextColumn Binding="{Binding UserName}"
 Header="User name"/>
 <data:DataGridTextColumn Binding="{Binding FirstName}"
 Header="First name"/>
 <data:DataGridTextColumn Binding="{Binding LastName}"
 Header="Last name"/>
 </data:DataGrid.Columns>
</data:DataGrid>

6. Finally, we can use the data in our application. We can now bind the generic
List<User> to the DataGrid by setting it as the value of the ItemsSource
property. This is shown in the following code:
void DownloadAllUsersCompleted(object sender,
 DownloadStringCompletedEventArgs e)
{

 UsersDataGrid.ItemsSource = users.ToList();
}

Talking to REST and WCF Data Services

398

7. The following screenshot shows the User instances bound to the DataGrid:

How it works...
When working with data coming from a RESTful service, most of the time it's important to look
at the schema of the XML. Here, the data is quite simple as it's created through serialization
of an object on the server side. Serialization is the process of converting an object into a
stream, so that it can be easily sent over the wire. In our case, we are serializing instances of
a class called User that is located in the TalkingToSimpleRestServices.DTO project.
Each property of this class is translated into XML as shown in the following code:

<ArrayOfUser>
 <User>
 <Department />
 <Email />
 <FirstName />
 <LastName />
 <ReportsTo />
 <UserId />
 <UserName />
 </User>
</ArrayOfUser>

While RESTful services may respond with more complicated XML code, LINQ To XML contains
everything needed to parse the data easily. We should always start by loading the entire XML
string into an XDocument or an XElement. XElement may even be a better fit here, as we're
not using any particularities of the root node. Using the Descendants method and passing
in the name of the node that we want to retrieve, we get a list of all the XElement instances
matching the requested pattern. As this is a list, we can perform a query on it. In this query,
for each encountered XElement, we create a new User instance by passing in the retrieved
values of the XML.

Chapter 10

399

With this, we have successfully loaded data from a REST service into the types on the client
side. This data can now be used in all scenarios we want, for example, data binding.

See also
The previous recipe explains how to get the XML data into the application. In the next recipe,
we explore the options to send data from Silverlight to a REST service. In the Communicating
with a REST service using JSON recipe, we'll look at how we can work with a REST service that
returns JSON.

We used very simple data binding here, but if you'd like to explore this topic further, refer to
Chapter 2, An Introduction to Data Binding, and Chapter 3, Advanced Data Binding.

Persisting data using a REST service
Applies to Silverlight 3, 4 and 5

Some REST services accept data that we send to them as well, so this data can then be
persisted back into a database. In this recipe, we'll make it possible to add, update, or delete
a user in the Computer Inventory application, where we're working on the User Management.

Getting ready
This recipe builds on the code created in the previous two recipes. If you want to follow along
with the steps in this recipe, you can also use the starter solution located in the Chapter10/
TalkingToSimpleRESTServices_PersistingData_Starter folder in the code bundle
available on the Packt website. The finished solution for this recipe can be found in the
Chapter10/TalkingToSimpleRESTServices_PersistingData_Completed folder.

How to do it...
Persisting data to a REST service is actually the opposite of reading. We'll use the same class,
namely the WebClient class. However, instead of downloading data, we'll serialize client-
side data and send it back to the service. To begin persisting data to the REST service, we'll
complete the following steps:

1. As outlined in the Getting ready section, use either the solution from the previous
recipe or the provided solution in the sample code.

2. We'll be using the WebClient class that resides in the System.Net namespace. If
not yet added, add a reference to this assembly in your Silverlight project. To do so,
right-click on the TalkingToSimpleRESTServices project, select Add reference,
and select the required assembly in the dialog box that appears. Visual Studio 2010
creates this assembly reference automatically.

Talking to REST and WCF Data Services

400

3. In this recipe, we'll use a detail window to add, update, or delete a user. The following
is the XAML code for this user control. This code is placed inside a new Silverlight
child window. To add a child window to the project, right-click on the Silverlight project
node in the Solution Explorer, select Add | New item..., and select Silverlight Child
Window in the template selection dialog box. Name this new file UserDetailEdit.
Such a child window contains out of the box zoom-in or zoom-out effects, when
initiated or closed, respectively. Note that we're going to use data binding to show
a User instance, or to get the changes back into the object when the values have
changed. TwoWay bindings are used, so that the bound CLR object will update
automatically as well. The complete XAML code for this child window can be found
in the code bundle. The following code shows the most relevant parts:
<Grid x:Name="LayoutRoot" Margin="2">
 <Grid.RowDefinitions>
 <RowDefinition />
 <RowDefinition Height="Auto" />
 </Grid.RowDefinitions>
 <Grid Grid.Row="0" x:Name="UserDetailGrid" >
 <Grid.RowDefinitions>
 <RowDefinition></RowDefinition>
 ...
 </Grid.RowDefinitions>
 <Grid.ColumnDefinitions>
 ...
 </Grid.ColumnDefinitions>
 <TextBlock Text="User ID: "
 Grid.Row="0"
 Grid.Column="0"
 VerticalAlignment="Top">
 </TextBlock>
 <TextBlock x:Name="UserIdTextBlock"
 Grid.Row="0"
 Grid.Column="1"
 Text="{Binding UserId}"
 VerticalAlignment="Top">
 </TextBlock>
 <TextBlock Text="User name: "
 Grid.Row="1"
 Grid.Column="0"
 VerticalAlignment="Top">
 </TextBlock>
 <TextBox x:Name="UserNameTextBox"
 Grid.Row="1"
 Grid.Column="1"
 Text="{Binding UserName, Mode=TwoWay}"

Chapter 10

401

 VerticalAlignment="Top">
 </TextBox>
 <!-- Similar code omitted-->
 </Grid>
 <Button x:Name="DeleteButton"
 Content="Delete"
 Click="DeleteButton_Click"
 Width="75"
 Height="23"
 HorizontalAlignment="Right"
 Margin="0,12,79,0"
 Grid.Row="1" />
 <Button x:Name="CancelButton"
 Content="Cancel"
 Click="CancelButton_Click"
 Width="75"
 Height="23"
 HorizontalAlignment="Right"
 Margin="0,12,0,0"
 Grid.Row="1" />
 <Button x:Name="SaveButton"
 Content="Save"
 Click="SaveButton_Click"
 Width="75"
 Height="23"
 HorizontalAlignment="Right"
 Margin="0,12,158,0"
 Grid.Row="1" />
</Grid>

4. Similar to reading from a REST service, we need a URI to send a request, as dictated
by the service itself. Each action (add, update, or delete) has a different address.
We'll combine these specific addresses with the base address of the service to get
the correct URI based on the required action. This is shown in the following code:
string serviceBaseUrl =
 "http://localhost:23960/UserManagementService.svc/";
string getUserById = "user/{0}";
string addUser = "user/add";
string updateUser = "user/update";
string deleteUser = "user/delete";

Note that the port number (here 23960) may be different on your machine.

Talking to REST and WCF Data Services

402

5. Let's now look at the actions required to add a new User. We first need to change the
client-side User class in the Silverlight project. The class itself needs to be decorated
with a DataContract attribute, and the members that we want to send over need a
DataMember attribute. The updated class is shown in the following code. Note that
we define the Namespace to be empty, since our code is not using the namespaces
from the returned XML:
[DataContract(Name = "User", Namespace = "")]
public class User
{
 [DataMember]
 public int UserId { get; set; }
 [DataMember]
 public string UserName { get; set; }
 [DataMember]
 public string FirstName { get; set; }
 [DataMember]
 public string LastName { get; set; }
 [DataMember]
 public string Email { get; set; }
 [DataMember]
 public string Department { get; set; }
 [DataMember]
 public string ReportsTo { get; set; }
}

6. Upon constructing the UserDetailEdit instance, we can check which action the
window is supposed to be performing. This can be either editing an existing User
or adding a new User. These actions are reflected in a new enumeration called
EditingModes that we add to the Silverlight project. This is shown in the following
code:
public enum EditingModes
{
 New,
 Edit
}

7. This enumeration is now used as a parameter type in the constructor. When we add
a User, a new instance is created and is set as the value for the DataContext
property of the UserDetailGrid:
private User user;
private int userId;
private EditingModes editingMode;
public UserDetailEdit(int userId, EditingModes editingMode)
{

Chapter 10

403

 InitializeComponent();
 this.userId = userId;
 this.editingMode = editingMode;
 if (editingMode == EditingModes.New)
 {
 user = new User();
 UserDetailGrid.DataContext = user;
 DeleteButton.IsEnabled = false;
 }
}

8. When the user clicks on the Save button, we need to send the User instance to the
RESTful service. However, this can be done only after serializing the object. This can
be done through the use of the DataContractSerializer type as shown in the
following code:
private void SaveButton_Click(object sender, RoutedEventArgs e)
{
 WebClient client = new WebClient();
 Uri uri = new Uri(serviceBaseUrl + addUser);
 DataContractSerializer dataContractSerializer = new
 DataContractSerializer(typeof(User));
 MemoryStream memoryStream = new MemoryStream();
 dataContractSerializer.WriteObject(memoryStream, user);
 string xmlData = Encoding.UTF8.GetString(memoryStream.ToArray(),
 0, (int)memoryStream.Length);
}

9. Now that we have the XML available, we need to send it. This will be done through
the use of the WebClient, but instead of using the DownloadString method,
we'll use the UploadString method. It's required to set the content-type. It
should be set to application/xml, as shown in the following code. Also, in the
UploadStringAsync method, we're using POST as the method for the HTTP
request and are adding data:
client.UploadStringCompleted += new
 UploadStringCompletedEventHandler(UploadCompleted);
client.Headers[HttpRequestHeader.ContentType] = "application/xml";
client.UploadStringAsync(uri, "POST", xmlData);

10. In the UploadCompleted event handler for the callback, we can check if the upload
went well using the Error property of the UploadStringCompletedEventArgs
event arguments. This is shown in the following code:
private void UploadCompleted(object sender,
 UploadStringCompletedEventArgs e)
{
 if (e.Error == null)

Talking to REST and WCF Data Services

404

 this.DialogResult = true;
 else
 MessageBox.Show(e.Error.Message);
}

11. At this point, the child window is ready. The only thing left to do is to call it from
MainPage.xaml. To do so, start by adding a new Button called NewUserButton
in the StackPanel within MainPage.xaml. This is shown in the following code:
<Button x:Name="NewUserButton"
 Content="Add user"
 Click="NewUserButton_Click"
 HorizontalAlignment="Left"
 Margin="3"
 VerticalAlignment="Center">
</Button>

12. In the Click event handler, we instantiate the UserDetail child window as shown
in the following code:

private void NewUserButton_Click(object sender, RoutedEventArgs e)
{
 UserDetailEdit editView = new
 UserDetailEdit(0, EditingModes.New);
 editView.Show();
}

With that, we've created all the necessary code to allow the persisting of User
instances over the REST service. In the following screenshot, the child window is
shown in its New editing mode:

Chapter 10

405

Updating and deleting User instances are similar. The sample code contains all the logic for
these actions as well.

How it works...
When persisting data to a RESTful service, the first concern is getting the data on the
service. Data is almost always available on the client side in the form of objects. We can't
just go sending the objects straight away; they have to be serialized first. For the service
and the client to understand one another, the XML should be in a correct format. Hence,
the DataContract and the DataMember attributes are used in the User class on the
client side. The client-side and the server-side objects must have the same names for their
properties, otherwise the deserialization will fail.

The process of serialization from and to XML has often been the job of the XmlSerializer
class and it has been included since NET 1.0. When WCF arrived, a new serializer called the
DataContractSerializer was included, in the first place intended for use with WCF.
However, as seen in this recipe, it can be used for any serialization purpose.

Since version 3, Silverlight has contained two network stacks—the browser stack used in
this sample and the ClientHttpStack. The browser stack is named so because Silverlight
internally uses the browser networking APIs. Through this stack, only HTTP GET and POST
are supported. In the sample code, you can see that we use a POST request to perform
an add, an update, or a delete. Another way of using PUT and DELETE is through POST, by
passing in the real HTTP value as a custom header. This technique isn't perfectly RESTful
either, because the request method and what we want to achieve don't match, which is a one
of the aspects of the REST principle. This technique is also used in WCF Data Services. The
ClientHttpStack does allow Silverlight to use real PUT or DELETE messages.

There's more...
For the serialization process, we could have used the XmlSerializer class. While this class
also does the job and is included in Silverlight, the DataContractSerializer is easier
to use (as you have more control over the namespace, and so on). The sample code also
contains some code where the XmlSerializer class is used.

See also
Reading and persisting data using REST services is very similar. Read both the Reading data
from a REST service and Parsing REST results with LINQ To XML recipes in this chapter and
notice the link between the two.

Talking to REST and WCF Data Services

406

Working with the ClientHttp stack
Applies to Silverlight 3, 4 and 5

When communicating with a REST service, Silverlight uses the BrowserHttpStack by
default. Due to this, Silverlight can't use all the HTTP verbs, such as PUT and DELETE.
Silverlight 3 added a new option, namely the ClientHttp stack. This new stack bypasses the
browser stack, and performs its communication directly through the operating system.

In this recipe, we'll look at the changes that we need to make to use this networking stack.

Getting ready
To follow along with this recipe, you can use the code created in the previous
recipe. Alternatively, you can use the starter solution located in the Chapter10/
TalkingToSimpleRESTServices_ClientHttp_Starter folder in the code bundle
available on the Packt website. The completed solution can be found in the Chapter10/
TalkingToSimpleRESTServices_ClientHttp_Completed folder.

How to do it...
To make a Silverlight application that talks with REST services, use the ClientHttp stack
instead of the browser stack. We need to perform a few simple steps. We'll use the application
built in the previous recipes (Computer Inventory) to use the new stack. Let's take a look
at what we need to do:

1. To make an application use the ClientHttp stack, and we need to tell Silverlight to do
so. The easiest way is telling Silverlight that all traffic for addresses beginning with
http:// has to use this stack. This can be done using the following code:
public MainPage()
{
 InitializeComponent();
 HttpWebRequest.RegisterPrefix("http://",
 WebRequestCreator.ClientHttp);
}

2. With the previous code executed, all calls will be executed over the ClientHttp Stack.

Chapter 10

407

How it works...
The REST protocol specifies that we can identify any resource with a unique URL. This
resource can be any information on the web, for example, a user instance in the application.
Using REST, we can get this user with the GET command, create or update the user using the
PUT command, use the POST command to create a new instance, delete the user using the
DELETE command, and so on.

Silverlight supports communication with REST services, but as it works by default through
the browser stack, it's limited to use only GET and POST. With Silverlight 3, a new stack was
introduced, namely the ClientHttp stack.

Working with this new stack requires almost no changes to the existing applications, as the
API is identical. The only thing we need to do is let Silverlight know that we want to use this
stack. This can be done by saying that all requests starting with http:// should use the
ClientHttp stack. This is shown in the following line of code:

HttpWebRequest.RegisterPrefix("http://",
 WebRequestCreator.ClientHttp);

If we have requests over HTTPs and want these to happen over the client stack as well, we
need to register them using the following line of code:

HttpWebRequest.RegisterPrefix("https://",
 WebRequestCreator.ClientHttp);

We can also be more specific. For example, assume we have an application that
communicates with http://www.snowball.be and http://www.packtpub.com.
If we want the REST communication with http://www.snowball.be to go over the
ClientHttpStack and http://www.packtpub.com to use the default browser stack, we
can specify this using the following code:

HttpWebRequest.RegisterPrefix("http://www.snowball.be",
 WebRequestCreator.ClientHttp);

Advantages of the ClientHttp stack
Using the ClientHttp stack has some advantages over using the browser stack. As already
mentioned, it supports more HTTP verbs (GET, POST, PUT, and DELETE). It does not
support other HTTP verbs, such as CONNECT, TRACE, and so on. However, the service can
be limited in the keywords it supports. It's possible to specify in the client access policy
file (clientaccesspolicy.xml) which verbs are supported and which aren't.The error
messages when using browser stack are limited. With this stack, we have access to only 200
and 404. The ClientHttp stack supports all error messages, making it easier to see what's
wrong with the service.

Talking to REST and WCF Data Services

408

Starting with Silverlight 4, it's also possible to perform authentication using the ClientHttp
stack (we'll look at this in the Passing credentials and cross-domain
access to Twitter from a trusted Silverlight application recipe, later in this chapter). In
Silverlight 5, there were no changes in this area.

When we download an image with BrowserHttpStack, it's automatically cached by
the browser, as it is its default behavior. However, when working with the ClientHttp stack,
the browser won't cache it; it simply won't see the image passing by. In Silverlight 3, there
was no option to cache using the ClientHttp stack. With Silverlight 4, support for caching
was added.

The same goes for cookies. When using the browser stack, all cookies coming in from a site
or going out to a site are managed by the browser. Due to this, when we're logged in to a
site based on cookies (the way ASP.NET works), the requests made to that same site from a
Silverlight application are also authenticated. With the ClientHttp stack, again this won't work.
With the ClientHttp stack, we can work with cookies, but this has to be done manually using
the CookieContainer.

See also
In the previous recipes of this chapter, we looked at the specifics of working with REST
services from Silverlight.

Communicating with a REST service
using JSON

Applies to Silverlight 3, 4 and 5

When we work with REST services, data is sent over the wire in XML by default. However, REST
services can also send back their information in another format, such as JavaScript Object
Notation (JSON). This can be the case if the service needs to be accessible from JavaScript
code, or if the transferred data is to be very compact.

In this recipe, we'll look at how to communicate from Silverlight with a REST service in the
JSON format.

Getting ready
This recipe builds on the code created in the previous recipes, so you can continue using your
own code for this recipe. Alternatively, you can also use the provided starter solution located
in the Chapter10/TalkingToSimpleRESTServices_ReadingWithJSON_Starter
folder in the code bundle available on the Packt website. The finished solution for this recipe
can be found in the Chapter10/TalkingToSimpleRESTServices_ReadingWithJSON_
Completed folder.

Chapter 10

409

How to do it...
Communicating with a REST service using JSON data is a matter of changing the format of the
data sent over the wire and parsing this data using a JsonArray object. To do this, we have
to complete the following steps:

1. Open the solution as outlined in the Getting ready section and locate the project
containing your services called TalkingToSimpleRESTServices.Services.
In this project, find the IUserManagementService interface and add the
following code to it. Notice that the RequestFormat and the ResponseFormat
NamedParameters are set to Json, as shown in the following code:
[OperationContract]
[WebGet(UriTemplate = "userlistjson",
 BodyStyle = WebMessageBodyStyle.Bare,
 RequestFormat = WebMessageFormat.Json),
 ResponseFormat = WebMessageFormat.Json)]
List<DTO.User> GetAllUsersJson();

2. We can now implement this method. To do so, add the following code to the
UserManagementService class:
public List<DTO.User> GetAllUsersJson()
{
 List<DTO.User> dtoUserList = new List<DTO.User>();
 List<User> userList = new UserRepository().GetAllUsers();
 foreach (var user in userList)
 {
 DTO.User dtoUser = ConvertUserToDTOUser(user);
 dtoUserList.Add(dtoUser);
 }
 return dtoUserList;
}

3. In the Silverlight project, we need to add a reference to System.Json.

4. We'll now try to retrieve all users using JSON instead of XML. In the UI, add a new
Button to the StackPanel as shown in the following code:
<Button x:Name="JsonButton"
 Content="Load data using JSON"
 Click="JsonButton_Click"
 HorizontalAlignment="Left"
 Margin="3"
 VerticalAlignment="Center">
</Button>

Talking to REST and WCF Data Services

410

5. In the event handler of this Button, we can perform a call to the GetAllUsersJson
method using the following code:
private void JsonButton_Click(object sender, RoutedEventArgs e)
{
 WebClient client = new WebClient();
 client.OpenReadCompleted += new
 OpenReadCompletedEventHandler(client_OpenReadCompleted);
 client.OpenReadAsync(new Uri(serviceBaseUrl + "userlistjson",
 UriKind.Absolute));
}

6. Add the following code to handle the OpenReadCompleted event of our JSON
request. In this method, we're parsing the result of the request.
void client_OpenReadCompleted(object sender,
 OpenReadCompletedEventArgs e)
{
 if (e.Error == null)
 {
 JsonArray items = (JsonArray)JsonArray.Load(e.Result);
 var query = from user in items
 select new User
 {
 Department = user["Department"],
 Email = user["Email"],
 FirstName = user["FirstName"],
 LastName = user["LastName"],
 ReportsTo = user["ReportsTo"],
 UserId = user["UserId"],
 UserName = user["UserName"]
 };
 UsersDataGrid.ItemsSource = query.ToList();
 }
}

7. Build and run your application. If we place a breakpoint in the returning method, we
can see that the data is effectively returned in the JSON format.

How it works...
By setting RequestFormat and ResponseFormat NamedParameters to
WebMessageFormat.Json in our OperationContract, we're telling our service
that it should use JSON as the data format while transferring data for both requests and
responses. Whenever we send or receive data using OperationContract, everything is
done using JSON.

Chapter 10

411

To easily parse this result, Silverlight includes classes to easily handle JSON data. They're
located in the System.Json namespace. By calling JsonArray.Load in the response
stream, we can load the response into a JsonArray object. This represents a collection of
JsonValue. In this example, each JsonValue is a User, so all that's left to do is convert
these items into User objects and set the ItemsSource collection of the DataGrid.

See also
To get data in the XML format rather than the JSON format, have a look at the Reading data
from a REST service recipe in this chapter.

Using WCF Data Services with Silverlight
Applies to Silverlight 3, 4 and 5

Above our data layer, we may have an entity model that exposes entities (for example, one
which is created using the ADO.NET Entity Framework) for our application to use. WCF Data
Services allows exposing these entities over REST-based services. In this recipe, we'll look at
how we can use WCF Data Services from Silverlight.

In the previous recipes, we worked on the User Management part of the Computer Inventory
application. In this and the following two recipes, we'll work on the Computer Management.

Before being officially released, WCF Data Services were known as
ADO.NET Data Services. When .NET 4 was released, Microsoft
changed the name to WCF Data Services, mainly to show that this
technology too is based on the WCF stack.

Getting ready
This recipe, along with the following two recipes, uses the same database called
ComputerInventory, as used in the RESTful services recipes. This database is included
as a Microsoft SQL Server Database File (MDF) in the code bundle available on the Packt
website. Refer to Appendix B for installation instructions.

This recipe starts from an empty Silverlight application. Refer to Chapter 1, Learning the Nuts
and Bolts of Silverlight 5, for more information on how to do so.

How to do it...
We'll first set up WCF Data Services and then build a model using Entity Framework. In the
following recipes, we'll connect to these services from a Silverlight client application. The
following are the steps we need to perform to get this working:

Talking to REST and WCF Data Services

412

1. We'll build the entire application from scratch. Create a new Silverlight solution and
select ASP.NET Web Application as the type for the hosting website. The latter is
needed to create the model and host the service. If you have an existing Silverlight
solution to which you want to add a WCF Data Service, you can add the model in the
hosting web application.

2. WCF Data Services work on a model, not directly on a database. Add a new
Entity Framework Model by right-clicking on the web project, selecting
Add | New Item..., and selecting ADO.NET Entity Data Model. Name the
model ComputerInventory.edmx.

3. In the wizard that appears, select Generate from Database in the first dialog
box. This indicates that we want to start creating the model based on the tables
in the database.

4. The next step allows us to configure the connection to the database by clicking on the
New Connection button. Leave the checkbox checked to allow storing the connection
string in the web.config file.

5. The final step in the wizard allows us to select which items from the database we
want to make as the part of the model. Select all tables, excluding sysdiagrams.
When we click on Finish, Visual Studio generates the model as shown in the
following image:

Chapter 10

413

6. Next, we create the actual WCF Data Service. To do so, add a WCF Data Service
called ComputerInventoryService.svc to your web project. The generated code
needs some changes done to it. A link needs to be created between the model and
the data service by making the latter inherit from DataService<ComputerInve
ntoryEntities>. The ComputerInventoryEntities type parameter is often
referred to as the context or context object representing the model.

7. In the InitializeService method, we need to explicitly allow access-specific
entities by using the EntitySetRights enumeration. In the following code, we are
saying that all rights are allowed on the specified entities:
public static void InitializeService(DataServiceConfiguration
 config)
{
 config.UseVerboseErrors = true;
 config.SetEntitySetAccessRule("Computer", EntitySetRights.All);
 config.SetEntitySetAccessRule("User", EntitySetRights.All);
 config.SetEntitySetAccessRule("ComputerType",
 EntitySetRights.All);
 config.SetEntitySetAccessRule("Manufacturer",
 EntitySetRights.All);
}

8. Go to the Silverlight application and add a service reference to the *.svc file by
right-clicking on the Silverlight application and selecting Add Service Reference....
Then click on the Discover button in the Add Service Reference dialog box. Change
the namespace to ComputerInventoryService. Visual Studio will now generate
a proxy for this service, and a reference to System.Data.Services.Client
will be automatically added. You now have typed access to the entities exposed by
the service, although we're in the background and using REST to communicate with
the service.

How it works...
WCF Data Services is a server-side technology that allows making entities of a model
available on the web. Underneath, it uses REST as its communication platform. It's
possible to connect to the services using the WebClient class or the HttpWebRequest
class. Each entity of the model is exposed as a resource and can be connected to via a
unique URI. However, the data source used has to have an IQueryable interface for
exposing the entities. If we want updates to be sent to the data, the IUpdatable interface
should be implemented as well. A good example of this is the ADO.NET Entity Framework,
which exposes such a data source through the Entity Model. Note that you can create your
own data source and attach WCF Data Services to it as well.

Talking to REST and WCF Data Services

414

One important thing to understand is that WCF Data Services have nothing to do with the
actual data access itself. It works with entities exposed by a model (in this example, the
model from Entity Framework).

It's easy to see that WCF Data Services actually use REST under the hood. To get data, we
need to send a request to a specifically formed URI, combined with one of the standard HTTP
keywords, such as GET, POST, PUT, or DELETE. Sound familiar? Indeed, it is exactly the same
way of working as we did with REST in the previous recipes.

The URIs created by WCF Data Services to expose the entities are simple to understand.
In the following example, which will retrieve a Computer entity with an ID equal to 1, we
can see that the URI is composed of the name of the service, followed by the name of the
entity (Computer), and the ID that we want to retrieve: http://localhost:12345/
ComputerInventoryService.svc/Computer(1).

The resulting response can be sent in an XML or JSON format. XML, in the form of AtomPub, is
the default format and is actually easiest to read. The Atom Publishing Protocol (AtomPub)
is a protocol based on HTTP that allows creating and publishing web resources. The response
sent when invoking the previous URI is shown in the following code:

<?xml version="1.0" encoding="utf-8" standalone="yes" ?>
<entry
 xml:base="http://localhost:8624/ComputerInventoryService.svc/"
 xmlns:d="http://schemas.microsoft.com/ado/2007/08/dataservices"
 xmlns:m="http://schemas.microsoft.com/ado/2007/08/dataservices/
 metadata"
 xmlns="http://www.w3.org/2005/Atom">
 <id>http://localhost:8624/ComputerInventoryService.svc/Computer(1)
 </id>
 <title type="text" />
 <updated>2009-07-19T12:37:26Z</updated>
 <author>
 <name />
 </author>
 <link rel="edit" title="Computer" href="Computer(1)" />
 <link rel="http://schemas.microsoft.com/ado/2007/08/dataservices
 /related/ComputerType"
 type="application/atom+xml;type=entry" title="ComputerType"
 href="Computer(1)/ComputerType" />
 <link rel="http://schemas.microsoft.com/ado/2007/08/dataservices/
related/Manufacturer" type="application/atom+xml;type=entry"
title="Manufacturer" href="Computer(1)/Manufacturer" />
 <link rel="http://schemas.microsoft.com/ado/2007/08/dataservices
 /related/User"
 type="application/atom+xml;type=feed" title="User"
 href="Computer(1)/User" />

Chapter 10

415

 <category term="ComputerInventoryModel.Computer" scheme="http://
schemas.microsoft.com/ado/2007/08/dataservices/scheme" />
 - <content type="application/xml">
 - <m:properties>
 <d:ComputerId m:type="Edm.Int32">1</d:ComputerId>
 <d:ComputerName>Lenovo W500</d:ComputerName>
 <d:OS>Windows 7</d:OS>
 <d:WarrantyUntil m:type="Edm.DateTime">2012-07-01T00:00:00</
d:WarrantyUntil>
 <d:DateAdded m:type="Edm.DateTime">2009-07-01T00:00:00</
d:DateAdded>
 </m:properties>
 </content>
</entry>

The big difference in working with plain REST services is the existence of the WCF Data
Service Client library in Silverlight. It frees us from manually having to create the URIs to
request data, and writing XML parsing code to read out the response. It's basically a large
wrapper around these tasks, allowing us to work with data on the client as if the service
barrier isn't there.

This is achieved through code-generation. It's possible to add a service reference to a
WCF.DataService file in your Silverlight project. This will result in the creation of client-side
data classes and a class derived from DataServiceContext that represents the service
itself. All these classes are located in the reference.cs file. The following screenshot
shows where all this generated code is located:

Also, the required assembly—System.Data.Services.Client.dll—is added to the
Silverlight project. Finally, a client-side version of the server-side entity model (*.edmx) is
generated that contains the structure of the entity model.

We can write LINQ queries in the Silverlight application that are translated into a URI, to which
a request is sent. The response is parsed for us and available as objects of the generated
classes. Thus, we have full IntelliSense inside Visual Studio as well, which makes coding a lot
easier. We'll look at writing queries to get and update data in the next two recipes.

Talking to REST and WCF Data Services

416

Locked-down services
WCF Data Services are completely locked down by default. Access is not permitted to the
entities automatically. Due to this, in the InitializeService method of the DataService
class, we have to configure this access using the DataServiceConfiguration instance.
Several options exist to give more or less permissions to the entities, such as All, AllRead,
None, and so on. Go to http://msdn.microsoft.com/en-us/library/system.data.
services.entitysetrights.aspx for a complete overview of this enumeration.

See also
In the next recipe, we'll build further on this recipe by showing how we can read data from
services. The Persisting data using WCF Data Services recipe will show how we can perform
create, update, and delete operations on the data.

Reading data using WCF Data Services
Applies to Silverlight 3, 4 and 5

Let's assume we have decided that WCF Data Services is going to be the technology to get
data inside our Silverlight application, which admittedly is a great choice. In the previous
recipe, we saw how we can set up Silverlight to use WCF Data Services. However, we didn't
actually exchange any data with the service (which is quite ironic for a data service).

In this recipe, we'll perform read operations on the data by building on the code created in the
previous recipe. This time, we'll focus on the Computer data in the database.

Getting ready
This recipe continues on the code created in the previous recipe. If you want to follow
along, you can continue using your code, or use the provided starter solution located in the
Chapter10/WorkingWithWcfDataServices_Reading_Starter folder in the code
bundle available on the Packt website. The finished solution for this recipe can be found in
the Chapter10/WorkingWithWcfDataServices_Reading_Completed folder.

How to do it...
In the previous recipe, we introduced the client library that dramatically reduces the amount
of code that we need to write compared to plain REST services. Using this library, we can load
data in several formats, such as an entire list, a single object with or without related entities,
and so on. We'll build an application that shows a list of computers. The details of each
computer can be seen using a detail screen. Perform the following steps to start reading data
from WCF Data Services:

Chapter 10

417

1. The XAML for the application is similar to the XAML we used in the previous recipes.
The application's UI mainly consists of a DataGrid with defined columns. The code
for this DataGrid can be found in the code bundle. Thanks to the client library,
we have the ability to write LINQ queries. These LINQ queries are executed using
an instance of the context, so creating this context instance should be our first
step. Note that the context instance accepts a URI to the .svc file of the service
as a parameter. After this, we can write a LINQ query, in which we load all Computer
entities. A little caution though: WCF Data Services wouldn't load the related
Manufacturer objects by default, although we want to show this information as well
in the DataGrid. Therefore, we specify this using the Expand method as shown in
the following:
ComputerInventoryEntities context=new ComputerInventoryEntities
 (new Uri("ComputerInventoryService.svc", UriKind.Relative));
public MainPage()
{
 InitializeComponent();
}
private void UserControl_Loaded(object sender, RoutedEventArgs e)
{
 ComputerLoadStart();
}
private void ComputerLoadStart()
{
 var query = from c in context.Computer.Expand("Manufacturer")
 select c;
}

2. While the query looks rather normal, do keep in mind that all Silverlight's service
requests are carried out asynchronously. Therefore, the query is cast to a
DataServiceQuery<T> (in this case, the return type T is Computer). On this
instance, the BeginExecute method is called, which triggers an asynchronous call
to the service. Similar to other asynchronous calls, a callback method is passed in.
The query itself is also passed in, so we have access to it in the callback method. This
is shown in the following code:
private void ComputerLoadStart()
{

 DataServiceQuery<Computer> dsq =
 (DataServiceQuery<Computer>)query;
 dsq.BeginExecute(ComputerLoadCompleted, dsq);
}

Talking to REST and WCF Data Services

418

3. When the service is ready, the ComputerLoadCompleted callback method is
invoked. This method receives an IAsyncResult instance as parameter, which
contains the DataServiceQuery<T>. By calling the EndExecute method on
this instance, we get access to the returned Computer instances. We place these
instances in an ObservableCollection called computerCollection for data
binding purposes. The collection is bound to the DataGrid using the ItemsSource
property as shown in the following code:
ObservableCollection<Computer> computerCollection =
 new ObservableCollection<Computer>();
private void ComputerLoadCompleted(IAsyncResult asr)
{
 DataServiceQuery<Computer> dsq =
 (DataServiceQuery<Computer>)asr.AsyncState;
 foreach (var computer in dsq.EndExecute(asr).ToList())
 {
 computerCollection.Add(computer);
 }
 ComputersDataGrid.ItemsSource = computerCollection;
}

The result is a list of computers as shown in the following screenshot:

4. Let's now take a look at the detail page. When clicking on a View button in the
grid, we load a Silverlight Child Window named ComputerDetailView.xaml
that features a nice zoom-in effect when opened. The XAML for this window is
straightforward and can be found in the code bundle.

Chapter 10

419

5. To show the details of the selected computer in the DataGrid, we pass the context
as well as the computerID of the selected computer via the constructor. This is
shown in the following code:
private ComputerInventoryEntities context;
private int computerId;
private Computer computer;
public ComputerDetailView(ComputerInventoryEntities context,
 int computerId)
{
 InitializeComponent();
 this.context = context;
 this.computerId = computerId;
 LoadComputer();
}

6. In the LoadComputer method, we load the details of the selected computer.
However, the computer is already being tracked by the context because of the list
display, but not all the data we need is loaded (the computer type is omitted in the
list). Thus, we need to explicitly tell the context that it has to reload the computer
using the OverWriteChanges of the MergeOption enumeration. The following
code shows this loading process:
private void LoadComputer()
{
 context.MergeOption = MergeOption.OverwriteChanges;
 var query = from c in context.Computer.Expand("ComputerType")
 where c.ComputerId == computerId
 select c;
 DataServiceQuery<Computer> dsq =
 (DataServiceQuery<Computer>)query;
 dsq.BeginExecute(ComputerLoadCompleted, dsq);
}
private void ComputerLoadCompleted(IAsyncResult asr)
{
 DataServiceQuery<Computer> dsq =
 (DataServiceQuery<Computer>)asr.AsyncState;
 computer = dsq.EndExecute(asr).FirstOrDefault<Computer>();
 ComputerDetailGrid.DataContext = computer;
}

Talking to REST and WCF Data Services

420

7. After all the previous code is added, we have successfully created a master-detail
implementation based on WCF Data Services. The detail screen is shown in the
following image:

How it works...
The most important part of this recipe is the LINQ query. When executing a LINQ query against
a WCF Data Service, the query is translated into a format that the service understands—a URI.
All the options we specify in the query are translated into the URI. The URI to which a request
is sent is http://127.0.0.1:8624/ComputerInventoryService.svc/Computer()
?$expand=Manufacturer. (This can be seen using Fiddler2. More information on this tool
can be found in Appendix C.)

Note that the Expand option instructs the service to retrieve all
Computer instances, and expand the results to include the related
Manufacturer instances for each Computer instance. This process is
called eager loading. In this process, we explicitly ask to load the related
entities initially. If we omit eager loading, the property will have a null value.

To see what the AtomPub (XML) response of the service looks like, simply copy/paste the
previously mentioned URI in your browser or view it in Fiddler2.

Chapter 10

421

The context is the real workhorse in this recipe. It keeps track of all the loaded items
(this is called object tracking). However, sometimes we need to ask for a complete reload.
In the example at hand, we need to do so in the detail screen. We have the MergeOption
enumeration at our disposal for this. The OverwriteChanges explicitly tells the context
that it should replace the item loaded in the context.

There's more...
We might know that there are related entities, but not want to load them initially. We can load
on demand using the LoadProperty method. This method is used in the detail screen of
the application. When loading, the allowed users are not retrieved automatically (for example,
not to stress the database). By clicking on the Load button, we load them asynchronously on
demand using the LoadProperty method. The result is that the Computer entity will have
its property filled with the related User entities. This is shown in the following code:

private void LoadUsersButton_Click(object sender, RoutedEventArgs e)
{
 context.BeginLoadProperty(computer, "User", UsersLoadCompleted,
 null);
}
private void UsersLoadCompleted(IAsyncResult asr)
{
 context.EndLoadProperty(asr);
 // do something with the loaded values here
}

See also
In the Reading data from ADO.NET Data Services recipe, we create the ADO.NET Data Service
and set up communication with it.

Persisting data using WCF Data Services
Applies to Silverlight 3, 4 and 5

In the previous recipe, we saw how to read data from WCF Data Services. Apart from reading
data, we should be able to persist data using these services. In other words, adding, updating,
and deleting data to make the CRUD story complete (CRUD: Create, Read, Update, and
Delete, this term is often used to refer to the four basic operations on data).

Talking to REST and WCF Data Services

422

This recipe will add a new screen to the application built in the previous two recipes to
make it possible to create new computers and to update and delete the existing ones.
The screen in the following image is similar to the View image, but it has editable fields
and some extra buttons:

Getting ready
This recipe builds on the code created in the previous two recipes. This means that you
can continue using your own solution to follow along with this recipe. Alternatively, you can
use the starter solution located in the Chapter10/WorkingWithWcfDataServices_
Persisting_Starter folder in the code bundle available on the Packt website. The finished
solution for this recipe can be found in the Chapter10/WorkingWithWcfDataServices_
Persisting_Completed folder.

How to do it...
We'll follow a small scenario, where we'll create a new computer object, update it, and finally
remove it from the database. Along the way, we'll come across the specifics of each operation.
In order to do this, we'll need to complete the following steps:

Chapter 10

423

1. As this screen is used for both adding new items and editing existing ones, we add
an enumeration to the Silverlight application called EditingModes to see in which
state we are. This is shown in the following code:
public enum EditingModes
{
 New,
 Edit
}

2. The UI contains two ComboBox controls that allow the user to select a
Manufacturer and a Type. Also, all Users should be loaded in the ListBox at the
bottom of the screen. Loading data into these controls is similar. The code to load the
Manufacturer objects is as follows:
public ComputerDetailEdit(ComputerInventoryEntities context,
 int computerId, EditingModes editingMode)
{
 InitializeComponent();
 ...
 ManufacturerLoadStart();
}
private void ManufacturerLoadStart()
{
 var query = from m in context.Manufacturer
 select m;
 DataServiceQuery<Manufacturer> dsq =
 (DataServiceQuery<Manufacturer>)query;
 dsq.BeginExecute(ManufacturerLoadCompleted, dsq);
}
private void ManufacturerLoadCompleted(IAsyncResult asr)
{
 DataServiceQuery<Manufacturer> dsq =
 (DataServiceQuery<Manufacturer>)asr.AsyncState;
 ComputerManufacturerComboBox.ItemsSource = dsq.EndExecute(asr);
 ComputerManufacturerComboBox.DisplayMemberPath =
 "ManufacturerName";
}

3. Let's now look at how we can add an item. We create a new instance of
the Computer class and set it as the DataContext of the main grid—
ComputerDetailGrid. As this is a new object, the context doesn't know it yet, so
we make the context track it using the AddObject method. This is shown in the
following code:
Computer computer = new Computer();
ComputerDetailGrid.DataContext = computer;
context.AddObject("Computer", computer);

Talking to REST and WCF Data Services

424

4. The selected ComputerType and Manufacturer should be linked to the
Computer object, so that the context can track this link. Also, every selected user
in the listbox should be linked to the computer. It's important that the context
knows which links exist between objects. When persisting, it needs to know which
relations in the database need to be created. This is shown in the following code:
private void SaveButton_Click(object sender, RoutedEventArgs e)
{
 context.SetLink(computer, "ComputerType",
 computer.ComputerType);
 context.SetLink(computer, "Manufacturer",
 computer.Manufacturer);
 foreach (var user in ComputerUsersListBox.SelectedItems)
 {
 context.AddLink(computer, "User", (User)user);
 }
}

5. Once the user clicks on the Save button, the actual save operation should start.
Again, this is done asynchronously by making use of the BeginSaveChanges
method available on the context. We pass in a callback method that will be called
when the service returns. This is shown in the following code:
context.BeginSaveChanges(SaveChangesOptions.None, new
 AsyncCallback(PersistChanges), null);

6. In the callback, we use the EndSaveChanges method, which returns a
DataServiceResponse object, containing the response of the server. If errors were
encountered, we can retrieve them by looping over this object. This is shown in the
following code:
private void PersistChanges(IAsyncResult asr)
{
 try
 {
 DataServiceResponse dataServiceResponse =
 (DataServiceResponse)context.EndSaveChanges(asr);
 foreach (OperationResponse operationResponse in
 dataServiceResponse)
 {
 if (operationResponse.Error != null)
 {
 //do something with the error
 }
 }
 if (errorsOccurred)
 MessageBox.Show(builder.ToString());

Chapter 10

425

 }
 catch (Exception ex)
 {
 MessageBox.Show(ex.Message);
 }
}

7. When we want to update the instance, the code is quite similar. As shown in the
following code, we call the UpdateObject method to mark the object as Modified.
The same callback is used as when adding new items:

context.UpdateObject(computer);
context.BeginSaveChanges(SaveChangesOptions.Batch, new
 AsyncCallback(PersistChanges), null);

8. Finally, deleting the object is done using the DeleteObject method. This is shown
in the following line of code:

context.DeleteObject(computer);

Take a look at the sample code where the full code listing is available.

How it works...
When creating a new instance, we immediately set it as the DataContext for the main grid
of the user control. This way, all changes done by the user on the textboxes that are bound
using the TwoWay binding are propagated back into the object. However, as this object is new,
it is unknown to the context. It's not yet being tracked by the context, so we need to add it
to the collection of tracked objects.

The Computer class has links to other classes, namely the ComputerType, the
Manufacturer, and the User. Thus, we need to create links in the context using SetLink
(for links with multiplicity = 1) or AddLink (for links with multiplicity > 1). Links also need to
be made or recreated when updating and deleted when deleting a Computer instance.

Just like all other operations towards services, the actual save operation is asynchronous.
That's why we use the BeginSaveChanges method and specify the callback method in one
go. Saving is actually sending data to one or more specific URIs. In the callback method, we
use the EndSaveChanges method, which returns a DataServiceResponse object. This
object contains the responses for all calls made to the service (one for saving the actual
object, one for linking, and so on). If an operation fails, we can get the error information from
the DataServiceResponse object as well.

Updating and deleting are very similar. All changes are done initially on the objects tracked
by the context. Afterwards, the changes are persisted using exactly the same code used for
adding new objects.

D
ow

n
lo

a
d
 f
ro

m
 W

o
w

!
e
B
o
o
k

<
w

w
w

.w
o
w

e
b
o
o
k.

co
m

>

Talking to REST and WCF Data Services

426

There's more...
When calling the BeginSaveChanges method, we have the option to pass along how
we want the subsequent operations to be executed through the SaveChangeOptions
enumeration. We can use the Batch option, which creates a unit of work containing all
operations. This can be compared to working with a transaction—either all operations work or
they all fail. Other options include None and ContinueOnError. More information on this
enumeration can be found at http://msdn.microsoft.com/en-us/library/system.
data.services.client.savechangesoptions.aspx

Talking to Flickr
Applies to Silverlight 3, 4 and 5

There are quite a few large websites out there that expose (part of) their functionality through
services, most of the time through the use of RESTful services. A great example is Flickr
(www.flickr.com). Flickr exposes many services that allow searching for pictures, tagging
existing pictures, uploading pictures, and so on. We can leverage all the goodness that Flickr
provides inside our applications to provide more functionality to our end users.

Flickr is a popular website where people can upload and share images
and videos. Apart from viewing this content on the site, Flickr offers a
wide range of services for interaction with its content. Currently, Flickr
has millions of users sharing several billion images!

One thing that is very important is the open crossdomain.xml file that Flickr exposes. It
allows connecting from every domain (so also from a Silverlight application running locally).
This is why we can connect directly from Silverlight to Flickr. However, most Web 2.0 websites
aren't that open, for example, Twitter. Communication with such a service from Silverlight is
explained in the following recipe.

Note that not all code for this sample is printed in this book. Refer to the code in the
downloadable samples for this.

Getting ready
Most sites that expose public services, such as Flickr, Amazon, Digg, and so on, allow us free
access to their services, however, you'll often need to register to get a key/identification. This
is then used by the issuing site to track where the call came from. Some services allow only a
limited number of calls for a particular key within a certain time span to discourage overuse.
For the code in this recipe, you'll need a Flickr API key, which can be obtained for free from
http://www.flickr.com/services/api/keys/. This key can be pasted in the sample
code that can be downloaded for this book.

Chapter 10

427

The recipe uses a WrapPanel—a control that's part of the Silverlight Control Toolkit. The
toolkit is a collection of controls and extensions on Silverlight. This can be obtained from
www.codeplex.com/silverlight. See Appendix D for more information on the
Silverlight Control Toolkit.

To follow along with this recipe, a starter solution has been provided in the
Chapter10/SilverFlickr_Starter folder in the code bundle available on
the Packt website. The completed solution for this recipe can be found in the
Chapter10/SilverFlickr_Completed folder.

How to do it...
In this recipe, we'll build a simple application that allows us to search for photos based on
a search term that the user can enter. On clicking on one of the results, the details of the
photo are shown. For this, the application uses two of the many methods available from
Flickr, namely flickr.photos.search and flickr.photos.getinfo. These methods
allow searching for photos matching a search string and getting more information on a photo,
respectively. To begin building this application, we'll need to complete the following steps:

1. Open the starter solution as outlined in the Getting ready section. This is an empty
solution with some assets already in place.

2. As we are going to use REST services, we'll be making use of the WebClient class.
This class resides in the System.Net namespace, which is part of the System.Net
assembly. If you're using Visual Studio 2008 (for building/maintaining a Silverlight 3
project), you need to add a reference to this assembly yourself. Visual Studio 2010
refers to this assembly by default for new projects.

3. The XAML code for the UI of the application is quite easy to understand. A
StackPanel resides at the top of the page, containing an Image, a TextBox to
enter the search query, and a Button. The page also contains a ScrollViewer
with a WrapPanel (part of the Silverlight Control Toolkit, refer to the Getting ready
section of this recipe) on the left. The XAML code for this is as follows:
<Grid x:Name="LayoutRoot"
 Background="White">
 <Grid.RowDefinitions>
 <RowDefinition Height="50"></RowDefinition>
 <RowDefinition></RowDefinition>
 </Grid.RowDefinitions>
 <Grid.ColumnDefinitions>
 <ColumnDefinition Width="300"></ColumnDefinition>
 <ColumnDefinition></ColumnDefinition>
 </Grid.ColumnDefinitions>
 <StackPanel Grid.Row="0"
 Grid.Column="0"
 HorizontalAlignment="Left"

Talking to REST and WCF Data Services

428

 Orientation="Horizontal"
 Grid.ColumnSpan="2">
 <Image Source="flickr.png"
 Stretch="None"
 Margin="3 0 0 0" >
 </Image>
 <TextBox x:Name="SearchTextBox"
 Width="200"
 Height="30"
 M </TextBox>
 <Button x:Name="SearchButton"
 Content="Search Flickr"
 Click="SearchButton_Click"
 HorizontalAlignment="Center"
 VerticalAlignment="Center"
 Margin="5">
 </Button>
 </StackPanel>
 <ScrollViewer Grid.Row="1"
 Grid.Column="0"
 Background="DarkGray">
 <toolkit:WrapPanel x:Name="ResultPanel"
 HorizontalAlignment="Center">
 </toolkit:WrapPanel>
 </ScrollViewer>
</Grid>

4. As mentioned before, Flickr's API is a REST API. Thus, we need to send a request to a
specific URI and read out the response being sent back. Let's first take a look at the
URI. As defined by Flickr, this URI needs to be in a specific format. As we'll be doing a
search, we'll use the flickr.photos.search method. It requires two parameters:
your personal API key and the search term entered in the search field. This is shown
in the following code:
string api_key = "123456";//TODO: replace with your own key
string searchUrl = "http://api.flickr.com/services/rest
 /?method=flickr.photos.search&api_key={0}&text={1}";

Chapter 10

429

5. We now have the URI; we can use it to send a request. To send this request,
we'll use the WebClient class again. In the Click event handler of the
button, we'll create an instance of this class. We need to register the callback
method via DownloadStringCompleted and send the request using
DownloadStringAsync, passing in the URI as a parameter. As with other services,
these calls are asynchronous. This is shown in the following code:
private void SearchButton_Click(object sender, RoutedEventArgs e)
{
 WebClient client = new WebClient();
 client.DownloadStringCompleted +=
 new DownloadStringCompletedEventHandler
 (client_DownloadStringCompleted);
 client.DownloadStringAsync(new Uri(string.Format(searchUrl,
 api_key, SearchTextBox.Text)));
}

6. In the callback, we have access to the result of the call via the Result property on
the instance of DownloadStringCompletedEventArg. The response is plain XML,
formatted by Flickr in a specific format. We'll use LINQ-To-XML to parse this XML code
and create a list of ImageInfo objects (shown in the following code), a custom type
defined to have typed access to our data in the Silverlight application. Note that the
ImageUrl implementation creates the link to the image as used by Flickr. Add the
following class to the Silverlight project:
public class ImageInfo
{
 public string ImageId { get; set; }
 public string FarmId { get; set; }
 public string ServerId { get; set; }
 public string Secret { get; set; }
 public string ImageUrl
 {
 get
 {
 return string.Format
 ("http://farm{0}.static.flickr.com/{1}/{2}_{3}_m.jpg",
 FarmId, ServerId, ImageId, Secret);
 }
 }
}

7. Add a reference to the System.Xml.Linq assembly inside the Silverlight project.

Talking to REST and WCF Data Services

430

8. Finally, each ImageInfo instance is used to dynamically create an image and add it
to the WrapPanel. Every image also gets a click event attached to it, which is used
to open the detail page. This is shown in the following code:
void client_DownloadStringCompleted(object sender,
 DownloadStringCompletedEventArgs e)
{
 XDocument xml = XDocument.Parse(e.Result);
 var photos = from results in xml.Descendants("photo")
 select new ImageInfo
 {
 ImageId = results.Attribute("id").Value.ToString(),
 FarmId = results.Attribute("farm").Value.ToString(),
 ServerId = results.Attribute("server").Value.ToString(),
 Secret = results.Attribute("secret").Value.ToString()
 };
 foreach (var image in photos)
 {
 Image img = new Image();
 BitmapImage bmi = new BitmapImage(new
 Uri(image.ImageUrl, UriKind.Absolute));
 img.Source = bmi;
 img.Width = 200;
 img.Height = 200;
 img.Stretch = Stretch.Uniform;
 img.Tag = image;
 img.Margin = new Thickness(3);
 img.HorizontalAlignment = HorizontalAlignment.Center;
 ResultPanel.Children.Add(img);
 }
}

Chapter 10

431

9. At this point, we can search Flickr for images. The following screenshot shows the
finished application. Note that this final application includes extra code that allows
clicking an image and viewing its details. However, the code for this is very similar
and can be found in the code bundle:

How it works...
Communicating with Flickr's REST services is, in fact, no different from communicating with a
self-created REST service, as was done in the beginning of this chapter.

The URI is created according to the specifications given by the Flickr API. At
http://www.flickr.com/services/api, you can find an overview of all the
methods exposed by Flickr, varying from searching for pictures and reading out
comments to finding pictures based on a location. For this recipe, we use the
flickr.photos.search and flickr.photos.getinfo methods. Both require
the API key sent as a parameter, apart from the specific parameters depending on
the method.

Talking to REST and WCF Data Services

432

The format of the XML sent by Flickr's services is fixed. It's safe to build our code around
this API, as the format can be considered to be a contract between the service and the
client application. The service will always return the response formatted according to this
specification. The following is the XML structure used by Flickr:

<rsp>
 <photos>
 <photo id="1234567890"
 secret="0987654321"
 server="1234"
 farm="1" />
 </photos>
</rsp>

There's more...
Communication with the services exposed by Flickr from Silverlight is possible, because Flickr
has a crossdomain.xml file in place that allows calls from any domain, as explained in the
introduction of the recipe. The following is the complete crossdomain.xml (http://
api.flickr.com/crossdomain.xml) file of Flickr. Refer to the Configuring cross-domain
calls recipe in Chapter 7, Working with Services, for more information on the concept of
cross-domain calls.

<?xml version="1.0" ?>
 <!DOCTYPE cross-domain-policy (View Source for full doctype...)>
 <cross-domain-policy>
 <allow-access-from domain="*" secure="true" />
 <site-control permitted-cross-domain-policies="master-only" />
 </cross-domain-policy>

However, other sites don't open up their API as much as Flickr does. A good example is Twitter
(http://twitter.com/crossdomain.xml), which allows calls only from particular
domains. This can be seen in the following code:

<?xml version="1.0" encoding="UTF-8" ?>
 <cross-domain-policy xmlns:xsi="http://www.w3.org/2001/
 XMLSchema-instance"
 xsi:noNamespaceSchemaLocation=
 "http://www.adobe.com/xml/schemas/
 PolicyFile.xsd">
 <allow-access-from domain="twitter.com" />
 <allow-access-from domain="api.twitter.com" />
 <allow-access-from domain="search.twitter.com" />
 <allow-access-from domain="static.twitter.com" />
 <site-control permitted-cross-domain-policies="master-only" />

http://twitter.com/crossdomain.xml

Chapter 10

433

 <allow-http-request-headers-from domain="*.twitter.com"
 headers="*" secure="true" />
 </cross-domain-policy>

The consequence of such a crossdomain.xml file is that Silverlight can't connect directly
with these services. The solution is creating an extra service on the same domain as the
Silverlight application, which will in turn call the REST services. Your application then only has
to connect with the new service, which shouldn't be a problem. We'll look at this scenario in
the following recipe. A second possible solution is building a trusted Silverlight application,
which we'll look at in the last recipe of this chapter.

Flickr… more information
The accompanying code for this book also contains the code to create the detail screen.
For this, we can use another method, namely flickr.photos.getinfo, to retrieve more
information about an image based on the photo ID.

Displaying the values is done through the use of data binding. The DataContext property of
the grid, located in the Details portion of the interface, is set to an instance of another type
called ImageDetail.

One particularity is certainly worth mentioning here - data binding the image is done
through the use of a converter. The link to the image is stored as a Uri in the instance
of ImageDetail. However, binding in XAML expects a BitmapImage. The conversion
of type A to type B is done through the use of a converter—a class that implements the
IValueConverter interface. This interface has two methods—Convert and ConvertBack.
This is shown in the following code:

public class ImageConverter:IValueConverter
{
 public object Convert(object value, Type targetType, object
 parameter, System.Globalization.CultureInfo culture)
 {
 if (value != null)
 return new BitmapImage((Uri)value);
 else
 return "";//can be link to a "NoImage.png" of some kind
 }
 public object ConvertBack(object value, Type targetType, object
 parameter, System.Globalization.CultureInfo culture)
 {
 }
}

Talking to REST and WCF Data Services

434

See also
In the Reading data from a REST service and Parsing REST results with LINQ-To-XML
recipes from this chapter, we go deeper into the details of communication with a REST
service. The following recipe shows the scenario to connect with services that don't allow
cross-domain calls.

For more information on data binding, refer to the recipes in Chapter 2, An Introduction to
Data Binding, and Chapter 3, Advanced Data Binding.

Talking to Twitter over REST
Applies to Silverlight 3, 4 and 5

Like Flickr, Twitter has a great API that allows us to build applications incorporating
its functionality.

Twitter is a social networking site where people can post small
messages of up to 140 characters, also known as tweets. These
messages are shared with people that follow you, meaning they're
interested in what you're doing. Twitter is often referred to as being
a micro-blogging site. Using Twitter is free.

However, as explained in the There's more... section of the previous recipe, where we
compared the crossdomain.xml files of Flickr and Twitter, Twitter is much more locked
down. It doesn't allow client-side applications built in Silverlight to make cross-domain calls.
In this recipe, which can be generalized for all types of REST services that don't have an open
cross-domain file, we'll look at how we can still succeed in communicating with the service.

Getting ready
To work with the application built in this sample, you'll need an account on Twitter. Twitter is
free and you can register at www.twitter.com. Unlike Flickr, you don't have an API key. In
this recipe, we'll start from an empty Silverlight application. Refer to Chapter 1, Learning the
Nuts and Bolts of Silverlight 5, for more information on this.

A starter solution for this recipe is provided in the Chapter10/SilverWitter_Starter
folder in the code bundle available on the Packt website. The finished solution for this recipe
can be found in the Chapter10/SilverWitter_Completed folder.

Chapter 10

435

How to do it...
The way we architect the application that will work with Twitter is quite important, as we can't
call the Twitter services from Silverlight directly. However, services that run on a server don't
mind cross-domain restrictions. They can call Twitter's REST services without a problem. The
solution for the problem is adding an extra service layer in our architecture. The Silverlight
application will communicate with our own services and in turn, these services can talk to
Twitter. The following image demonstrates this idea clearly:

To get up and running, we'll need to complete the following steps:

1. Open the starter solution as outlined in the Getting ready section, containing
an ASP.NET Web Application.

2. Add another ASP.NET web application to the solution called
SilverWitter.Services.

3. In this web application, add a WCF service called TwitterService.svc. Thus,
you'll have three projects in your solution: the Silverlight application, the hosting web
application, and an extra website containing a WCF service.

4. Silverlight will communicate only with the WCF service and the service will
communicate with Twitter. Only the functionality we expose on our own service will
be available for the Silverlight application. Let's first define the contract, an interface
of our WCF service in the ITwitterService.svc.cs file. We want to be able to
validate user credentials, get all tweets from the public timeline, get all tweets from
a specified user and his/her friends, and finally add a tweet (a small message). Note
that this is a WCF service, and not a REST service, although we could create a REST
service if we wanted to. The following code shows the contract:
[ServiceContract]
public interface ITwitterService
{
 [OperationContract]
 List<TwitterUpdate> GetPublicTimeLine();
 [OperationContract]
 List<TwitterUpdate> GetUserTimeLine(string twitterUser,
 string userName, string userPassword);
 [OperationContract]
 List<TwitterUpdate> GetFriendsTimeLine(string twitterUser,

Talking to REST and WCF Data Services

436

 string userName, string userPassword);
 [OperationContract]
 string AddMessage(string message, string userName,
 string userPassword);
 [OperationContract]
 bool CheckCredentials(string userName, string userPassword);
}

5. We used the TwitterUpdate class in some of the previous methods. This
class should be added to the services project—SilverWitter.Services. As
instances of this class will be sent over the wire (to the Silverlight application), this
class should be attributed with DataContractAttribute. Its members have
DataMemberAttribute applied to them. This class is shown as follows:
[DataContract]
public class TwitterUpdate
{
 [DataMember]
 public string Message { get; set; }
 [DataMember]
 public string User { get; set; }
 [DataMember]
 public string Location { get; set; }
}

6. In the implementations of these methods, in the TwitterService.cs file, we'll
write the code to talk with Twitter. Twitter's API is REST-based and can communicate
using XML, JSON, RSS, and ATOM. This means that we have to send a request to a
particular URI and capture the results sent back by Twitter. This result can then be
parsed using LINQ-To-XML and mapped to the CLR objects. Let's take a look at the
code that we need to write in the service method implementations. We'll implement
the GetUserTimeLine method here; the other ones are similar and can be found in
the code bundle available on the Packt website. As the service is a REST service, we
need to use a specific URL, as defined by Twitter:
public List<TwitterUpdate> GetUserTimeLine(string twitterUser,
 string userName, string userPassword)
{
 try
 {
 string userTimeLine =
 "http://twitter.com/statuses/user_timeline/"
 + twitterUser + ".xml";
 }
 catch (Exception)
 {
 return null;
 }
}

Chapter 10

437

7. Although we're not writing Silverlight code here to access Twitter (we're writing a WCF
service implementation), the concepts are the same. We can use the WebClient
class to perform the call to the service. One big difference here is that service
communication can be done synchronously. Note that Twitter requires that we pass
in credentials to access this service method:
WebClient client = new WebClient();
client.Credentials = new
 NetworkCredential(userName, userPassword);
ServicePointManager.Expect100Continue = false;
string result = client.DownloadString(
 string.Format(userTimeLine, twitterUser));

8. Once the result is available, we'll parse it using LINQ To XML as shown in the following
code. On parsing the XML, we are creating a List<TwitterUpdate>:
XDocument document = XDocument.Parse(result);
List<TwitterUpdate> twitterData =
 (from status in document.Descendants("status")
 select new TwitterUpdate
 {
 Message = status.Element("text").Value.Trim(),
 User = status.Element("user").Element("name").Value.Trim()
 }).ToList();
return twitterData;

9. As this service is in another site than the Silverlight application, Silverlight will need
to perform a cross-domain call to it. To allow this, we have to add a policy file. Add a
new XML file called clientaccesspolicy.xml to the services site and insert the
following code:
<?xml version="1.0" encoding="utf-8"?>
<access-policy>
 <cross-domain-access>
 <policy>
 <allow-from http-request-headers="*">
 <domain uri="*"/>
 </allow-from>
 <grant-to>
 <resource path="/" include-subpaths="true"/>
 </grant-to>
 </policy>
 </cross-domain-access>
</access-policy>

10. After having implemented the methods on the WCF service, let's focus on the
Silverlight application. First, in the Silverlight project, add a service reference to the
TwitterService WCF service. Set the service namespace to TwitterService.

Talking to REST and WCF Data Services

438

11. The UI of the application built in this sample is shown in the following image. The
XAML code can be found in the code bundle. When opening the application, the
statuses of the public timeline are shown as they don't require any credentials. The
user can log in to Twitter, and when authenticated, add a tweet and view his/her
tweets and those of his/her friends, as the following image demonstrates:

12. The Silverlight application now talks to our own service. In the following code, we are
asynchronously invoking the service to get the time line (status updates) of the user:

private void LoadUserTimeLine()
{
 TwitterService.TwitterServiceClient client = new
 SilverWitter.TwitterService.TwitterServiceClient();
 client.GetUserTimeLineCompleted += new EventHandler
 <SilverWitter.TwitterService.GetUserTimeLineCompleted
 EventArgs>(client_GetUserTimeLineCompleted);
 client.GetUserTimeLineAsync(UserNameTextBox.Text,
 UserNameTextBox.Text, PasswordTextBox.Password);
}
void client_GetUserTimeLineCompleted(object sender,
 SilverWitter.TwitterService.GetUserTimeLineCompletedEventArgs e)
{

Chapter 10

439

 if (e.Result != null)
 {
 UserTimeLineListBox.ItemsSource = e.Result;
 }
}

The other methods are similar and can be found in the sample code.

How it works...
As previously explained, Twitter, along with most Web 2.0-type applications, has a locked-
down cross-domain file. Silverlight's cross-domain restrictions prohibit us from directly calling
the REST API from Silverlight. Therefore, we need to build a service layer in between the
Silverlight application and the REST service. As services themselves don't mind cross-domain
restrictions, we can call whatever type of REST services (or other types) we want. Our own
service will act as a pass-through for data in both directions.

See also
To understand why Twitter and Flickr need such a different approach, read the previous recipe
in this chapter. In the following recipe, we'll see how trusted Silverlight applications can talk
directly to Twitter, as they aren't tied to cross-domain restrictions.

Passing credentials and cross-domain
access to Twitter from a trusted
Silverlight application

Applies to Silverlight 4 and 5

Whenever we need to communicate with a service that is not hosted in the same domain
as the Silverlight application, we need to think of cross-domain restrictions. Silverlight will
check if a cross-domain policy file is in place at the root of the domain. Silverlight 4 and 5
applications can not only run out-of-browser (a capability added with Silverlight 3 that allows
applications to run as a standalone application, instead of in the browser), they can also
run as a Trusted Application. Such an application runs with elevated permissions. On the
agreement of the user, the application is installed, and has more permissions on the local
system and other capabilities than the in-browser or regular out-of-browser applications. One
of these capabilities is accessing cross-domain services without restrictions, meaning that the
service will be accessible from Silverlight even if there's no policy file present. Silverlight 4 only
supports out-of-browser trusted applications, Silverlight 5 even allows in-browser applications
to run with elevated permissions.

Talking to REST and WCF Data Services

440

Also with Silverlight 4 came the ability to send credentials to a service, when using a
WebClient instance.

The combination of these two added features in Silverlight 4 makes it possible to write a
standalone Twitter client that does not need the intermediary service layer, like we used in the
previous recipe. Instead, we can now directly communicate with Twitter's API from Silverlight,
because there are no cross-domain restrictions. To authorize with the services of Twitter, we
need to be able to send credentials, which has also become possible. In this recipe, we'll
change the SilverWitter client to run as a trusted, out-of-browser application.

Getting ready
To follow along with this recipe, you can use your code created with the previous
recipe. Alternatively, a starter solution is provided with the samples for the book in the
Chapter10/TrustedSilverWitter_Starter folder. The finished solution for
this recipe can be found in the Chapter10/TrustedSilverWitter_Completed folder.

How to do it...
In the previous recipe, we have already built SilverWitter as an in-browser Silverlight
application. Due to this, we required a service layer. Silverlight communicates with this
service layer, and the service layer in turn communicates with the API of Twitter. If we create
the application as a trusted application (that is, with elevated permissions), this service layer
becomes obsolete as there are no cross-domain restrictions. We also need to authenticate
with Twitter. We'll do so by sending credentials over the service. The following are the steps
that we need to follow to create this application:

1. While the UI of the application is similar to the one created for the in-browser version,
we need to add a few extra controls. We need to make it possible for the user to
install the application. The complete XAML can be found in the code bundle. The
following code outlines the changes. We add a StackPanel called InstallPanel,
in which the controls for the installation are placed. All other controls are placed in
a Grid called MainGrid, for which the Visibility has been set to Collapsed
initially. Both the InstallPanel and the MainGrid are now children of the
LayoutRoot Grid:
<Grid x:Name="LayoutRoot">
 <StackPanel x:Name="InstallPanel"
 Orientation="Vertical"
 HorizontalAlignment="Center"
 Margin="10"
 VerticalAlignment="Top">
 <TextBlock x:Name="InstallTextBlock"
 Text="This application needs to be installed before
 it can be used. Click the button below to

Chapter 10

441

 install."
 Width="500"
 TextWrapping="Wrap"
 FontWeight="Bold"
 FontSize="20">
 </TextBlock>
 <Button x:Name="InstallButton"
 Click="InstallButton_Click"
 Content="Install"
 Width="100"
 Height="35">
 </Button>
 <TextBlock x:Name="InstallErrorTextBlock"
 Foreground="Red" >
 </TextBlock>
 </StackPanel>
 <Grid x:Name="MainGrid"
 Visibility="Collapsed">
 <Grid.RowDefinitions>
 <RowDefinition Height="50"></RowDefinition>
 <RowDefinition Height="100"></RowDefinition>
 <RowDefinition Height="*"></RowDefinition>
 </Grid.RowDefinitions>
 ...
 </Grid>
</Grid>

2. On starting the application, we need to check if we're running the application inside
the browser or as a standalone, trusted application. We can do so using the following
code where the Boolean IsRunningOfflineAndElevated contains true if the
conditions are met:
private bool IsRunningOfflineAndElevated = false;
public MainPage()
{
 InitializeComponent();
 CheckApplicationState();
}
private void CheckApplicationState()
{
 if (Application.Current.IsRunningOutOfBrowser &&
 Application.Current.HasElevatedPermissions)
 IsRunningOfflineAndElevated = true;
 else
 IsRunningOfflineAndElevated = false;
}

Talking to REST and WCF Data Services

442

3. Based on the value of IsRunningOfflineAndElevated, we can change the UI. If
it is false, meaning that we're still in the browser, we display the InstallPanel.
If it is true, meaning that the application is running as a trusted application, the
InstallPanel is hidden and the real application UI is shown. This check is done
using the following code, which is called from the constructor as well:
private void ChangeUI()
{
 if (IsRunningOfflineAndElevated)
 {
 MainGrid.Visibility = System.Windows.Visibility.Visible;
 InstallPanel.Visibility = System.Windows.Visibility.Collapsed;
 }
 else
 {
 MainGrid.Visibility = System.Windows.Visibility.Collapsed;
 InstallPanel.Visibility = System.Windows.Visibility.Visible;
 }
}

4. If the application is not yet installed, we can perform the installation from code.
To do so, we can add the following code in the Click event handler of the
InstallButton, which will check the current state of the application and install it if
needed:
private void InstallButton_Click(object sender, RoutedEventArgs e)
{
 if (Application.Current.InstallState ==
 InstallState.NotInstalled)
 {
 Application.Current.Install();
 }
 else if (Application.Current.InstallState ==
 InstallState.InstallFailed)
 {
 InstallErrorTextBlock.Text = "This application failed
 to install, please try again";
 }
 else if (Application.Current.InstallState ==
 InstallState.Installed)
 {
 InstallErrorTextBlock.Text = "Application is already
 installed. Please run offline.";
 }
}

Chapter 10

443

5. To store the results coming from Twitter, we need the TweetUpdate class again.
However, this class should now be in the Silverlight project. (In the previous recipe,
where we had an intermediate service layer, this class was part of the service
project.) The code for this class is as follows:
public class TweetUpdate
{
 public string Message { get; set; }
 public string User { get; set; }
 public string Location { get; set; }
}

Note that the DataContractAttribute as well as the
DataMemberAttribute are removed. Both these attributes
were needed previously, because instances of this class were
used in communication with the intermediate service.

6. We're now ready to start the communication with Twitter. If the
IsRunningOfflineAndElevated Boolean variable is true, we can perform a call
to Twitter to load the public timeline. This call does not require authentication. Note
that we're now writing almost the same code we were writing earlier in the service
layer, but now inside the Silverlight application itself. The difference is that now the
call to the service happens asynchronously. The following code performs the call to
Twitter using a WebClient instance, uses LINQ-To-XML to parse the XML and create
a List<TweetUpdates>:
public MainPage()
{
 InitializeComponent();
 CheckApplicationState();
 ChangeUI();
 if (IsRunningOfflineAndElevated)
 GetPublicTimeLine();
}
private List<TweetUpdate> publicTimelineTwitterData;
private void GetPublicTimeLine()
{
 string publicTimeLine =
 "http://twitter.com/statuses/public_timeline.xml";
 WebClient client = new WebClient();
 client.DownloadStringCompleted += new
 DownloadStringCompletedEventHandler
 (client_DownloadStringCompleted);
 client.DownloadStringAsync(new Uri(publicTimeLine,
 UriKind.Absolute));

Talking to REST and WCF Data Services

444

}
void client_DownloadStringCompleted(object sender,
 DownloadStringCompletedEventArgs e)
{
 XDocument document = XDocument.Parse(e.Result);
 publicTimelineTwitterData =
 (from status in document.Descendants("status")
 select new TweetUpdate
 {
 Message = status.Element("text").Value.Trim(),
 User = status.Element("user").Element("name").Value.Trim()
 }).ToList();
 PublicTimeLineListBox.ItemsSource = publicTimelineTwitterData;
}

7. The application also allows the user to log in. When logged in, the user timeline
and friends timeline can be loaded. Both these methods of the Twitter API require
that we authorize. Starting with Silverlight 4, we can send credentials when
using the WebClient class using its Credentials property. However, sending
credentials is only possible when using the ClientHttpStack and not the
default BrowserHttpStack. Making Silverlight use the ClientHttpStack is
done by using the WebRequest.RegisterPrefix and passing in http://.
This code makes sure that all requests over http:// are now executed using the
ClientHttpStack. The following code shows the code to retrieve the user timeline
(the friends timeline is similar, the code for this can be found in the samples):
private void LoginButton_Click(object sender, RoutedEventArgs e)
{
 LoadAuthorizedContent();
}
private List<TweetUpdate> userTimelineTwitterData;
private void LoadAuthorizedContent()
{
 if (UserNameTextBox.Text != string.Empty &&
 PasswordTextBox.Password != string.Empty)
 {
 WebRequest.RegisterPrefix("http://",
 System.Net.Browser.WebRequestCreator.ClientHttp);
 string userTimeLine =
 "http://twitter.com/statuses/user_timeline/"
 + UserNameTextBox.Text + ".xml";
 WebClient client = new WebClient();
 client.Credentials = new NetworkCredential(
 UserNameTextBox.Text, PasswordTextBox.Password);
 client.UseDefaultCredentials = false;

Chapter 10

445

 client.DownloadStringCompleted += new
 DownloadStringCompletedEventHandler
 (user_DownloadStringCompleted);
 client.DownloadStringAsync(new Uri(userTimeLine,
 UriKind.Absolute));
 }
}
void user_DownloadStringCompleted(object sender,
 DownloadStringCompletedEventArgs e)
{
 XDocument document = XDocument.Parse(e.Result);
 userTimelineTwitterData =
 (from status in document.Descendants("status")
 select new TweetUpdate
 {
 Message = status.Element("text").Value.Trim(),
 User = status.Element("user").Element("name").Value.Trim()
 }).ToList();
 UserTimeLineListBox.ItemsSource = userTimelineTwitterData;
}

8. To add a message to Twitter from our client, we need to post it using the HTTP POST
method. We are using an HttpWebRequest for this, and set its method to POST.
To this HttpWebRequest, we also add the user-entered credentials, because this
service method requires authorization as well. Silverlight will then send the message
to Twitter:
private void AddTweetButton_Click(object sender,
 RoutedEventArgs e)
{
 string uri = @"http://twitter.com/statuses/update.xml";
 try
 {
 string message = AddTweetTextBox.Text.Trim();
 string parameters = string.Format("status={0}&source={1}",
 HttpUtility.HtmlEncode(message), "Trusted SilverWitter");
 WebRequest.RegisterPrefix("http://",
 System.Net.Browser.WebRequestCreator.ClientHttp);
 HttpWebRequest request = (HttpWebRequest)
 WebRequestCreator.ClientHttp.Create
 (new Uri(uri, UriKind.Absolute));
 request.Method = "POST";
 request.Credentials = new
 NetworkCredential(UserNameTextBox.Text,
 PasswordTextBox.Password);

Talking to REST and WCF Data Services

446

 request.ContentType = "application/x-www-form-urlencoded";
 request.BeginGetRequestStream(new AsyncCallback(result =>
 {
 using (StreamWriter writer =
 new StreamWriter(request.EndGetRequestStream(result)))
 {
 writer.Write(parameters);
 }
 request.BeginGetResponse(response =>
 {
 try
 {
 WebResponse rs = request.EndGetResponse(response);
 Dispatcher.BeginInvoke(LoadAuthorizedContent);
 }
 catch (WebException ex)
 {
 Dispatcher.BeginInvoke(() =>
 HandleError(ex.Message));
 }
 }, request);
 }),
 null);
 }
 catch (Exception ex)
 {
 Dispatcher.BeginInvoke(() => HandleError(ex.Message));
 }
 AddTweetTextBox.Text = string.Empty;
}
private void HandleError(string exceptionMessage)
{
 ErrorTextBlock.Text = "An error occurred: " + exceptionMessage;
}

9. The code is now ready. However, we still need to configure the application to allow
it to run out-of-browser and with elevated permissions. To do so, right-click on
the Silverlight project node in the Solution Explorer and select Properties. In the
Silverlight tab of the Properties window, select the Enable running application out
of the browser checkbox. Finally, click on the Out-Of-Browser settings button on
the same tab, and in the resulting dialog, select the Require elevated trust when
running outside the browser checkbox.

Chapter 10

447

With these steps completed, we have created a standalone Twitter client. Because it runs
with elevated permissions, there's no need to add an intermediate service layer between the
Silverlight client and Twitter. The running application can be seen in the following image:

How it works...
To build this application, two features added to the platform with the release of Silverlight 4
were put to work: no more cross-domain restrictions when running with elevated permissions
and passing credentials using ClientHttp stack. Let's take a look at these in some
more detail.

Let's go cross-domain!
In many recipes in this book, we talked about the cross-domain restrictions that Silverlight
has in place. Basically, these come down to Silverlight not allowing us to make requests to
services that are not in the same domain as the Silverlight application. Silverlight will make
the request only if there's a cross-domain policy file in place that allows the request. Cross-
domain restrictions are required for security reasons. We looked at cross-domain issues in
depth in Chapter 7, Working with Services.

Talking to REST and WCF Data Services

448

With Silverlight 3, it became possible to create out-of-browser Silverlight applications, allowing
us to create standalone Silverlight applications which do not require a browser to be open
to run. However, they still run in the sandbox like in-browser applications, meaning these
applications do not have extra permissions on the system.

With version 4, it becomes possible to create Trusted Silverlight applications, which are
basically out-of-browser applications with elevated permissions. As a result, they have more
permissions on the system and can perform some tasks in a different manner. One of these
is the ability for this type of applications to perform cross-domain calls without the need of
a policy file. Silverlight 5 also makes it possible to run trusted applications in-browser. They
have the same permissions and added options, so the recipe could be applied on such an
application as well.

For some applications, this is a big plus. Take, for example, our Twitter application. In the in-
browser version, which we created in the previous recipe, we had to build a service layer that
sits between the Silverlight client and Twitter itself. The reason for this is that Twitter does
not expose a policy file, so Silverlight applications can't directly communicate with Twitter's
API. With trusted Silverlight applications, the fact that this file isn't there is no problem. When
running with elevated permissions, Silverlight will not check for the existence of the file and
will perform the service request anyhow.

Applying elevated permissions to Silverlight can be done through Visual Studio. In
Project Properties, under the Out-Of-Browser settings, we can check that the application
should request to the user to run with these permissions. On installation, the user will not
be prompted with the regular install screen. Instead, the following dialog box shown in the
following screenshot, asks the user if he or she fully trusts the application:

Chapter 10

449

Silverlight also gives us the option to sign the XAP file, which results in a more relaxed
installation screen being displayed when installing a trusted Silverlight application. To sign
the XAP, you need a certificate. Visual Studio 2010 allows signing the XAP from within the IDE
itself. To do so, go to the Project Properties and select the Signing tab (shown as follows) on
the left. Here you get the options to use your own certificate, or let Visual Studio create a test
certificate for development use.

Pass me those credentials, will you?
Being able to access Twitter without cross-domain restrictions is one thing. We also need to
be able to pass credentials to a service when it requires us to. In Silverlight 3, the WebClient
class already had a Credentials property, but this property was not working properly. With
Silverlight 4 this changed. It's now possible to pass credentials to a service. One thing that is
required is that we use the ClientHttp stack.

Passing credentials is very simple and can be done using the following code:

WebRequest.RegisterPrefix("http://",

 System.Net.Browser.WebRequestCreator.ClientHttp);

WebClient client = new WebClient();

client.Credentials = new NetworkCredential(UserNameTextBox.Text,

 PasswordTextBox.Password);

Talking to REST and WCF Data Services

450

We are specifying that we want the application to use the ClientHttp stack using the
WebRequest.Register method: basically we're saying for all traffic that goes over
http://, use the ClientHttp stack.

See also
In the Working cross-domain from a trusted application recipe in Chapter 7, Working with
Services, we looked at working with trusted applications from Silverlight. Working with Twitter
was the topic of the previous recipe.

11
Using WCF RIA

Services

In this chapter, we will cover the following topics:

 f Setting up a data solution to work with WCF RIA Services

 f Using a WCF RIA Services class library

 f Getting data on the client

 f Using LoadBehavior to control what happens to your data once it's sent to the client

 f Controlling the server-side query from the client

 f Sorting and filtering data on the server

 f Paging through your data

 f Persisting a change set/unit of work

 f Working with concurrency and transactions

Introduction
Microsoft WCF RIA Services is a framework developed to simplify Line of Business RIA
development. RIA Services addresses the complexity of building N-tier applications by
providing a framework, controls, and services on both your server side (the services, typically
.NET-based, hosted in an ASP.NET application, and the application in which your Silverlight
client is hosted) and your client side (your Silverlight application).

Using WCF RIA Services

452

RIA Services makes it easy to get data from your services to your client. It does this by
allowing you to write services linked to a data store (a database, your own classes, an
Entity Model, and so on) on your server side, and then regenerates these entities on your
client. It also generates the necessary context, methods, and operations on your client to
easily talk to your services. In essence, WCF RIA Server is a server-side technology that
projects code to a client using WCF as a means of communication between the server and
the client. In addition, it makes it easy to add validation and authentication to your services
and/or entities.

It has quickly become one of the most-used, popular frameworks for designing LOB
applications with Silverlight, as they work nicely together (after all, it was initially conceived
to be used in combination with Silverlight). But next to that, it's also used together with
other technologies, as WCF RIA Services has SOAP (CRUD) and OData (R) endpoints, so
any client, like WPF, WinForms, ASP .NET (WebForms and MVC), Windows Phone, can talk
with it and make use of the features it brings. Next to that, there's also a DomainService
implementation for Windows Azure (SQL Azure), and a full client-side javascript
implementation, RIA/js, to be used with any HTML(5) based client (typically in combination
with jQuery) without a line of C# code.

This chapter will teach you how to work with RIA Services, from building a simple service to
query data to submitting units of work. More advanced topics are looked at in Chapter 12,
Advanced WCF RIA Services.

Setting up a data solution to work with
WCF RIA Services

Applies to Silverlight 4 and 5

When you want to start working with RIA Services, you'll have to install the SDK and
tooling. Besides that, you'll have to think about a few things when starting a new
solution to enable WCF RIA Services for that solution. This recipe will guide you through
the steps we need to complete to start using WCF RIA Services. Along with that, it will
explore some general concepts concerning WCF RIA Services by explaining how we
should structure our code.

Chapter 11

453

Getting ready
Before you can use RIA Services, the correct SDK has to be installed. WCF RIA Services is
distributed together with Silverlight 5 for use with Visual Studio 2010. If you want to download
it separately, you can do so at http://www.microsoft.com/download/en/details.
aspx?id=27227, and at http://www.microsoft.com/download/en/details.
aspx?displaylang=en&id=26939 for the toolkit.

A completed solution can be found in
Chapter 11\Setting_Up_A_Data_Solution_Completed.

How to do it...
To set up a data solution to work with WCF RIA Services, we'll start with a new solution called
RIAServices. In order to do this, we need to complete the following steps:

1. Select File | New Project, choose a new Silverlight Project, and name the project
RIAServices, as shown in the following screenshot:

Using WCF RIA Services

454

2. After we've done this, we'll be presented with a pop-up screen as shown in the
following screenshot:

3. In this screen, we'll need to select the Enable WCF RIA Services checkbox and click
on the OK button. Our WCF RIA Services-enabled solution will be generated for us.

How it works...
The magic happens because we check the Enable WCF RIA Services checkbox. By doing this,
we tell Visual Studio to form an association between our client (our Silverlight application) and
server (our web application) project, so that application logic can be shared between them.

Visual Studio will automatically add references to the necessary assemblies to the client:
System.ComponentModel.DataAnnotations (used to enable dynamic, data-like
annotations to your properties and methods), System.ServiceModel.DomainServices.
Client, and System.ServiceModel.DomainServices.Client.Web.

There's more...
Microsoft WCF RIA Services brings together the ASP.NET and Silverlight platforms, thus
simplifying the traditional N-tier application pattern. We write our application logic for data
access in the middle-tier, typically in our server project, and we can share entities and
application logic (data validation, custom methods, and so on) between the tiers easily. This
means that we can share entities, code, and validation between our server project and our
Silverlight project.

Chapter 11

455

The WCF RIA Services Toolkit
Besides the WCF RIA Services SDK, which is included with Silverlight 5, a WCF RIA Services
Toolkit exists. This toolkit contains the classes and namespaces necessary to get WCF RIA
Services to work with LINQ to SQL, to create SOAP endpoint, to enable certain collection types
for use with MVVM. A few of these will be used in some of the other recipes in this chapter
and in Chapter 12, Advanced WCF RIA Services.

You can find it at: http://www.microsoft.com/download/en/details.
aspx?displaylang=en&id=26939

See also
For a better, reusable solution setup for using domain services, have a look at the next recipe
Using a WCF RIA Services class library. For querying and submitting data, have a look at the
other recipes in this chapter.

Using a WCF RIA Services class library
Applies to Silverlight 4 and 5

Getting started with WCF RIA Services is very easy, as the previous recipe showed you.
However, the standard template comes with a few disadvantages: there's no easy way to
redistribute your services to other applications, and the services have to be in the exact same
place as where your Silverlight application is hosted, so they're part of the same assembly and
namespace as your webhost, to name a few.

A WCF RIA Services class library solves this problem. In this recipe, we'll learn how to use a
WCF RIA Services library for your domain services.

Getting ready
Before getting started, you've got to make sure the correct SDK and assemblies to enable
WCF RIA Services are available. Please refer to recipe Setting up a data solution to work with
WCF RIA Services for more information.

We're starting from a provided started solution, which you can find in Chapter 11\
Using_A_Class_Library_Starter\.

The completed solution can be found in
Chapter 11\Using_A_Class_Library_Completed\.

Using WCF RIA Services

456

How to do it...
We're going to enable our solution to use a WCF RIA Services class library, starting from the
provided starter solution. In order to do this, we need to complete the following steps:

1. Start by right-clicking the solution, and selecting Add | New Project. In the project
dialog box, choose WCF RIA Services Class library, and name this RIAServices.
DomainServices as follows:

2. Remove Class1.cs from both projects.

3. Next, add a reference to RIAServices.DomainServices to RIAServices.
Client (the Silverlight client application), and add references to System.
ComponentModel.DataAnnotations, System.ServiceModel.
DomainServices.Client, and System.ServiceModel.DomainServices.
Client.Web.

4. Add a reference to RIAServices.DomainServices.Web to RIAServices.
WebHost (our hosting web project).

With these few steps, we're done; we've now created a WCF RIA Services Class Library.

Chapter 11

457

How it works...
When you add a WCF RIA Services class library, for each library two projects are added to your
solution: a .NET class library, which will contain your services, and a Silverlight class library,
which will contain the code that gets generated on each build. By default, Visual Studio will
name the .NET class library "name".Web, and the Silverlight class library "name"—in our case,
this means we have a RIAServices.DomainServices.Web project, and a RIAServices.
DomainServices project. If you look at the project properties of the RIAServices.
DomainServices project, you'll see the WCF RIA Services link is set to RIAServices.
DomainServices.Web:

This setting ensures that client-side versions of entities, exposed by the domain services
in RIAServices.DomainServices.Web and client-side query methods, for each query
method that's exposed by those same domain services, are generated in RIAServices.
DomainServices. For each domain service, a DomainContext is generated as well.

Next, we added a reference to our webhost, RIAServices.DomainServices.Web
(so the domain services we'll define are accessible through the webhost).

In our Silverlight project, we do the same, this time adding a reference to the project
containing the generated client-side code (RIAServices.DomainServices).

Once these project references are in place, we need to add references to assemblies from
the WCF RIA Services SDK: System.ComponentModel.DataAnnotations (used by
WCF RIA Services), System.ServiceModel.DomainServices.Client, and System.
ServiceModel.DomainServices.Client.Web.

Using WCF RIA Services

458

We'll add the SDK assemblies to the webhost, when we're creating our first domain service in
the next recipe, Getting Data on the Client. With this, everything is in place to use one or more
WCF RIA Services Class Libraries.

Organizing your solution like this opens up a range of possibilities when you're working with
multiple Silverlight applications, having to reuse the same domain services:

WCF RIA Services Class Lib

WCF RIA Services App

WCF RIA Services Class Lib

.NET Class Lib1

DomainService1

Shared code1

Web App

.NET Class Lib2

DomainService2

Shared code2

Silverlight App1

Silverlight App2

SL Class Lib1 SL Class Lib2

RIA Link RIA Link

DomainContext1

Shared code1 Shared code2

DomainContext2

There's more...
We've now got a WCF RIA Services solution up and running using a WCF RIA Services class
library. However, you might notice the project naming could be better. Is there anything we can
do about that? Also, why is the WCF RIA Services link no longer necessary in the Silverlight
client project?

What about the WCF RIA Services link in the Silverlight client?
It is important to notice that the WCF RIA Services link in the project properties of
RIAServices.Client is empty. Setting this link to a web application tells WCF RIA Services
that for the DomainServices hosted in the web application, the client side code must be
generated in RIAServices.Client. In our solution, this is no longer necessary, as the
link already exists between RIAServices.DomainServices.Web and RIAServices.
DomainServices.

Better naming, no templates
While the templates provided by WCF RIA Services are ok, the naming is often a bit confusing,
and not exactly correct, especially if you're working with the MVVM design pattern. In fact,
for quite a few MVVM applications, the Silverlight class library named RIAServices.
DomainServices actually contains the Model used by your ViewModels. If we could name
this accordingly, we'd end up with a better-organized solution.

Chapter 11

459

We can do this quite easily. Instead of using the WCF RIA Services class library template, we
can add and name the projects ourselves. In essence, it's just a .NET class library, a Silverlight
class library, a WCF RIA Services link, and a few references you'll have to add.

This is how to do it:

1. Add a new Class Library to your solution, naming it RIAServices.
DomainServices. Remove the default Class1.cs file.

2. Add a new Silverlight Class Library to your solution, and name it RIAServices.
Client.Model. Remove the default Class1.cs file.

3. Open the project properties of RIAServices.Client.Model, and set the WCF RIA
Services link to RIAServices.DomainServices. The necessary assemblies will
automatically be added:

4. Add a reference to RIAServices.Client.Model to RIAServices.Client,
System.ComponentModel.DataAnnotations, System.ServiceModel.
DomainServices.Client, and System.ServiceModel.DomainServices.
Client.Web.

5. Add a reference to RIAServices.DomainServices to RIAServices.WebHost
(our hosting web project).

As you can see, we now end up with a better-named, better-structured solution. It's this
solution that will be used throughout the next recipes in this chapter.

Using WCF RIA Services

460

See also
To learn more techniques concerning WCF RIA Services, have a look at the other recipes in
this chapter or in Chapter 12, Advanced WCF RIA Services. To learn more about the MVVM
(Model View ViewModel) design pattern, have a look at Chapter 6, MVVM.

Getting data on the client
Applies to Silverlight 4 and 5

In the previous two recipes, we've looked at a few basic RIA Services concepts: the default
template and the WCF RIA Services class library template, but we didn't actually fetch or save
any data yet.

This recipe will explain what we have to do to design a service using WCF RIA Services to get
data from a (database) server to our client (our Silverlight application). It will explain how to
create a data store, how to create our first DomainService and query method, and how to
call this method from our client. It will also explain how this works, thus giving you an insight
into the strengths and ease of using WCF RIA Services.

Getting ready
Before getting started, you've got to make sure the correct SDK and assemblies to enable
WCF RIA Services are available. Please refer to the recipe Setting up a data solution to work
with WCF RIA Services for more information.

We're starting from a provided started solution, which you can find in
Chapter 11\Getting_Data_On_The_Client_Starter\.

The completed solution can be found in
Chapter 11\Getting_Data_On_The_Client_Completed\.

How to do it...
We're going to fetch data from our server to the Silverlight client with WCF RIA Services,
starting from the provided starter solution. In order to do this, we need to complete the
following steps:

1. Right-click the RIAServices.DomainServices project, select Add New Item, and
add a new ADO .NET Entity Model named MovieModel.edmx.

D
ow

n
lo

a
d
 f
ro

m
 W

o
w

!
e
B
o
o
k

<
w

w
w

.w
o
w

e
b
o
o
k.

co
m

>

Chapter 11

461

2. Follow the Entity Data Model Wizard, creating a connection string, which points to
the MovieRentalDB database (provided with this recipe), saving the connection
string as MovieRentalDBEntities:

Using WCF RIA Services

462

3. In the next screen, select all tables (except sysdiagrams), and make sure you
check the Pluralize or singularize generated object names and Include foreign
key columns in the model checkboxes. The Model Namespace should be
MovieRentalDBModel. Click Finish:

4. Build the solution.

5. Right-click RIAServices.DomainServices, select Add New Item, and add a new
DomainService, naming it MovieDomainService.

Chapter 11

463

6. In the next screen, select each checkbox, including Generate associated classes for
metadata, and click OK:

7. Rebuild the solution.

8. Locate the configuration tag of the web.config file of RIAServices.WebHost,
and replace the code in it with this code:
<system.webServer>
 <modules runAllManagedModulesForAllRequests="true">
 <add name="DomainServiceModule"
preCondition="managedHandler"
 type="System.ServiceModel.DomainServices.Hosting.
DomainServiceHttpModule, System.ServiceModel.DomainServices.
Hosting, Version=4.0.0.0, Culture=neutral, PublicKeyToken=31bf3856
ad364e35" />
 </modules>
 <validation validateIntegratedModeConfiguration="false" />
 </system.webServer>

Using WCF RIA Services

464

 <connectionStrings>
 <add name="MovieRentalDBEntities" connectionString="metad
ata=res://*/MovieModel.csdl|res://*/MovieModel.ssdl|res://*/
MovieModel.msl;provider=System.Data.SqlClient;provider connection
string="data source=.\sql2008;initial catalog=MovieRentalDB;i
ntegrated security=True;multipleactiveresultsets=True;App=EntityFr
amework"" providerName="System.Data.EntityClient" />
 </connectionStrings>
 <system.serviceModel>
 <serviceHostingEnvironment aspNetCompatibilityEnabled="true"
 multipleSiteBindingsEnabled="true" />
 </system.serviceModel>
 <system.web>
 <httpModules>
 <add name="DomainServiceModule" type="System.ServiceModel.
DomainServices.Hosting.DomainServiceHttpModule, System.
ServiceModel.DomainServices.Hosting, Version=4.0.0.0,
Culture=neutral, PublicKeyToken=31bf3856ad364e35" />
 </httpModules>
 </system.web>

9. Add references to System.ComponentModel.DataAnnotations, System.
ServiceModel.DomainServices.EntityFramework, System.
ServiceModel.DomainServices.Hosting, and System.ServiceModel.
DomainServices.Server to RIAServices.WebHost.

10. Open LocalStateContainer.cs in RIAServices.Client, and add the
following code:
private static MovieDomainContext _movieContext;
 public static MovieDomainContext MovieContext
 {
 get
 {
 if (_movieContext == null)
 _movieContext = new MovieDomainContext();

 return _movieContext;
 }
 }

Open HomeViewModel.cs, and add the following properties:
public MovieDomainContext MovieContext
{

Chapter 11

465

get
{
 return LocalStateContainer.MovieContext;
 }
}
public EntitySet<Movie> Movies
{
get
{
 return MovieContext.Movies;
}
}

11. Add the LoadData() method to HomeViewModel.cs, and call it from
the constructor:
public HomeViewModel()
 {
 LoadData();
 }
 private void LoadData()
 {
 var loadOp = MovieContext.Load<Movie>(MovieContext.
GetMoviesQuery());
 loadOp.Completed += (send, args) =>
 {
 // handle errors
 };
 }

12. You can now build and run the solution:

Using WCF RIA Services

466

How it works..
First of all, we add an Entity Model to enable us to query the ObjectContext for data
through the Entity Framework ORM. This is not WCF RIA Services-specific. Entity Framework
is the ORM of choice for .NET projects, and is used in a diversity of applications. On the other
hand, WCF RIA Services isn't tied to the Entity Framework either, you can use it with LINQ To
SQL (via the Toolkit), with DTO's, with Azure.

The DomainService class we added next, MovieDomainService, is the class that
provides a public interface to the mid-tier data: this is our service. When we add a
DomainService class, code will be generated for all the entities we've selected in step
6, including metadata (see further in this recipe for an explanation on this) if we check
the checkbox. Mind you, this is the code that gets generated once, by completing the Add
DomainService wizard. It does not get updated automatically when you change something
in your Entity Model, nor when you build, it just helps you to get started quickly. That said, a
DomainService, as any service, should not expose any operations that aren't needed, so
make sure you don't check/expose entities that aren't required on the client. For that exact
reason, quite a few developers are hesitant to use the wizard, as it often creates more code
than is needed (and as we know, code cleanup isn't always a priority when a project reaches
its deadline). However, for this example, this is a good starting point.

This is how the used parts of our DomainService and query look:

[EnableClientAccess()]
public class MovieDomainService : LinqToEntitiesDomainService<MovieRen
talDBEntities>
{
 public IQueryable<Movie> GetMovies()
 {
 return this.ObjectContext.Movies;
 }
}

When we added the MovieDomainService class, we signaled that it should get its
data from an Entity Model. Due to this, the MovieDomainService class inherits from
LinqToEntitiesDomainService (a built-in abstract class). We also chose to expose the
Movie entity. Hence, the Add DomainService wizard generated a GetMovies() method for
us that obtains data from the MovieModel Context.

This DomainService is typically the starting point for our application logic. In this service, we
might want to add new methods, change the parameters or the body of existing methods, or
include other application logic.

Chapter 11

467

When we built our solution, a lot of things happened on the client as well, in RIAServices.
Client.Model (the client part of our WCF RIA Services class library). As the
MovieDomainService is marked with the [EnableClientAccess()] attribute, proxy
code will be automatically generated in our Silverlight library on each build. When we click
on the Show All Files icon in the Solution Explorer, we can see this code by opening the
RIAServices.DomainServices.g.cs file.

If we open the generated file, we see that a client-side version of our server-side entity,
Movie, has been generated (you'll also notice that it raises INotifyPropertyChanged
notifications in the setter of its properties, so they are data-bindable, and validation
occurs (more on that in the next chapter, Chapter 12, Advanced WCF RIA Services)). We
also see that a class called MovieDomainContext, which inherits from DomainContext,
has been generated.

In this class, methods are generated to load the data from our database into the
EntityCollections on the DomainContext. In this recipe, this method is called
GetMoviesQuery(), and it returns an EntityQuery<Movie> object. Similar methods
will be created for each query method. (A query method is typically a method on our
DomainService that returns a collection of entities, generally as IEnumerable<T> or
IQueryable<T>). These methods can be used as arguments on the Load method of our
context. Passing one of these methods will execute the EntityQuery returned by it.

To use a metaphor to make this a bit clearer, the DomainContext can be seen as the
mechanism that moves entities between the DomainService and the EntitySets. These
EntitySets are stored in the EntityContainer. You could view the EntityContainer
as the database (on the client), the EntitySets as the tables, and the DomainContext as
the database server.

In the next 2 steps, we did two things: we edited the web.config file of our host, which
is necessary as we're using a WCF RIA Services class library, the registering of assemblies
and definition of the EF (Entity Framework) connection string is put in the app.config, but
we're referencing this assembly in our WebHost, so we need that configuration to be in the
configuration file used by the WebHost: the web.config file. And of course, we also need
to add the WCF RIA Services assemblies to the WebHost. You'll also have to make sure you
update the connection string to your own connection string.

That's it for the server side, on to the client. First of all, we add an instance of the
DomainContext, MovieDomainContext, to a LocalStateContainer class, this enables
us to easily use this instance across ViewModels. As you can see, HomeViewModel receives
a property MovieContext, which refers to the instance in LocalStateContainer. The
other property, Movies, is bound to the DataGrid in XAML, and refers to the EntitySet of
Movies from the MovieDomainContext. This is where the loaded movies from the server
will end up in, so once we fetch them from the server, the EntitySet will be filled with
movies, which will then be reflected in our UI.

Using WCF RIA Services

468

Only one thing left, actually fetching the data:

private void LoadData()
{
 var loadOp = MovieContext.Load<Movie>(MovieContext.GetMoviesQuery());
 loadOp.Completed += (send, args) =>
 {
 // handle errors
 };
}

So, what happens when we execute this statement? We want to load Movies from
the server to our client, so we execute a MovieContext.Load<Movie> call. In
this call, we define how we want to load these movies by using the MovieContext.
GetMoviesQuery(). This is an EntityQuery, generated on the client (you can find it in
RIAServices.DomainServices.g.cs), which will execute the GetMovies method on
our MovieDomainService. Once it's been executed, the returned Movie entities will be
available through the MovieContext.Movies EntitySet.

What about that loadOp variable? When we call MovieContext.Load<Movie>, a
LoadOperation<Movie> is returned, which we store in the loadOp variable. This
variable can be used to execute code after the movies have been fetched from the server
(asynchronously, as every service call in Silverlight). It contains the loaded Entities, but it also
contains information on errors during the load (if any), and can be used to cancel the load
operation (for example, if it takes too long).

There's more...
WCF RIA Services offers you quite a few options on how to control what's sent over the wire.
Have a look at the following sections for more information on that.

Some details on code generation
As you've noticed, a lot of code gets automatically generated on our client when we use WCF
RIA Services. Working with RIA Services almost feels like we're not using services to get our
data, seeing that we've got a client-side representation of all our entities and our context.

RIA Services automatically generates this client-side EntityQuery, returning methods for
every query method that will have the same name as the server-side method, postfixed with
Query. Server-side methods whose names are prefixed with Get, Fetch, Find, Query, Retrieve,
or Select, and which return an IEnumerable<T> or IQueryable<T> are Query methods
that will result in a client-side EntityQuery returning method. We can also mark these
methods with the [Query] attribute to specifically tell the code generator that a method is a
Query method.

Chapter 11

469

An important fact to notice is that method overloading is not possible due to automatic
generation of Load methods for our query methods.

Aren't there some properties missing?
As you might have noticed, the Category and RentalHistory of a Movie isn't visible in
our DataGrid, it's not sent to the client. Why is this? And how can we make sure they are?

1. Create a new query method in MovieDomainService.cs:
public IQueryable<Movie> GetMoviesWithCategoryAndRentalHistory()
{
 return this.ObjectContext.Movies.Include("Category").
Include("RentalHistories");
}

2. Open MovieDomainService.metadata.cs, and locate the MovieMetaData
class. In this class, add the Include attribute to the Category and
RentalHistories properties:
[Include]
public Category Category { get; set; }

[Include]
public EntityCollection<RentalHistory> RentalHistories { get; set;
}

3. Open HomeView.xaml, and change the DataGrid declaration to include a
DetailTemplate:

<sdk:DataGrid.RowDetailsTemplate>
 <DataTemplate>
 <ItemsControl ItemsSource="{Binding RentalHistories}"
Margin="40,0,0,0">
 <ItemsControl.ItemTemplate>
 <DataTemplate>
 <Grid>
 <Grid.ColumnDefinitions>
 <ColumnDefinition Width="100"></
ColumnDefinition>
 <ColumnDefinition Width="100"></
ColumnDefinition>
 <ColumnDefinition Width="100"></
ColumnDefinition>
 <ColumnDefinition Width="100"></
ColumnDefinition>

Using WCF RIA Services

470

 </Grid.ColumnDefinitions>
 <Grid.RowDefinitions>
 <RowDefinition Height="30"></
RowDefinition>
 </Grid.RowDefinitions>
 <TextBlock Text="Out: "
 HorizontalAlignment="Left"></
TextBlock>
 <TextBlock Text="Returned: "
 Grid.Column="2"
 HorizontalAlignment="Left"></
TextBlock>
 <TextBlock Text="{Binding DateOut,
StringFormat=d}"
 HorizontalAlignment="Left"
 Grid.Column="1"></TextBlock>
 <TextBlock Text="{Binding DateReturned,
StringFormat=d}"
 HorizontalAlignment="Left"
 Grid.Column="3"></TextBlock>
 </Grid>
 </DataTemplate>
 </ItemsControl.ItemTemplate>
 </ItemsControl>
 </DataTemplate>
</sdk:DataGrid.RowDetailsTemplate>

4. Build the solution.

5. Open HomeViewModel.cs, and change the LoadData() method, so it now calls
the query we've created in step 1:

private void LoadData()
{
 var loadOp = MovieContext.Load<Movie>
 (MovieContext.
GetMoviesWithCategoryAndRentalHistoryQuery());
 loadOp.Completed += (send, args) =>
 {
 // handle errors
 };
}

Chapter 11

471

If we now build and run our solution, we can see the Category and RentalHistory
objects, belonging to a specific movie, are sent to the client as well.

By default, WCF RIA Services sends the simple properties of an Entity to the client when
that Entity is requested, but this can be controlled through the metadata classes. For each
Entity, a metadata class was generated when we created our DomainService through
the wizard (you can always create these manually as well, of course). On this metadata
class, we can use the [Include] attribute to decorate non-simple properties, like
EntityCollections. We did this on the non-simple Category type property, and on the
EntityCollection<RentalHistory> type property, this tells WCF RIA Services to send
these over the wire as well when a Movie Entity is requested.

With that, WCF RIA Services knows what to do, but of course we're not finished
yet, if we want to send the Category and RentalHistories of a Movie to
the client, we need to fetch them from our database, that's what happens in the
GetMoviesWithCategoryAndRentalHistories method. In this method, we
use Entity Framework to fetch the Movies, including their respective Category and
RentalHistories. These two steps are all it takes to ensure the data you need is
sent to the client.

Using WCF RIA Services

472

Excluding some properties
We've learned how to include EntityCollections with a service call, but what about
excluding properties (as said, WCF RIA Services will send simple properties over the wire
by default)? An Entity might have some properties you don't want to send over the wire—take,
for example, a password property for a user in a limited user management view, or imagine
you're writing an application, which will be used over slow network connections, where every
byte counts.

Well, this is possible as well, by using the [Exclude] attribute. Much like the [Include]
attribute, which tells WCF RIA Services to include a certain property, the [Exclude] attribute
tells it to ignore it. It will not be sent to the client when the service method is executed.

If that still doesn't fit the requirements, another approach could be to write your own DTO
classes to send over the wire, instead of the Entities from your Entity Model. Yet another
approach could be to create subclasses of entities, straight on your Entity Model, and send
those over the wire.

Explaining all these options in detail would take us a bit too far, but they are valid as well, as
usual, there's more than one way to solve a specific problem.

See also
To learn more techniques concerning WCF RIA Services, have a look at the other recipes in
this chapter or in Chapter 12, Advanced WCF RIA Services.

Using LoadBehavior to control what
happens to your data once it's sent to
the client

Applies to Silverlight 4 and 5

Fetching data from the server is one thing, but as we're working in a disconnected
environment, we need a way to control what happens to entities when they arrive on the
client, what if a version of that same Entity already exists on the client? Should it be ignored?
Merged? Overwritten?

In this recipe, we'll learn how to deal with these situations.

Getting ready
Before getting started, you have to make sure the correct SDK and assemblies to enable WCF
RIA Services are available. Please refer to recipe Setting up a data solution to work with WCF
RIA Services for more information.

Chapter 11

473

We're starting from a provided starter solution, which you can find in
Chapter 11\Using_LoadBehavior_Starter\.

The completed solution can be found in
Chapter 11\Using_LoadBehavior_Completed\.

How to do it...
We're going to use the LoadBehavior parameter to decide what should happen with data
once it's been sent to the client, starting from the provided starter solution. In order to do this,
we need to complete the following steps:

1. Open Home.xaml, and locate the StackPanel named ContentStackPanel. In
this StackPanel, add the following xaml before the closing tag:
<StackPanel Orientation="Horizontal" Margin="0,10,0,0">
 <Button Height="30"
 Width="150"
 Margin="0,0,10,0"
 Content="Keep current"
 Command="{Binding
LoadWithKeepCurrentLoadBehaviorCommand}"></Button>
 <Button Height="30"
 Width="150"
 Margin="0,0,10,0"
 Content="Merge into current"
 Command="{Binding
LoadWithMergeIntoCurrentLoadBehaviorCommand}"></Button>
 <Button Height="30"
 Width="150"
 Margin="0,0,10,0"
 Content="Refresh current"
 Command="{Binding
LoadWithRefreshCurrentLoadBehaviorCommand}"></Button>
</StackPanel>

2. Open HomeViewModel.cs, and add the following command definitions to the class:
public ICommand LoadWithKeepCurrentLoadBehaviorCommand
{ get; private set; }
public ICommand LoadWithMergeIntoCurrentLoadBehaviorCommand
{ get; private set; }
public ICommand LoadWithRefreshCurrentLoadBehaviorCommand
{ get; private set; }

3. Add the following using statements to HomeViewModel.cs:
using System.Windows.Input;
using GalaSoft.MvvmLight.Command;

Using WCF RIA Services

474

4. Add the InstantiateCommands() method to this class, and call it from
the constructor:
public HomeViewModel()
{
 InstantiateCommands();
}
private void InstantiateCommands()
{
 LoadWithKeepCurrentLoadBehaviorCommand = new RelayCommand(()
 => LoadWithKeepCurrentLoadBehavior());
 LoadWithMergeIntoCurrentLoadBehaviorCommand = new
RelayCommand(()
 => LoadWithMergeIntoCurrentLoadBehavior());
 LoadWithRefreshCurrentLoadBehaviorCommand = new
RelayCommand(()
 => LoadWithRefreshCurrentLoadBehavior());
}

5. Implement LoadWithKeepCurrentLoadBehavior() to execute loading of the
data with the Keep Current LoadBehavior:
private void LoadWithKeepCurrentLoadBehavior()
{
 var loadOp = MovieContext.Load<Movie>(
 MovieContext.GetMoviesWithCategoryAndRentalHistoryQuery(),
 LoadBehavior.KeepCurrent, false);
 loadOp.Completed += (send, args) =>
 {
 // handle errors etc
 };
}

6. Implement LoadWithMergIntoCurrentLoadBehavior() to execute loading of
the data with the Merge Into Current LoadBehavior:
private void LoadWithMergeIntoCurrentLoadBehavior()
{
 var loadOp = MovieContext.Load<Movie>(
 MovieContext.GetMoviesWithCategoryAndRentalHistoryQuery(),
 LoadBehavior.MergeIntoCurrent, false);
 loadOp.Completed += (send, args) =>
 {
 // handle errors etc
 };
}

Chapter 11

475

7. Implement LoadWithRefreshCurrentLoadBehavior() to execute loading of the
data with the Refresh Current LoadBehavior:
private void LoadWithRefreshCurrentLoadBehavior()
{
 var loadOp = MovieContext.Load<Movie>(
 MovieContext.GetMoviesWithCategoryAndRentalHistoryQuery(),
 LoadBehavior.RefreshCurrent, false);
 loadOp.Completed += (send, args) =>
 {
 // handle errors etc
 };
}

8. You can now build and run your solution (note: ensure you've updated the web.
config file in RIAServices.WebHost with the correct connection string). To
test the different load behaviors, try them before/after updating items in both the
DataGrid and your database.

How it works...
We've started out by defining three buttons in XAML, binding their Command property
to the commands we defined on our ViewModel. These will be exactued when we
click the respective buttons. Each command represents a specific LoadBehavior.
These LoadBehaviors can be added as a parameter to the Load<> method on
the DomainContext:

Using WCF RIA Services

476

MovieContext.GetMoviesWithCategoryAndRentalHistoryQuery(),
 LoadBehavior.KeepCurrent, false);

If you don't specify a LoadBehavior, the default behavior (LoadBehavior.KeepCurrent)
is used.

Load behaviors are used to control what happens with the entities you're loading once they
reach the client, and the same entities (by their Key value) are already available on the client.

If you've specified the LoadBehavior to be LoadBehavior.KeepCurrent, server-side
changes to the entities that already were available on the client will not be reflected in these
entities, the currently available versions on the client will keep on being used.

If the LoadBehavior is set to LoadBehavior.RefreshCurrent, the entities that are
fetched from the server will be used, no matter what. This ensures you'll always have the
latest version of an entity, but it also implies that you'll lose client-side changes on an entity
if you haven't persisted to the server before executing a new Load.

If the LoadBehavior is set to LoadBehavior.MergeIntoCurrent, the entity you've
just loaded from the server will be compared to the corresponding entity on the client on a
property-level. Properties that have been edited on the client will keep their value, while the
other properties will be set to the new values from the server.

See also
To learn more techniques concerning WCF RIA Services, have a look at the other recipes in
this chapter or in Chapter 12, Advanced WCF RIA Services.

Controlling the server-side query from
the client

Applies to Silverlight 4 and 5

Controlling the data that's fetched is a very common requirement, instead of fetching all
entities of a certain type, you might only want to fetch those that have been changed in the
last week. Or you might want to fetch a specific employee from an employee database, instead
of fetching all employees from the server.

In the next recipe, Sorting and filtering data on the server, we'll look into doing this by
writing extra query methods on our DomainService. In this recipe, we'll learn how to do
this (for the most common requirements) straight from the client, without having to write
extra code on the server.

Chapter 11

477

Getting ready
Before getting started, you've got to make sure the correct SDK and assemblies to enable
WCF RIA Services are available. Please refer to the recipe Setting up a data solution to work
with WCF RIA Services for more information.

We're starting from a provided starter solution, which you can find in
Chapter 11\Controlling_Query_Starter\.

The completed solution can be found in Chapter 11\Controlling_Query_Completed\.

How to do it...
We're going to write code to control what's returned from the server, on the client. To achieve
this, we'll complete the following steps:

1. Open Home.xaml, and locate the StackPanel named ContentStackPanel. In
this StackPanel, add the following xaml before the closing tag:
<StackPanel Orientation="Horizontal"
 Margin="0,10,0,0">
 <Button Content="Order movies"
 Width="150"
 Height="30"
 Command="{Binding LoadOrderedMoviesCommand}"></Button>
 <Button Content="Filter movies"
 Width="150"
 Height="30"
 Margin="10,0,0,0"
 Command="{Binding LoadFilteredMoviesCommand}"></
Button>
</StackPanel>

2. Open HomeViewModel.cs, and add the following command definitions to the class:
public ICommand LoadOrderedMoviesCommand
{ get; private set; }

public ICommand LoadFilteredMoviesCommand
{ get; private set; }

3. Add the following using statements to HomeViewModel.cs:
using System.Windows.Input;
using GalaSoft.MvvmLight.Command;

Using WCF RIA Services

478

4. Instantiate the commands, and call the InstantiateCommands() method from
the constructor:
public HomeViewModel()
{
 InstantiateCommands();
}
private void InstantiateCommands()
{
 LoadOrderedMoviesCommand = new RelayCommand(() =>
LoadOrderedMovies());
 LoadFilteredMoviesCommand = new RelayCommand(() =>
LoadFilteredMovies());
}

5. Implement the commands as follows:
private void LoadFilteredMovies()
{
 // clear the context for this demo
 MovieContext.Movies.Clear();
 var loadOp = MovieContext.Load<Movie>(
 MovieContext.GetMoviesQuery().Where<Movie>(m => m.Director
== "Francis Ford Coppola"));
 loadOp.Completed += (send, args) =>
 {
 // handle errors
 };
}
private void LoadOrderedMovies()
{
 // clear the context for this demo
 MovieContext.Movies.Clear();
 var loadOp = MovieContext.Load<Movie>(
 MovieContext.GetMoviesQuery().OrderBy(m => m.Title));
 loadOp.Completed += (send, args) =>
 {
 // handle errors
 };
}

Chapter 11

479

6. You can now build and run the application (note: ensure you've updated the web.
config file in RIAServices.WebHost with the correct connection string). Clicking
the Order button will return the list of movies, ordered by Title, and clicking the
Filter button will return a filtered collection.

How it works...
In steps 1 through 4, we've added the necessary XAML code for our buttons, binding them
to commands we defined on our ViewModel, so these commands will be executed once the
button is clicked.

The magic happens in step 5:

MovieContext.Load<Movie>(
 MovieContext.GetMoviesQuery().Where<Movie>(m => m.Director ==
"Francis Ford Coppola"));

Here, we define we want to load movies, using the GetMoviesQuery() method. This (auto-
generated) method, returning an EntityQuery<Movie>, will start loading Movies through
the GetMovie method on our MovieDomainService.

The special part is the .Where<Movie> clause we add to the EntityQuery<Movie> object
that's returned by GetMoviesQuery(). In this clause, we define a filter, we only want to load
movies directed by Francis Ford Coppola.

The special thing about this is that unlike one would expect, this Where clause is reflected
straight down to the query that's executed on the database. We're on the client, adding a
Where clause to an EntityQuery, and this Where clause is executed on the server. We're
not fetching all Movies and then filtering them on the client, we're actually only fetching the
movies that correspond to the filter.

Using WCF RIA Services

480

This can be seen by firing up SQL Profiler and looking at the query that's executed
against our DB:

It's WCF RIA Services that takes care of this - it combines the server-side method, GetMovies
(which returns this.ObjectContext.Movies), with the EntityQuery extension (the
Where clause) we've defined on the client.

In the other command we use the same technique, this time sorting the movies by title.

There's more...
Not everything is controllable from the client in this way, only the most commonly used LINQ
operators are supported. If more control is needed, you'll have to write server-side code on the
DomainService (have a look at the next recipe, Sorting and filtering data on the server, to
learn how to do this).

All EntityQuery extensions are defined in the System.ComponentModel.
DomainServices.Client namespace (so you'll have to import this if you want to use
them), and these are the ones that are supported:

 f OrderBy, ThenBy, OrderByDescending, ThenByDescending: Used to sort data

 f Where: Used to filter data

 f Skip, Take: Used to skip over entities from the result set, or to select a specific
amount of entities

 f Select: Used to apply a selector to the EntityQuery result

Chapter 11

481

See also
Have a look at the next recipe, Sorting and filtering data on the server, to learn how to sort
and filter without relying on the client. To learn more techniques concerning WCF RIA Services,
have a look at the other recipes in this chapter or in Chapter 12, Advanced WCF RIA Services.

Sorting and filtering data on the server
Applies to Silverlight 4 and 5

In almost every application, you'll run into having to enable sorting and/or filtering, for
example, instead of fetching all employees from an employee database, you might only want
to fetch one specific (set of) employees, order by date of birth.

In this recipe, you'll learn how to achieve this by extending your domain service with extra
query operations.

Getting ready
Before getting started, you've got to make sure the correct SDK and assemblies to enable
WCF RIA Services are available. Please refer to recipe Setting up a data solution to work with
WCF RIA Services for more information.

We're starting from a provided started solution, which you can find in Chapter 11\
Sorting_Filtering_Server_Starter\.

The completed solution can be found in
Chapter 11\Sorting_Filtering_Server_Completed\.

How to do it...
We're going to sort and filter the data that's being returned to our Silverlight application. To
achieve this, we'll complete the following steps:

1. Open Home.xaml and locate the StackPanel named ContentStackPanel. In
this StackPanel, add the following xaml before the closing tag:
<StackPanel Orientation="Horizontal"
 Margin="0,10,0,0">
 <Button Content="Order movies"
 Width="150"
 Height="30"
 Command="{Binding LoadOrderedMoviesCommand}"></Button>
 <Button Content="Filter movies"

Using WCF RIA Services

482

 Width="150"
 Height="30"
 Margin="10,0,0,0"
 Command="{Binding LoadFilteredMoviesCommand}"></
Button>
</StackPanel>

2. Open MovieDomainService.cs in RIAServices.DomainServices, and add
the following two methods:
public IQueryable<Movie> GetMoviesOrderedByTitle()
{
 return this.ObjectContext.Movies.OrderBy(m => m.Title);
}
public IQueryable<Movie> GetMoviesFiltered(string filter)
{
 return this.ObjectContext.Movies.Where(m => m.Director ==
filter);
}

3. Build your solution.

4. Open HomeViewModel.cs, and add the following command definitions to the class:
public ICommand LoadOrderedMoviesCommand
{ get; private set; }

public ICommand LoadFilteredMoviesCommand
{ get; private set; }

5. Add the following using statements to HomeViewModel.cs:
using System.Windows.Input;
using GalaSoft.MvvmLight.Command;

6. Instantiate the commands, and call the InstantiateCommands() method from
the constructor:
public HomeViewModel()
{
 InstantiateCommands();
}
private void InstantiateCommands()
{
 LoadOrderedMoviesCommand = new RelayCommand(() =>
LoadOrderedMovies());
 LoadFilteredMoviesCommand = new RelayCommand(() =>
LoadFilteredMovies());
}

Chapter 11

483

7. Implement the commands as follows:
private void LoadFilteredMovies()
{
 // clear movies for this example
 MovieContext.Movies.Clear();
 var loadOp = MovieContext.Load<Movie>(
 MovieContext.GetMoviesFilteredQuery("Francis Ford
Coppola"));
 loadOp.Completed += (send, args) =>
 {
 // handle errors
 };
}
private void LoadOrderedMovies()
{
 // clear movies for this example
 MovieContext.Movies.Clear();
 var loadOp = MovieContext.Load<Movie>(
 MovieContext.GetMoviesOrderedByTitleQuery());
 loadOp.Completed += (send, args) =>
 {
 // handle errors
 };
}

8. You can now build and run the application (note: ensure you've updated the
web.config file in RIAServices.WebHost with the correct connection string).
Clicking the Order button will return the list of movies, ordered by Title, and
clicking the Filter button will return a filtered collection, each by calling their
respective server-side method:

Using WCF RIA Services

484

How it works...
In the first few steps, we've added the necessary XAML code for our buttons, binding them
to commands we define on our ViewModel, so these commands will be executed once the
button is clicked.

In step 2, we're in our MovieDomainService, defining two extra query methods:

public IQueryable<Movie> GetMoviesOrderedByTitle()
{
 return this.ObjectContext.Movies.OrderBy(m => m.Title);
}

public IQueryable<Movie> GetMoviesFiltered(string filter)
{
 return this.ObjectContext.Movies.Where(m => m.Director == filter);
}

The first one will return all movies, ordered by Title. The second one is a method
which accepts a string parameter, filter, which is then applied to the Director
field of each Movie. When we build the solution (step 3), the client-side methods
GetMoviesOrderedByTitleQuery and GetMoviesFilteredQuery are generated.

In step 5, we load movies using these methods, passing in a filter as parameter for the
GetMoviesFilteredQuery method.

So, when you click the Order movies button, the server-side query method
GetMoviesOrderedByTitle will be executed, which will then be reflected in our UI.

When you click the Filter movies button, the same thing happens with the
GetMoviesFiltered(string filter) query method.

There's more...
Not all types can be passed in as parameters for a Query method, only simple types (like
string, int) are supported. Even though there is ComplexObject type support in WCF RIA
Services (complex objects must derive from the ComplexObject base class), they are only
supported for Invoke and NamedUpdate methods. This is an intentional restriction, in place
due to the fact that the parameters passed in to the Query method must be representable in
the GET request URI (used behind the scenes by WCF RIA Services).

Chapter 11

485

See also
Have a look at the previous recipe, Controlling the server-side query from the client, to learn
how to sort and filter without having to write extra query methods on your domain services. To
learn more techniques concerning WCF RIA Services, have a look at the other recipes in this
chapter or in Chapter 12, Advanced WCF RIA Services.

Paging through your data
Applies to Silverlight 4 and 5

If there's one requirement that returns in every business application that works with large
amounts of data, it must be paging. Without paging, you'd have to load all the data to your
client, resulting in massive hits on your database, on the wire, and on memory usage on the
client.

In this recipe, you'll learn how to go about implementing server-side paging using WCF
RIA Services.

Getting ready
Before getting started, you've got to make sure the correct SDK and assemblies to enable
WCF RIA Services are available. Please refer to recipe Setting up a data solution to work with
WCF RIA Services for more information.

Also, ensure you have the latest version of the Toolkit installed, which can be found here:
http://www.microsoft.com/download/en/details.
aspx?displaylang=en&id=26939.

If you do not want to install the Toolkit, the assembly used by this recipe from the Toolkit is
included in the \Dependencies folder.

We're starting from a provided started solution, which you can find in
Chapter 11\Paging_Data_Starter\.

The completed solution can be found in Chapter 11\Paging_Data_Completed\.

How to do it...
We're starting out with the starter solution, and we're going to add paging capabilities to our
DataGrid. To achieve this, complete the following steps:

1. Open HomeViewModel.cs, and add the following properties:
private EntityCollectionPagerAndSorter<Movie> ecpsMovies;
public DomainCollectionView Movies

Using WCF RIA Services

486

{
 get
 {
 return ecpsMovies.View;
 }
}

2. Locate the LoadData() method, and implement it as such:
private void LoadData()
{
 ecpsMovies = new EntityCollectionPagerAndSorter<Movie>(MovieCo
ntext,
 MovieContext.GetMoviesQuery(), MovieContext.Movies, 2);
 ecpsMovies.OnQueryCompleted += (send, args) =>
 {
 // handle operations that need to be
 // executed after a page has been loaded
 };
 //// move to first page when sort descriptors change
 INotifyCollectionChanged notifyingSortDescriptions =
 (INotifyCollectionChanged)this.Movies.SortDescriptions;
 notifyingSortDescriptions.CollectionChanged +=
 (sender, e) => ecpsMovies.View.MoveToFirstPage();
}

3. Open Home.xaml, locate the DataGrid, and bind its ItemsSource and
IsEnabled properties as such:
<sdk:DataGrid ItemsSource="{Binding Movies}"
 Grid.Row="1"
 IsReadOnly="True"
 IsEnabled="{Binding Movies.IsDone}"
 AutoGenerateColumns="False"
 HorizontalAlignment="Left"
 VerticalAlignment="Top"
 Margin="0,10,0,0">

4. Add a DataPager to Home.xaml as such:
<sdk:DataPager Grid.Row="2"
 Source="{Binding Movies}"
 IsEnabled="{Binding Movies.IsDone}"
 PageSize="2" />

D
ow

n
lo

a
d
 f
ro

m
 W

o
w

!
e
B
o
o
k

<
w

w
w

.w
o
w

e
b
o
o
k.

co
m

>

Chapter 11

487

5. You can now build and run your application (note: ensure you've updated the
web.config file in RIAServices.WebHost with the correct connection string),
and page through the data.

How it works...
This recipe uses the DomainCollectionView to achieve server-side paging, which can
be found in the Microsoft.Windows.Data.DomainServices assembly, which is part
of the WCF RIA Services Toolkit. This is a collection type, specifically designed to achieve
our scenario.

It takes a bit of setting up, which is why most of the logic has been placed in a reusable helper
class, EntityCollectionPagerAndSorter. Have a look at the constructor of this helper
class, which is called in step 2:

public EntityCollectionPagerAndSorter(DomainContext context,
EntityQuery<T> query,
 EntitySet<T> items, int pageSize)
{
 this.context = context;
 this.query = query;
 query.IncludeTotalCount = true;
 this.source = new EntityList<T>(items);
 this.loader = new DomainCollectionViewLoader<T>(this.OnLoad,
this.OnLoadCompleted);
 this.view = new DomainCollectionView<T>(this.loader, this.
source);
 using (this.view.DeferRefresh())

Using WCF RIA Services

488

 {
 this.view.PageSize = pageSize;
 this.view.MoveToFirstPage();
 }
}

As you can see, a DomainCollectionView gets initialized with a source and with a loader.

The source is typically an EntityList<T> over an EntitySet<T> (in our example, it's an
EntityList<Movie>, as we pass in MovieDomainContext.Movies), and it's this source
that defines the source entities for our view.

The loader takes care of loading the data, allowing us to pass in a callback, which defines
what should happen when data must be loaded (OnLoad), and a callback which defines what
should happen when a load operation is completed (OnLoadCompleted).

If we look a bit further down in this helper class, we can see how these are implemented:

private LoadOperation<T> OnLoad()
{
 IsDone = false;
 var loadOp = this.context.Load(this.query.SortAndPageBy(this.
view));
 return loadOp;
}
private void OnLoadCompleted(LoadOperation<T> op)
{
 IsDone = true;
 if (op.HasError)
 {
 op.MarkErrorAsHandled();
 view.PageSize = 0;
 }
 else if (!op.IsCanceled)
 {
 this.source.Source = op.Entities;
 if (op.TotalEntityCount != -1) this.View.
SetTotalItemCount(op.TotalEntityCount);
 if (OnQueryCompleted != null)
 {
 OnQueryCompleted.Invoke(this, new LoadOpEventArgs<T>()
{ LoadOperation = op });
 }
 }
}

Chapter 11

489

When we load data, we define that we are loading by setting IsDone to false (which is
there to easily bind to the IsEnabled property of our DataGrid and DataPager), and
the query we passed in step 2 (MovieDomainContext.GetMoviesQuery()) is executed,
using the SortAndPageBy extension method to ensure only the correctly sorted and
paged part of all Movies is returned (WCF RIA Services handles this for us by extending the
EntityQuery, much in the same way as is explained in the recipe Controlling the server-side
query from the client).

When the data has been loaded, IsDone is set to true, the source collection is set to the
loaded entities, and the TotalItemCount is set via TotalEntityCount.

Finally, the OnQueryCompleted event is invoked, allowing us to execute additional logic
when a page has been loaded.

Now, how does this loading get triggered? The following code in the constructor takes
care of triggering the initial load, and subsequent loads are triggered automatically by
binding the DomainCollectionView (the Movies property in HomeViewModel.cs)
to the DataPager.

 using (this.view.DeferRefresh())
 {
 this.view.PageSize = pageSize;
 this.view.MoveToFirstPage();
 }

If we look back at HomeViewModel, we can see how two properties are defined:

private EntityCollectionPagerAndSorter<Movie> ecpsMovies;
public DomainCollectionView Movies
{
 get
 {
 return ecpsMovies.View;
 }
}

These represent a Movies property, used to bind to in HomeView.xaml, and an instance of
our helper class, which is initialized in the constructor, as explained previously:

ecpsMovies = new EntityCollectionPagerAndSorter<Movie>(MovieConte
xt, MovieContext.GetMoviesQuery(), MovieContext.Movies, 2);

We pass in the context we're using, the query that will be used for loading data, the items that
will be used as the source, and the size of 1 page.

Using WCF RIA Services

490

On to Home.xaml: as we can see in the last few steps, we bind the DataGrid and
DataPager to the Movies DomainCollectionView, and their IsEnabled properties
to the IsDone property.

To sum it all up, this is what happens when you trigger the refreshing of a
DomainCollectionView (in the constructor or by paging):

 f The Loader is executed and loads the data

 f Once this is done, the Source property gets updated

 f This in turn notifies the View that it has updated

 f The control of your View reflects these changes

See also
To learn more techniques concerning WCF RIA Services, have a look at the other recipes in
this chapter or in Chapter 12, Advanced WCF RIA Services.

Persisting a change set/unit of work
Applies to Silverlight 4 and 5

Getting data on the client is only one part of the story, in most applications, you'll also have
to persist data back to server. More often than not, you'll need to persist a set of entities all
at once (for example, if you're creating a master-detail list, you'll have to ensure the master
record is available before saving the detail records).

WCF RIA Services supports these scenarios out of the box. Entities support change tracking,
and the DomainContext tracks these changes through a ChangeSet, which can be
persisted to the server when a save is required.

In this recipe, we'll learn how to achieve this.

Getting ready
Before getting started, you've got to make sure the correct SDK and assemblies to enable
WCF RIA Services are available. Please refer to recipe Setting up a data solution to work with
WCF RIA Services for more information.

We're starting from a provided started solution, which you can find in
Chapter 11\Persisting_Data_Starter\.

The completed solution can be found in Chapter 11\Persisting_Data_Completed\.

Chapter 11

491

How to do it...
We're going to start from our starter solution, and learn how to persist a change set back to
the server. To achieve this, we'll complete the following steps:

1. Open HomeViewModel.cs, and locate the constructor. Change it so it calls the
InstantiateCommands() method, and implement that method as such:
public HomeViewModel()
{
 LoadData();
 InstantiateCommands();
}
private void InstantiateCommands()
{
 SaveChangesCommand = new RelayCommand(() => SaveChanges());
 RemoveMovieCommand = new RelayCommand<Movie>((m) =>
RemoveMovie(m));
 AddMovieCommand = new RelayCommand(() => AddMovie());
}

2. Implement the AddMovie() method:
private void AddMovie()
{
 MovieContext.Movies.Add(new Movie()
 {
 // fill out category with default value for example
 CategoryID = 1,
 });
}

3. Implement the RemoveMovie(Movie movie) method:
private void RemoveMovie(Movie movie)
{
 if (movie != null)
 MovieContext.Movies.Remove(movie);
}

4. Implement the SaveChanges() method:
private void SaveChanges()
{
 // make sure the elements aren't in edit mode anymore
 // (SL Datagrid workaround)

Using WCF RIA Services

492

 MovieContext.Movies.ToList().ForEach(m => (m as
IEditableObject).EndEdit());
 if (!(MovieContext.IsSubmitting))
 {
 MovieContext.SubmitChanges();
 }
}

5. You can now build and run the application (note: ensure you've updated the web.
config file in RIAServices.WebHost with the correct connection string). You can
add new Movies, remove a Movie, update a movie through the DataGrid, and
persist the changes to the server by pushing the Save changes button:

How it works...
In step 1, we instantiate our commands. These commands are bound to the buttons on
Home.xaml, so they get executed when clicking the corresponding button, as you can see in
this piece of XAML code from Home.xaml:

<Button Content="Add new movie"
 Height="30"
 Width="200"
 Margin="0,0,10,0"
 Command="{Binding AddMovieCommand}"
 ></Button>

Chapter 11

493

<Button Content="Remove selected movie"
 Height="30"
 Width="200"
 Margin="0,0,10,0"
 Command="{Binding RemoveMovieCommand}"
 CommandParameter="{Binding SelectedItem,
ElementName=grdMovies}"></Button>
<Button Command="{Binding SaveChangesCommand}"
 Height="30"
 Width="200"
 HorizontalAlignment="Left"
 Content="Save changes"></Button>

When adding or removing entities, we do this on the EntitySets, which are stored in the
EntityContainer.

Let's re-use a metaphor we've explained in the recipe Getting data on the client to make
this a bit clearer. The DomainContext can be seen as the mechanism that moves entities
between the DomainService and the EntitySets. These EntitySets are stored in the
EntityContainer. You could view the EntityContainer as the database (on the client),
the EntitySets as the tables, and the DomainContext as the database server.

This results in the following code for adding a Movie, from step 2:

MovieContext.Movies.Add(new Movie()
{
 // fill out category with default value for example
 CategoryID = 1,
});

As you see, we add a Movie to the Movies EntitySet. As the DataGrid is bound to this
EntitySet, this is immediately reflected on-screen (note: we fill out the CategoryID with a
default value for this example).

The same mechanism is used to remove a Movie (step 3), and ensures we can immediately
see it reflected in on-screen:

 if (movie != null)
 MovieContext.Movies.Remove(movie);

Next up is submitting the data to the server. When you add, remove, or update an Entity, this
is automatically saved in a ChangeSet. You can always ask for this ChangeSet through the
EntityContainer:

MovieContext.EntityContainer.GetChanges()

Using WCF RIA Services

494

To submit the data to the server, we call the SubmitChanges() method on
MovieDomainContext (first checking that we aren't submitting already):

if (!(MovieContext.IsSubmitting))
{
 MovieContext.SubmitChanges();
}

Client-side validation occurs, and once we reach the server, the Submit method (accepting
a ChangeSet) on our DomainService will be executed. These methods are already
implemented by the class we derive from, in our case a LinqToEntitiesDomainService.
If needed, you can override these methods. The explanation that follows, essentially happens
behind the scenes.

The Submit method on the server will look at the ChangeSet, and perform the operations
indicated by this ChangeSet, by invoking the corresponding domain operations.

First of all, Submit will call the AuthorizeChangeSet method, which will check if the user
has the necessary authority to execute it. Next up is the ValidateChangeSet method, which
will validate the complete set of changes, server-side (have a look at Chapter 12, Advanced
WCF RIA Services, for more information on validation). If it's valid, the ExecuteChangeSet
method will be called. This method will invoke the corresponding DomainOperationEntry
for each operation in the ChangeSet.

This means that when a Movie has been updated, the UpdateMovie method will be
executed to execute this update on the ObjectContext. When a Movie has been
added, the InsertMovie method will be executed, which will add the Movie to the
ObjectContext. And finally, when a Movie has been deleted, the DeleteMovie method
will be called, removing the Movie from the ObjectContext.

After this has been executed, our client-side ChangeSet has essentially been rebuilt on the
server and our Entity Framework ObjectContext now has the exact same changes we've
executed on the client.

One last step remains, the ObjectContext is persisted by calling the PersistChangeSet
method. It's this step that saves the changes to the database.

There's actually another method that could be called, ResolveConflicts.
This is called in case the persisting ChangeSet fails due to concurrency
errors. For more information on this, refer to recipe Working with
concurrency and transactions.

After all these steps, the ChangeSet has been persisted to the database, and there are no
more pending changes on our client.

Chapter 11

495

There's more...
When you try and save data, there's always the possibility that the save fails, expected or
unexpected. For example, a server-side validation rule might fail, the database could be
offline, you could get a concurrency problem.

When you submit changes, the SubmitChanges method on your DomainContext returns a
SubmitOperation object. With this object, you can check if something went wrong. Have a
look at the following code:

private void SaveChanges()
{
 // make sure the elements aren't in edit mode anymore
 // (SL Datagrid workaround)
 MovieContext.Movies.ToList().ForEach(m => (m as
IEditableObject).EndEdit());
 if (!(MovieContext.IsSubmitting))
 {
 var submitOp = MovieContext.SubmitChanges();
 submitOp.Completed += (send, args) =>
 {
 if (submitOp.HasError)
 {
 // show error, mark as handled
 MessageBox.Show(submitOp.Error.Message);
 submitOp.MarkErrorAsHandled();
 }
 };
 }
}

Through the SubmitOperation, we can check if there are errors, and solve them
accordingly. Next to that, a SubmitOperation can also be used to cancel the running
operation, by calling SubmitOperation.Cancel().

This code has been implemented in the solution that you can find at
Chapter 11\Persisting_Data_With_Submit_Operation\.

Using WCF RIA Services

496

By default, validation will occur when the bound value is set. Validation
will also occur on the client before submitting to the server, resulting in
a failed submit. Next to that, you could always force validation before
submitting to the server by using the Validator.TryValidateObject
method on your object. Nevertheless, that wouldn't solve this problem in
case of server-only validations or unexpected errors. Have a look at
Chapter 12, Advanced WCF RIA Services to learn more about validation.

See also
To learn more techniques concerning WCF RIA Services, have a look at the other recipes in
this chapter or in Chapter 12, Advanced WCF RIA Services.

Working with concurrency and transactions
Applies to Silverlight 4 and 5

Handling concurrency is something that comes up sooner or later in any multi-user
environment. What should happen when two users are working on the same set of
data and a conflict occurs?

As far as transactions are concerned, your changes are automatically wrapped in a
transaction when using a LinqToEntityDomainService. However, when you're not
using one of those, or when you want to have some more control, you can write your own
code for this.

In this recipe, we're going to learn how to work with concurrency and transactions with WCF
RIA Services.

Getting ready
Before getting started, you've got to make sure the correct SDK and assemblies to enable
WCF RIA Services are available. Please refer to recipe Setting up a data solution to work with
WCF RIA Services for more information.

We're starting from a provided started solution, which you can find in
Chapter 11\Concurrency_And_Transactions_Starter\.

The completed solution can be found in
Chapter 11\Concurrency_And_Transactions_Completed\.

Chapter 11

497

How to do it...
We're going to start from the starter solution and implement a way to handle concurrency
problems and gain more control over transactions. To achieve this, complete the
following steps:

1. Open the starter solution, build it, start it up twice, and wait until both DataGrids
are filled with data (note: ensure you've updated the web.config file in
RIAServices.WebHost with the correct connection string). In the first running
application, change the Director and submit the changes. Now do the same in
the second application, for the same record. You'll notice the changes are submitted
successfully, even though this could result in a concurrency error. In the second
application, you're making changes to data that has been changed by someone else
in the meantime.

2. Go back to Visual Studio, and open MovieModel.edmx. In the designer, locate the
Director property on the Movie entity, and set its Concurrency Mode to Fixed:

3. Open HomeViewModel.cs, and implement the SaveChanges() method as follows:
private void SaveChanges()
{
 // make sure the elements aren't in edit mode anymore
 // (SL Datagrid workaround)
 MovieContext.Movies.ToList().ForEach(m => (m as
IEditableObject).EndEdit());

Using WCF RIA Services

498

 if (!(MovieContext.IsSubmitting))
 {
 var submitOp = MovieContext.SubmitChanges();
 submitOp.Completed += (send, args) =>
 {
 if (submitOp.HasError)
 {
 bool hasConcurrencyConflict = false;
 // show error, mark as handled
 foreach (var entityInError in submitOp.
EntitiesInError)
 {
 if (entityInError.EntityConflict != null)
 {
 hasConcurrencyConflict = true;
 break;
 }
 }
 if (hasConcurrencyConflict)
 {
 // concurrency error
 MessageBox.Show("Concurrency error detected
- please handle it.");
 }
 else
 {
 // other error
 MessageBox.Show(submitOp.Error.Message);
 }
 submitOp.MarkErrorAsHandled();
 }
 };
 }
}

Chapter 11

499

4. Build the application, and do the same as in step 1: start it up twice, and wait until
both DataGrids are filled with data. In the first running application, change the
Director and submit the changes. Now do the same in the second application, for
the same record. This time, you'll notice you get notified of a concurrency problem:

5. Add a reference to System.Transactions to RIAServices.DomainServices.

6. Open MovieDomainService.cs, and override the PersistChangeSet() method
as such:
protected override bool PersistChangeSet()
{
 bool resultFromPersist = false;
 using (var transScope = new TransactionScope(TransactionSco
peOption.Required,
 new TransactionOptions
 { IsolationLevel = System.Transactions.IsolationLevel.
ReadCommitted })
)
 {
 resultFromPersist = base.PersistChangeSet();
 if (!this.ChangeSet.HasError)
 {

Using WCF RIA Services

500

 transScope.Complete();
 }
 }
 return resultFromPersist;
}

7. You can now build and run your application.

How it works...
We'll start out with the concurrency part of this recipe. What we want to achieve is a
ConcurrencyCheck or TimeStamp attribute on our properties, which in turn results
in a RoundTripOriginal attribute.

The RoundTripOriginal attribute ensures the original value is sent over the wire together
with the current value of the property. It's then up to the DAL to check for concurrency, which
is achieved by setting the concurrency mode to fixed on our Entity Model. If this checks
out, the data access layer can update or delete the data. Else, a conflict occurs and an
OptimisticConcurrencyException is thrown. Information about the conflict is stored in
the EntityConflict property of the entity that no longer has current data (which is what we
look at when we handle the SubmitOperations' Completed event).

If you look at RIAServices.DomainServices.g.cs (the generated code) in
RIAServices.Client.Model and navigate to the Director property on the
Movie entity, you'll notice that it now has the ConcurrencyCheck and
RoundTripOriginal attributes:

[ConcurrencyCheck()]
[DataMember()]
[Required()]
[RoundtripOriginal()]
[StringLength(150)]
public string Director
{
 get
 {
 return this._director;
 }
 set
 {
 if ((this._director != value))
 {
 this.OnDirectorChanging(value);
 this.RaiseDataMemberChanging("Director");
 this.ValidateProperty("Director", value);

Chapter 11

501

 this._director = value;
 this.RaiseDataMemberChanged("Director");
 this.OnDirectorChanged();
 }
 }
}

This happens because we set the concurrency mode to Fixed.

If you're not working with a LinqToEntitiesDomainService, you can add the
RoundTripOriginal attribute to the metadata of the property you want to check for
concurrency (in MovieDomainService.metadata.cs):

[RoundTripOriginal]
public string Director { get; set; }

You can also add it on the entity class itself. This will ensure all properties are checked for
concurrency.

[RoundtripOriginal]
public partial class Movie

Important to know is properties with the Key attribute automatically get this
RoundTripOriginal attribute as well.

As far as handling a concurrency error is concerned, in this recipe, we let it boil up to the
client, where you can catch it once the SubmitOperation is completed, as shown in step 3.
You can now handle it in various ways, you could reload the latest version of the Movie on the
client, discarding the changes made by the current user, you could keep his changes, load the
correct version and submit it again. This depends on your applications' requirements.

Another way to handle the concurrency conflict is by overriding the ResolveConflicts
method on your DomainService:

protected override bool ResolveConflicts(IEnumerable<System.Data.
Objects.ObjectStateEntry> conflicts)
{
 // resolve the conflicts...

 return base.ResolveConflicts(conflicts);
}

This method is executed by default when a conflict (concurrency error) happens on persisting
the changes to the database. As you're working server-side in this case, you can handle this
the way you would handle it when using the Entity Framework, by calling the Refresh method
on your ObjectContext, passing in how it should refresh it (ClientWins or StoreWins),
and resubmitting the ChangeSet.

Using WCF RIA Services

502

On to the second part of the recipe: transactions. In most cases, you shouldn't really worry
about this when using WCF RIA Services, and let SQL Server handle this. By default, a
unit of work (ChangeSet) is wrapped in a transaction when submitting it, while using a
LinqToEntitiesDomainService.

However, in some cases, you might need more control over this, or you might be working with
another datastore/DTO's. That's where you can use the technique described in this recipe.
Override the PersistChangeSet() method, and handle the transaction yourself.

See also
To learn more techniques concerning WCF RIA Services, have a look at the other recipes in
this chapter or in Chapter 12, Advanced WCF RIA Services.

12
Advanced WCF

RIA Services

In this chapter, we will cover the following topics:

 f Tracking a user's identity – default Windows authentication

 f Tracking a user's identity – a custom authentication service

 f Integrating Windows Identity Foundation with WCF RIA Services

 f Controlling a user's access to services and service methods

 f Validating data: using data annotations

 f Validating data: writing a custom validator

 f Validating data: server-side validation with client-side feedback

 f Validating data: triggering validation when needed

 f Validating data: using the ValidationContext

 f Handling errors on the server

 f Using SQL Azure with WCF RIA Services

 f Exposing WCF RIA Domain Services as OData endpoints

 f Exposing WCF RIA Domain Services for other technologies

Advanced WCF RIA Services

504

Introduction
Microsoft WCF RIA Services is a framework developed to simplify Line of Business RIA
development. RIA Services addresses the complexity of building N-tier applications by
providing a framework, controls, and services on both your server side (the services,
typically .NET based, hosted in an ASP.NET application, and the application in which your
Silverlight client is hosted) and your client side (your Silverlight application).

RIA Services makes it easy to get data from your services to your client. It does this by
allowing you to write services linked to a data store, such as a database, your own classes,
an entity model, and so on, on your server side, and then regenerates these entities on your
client. It also generates the necessary context, methods, and operations on your client to
easily talk to your services. So, in essence, WCF RIA Server is a server-side technology that
projects code to a client using WCF as a means of communication between the server and
the client. In addition, it makes it easy to add validation and authentication to your services
and/or entities.

It has quickly become one of the most-used, popular frameworks for designing LOB
applications with Silverlight, as they work nicely together: after all, it was initially conceived
to be used in combination with Silverlight. But besides that, it's also used together with other
technologies, as WCF RIA Services has SOAP (CRUD) and OData (R) endpoints – so any
client such as WPF, WinForms, ASP.NET (WebForms and MVC), or Windows Phone, can
talk with it and make use of the features it brings. Besides that, there's also a DomainService
implementation for Windows Azure (SQL Azure), and a full client-side JavaScript
implementation, RIA/js, to be used with any HTML5-based client (typically in combination with
jQuery) without a line of C# code.

This chapter will teach you some of the more advanced techniques concerning WCF RIA
Services, from authentication over validation to exposing domain services for consuming
in other technologies. If you want to learn the basics, have a look at Chapter 11, Using WCF
RIA Services.

Tracking a user's identity – default
Windows authentication

Applies to Silverlight 4, 5

In quite a few applications, knowing which user is using your application is important. You
might want to enable certain features if a certain user is logged in, or limit the data you're
offering depending on the logged-in user's identity. In this recipe, you'll learn how easy it is to
get to know which user is using your application. You'll learn how to verify and track a user's
identity in your Silverlight application.

Chapter 12

505

Getting ready
Before getting started, you've got to make sure the correct SDK and assemblies to enable
WCF RIA Services are available. Please refer to the recipe Setting up a data solution to work
with WCF RIA Services from Chapter 11, Using WCF RIA Services for more information.

We're starting from a provided starter solution, which you can find in
Chapter 12\Tracking_Identity_Starter.

The complete solution can be found in Chapter 12\Tracking_Identity_Completed.

How to do it...
We're going to track a user's identity with WCF RIA Services. To achieve this, we'll open the
starter solution and complete the following steps:

1. We'll use Windows Authentication for this recipe. Check the web.config file in the
WebHost application and add an authentication tag to system.web:
<authentication mode="Windows"></authentication>

2. Add a new authentication domain service,
MovieAuthenticationDomainService, to RIAServices.DomainServices.
Use the Authentication Domain Service template for this.

3. Build your application, open App.xaml.cs, and add the following code to the
Application_Startup method:
((WebAuthenticationService)WebContext.Current.Authentication).
DomainContext =
 new MovieAuthenticationDomainContext();

// This will enable you to bind controls in XAML files to
WebContext.Current
// properties
this.Resources.Add("WebContext", WebContext.Current);
// Windows authentication: the user is available through
HttpContext on the server,
 // but we still need to load it from the server to our SL app

 WebContext.Current.Authentication.LoadUser();

4. Add the following using statements to App.xaml.cs:
using RIAServices.Client.Model;
using System.ServiceModel.DomainServices.Client.
ApplicationServices;
using RIAServices.DomainServices;

Advanced WCF RIA Services

506

5. Open App.xaml, and add the following xmlns imports:
xmlns:app="clr-namespace:RIAServices.Client.
Model;assembly=RIAServices.Client.Model"
xmlns:appsvc="clr-namespace:System.ServiceModel.DomainServices.
Client.ApplicationServices;assembly=System.ServiceModel.
DomainServices.Client.Web"

6. Add the following code to App.xaml:
<Application.ApplicationLifetimeObjects>
 <app:WebContext>
 <app:WebContext.Authentication>
 <appsvc:WindowsAuthentication />
 </app:WebContext.Authentication>
 </app:WebContext>
</Application.ApplicationLifetimeObjects>

7. Add the following XAML code to Home.xaml:
<Grid Grid.Row="1">
 <TextBlock Margin="0,10"
 Text="{Binding Source={StaticResource WebContext}, Path=User.
Name, StringFormat='Welcome, {0}'}"></TextBlock>
</Grid>

8. You can now build and run your application. You'll notice the current user's
credentials are displayed on-screen:

How it works...
We start out by defining that we'll use Windows authentication in the web.config file. With
Windows authentication, we rely on IIS to authenticate the clients. How this happens depends
on how you configure IIS: typically, you'd set it to use integrated Windows authentication. After
successfully authenticating, the Windows token is passed to the ASP.NET worker process,
making it available to our (server-side) application.

Chapter 12

507

In step 2, an authentication domain service is added, and nothing is changed: by default,
WCF RIA Services contains an implementation for using Windows authentication with WCF
RIA Services, meaning you don't have to change anything to use your authentication domain
service: it will work out of the box. Typically, you log in by passing your credentials to the
service – in the case of Windows authentication, IIS provides these credentials, as explained
in the first paragraph.

So what's happening in step 3? The credentials are available at our server side, but we want
them to be visible in our Silverlight application: we're using the WebContext to load the
currently authenticated user. When this load operation completes, we'll know who's signed in
on the client. The WebContext is also added to the resource dictionary, so we can easily bind
our UI to it.

In step 6, we're defining the authentication mode on the WebContext, in this case,
Windows authentication: this ensures WebContext.Current is configured to use Windows
authentication. All that's left now is showing the logged in user in our UI, which is achieved
through step 7.

To sum it up: when the hosting web application starts, the current Windows credentials are
available at the server, provided by IIS. In our Silverlight application, the current WebContext
is defined as one that uses Windows authentication. When the Silverlight application starts,
we state that we're going to use our MovieAuthenticationDomainContext, add the
current WebContext to the resource dictionary, and load the current user from the server.
Once this load operation completes, the current user is shown in our UI.

See also
For more on authentication, have a look at the Tracking a user's identity – a custom
authentication service and Integrating Windows Identity Foundation with WCF RIA
Services recipes. For more advanced recipes on WCF RIA Services, have a look at the
rest of this chapter.

Tracking a user's identity – a custom
authentication service

Applies to Silverlight 4, 5

Windows authentication, as we've used in the previous recipe, is very suitable for internal
environments. However, if you're publishing a public Silverlight application, you typically
require the user to enter his or her credentials. Besides that, the User object itself might be
different: it might have extra properties; it might be an Employee object from your database.

In this recipe, we'll learn how we can achieve this kind of authentication.

Advanced WCF RIA Services

508

Getting ready
Before getting started, you've got to make sure the correct SDK and assemblies to enable
WCF RIA Services are available. Please refer to the recipe Setting up a data solution to work
with WCF RIA Services from Chapter 11, Using WCF RIA Services for more information.

We're starting from a provided starter solution, which you can find in
Chapter 12\Tracking_Identity_Custom_Starter.

The complete solution can be found in
Chapter 12\Tracking_Identity_Custom_Completed.

How to do it...
We're starting from the completed solution of the previous recipe, or from the provided starter
solution, and we're going to make sure our application can use a custom user object and
custom authentication logic. To enable this, we'll complete the following steps:

1. Open the web.config file in RIAServices.WebHost, and change the
authentication mode to Forms:
<authentication mode="Forms"></authentication>

2. Add a reference to System.Web to RIAServices.DomainServices.

3. Locate the MovieAuthenticationDomainService, and add the following using
statements:
using System.ServiceModel.DomainServices.EntityFramework;
using System.Web.Security;
using System.Runtime.Serialization;

4. Change the class itself; implement it as follows:
public class MovieAuthenticationDomainService : LinqToEntitiesDoma
inService<MovieRentalDBEntities>, IAuthentication<Employee>
 {
 private static Employee DefaultUser =
 new Employee() { Name = string.Empty };

 public Employee GetUser()
 {
 if ((this.ServiceContext != null) &&
 (this.ServiceContext.User != null) &&
 this.ServiceContext.User.Identity.IsAuthenticated)
 {

Chapter 12

509

 return this.GetUserByName(this.ServiceContext.
User.Identity.Name);
 }

 return MovieAuthenticationDomainService.DefaultUser;
 }

 public Employee GetUserByName(string userName)
 {
 return this.ObjectContext.Employees.FirstOrDefault(e
=> e.UserName == userName);
 }

 public Employee Login(string userName, string password,
bool isPersistent, string customData)
 {
 if (this.ValidateUser(userName, password))
 {
 FormsAuthentication.SetAuthCookie(userName,
isPersistent);
 return this.GetUserByName(userName);
 }
 return null;

 }

 private bool ValidateUser(string userName, string
password)
 {
 // validate username/pw
 var user = this.ObjectContext.Employees.
FirstOrDefault(e => e.UserName == userName && e.Password ==
password);
 return (!(user == null));
 }

 public Employee Logout()
 {
 FormsAuthentication.SignOut();
 return MovieAuthenticationDomainService.DefaultUser;
 }

 public void UpdateUser(Employee user)
 {
 throw new NotImplementedException();

Advanced WCF RIA Services

510

 }
 }

5. In the same file, add the following code for our Employee (IUser) class:
public partial class Employee : IUser
{
 [DataMember]
 [Key]
 public string Name
 {
 get
 { return this.UserName; }
 set
 { this.UserName = value; }
 }
 [DataMember]
 public IEnumerable<string> Roles
 {
 get { return null; }
 set { //
 }
 }
}

6. Open WebContext.cs in RIAServices.Client.Model, and change it as follows:
/// <summary>
/// Gets a user representing the authenticated identity.
/// </summary>
public new Employee User
{
 get
 {
 return ((Employee)(base.User));
 }
}

7. Open App.xaml.cs, remove the loading of a user, and change it to logging in:
private void Application_Startup(object sender,
StartupEventArgs e)
{
 ((WebAuthenticationService)WebContext.Current.Authentication).
DomainContext =
 new MovieAuthenticationDomainContext();
 // This will enable you to bind controls in XAML files to
WebContext.Current

Chapter 12

511

 // properties
 this.Resources.Add("WebContext", WebContext.Current);
 // Forms authentication: we need to log in
 WebContext.Current.Authentication.Login("KevinDockx",
"password");
 this.RootVisual = new MainPage();
}

8. Open App.xaml, and change the Authentication of the WebContext to
FormsAuthentication:
<Application.ApplicationLifetimeObjects>
 <app:WebContext>
 <app:WebContext.Authentication>
 <appsvc:FormsAuthentication />
 </app:WebContext.Authentication>
 </app:WebContext>
</Application.ApplicationLifetimeObjects>

9. You can now build and run your application. You'll notice the current user's
credentials are displayed on-screen:

How it works...
In this recipe, we're using Forms authentication to log in to our application, and we want
our authenticated user to be an Employee, not just a User object. First, we must of course
change the authentication mode to Forms on our server, which is done in step 1.

Then, we're moving on to the authentication itself: by default, WCF RIA Services allows
for Forms authentication which works out of the box if you're using the default ASP.NET
Membership tables: nothing has to be changed to use the authentication service itself.
However, for a lot of applications, this isn't feasible: they often have their own user tables.
In this example, we're assuming we have a table of employees, and we want to validate
our users against that table. The user object that is returned should then of course be an
Employee, not just a default user.

Advanced WCF RIA Services

512

In step 4, a lot of that logic is added: the class is defined as a class that implements the
IAuthentication interfaced, typed to the Employee user. This interface definition looks
as follows:

 [AuthenticationService]
 public interface IAuthentication<T> where T : global::System.
ServiceModel.DomainServices.Server.ApplicationServices.IUser
 {
 T GetUser();
 T Login(string userName, string password, bool isPersistent,
string
 T Logout();
 void UpdateUser(T user);
 }

As you can see, we need to implement a few methods. UpdateUser is only necessary if you
want to allow the user object to be updated through this authentication service – we can skip
that for this recipe.

In the Login method, most of the logic happens: this is where we check whether or not the
passed-in credentials are valid. If they are, the logged-in user (an Employee) is returned. In
the ValidateUser method, called from Login, we check if the provided credentials are
valid. If they are, we set the authentication cookie (remember: this is actually ASP.NET's
Forms authentication we're leveraging), and we returning the corresponding Employee.
If they're not valid, we simply return null.

The GetUser method is used to fetch the current authenticated user, or a default user
object when we're not authenticated. We do this by checking the ServiceContext for an
authenticated user, and returning the matching Employee by its Name key.

All that's left for this class is the Logout method: as with the Login method, we're leveraging
Forms authentication; so we simply need to call FormsAuthentication.SignOut, and
return a default user.

Besides all this authentication logic, the interface also defines that the type we pass in
(Employee) should implement the IUser interface. This is what happens in step 5:
our Employee class (a table in our database, available through our entity framework model
– which is why we also defined our authentication service to be a LinqToEntitiesDomai
nService<MovieRentalDBEntities> service) implements this IUser interface, which
defines a Name and Roles property. We're not using roles, so that can be left empty, and the
Name of course refers to our employee UserName, so we implement that property as such.
Note the [Key] attribute on Name: it should be unique, as it's used to identify the user.

All that's left to do on the server is ensuring our WebContext works with the Employee class
instead of the regular User class, which is done in step 6.

Chapter 12

513

On to the client. This logic is more or less the same as with Windows authentication, as
described in the recipe Tracking a user's identity - default Windows authentication, with two
notable changes: we're using Forms authentication now, so we need to define that that is
what the WebContext will use, in App.xaml. This is done in step 8. The other change can
be found in step 7: instead of just loading the user, as we did with Windows authentication,
we now need to log in by calling the Login method on our authentication service. This will
execute the server-side login method we just implemented, and the logged-in Employee will
be loaded in our context when this method is completed and the credentials are valid.

See also
For more on authentication, have a look at the Tracking a user's identity – default Windows
authentication and Integrating Windows Identity Foundation with WCF RIA Services recipes.
For more advanced recipes on WCF RIA Services, have a look at the rest of this chapter.

Integrating Windows Identity Foundation
with WCF RIA Services

Applies to Silverlight 4, 5

Besides using Windows and Forms authentication, there's another way to authenticate/authorize
a user with WCF RIA Services: through Windows Identity Foundation (WIF). This consists of a
set of classes with which you can build identity-aware applications. It allows us to externalize
authentication and authorization: the application relies on an identity provider for this.

In this recipe, we'll learn how to use WIF with a WCF RIA Services solution, using an
external Security Token Service (the identity provider), which will take care of
authentication/authorization for us. Then, we'll see how we can change the business
logic in a domain service depending on the available claims.

Getting ready
This recipe relies on quite a few prerequisites. You'll have to have at least Windows Vista SP2
(Windows 7 or 2008 server advised), and IIS 7.0 (or better).

First of all, you've got to make sure the correct SDK and assemblies to enable WCF RIA
Services are available. Please refer to the recipe Setting up a data solution to work with WCF
RIA Services from Chapter 11, Using WCF RIA Services, for more information.

You'll also need to install the Windows Identity Foundation Runtime, which can be found at
http://www.microsoft.com/download/en/details.aspx?id=17331. Choose the
correct version, depending on your system.

D
ow

n
lo

a
d
 f
ro

m
 W

o
w

!
e
B
o
o
k

<
w

w
w

.w
o
w

e
b
o
o
k.

co
m

>

Advanced WCF RIA Services

514

Next, you'll need to install the Windows Identity Foundation SDK, which can
be found at http://www.microsoft.com/download/en/details.
aspx?displaylang=en&id=4451. Choose the SDK version for .NET 4.0.

After this, you'll need to install the Windows Identity Foundation Developer Training Kit
(April 2011), which can be found at http://www.microsoft.com/download/en/
details.aspx?displaylang=en&id=14347. This kit contains sample implementations
of, amongst others, a Security Token Service, which is used in this recipe. But, more
importantly, it also contains the necessary certificates, which you'll have to register to
get up and running.

Note: these certificates and scripts are also included in this recipe, in the \Setup folder of
the sample solutions. If you do not want to install the Developer Training Kit, you can use
these to set up your system by running the SetupCertificates.cmd file, for which you will
need administrator permissions. However, as the Developer Training Kit includes a lot of extra
samples, guidelines, and best practices, it's a good idea to completely install it.

You can check if the certificates are installed correctly in IIS: in the main overview, select
Server Certificates, and ensure the IdentityTKStsCert and localhost certificates are
available and valid:

Also, ensure the site binding on your default website is using the localhost certificate for
https (check this in IIS: select the Default website (or whichever site you're using to host this
solution) | SSL Settings | Bindings… (on the right-hand side)):

Chapter 12

515

We're starting from a provided starter solution, which you can find in
Chapter 12\Integrating_WIF_Starter.

The complete solution can be found in Chapter 12\Integrating_WIF_Completed.

How to do it...
We're going to set up our starter solution, which is Windows Identity Foundation-enabled, for
authentication/authorization. In order to do this, we need to complete the following steps:

1. First of all, we're using the provided STS from the Windows Identity Foundation
Training Kit. In case you haven't installed it, the STS has been provided for you with
this solution, but you'll have to add it to IIS manually. Add a new application in IIS in
the default website, naming it GymFabrikamP_Sts, and point it to the location of
the provided website. Do this before opening the starter solution.

2. Open MovieDomainService.cs in RIAServices.DomainServices, and add
the following attribute to the class definition:
[RequiresAuthentication]
[EnableClientAccess()]
public class MovieDomainService : LinqToEntitiesDomainService<Movi
eRentalDBEntities>

3. Locate the GetMovies() method, and implement it as follows:
public IQueryable<Movie> GetMovies()
{
 // get authenticated user

Advanced WCF RIA Services

516

 var currentClaimsIdentity = (Microsoft.IdentityModel.Claims.
ClaimsIdentity)ServiceContext.User.Identity;
 // get gender claim
 var genderClaim = currentClaimsIdentity.Claims.
FirstOrDefault(c => c.ClaimType == genderClaimType);
 if (genderClaim != null && genderClaim.Value == "male")
 {
 return this.ObjectContext.Movies.Where(m => m.CategoryID
== 2);
 }
 else
 {
 return this.ObjectContext.Movies.Where(m => m.CategoryID
== 4);
 }
}

4. (Optional) Check the connection string in web.config to ensure it uses an
SQL Server Authentication login that is available on your system and linked to a
MovieRentalDB user.

5. You can now build and run your application. When the application starts, you'll have
to provide your credentials. Depending on these credentials, you'll get different
results in the DataGrid:

How it works...
As you might have noticed, we're starting from a solution that already has most of the
WIF-parts in place: this is because this complete process is already explained in the recipe
Integrating Windows Identity Foundation in Silverlight from Chapter 9, Talking to WCF and
ASMX Services—One Step Beyond: you can refer to that recipe for more information on how
to set up passive federation using WIF, and how it works exactly. This recipe focuses on the
integration with WCF RIA Services.

Chapter 12

517

In this recipe, we're using WIF to get authenticated through passive federation. Once a token
has been received, it's available through the service context, which you can access from each
domain service. Through this service context, we can get the authenticated user, and we get
access to the user's claims, which means we can easily change our business logic depending
on what the claims of the authenticated user are.

This is what's done in this recipe: in step 3, we've added business logic that will execute a
different query depending on the gender claim of the logged in user.

First of all, we ensure our service is only accessible to authenticated users, by adding the
RequiresAuthentication attribute to the service class definition (step 2). Then, in the
GetMovies() method, we get the claims from the currently authenticated user, and find the
Gender claim. Depending on the value of that claim, we execute a different query.

As a result of this, you'll see different results when you log in as John versus when you
log in as Mary.

See also
For more on authentication, have a look at the Tracking a user's identity – default Windows
authentication and Tracking a user's identity: a custom authentication service recipes. For
more advanced recipes on WCF RIA Services, have a look at the rest of this chapter.

To learn much more about how WIF and passive federation works, have a look at Integrating
Windows Identity Foundation in Silverlight in Chapter 9, Talking to WCF and ASMX
Services-One Step Beyond.

Controlling a user's access to services and
service methods

Applies to Silverlight 4, 5

In the previous recipes, we've learned how to track a user's identity. However, most
applications that need a user's identity need it to do something with it, for example, restricting
access to a certain service or a service method so that only an authenticated user can access
it. This will make sure that our service can't be freely used by anyone. Only the users we allow
in will be able to use it.

In this recipe, you'll learn how to restrict access to a service or service method to
authenticated users.

Advanced WCF RIA Services

518

Getting ready
Before getting started, you've got to make sure the correct SDK and assemblies to enable
WCF RIA Services are available. Please refer to the recipe Setting up a data solution to work
with WCF RIA Services from Chapter 11, Using WCF RIA Services, for more information.

We're starting from a provided starter solution, which you can find in Chapter 12\
Controlling_Access_Starter.

The complete solution can be found in Chapter 12\Controlling_Access_Completed.

How to do it...
We're starting from the provided starter solution, which includes an example authentication
service. We're going to write code to limit access to authenticated users only. To achieve this,
we'll perform the following steps:

1. Open MovieDomainService.cs in RIAServices.DomainServices.

2. Locate the GetMovies() method, and add the following attribute:
[RequiresAuthentication()]
public IQueryable<Movie> GetMovies()

3. You can now build and run the solution. When the application starts, we're
providing credentials to log in (you can find this code in App.xaml.cs, in the
Application_Startup method), after which we are authenticated, enabling
us to access the GetMovies() method. If you comment out the code to log in in
Application_Startup (or provide invalid credentials), you'll notice we cannot
access the GetMovies() method anymore.

Chapter 12

519

How it works...
Restricting access with WCF RIA Services is something you get out of the box. The
RequiresAuthentication attribute is all you need: by applying this attribute to a
method, as we did in step 2, we're ensuring the service method can only be accessed by an
authenticated user.

Besides applying this attribute to a method, you can also apply it to the domain service, which
restricts access to any method in the domain service to authenticated users:

[RequiresAuthentication()]
public class MovieDomainService : LinqToEntitiesDomainService<MovieRen
talDBEntities>

There's more...
Besides restricting access to authenticated users, applications often require a more
fine-grained approach: restricting access to a certain role. Support for this comes through the
RequiresRole attribute, which can be applied to a service method or the complete domain
service, pretty much the same as with the RequiresAuthentication attribute.

The provided example authentication service provides the logged in user with an example role:
DummyRole. To restrict access to the users with this role, we'll add a custom role provider,
which will provide the current user's role(s) via the authentication service. To achieve this,
complete the following steps:

1. Add a reference to System.Web.ApplicationServices and System.
Configuration to RIAServices.DomainServices.

2. Add a new class to RIAServices.DomainServices: CustomRoleProvider.

3. Let this class inherit the RoleProvider class (from System.Web.Security, which
must be imported via a using statement), and implement the GetRolesForUser
method (the other ones aren't necessary for this example), as follows:
public class CustomRoleProvider : RoleProvider
{

 public override string[] GetRolesForUser(string username)
 {
 MovieAuthenticationDomainService authService =
 new MovieAuthenticationDomainService();
 return authService.GetUserByName(username).Roles.
ToArray();
 }

// … other methods, not implemented
}

Advanced WCF RIA Services

520

4. Locate the GetMovies() method in MovieDomainService, and apply the
RequiresRole attribute as follows:
[RequiresRole("DummyRole")]
public IQueryable<Movie> GetMovies()
{
 return this.ObjectContext.Movies;
}

5. Open web.config in RIAServices.WebHost, and add the roleManager tag to
the system.web tag, as follows:
<roleManager defaultProvider="CustomRoleProvider" enabled="true"
cacheRolesInCookie="true" >
 <providers>
 <add name="CustomRoleProvider" type="RIAServices.
DomainServices.CustomRoleProvider, RIAServices.DomainServices"/>
 </providers>

</roleManager>

6. You can now build and run the application. If you're not logged in as a user with the
DummyRole role, you won't have access to the GetMovies() method (you can check
this by providing invalid credentials):

The complete solution can be found at
Chapter 12\Controlling_Access_Roles_Completed.

Chapter 12

521

See also
For more on authentication with WCF RIA Services, have a look at the Tracking a user's
identity – default Windows authentication, Tracking a user's identity: a custom authentication
service, and Integrating Windows Identity Foundation with WCF RIA Services recipes.

Validating data: using data annotations
Applies to Silverlight 4, 5

Validation of your data before persisting it is a requirement for almost every application.
By using validation on your Entities, you make sure that no invalid data is persisted to your
data store. When you don't implement validation, there's a risk that a user will input wrongly
formatted or plain incorrect data on the screen and even persist this data to your data store.
This is something you should definitely avoid.

In this recipe, you'll learn how to validate data using data annotation attributes that you can
use on your classes and properties.

Getting ready
Before getting started, you've got to make sure the correct SDK and assemblies to enable
WCF RIA Services are available. Please refer to the recipe Setting up a data solution to work
with WCF RIA Services from Chapter 11, Using WCF RIA Services, for more information.

We're starting from a provided starter solution, which you can find in Chapter 12\
Validation_Annotations_Starter.

The complete solution can be found in
Chapter 12\Validation_Annotations _Completed.

How to do it...
We're going to start from the provided starter solution, and add validation to our Movie entity.
To achieve this, we'll complete the following steps:

1. Open MovieDomainService.metadata.cs from the RIAServices.
DomainServices project, and locate the MovieMetadata class.

2. Add the following attributes:
[Required(ErrorMessage="You must provide a director for this
movie.")]
[StringLength(50, MinimumLength = 3,
 ErrorMessage = "You must input between 3 and 50 characters.")]
public string Director { get; set; }

Advanced WCF RIA Services

522

[Required(ErrorMessage = "You must provide a title for this
movie.")]
public string Title { get; set; }
[RegularExpression(@"^http\://[a-zA-Z0-9\-\.]+\.[a-zA-Z]{2,3}
(/\S*)?$",
 ErrorMessage="You must input a valid URL.")]
public string TrailerLocation { get; set; }

3. You can now build and run your application. When you input an invalid value in one
of the fields, for example: an empty title, you'll see the correct error message:

How it works...
One of the biggest advantages of WCF RIA Services is that you only need to write validation
logic once: at the server (your set of changes is automatically validated on the client and
on the server when you submit them from the client). This logic is typically attributed to
properties/entities in the metadata classes, which describe the entities and their properties.
This is what we do in step 2: we add built-in validation attributes to some of the properties of
the Movie entity.

Once you build the solution, the client-side code is generated. If you look at the generated
code (in RIAServices.Client.Model), you'll see that the attributes we've added on the
server are propagated to the client. For example, this is the generated code for the Director
property of the Movie entity:

/// <summary>
 /// Gets or sets the 'Director' value.
 /// </summary>

Chapter 12

523

 [DataMember()]
 [Required(ErrorMessage="You must provide a director for this
movie.")]
 [StringLength(50, ErrorMessage="You must input between 3 and 50
characters.", MinimumLength=3)]
 public string Director
 {
 get
 {
 return this._director;
 }
 set
 {
 if ((this._director != value))
 {
 this.OnDirectorChanging(value);
 this.RaiseDataMemberChanging("Director");
 this.ValidateProperty("Director", value);
 this._director = value;
 this.RaiseDataMemberChanged("Director");
 this.OnDirectorChanged();
 }
 }
 }

Besides the attributes being propagated, you can also notice that the validation is triggered in
the setter of this property: this.ValidateProperty is called on the new value.

What happens behind the screens is a bit more complicated. When you look at the definition
of the Movie class, you'll see it inherits from Entity. This Entity class implements the
INotifyDataErrorInfo interface, which enables various validation scenarios for us. It
defines a HasErrors property, a GetErrors method, and an ErrorsChanged event. It
enables data entity classes to implement custom validation rules and expose validation
results to the user interface. The interface also supports custom error objects, multiple
errors per property, cross-property errors (errors that affect multiple properties), and
entity-level errors (errors that affect multiple properties, or affect the complete entity
without affecting a particular property) – you'll learn about those in the other validation
recipes in this chapter.

Thanks to the attributes being propagated, we actually get the validation logic that we wrote
on the server on our client: the validation is triggered when you're inputting a new value for
a certain property, in the property setter. Besides that, validation is also triggered on submit,
both on the client and on the server, ensuring no invalid values can be inputted. Even if you
were to have another client application reusing the same domain service, the validation would
still be triggered on the server.

Advanced WCF RIA Services

524

As far as the UI is concerned, we didn't have to change anything: the validation errors
are automatically shown. This is because the Silverlight binding engine provides built-
in support for this interface: you simply need to bind a control to a property of an
entity that implements it (like our Movie entity), or the entity itself, and ensure the
ValidatesOnNotifyDataErrors property on your Data Binding it set to true
(which is the default value).

The binding engine calls GetErrors to retrieve any initial errors for a bound property or
entity. It also handles the ErrorsChanged event to monitor for updates. Whenever the errors
change for a bound property or entity, the binding engine calls GetErrors to retrieve the
updated errors. The binding engine uses the validation results to update the Validation.
Errors collection for that binding. First, the binding engine removes any existing errors for
the bound property that originate from INotifyDataErrorInfo validation. Then, if the new
value is not valid, the binding engine adds a new error for each error that is returned by the
GetErrors method. These errors are then shown in your UI (provided it's available in the
template of the control you're using).

There's more...
In this recipe, we've used just a few of the possible data annotations. DataTypeAttribute,
RangeAttribute, RegularExpressionAttribute, RequiredAttribute, StringLengthAttribute,
and CustomValidationAttribute are all the data annotations at our disposal.

For all these attributes, named parameters are possible to further customize the
way validation should occur. ErrorMessage, ErrorMessageResourceName, and
ErrorMessageResourceType are available on all attributes, but many more are available
depending on the attribute you use. You can check these named parameters by looking at the
IntelliSense tooltip you get on the attribute constructor.

See also
Have a look at the other validation recipes in this chapter for more validation scenarios.

Validating data: writing a custom validator
Applies to Silverlight 4, 5

Validation of your data before persisting it is a requirement for almost every application.
By using validation on your Entities, you make sure that no invalid data is persisted to your
data store. With WCF RIA Services, there are various ways to do validation, each tailored to a
specific scenario.

In this recipe, you'll learn how to validate data with custom validators: on a single property,
cross-field and on the Entity level. We'll also look into a way to reuse these validators by
implementing them as attributes.

Chapter 12

525

Getting ready
Before getting started, you've got to make sure the correct SDK and assemblies to enable
WCF RIA Services are available. Please refer to the recipe Setting up a data solution to work
with WCF RIA Services from Chapter 11, Using WCF RIA Services, for more information.

We're starting from a provided starter solution (or, alternatively, the completed solution
of the previous recipe), which you can find in Chapter 12\Validation_Custom_
Validator_Starter.

The complete solution can be found in
Chapter 12\Validation_Custom_Validator_Completed.

How to do it...
We're starting from the provided starter solution (or the completed solution from the previous
recipe), and we're going to add custom validation logic to our application. To achieve this, we'll
complete the following steps:

1. Add a new folder, Validators, to RIAServices.DomainServices.

2. Add a new class to this folder, MovieValidators, and name the file
MovieValidators.shared.cs.

3. Implement this class as follows:
public static class MovieValidators
{

 public static ValidationResult PublishedDateMustBeInThePast(
 DateTime publishedDate,
 ValidationContext validationContext)
 {
 if (publishedDate > DateTime.Now)
 {
 return new ValidationResult(
 "You cannot input a date that's in the future."
 , new[] { validationContext.MemberName });
 }

 return ValidationResult.Success;
 }
}

4. Build the application.

Advanced WCF RIA Services

526

5. Open MovieDomainService.metadata.cs, and add the following
using statement:
using RIAServices.DomainServices.Validators;

6. Locate the metadata class for the Movie entity (MovieMetadata), and add the
following attribute to DatePublished:
[CustomValidation(typeof(MovieValidators),
"PublishedDateMustBeInThePast")]
public DateTime DatePublished { get; set; }

7. Build and run the application, and try to input a date that's in the future. You'll notice
the validator is triggered.

8. Open MovieValidators.shared.cs, and add the following code, which we will
use for cross-field validation:
public static ValidationResult TrailerAndDirector(string
trailerOrDirector,
 ValidationContext validationContext)
{
 Movie movie = (Movie)validationContext.ObjectInstance;

 // inputted value: trailer or director?
 string trailer = validationContext.MemberName ==
"TrailerLocation"
 ? (trailerOrDirector ?? "") : (movie.TrailerLocation ??
"");
 string director = validationContext.MemberName == "Director"
 ? (trailerOrDirector ?? "") : (movie.Director ?? "");

Chapter 12

527

 if (trailer.Length > 0 && director.Length == 0)
 {
 return new ValidationResult("If a trailer is available,
the director must be filled out.",
 new[] { "TrailerLocation", "Director" });
 }

 return ValidationResult.Success;
}

9. Open MovieDomainService.metadata.cs, and locate the metadata class for
the Movie entity. Add the following attributes to Director and TrailerLocation:
[CustomValidation(typeof(MovieValidators), "TrailerAndDirector")]
public string Director { get; set; }

[CustomValidation(typeof(MovieValidators), "TrailerAndDirector")]
public string TrailerLocation { get; set; }

10. Build and run the application, and try to input a location for the trailer, while not
inputting a value for the director (and the other way around): you'll notice our cross-
field custom validator is triggered.

Advanced WCF RIA Services

528

11. Open MovieValidators.shared.cs, and add the following code:
public static ValidationResult RecentMovieCheck(Movie movie)
{
 if (movie.Director.Length > 0 && movie.Title.Length > 0
 && movie.DatePublished > new DateTime(2010, 1, 1)
 && string.IsNullOrWhiteSpace(movie.
TrailerLocation)
)
 {
 return new ValidationResult("If you know the director and
the title, and the movie is recent, you must fill out a location
for the trailer.");
 }
 return ValidationResult.Success;
}

12. Open MovieDomainService.metadata.cs, and locate the class for the Movie
entity. Add the following attribute to the Movie entity:
[CustomValidation(typeof(MovieValidators), "RecentMovieCheck")]
public partial class Movie

13. Build and run the application, and try to input a director, title, and recent date (after
1/1/2010), while not inputting a value for the trailer: you'll notice our entity-level
custom validator is triggered.

Chapter 12

529

How it works...
In this recipe, we're using custom validators to solve various validation scenarios. In the
second step, we've created a new file, MovieValidors.shared.cs. By ending this filename
with shared.cs, we let WCF RIA Services know this file should be copied to the client (which
happens on each build): this is essential, as this is what allows us to write the validation just
once, but have it available on the client as well as on the server.

From step 3 on, we're writing a custom validator for the PublishedDate property, to ensure
it isn't in the future. Have a look at the following code:

public static class MovieValidators
{

 public static ValidationResult PublishedDateMustBeInThePast(
 DateTime publishedDate,
 ValidationContext validationContext)

Important to notice is that the MovieValidators class must be static. Besides that,
the validator itself should also have a specific signature: it should be static, return a
ValidationResult, and accept a parameter of the type you're going to validate and a
ValidationContext.

The validation logic itself is pretty straightforward:

if (publishedDate > DateTime.Now)
 {
 return new ValidationResult(
 "You cannot input a date that's in the future."
 , new[] { validationContext.MemberName });
 }

 return ValidationResult.Success;

We check if the inputted date isn't in the future. If it isn't, we return a successful
ValidationResult. If it is, we return a ValidationResult in which we input an error
message, and we pass in the MemberName from the validationContext: this ensures the
validation error will be associated with the MemberName we're applying the validator to, in this
case: PublishedDate. Thanks to this association, the binding engine knows where to show
the validation error.

Next up is step 6: applying this custom validator to the DatePublished property;
this is done by decorating this property with the CustomValidation attribute,
passing in the MovieValidators type and the method we want to use for validation:
PublishedDateMustBeInThePast.

Advanced WCF RIA Services

530

That's all that needs to be done. When we now build our solution, all the necessary
code gets generated: if you look at the generated code file on the client, you'll see the
CustomValidation attribute is propagated there, as well as the shared code file: this
means the validation will be triggered from the client as well. If we now try to input a date
that's in the future, the validation will occur in the PublishedDate property setter, and the
error message will be shown (for more information on how the binding engine handles this,
have a look at the previous recipe, Validating data: using data annotations).

Of course, not all validation scenarios can be handled with a simple property validator. In
the rest of this recipe, we'll look into two other types of validation: cross-field validation and
entity-level validation.

The general logic is the same: write a validator in a shared class, use the
CustomValidation attribute, and the validation will be available on and
triggered from both client and server. We'll look into the differences.

In step 8, we wrote a TrailerAndDirector validator, which implements the validation rule
stating that the Director must be filled out when a location for the trailer is available. This
is a cross-field validator: important to notice here is that when the validation fails, we pass
in both the TrailerLocation and Director member names (so the error is attributed to
both properties). The other thing you need to take care of is that the validator must be set,
through the CustomValidation attribute, on both the Director and TrailerLocation
properties, which is done in step 9.

Next up is an entity-level validator. Instead of passing in a property, we get the complete entity
as a parameter in our validator. Important to know is that you don't need to pass in member
names in the ValidationResult: the error is attributed to the complete entity, not to a
specific property (or list of properties) of that entity. Also, the CustomValidation attribute is
now applied to the Movie entity itself, not to a specific property in the metadata class.

Note that the validation engine first triggers property-level validation, and only when all
those are OK, is entity-level validation triggered. There's a bit of overlap between cross-field
validation on the property level and entity-level validation: both are typically used for cross-
field validation. The choice mostly depends on when you want the validation to occur, and
how complicated it is. For example: once you've got validation spanning 3 fields, cross-level
validation on the property level quickly gets very complicated, both for the developer and for
the end user, while still being straightforward on the entity level.

There's more...
Validators can be reused quite easily, but there's an even more reusable way of adding
validation to your applications: by using custom validation attributes instead of custom
validation methods.

Chapter 12

531

For example, we could take our date validation, and put it in a custom attribute, which can
then be reused on other DateTime fields. To achieve this, we need to do two things: first, we'll
add a new file to the Validators folder, DateMustBeInThePastAttribute.shared.cs,
and implement it as such:

public class DateMustBeInThePastAttribute : ValidationAttribute
{

 protected override ValidationResult IsValid(object value,
 ValidationContext validationContext)
 {
 DateTime date = (DateTime)value;

 if (date > DateTime.Now)
 {
 return new ValidationResult(
 "You cannot input a date that's in the future.",
 new[] { validationContext.MemberName });
 }

 return ValidationResult.Success;
 }
}

As you can see, we're inheriting from ValidationAttribute, and implement one
method: IsValid.

To use this attribute, we can simply decorate the property on which we need this validation to
occur with it:

[DateMustBeInThePast()]
public DateTime DatePublished { get; set; }

You can find the complete solution in
Chapter 12\Validation_Custom_Validator_Attribute_Completed.

See also
For more information on the general validation mechanism (how it works together with the
binding engine), have a look at the Validating data: using data annotations recipe.

For other validation scenarios, have a look at the other validation-related recipes in
this chapter.

Advanced WCF RIA Services

532

Validating data: server-side validation with
client-side feedback

Applies to Silverlight 4, 5

Validation of your data before persisting it is a requirement for almost every application.
By using validation on your Entities, you make sure that no invalid data is persisted to your
data store. With WCF RIA Services, there are various ways to do validation, each tailored to a
specific scenario.

In this recipe, you'll learn how to validate data in which the validator should execute different
code on server versus client, which is typically used when you want direct client-side feedback
for cases where the validation logic has to execute a call to your server. A "username must be
unique" validator is a very common scenario for such a validator.

Getting ready
Before getting started, you've got to make sure the correct SDK and assemblies to enable
WCF RIA Services are available. Please refer to the recipe Setting up a data solution to work
with WCF RIA Services from Chapter 11, Using WCF RIA Services, for more information.

We're starting from a provided starter solution, which you can find in Chapter 12\
Validation_Feedback_Starter.

The complete solution can be found in Chapter 12\Validation_Feedback_Completed.

How to do it...
We're starting from the provided starter solution, and we're going to add a custom validator
to check for a unique title to our application: this validator should execute different code
depending on where it is executed (client versus server). To achieve this, we'll complete the
following steps:

1. Open MovieDomainService.cs in RIAServices.DomainServices, and add
the following Invoke method:
[Invoke]
public bool TitleAlreadyExists(string title, int currentMovieId)
{
 // not a new movie
 if (currentMovieId > 0)
 {
 return this.ObjectContext.Movies
 .Where(m => m.MovieID != currentMovieId && m.Title.
ToLower() == title.ToLower()).Count() > 0;

Chapter 12

533

 }
 else
 {
 return this.ObjectContext.Movies
 .Where(m => m.Title.ToLower() == title.ToLower()).
Count() > 0;
 }
}

2. Open MovieValidators.shared.cs, and add the following using statement,
including the compiler directive:
#if SILVERLIGHT
using System.ServiceModel.DomainServices.Client;
#endif

3. Add the following validation method:
public static ValidationResult TitleMustBeUnique(string title,
 ValidationContext validationContext)
{
 ValidationResult errorResult = new ValidationResult(
 "Title must be unique",
 new string[] { validationContext.MemberName });

 Movie movie = (Movie)validationContext.ObjectInstance;

 int currentID = -1;
 if (movie.MovieID > 0)
 {
 currentID = movie.MovieID;
 }

#if !SILVERLIGHT

 MovieDomainService movieDS = new MovieDomainService();
 if (movieDS.TitleAlreadyExists(title, currentID))
 {
 return errorResult;
 }

#else
 MovieDomainContext context = new MovieDomainContext();

 InvokeOperation<bool> ioTitleExists = context.
TitleAlreadyExists(title, currentID);

Advanced WCF RIA Services

534

 ioTitleExists.Completed += (send, args) =>
 {
 if (!ioTitleExists.HasError && ioTitleExists.
Value)
 {
 Entity entity = (Entity)validationContext.
ObjectInstance;
 entity.ValidationErrors.Add(errorResult);
 }
 };
#endif

 return ValidationResult.Success;
}

4. Locate the Title property in the MovieMetadata class in MovieDomainService.
metadata.cs, and add the following attribute:
[CustomValidation(typeof(MovieValidators), "TitleMustBeUnique")]
public string Title { get; set; }

5. You can now build and run your application. You'll notice an error if you try to input a
title that's already in use.

Chapter 12

535

How it works...
With WCF RIA Services, validation logic can be shared between the client and the server.
But in some cases, the logic that needs to be executed is different depending on the side
you're on. When we want to check for a unique Title from the client, we need to contact the
server asynchronously from the client through the domain context when this validation occurs
(fetching all the titles to the client for this type of validation would of course be very bad
practice). But when we're on the server, we don't need to do a call to the server through the
domain context anymore – as we're already there. A validator like this can be written through
the use of compiler directives.

We start out by defining an Invoke method that will check if the Title is unique: this is
the method that will be called when the validator is executed on the client. In the validator
itself, we need to be able to make a distinction depending on the environment we're in: that's
why we use the SILVERLIGHT compiler directive: this compiler directive tells the compiler
that this part of the code should be taken into account when we're building against the
Silverlight CLR (when we're on the client), and the other part otherwise (when we're on the
server). Related to our code, this means that when we're building against the Silverlight CLR,
the validator will call the Invoke method on MovieDomainContext. When we're building
against the regular .NET CLR, the TitleAlreadyExists method can simply be called
through the MovieDomainService.

All that's left is applying the custom validator to the Title attribute, which is done by adding the
CustomValidation attribute in step 4.

When we run the application and change the Title property, the validation will occur: as
we're on the client, the Invoke method will be invoked for our validation. If we're on the
server, validation will occur through MovieDomainService.

There's more...
As you might have noticed, this validator actually creates a dependency between itself and the
data layer. If you want a more loosely coupled solution for situations like this, have a look at
the Validating data: using the ValidationContext recipe.

See also
For more information on the general validation mechanism (how it works together with the
binding engine), have a look at the Validating data: using data annotations recipe. For more
information on using shared code for validation, have a look at recipe Validating data: writing
a custom validator.

For other validation scenarios, have a look at the other validation-related recipes in
this chapter.

Advanced WCF RIA Services

536

Validating data: triggering validation
when needed

Applies to Silverlight 4, 5

Validation of your data before persisting it is a requirement for almost every application. By
using validation on your Entities, you make sure that no invalid data is persisted to your data
store. With WCF RIA Services, you've got the option to write validation logic once, and it will
be executed both on the client and the server. A lot of this is done automatically: in property
setters, on the client before submitting to the server, on the server before submitting to the
data store, … but sometimes, you want to trigger validation exactly when you need it: this is
what this recipe is about.

In this recipe, you'll learn to manually trigger validation.

Getting ready
Before getting started, you've got to make sure the correct SDK and assemblies to enable
WCF RIA Services are available. Please refer to the recipe Setting up a data solution to work
with WCF RIA Services from Chapter 11, Using WCF RIA Services, for more information.

We're starting from a provided starter solution, which you can find in
Chapter 12\Validation_Trigger_Starter.

The complete solution can be found in Chapter 12\Validation_Trigger_Completed.

How to do it...
We're starting from the starter solution, and we're going to manually trigger validation from
code, on a button click. To achieve this, we'll complete the following steps:

1. Open Home.xaml in RIAServices.Client, and replace the
DataGridTextColumns for Title and Director with this code:
<sdk:DataGridTemplateColumn Header="Title">
 <sdk:DataGridTemplateColumn.CellTemplate>
 <DataTemplate>
 <TextBox Text="{Binding Title, Mode=TwoWay}"
 IsEnabled="False"
 BorderThickness="0"
 Background="Transparent" />
 </DataTemplate>
 </sdk:DataGridTemplateColumn.CellTemplate>
 <sdk:DataGridTemplateColumn.CellEditingTemplate>

D
ow

n
lo

a
d
 f
ro

m
 W

o
w

!
e
B
o
o
k

<
w

w
w

.w
o
w

e
b
o
o
k.

co
m

>

Chapter 12

537

 <DataTemplate>
 <TextBox Text="{Binding Title, Mode=TwoWay}"
 />
 </DataTemplate>
 </sdk:DataGridTemplateColumn.CellEditingTemplate>
</sdk:DataGridTemplateColumn>
<sdk:DataGridTemplateColumn Header="Director">
 <sdk:DataGridTemplateColumn.CellTemplate>
 <DataTemplate>
 <TextBox Text="{Binding Director, Mode=TwoWay}"
 IsEnabled="False"
 BorderThickness="0"
 Background="Transparent" />
 </DataTemplate>
 </sdk:DataGridTemplateColumn.CellTemplate>
 <sdk:DataGridTemplateColumn.CellEditingTemplate>
 <DataTemplate>
 <TextBox Text="{Binding Director, Mode=TwoWay}" />
 </DataTemplate>
 </sdk:DataGridTemplateColumn.CellEditingTemplate>
</sdk:DataGridTemplateColumn>

2. Open HomeViewModel.cs, and add the following using statements:
using System.ComponentModel.DataAnnotations;
using System.Collections.Generic;

3. Locate the Validate() method, and implement it as such:
private void Validate()
{
 foreach (var movie in MovieContext.Movies)
 {
 List<ValidationResult> vResults = new
List<ValidationResult>();

 if (!(Validator.TryValidateObject(movie,
 new ValidationContext(movie, null, null),
vResults)))
 {
 vResults.ForEach(vr => movie.ValidationErrors.
Add(vr));
 }
 }
}

Advanced WCF RIA Services

538

4. You can now build and run your application. When you press the Validate button,
you'll notice the expected validation errors appear on the fields of the newly
added movie.

How it works...
WCF RIA Services executes validation logic automatically on different occasions: it will
trigger validation when setting a new property value. It will also trigger validation when you're
submitting your data to the server (on the client), and before the data is saved to your data
store (on the server). Sometimes, that might not be enough: through the Validator class,
we can easily trigger validation from code any time we need it.

We'll start out by explaining how to trigger validation manually, which is done in step 3: the
Validator class has a method, TryValidateObject, which expects an entity to validate,
a ValidationContext, and an output parameter, which will contain the validation results.
We run through all the movies on our context, and validate all of them. If the validation fails,
we manually add the validation results to the movies' ValidationErrors collection. These
validation results include the correct member names from our validators, which (together with
the binding engine) ensure the errors are visible in the UI.

Important to notice is that we need to manually add these errors: unlike what is the case with
regular validation, they aren't automatically added when validating like this.

TryValidateObject has one overload, allowing you to request validation of
all the properties as well as the object. Two other methods of interest exist:
TryValidateProperty, which validates a property, not a complete object, and
TryValidateValue, which allows you to pass in a list of attributes to be used
as validation rules.

Chapter 12

539

You might notice other methods exist on the Validator class: ValidateObject,
ValidateProperty, and ValidateValue. However, these methods will throw
ValidationExceptions when validation fails, while the TryValidate-methods work
with a list of ValidationResults: the latter is better suited for our scenario, as this works
together nicely with the INotifyDataErrorInfo interface (for more information on this,
have a look at the recipe Validating data: using data annotations).

There's one other thing: in the first step, we've changed the TextColumns of the DataGrid
to TemplateColumns, using a disabled TextBox as CellTemplate. This is done for
cosmetic reasons: by default, a TextColumn uses a TextBlock to display the bound value
when you're not in edit mode. But, the default TextBlock template doesn't have a way to
show validation errors. This would mean the validation errors wouldn't be visible on rows that
aren't in edit mode. By changing the CellTemplate to a TextBox, we get to see the errors
as expected, as a TextBox does have a template that includes a way to show these validation
errors. This is purely cosmetic, but it ensures a better user experience. You can still template
the TextBox to your liking, of course.

There's more...
When you're validating manually, you need to add the validation results to the
ValidationErrors collection on your entity (when needed). This is quite repetitive code,
but there's a way to make this somewhat easier: by writing an extension on the Entity class
to validate the entity, automatically adding the validation results to the error collection.

To achieve this, complete the following steps (starting from the completed solution from
this recipe):

1. Add a new class, EntityExtensions, to the Silverlight client project, and
implement it as such:
public static class EntityExtensions
{
 public static bool TryValidate(this Entity entity, bool
validateAllProperties = true,
 bool applyValidationErrorsOnObject = true, bool
leaveExistingValidationErrorsWhenValid = false)
 {
 var valResults = new List<ValidationResult>();
 var validationResult = false;

 if (Validator.TryValidateObject(entity, new
ValidationContext(entity, null, null),
 valResults, validateAllProperties))
 {
 if (!(leaveExistingValidationErrorsWhenValid))

Advanced WCF RIA Services

540

 {
 entity.ValidationErrors.Clear();
 }
 validationResult = true;
 }
 else
 {
 // not valid. Apply errors on object?
 if (applyValidationErrorsOnObject)
 {
 entity.ValidationErrors.Clear();

 foreach (var valResult in valResults)
 {
 entity.ValidationErrors.Add(valResult);
 }
 }
 }

 return validationResult;
 }
}

2. Add the following using statements to this class:
using System.ServiceModel.DomainServices.Client;
using System.Collections.Generic;
using System.ComponentModel.DataAnnotations;

3. Locate the Validate() method in HomeViewModel.cs, and change it to this:
private void Validate()
{
 foreach (var movie in MovieContext.Movies)
 {
 movie.TryValidate(true, true, false);
 }
}

4. You can now build and run the application. It behaves the same as the one we
completed previously in this recipe, but now we've got cleaner and reusable code.

The complete solution can be found in
Chapter 12\Validation_Trigger_Extension_Completed.

Chapter 12

541

See also
For more information on the general validation mechanism (how it works together with the
binding engine), have a look at the Validating data: using data annotations recipe. For more
information on using shared code for validation, have a look at the recipe Validating data:
writing a custom validator.

For other validation scenarios, have a look at the other validation-related recipes in
this chapter.

Validating data: using the ValidationContext
Applies to Silverlight 4, 5

Validation of your data before persisting it is a requirement for almost every application. By
using validation on your entities, you make sure that no invalid data is persisted to your data
store. With WCF RIA Services, you've got the option to write validation logic once, and it will be
executed both on the client and the server. In some cases, you will need additional data in your
validators: a user role, a value depending on in which company location you are. To enable
these scenarios, you can use the ValidationContext, which is explained in this recipe.

Getting ready
Before getting started, you've got to make sure the correct SDK and assemblies to enable
WCF RIA Services are available. Please refer to the recipe Setting up a data solution to work
with WCF RIA Services from Chapter 11, Using WCF RIA Services for more information.

We're starting from a provided starter solution, which you can find in
Chapter 12\Validation_ValidationContext_Starter.

The complete solution can be found in
Chapter 12\Validation_ValidationContext_Completed.

How to do it...
We're going to write a custom validator, which will check if a Movie entity has a recent
PublishedDate. We'll use the ValidationContext to provide us with a
RecentDateValue to check the published date against. To achieve this, we'll
complete the following steps:

1. Open MovieDomainService.cs, in RIAServices.DomainServices, override
the Initizalize method, and implement it as such:
public override void Initialize(DomainServiceContext context)
{

Advanced WCF RIA Services

542

 Dictionary<object, object> myCustomItems = new
Dictionary<object, object>()
 {
 {"RecentDateValue",
 new DateTime(2010,1,1)}
 };

 this.ValidationContext = new ValidationContext(this,
context, myCustomItems);
 base.Initialize(context);
}

2. Open HomeViewModel.cs in the client application, and add the following code to
the constructor:
Dictionary<object, object> myCustomItems = new
Dictionary<object, object>()
{
 {"RecentDateValue",
 new DateTime(2010,1,1)}
};

MovieContext.ValidationContext = new ValidationContext(this.
MovieContext, null, myCustomItems);

3. Open MovieValidators.shared.cs, and add a new validator:
public static ValidationResult PublishedDateMustBeRecent(
 DateTime publishedDate,
 ValidationContext validationContext)
{
 // get date to compare to
 if (validationContext.Items.ContainsKey("RecentDateValue"))
 {
 DateTime RecentDateValue = (DateTime)validationContext.
Items["RecentDateValue"];
 if (publishedDate < RecentDateValue)
 {
 return new ValidationResult(
 "You cannot input a date that isn't recent."
 , new[] { validationContext.MemberName });
 }
 }
 return ValidationResult.Success;
}

Chapter 12

543

4. Open MovieDomainService.metadata.cs, locate the DatePublished property
in the metadata for the Movie entity, and decorate it with the following attribute:
[CustomValidation(typeof(MovieValidators),
"PublishedDateMustBeRecent")]

5. You can now build and run your application. If you input a date before the
RecentDateValue value, you'll see the expected validation error:

How it works...
As you might have noticed in one of the previous recipes, when you're writing a custom
property validator, a ValidationContext parameter is available: WCF RIA Services
provides this to every validator. A ValidationContext has an Items property, a
Dictionary <object, object>: this can be used as a property bag, so any state we might
need can be inputted in this bag.

Let's have a look at our validator: we're going to check if the movie we're inputting has a
recent date, which we'll check against a RecentDateValue value. This RecentDateValue
will be made available through the ValidationContext: this is something that might
change, and we don't want to rewrite our validators each time; you might want to put this
value to compare to in a database or configuration file, and fetch it from there.

Validation occurs both on the client as well as on the server side, so we need to provide the
ValidationContext on both sides. On the client, this is done through the DomainContext
instance we're using: in our case, the MovieDomainContext. This is what happens in step 2:
we create a new Dictionary<object,object>, adding our RecentDateValue property,
and set the ValidationContext on the MovieDomainContext to a new instance,
constructing it with our dictionary as its Items property.

Advanced WCF RIA Services

544

On to the server, to provide a custom ValidationContext to our domain service, the ideal
place is the Initialize method, as this is always called before any validation occurs. This is
what happens in step 1: just as on the client, we create a custom ValidationContext and
provide it to our domain service.

Note that, besides passing it into the ValidationContext constructor, you can also add
items to the Item dictionary at a later point in time. This is particularly useful when you're
on the client: a domain context's lifetime can be quite long , often it's kept alive until the
application is exited, while a domain service lifetime is short-lived: every time you invoke it, a
new instance is created.

On to the validator itself: through the ValidationContext parameter, we now have access
to our RecentDateValue value: we simply fetch it from the Items dictionary, and use it to
validate the PublishedDate.

That's all there is to it: when the PublishedDate property is validated, our custom validator
will fire, and it will have access to the RecentDateValue value through the Items property
of the ValidationContext.

There's more...
You might have noticed there's another parameter we can pass into the constructor of a
ValidationContext object: an IServiceProvider implementation. This interface
defines one method: GetService.

How would this come in handy? Well, as we've seen in the recipe Validating data: server-side
validation with client-side feedback, validators sometimes require access to your data
layer. However, in the recipe Validating data: server-side validation with client-side feedback,
we've actually created a dependency between our validator and our data layer: not an
ideal situation.

Knowing this, you could refactor that validator using a custom ValidationContext, in
which you pass in a service provider. This in turn accesses the database to check for a
unique title. Like that, you remove the dependency to the data access layer from the
validator, which is especially useful if you want to reuse your validators and achieve better
separation of concerns.

Note that you can add IServiceProvider implementations at any time through
ValidationContext.ServiceContainer.AddService, on the server. On
the client, this isn't available: you can only add them during initialization of the
ValidationContext. Besides that, when you're on the server, it's important to know that
the DomainServiceContext itself (which you get as a parameter in the Initialize
method of a domain service) also implements IServiceProvider – so you can get easy
access to its services.

Chapter 12

545

Why is my Validation.Items collection sometimes empty?
If you run the complete application without setting breakpoints, everything will seem to work
as it should (and it does). But when you put a breakpoint in the new validator, you'll notice that
sometimes the Items collection is empty, even though we provide a ValidationContext
with an Items dictionary which contains the RecentDateValue Key/Value pair. Why is this?

Validation can be triggered at different moments, and by different controls. In this example,
we're using a DataGrid, which triggers its own validation (for example: when you start editing
a property). But the DataGrid control doesn't have any knowledge of WCF RIA Services.
So when validation is triggered by the DataGrid, it will execute the validators without the
custom ValidationContext – therefore, the Items collection is empty (the same applies
for services you provide) in those cases.

Luckily, validation is also triggered in the property setters (amongst other places), which does
provide the correct ValidationContext, ensuring our validator works as expected.

See also
For more information on the general validation mechanism (how it works together with the
binding engine), have a look at the Validating data: using data annotations recipe.

For other validation scenarios, have a look at the other validation-related recipes in
this chapter.

Handling errors on the server
Applies to Silverlight 4, 5

Keeping track of what happens to your services, especially if something goes wrong, is
essential for each business application. In this recipe, you'll learn how you can log errors when
they happen on the server, and where you should write the code to do this.

Getting ready
Before getting started, you've got to make sure the correct SDK and assemblies to enable
WCF RIA Services are available. Please refer to the recipe Setting up a data solution to work
with WCF RIA Services from Chapter 11, Using WCF RIA Services, for more information.

We're starting from a provided starter solution, which you can find in
Chapter 12\Handling_Errors_Starter.

The complete solution can be found in Chapter 12\Handling_Errors_Completed.

Advanced WCF RIA Services

546

How to do it...
We're starting from the provided starter solution, and we'll write code to log errors on the
server. To achieve this, complete the following steps:

1. Open MovieDomainService.cs, and override the OnError method as such:
protected override void OnError(DomainServiceErrorInfo
errorInfo)
{
 string fullError = errorInfo.Error.Message + " --------
" + errorInfo.Error.StackTrace
 + " -------- " + errorInfo.Error.ToString();

 if (errorInfo.Error.InnerException != null)
 {
 fullError += " -------- " + errorInfo.Error.
InnerException.ToString();
 }

 try
 {
 System.IO.StreamWriter StreamWriterError =
 new System.IO.StreamWriter(System.Web.
HttpContext.Current.Server.MapPath("/errorlog.txt"), true);
 StreamWriterError.WriteLine(fullError);
 StreamWriterError.Close();
 }
 catch (Exception)
 {
 // eat
 }

 base.OnError(errorInfo);
}

2. Add a reference to System.Web to RIAServices.DomainServices.

3. Locate the GetMovies() method, and change it so it throws an exception:
public IQueryable<Movie> GetMovies()
{
 throw new Exception("Test for server-side exception");

 return this.ObjectContext.Movies;
}

Chapter 12

547

4. You can now build and run your application. If you set a breakpoint in the OnError
method, you'll notice the error is caught and written to an errorlog.txt file on the
server (note: ensure the account you're running the (development server) on has the
necessary rights to write to this file on disk).

How it works...
When an error happens when you load or submit data with WCF RIA Services, you get notified
of this on the client: the load or submit operation's HasErrors property will be true, and you
can handle the error accordingly, depending on your application's requirements.

But besides that, you'll also want to get an overview of these errors on the server. This is what
we're doing in this recipe.

Each domain service has an overridable (virtual) method, OnError, in which you'll end up
whenever an error happens: when fetching data fails, when your business logic throws an
exception, … In the first step, we're overriding this method. This method has a parameter,
errorInfo, of type DomainServiceErrorInfo. This parameter contains an Error
property, which holds the exception that occurred.

In the third step, we're simulating an error by throwing an exception when loading the Movie
entities: this will ensure we end up in the OnError method.

Advanced WCF RIA Services

548

All that's left now is logging the error: in this recipe, we're writing all the errors to a file,
errorlog.txt, which you can find in the RIAServices.WebHost directory. Of course,
you can log errors any way you want: you can log to the event log, you can use a logging
component from, for example, Enterprise Library, or you can write your own custom
logging logic.

There's more...
You'll also notice the error bubbles up to the client. In most cases, this is what we want: we
want to notify the client something went wrong.

Typically, you'd check for errors (through the HasErrors property), and show a message
accordingly: the Error property contains the exception that happened on the server.

See also
For more advanced scenarios for use with WCF RIA Services, have a look at the other recipes
in this chapter.

Using SQL Azure with WCF RIA Services
Applies to Silverlight 4, 5

One part of Microsoft's offering in the Azure cloud is SQL Azure: a cloud-hosted database
service. But can you use WCF RIA Services in combination with a cloud-hosted SQL Azure
database? Well, you can, and what's more: it's very, very easy to get this going – actually, it
just requires a few simple steps, which you'll learn about in this recipe.

Getting ready
Before getting started, you've got to make sure the correct SDK and assemblies to enable
WCF RIA Services are available. Please refer to the recipe Setting up a data solution to work
with WCF RIA Services from Chapter 11, Using WCF RIA Services, for more information.

Besides that, this recipe also requires you to have access to an SQL Azure environment.
As these are paid subscriptions, we cannot provide you with one for testing purposes for
this recipe.

We're starting from a provided starter solution, which you can find in
Chapter 12\SQL_Azure_Starter.

The complete solution can be found in Chapter 12\SQL_Azure_Completed.

Chapter 12

549

How to do it...
To enable our WCF RIA Services solution to use SQL Azure, we'll modify the provided starter
solution. To achieve this, we'll complete the following steps:

1. First of all, you'll need to execute the provided script on your SQL Azure environment,
to create the tables and data used by this recipe. Log in to your SQL Azure
environment, and execute the MovieRentalDB_TablesAndData.sql script,
provided in the Chapter 12 directory.

2. Locate the web.config file in RIAServices.WebHost.

3. Locate the MovieRentalDBEntities connection string, and change it to this:
 <connectionStrings>
 <add name="MovieRentalDBEntities"
 connectionString="metadata=res://*/MovieModel.
csdl|res://*/MovieModel.ssdl|res://*/MovieModel.
msl;provider=System.Data.SqlClient;provider connection strin
g=INSERTYOURCONNECTIONSTRINGHERE" providerName="System.Data.
EntityClient"/>
 </connectionStrings>

4. You can build and run your solution. It will now use the SQL Azure database at the
provided location:

Advanced WCF RIA Services

550

How it works...
As you've noticed, it's very easy to use SQL Azure as a backend data store instead of SQL
Server: it actually hasn't got a lot to do with WCF RIA Services at all, since you don't need to
change anything on that side: you just need to make sure you use a connection string that
refers to an SQL Azure database instead of SQL Server.

There's more...
SQL Azure extends the capabilities you get with SQL Server to the cloud: it's a cloud-hosted,
relational database service (full name: Microsoft SQL Azure Database). It should feel
very familiar to anyone who's used Transact SQL before: it supports tables, views, stored
procedures, index handling, and so on. However, not everything you're used to from SQL
Server is supported in the cloud: before migrating, have a good look at the supported Transact
SQL statements, which you can find at: http://msdn.microsoft.com/en-us/library/
windowsazure/ee336250.aspx.

See also
Have a look the other recipes in this chapter for more advanced WCF RIA Services scenarios.

Exposing WCF RIA Domain Services as
OData endpoints

Applies to Silverlight 4, 5

An application isn't an island that's standing on its own: often, data from an application is
required by other applications. WCF RIA Services allows you to expose your domain services
to other applications/clients (for example: a WPF, Windows Forms, ASP.NET, Windows Phone,
… client), as OData (Open Data Protocol) endpoints (read-only) and SOAP or JSON/REST
endpoints (read and persist).

In this recipe, you'll learn how to expose a domain service as an OData endpoint.

Getting ready
Before getting started, you've got to make sure the correct SDK and assemblies to enable
WCF RIA Services are available. Please refer to the recipe Setting up a data solution to work
with WCF RIA Services from Chapter 11, Using WCF RIA Services, for more information.

Chapter 12

551

We're starting from a provided starter solution, which you can find in
Chapter 12\Exposing_OData_Starter.

The complete solution can be found in Chapter 12\Exposing_OData_Completed.

How to do it...
To expose an existing domain service as an OData endpoint, we need to make some changes
to the web.config file. You can start from the provided starter solution, but any solution with
one or more domain services will do. Complete the following steps:

1. Add a reference to System.ServiceModel.DomainServices.Hosting.OData
to RIAServices.DomainServices and RIAServices.WebHost.

2. Locate the web.config file in RIAServices.WebHost.

3. Add the following tags to the configuration tag:
<configSections>
 <sectionGroup name="system.serviceModel">
 <section name="domainServices" type="System.ServiceModel.
DomainServices.Hosting.DomainServicesSection, System.
ServiceModel.DomainServices.Hosting, Version=4.0.0.0,
Culture=neutral, PublicKeyToken=31bf3856ad364e35" allowDefiniti
on="MachineToApplication" requirePermission="false" />
 </sectionGroup>
 </configSections>

4. Add the following tags to the system.ServiceModel tag:
<domainServices>
 <endpoints>
 <add name="OData" type="System.ServiceModel.
DomainServices.Hosting.ODataEndpointFactory, System.
ServiceModel.DomainServices.Hosting.OData, Version=4.0.0.0,
Culture=neutral, PublicKeyToken=31bf3856ad364e35" />
 </endpoints>
 </domainServices>

5. Open MovieDomainService.cs in RIAServices.DomainServices, and add
the [Query(IsDefault=true)] attribute to each query method you wish to
expose through the OData endpoint. For example: to the GetMovies() method:
[Query(IsDefault = true)]
public IQueryable<Movie> GetMovies()

Advanced WCF RIA Services

552

6. That's all there is to it: from now on, other clients can access your domain service
via the newly created OData endpoint. For this example, you can point your
browser to http://localhost:36145/RIAServices-DomainServices-
MovieDomainService.svc/OData/, which is where the endpoint resides:

How it works...
WCF RIA Services provides built-in support for OData. The first thing we need is some extra
configuration in the web.config file, which we've done in steps 3 and 4. We add a new
endpoint, OData, which will work for all domain services in the host.

Next, we need to specify which queries we want to expose, by adding the
[Query(IsDefault=true)] attribute, as specified in step 5.

To access this endpoint, you need to point your browser to host/namespace-type/
OData/, in our case: http://localhost:36145/RIAServices-DomainServices-
MovieDomainService.svc/OData/. The domain service resides in the RIAServices.
DomainServices namespace, and is named MovieDomainService, so "namespace-type"
boils down to RIAServices-DomainServices-MovieDomainService.svc.

Note that you can let WCF RIA Services create these endpoints automatically through the Add
Domain Service wizard, by checking the Expose as OData endpoint checkbox.

See also
Have a look at the Exposing WCF RIA Domain Services for other technologies recipe for
another way to expose your domain service.

Chapter 12

553

Exposing WCF RIA Domain Services for
other technologies

Applies to Silverlight 4, 5

WCF RIA Services allows you to expose your domain services to other applications/clients (for
example: a WPF, Windows Forms, ASP.NET, Windows Phone, … client), as OData endpoints
(read-only) or SOAP or JSON/REST endpoints (read and persist). This is very useful, as an
application isn't an island that's standing on its own: often, data from an application is
required by other applications.

In this recipe, you'll learn how to expose a domain service as a SOAP endpoint or
JSON /REST endpoint.

Getting ready
Before getting started, you've got to make sure the correct SDK and assemblies to enable
WCF RIA Services are available. Please refer to the recipe Setting up a data solution to work
with WCF RIA Services from Chapter 11, Using WCF RIA Services, for more information.

For this solution, you also need to have installed the WCF RIA Services Toolkit,
which you can find at http://www.microsoft.com/download/en/details.
aspx?displaylang=en&id=26939.

We're starting from a provided starter solution, which you can find in
Chapter 12\Exposing_Other_Starter.

The complete solution can be found in Chapter 12\Exposing_Other_Completed.

How to do it...
To expose an existing domain service as a SOAP endpoint, we need to make some changes to
the web.config file. You can start from the provided starter solution, but any solution with
one or more domain services will do. Complete the following steps:

1. Add a reference to Microsoft.ServiceModel.DomainServices.Hosting
(from the Toolkit) to RIAServices.DomainServices and RIAServices.
WebHost.

2. Locate the web.config file in RIAServices.WebHost.

3. Add the following tags to the configuration tag:
<configSections>
 <sectionGroup name="system.serviceModel">

Advanced WCF RIA Services

554

 <section name="domainServices" type="System.ServiceModel.
DomainServices.Hosting.DomainServicesSection, System.
ServiceModel.DomainServices.Hosting, Version=4.0.0.0,
Culture=neutral, PublicKeyToken=31bf3856ad364e35" allowDefiniti
on="MachineToApplication" requirePermission="false" />
 </sectionGroup>
 </configSections>

4. Add the following tags to the system.ServiceModel tag:
<domainServices>
 <endpoints>
 <add name="soap"
 type="Microsoft.ServiceModel.DomainServices.
Hosting.SoapXmlEndpointFactory, Microsoft.
ServiceModel.DomainServices.Hosting, Version=4.0.0.0,
Culture=neutral, PublicKeyToken=31bf3856ad364e35" />
 </endpoints>
 </domainServices>

5. That's all there is to it: from now on, other clients can access your domain service
via the newly created SOAP endpoint. For this example, you can point your browser
to http://localhost:36145/Services/RIAServices-DomainServices-
MovieDomainService.svc?wsdl (the WSDL), you'll notice the SOAP endpoint
location:

Chapter 12

555

How it works...
WCF RIA Services provides support for SOAP endpoints through the WCF RIA Services
Toolkit. In the first step, we added a reference to the assembly from the toolkit containing
the endpoint factories. The next thing we need is some extra configuration in the
web.config file, which we've done in steps 3 and 4. We add a new endpoint, SOAP,
which will work for all domain services in the host. The SoapXMLEndpointFactory
will be used to instantiate this.

If you look at the WSDL, by pointing your browser to http://localhost:36145/
Services/RIAServices-DomainServices-MovieDomainService.svc?wsdl, you'll
notice a SOAP endpoint at the bottom of the WSDL. This is the address you'd use in other
clients to access the domain service through a SOAP endpoint.

There's more...
Besides exposing a domain service as a SOAP endpoint, there's also built-in support for JSON/
REST endpoints in the toolkit. To enable a JSON endpoint instead of (or as well as) a SOAP
endpoint, all you need to do is change the tag (or add one) in system.ServiceModel in the
web.config file to this:

<add name="Json" type="Microsoft.ServiceModel.DomainServices.
Hosting.JsonEndpointFactory,
 Microsoft.ServiceModel.DomainServices.Hosting, Version=4.0.0.0,
 Culture=neutral, PublicKeyToken=31bf3856ad364e35"
 />

See also
Have a look at the Exposing WCF RIA Domain Services as OData endpoints recipe for another
way to expose your domain service.

13
Windows Phone 7

In this chapter, we will cover the following topics:

 f Getting our environment ready to start building Windows Phone 7 applications

 f Building your first data-driven Windows Phone 7 application

 f Getting data on your Windows phone 7 using WCF and ASMX

 f Accessing REST services from Windows Phone 7 using XML

 f Accessing REST services from Windows Phone 7 using JSON

 f Working with push notifications using the cloud

 f Storing data in a local SQL CE database

 f Using the background download service

Introduction
Windows Phone 7 is Microsoft's new mobile platform, replacing the mobile versions
known as Windows Mobile (WM) 5, 6, and 6.5. The development platform for this new
version is Silverlight or XNA. Silverlight is of course the choice if we want to build
line-of-business applications.

For many years, mobile developers have been developing applications for the Windows
Mobile platform using the .NET Compact Framework. This framework was actually a trimmed
down version of the regular .NET framework, aimed at developing applications for the
mobile versions of Windows. While the technology had a lot of strengths, Microsoft
acknowledged that it needed something really impressive in the mobile space to compete
with the growing competition. One of the areas where WM was running behind was, for
example, touch-based input using just your fingers.

Windows Phone 7

558

The following screenshot shows a typical Windows Mobile application:

Also, the user experience that could be achieved, as well as performance-related issues, was
sometimes a pain for developers. So, in the beginning of 2010, Microsoft introduced Windows
Phone 7 (note that the name is not Windows Mobile 7). WP7 is a complete break with the
past—it was written from the bottom up and had no resemblance anymore to any previous
versions. By looking at some typical WP7 screens shown below, it's easy to see that the new
version features a modern and very clean interface.

(Screenshot of Pictures Lab by Schulte Software Development http://bit.ly/PicLab)

Chapter 13

559

The phone experience revolves around the Start Screen. The goal of this screen is to
allow users to have all their relevant information in the blink of an eye. The preceding two
screenshots show the typical application interface, with some remarkable items, such as the
emphasis on typography and easy horizontally and vertically scrollable (through the use of
touch) applications. (Yes, this is of course difficult to see in a printed version of a book!)

Another break with the past is the development platform. Previously, we had just one choice:
.NET Compact Framework. With WP7, we can now create applications with Silverlight or
XNA. Silverlight for WP7 is a subset (and in some areas a superset) of the regular Silverlight:
it contains all the usual features, such as data binding, threading, LINQ, Collections, and so
on. A specific control set for WP7 is included as well, which is focused on touch input. On top
of the Silverlight foundation, APIs for phone-specific functions are added that enable making
calls, sending text messages, or taking a picture. XNA should be your choice if you want to
build games for the platform (note that you can build games in Silverlight as well though).

Windows Phone 7

560

It's of course not the goal of this chapter (and in general this book) to teach you everything
there is to know about developing for WP7; there are plenty of great resources on that
available. Therefore, in this chapter, we'll focus on data and services-related topics, which are
what we'll need when building business applications for WP7.

In the very first recipe, we'll build up a basic WP7 application that will guide you through the
steps of building a real-life application. That application also forms the foundation for all other
recipes in this chapter. Just like other Silverlight applications, WP7 apps need to access live
data somewhere. This is again done by talking to services. Since we're working with Silverlight
code here, most of the things we learned in the Silverlight-specific chapters will apply here
as well. We'll see how to communicate with WCF services and REST services using XML
and JSON. We'll also look at how we can integrate server-initiated messages or so-called
push notifications. These notifications are a way of pushing data to a device and in this way,
alerting the user about new updates of data for example.

Before we dive into the recipes, let's take a look at the scenario for this chapter.

The sample scenario for this chapter
All recipes we'll be looking at in this chapter are centered on the same application called
BluRay Collector. Being a movie-fan, I like to buy the occasional Blu-ray disc when I'm on the
road. I am, however, really bad at thinking about creating a list with the Blu-rays I already have
in my collection, let alone keeping that list up-to-date! For this particular problem, I started
thinking about a Windows Phone 7 application and so BluRay Collector was born!

Before building the application, I spent some time thinking about the requirements of the
application. Here's a shortlist of requirements that we'll try to cover in our implementation:

 f Multiuser application: the user needs to log in within the application

 f Store the collection on the server (optionally, this can be hosted in Windows Azure)

 f Manage the list of Blu-rays already owned, favorites, and a wish list

 f When buying a Blu-ray, allow the location to be saved

 f Send e-mails or text messages about a Blu-ray

 f Receive notifications about new Blu-rays being released without the application
being open

 f Save data locally and send to the central (cloud) store when online

 f Cache data locally

During this chapter, we'll be building several of the preceding requirements into a final
application. Note that some items of the preceding list aren't scripted in one of the recipes,
simply because they aren't relevant in the context of this book. However, the final application
included in the code download contains all code to fulfill these requirements. Take a look in
the Chapter13/BluRayCollector_Final folder in the downloads for the source code.

Chapter 13

561

Before writing the code for the application, it's a good practice to build a prototype of
the application, so that we get a high-level view of what we are going to build. For this,
SketchFlow, part of Expression Blend, can be used (note that SketchFlow is only included
in Expression Studio Ultimate and not in other versions of Expression Blend. More info on
this can be found at http://www.microsoft.com/expression/products/
sketchflow_overview.aspx). Using SketchFlow, we can easily create mockups of the
screens we are going to build as well as a map that shows the way these screens can be
navigated to. In the following diagram, we see the map created by SketchFlow, showing the
navigation within the application.

The very first screen is a Login screen, allowing the user to identify himself/herself within the
application. Once authenticated, the user arrives on the Blu-Ray Overview screen. This screen
is a Panorama page. A Panorama is a Windows Phone 7-specific control giving really rich
experiences, similar to the Hubs inside Windows Phone 7 itself (a Hub inside WP7 is a central
location where related information is gathered, such as Office, Music, or the Pictures Hub).
On this page, which serves as the landing page of the application, the user can see the list of
Blu-rays they currently have, their favorites, and their wish list. When clicking on an individual
item, a detail page opens (Blu-Ray Details screen), allowing the user to see the details of the
disc, including an image. The detail page also gives the user a chance to send a text message
or a mail about the item to anyone. Finally, the detail page also allows the user to go into edit
mode so that they can edit the currently selected disc. When the user wants to add a new
disc, they can do so using a button on the Blu-Ray Overview screen. The overview screen also
allows the user to go to the Settings page.

Now that we have an idea about what needs to be built, we can start implementing the
functionalities. First, we'll show you what you need to install for WP7 development. The first
recipe of this chapter will show how to build the general structure of the application to get
acquainted with WP7 development. The following recipes will then focus on the data and
services-related issues that this application needs to overcome.

Windows Phone 7

562

Getting our environment ready to start
building Windows Phone 7 applications

Just like Silverlight, Windows Phone 7 development requires some add-ons being installed
inside Visual Studio 2010. This recipe walks you through getting your environment ready to
build WP7 applications.

How to do it...
The best place to start for all things related to WP7 development is the App Hub
(http://create.msdn.com/en-US/). From here, you can download the WP7 SDK via
http://create.msdn.com/en-us/home/getting_started. The SDK will install the
necessary tools as well as the emulator to test your WP7 applications on your PC.

At the time of writing, the newest version of the SDK is 7.1. This version allows us to build
applications for Windows Phone 7.5 (also known as Windows 7 Phone Mango) and 7.0. This
chapter contains recipes that are specific for WP7.5. Where this is the case, this will be clearly
indicated. The 7.1 SDK release is fully compatible with the 7.0 version. You should target the
7.1 SDK for every new project.

Building your first data-driven Windows
Phone 7 application

As mentioned in the introduction, this first WP7 recipe will guide us through the development
of the general structure of the Blu-ray collector application. With WP7, we have the choice
between Silverlight and XNA as our development platform. Since the latter is aimed at
developing games, the choice for Silverlight to build our app with is quite logical. In this recipe,
we'll be creating a few screens for our application, use navigation between the screens and
in general, look at how our Silverlight knowledge can be leveraged on WP7. The data we'll be
using is hardcoded in the phone application. We'll be looking at how we can access it over a
service in the coming recipes. Later recipes will therefore add to the result of this first recipe.

Getting ready
This recipe starts from scratch so there's no specific starting solution. The finished solution
for this recipe can be found in the Chapter13/BluRayCollector_General_Completed
folder.

To build Windows Phone 7 applications, the Windows Phone 7 SDK needs to be installed as
outlined earlier in this chapter.

Chapter 13

563

How to do it...
Since this recipe is aimed at getting up-to-speed with WP7 development, we are going
to start from scratch. After completing the following steps, you'll have developed a full
WP7 application:

1. Open Visual Studio 2010 with the Phone developer tools installed and create a new
Windows Phone 7 application from the New Project Template window. Note that
several options exist, including Windows Phone Panorama application and Windows
Phone Pivot application. For this recipe, we'll start with the regular Windows Phone
Application. Name the application BluRayCollector. Visual Studio will now offer
us by default a split view, showing on one side the preview of the phone application
and on the other, the XAML view, as shown in the following screenshot:

2. Looking at the SketchFlow map shown in the scenario outline, we can see that
the very first screen should be the Login page, allowing the user to log in to the
application. Add a new Windows Phone Portrait Page and call it Login.xaml.

Windows Phone 7

564

3. To make this page the startup page for the application, open the WMAppManifest.
xml file under the Properties item in the Solution Explorer. In this file, change the
NavigationPage to Login.xaml, as follows:
<Tasks>
 <DefaultTask Name ="_default"
 NavigationPage="Login.xaml"/>
</Tasks>

4. Now, let's create the layout of the Login page. The following XAML code shows the
content of the Grid called ContentPanel. The code we are writing here is similar
(and in most places identical) to Silverlight code.
<Grid x:Name="ContentPanel" Grid.Row="1" Margin="12,0,12,0">
<Image Source="/Assets/bluray.png" Margin="0 360 0 0"></Image>
<Grid>
 <Grid.RowDefinitions>
 <RowDefinition Height="70"></RowDefinition>
 <RowDefinition Height="30"></RowDefinition>
 <RowDefinition Height="80"></RowDefinition>
 <RowDefinition Height="30"></RowDefinition>
 <RowDefinition Height="80"></RowDefinition>
 <RowDefinition Height="70"></RowDefinition>
 <RowDefinition Height="80"></RowDefinition>
 <RowDefinition Height="29"></RowDefinition>
 <RowDefinition Height="*"></RowDefinition>
 </Grid.RowDefinitions>
 <TextBlock Text="Login to your collection"
 FontSize="40" Margin="3">
 </TextBlock>
 <TextBlock Text="User name" Grid.Row="1"
 Style="{StaticResource LabelTextBlockStyle}">
 </TextBlock>
 <TextBox Grid.Row="2" Height="72"
 Text="{Binding UserName, Mode=TwoWay}">
 </TextBox>
 <TextBlock Text="Password" Grid.Row="3"
 Style="{StaticResource LabelTextBlockStyle}">
 </TextBlock>
 <PasswordBox Grid.Row="4" Height="72"
 Password="{Binding Password, Mode=TwoWay}">
 </PasswordBox>
 <CheckBox Content="Remember me?" Name="RememberCheckBox"
 Grid.Row="5">
 </CheckBox>
 <Button Content="Login" HorizontalAlignment="Center"

Chapter 13

565

 Grid.Row="6" Name="LoginButton"
 Click="LoginButton_Click">
 </Button>
 <TextBlock Name="ResultTextBlock" Foreground="Red"
 Grid.Row="7">
 </TextBlock>
</Grid>
</Grid>

In the Assets folder for this chapter, the bluray.png file can be found. Place it
inside a new folder called Assets inside the WP7 project. Set the Build Action
to Content via the Properties window. This is required so that Visual Studio will not
compile the file but include it directly in the output. The following screenshot shows
the result of this XAML code with the image added as well:

Windows Phone 7

566

5. For now, we won't be adding any real check for the username and password, so
we'll just navigate to the Blu-Ray overview screen, which is a Panorama page
(see the SketchFlow map for the navigation scheme) when clicking on the Login
button. Before we can navigate to the page, let's first create it. To do so, add a
Windows Phone Panorama Page to the application and call it BluRayOverview.
xaml. In the Login page, within the Visual Studio designer, double-click on the
LoginButton. Add the following code to the generated event handler to navigate to
the overview page:
private void LoginButton_Click
 (object sender, RoutedEventArgs e)
{
 NavigationService.Navigate(
 new Uri("/BluRayOverview.xaml", UriKind.Relative));
}

A Panorama page contains a Panorama control automatically. Such a control is
recognizable by the fact that we can do horizontal flick gestures to move from
one item to another. The following code shows the Panorama control code. Each
PanoramaItem instance is a content control, meaning that we can place whatever
content we want in there.
<Grid x:Name="LayoutRoot">
 <controls:Panorama Title="my application">
 <!--Panorama item one-->
 <controls:PanoramaItem Header="item1">
 <Grid/>
 </controls:PanoramaItem>
 <!--Panorama item two-->
 <controls:PanoramaItem Header="item2">
 <Grid/>
 </controls:PanoramaItem>
 </controls:Panorama>
</Grid>

6. In the Panorama control, we'll use three items: the first one shows all of our Blu-rays,
the second one shows our favorites, and the third one shows the wish list. Since we
aren't accessing a service here yet, we are going to be binding to two hardcoded lists
of Blu-ray instances. The following is the code for this class; add this class to the WP7
project in a file called BluRay.cs:
public class BluRay
{
 public int BluRayId { get; set; }
 public string MovieName { get; set; }
 public int MovieLength { get; set; }
 public string MovieImageUrl { get; set; }

Chapter 13

567

 public bool IsFavorite { get; set; }
 public bool IsBadMovie { get; set; }
 public string MovieDescription { get; set; }
 public string MovieType { get; set; }
}

7. In the code-behind of BluRayOverview.xaml, we need to bind three
times to an ObservableCollection<BluRay>. Each of these will keep
track of a list of Blu-rays. In the code-behind, we are creating three private
ObservableCollection<BluRay> objects and a public property for each of them,
as follows:
private ObservableCollection<BluRay> _allBluRays;

public ObservableCollection<BluRay> AllBluRays
{
 get { return _allBluRays; }
 set { _allBluRays = value; }
}

private ObservableCollection<BluRay> _favoriteBluRays;

public ObservableCollection<BluRay> FavoriteBluRays
{
 get { return _favoriteBluRays; }
 set { _favoriteBluRays = value; }
}

private ObservableCollection<BluRay> _wishlist;

public ObservableCollection<BluRay> Wishlist
{
 get { return _wishlist; }
 set { _wishlist = value; }
}

8. From the constructor, we are calling a method called InitializeData(). This
method generates the hardcoded data to use for now in our UI. The following code
shows adding one movie, the rest is omitted:
public BluRayOverview()
{
 InitializeComponent();
 InitializeData();
}

Windows Phone 7

568

private void InitializeData()
{
 _allBluRays = new ObservableCollection<BluRay>();

 BluRay bluRay = new BluRay();
 bluRay.BluRayId = 1;
 bluRay.IsFavorite = true;
 bluRay.MovieName = "Ice Age";
 bluRay.MovieType = "Animation";
 bluRay.MovieImageUrl = "iceage.jpg";
 bluRay.MovieDescription = "Some description";
 bluRay.IsBadMovie = false;

 _allBluRays.Add(bluRay);
 ...

 _favoriteBluRays = _allBluRays.Where(b =>
 b.IsFavorite == true).ToObservableCollection<BluRay>();

 _wishlist = new ObservableCollection<BluRay>();
 bluRay = new BluRay();
 bluRay.BluRayId = 101;
 bluRay.IsFavorite = true;
 bluRay.MovieName = "Ice Age 4";
 bluRay.MovieType = "Animation";
 bluRay.MovieImageUrl = "iceage4.jpg";
 bluRay.MovieDescription = "Some description";
 bluRay.IsBadMovie = false;

 _wishlist.Add(bluRay);
 ...
}

9. The ToObservableCollection<T> used above is an extension method. We need
to add it ourselves. To do so, add a new class named CollectionExtensions to
the project. Add the following code to this class. Note that the class is static, which is
required to create extension methods.
 public static class CollectionExtensions
 {
 public static ObservableCollection<T>
 ToObservableCollection<T>(this IEnumerable<T> collection)
 {
 var c = new ObservableCollection<T>();
 foreach (var item in collection)

Chapter 13

569

 c.Add(item);
 return c;
 }
 }

10. To data-bind to the public properties from the code-behind in the UI, we need to set
the DataContext from the constructor. This line basically sets the current instance
of the Page as the DataContext:
this.DataContext = this;

11. With the data exposed, we can now continue our work on the Panorama control. In
each PanoramaItem, we'll add a ListBox control. Each of these can bind to one
of the just-created ObservableCollection<BluRay> objects. We'll also specify
through the DisplayMemberPath that we want to display the MovieName in the
ListBox. The following code snippet shows how our Panorama control is now created:
<controls:Panorama Title="blu-ray collector">
 <controls:PanoramaItem Header="All">
 <Grid>
 <ListBox ItemsSource="{Binding AllBluRays}"
 DisplayMemberPath="MovieName"></ListBox>
 </Grid>
 </controls:PanoramaItem>
 <controls:PanoramaItem Header="Favorites">
 <Grid>
 <ListBox ItemsSource="{Binding FavoriteBluRays}"
 DisplayMemberPath="MovieName"></ListBox>
 </Grid>
 </controls:PanoramaItem>
 <controls:PanoramaItem Header="Wishlist">
 <Grid>
 <ListBox ItemsSource="{Binding Wishlist}"
 DisplayMemberPath="MovieName"></ListBox>
 </Grid>
 </controls:PanoramaItem>
</controls:Panorama>

12. A nice touch of the Panorama control is that we can specify a background.
Automatically, this background pans horizontally at a different speed than the
actual content of the control (the ListBoxes), creating some sort of 3D effect. The
following code sets the Background property of the control to an image inside the
Assets folder. You can use any image you want to create this effect.
<controls:Panorama.Background>
 <ImageBrush ImageSource="/Assets/Hollywood.jpg">
 </ImageBrush>
</controls:Panorama.Background>

D
ow

n
lo

a
d
 f
ro

m
 W

o
w

!
e
B
o
o
k

<
w

w
w

.w
o
w

e
b
o
o
k.

co
m

>

Windows Phone 7

570

The resulting Panorama control is shown in the following screenshot:

13. The next thing we want to add is the detail page of a Blu-ray. This page can be
accessed by tapping on an item in either one of the ListBoxes in the Panorama
control. Start by adding a new Windows Phone Portrait Page and name it
BluRayDetails.xaml. For spacing reasons, we won't show the XAML here, you can
find it in the finished solution for this recipe.

14. To access the details page from the overview, we'll add an event handler on the
SelectionChanged event for each of the ListBox instances in the Panorama
control, as follows:
<controls:PanoramaItem Header="All">
 <Grid>
 <ListBox Name="AllBluRayListBox"
 ItemsSource="{Binding AllBluRays}"

Chapter 13

571

 DisplayMemberPath="MovieName"
 SelectionChanged=
 "AllBluRayListBox_SelectionChanged">
 </ListBox>
 </Grid>
</controls:PanoramaItem>

15. In the event handler for the SelectionChanged event, we can use the
NavigationService.Navigate() method to navigate to the details page.
One other thing we need to do is pass the selected Blu-ray. Since only one single
page is in-scope at any time in a WP7 application, we need to solve the issue of
passing objects between pages. One thing we can do is use Isolated Storage
(you can read more on Isolated Storage in Chapter 5, Working with Local Data).
In the following code, we are saving the selected Blu-ray to Isolated Storage using
IsolatedStorageSettings. The key is the BluRayId; the value is the BluRay
instance itself. After storing the instance, we navigate to the details page, passing the
ID via the URI string:
private void AllBluRayListBox_SelectionChanged
 (object sender, SelectionChangedEventArgs e)
{
 if (AllBluRayListBox.SelectedItem != null)
 {
 BluRay selectedBluRay =
 (BluRay)AllBluRayListBox.SelectedItem;
 IsolatedStorageSettings.ApplicationSettings
 [selectedBluRay.BluRayId.ToString()] =
 selectedBluRay;
 NavigationService.Navigate(
 new Uri("/BluRayDetails.xaml?id="
 + selectedBluRay.BluRayId.ToString(),
 UriKind.Relative));
 }
}

The preceding code requires a using statement for the System.
IO.IsolatedStorage namespace.

16. In the BluRayDetails page, we can capture the passed-in ID in the
OnNavigatedTo() method. This method gets called automatically by the navigation
framework upon navigating to the page, similar to what happens in Silverlight itself.
Using the NavigationContext, we can access the ID. With this ID in hand, we can
access the Isolated Storage again, retrieving the selected Blu-ray. The following code
shows how to do this:
private BluRay _selectedBluRay;
private string _selectedBluRayId = string.Empty;

Windows Phone 7

572

protected override void OnNavigatedTo
 (System.Windows.Navigation.NavigationEventArgs e)
{
 base.OnNavigatedTo(e);
 if (NavigationContext.QueryString.TryGetValue("id",
 out _selectedBluRayId))
 {
 _selectedBluRay =
 IsolatedStorageSettings.ApplicationSettings
 [_selectedBluRayId] as BluRay;
 this.DataContext = _selectedBluRay;
 }
}

Since we are using Isolated Storage classes here again, we need to add a using
statement for System.IO.IsolatedStorage.

17. One last thing we'd like to add is a way to allow the user to navigate to a page where
he or she can add a new Blu-ray or navigate to the settings page. These actions
should be available from the BluRayOverview page. We can make this possible
through the use of an Application Bar. An Application Bar can be compared to a
menu, allowing the user to perform actions. To add such a menu, add the following
code to the overview page. This Application Bar has two buttons, each with an
associated event handler.
<phone:PhoneApplicationPage.ApplicationBar>
 <shell:ApplicationBar BackgroundColor="#FF000000" >
 <shell:ApplicationBarIconButton
 IconUri="/Assets/Icons/appbar.add.rest.png"
 Text="Add Blu-Ray" x:Name="AddBlRayButton"
 Click="AddBluRayButton_Click">
 </shell:ApplicationBarIconButton>
 <shell:ApplicationBarIconButton
 IconUri="/Assets/Icons/appbar.feature.settings.rest.png"
 Text="Settings" x:Name="SettingsButton"
 Click="SettingsButton_Click">
 </shell:ApplicationBarIconButton>
 </shell:ApplicationBar>
</phone:PhoneApplicationPage.ApplicationBar>

18. Add two new Windows Phone Portrait Pages to the project, namely Settings.xaml
and BluRayAdd.xaml.

Chapter 13

573

19. In the event handlers of the ApplicationBarIconButtons, navigate to the newly
created pages. For now, we'll leave these pages blank. The following code performs
the navigation:

private void AddBluRayButton_Click(object sender, EventArgs e)
{
 NavigationService.Navigate(
 new Uri("/BluRayAdd.xaml", UriKind.Relative));
}

private void SettingsButton_Click(object sender, EventArgs e)
{
 NavigationService.Navigate(
 new Uri("/Settings.xaml", UriKind.Relative));
}

With these steps completed, we have successfully created our first data-driven Windows
Phone 7 application!

How it works...
The fact that the development platform for Windows Phone 7 is nothing more than Silverlight
is great news for Silverlight developers. In one go, they have become mobile application
developers as well, since most of the skills gathered learning Silverlight can be leveraged with
Windows Phone 7. However, since it's a mobile platform, not everything that regular Silverlight
supports will work in WP7. The following list outlines the most important concepts we are
covering in this book and explains how they relate to WP7 development:

 f Development environment: Visual Studio and Blend can be used to develop WP7
applications.

 f Data binding: Most data-binding features available in Silverlight work in the exact
same way as in WP7.

 f DataGrid: The DataGrid control doesn't exist in WP7.

 f Local data/Isolated Storage: Isolated Storage works in the same way as it does in
Silverlight. Mango—local database support.

 f MVVM: The principles of MVVM can be applied in WP7 development as well.

 f Services—ASMX/WCF: Works in the same way, although not everything is supported.
See further recipes of this chapter.

 f Services—REST: Works in the same way.

 f WCF Data Services: Supported.

 f WCF RIA Services: Not supported at this point.

Windows Phone 7

574

In this recipe, we built a small, data-driven WP7 application. Of course, not everything was
covered deeply here. The following sections will give you some more information on WP7-
specific topics. In the following recipes of this chapter, we'll take a more in-depth look at the
services and data-related topics.

Application model, a device, and the emulator
Windows Phone 7 applications, just like Silverlight applications, are compiled into a XAP
file, including all resources required for the application, such as images. After building the
application from Visual Studio, the application is ready to be deployed. This deployment can
be done from Visual Studio directly onto a device or on the emulator.

To deploy on a real device, the device needs to be unlocked to become a developer device. To
unlock it, you must register on the AppHub, the central location for all WP7 developer-related
material (http://create.msdn.com/en-US/) as a WP7 developer. This registration costs
(at the time of writing) $99 and not only unlocks the device but also allows you to publish your
applications on the marketplace where you can sell them (and perhaps make a good living out
of your apps!).

If you don't have a device or don't want to pay for the unlocking process, you can still do WP7
development: when installing the tools, an emulator is installed that you can use to deploy
and test your apps. Both ways of working are supported from Visual Studio 2010 and both
also support things like setting and hitting breakpoints.

Pages, navigation, and orientation
With Silverlight 3, the navigation application template was introduced. This new template
allows navigation more easily using the concepts of pages instead of just UserControls. This
page-based model also made its way into WP7, being the way to create new pages (also
known as screens) in your application.

WP7 supports two orientations—portrait (vertical) and landscape (horizontal). A page has the
SupportedOrientations property, which specifies which orientations are supported by
a page. A page can support both, although we as developers are responsible for re-ordering
content when going from one orientation to the other.

Chapter 13

575

When we want to go from one page to another, we again fall back on the
Navigation Application concepts. With this model, navigation is done using the
NavigationService, which exposes a Navigate() method. This method
accepts the name of the XAML file to navigate to. If we want to pass parameters
from one page to another, we can use the NavigationContext to capture the
parameters from the query string using the following code:

NavigationContext.QueryString.TryGetValue("id", out _selectedBluRayId)

Application Bar
If one word describes the WP7 interface, minimalistic should do the trick. Nowhere in the OS
do we find ourselves confronted with a huge list of options or large menus that we need to
scroll through. A place where this shines is the Application Bar. This type of menu sits at the
bottom of the screen (more generally, it always stays on the side of the hardware buttons if
going to landscape mode) and allows the developer to add a maximum of four icon buttons.
If we do need more actions to be available, there's an optional extra menu that can pop up if
needed. The following code shows an Application Bar with an extra menu:

<shell:ApplicationBar BackgroundColor="#FF000000" >
 <shell:ApplicationBarIconButton
 IconUri="Assets/add.png"
 Text="Add Blu-Ray" x:Name="AddBlRayButton"
 Click="AddBluRayButton_Click">
 </shell:ApplicationBarIconButton>
 <shell:ApplicationBarIconButton
 IconUri="Assets/settings.png"
 Text="Settings" x:Name="SettingsButton"
 Click="SettingsButton_Click">
 </shell:ApplicationBarIconButton>
 <shell:ApplicationBar.MenuItems>
 <shell:ApplicationBarMenuItem Text="Send SMS"
 x:Name="SMSMenuItem" Click="SMSMenuItem_Click">
 </shell:ApplicationBarMenuItem>
 <shell:ApplicationBarMenuItem Text="Send Email"
 x:Name="EmailMenuItem" Click="EmailMenuItem_Click">
 </shell:ApplicationBarMenuItem>
 </shell:ApplicationBar.MenuItems>
</shell:ApplicationBar>

Windows Phone 7

576

In the following screenshot, we see the opened menu in the Application Bar:

The Application Bar can be defined in resources (for example in the App.xaml file) and can
then be referenced from the page where it's used. This is handy if more than one page uses
the same Application bar. Alternatively, the page itself can define its own instance.

Isolated Storage
Just like Silverlight, Windows Phone 7 offers Isolated Storage as a means to allow applications
to store data. This data is persistent and can be retrieved after the application has been shut
down. When placing information in this store, we are effectively placing the information on
the internal storage of the device.

In Silverlight, isolated storage is quota-based. By default, an application gets just 1 MB
of storage per user. In the case of Windows Phone 7, there are no quotas and thus each
application can store as much as it wants. This holds a potential risk, in that badly written
applications might end up storing useless information which they neglect to clean up. This
results in a lot of lost storage on the device.

Chapter 13

577

Code-wise, there's little difference with Silverlight. We can create files, read files, and use the
ApplicationSettings to have access to the internal dictionary to store arbitrary objects.

Panorama and Pivot
Windows Phone 7 has so-called hubs. A hub is a central location for specific content. For
example, there's a Pictures hub, a Game hub, the Office hub, and the People hub. The Picture
hub gathers pictures from the device, from friends, from Facebook, and so on.

This typical interface element was opened for developers as well in the form of the Panorama
control. This control can be compared to a Tab control. However, the content of the different
tabs can be flipped through horizontally. Each tab, or PanoramaItem, can contain whatever
contents we want. In the sample from this recipe, we placed in each item a ListBox. A
Panorama is wider than a screen; it can be compared to a canvas that we are sliding over
with the phone, only bringing part of the canvas into the view at each moment. The Panorama
can have a background image, which scrolls at a different speed than the actual content,
giving a 3D/depth effect.

Besides the Panorama control, a similar control called the Pivot was added. This control
works more or less in the same way—we can scroll horizontally as well—the Pivot is more
aimed at displaying data. In the WP7 OS, the mail inbox uses a Pivot: several data views
are placed next to one another (all mails, unread mails, high priority mails, and so on), again
allowing us scroll through them.

A question that often pops up is "Which of these two similar controls should I use and when
should I use them?". While there's no rule set in stone as to which control you should use
and when, more often than not, the Panorama is used as a navigational element. It serves
as a starting place/element to navigate to other pages in our application. The Pivot is more
aimed at displaying data or providing different views of the same data.

See also
Isolated Storage for Silverlight is deeply covered in Chapter 5, Working with local data. Since
Isolated Storage in WP7 is similar to the Silverlight implementation, you can take a look
there for more coverage on the topic. We used data-binding concepts in this chapter as well
(although we didn't spend time explaining them again here). If you want to learn more about
data binding in WP7 or Silverlight, take a look at Chapter 2, An Introduction to Data Binding
and Chapter 3, Advanced Data Binding.

Windows Phone 7

578

Getting data on your Windows phone 7
using WCF

In the previous recipe, we used some hardcoded data in our application to hide the details of
working with services in a WP7 application. The focus of this recipe is accessing remote data
using WCF (Windows Communication Foundation).

Getting ready
In this recipe, we are continuing with the scenario of the previous recipe but we are going
to refactor it to use real data coming from a WCF service. Therefore, you can continue using
the code from the previous recipe or use the starting solution provided with the code of the
book, located in Chapter13/BluRayCollector_WCF_Starter. The completed solution is
located in the Chapter13/BluRayCollector_WCF_Completed folder.

This recipe uses a SQL Server database called BluRayCollector. This database needs to
be added to your SQL Server instance (this can be either a SQL Server Express or a full
version of SQL Server). Refer to the Appendix for more information on how to attach this
database to your server. For your convenience, the database script (*.sql) is also
provided with the downloads.

How to do it...
The goal of this recipe is accessing a service to get data within a WP7 application. There are
several ways of doing this. In this very recipe, we'll take a look at working with WCF. We'll soon
notice that accessing a WCF service from WP7 is not very different from accessing a WCF
service from Silverlight. To get this working, you will need to complete the following steps:

1. Start by adding a new web project to the solution. Select the ASP.NET Empty Web
Application project template and name it BluRayCollector.Services. We'll refer
to this project as the services project from here on.

Chapter 13

579

2. Add an ADO.NET Entity Model to the services project and name it BluRayModel.
edmx. In the wizard, select to generate the model from the database and select all
tables to be added to the model (apart from the sysdiagrams, should it be shown).
Make sure you check the Pluralize or singularize generated object names in the
wizard. In the following screenshot, we can see the generated entity model:

3. Now add a new WCF service that uses the basicHttpBinding—a regular WCF
service will do fine here—and name it BluRayService. Automatically, Visual Studio
generates the BluRayService class and the IBluRayService interface.

Windows Phone 7

580

4. In the service code we need to write, we can return entities coming from Entity
Framework. While this is a good choice, there's an important side-effect that we need
to consider: the amount of returned data. The EF entities contain quite a lot of data
overhead, so it's better to create our own Data Transfer Objects (DTO) and return
those to the WP7 device. Let's first create these DTOs. Create a new class library in
the solution called BluRayCollector.Services.DTO.

5. In this new class library, create a new class called BluRay. The following is the
code for the class. Note that it's almost the same class that we used in the previous
recipe apart from some new attributes that are being used on the class and its
members here.
[DataContract]
public class BluRay
{
 [DataMember]
 public int BluRayId { get; set; }

 [DataMember]
 public string MovieName { get; set; }

 [DataMember]
 public int MovieLength { get; set; }

 [DataMember]
 public string MovieImageUrl { get; set; }

 [DataMember]
 public bool IsFavorite { get; set; }

 [DataMember]
 public bool IsBadMovie { get; set; }

 [DataMember]
 public string MovieDescription { get; set; }

 [DataMember]
 public string MovieType { get; set; }

 [DataMember]
 public int MovieTypeId { get; set; }

 [DataMember]
 public MovieType BluRayMovieType { get; set; }

 [DataMember]
 public byte[] ImageBytes { get; set; }

Chapter 13

581

 [DataMember]
 public int UserId { get; set; }

 [DataMember]
 public string PurchaseLocationLatitude { get; set; }

 [DataMember]
 public string PurchaseLocationLongitude { get; set; }
}

The other classes aren't shown here for spacing reasons. Take a look at the
sample code of this recipe for the other classes. Add to your project the classes
MovieType, User, and Wishlist. Note that the DataContract and DataMember
attributes require a using statement for the System.Runtime.Serialization
namespace. We also need to add an assembly reference to the System.Runtime.
Serialization assembly.

6. Add a reference from the services project to the DTO project so that we can use these
DTOs from within the service code.

7. We're now ready to build the service code. In the IBluRayService interface, add
a method stub called GetAllBluRaysForUser() as shown in the following code.
Note that this method has the OperationContract applied to it. This method is
available to be called from clients.
[ServiceContract]
public interface IBluRayService
{
 [OperationContract]
 List<DTO.BluRay> GetAllBluRaysForUser(int userId);
}

8. With the interface method added, we need to add an implementation in the
BluRayService class. Add the following code:
public List<DTO.BluRay> GetAllBluRaysForUser(int userId)
{
 BluRayCollectorEntities context =
 new BluRayCollectorEntities();

 var result = from b in context.BluRays
 where b.UserId == userId
 select b;

 return ConvertIntoBluRayDtoList(result.ToList());
}

Windows Phone 7

582

This method returns a List of DTO BluRay objects. We use LINQ-To-Entities
code to retrieve all BluRays from a specific user from the database. Instead of
returning these entities directly, we do a conversion into our DTO objects using the
ConvertIntoBluRayDtoList() method, as shown in the following code:
private List<DTO.BluRay> ConvertIntoBluRayDtoList
 (List<BluRay> list)
{
 List<DTO.BluRay> bluRays = new List<DTO.BluRay>();

 foreach (var item in list)
 {
 DTO.BluRay bluRay = ConvertIntoSingleBluRayDto(item);
 bluRays.Add(bluRay);
 }
 return bluRays;
}

private DTO.BluRay ConvertIntoSingleBluRayDto(BluRay item)
{
 DTO.BluRay bluRay = new DTO.BluRay();
 bluRay.BluRayId = item.BluRayId;
 bluRay.MovieName = item.MovieName;
 bluRay.MovieLength = (int)item.MovieLength;
 bluRay.MovieImageUrl = item.MovieImageUrl;
 bluRay.IsFavorite = (bool)item.IsFavorite;
 bluRay.IsBadMovie = (bool)item.IsBadMovie;
 bluRay.MovieDescription = item.MovieDescription;
 bluRay.UserId = item.UserId;
 bluRay.PurchaseLocationLatitude =
 item.PurchaseLocationLatitude;
 bluRay.PurchaseLocationLongitude =
 item.PurchaseLocationLongitude;
 return bluRay;
}

9. With the service code ready, build it. Now go to the WP7 project and add a service
reference to the services project. Set the namespace to BluRayService. Just as
with regular Silverlight, Visual Studio creates a service proxy.

10. In the BluRayOverview page, we'll now use the proxy to load in the Blu-rays. An
important aspect is that we want to limit the amount of data being sent, so once the
list is loaded, we'll cache it in the Isolated Storage. This can easily be seen in the
following code snippet. First we check for the list already being cached on the client.
If it's not present, we use a service call to get new data. In the callback method, the
data is bound and also stored in the Isolated Storage.

Chapter 13

583

protected override void OnNavigatedTo
 (System.Windows.Navigation.NavigationEventArgs e)
{
 base.OnNavigatedTo(e);
 BluRayService.BluRayServiceClient proxy =
 new BluRayService.BluRayServiceClient();
 if(!IsolatedStorageSettings.ApplicationSettings.Contains
 ("AllBluRays"))
 {
 proxy.GetAllBluRaysForUserCompleted +=
 new EventHandler
 <BluRayService.GetAllBluRaysForUserCompletedEventArgs>
 (proxy_GetAllBluRaysForUserCompleted);
 proxy.GetAllBluRaysForUserAsync(1);
 }
 else
 {
 AllBluRayListBox.ItemsSource =
 IsolatedStorageSettings.ApplicationSettings
 ["AllBluRays"]
 as ObservableCollection<BluRayService.BluRay>;
 }
}
void proxy_GetAllBluRaysForUserCompleted
 (object sender,
 BluRayService.GetAllBluRaysForUserCompletedEventArgs e)
{
 AllBluRayListBox.ItemsSource = e.Result;

 IsolatedStorageSettings.ApplicationSettings["AllBluRays"] =
e.Result;
}

This code is placed in the OnNavigatedTo() method, since we want it to execute
when the page is being navigated to.

11. We also need to update the properties that were previously using the BluRay class.
Instead, they now need to use the BluRayService.BluRay class. This is shown in
the following code:
private ObservableCollection<BluRayService.BluRay>
 _allBluRays;
public ObservableCollection<BluRayService.BluRay> AllBluRays
{
 get { return _allBluRays; }
 set { _allBluRays = value; }

Windows Phone 7

584

}
private ObservableCollection<BluRayService.BluRay>
 _favoriteBluRays;
public ObservableCollection<BluRayService.BluRay>
 FavoriteBluRays
{
 get { return _favoriteBluRays; }
 set { _favoriteBluRays = value; }
}
private ObservableCollection<BluRayService.BluRay> _wishlist;

public ObservableCollection<BluRayService.BluRay> Wishlist
{
 get { return _wishlist; }
 set { _wishlist = value; }
}

12. Also the AllBluRayListBox_SelectionChanged() needs to be updated.
Change the following line of code as follows:
var selectedBluRay =
 AllBluRayListBox.SelectedItem as BluRayService.BluRay;

13. Finally, update the BluRayDetails.xaml.cs to also make use of the
BluRayService.BluRay class.

With this code, the data used in the application is now real data coming from the service.
In the finished application, quite a few more service methods are being used to get, create,
update, and delete data from the WP7 application. Take a look at the finished sample for this!

How it works...
As you may have noticed, working with WCF from WP7 is not very different from working with
Silverlight. The steps that we need to follow are the same as we followed when connecting to a
service from a Silverlight application:

1. Create a WCF Service that uses basicHttpBinding.

2. Implement the service methods.

3. Create a reference from the WP7 application to the service. Visual Studio creates a
proxy class for us.

4. Instantiate the proxy and let the WP7 application perform asynchronous
communication with the service.

Chapter 13

585

ASMX services
In this recipe, we worked with WCF services. Would things work with ASMX web services as
well? The answer is definitely a yes. Just like Silverlight, WP7 can communicate with ASMX
services without any restriction. This type of services defaults to basicHttpBinding so
there's no change needed in the configuration.

WCF services
For WCF, the story is twofold. On one hand, WCF services can be connected from WP7
applications. However, on the other hand, WCF services can use different types of bindings
and these aren't all supported from the phone.

In the preceding steps, we added a regular WCF service to the services project and still we
were able to connect to this service. Normally, we would expect that this generates a service
that uses wsHttpBinding and in that case, Silverlight wouldn't be able to communicate with
it. Let's look at the generated config code (the generated code is as follows):

<system.serviceModel>
 <behaviors>
 <serviceBehaviors>
 <behavior name="">
 <serviceMetadata httpGetEnabled="true" />
 <serviceDebug
 includeExceptionDetailInFaults="false" /> </behavior>
 </serviceBehaviors>
 </behaviors>
 <serviceHostingEnvironment
 multipleSiteBindingsEnabled="true" />
</system.serviceModel>

As we can see, no service configuration code was added. In .NET 4.0, when we create a
new WCF service, it uses the default, being a basicHttpBinding for HTTP traffic. The
WP7 application can connect to a service with this type of binding without problems. Should
we have used a service already configured to use another type of binding, this would not
have worked. In this case, we would need to add a new service endpoint that uses the
basicHttpBinding.

Data transfer
An important aspect to consider in the case of mobile applications is the amount of
transferred data. Data connections on mobile devices aren't always fast and data
subscriptions in many countries are still quite expensive. Therefore, when we build
applications for the mobile platform, we need to think of ways to limit the amount of
transferred data.

Windows Phone 7

586

In this recipe, the service-side uses Entity Framework-generated entities. While we could
transfer these to the client, we choose not to do so. There are two reasons for this:

 f When transferring the EF entities, there's an overhead created with the amount of
generated data when serializing the entities.

 f The entities may (and probably) will contain properties that we aren't using on the
client side. Transferring these to the client results in useless data being sent over the
wireless connection, costing more in data usage and also causing the application to
become slower. Also, the default entity may even contain data that we don't want to
expose (for example, a Customer may have a Bank Account Number as a field; we
shouldn't send that down to the device).

The solution is building DTOs, classes that merely perform data transfer and have no
further goal (notice that there aren't any methods in these classes). On the server side,
after executing the query, we then need to convert the objects, but the overhead caused by
this translation is minor to the benefit we get in just transferring clean classes with only the
properties we need on the client. The DTOs give us much more control over how the data is
sent and what data is being sent.

Credentials
If we need to send credentials to a WCF service (preferably in combination with HTTPS!), we
can do so from a WP7 application using the following code:

proxy.ClientCredentials.UserName.UserName = "gill";
proxy.ClientCredentials.UserName.Password = "1212";

What works and what doesn't work
Throughout the book, we have been using WCF services from Silverlight that are far from
regular services. Not everything, however, is supported from WP7 in the WCF area. The
following list provides an overview of things that aren't working in the current release of WP7:

 f WCF RIA Services
 f Authentication over NTLM
 f Custom bindings
 f ChannelFactory.Create is protected
 f Duplex communication
 f RSS and Atom (we can use the plain XML parsing for this though)

See also
As already mentioned, working with WCF (and ASMX services) from a WP7 application is
similar to Silverlight. Therefore, all concepts explained in Chapters 7 through 9 are relevant
here as well.

Chapter 13

587

Accessing REST services from Windows
Phone 7 using XML

In Chapter 10, Talking to REST and WCF Data Services, we looked extensively at working with
REST services. REST services return a clear text response to their clients, in XML or in JSON.
Both have the advantage over SOAP messages (used when we work with ASMX and WCF)
of having a smaller footprint when it comes to data usage, which is a real plus in the mobile
world. In this recipe, we'll rewrite the WCF service so that it uses REST over XML instead of
sending SOAP messages. Of course the client needs to be updated as well to read and parse
these XML messages, so we will be writing some WP7 code as well!

Getting ready
If you have been working through the other recipes in this chapter, you can keep using your
own code. Alternatively, you can use the starting solution located in the in Chapter13/
BluRayCollector_XML_Starter. The completed solution is located in the Chapter13/
BluRayCollector_XML_Completed folder. This recipe, just like almost all others in this
chapter, uses the BluRayCollector database.

How to do it...
By default, a WCF service communicates using the SOAP protocol. We can, however, configure
it to work as a REST service, so that it returns XML or JSON responses. We covered this in
Chapter 10, Talking to REST and WCF Data Services but for the sake of simplicity we'll go
over the required steps here very quickly. After updating the service, the WP7 client requires
changes as well. It can no longer use a generated proxy—we can't add a service reference
to a REST service—so we'll need to introduce the WebClient or the HttpWebRequest.
Follow these steps to make the WP7 application read out an XML response, coming from
a REST service:

1. The service methods within the IBluRayService interface need to be attributed
with a WebGet attribute. To this attribute, we pass several parameters. The
UriTemplate defines what the URI pattern should be for clients requesting the
service. In this case, we have set this to getallbluraysforuser/{userid}.
Secondly, the BodyStyle is set to WebMessageBodyStyle.Bare and finally the
ResponseFormat is set to WebMessageFormat.Xml. This causes the service to
respond in XML format. The following code shows the required changes:
[OperationContract]
[WebGet(UriTemplate = "getallbluraysforuser/{userid}",
 BodyStyle = WebMessageBodyStyle.Bare,
 ResponseFormat = WebMessageFormat.Xml)]
List<DTO.BluRay> GetAllBluraysForUser(string userid);

Windows Phone 7

588

2. The service implementation code itself doesn't need to be changed.

3. The configuration code, however, needs to be changed. We need to specify that we
are using the webHttpBinding for this service. The following code should now be
the only system.serviceModel code in the web.config file:
<system.serviceModel>
 <behaviors>
 <endpointBehaviors>
 <behavior name="webBehavior">
 <webHttp/>
 </behavior>
 </endpointBehaviors>
 </behaviors>
 <services>
 <service
 name="BluRayCollector.Services.RESTBluRayService">
 <endpoint address=""
 binding="webHttpBinding"
 behaviorConfiguration="webBehavior"
 contract="BluRayCollector.Services.IRESTBluRayService"/>
 </service>
 </services>
</system.serviceModel>

4. We're ready on the server side; let's now look at the changes we need to do on the
client within the WP7 application. We can start by removing the service reference.

5. Next, in the code of the BluRayOverview page, in the OnNavigatedTo() method,
we need to remove the use of the proxy class. Instead, we need to contact the REST
service. We learned in Chapter 10, Talking to REST and WCF Data Services, that we
can do so using either the WebClient or the HttpWebRequest. We'll use the first
one here (the next recipe uses the latter). The following code shows how to perform
the service call:
private string baseUrl =
 "http://localhost:2956/RESTBluRayService.svc/";

private string allBluRaysForUser = "getallbluraysforuser/{0}";

protected override void OnNavigatedTo
 (System.Windows.Navigation.NavigationEventArgs e)
{
 base.OnNavigatedTo(e);

 if (!IsolatedStorageSettings.ApplicationSettings
 .Contains("AllBluRays"))

Chapter 13

589

 {
 WebClient client = new WebClient();
 client.DownloadStringCompleted +=
 new DownloadStringCompletedEventHandler
 (client_DownloadStringCompleted);
 client.DownloadStringAsync(
 new Uri(
 baseUrl + string.Format(allBluRaysForUser, "1")));
 }
 else
 {
 AllBluRayListBox.ItemsSource =
 IsolatedStorageSettings.ApplicationSettings
 ["AllBluRays"] as ObservableCollection<BluRay>;
 }
}

Note that we are also here checking if the list of BluRays has already been
downloaded to the client. If not, we will use the WebClient class to communicate in
an asynchronous manner with the service.

6. The previous code specified a callback method, called when the service call
completes. In this method, we are using LINQ To XML to parse the service response:
void client_DownloadStringCompleted
 (object sender, DownloadStringCompletedEventArgs e)
{
 if (e.Error == null)
 {
 string responseString = e.Result;

 XDocument xml = XDocument.Parse(e.Result);
 var bluRays = from results in xml.Descendants("BluRay")
 select new BluRay
 {
 BluRayId = Int32.Parse(results.Element("BluRayId")
 .Value.ToString()),
 IsBadMovie = Boolean.Parse(results.Descendants
 ("IsBadMovie").First().Value),
 IsFavorite = Boolean.Parse(results.Descendants
 ("IsFavorite").First().Value),
 MovieDescription = results.Descendants
 ("MovieDescription").First().Value,
 MovieLength = Int32.Parse(results.Element
 ("MovieLength").Value.ToString()),
 MovieName = results.Element("MovieName")

Windows Phone 7

590

 .Value.ToString(),
 MovieType = results.Element("MovieType")
 .Value.ToString()
 };
 AllBluRays = bluRays.ToList()
 .ToObservableCollection<BluRay>();
 AllBluRayListBox.ItemsSource = AllBluRays;
 }
}

7. The preceding code requires the BluRay class within the Silverlight code. In WCF,
this class was generated when adding the service reference. With REST, we don't
have that advantage. Therefore, we need to add this class ourselves. Create a new
class, name it BluRay, and add the following code:
public class BluRay
{
 public int BluRayId { get; set; }
 public string MovieName { get; set; }
 public int MovieLength { get; set; }
 public string MovieImageUrl { get; set; }
 public bool IsFavorite { get; set; }
 public bool IsBadMovie { get; set; }
 public string MovieDescription { get; set; }
 public string MovieType { get; set; }
}

With this code in place, the application works now using XML over a REST service.

How it works...
When a WP7 application needs to work with a REST service that sends XML responses, it can
do so in the exact same way as a Silverlight application. We can either use the WebClient
class or the HttpWebRequest class. In both cases, the call will be asynchronously executed
so that the WP7 application remains responsive in the meantime.

One limitation in regular Silverlight applications is that the service either needs to be in
the same domain or a client access policy file needs to be in the root of the domain. This,
however, is not required for WP7 applications. They can call any service, whether or not a
policy file is
in place.

This results in the fact that WP7 applications can communicate with the REST API from for
example Twitter, Facebook, and Google without problems. For WP7 applications, we don't
need to include an intermediate service layer, which is required for regular, in-browser
Silverlight applications.

Chapter 13

591

See also
We covered working with REST services extensively in Chapter 10, Talking to REST and WCF
Data Services, as well as how to parse the XML using LINQ to XML.

Accessing REST services from Windows
Phone 7 using JSON

In the previous recipe, we looked at how we could connect to a REST service that returned
XML. The REST service itself was a WCF service that was configured to act as a REST service.
XML is not the only format often used in REST scenarios; often JSON is used. In this recipe,
we'll look at how we can connect and communicate from a WP7 application with a REST
service that returns JSON.

Getting ready
If you have been working through the recipes of this chapter, you can keep using your
own code. Alternatively, you can use the starting solution located in the Chapter13/
BluRayCollector_JSON_Starter folder. The completed solution is located in the
Chapter13/BluRayCollector_JSON_Completed folder. This recipe, just like almost
all others in this chapter, uses the BluRayCollector database.

How to do it...
For this recipe, we need to make changes both on the server side and of course on the client
side. Within the service, we need to make changes so that the service acts as a REST service
and configure it so it returns a JSON response. On the client, we need to make sure that we
can connect with the service and read out the JSON-formatted response. Take a look at the
following steps to get this scenario working:

1. First things first! Let's change the service so that it will send a response in the JSON
format. In the previous recipe, we looked at what we needed to do to make the WCF
service act as a REST service that communicates using XML. Not much needs to
change to use JSON. In the IBluRayService interface, we need to specify that we
want to use JSON as follows:
[OperationContract]
[WebGet(UriTemplate = "getallbluraysforuser/{userid}",
 BodyStyle = WebMessageBodyStyle.Bare,
 ResponseFormat = WebMessageFormat.Json)]
List<DTO.BluRay> GetAllBluraysForUser(string userid);

Windows Phone 7

592

2. The configuration code is the same as for the REST service that uses XML. Again we
use the webHttpBinding, as shown in the following code. This code needs to be in
the web.config of the services project.
<system.serviceModel>
 <behaviors>
 <endpointBehaviors>
 <behavior name="webBehavior">
 <webHttp/>
 </behavior>
 </endpointBehaviors>
 </behaviors>
 <services>
 <service
 name="BluRayCollector.Services.RESTBluRayService">
 <endpoint address=""
 binding="webHttpBinding"
 behaviorConfiguration="webBehavior"
 contract=
 "BluRayCollector.Services.IRESTBluRayService"/>
 </service>
 </services>
</system.serviceModel>

3. For the server side, we are finished. It's possible to test that the service does indeed
return a JSON response. To do so, build the project, right-click on the *.svc file
in the Solution Explorer, and select View in browser. By appending the URL with
/getallbluraysforuser/1, we get a response in the form of a JSON-formatted
text file.

4. Let's now focus our attention on the client side. We need to use an
asynchronous pattern in order not to lock the UI while making the request. In the
BluRayOverview.xaml in the OnNavigatedTo() method, we'll make the request
to the JSON-enabled REST service. The following code creates the async call:
private string baseUrl = "http://localhost:2956/
RESTBluRayService.svc/";
private string allBluRaysForUser = "getallbluraysforuser/{0}";

protected override void OnNavigatedTo
 (System.Windows.Navigation.NavigationEventArgs e)
{
 base.OnNavigatedTo(e);

 if(!IsolatedStorageSettings.ApplicationSettings
 .Contains("AllBluRays"))
 {

Chapter 13

593

 var webRequest = (HttpWebRequest)WebRequest
 .Create(baseUrl +
 string.Format(allBluRaysForUser, "1"));
 webRequest.BeginGetResponse(
 new AsyncCallback(getAllBluRaysForUserIdCallback),
 webRequest);
 }
 else
 {
 AllBluRayListBox.ItemsSource =
 IsolatedStorageSettings.ApplicationSettings
 ["AllBluRays"] as ObservableCollection<BluRay>;
 }
}

As in previous recipes, we are first performing a check to see if the list of Blu-rays
has already been loaded. If not, things get interesting: we can make the call to the
JSON service. Using the HttpWebRequest class (which we know from Silverlight),
we make an async call, passing in the request to have access to it in the callback,
getAllBluRaysForUserIdCallback.

5. We now need to write the callback method, which will be invoked when the call is
ready. The following snippet contains the code for the callback. First, we access the
response object and we read it out using a StreamReader instance.
void getAllBluRaysForUserIdCallback
 (IAsyncResult asynchronousResult)
{
 WebResponse response =
 ((HttpWebRequest)asynchronousResult.AsyncState)
 .EndGetResponse(asynchronousResult);

 using (StreamReader streamReader =
 new StreamReader(response.GetResponseStream()))
 {
 string responseString = streamReader.ReadToEnd();
 streamReader.Close();
 }
}

6. Having the response as a JSON string isn't very useful. Instead, we need a
List<BluRay> object, so the next thing we need to do is parse the JSON string.
In WP7, there's no LINQ To JSON support, but the DataContractJsonSerializer
is supported. This class lives in the System.Runtime.Serialization.Json
namespace, so add a reference to the System.Runtime.Serialization
assembly.

Windows Phone 7

594

7. We're now ready to parse the response. The following code converts the string into
the List<BluRay>:
using (MemoryStream memoryStream =
 new MemoryStream(
 Encoding.Unicode.GetBytes(responseString)))
{
 DataContractJsonSerializer jsonSerializer =
 new DataContractJsonSerializer(typeof(List<BluRay>));
 AllBluRays = ((List<BluRay>) jsonSerializer.ReadObject
 (memoryStream)).ToObservableCollection<BluRay>();
 Dispatcher.BeginInvoke(() =>
 AllBluRayListBox.ItemsSource = AllBluRays);
}

The fact that we need to use the Dispatcher.BeginInvoke() here is simple: the
code was executing on a thread different than the UI thread.

8. The BluRay class needs to be updated. Note the use of the DataMember attribute. It
can be used to perform a translation from the JSON property to the CLR property.

[DataContract]
public class BluRay
{
 [DataMember(Name = "BluRayId")]
 public int BluRayId { get; set; }
 [DataMember(Name = "MovieName")]
 public string MovieName { get; set; }
 [DataMember(Name = "MovieLength")]
 public int MovieLength { get; set; }
 [DataMember(Name = "MovieImageUrl")]
 public string MovieImageUrl { get; set; }
 [DataMember(Name = "IsFavorite")]
 public bool IsFavorite { get; set; }
 [DataMember(Name = "IsBadMovie")]
 public bool IsBadMovie { get; set; }
 [DataMember(Name = "MovieDescription")]
 public string MovieDescription { get; set; }
 [DataMember(Name = "MovieType")]
 public string MovieType { get; set; }
}

With this code in place, the application works in the same way as it did before, now using
JSON to communicate with the service layer.

Chapter 13

595

How it works...
Communicating with a REST service that returns JSON is similar to communicating with
a service that returns XML. The biggest difference is of course in the way the response
must be parsed.

In WP7, to parse JSON-formatted text, we need to use the DataContractJsonSerializer.
This class is included in the System.Runtime.Serialization.Json namespace. In
Silverlight 5, we have the choice between this class and all classes living in the System.Json
namespace. In WP7, however, the latter isn't included so we can't use it.

To get the JSON response, we used here the HttpWebRequest class. This way, we have
full control over the response being sent. In the callback method, which is invoked when the
service call is complete, we get access to the JSON response. This response is read out using
a StreamReader. At that point, we just have a string; we need more than that!

This is where the DataContractJsonSerializer comes in. In its constructor, we pass the
type we are targeting to create, in this case, List<BluRay>. Using the ReadObject method,
passing in a MemoryStream containing the response string, we convert the string into the
required List<Bluray>. This BluRay class is attributed using the DataContract attribute.
More importantly, its members are attributed with the DataMember attribute. This attribute
accepts a Name. The value of the Name parameter is the name of the property in the JSON-
string. So, if the MovieName was called pictureName in the JSON-string, we could perform
the conversion as follows:

[DataMember(Name = "pictureName")]
public string MovieName { get; set; }

In our sample, the names are the same in both cases, so no conversion was needed.

Why JSON?
One might ask: why would I use JSON? Remember that we discussed in the Getting data
on your Windows phone 7 using WCF recipe that data on a mobile device is still expensive
today. Well, when comparing all service types, a REST service that uses JSON is the cheapest
one when it comes to exchanged data. JSON is very compact and adds almost no overhead
to the response. Compared to other technologies, it's sometimes ten times more compact.
This of course has a huge effect on the amount of data being transferred and the cost
associated with it, not to mention the speed of downloading. The following code shows a
sample JSON-string and the same data in an XML response. It's easy to see that JSON is
more compact!

Windows Phone 7

596

The JSON response:

{
 "BluRayId":1,
 "BluRayMovieType":null,
 "ImageBytes":null,
 "IsBadMovie":false,
 "IsFavorite":true,
 "MovieDescription":"blablabla",
 "MovieImageUrl":"gillcleeren_jurassicpark.jpg",
 "MovieLength":135,
 "MovieName":"Jurassic Park 3",
 "MovieType":null,
 "MovieTypeId":0,
 "PurchaseLocationLatitude":"7.01270642551253",
 "PurchaseLocationLongitude":"-13.2422042979124",
 "UserId":1
}

The XML response:

<BluRay>
 <BluRayId>1</BluRayId>
 <BluRayMovieType i:nil="true"
xmlns:a="http://schemas.datacontract.org/2004/07/BluRayCollector.
Services.DTO" />
 <ImageBytes i:nil="true" />
 <IsBadMovie>false</IsBadMovie>
 <IsFavorite>true</IsFavorite>
 <MovieDescription>blablabla</MovieDescription>
 <MovieImageUrl>gillcleeren_jurassicpark.jpg</MovieImageUrl>
 <MovieLength>135</MovieLength>
 <MovieName>Jurassic Park 3</MovieName>
 <MovieType i:nil="true" />
 <MovieTypeId>0</MovieTypeId>
 <PurchaseLocationLatitude>7.01270642551253
 </PurchaseLocationLatitude>
 <PurchaseLocationLongitude>-13.2422042979124
 </PurchaseLocationLongitude>
 <UserId>1</UserId>
</BluRay>

D
ow

n
lo

a
d
 f
ro

m
 W

o
w

!
e
B
o
o
k

<
w

w
w

.w
o
w

e
b
o
o
k.

co
m

>

Chapter 13

597

See also
In the previous recipe, Accessing REST services from Windows Phone 7 using XML, we looked
at communicating using XML. Besides that, we looked at JSON from Silverlight as well. Take
a look at the Communicating with a REST service using JSON recipe in Chapter 10, Talking to
REST and WCF Data Services, for more information on this topic.

Working with push notifications using
the cloud

In the previous recipes, we saw that the model of the WP7 OS is such that only one
application can be running at any given moment (apart from a few built-in applications). The
big advantage of this model is the performance benefit. No longer can an application that's
running in the background leak memory and in the end, lock up the entire device. With the
single running application model, all these are memories of the past. Of course, it's not all
good. On some occasions, we may want to receive updates from an application, say a stock
application. To receive these updates, the application must be running. On the other hand,
we want to use the phone for other applications in the meantime as well. This seems, at first
hand, an impossible thing to do.

There is a solution, however, in the form of push notifications. As the word says, a push
notification is a message being pushed to the device, wherever it may be, over a network
connection from the cloud. The push service is a service hosted by Microsoft Windows
Azure, Microsoft's cloud offering. In this recipe, we'll take a look at how we can work with
these notifications and what other advantages they offer.

Getting ready
This recipe builds on an already existing WCF service that returns a list of Blu-rays, like we
had at the end of the Getting data on your Windows phone 7: using WCF recipe. You can
use the code from that recipe or, alternatively, use the starting solution located in the in
Chapter13/ BluRayCollector_Push_Notifications_Starter. The completed
solution is located in the Chapter13/ BluRayCollector_Push_Notifications_
Completed folder. This recipe, just like almost all others in this chapter, uses the
BluRayCollector database.

Windows Phone 7

598

How to do it...
This recipe will guide you through the entire process of getting up and running with WP7
push notifications. We'll need to create server-side code and of course make changes in the
WP7 application. To make things easier, in the following steps, we'll look at setting up toast
notifications. A toast notification appears on top of any other running application at the top of
the screen, as shown in the following screenshot:

Complete the following steps to understand notifications in a WP7 application:

1. We'll kick off with the "service" part. Why the quotes, you may ask. The notifications
process involves several parties:

 � The WP7 application.

 � A service (created by us) that wants to send updates to the device(s) that are
registered to receive messages. This can be any type of application though;
in our case, this will be a webpage.

 � A service from Microsoft in the cloud. Our service/application will ask this
service to send specific content to the devices.

The service, as mentioned, in our case will be a web page that we can use to trigger
the sending of messages. In real-life scenarios, this is probably a web service as
well, which can be called by any type of application. The web page we are using here
is to be hosted in a new project. Add a new ASP.NET Empty Web Application to the
solution and name it BluRayCollector.PushNotifications.Web. Also, add a
blank page to this site called Default.aspx.

Chapter 13

599

2. The UI for this ASP.NET WebForms page is very trivial. Take a look in the code
samples of the book for the full markup code for this. The following screenshot shows
what the page looks like:

As can be seen, the page needs a URL and some text for the Title and Content fields,
in case of the toast notification type.

3. The data that will be sent to the device is XML with a specific format. The URL is a
unique URL, linked to a specific application on a specific device. When we click on the
Send single push notification button, the following code will be executed:
private void SendToastMessage()
{
 string toastXml =
 "<?xml version=\"1.0\" encoding=\"utf-8\"?>" +
 "<wp:Notification xmlns:wp=\"WPNotification\">" +
 "<wp:Toast>" +
 "<wp:Text1>{0}</wp:Text1>" +
 "<wp:Text2>{1}</wp:Text2>" +
 "</wp:Toast>" +
 "</wp:Notification>";

 string toastMessage =
 string.Format(toastXml, txtTitle.Text, txtContent.Text);

 byte[] bytes = new UTF8Encoding().GetBytes(toastMessage);

 SendMessage(
 new Uri(txtUrl.Text), bytes, MessageType.Toast);
}

Windows Phone 7

600

4. First, the XML is shown. This XML can't be changed, it should be exactly this piece
of text. We then paste in the values added by the user. Combined, this string can't
exceed a maximum value of 1024 bytes. After that, we call the SendMessage()
method, passing in the URI to which we want to send the message, a byte array
containing the message, and an enumeration value.

5. Next, add the enumeration MessageType as shown in the following code:
public enum MessageType
{
 Tile,
 Toast
}

Up next is the SendMessage() method we just used. This method starts by creating
an HttpWebRequest to the Uri.
private void SendMessage
 (Uri uri, byte[] bytes, MessageType messageType)
{
 HttpWebRequest notificationRequest =
 (HttpWebRequest)WebRequest.Create(uri);
}

6. This request needs to be configured correctly, as shown in the following code. We
specify that it uses a POST method, uses the text/XML application type, and then we
add the correct headers. Finally, we specify the content length.
notificationRequest.Method = WebRequestMethods.Http.Post;
notificationRequest.Headers = new WebHeaderCollection();
notificationRequest.ContentType = "text/xml";

notificationRequest.Headers.Add("X-MessageID", Guid.NewGuid()
 .ToString());

switch (messageType)
{
 case MessageType.Tile:
 notificationRequest.Headers
 .Add("X-WindowsPhone-Target", "token");
 notificationRequest.Headers
 .Add("X-NotificationClass", "1");
 break;
 case MessageType.Toast:
 notificationRequest.Headers
 .Add("X-WindowsPhone-Target", "toast");
 notificationRequest.Headers
 .Add("X-NotificationClass", "2");
 break;

Chapter 13

601

 //case raw not implemented here
}

notificationRequest.ContentLength = bytes.Length;

7. With the request configured, we can write the XML message to the request stream.
The following code shows that we are writing the bytes parameter, passed in to the
SendMessage() method earlier, to the request stream.
using (Stream requestStream =
 notificationRequest.GetRequestStream())
{
 requestStream.Write(bytes, 0, bytes.Length);
}

8. In the next step, we fire off the request and read out the response. This is done in the
following code:
try
{
 HttpWebResponse response =
 (HttpWebResponse)notificationRequest.GetResponse();

 var notificationStatus =
 response.Headers["X-NotificationStatus"];
 var subscriptionStatus =
 response.Headers["X-SubscriptionStatus"];
 var deviceConnectionStatus =
 response.Headers["X-DeviceConnectionStatus"];

 lblStatus.Text =
 string.Format("NotificationStatus: {0}

 SubscriptionStatus: {1}
DeviceConnectionStatus: {2}",
 notificationStatus, subscriptionStatus,
 deviceConnectionStatus);
}
catch (Exception ex)
{
 lblStatus.Text = "Sending the message failed: "
 + ex.Message;
}

We can see if everything went well by looking at the response headers. In this case,
we are showing the result in the UI; in a real-life scenario, we could, based on these
headers, take a specific measure such as trying to send again or logging the error.

Windows Phone 7

602

9. The web page is ready. Let's turn our attention to the WP7 application. If it doesn't
exist yet, add a new page called Settings.xaml.

10. From the BluRayOverview.xaml, we must be able to navigate to this page. Using
the SettingsButton in the application bar on this page, we can navigate to the
Settings.xaml using the following code:
private void SettingsButton_Click(object sender, EventArgs e)
{
 NavigationService.Navigate(
 new Uri("/Settings.xaml", UriKind.Relative));
}

11. The Settings.xaml page has just a single button called CreateChannelButton, so
for the XAML markup code, take a look at the code samples of the book.

12. In the click event handler of this button, we call the
CreateNotificationChannel() method as shown in the following code:
private void CreateChannelButton_Click
 (object sender, RoutedEventArgs e)
{
 CreateNotificationChannel();
}

13. In this CreateNotificationChannel() method, we work with the
HttpNotificationChannel, which represents a connection between the
Microsoft push service and the WP7 application. It's possible that the channel
already exists; the Find() method helps us to look for this channel. If it exists,
we need to check if the ChannelUri method isn't null. If it is, we need to
unbind the toast subscription from the HttpNotificationChannel using the
UnbindToShellToast() method and call the CreateNotificationChannel()
method again. If the ChannelUri isn't null, we set the ChannelUri property and
call two methods we'll add in the next steps. If the channel doesn't exist yet, we
create it and open it. We also call the two above mentioned methods. The code for
this rather complex method is as follows:
private void CreateNotificationChannel()
{
 HttpNotificationChannel httpChannel = null;
 string channelName = "BluRayCollectorChannel";

 try
 {
 httpChannel = HttpNotificationChannel.Find(channelName);
 if (httpChannel != null)
 {

Chapter 13

603

 if (httpChannel.ChannelUri == null)
 {
 httpChannel.UnbindToShellToast();
 httpChannel.Close();
 CreateNotificationChannel();
 return;
 }
 else
 {
 ChannelUri = httpChannel.ChannelUri;
 RegisterForChannelEvents(httpChannel);
 RegisterForNotifications(httpChannel);
 }
 }
 else
 {
 httpChannel =
 new HttpNotificationChannel(channelName);
 RegisterForChannelEvents(httpChannel);

 httpChannel.Open();
 RegisterForNotifications(httpChannel);
 }
 }
 catch (Exception ex)
 {
 Debug.WriteLine("Creating the channel failed: "
 + ex.ToString());
 }
}

14. The code in the previous step used the RegisterForChannelEvents()
method, which is shown next. This method registers two event handlers on the
HttpNotificationChannel created earlier.
private void RegisterForChannelEvents
 (HttpNotificationChannel httpChannel)
{
 httpChannel.ChannelUriUpdated +=
 new EventHandler<NotificationChannelUriEventArgs>
 (httpChannel_ChannelUriUpdated);
 httpChannel.ErrorOccurred +=
 new EventHandler<NotificationChannelErrorEventArgs>
 (httpChannel_ErrorOccurred);
}

Windows Phone 7

604

15. The other method we used, RegisterForNotifications() is shown next. It calls
the BindToShellToast() method on the channel, effectively creating the toast
subscription on the channel.
private static void RegisterForNotifications
 (HttpNotificationChannel httpChannel)
{
 try
 {
 httpChannel.BindToShellToast();
 }
 catch (Exception ex)
 {
 Debug.WriteLine("Binding to the shell failed: "
 + ex.ToString());
 }
}

16. Finally, the last step shows some easy methods and properties referenced earlier.
The OnChannelUriChanged() method is invoked when the URI of the channel
changes. This happens also when the channel is created and opened and is assigned
a URI. At this point, the application is registered to receive notifications.

private Uri _channelUri;

void httpChannel_ErrorOccurred
 (object sender, NotificationChannelErrorEventArgs e)
{
 Debug.WriteLine(e.Message);
}

void httpChannel_ChannelUriUpdated
 (object sender, NotificationChannelUriEventArgs e)
{
 ChannelUri = e.ChannelUri;
}

public Uri ChannelUri
{
 get
 {
 return _channelUri;
 }
 set
 {
 _channelUri = value;

Chapter 13

605

 OnChannelUriChanged(value);
 }
}

private void OnChannelUriChanged(Uri value)
{
 Debug.WriteLine(value.ToString());
 Dispatcher.BeginInvoke(() =>
 {
 ResultTextBlock.Text = "Channel created";
 });
}

We have successfully created both sides of the application, but we aren't done yet—we
still need to run the application to test it! Follow these steps to test that the application is
working correctly.

1. Make sure you have an Internet connection! It's quite logical that you won't be able to
access the cloud service without it.

2. Set the WP7 application as the startup project.

3. Place a breakpoint in the OnChannelUriChanged (Settings.xaml.cs) method
on the following line:
ResultTextBlock.Text = "Channel created";

4. Run the application, navigate to the Settings page and press the button. After a
few seconds, assuming you have implemented everything correctly, the breakpoint
will be hit.

5. In debug mode, take a look at the value of the ChannelUri property. This is of
the form:
http://db3.notify.live.net/throttledthirdparty/01.00/
AEuIbRo4qZFS6tX6kQMNqrFAgAAAAADAQAAAAQUZm52OjIzOEQ2NDJDRkI5MEVFMEQ

Copy this link from Visual Studio.

6. Keep the emulator open and press the Windows button so the WP7 start screen is
displayed. If you are hitting the breakpoint, you can remove it.

7. Within the Solution Explorer, right-click on the BluRayCollector.
PushNotifications.Web project and select Debug | Start new instance.

8. In the default page, paste the link in the URL field. Enter a value for the Title and
Content fields and press the Send Single Push Notification button.

9. After a few seconds, you'll hear a sound from the WP7 emulator as well as see a
message, the toast message, being displayed at the top of the screen.

Windows Phone 7

606

How it works...
Windows Phone 7 offers a notification system in the form of push notifications that are sent
over the air to the device. The current model of the WP7 OS is such that at each point in
time, only one application can be running. However, there are real-life scenarios imaginable
in which we'd want to receive updates from a certain installed application, but we can't (for
practical reasons) keep the application open at all times. Imagine that we want to be notified
about a new Blu-ray being released while we are in the middle of playing a game. Because of
the one-running-application model, our BluRayCollector application can't be running while we
are playing a game and in normal circumstances, wouldn't be able to receive this update.

Notifications, more specifically toast notifications, can be a life-saver here. Even while the
application isn't running, we may receive updates from a service. That service is linked to an
application on the device: when clicking on the message, which is shown at the top of the
screen, we are taken to the related application. But wait, how does the device know which is
the related application? Let's take a look at the architecture for push notifications, shown in
the following figure:

The numbers in the image are explained in the following bullets:

1. We install an application that uses notifications. The application registers a
so-called channel with a Microsoft cloud-based service, called the Microsoft
Push Notifications Service.

2. From that service, we get back a URI for the channel. This URI is a unique identifier
for a particular application on a particular device.

Chapter 13

607

3. The WP7 application then sends this URI to a service that we create. In our sample,
we have done this manually by copying the URL into the webpage. In a real-life
application, the web page would be a service that is ready to accept incoming calls
from new WP7 registrations. It is the responsibility of our service to keep a list of
registered clients.

4. At some point, our service needs to notify all clients about an event/action
that occurs. This event/action may occur in another system, which then triggers
the service.

5. To notify all clients, it sends a notification to the Microsoft Push Notifications service
in a specific XML format that is predefined by Microsoft, including the
URIs to notify.

6. Microsoft's cloud-based service sends the data to the WP7 device.

Apart from allowing us to create a better experience in that we have the ability to notify a user
about an event even when the application isn't running, push notifications also bring down
battery usage and data usage: there's no need to make continuous calls from the device to
check for a specific server message.

There's more...
The message type discussed above is toast notifications. That is actually only one of the three
possible types of notifications. The two others are tile notifications and raw messages.

Tile notifications refer to updates that are reflected in the tile of the application if it's pinned
to the WP7 start screen. If there's no tile for the particular application, the message is
suppressed and no further action happens.

To be able to receive tile notifications, the application has to register that it wants
to do so. Instead of using the BindToShellToast() method, we use the similar
BindToShellTile() method on the HttpNotificationChannel, as follows:

 httpChannel.BindToShellTile();

On the service-side, sending tile notifications is entirely similar to toast notifications, apart
from a few things. When creating the message, two headers are different as shown in the
following code:

switch (messageType)
{
 case MessageType.Tile:
 notificationRequest.Headers
 .Add("X-WindowsPhone-Target", "token");
 notificationRequest.Headers
 .Add("X-NotificationClass", "1");
 break;

Windows Phone 7

608

 case MessageType.Toast:
 notificationRequest.Headers
 .Add("X-WindowsPhone-Target", "toast");
 notificationRequest.Headers
 .Add("X-NotificationClass", "2");
 break;
 //case raw not implemented here
}

Also, the XML is somewhat different. We can notice a wp:Count element here as well as a
wp:Title, whereas in the toast message, we had wp:Text1 and wp:Text2. The XML is as
shown in the following code:

string tileXml =
 "<?xml version=\"1.0\" encoding=\"utf-8\"?>" +
 "<wp:Notification xmlns:wp=\"WPNotification\">" +
 "<wp:Tile>" +
 "<wp:Count>{0}</wp:Count>" +
 "<wp:Title>{1}</wp:Title>" +
 "</wp:Tile>" +
 "</wp:Notification>";

The value of the wp:Count field will be shown on a specific place in the tile, while the
wp:Title replaces the name of the application in the tile. The following screenshot shows
how the tile looks after receiving this message:

The third type of notification is raw messages. While the two previous types are meant to be
received when the application isn't currently running in the foreground, raw messages are
the opposite—they can be received by an application only when that application is currently
running. This enables a sort-of duplex messaging: there's no call from the client required to
receive a message from the notification service.

Chapter 13

609

Toast notifications can also, just like raw messages, be received while
the application is running.

Storing data in a local SQL CE database
Isolated Storage is a good way of storing data locally on the device. With the release of
Windows Phone Mango (7.5), an option was added to support a client-side database. This
database is a SQL CE (Compact Edition) database. SQL CE databases are file-based and in
the case of WP7, the database file is stored as a physical file inside the Isolated Storage. As
developers, we can talk to the database using LINQ to SQL.

In this recipe, we'll introduce the local database to store the downloaded list of Blu-rays.

Getting ready
This recipe uses a starter solution, which can be found in the Chapter13/
BluRayCollector_Database_Starter. The finished solution can be found in the
Chapter13/BluRayCollector_Push_Notifications_Completed folder.

How to do it...
Working with the local database requires a few specific steps related to setting up the
database. Once the setup is done, we can change our existing code to interact with the
database instead of the Isolated Storage. This is done by writing LINQ to SQL queries. Follow
along with these steps to get this to work:

1. Open the starter solution as outlined in the Getting ready section for this recipe.

2. Microsoft recommends using the code-first approach. This means that we describe
the model in code instead of starting with a database model. With code-first, we don't
really have to worry about database queries—we just write our code using the classes
from our model.

To apply this approach, we need to write a context class first. This class can be
understood as a class representing the database from code. To add the context,
create a new class named BluRayDataContext. This class should inherit from
DataContext. The initial code for this class is shown in the following code snippet:
using System.Data.Linq;
public class BluRayDataContext: DataContext
{
 ...
}

Windows Phone 7

610

The DataContext class lives in the System.Data.Linq namespace. This
namespace requires that we add a reference to the System.Data.Linq assembly
in the WP7 project.

3. Next, we need to create a connection string, containing the location of the database.
Add the following line to the BluRayDataContext class:
public static string DBConnectionString =
 "Data Source=isostore:/BluRayCollector.sdf";

Note that the file containing the database is an *.sdf file. This is the typical file
extension for SQL CE.

4. Our custom context needs to pass the connection string to the base class. This can
be done using the following code where we do exactly that from the constructor:
public BluRayDataContext(string connectionString):
 base(connectionString){ }

5. Each entity in our model is represented by a Table<T>. In our case, we have just a
BluRay table. This is represented by the following code:
public Table<BluRay> BluRays;

6. With the context ready (and thus the model outlined), we can move on to describing
the entities. In our case, we need to describe from code just the BluRay class. To
indicate that this class is used as a mapping between our model and the database,
we need to attribute it with the Table attribute. To perform this step, add a new class
named BluRay and add the following code:
using System.Data.Linq.Mapping;
using System.ComponentModel;
[Table]
public class BluRay :
 INotifyPropertyChanged, INotifyPropertyChanging
{
 ...
}

7. Notice that this class implements two interfaces. INotifyPropertyChanging
is used to notify clients that the value is about to change while
INotifyPropertyChanged is used to notify clients after the value has changed.
For this code to work, make sure to add the two using statements indicated here as
well. Also, a reference to the mscorlib.Extensions assembly needs to be added
to the project.

Chapter 13

611

8. In this class, we now need to describe all its properties as well as how these
properties should be mapped inside the database. Remember that a database will
be created based on the model we are describing here, so all information regarding
keys, database types, and relations is to be added in this class. Add the following
code to the BluRay class. To save space, not all properties have been written out;
the code is similar though.
[Column(IsPrimaryKey = true, IsDbGenerated = true,
DbType = "INT NOT NULL Identity", CanBeNull = false,
AutoSync = AutoSync.OnInsert)]
public int BluRayId
{
 get
 {
 return _bluRayId;
 }
 set
 {
 if (_bluRayId != value)
 {
 NotifyPropertyChanging("BluRayId");
 _bluRayId = value;
 NotifyPropertyChanged("BluRayId");
 }
 }
}

private string _movieName;

[Column]
public string MovieName
{
 get
 {
 return _movieName;
 }
 set
 {
 if (_movieName != value)
 {
 NotifyPropertyChanging("MovieName");
 _movieName = value;
 NotifyPropertyChanged("MovieName");
 }
 }

Windows Phone 7

612

}

private int _movieLength;

[Column]
public int MovieLength { ... }

private string _movieImageUrl;

[Column]
public string MovieImageUrl { ... }

private bool _isFavorite;

[Column]
public bool IsFavorite { ... }

private bool _isBadMovie;

[Column]
public bool IsBadMovie { ... }

private string _movieDescription;

[Column]
public string MovieDescription { ... }

private string _movieType;

[Column]
public string MovieType { ... }

public event PropertyChangedEventHandler PropertyChanged;

private void NotifyPropertyChanged(string propertyName)
{
 if (PropertyChanged != null)
 {
 PropertyChanged(this,
 new PropertyChangedEventArgs(propertyName));
 }
}

Chapter 13

613

public event PropertyChangingEventHandler PropertyChanging;

private void NotifyPropertyChanging(string propertyName)
{
 if (PropertyChanging != null)
 {
 PropertyChanging(this,
 new PropertyChangingEventArgs(propertyName));
 }
}

This class also contains the implementation for the two implemented interfaces.

9. We're now ready to start using the database. In the App.xaml.cs file, we're going
to add code that creates the database file for our application to use if it doesn't exist
yet. Based on the model, the *.sdf file will be generated. In the constructor of the
App class, add the following code:
using (BluRayDataContext db =
 new BluRayDataContext(BluRayDataContext.DBConnectionString))
{
 if (db.DatabaseExists() == false)
 {
 db.CreateDatabase();
 }
}

10. We now know for sure that the database file was created. We can now safely work
with the context as our intermediary to talk with the database itself. Change the code
in the BluRayOverview.xaml.cs file as follows:
private BluRayDataContext _bluRayDataContext;

public BluRayOverview()
{
 InitializeComponent();

 _bluRayDataContext =
 new BluRayDataContext
 (BluRayDataContext.DBConnectionString);

 this.DataContext = this;
}

Windows Phone 7

614

11. In the OnNavigatedTo method, we only want to get the list of Blu-rays if the
database table is still empty. We can write a simple LINQ query here and then use the
Count() method. Add the following code to do so:
var localBluRays = from BluRay b in _bluRayDataContext.BluRays
 select b;
if (localBluRays.Count() > 0)
{
 //DB is locally filled already
 AllBluRayListBox.ItemsSource = localBluRays;
}
else
{
 proxy.GetAllBluRaysForUserCompleted +=
 new EventHandler
 <BluRayService.GetAllBluRaysForUserCompletedEventArgs>
 (proxy_GetAllBluRaysForUserCompleted);
 proxy.GetAllBluRaysForUserAsync(1);
}

12. Initially, the list will need to be downloaded, so the GetAllBluRaysForUserAsync
will be triggered. In this callback, we will loop over the result and insert new BluRay
instances in the Table<BluRay> property of the context. Finally, we call the
SubmitChanges() method which will commit the added instances. This is
done as follows:

void proxy_GetAllBluRaysForUserCompleted(obje
ct sender, BluRayService.GetAllBluRaysForUserCompletedEventArgs e)
{
 AllBluRayListBox.ItemsSource = e.Result;
 foreach (var serviceBluRay in e.Result)
 {
 var localBluRay = new BluRay()
 {
 BluRayId = serviceBluRay.BluRayId,
 IsBadMovie = serviceBluRay.IsBadMovie,
 IsFavorite = serviceBluRay.IsFavorite,
 MovieDescription = serviceBluRay.MovieDescription,
 MovieImageUrl = serviceBluRay.MovieImageUrl,
 MovieLength = serviceBluRay.MovieLength,
 MovieName = serviceBluRay.MovieName,
 MovieType = serviceBluRay.MovieType
 };
 _bluRayDataContext.BluRays.InsertOnSubmit(localBluRay);
 }
 _bluRayDataContext.SubmitChanges();
}

Chapter 13

615

With this code added, the sample now uses the SQL CE database instead of isolated storage
to store the downloaded information.

How it works...
Having a local database at our disposal within a WP7 application opens up a lot of new ways
of working with data locally on the device. Isolated Storage allows us to work with any type
of data (such as raw data that we can store as XML but also binary data such as images).
Custom libraries, such as the Sterling database (which we used in Chapter 5, Working with
Local Data, for Silverlight but available for WP7 as well) allow us to interact with data in an
easier way. With the addition of a SQL CE database, we can work with data in a relational way.
This client-side database is a perfect addition for applications that work together with services
as well: it can be used to store downloaded data to work in offline mode as well.

The database context
To work with the local database, Microsoft recommends using a code-first approach. As
mentioned before, this basically frees us from thinking in relational ways about our data. We
as developers can write a model in code and don't have to worry about how this will be stored
in the database. All this is handled for us.

The context class is the start of this approach. It's a class that describes the model. Each
entity inside this model is a table in the database that will be created for us. All these entities
are described as properties of the context. The type of these properties should be Table<T>.

The context also contains the link to the physical database file in the form of a connection
string. The connection string we used here is as follows:

public static string DBConnectionString =
 "Data Source=isostore:/BluRayCollector.sdf";

The file type is *.sdf, which is the default file type for a SQL CE database. Such a database
is file-based.

The model classes
The entities themselves used in the context are classes as well. The class is attributed with
the Table attribute. This is an indication that this class is used for mappings between the
model in code and the actual database. This is reflected in attributes on the properties of
the class. Properties will have a Column attribute applied to them that means this property
should become a field in the database table. To this attribute, we can optionally pass more
information such as specifying that the property is to be the primary key, database type,
and so on.

Windows Phone 7

616

Interaction with the database
Once the model is declared, we can have the database file created for us. In the sample,
we placed code in the constructor of the app that uses the CreateDatabase() method to
generate the database file based on the context. Of course, this only has to be done if the
database hasn't been generated yet. If needed, it's possible to package an initial database
with your application and copy it to isolated storage from code. This can be useful if your
application has a lot of initial settings that need to be packaged in the database that comes
with your application.

Once the database is created, we can write LINQ to SQL queries. In the code from this
recipe, we wrote a regular LINQ query that retrieves all Blu-Rays. Inserting (as well as
updating and deleting) instances is done using the context as well. In the sample code,
we used the InsertOnSubmit() method to add instances to the Table<BluRay>. The
SubmitChanges() method commits the changes to the database.

Save often
It's a good idea to commit changes using the SubmitChanges() method often. It might be
tempting to do all editing of the data in-memory without committing and then perform the
commit when the application exits. The latter isn't such a good idea. In WP7, applications
have a limited amount of time when exiting to perform tasks before being killed off. If we were
have to do a lot of commits to perform in that timeframe, we might just hit that time limit. If
that happens, there's no guarantee that the data is still intact inside the database!

See also
In Chapter 5, Working with Local Data, in the Using the Sterling Isolated Storage
database recipe, we used the Sterling database for Silverlight. This is also applicable
to WP7 development.

Using the background transfer service
Downloading files on a mobile device can be time-consuming. A slow Wi-Fi connection or
bad 3G coverage are all still too common. While downloading a file, the application doing the
download needs to remain the active application because of the way the application lifecycle
on WP7 works.

With the release of Windows Phone 7.5, a service named the
BackgroundTransferService was added. This service, managed by the operating
system itself, can be consumed by a WP7 application to upload and download files in the
background, even after the application that started the transfer has been shut down.

In this recipe, we'll extend the BluRayCollector application once more to download and
play a movie trailer.

D
ow

n
lo

a
d
 f
ro

m
 W

o
w

!
e
B
o
o
k

<
w

w
w

.w
o
w

e
b
o
o
k.

co
m

>

Chapter 13

617

Getting ready
For this recipe, a starter solution is available with the downloads of the book. It can
be found in the Chapter13/BluRayCollector_BackgroundService_Starter
folder. The finished solution for this recipe can be found in the BluRayCollector_
BackgroundService_Completed folder.

How to do it...
The BluRayCollector application is extended with a new feature: allowing the user to view
the most popular movie trailer. Since movie trailers tend to get quite large, the download may
take some time. Instead of forcing the user to leave the BluRayCollector application open
and wait for the download to finish, we are going to use the BackgroundTransferService
class to download the file. In the following steps, we are using this class:

1. Open the starter solution as outlined in the Getting ready section.

2. In the BluRayOverview.xaml page, which contains the Panorama control, we
start by adding a new PanoramaItem. On this PanoramaItem, we add a Button
to initiate the download, a TextBlock to show the download status and another
Button to start playing the trailer after the download is finished. The latter is not
enabled initially, since nothing can be played yet. The code for this is as follows:
<controls:PanoramaItem Header="Popular Trailer">
 <StackPanel>
 <Button Name="DownloadTrailerButton"
 Click="DownloadTrailerButton_Click"
 Content="Download trailer"
 HorizontalAlignment="Center"
 VerticalAlignment="Top"
 Height="80">
 </Button>
 <TextBlock Name="StatusTextBlock"
 Text="Waiting..."
 HorizontalAlignment="Center">
 </TextBlock>
 <Button Name="StartPlayingButton"
 IsEnabled="False"
 Click="StartPlayingButton_Click"
 Content="Start playing"
 HorizontalAlignment="Center"
 VerticalAlignment="Top"
 Height="80">
 </Button>
 </StackPanel>
</controls:PanoramaItem>

Windows Phone 7

618

3. Switch to the code-behind, BluRayOverview.xaml.cs. When clicking the
Download button, we want to initiate the transfer. This is done by creating a
BackgroundTransferRequest instance. To the constructor of this class, we
pass two Uri instances. The first one is the Uri pointing to the file we want to
download. The second one indicates where the downloaded file should be placed.
Downloads done using a BackgroundTransferRequest will always be placed in a
subdirectory of the Isolated Storage named shared/transfers. We can then pass
the BackgroundTransferRequest to the BackgroundTransferService, which
will take care of downloading the file. This is shown in the following code:
private void DownloadTrailerButton_Click(object sender,
 RoutedEventArgs e)
{
 using (IsolatedStorageFile isolatedStorageFile =
 IsolatedStorageFile.GetUserStoreForApplication())
 {
 if (isolatedStorageFile.FileExists(downloadLocation))
 {
 isolatedStorageFile.DeleteFile(downloadLocation);
 }
 }
 backgroundTransferRequest = new BackgroundTransferRequest
 (trailerUri, downloadLocationUri);

 BackgroundTransferService.Add(backgroundTransferRequest);
}

Note that the preceding code checks if the file is already downloaded. If so, we delete
it in this scenario. An alternative might be using the already downloaded file and thus
skipping the download.

4. On the instance of the BackgroundTransferRequest, we register for events
raised by the object. In this case, we register for the TransferProgressChanged
and the TransferStatusChanged events. We can also pass preferences as to
when the download should be allowed or disallowed (for example we can specify to
only allow the download if a Wi-Fi is available). The following code should be inserted
before adding the request to the service:
backgroundTransferRequest.TransferPreferences =
 TransferPreferences.AllowCellularAndBattery;
backgroundTransferRequest.TransferProgressChanged
 += new EventHandler<BackgroundTransferEventArgs>
 (backgroundTransferRequest_TransferProgressChanged);
backgroundTransferRequest.TransferStatusChanged +=
 new EventHandler<BackgroundTransferEventArgs>
 (backgroundTransferRequest_TransferStatusChanged);

Chapter 13

619

5. The handler of the TransferProgessChanged event will be called whenever
progress is made in the download of the file. In this case, we handle this by updating
the StatusTextBlock. This is shown in the following code:
void backgroundTransferRequest_TransferProgressChanged
 (object sender, BackgroundTransferEventArgs e)
{
 string progressText = string.Empty;
 if (backgroundTransferRequest != null)
 {
 progressText = String.Format
 ("Downloaded {0} bytes of {1} bytes",
 backgroundTransferRequest.BytesReceived,
 backgroundTransferRequest.TotalBytesToReceive);
 }
 StatusTextBlock.Text = progressText;
}

The BackgroundTransferEventArgs have quite a few properties available
that contain information on the download in progress. Here we are using the
BytesReceived (reflecting how many bytes were already downloaded) and the
TotalBytesToReceive (indicating the total size of the download at hand).

6. The TransferStatusChanged event will be called whenever the status of
the transfer is updated. This happens quite a few times. The TransferStatus
enumeration has statuses including None, Transferring, Waiting, Completed,
and so on. In our code, we want to react to the Completed status, since then, the
StartPlayingButton can be enabled. When the status is Completed, however,
we still need to check the StatusCode value. The latter should be 200 or 206,
which both indicate a successful transfer. If an error occurred, we display it in the
StatusTextBlock. We also call the RemoveRequest() method, which will remove
BackgroundTransferRequest from the download queue. Finally, we set the
StartPlayingButton enabled. This can be seen in the following code:
void backgroundTransferRequest_TransferStatusChanged
 (object sender, BackgroundTransferEventArgs e)
{
 string statusText = string.Empty;

 if (backgroundTransferRequest.TransferStatus
 == TransferStatus.Completed)
 {
 if (backgroundTransferRequest.StatusCode == 200
 || backgroundTransferRequest.StatusCode == 206)
 {
 statusText = String.Format("Status: {0}",
 backgroundTransferRequest.TransferStatus);

Windows Phone 7

620

 RemoveRequest(backgroundTransferRequest);
 }
 else
 {
 statusText = String.Format("Status: {0}",
 backgroundTransferRequest.TransferError.Message);
 }
 }
 StartPlayingButton.IsEnabled =
 (backgroundTransferRequest.TransferStatus
 == TransferStatus.Completed);
 StatusTextBlock.Text = statusText;
}

7. The code for the RemoveRequest() method is shown next. Note that we as the
developer are responsible for removing requests from the service. The fact that a
download has completed does not remove it automatically.
private void RemoveRequest
 (BackgroundTransferRequest backgroundTransferRequest)
{
 BackgroundTransferService.
 Remove(backgroundTransferRequest);
}

8. When the movie trailer is downloaded, we can start playing it. This is done using the
following code, which is called when the StartPlayingButton is clicked:

private void StartPlayingButton_Click
 (object sender, RoutedEventArgs e)
{
 MediaPlayerLauncher mediaPlayerLauncher =
 new MediaPlayerLauncher()
 {
 Media = downloadLocationUri,
 Location = MediaLocationType.Data
 };
 mediaPlayerLauncher.Show();
}

If we had exited the application while it was downloading the file, the download would have
continued in the background. The file is transferred to the shared/transfers subdirectory
of the isolated storage and will at some point be available for the application to use.

Chapter 13

621

How it works...
Starting with Windows Phone 7.5 (SDK 7.1), a new service was added to the Windows Phone
OS: the BackgroundTransferService. This service can be seen as a queue for uploads
and downloads, managed and owned by the OS itself. Applications can add requests to the
service in the form of a BackgroundTransferRequest. Whereas before, a download
was to be done directly from application code (thus forcing the user to keep the application
open while the download was taking place), it is now done outside of the application, entirely
managed by the BackgroundTransferService. This results in the fact that transfers can
continue, even after the application has been closed. Even after a reboot of the Windows
Phone OS, the transfers will be resumed.

Files that are downloaded are placed inside a subdirectory named shared/transfers of
the Isolated Storage. When files are uploaded, they should be in that same directory.

Restrictions
Of course, transferring large files on a mobile OS can be dangerous. Without the necessary
precautions, the user may be faced with huge bills because he or she transferred too much
data. Also, transferring files uses a lot more power of the device.

To prevent background transfers from undermining the overall user experience, several
restrictions are built in. The following is a list of some restrictions; visit http://msdn.
microsoft.com/en-us/library/hh202955(v=VS.92).aspx
for the entire list:

 f A file that is to be uploaded should not be larger than 5 MB.

 f If on cellular, a file to be transferred can't be larger than 20 MB.

 f An application may only have five outstanding requests in the queue. In code, we
should check that we aren't passing this limit.

 f All applications together on the device shouldn't have more than 500
outstanding transfers.

Appendix

Sometimes you'll have to complete tasks that apply to various recipes in this book, or you'll
run into tasks that are too generic for a specific recipe (for example, creating a REST service
with the help of WCF). Besides that, some topics are very interesting, but don't really fit in the
recipe format, or are only of interest to some readers (for example, using NuGet). All that info
and more can be found in this appendix, as a reference.

Creating a REST service from WCF
Using WCF services, it is possible to expose a REST endpoint. This way, we can easily create
a WCF services project in which some services have a SOAP endpoint while others have a
REST endpoint.

In .NET 4.0, there are several ways to create REST services. In this example, we'll use a
manual approach based on the WebHttpBinding. This process is quite simple: we need to
make a configuration change to the configuration code of the service and apply an attribute
on the service methods.

We'll create a small sample service project and expose the service as a REST endpoint.
To do so, create a new empty ASP.NET web application in Visual Studio 2010 and name
it OfficeSupplies. Within the created web application, add a new WCF service called
TonerService. This triggers the creation of both the service interface, ITonerService.cs
and the service implementation, TonerService.cs.

To allow our service to communicate using REST, we'll first create a REST endpoint. In the
web.config, we'll start by adding the webHttp behavior:

<system.serviceModel>
<behaviors>
 <endpointBehaviors>
 <behavior name="webBehavior">

Appendix

624

 <webHttp/>
 </behavior>
 </endpointBehaviors>
</behaviors>
</system.serviceModel>

Next, we can add a new endpoint, which uses this behavior:

<system.serviceModel>

 <services>
 <service name="OfficeSupplies.TonerService">
 <endpoint
 address=""
 behaviorConfiguration="webBehavior"
 binding="webHttpBinding"
 bindingConfiguration=""
 contract="OfficeSupplies.ITonerService"/>
 </service>
 /services>
</system.serviceModel>

Finally, we have to apply an attribute, the WebGetAttribute, on the service methods
we want to expose over REST. Using the UriTemplate on this attribute, we can use the
same endpoint for several service methods. In the following sample, we can see that
IsTonerAvailable has its UriTemplate set to Toner:

[OperationContract]
[WebGet(UriTemplate = "toner",
 BodyStyle = WebMessageBodyStyle.Bare,
 RequestFormat = WebMessageFormat.Xml)]
bool IsTonerAvailable();

This service method can thus be accessed using http://localhost:123/
TonerService.svc/Toner.

If we want to pass in a parameter, we can do so using a query expression. If we want to check
the toner for a specific color, we can pass the color using the following method:

[OperationContract]
[WebGet(UriTemplate = "toner/{color}",
 BodyStyle = WebMessageBodyStyle.Bare,
 RequestFormat = WebMessageFormat.Xml)]
bool IsColorAvailable(string color);

To invoke this service, we can perform a call to http://localhost:123/TonerService.
svc/Toner/Red.

http://localhost:123/TonerService.svc/Toner
http://localhost:123/TonerService.svc/Toner
http://localhost:123/TonerService.svc/Toner/Red
http://localhost:123/TonerService.svc/Toner/Red

Appendix

625

Installing an SQL Server database
In some samples of the book, we use an SQL Server database. To install an SQL Server
database, we can either attach the SQL Server MDF file to SQL Server or execute an SQL
query file, which contains the commands to create the database, its tables, and columns.

Attaching an MDF file
The simplest way to install a database is attaching the database into the SQL Server instance.
To do so, follow the next steps:

1. Open SQL Server Management Studio and connect to the database engine (most of
the time, this instance is called localhost).

2. Within the Object Explorer, right-click on the Databases node and select Attach.

3. In the Attach Databases dialog, click on the Add button and browse to the location
of the MDF file that contains the database. Click OK; SQL Server will now attach the
database to the SQL Server instance.

The database can now be consulted from within SQL Server Management Studio and it can
also be used in our own applications.

Executing a query file
If attaching the database is not an option (for example, on an externally hosted database
server), we can use a query file that contains all the commands needed to recreate the
database and its tables. To do so, follow the next steps:

1. Open SQL Server Management Studio and connect to the database engine (mostly
localhost).

2. Within Management Studio, select File | Open File and select the query file (*.sql)
containing the SQL commands.

3. Click on Execute.

SQL Server Management Studio will now execute the commands, resulting in the database
being created.

Working with Fiddler
Fiddler is a web debugging proxy tool. Being a proxy, it redirects all traffic going from your
computer to the Internet. This way, we can inspect the contents of the packages being
sent over the wire. Fiddler also works for inspecting traffic to the local web server (ASP.NET
Development Server or local IIS).

Appendix

626

While developing with Silverlight in combination with services, Fiddler is a valuable tool.
Without a debugging proxy, it's not possible to see what data Silverlight is sending to the
service or to see the response coming back from the service. In this book, we show the usage
of Fiddler several times. In your daily development life, Fiddler can help you track bugs when
building Silverlight applications that work with services.

Setting up Fiddler is easy. To install it, download a free copy at http://www.fiddler2.
com/fiddler2/. Once installed, if you're using Internet Explorer, you can start it by
selecting Tools | Fiddler2.

Fiddler will open its main window, showing all the traffic going in and out from your machine.

Local traffic
By default, Fiddler will not capture local traffic (traffic going to your ASP.NET Development
Server or local IIS) because Internet Explorer and .NET in general don't send requests for
http://localhost through any proxy. It is however, important to be able to do so, mainly in
development stages.

There are several ways to work around this problem. The easiest solution is replacing
http://localhost in your request with http://<ComputerName> (for example,
http://Dev01 where Dev01 is the name of your computer). Another solution is replacing
http://localhost with http://ipv4.fiddler (for IPv4 requests) or http://ipv6.
fiddler (for IPv6 requests). If your request contains a port number (for example, http://
localhost:123/MyService.svc), this port number should remain in the changed URL
(for example, http://ipv4.fiddler:123/MyService.svc).

Working with the Silverlight control toolkit
The Silverlight control toolkit is a collection of controls and utilities that is not part of the
default installation of Silverlight. It's hosted on CodePlex (Microsoft's open source hosting
website: http://www.codeplex.com) as a project owned by Microsoft itself and managed
by the Silverlight product team. It has an out-of-band release cycle (meaning that releases
of the toolkit are not necessary). Being hosted on CodePlex also means that you get all the
source code for the controls, including many unit tests.

To download the toolkit, go to http://www.codeplex.com/Silverlight where you
can find the latest release. After installation, the new controls are added to the Toolbox in
Visual Studio.

Once installed, the controls can be used just like regular controls. On adding
one of these controls to your XAML, Visual Studio will add an XML namespace
mapping (xmlns:controlsToolkit="clr-namespace:System.Windows.
Controls;assembly=System.Windows.Controls.Toolkit") within the XAML and
create a reference to the toolkit assembly, System.Windows.Control.Toolkit.

http://www.fiddler2.com/fiddler2/
http://localhost
http://localhost
http://Dev01
http://localhost
http://ipv4.fiddler
http://ipv6.fiddler
http://localhost:123/MyService.svc
http://localhost:123/MyService.svc
http://ipv4.fiddler:123/MyService.svc
http://ipv4.fiddler:123/MyService.svc
http://www.codeplex.com/Silverlight

Appendix

627

Working with WIF
Some recipes use Windows Identity Foundation, and require the installation of the Windows
Identity Foundation training kit. This kit contains a set of hands-on labs, documents, and
references that will help you to learn how to take advantage of Microsoft's latest identity and
access control developer's products and services.

You can download it at this link (it's the April 2011 version you require):
http://www.microsoft.com/download/en/details.aspx?id=14347.

Installing the WCF RIA Services Toolkit
For some recipes (for example, the ones in which you expose a domain service via SOAP), the
WCF RIA Services Toolkit is required. This toolkit is a collection of classes not included in the
default WCF RIA Services install (which is included with a Silverlight 5 install).

The toolkit enables Entity Framework 4.1 support, Linq to SQL support, Windows Azure Table
Storage support, SOAP/JSON endpoints, T4 Code Generation, ViewModel (MVVM) support,
and ASP.NET WebForms controls. It also includes the jQuery client for RIA Services (RIA/JS).

You can download the toolkit from this link: http://www.microsoft.com/download/
en/details.aspx?displaylang=en&id=26939, or you can get it as NuGet packages:
http://nuget.org/List/Search?packageType=Packages&searchCategory=
All+Categories&searchTerm=riaservices&sortOrder=package-download-
count&pageSize=10.

Installing and using NuGet
NuGet is a developer-focused package-management system for the .NET platform. Its intent is
simplifying the process of incorporating third-party libraries in your .NET applications.

When you're using one of these libraries, it's often quite a challenge to integrate it into a
project: you need to find the correct version online, unblock it, add the necessary references
to your projects, and often, you'll also need to add references to other external dependencies.

NuGet takes care of this for you, right from Visual Studio.

To install it (as a Visual Studio extension), you can surf to http://www.nuget.org/.

http://www.microsoft.com/download/en/details.aspx?id=14347
http://www.microsoft.com/download/en/details.aspx?id=14347

Index
A
Access Control 274
ActivateEngine() method 197, 198
Activate() method 197
Active Directory Federation Services. See

ADFS
Add DomainService wizard 466
AddNewPerson() method 213, 218
Add Person button 213, 218
Add Person button tag 232
AddPersonExecution() method 240
AddPerson method 216
Add Service Reference dialog box 311
ADFS 381
ADO.NET Data Services 411
ADO.NET Entity Framework 411
AJAX 325
AlreadyRead property 162
AlternatingRowBackground property 142
Amazon 426
Ancestor RelativeSource binding

about 8, 119
using 120-123
working 123

App Hub 562
AppHub 574
application

requisites 560
application bar 572
ApplicationExit event 201
application services 302
ApplicationSettings property 186
Application_Startup method 505, 518
App.xaml.cs 505
App.xaml file 18, 90

ASMX 302
ASMX/WCF service 573
ASMX webservice 244, 249
ASP.NET 7, 38, 325
ASP.NET Application Services 325
ASP.NET authentication

using, in Silverlight 325-331
ASP.NET Membership API 325, 332
ASP.NET platform 454
ASP.NET Web Application Project option 17
ASP.NET (WebForms and MVC) 504
ASP.NET Web Site option 17
AsyncResult property 270
AtomPub 414
Atom Publishing Protocol. See AtomPub
attributes

used, for validating data input 101-103
authentication 374
authentication cookie 512
AuthenticationService 332
authorization 374
Author property 167
AutoGenerateColumns property 142, 145,

161
automatic synchronization

about 60
for collections 66
for single object 65

Azure Storage 274

B
BackgroundTransferRequest instance 618
background transfer service

BackgroundTransferRequest instance 618
BackgroundTransferService class 617

630

RemoveRequest() method 619, 620
TransferProgessChanged event 619
TransferStatusChanged event 618, 619
using 616

BackgroundTransferService class 617
Base Class Library. See BCL
Batch option 426
BCL 8
BeginAcceptTcpClient method 290, 297
BeginGetRequestStream method 268-270
BeginGetResponse method 271
BeginningEdit event 148-150
binary encoding 317
BinaryFormatter 200
binaryMessageEncoding element 317
binary XML

used, for optimizing performance 315-317
binding

about 38, 353
concepts 38

BindingBase class 93, 96
BindingBase properties

about 93
converters, replacing with 93-96

BindingBase property 79
Binding class 96
Binding expression 92
binding markup extension 19
BindingSource control 38
BindingValidationError event 99, 103
BindToShellTile() method 607
BindToShellToast() method 604, 607
Bing

about 302, 315
URL 312

Bing API 312
Bing.com service

invoking 312-315
BitmapImage class 92, 343
blob storage 286
BluRay class 580, 590, 594, 595
BluRayCollector application 616, 617
BluRayDataContext class 610
Button tag 233

C
caching mechanism 184
CallbackContract attribute 354
callback method 270
CanExecute method 232
CanUserReorderColumns property 142
CanUserResizeColumns property 142
Castle 228
CellEditEnded event 148-150
cellEditing variable 148
CellTemplate property 165
change-aware collection type

building 127-130
channel 606
ChannelFactory

about 383
used, for calling WCF service from Silverlight

383-386
ChannelUri method 602
ChannelUri property 602
check out 31
ChildWindow class 329
classic web services 301
Cleanup() method 223
Click event 53, 72
click event handler 602
client

about 355
data, acquiring on 460-468
server-side query, controlling from 476-480

ClientBin directory 18
ClientHttpStack

advantages 407
working with 406, 407

client-side database 609
Closed event 330
cloud

database, accessing 274-278
service, accessing 279-284
Silverlight application, running from 284-286
used, for working with push

notifications 597-599
CloudBerry Explorer 286, 287
cloud computing 274
CLR 7, 32

631

CLR feature 265
code generation 468
CodePlex 626
CollectionChanged event 129
collections

about 66
binding, to UI elements 56-59

ColumnWidth property 142
ComboBox control 10, 160
COM interop 264
commanding 213
Command property 231
commands

used, to pass events to ViewModel 229-234
Common Language Runtime. See CLR
composition keyword 227
Computer Inventory application 388
Computer Management 388
concurrency

about 496
working with 497-502

concurrency issues 495
ConnectAsync method 298, 351
Contains() method 187
content control 566
ConvertBack method 90, 91
converter on steroids 213
ConverterParameter 92
Converter property 90
converters

about 88
replacing, with BindingBase properties 93-96
used, for displaying images based on URL 92,

93
used, for hooking, into data binding properties

88-91
working 91

converters, data binding and DataContext
combining, into custom DataTemplate

130-137
ConvertIntoBluRayDtoList() method 582
Convert method 90-92
cookies

comparing, with isolated storage 176
Count() method 614
CreateNotificationChannel() method 602
CreatePersonVM() method 223

Create, Read, Update, and Delete. See CRUD
CreateTableDefinition() method 196
credentials

passing 449
passing, to Twitter from trusted Silverlight

application 439-447
cross-domain access

about 447-449
passing, to Twitter from trusted Silverlight ap-

plication 439-447
cross-domain calls

configuring 254-261
making, from trusted Silverlight application

262-265
cross-domain restrictions 262
crossdomain.xml files 434
CRUD 150, 421
culture parameter 90
CurrencyConverter class 89
currentPerson property 238
custom columns

using, in DataGrid 160-165
custom DataTemplate

converters, data binding, and DataContext
combining 130-137

custom markup extensions
creating 124-127

customUserNamePasswordValidatorType at-
tribute 373

CustomValidation attribute 530
custom validator

used, for validating data 524-530

D
data

acquiring, on client 460-468
binding, to UI element 53-55
caching, between Silverlight

applications 190, 191
controlling, LoadBehavior used 472-476
customizing, templates used 109-115
deleting, in DataGrid 146-151
displaying, in customized DataGrid 140-145
displaying, in Silverlight applications 40-47
filtering, in DataGrid 156-160
filtering, on server 481-484

632

getting on Windows Phone 7, WCF
used 578-584

grouping, in DataGrid 151-155
inserting, in DataGrid 146-151
loading 202
locating 184
obtaining, from UI element 68-72
paging, in DataGrid 156-160
paging through 485-489
persisting, REST service used 399-405
persisting, standardized service

used 250-254
persisting, WCF Data Services used 422-425
reading, from isolated storage 176-184
reading, from REST service 389-395
reading, WCF Data Services used 416-420
saving 202
server-side validation, with client side

feedback 532-535
sorting, in DataGrid 151-155
sorting, on server 481-484
storing, in isolated storage 176-184
storing, in local SQL CE database 609-615
updating, in DataGrid 146-151
validating 522-535
validating, custom validator used 524-531
validating, data annotations used 521-524
validating, IDataErrorInfo used 104-108
validating, INotifyDataErrorInfo used 104-108
validating, ValidationContext used 541-544
validation, trigerring 536, 538

data annotations
about 101, 171
CustomValidationAttribute 174
DataTypeAttribute 174
RangeAttribute 174
RegularExpressionAttribute 174
RequiredAttribute 174
StringLengthAttribute 174
used, for validating data 521-524
uses 104

database
accessing, in cloud 274-278
creating 201

database driver 201
DatabaseService class 197

data binding
about 37
creatng, from Expression Blend 5 81-83
different modes, used for persisting

data 73-77
process 38, 39

data binding engine 87
data binding expressions

debugging, in Visual Studio 77-80
data binding process

hooking into 88-91
data bound input

about 97
validating 97-99

DataContext 68
DataContext binding statement 225
DataContext class 610
DataContract attribute 12, 311, 595
data-driven Silverlight 5 application

creating, Visual Studio 2010 used 10-17
data-driven Windows Phone 7 application

application bar 575
application bar, menu 575, 576
ASMX/WCF services 573
building 562-564
content control 566
data binding 573
DataContext, setting 569
DataGrid 573
deploying, on real device 574
development environment 573
hubs 577
InitializeData() method 567
isolated storage 576, 577
landscape (horizontal) 574
local data/isolated storage 573
Login button 566
Login page 564
MVVM 573
Navigate() method 575
navigation application template 574
NavigationService.Navigate() method 571
OnNavigatedTo() method 571
Panorama control 566, 569, 577
Pivot 577
portrait (vertical) 574
properties window 565

633

REST services 573
SelectionChanged event 570
System.IO.IsolatedStorage namespace 571
ToObservableCollection<T> 568

WCF data services 573
WCF RIA services 573
Windows Phone Portrait Page, adding 563,

572
data encryption

ensuring 363-368
DataGrid

about 146, 180
creating, steps 141-143
custom columns, using 160-165
data, deleting 146-151
data, displaying 140-145
data, filtering 156-160
data, grouping 151-155
data, inserting 146-151
data, paging 156-160
data, sorting 151-155
data, updating 146-151
master-detail, implementing 167-170
validating 171-173

DataGridCheckBoxColumn 152, 161
DataGrid control 545
DataGridTemplateColumn 152, 161
DataGridTextColumn 161
DataGridTextColumns 152
data input

validating, attributes used 101-103
DataLoader.GeneratePeople() 218
DataMember attribute 595
DataPager control 156-158
data solution

setting up, for WCF RIA Services 452-454
DataTemplate 109
data templates 88
Data Transfer Objects (DTO) 580
DateConverter 92
DatePicker control 168
DatePublished property 529, 543
DeactivateEngine() method 201
declared faults 324
DeleteFile() method 183
DeleteObject() method 189

dependency injection 228
dependency properties 47
deserialization 176
Developer Training Kit 375
DialogMessage type 241
DialogResult property 329, 330
Digg 426
Director attribute 527
DisplayMemberPath property 109, 111
DomainService class 466
DownloadStringAsync method 393
DownloadStringCompleted event 393
DoWork method 12
duplex communication

using, over HTTP 346-353
using, with WCF net.tcp binding 355-362

Duplex WCF communication 362
DutchDictionary class 124
dynamic bindings

creating 49-52

E
eager loading 420
element bindings

about 55
without bindings 56

ElementStyle property 164
elevated permissions

Silverlight applications, running with 363
Employee class 304
EmployeeFault class 322
Employee (IUser) class 510
EmployeeRepository class 304
EndGetRequestStream method 268
EndSaveChanges method 424
Entity class 539
Entity Framework ORM 466
entity set

persisting 490-494
environment

setting up, for developing Silverlight applica-
tions 9

e.Result property 311
errorInfo parameter 547
Error property 547
ErrorsChanged event 524

634

events
passing to ViewModel, commands used 229-

234
export keyword 227
Expose as OData endpoint checkbox 552
Expression Blend 5

about 20
data binding, creating from 81-83
integrating, with Visual Studio 2010 20-28
source control, using 29-31
URL, for downloading 9
used, for generating sample data 84-86

Expression Suite 20

F
Facebook 388
FailedRules dictionary 108
FallbackValue property 95, 96
Federation Authentication 381
FetchItems() method 272
Fiddler

about 319, 625
local traffic 626
URL, for installing 626

Fiddler2 420
files

uploading, to WCF service 332-338
filtering 159
FinalSource property 80
Find() method 602
FireValidation method 107, 108
Flash 260
Flickr

about 261, 388, 426
additional information 433
application, building 427-432

Flush()method 202
FontSize property 164
FontWeight property 164
ForeGround property 164

G
GetAllEmployees method 308
GetAllUsers method 392
GetCallbackChannel method 354
GetErrors method 108

Get latest 31
GetMovies() method 466, 517, 518, 546
GetMoviesQuery() method 467
GetNewsAsXml method 266
GetObject() method 188
GetRolesForUser method 519
GetTranslation() method 124
GetUser method 512
GetUserStoreForApplication()

method 180, 183, 191
GetUserStoreForSite() method 191
GridLinesVisibility property 142

H
HasErrors method 108
HasErrors property 547, 548
HeadersVisibility property 142
Home.xaml 506
hooks 38
HorizontalGridLinesBrush property 142
Hosted Service 274
HTTP

duplex communication, using over 346-353
HttpNotificationChannel 607
HTTPS 346
HttpsTransport element 374
HttpsTransport security 368
HttpWebRequest

used, for reading XML 265-270
HttpWebRequest class 266, 394, 590, 593,

595
hubs 577

I
IAsyncResult parameter 268
IBluRayService interface 581, 591
ICommand implementation 214
IDataErrorInfo 104
IDataErrorInfo interface 109
IdentityTKStsCert certificate 514
IIS 7.5 34
Image control 92
ImageDownload class 339
Image property 315
ImageRequest class 315

D
ow

n
lo

a
d
 f
ro

m
 W

o
w

!
e
B
o
o
k

<
w

w
w

.w
o
w

e
b
o
o
k.

co
m

>

635

images
displaying, as stream from WCF

service 338-343
images, based on URL

displaying, with converters 92, 93
ImageUpload class 333
implicit data templates

about 115
using 115-119
working 119

import keyword 228
ImportMany. See import keyword
InactivityTimeout 353
InEditMode property 136
InitializeComponent() method 50
InitializeData() method 567
InitializeOwner method 41
INotifyCollectionChanged interface 64, 127,

145, 150
INotifyDataErrorInfo interface 104-109
INotifyDataErrorInfo validation 524
INotifyPropertyChanged interface 212, 213,

218, 610
Insert method 129
InsertOnSubmit() 616
InstantiateCommand() method 230
InstantiateCommands() method 474, 478,

491
Integrated Development Environment (IDE)

11
IntelliSense 77
Internet Information Services (IIS) 356
Internet Information Services (IIS 7) 34
IsLoggedInAsync method 328
IsLoggedInCompleted event 328
IsLoggedIn method 328
isolated storage 571

about 175, 176
comparing, with cookies 176
data, caching between Silverlight applications

190, 191
data, reading from 176-184
data, storing in 176-184
size limit 185, 186

IsolatedStorageFile class 176, 180, 183
IsolatedStorageFileStream class 181-184

IsolatedStorageSettings class 176
about 186
working with 186-189

IsoStoreSettingsHelper class 187
IsReadOnly property 142
IsSelected property 120
IStockService interface 348
IsTonerAvailable 624
IsWinningCodeAsync method 250
IsWinningCodeCompleted event 250
Items property 543
ItemsSource property 19, 60, 142, 145
ItemTemplate property 60
ITonerService.cs 623
IUser interface 512
IValueConverter interface 89-93

J
JavaScript Object Notation. See JSON
JSON

about 192, 388, 408
used for accessing REST services, from

Windows Phone 7 591-594
used, for communicating with REST

service 408, 410
JSON/REST endpoints 550

L
landscape (horizontal) 574
LangnuageList property 163
LanguageHelper class 163
Language property 153
LastAddedDate 213
LastName property 103, 108
LinqToEntitiesDomainService<MovieRentalDB

Entities> service 512
LINQ to SQL 455
LINQ-To-XML

REST results, parsing with 395-399
ListBox 109, 160
LoadAllCities() method 179
LoadBehavior

used, for controlling data 472-476
LoadCitiesFromService() method 180
LoadCitiesFromXml() method 180, 182
LoadData() method 216, 465

636

LoadEmployees method 308
LoadingRow event 140
local cloud 284
local database 278
local development cloud 274
localhost certificate 514
locked-down services 416
login page 564

M
Managed Extensibility Framework. See MEF
markup extension 42, 123
MarkupExtension class 127
mashups 261
master-detail

implementing, in DataGrid 167, 170
master-detail implementation 167
MDF file, SQL Server database

attaching 625
MEF

about 224
used, for connecting view to ViewModel 224-

228
message-based security

used, for securing service communication
369-373

MessageBox 241
messenger

leveraging, to wrap application wide messages
239, 241

metadata class 526
Microsoft Foundation Classes (MFC) 38
Microsoft Push Notifications Service 606
Microsoft SQL Server Database File (MDF)

390
model 207
Model-View-Controller. See MVC
Model-View-ViewModel. See MVVM
MouseLeftButtonDown event 112
MovieAuthenticationDomainContext 507
MovieDomainService class 466
MovieMetadata class 534
MovieValidators class 529
MVC 205

MVVM 573
about 8, 205, 460
application, building 206-208
INotifyPropertyChanged interface 212
MVVM light, using to enable MVVM application

214-218
NotifyChanged event 212
object-based presentation 207
PersonViewModel class 209-213
PersonViewModel instance 213
using statement 209, 212
ViewModel base class 212
ViewModels folder 208

MVVM Light Toolkit 214

N
navigate() method 575
NavigationService.Navigate() method 571
Net.tcp 362
net.tcp communication 8
New Connection button 412
Ninject 228
NoMoreCustomerSince property 93
NotFound error error message 323
NotFound exception 319
NotificationMessageAction, built-in type 241
NotificationMessageAction<T>, built-in type

241
NotificationMessage, built-in type 241
NotificationMessage<T>, built-in type 241
NotifyChanged event 212, 213, 218
NotifyOnValidationError property 99, 103
NotifyPropertyChangedBase 218
NuGet

about 627
packages 627
URL 192
URL, for installing 627

O
object-based representation 207
object tracking 421
ObservableCollection 147
ObservableCollection<BluRay> 567
OData 452

637

OData endpoints
domain service, exposing as 550
WCF RIA Domain Services, exposing as 550-

552
OData (R) endpoints 504
OnChannelUriChanged() 604
OnError method 547
OneTime binding 76
OnNavigatedTo() method 199, 571, 583, 588,

592
Open Data Protocol endpoints. See OData

endpoints
OperationContract attribute 13, 306, 354
Owner class 80, 93
OwnerDetailsEdit control 106
OwnerService class 128

P
PagedCollectionView class 153, 155
PagerDisplayMode, values

FirstLastNumeric 159
FirstLastPreviousNext 159
FirstLastPreviousNextNumeric 159
Numeric 159
PreviousNext 159
PreviousNextNumeric 159

paging
about 159
through, data 485,-489

Panorama 561
Panorama control 566, 569, 577
PanoramaItem 569
PanoramaItem instance 566
PartCreationPolicy attribute 228
performance

optimizing, binary XML used 315-317
PersistChangeSet() method 502
Person class 386
PersonEditViewModel 238
PersonSelectedMessageReceived method

238
PersonViewModel 210
PersonViewModel class 209, 212-214
PersonViewModel constructor 212
PersonViewModel instance 213, 223

Pictures Lab
URL 558

P/Invoke 265
PInvoke 8
Pivot 577
Platform Invocation Services. See P/Invoke
policy server, socket communication 297
PollingDuplexBinding 346-353
portrait (vertical) 574
POST method 445, 600
PreferredSince property 95
ProcessRequest method 266, 267
ProfileService 332
PropertyChanged event 62
PropertyChangedMessage<T>, built-in type

241
ProvideValue() method 125, 127
proxy_GetHotelsCompleted method 19
PublishedDate property 530, 544
push notifications 560

about 597
ASP.NET WebForms page 599
BindToShellTile() method 607
BindToShellToast() method 604, 607
channel 606
ChannelUri method 602
ChannelUri property 602
CreateNotificationChannel() method 602
Find() method 602
HttpNotificationChannel 607
MessageType enumeration 600
Microsoft Push Notifications Service 606
OnChannelUriChanged() 604
POST method 600
process 598
RegisterForChannelEvents() method 603
RegisterForNotifications() 604
SendMessage() method 600, 601
Send Single Push Notification button 605
settings page 605
Settings.xaml page 602
UnbindToShellToast() method 602
unique identifier 606
URL 599, 600
wp$Count element 608
wp$Count field 608

638

Q
query file, SQL Server database

executing 625

R
Really Simple Syndication. See RSS feed
ReceiveAsync method 298
RecentDateValue property 543
RefreshButton 183

RegisterForChannelEvents() method 603
RegisterForNotifications() 604
RegisterTable() method 201
RegisterTables() method 196, 201
RelayCommand implementation 232
remoting 301
RemoveRequest() method 619, 620
Representational State Transfer. See REST
request instance 271
RequiresAuthentication attribute 517, 519
RequiresRole attribute 519, 520
resource 394
Resources collection 112
REST

about 249, 388
used, for talking to Twitter 434-439

REST API 314
RESTful services 388
REST results

parsing, with LINQ-To-XML 395-399
REST services

about 573
accessing from Windows Phone 7, JSON

used 591-594
accessing from Windows Phone 7, XML

used 587-590
creating, from WCF 623, 624
data, reading from 389-395
JSON, used for communicating with 408-410
used, for persisting data 399-405

RetrieveEmployeesByUserName method 319
RIA Services 451, 452
RIAServices.DomainServices

namespace 552
RIAServices.WebHost directory 548

roleManager tag 520
RoleProvider class 519
RoleService 332
RoundTripOriginal attribute 500
RowBackground property 142
RowDetailsTemplate 170
RowHeight property 142
RSS

about 249
versions 274

RSS feed
reading out 271-273

RSS versions 274

S
sample data

generating, Expression Blend 5 used 84-86
sandbox 175
Save() method 187, 202
SaveToXml() method 180, 181, 190
search function 23
SearchRequest class 315
SearchRequest object 313
Secure Socket Layer communication (SSL)

363
Security Token Service 374
SelectedPersonChangedExecution method

234
SelectionChanged event 233, 570
SendAsync method 298
SendMessage() method 600, 601
Send single push notification button 599
Send Single Push Notification button 605
SendUpdate method 348, 354
SendUpdateReceived event 351
server

data, filtering on 481-484
data, sorting on 481-484
Silverlight application, deploying on 32-34

Server Certificates 514
server errors

handling 545-548
server-side query

controlling, from client 476-480

639

service
about 302, 346, 354
accessing, in cloud 279-284
connecting to 311
debugging, in Silverlight 318-323
invoking, that exposes data 302-309

Service Bus 274
service communication

securing, message-based security used
369-373

ServiceContract attribute 13, 306
service-enabled Silverlight 5 application

creating, Visual Studio 2010 used 10-17

service, fault types
declared 324
undeclared 324

set accessor 100
settings page 605
Settings.xaml 602
Settings.xaml page 602
Silverlight

about 7, 139, 243
ASP.NET authentication, using 325-331
data solution, setting up for WCF RIA Services

452-454
for Windows Phone 7 559, 560
service, debugging 318-323
socket communication, using 288-297
WCF Data Services, using with 411-415
WCF RIA Services class library, using 455-

458
WCF service, adding 309-311
WCF service, calling from 383-386
WCF service connection, that exposes data

302-309
Windows Identity Foundation (WIF), integrating

374-382
Silverlight 2, 8
Silverlight 3, 302
Silverlight 5 Tools

installing 9
Silverlight application

about 8, 40, 175
Ancestor RelativeSource binding,

using 120-123
Bing.com service, invoking 312-315

change-aware collection type,
building 127-130

code, cleaning up 66-68
collections, binding to UI elements 56-59
configuration changes, on server 34
connecting 298
connecting with, standardized service 244-

250
converters, replacing with BindingBase prop-

erties 93-96
converters, used for hooking into data binding

process 88-91
cross-domain calls, configuring 254-261
cross-domain calls, making from 262-265
custom markup extensions, creating 124-127
database, accessing in cloud 274-278
data binding 19
data, binding to UI element 53-55
data bound input, validating 97-99
data, caching between 190, 191
data, displaying 40-47
data encryption, ensuring 363-368
data input, validating with attributes 101-103
data, obtaining from UI element 68-72
data, persisting with standardized service

250-254
deploying, on server 32-34
dynamic bindings, creating 49-52
enabling, for automatically updating UI 60-65
environment, setting up for developing 9
IDataErrorInfo, used for validating data 104-

108
implicit data templates, using 115-119
INotifyDataErrorInfo, used for validating data

104-108
project structure 18, 19
RSS feed, reading out 271, 273
running, from cloud 284-286
running, with elevated permissions 363
server, disallowing support for XAP 35
service, accessing in cloud 279-284
services 19
setup requisites 363
solution 18, 19
XML, reading with HttpWebRequest 265-270
templates, used for customizing

data 109-115

640

Silverlight client
WCF RIA Services link 458

Silverlight control toolkit
about 427, 626
URL, for downloading 626

Silverlight platform 454
Silverlight solution 18
SilverWitter client 440
size options

about 165
Auto 165
Pixel (Fixed) 165
SizeToCells 165

SizeToHeader 165
Star 165

SketchFlow
about 561
URL 561

smart polling 353
SOAP 314, 388, 452
SOAP (CRUD) 504
SOAP envelope 388
SOAP fault 323
socket communication

about 244, 288
policy server 297
socket server 298
using, in Silverlight 288-297

socket server, socket communication 298
SolidColorBrush 90, 91
sorting 151
SortMemberPath property 156
source control

using, in Expression Blend 5 29-31
using, in Visual Studio 2010 29-31

Source property 92, 162
SourceType enumeration 315
SQL Azure 504

about 548
using, with WCF RIA Services 548-550

SQL Azure Migration Wizard 276
SQL CE (Compact Edition) database. See SQL

CE database
SQL CE database

database context 615
database, interaction with 616

data, storing in 609-615
local SQL CE database, data storing in 609-

615
model classes 615
SubmitChanges() 616

SQL Profiler 480
SQL Server database

MDF file, attaching 625
query file, executing 625

standardized service
connecting with 244-250
reading from 244-250
used, for persisting data 250-254

StaticResource 123
StatusTextBlock 619
Sterling

about 192, 200
adding, to Silverlight project 192
database, creating 201
obtaining 200

Sterling database
data, loading 202
data, saving 202
using 193-200

Sterling engine 201
stock ticker 347
StreamReader instance 593
StringFormat property 94, 96
StringLength attribute 103
SubmitChanges() method 495, 614, 616
SubmitOperation object 495
System.Collections.Generic namespace 125
System.ComponentModel.DataAnnotations

namespace 144
System.ComponentModel namespace 65
System.Data.Linq namespace 610
System.IO.IsolatedStorage namespace 571
System.Runtime.Serialization assembly 581
System.Runtime.Serialization.Json name-

space 595
System.Threading namespace 348
system.web tag 520
System.Windows.Controls.Data.Input

namespace 144
System.Windows.Controls.Data

namespace 144

641

System.Windows.Controls namespace 139,
144

System.Windows.Data namespace 144
System.Windows.Interactivity assembly 233

T
Table attribute 610
Table<BluRay> property 614
Tag property 171
target control 38
TargetNullValue property 93, 96
TCP communication 362
TcpListener class 297

Team Foundation Server. See TFS
template column

sorting 156
templates

about 109
used, for customizing data 109-115

TextBlock 213
TextBlock control 168
TextBlock controls 10
TextBlock template 539
TextBox 88
Text property 46
TFS 29
TFS terms

about 31
check in 31
check out 31
Get latest 31
TFS workspace 31

TFS workspace 31
Tick event 65, 348
tight coupling 235
TimeoutException 353
Title property 167, 535
TonerService.cs 623
TonerService, WCF service 623
ToObservableCollection<T> 568
ToString() method 114, 109, 145
Total Cost of Ownership (TCO) 283
TrailerAndDirector validator 530

TrailerLocation attribute 527
TrailerLocation properties 530
transactions

about 496
working with 497-502

Transact SQL statements
URL 550

TransferProgessChanged event 619
TransferStatusChanged event 618, 619
TranslatorExtension class 125
transport security 374
trigger 197, 202
trusted application

about 262, 439
credentials, passing to Twitter 439-447
cross-domain access, passing to

Twitter 439-447
Trusted Silverlight application

creating 448
TryValidate-method 539
TryValidateObject 538
TryValidateProperty 538
tweets 434
Twitter

about 261, 388, 434
REST, used for talking to 434-439

TwoWay binding 77, 90, 400

U
UI element

collections, binding to 56-59
data, binding to 53-55
data, obtaining from 68-72
data, obtaining from steps 70

UI virtualization 140
UnbindToShellToast() method 602
undeclared faults 324
unique identifier 606
UpdateUser 512
UriTemplate 624
user access

to service methods, controlling 517-520
to services, controlling 517-520

642

User class 512
user identity tracking, custom authentication

service 550
about 507-510
Employee (IUser) class 510
GetUser method 512
IUser interface 512
LinqToEntitiesDomainService<MovieRentalDB

Entities> service 512
Logout method 512
MovieAuthenticationDomainService, loading

508
using statement 508
ValidateUser method 512

user identity tracking, default Windows au-
thentication

about 504, 505
Application_Startup method 505

App.xaml, code adding to 506
App.xaml.cs, statements adding to 505
MovieAuthenticationDomainContext 507
new authentication domain service, adding

505
WebContext 507
WebContext.Current 507
XAML code, adding to Home,xaml 506
xmlns imports, adding to App.xaml 506

User Interface (UI) 10
User Management 388
userNameAuthentication element 373
UserNamePasswordValidator class 373
using statement 209, 212, 508, 540

V
ValidateButton handler 106
Validate() method 537, 540
ValidatesOnExceptions property 99, 103
ValidatesOnNotifyDataErrors property 524
ValidateUser method 512
validationContext 529
ValidationContext 529, 543

used, for validating data 541-544
ValidationContextValidation.Items 545

ValidationContext constructor 544
ValidationContext object 544
ValidationErrors collection 539
Validation.Items 545
ValidationResult 529
validations 88
ValidationSummary control

about 100
using 100

validator class 538
value parameter 90
Verisign 365
view

about 206
connecting to ViewModel, MEF used 224-228
connecting to ViewModel, ViewModelLocator

used 219-223
connecting, to ViewModel, ViewModelLocator

used 219-223
View First-approach 223
ViewModel

about 206
communicating, between 235-238
events passing, commands used 229-234
view connecting to, MEF used 224-228
view connecting to, ViewModelLocator used

219-223
ViewModel base class 212
ViewModelBase class 218
ViewModel classes 214
ViewModelLocator

used, for connecting view to ViewModel 219-
223

ViewModel property 225, 227
ViewModels folder 208
Visual Studio

data binding expressions, debugging 77-80
Visual Studio 2010

data-driven Silverlight 5 application, creating
10-17

integrating, with Expression Blend 5 20-28
service-enabled Silverlight 5 application,

creating 10-17
source control, using 29-31

Visual Web Developer Express 2010
installing 9

643

W
WCF

about 301, 302, 345
ASMX services 585
credentials, sending 586
data transfer 585, 586
REST services, creating 623, 624
services 585
used, for getting data on Windows Phone 7

578-584
WCF data services 573
WCF Data Services

about 411
used, for persisting data 422-425
used, for reading data 416-420
using, with Silverlight 411-415

WCF net.tcp binding
duplex communication, using with 355-362

WCF RIA Domain Services

exposing, as OData endpoints 550-552
exposing, for other technologies 553-555

WCF RIA services
about 573
WIF, integrating 513

WCF RIA Services. See also RIA Services
about 451
better naming, for templates 458, 459
class library, using 455-458
data, acquiring on client 460-468
data, filtering on server 481-484
data solution, setting up for 452-454
data, sorting on server 481-484
enabling 549
entity set, persisting 490-494
LoadBehavior, used for controlling data 472-

476
missing properties 469, 471
paging, through data 485-489
properties, excluding 472
server-side query, controlling from client 476-

480
SQL Azure, using 548-550
toolkit 455

WCF RIA Services class library
about 455
using 455-458

WCF RIA Services Toolkit
about 455
URL 553
URL, for installing 627

WCF service
about 249, 301
adding 309-311
calling, from Silverlight with ChannelFactory

383-386
connecting to 311
files, uploading to 332-338
images, displaying as stream 338-343
TonerService 623

WebClient class 391, 394, 590
web.config file 309, 321, 374, 553
WebContext 507
WebContext.Current 507
Web Development Helper 319
WebGetAttribute 624
webHttpBinding 588
WebHttpBinding 623
WebRequest instance 270
web role 283
Web Service Description Language (WSDL)

249
WIF

about 346, 374, 513, 627
integrating, in Silverlight 374-382
integrating, with WCF RIA services 513
RequiresAuthentication attribute 517
Windows Identity Foundation Developer Train-

ing Kit, installing 514
Windows Identity Foundation Runtime, install-

ing 513
Windows Identity Foundation SDK, installing

513
Windows 7 Phone Mango. See Windows

Phone 7
Windows Azure 452, 504
Windows Azure Emulator 274
Windows Azure Platform 244
Windows Azure SDK 279

644

Windows Communication
Foundation. See WCF

Windows Forms 38
Windows Identity Foundation. See WIF
Windows Identity Foundation Developer Train-

ing Kit 374
URL 514

Windows Identity Foundation Runtime 374
Windows Identity Foundation SDK 374

URL, for installing 513
Windows Mobile. See WM
Windows Phone 504
Windows Phone 7

about 557, 558
environment, preparing 562
Panorama 561
push notifications 597-602
REST services accessing, JSON used 591-

594
REST services accessing, XML used 587-590
Silverlight for 559, 560

Windows Phone 7.5 562
Windows Presentation Foundation (WPF) 8,

139
Windows Process Activation Service (WAS)

357
WinForms 504
WM

about 557
application 558

workflow
using, between Visual Studio 2010 and Blend

5 20-28
wp$Count element 608
wp$Count field 608
WP7. See Windows Phone 7
WP7 SDK

URL, for downloading 562
WPF 504
wrap application wide messages

messenger, leveraging to 239-241

X
XAML 8, 39
XAP file 139
XLinq. See LINQ-To-XML
XML

about 192
reading, HttpWebRequest used 265-270
used for accessing REST services, from Win-

dows Phone 7 587-590
XmlReader/XmlWriter 395
XmlSerializer 395
XmlSerializer class 405

Y
YouTube 388

Thank you for buying
Microsoft Silverlight 5 Data and Services Cookbook

About Packt Publishing
Packt, pronounced 'packed', published its fi rst book "Mastering phpMyAdmin for Effective MySQL
Management" in April 2004 and subsequently continued to specialize in publishing highly focused
books on specifi c technologies and solutions.

Our books and publications share the experiences of your fellow IT professionals in adapting and
customizing today's systems, applications, and frameworks. Our solution-based books give you the
knowledge and power to customize the software and technologies you're using to get the job done.
Packt books are more specifi c and less general than the IT books you have seen in the past. Our
unique business model allows us to bring you more focused information, giving you more of what
you need to know, and less of what you don't.

Packt is a modern, yet unique publishing company, which focuses on producing quality,
cutting-edge books for communities of developers, administrators, and newbies alike.
For more information, please visit our website: www.PacktPub.com.

About Packt Enterprise
In 2010, Packt launched two new brands, Packt Enterprise and Packt Open Source, in order
to continue its focus on specialization. This book is part of the Packt Enterprise brand, home
to books published on enterprise software – software created by major vendors, including (but
not limited to) IBM, Microsoft and Oracle, often for use in other corporations. Its titles will offer
information relevant to a range of users of this software, including administrators, developers,
architects, and end users.

Writing for Packt
We welcome all inquiries from people who are interested in authoring. Book proposals should be
sent to author@packtpub.com. If your book idea is still at an early stage and you would like to
discuss it fi rst before writing a formal book proposal, contact us; one of our commissioning editors
will get in touch with you.

We're not just looking for published authors; if you have strong technical skills but no writing
experience, our experienced editors can help you develop a writing career, or simply get some
additional reward for your expertise.

Microsoft Silverlight 5:
Building Rich Enterprise
Dashboards
ISBN: 978-1-84968-234-3 Paperback: 288 pages

Create, customize, and design rich enterprise
dashboards with Microsoft Silverlight 5

1. With this book and e-book, learn how to create,
customize and design rich enterprise dashboards
with Silverlight

2. Move from scenarios to requirements by applying
user-centered design best practices

3. Discover the tips, tricks and hands on
experience to create, customize and design
rich enterprise dashboards with Silverlight
from a distinguished team of User Experience
and Development authors

Microsoft Silverlight 4 Data
and Services Cookbook
ISBN: 978-1-847199-84-3 Paperback: 476 pages

Over 85 practical recipes for creating rich, data-driven
business applications in Silverlight

1. Design and develop rich data-driven business
applications in Silverlight

2. Rapidly interact with and handle multiple
sources of data and services within Silverlight
business applications

3. Understand sophisticated data access techniques
in your Silverlight business applications by
binding data to Silverlight controls, validating
data in Silverlight, getting data from services into
Silverlight applications and much more!

Please check www.PacktPub.com for information on our titles

Microsoft Silverlight 4
Business Application
Development:
Beginner's Guide
ISBN: 978-1-847199-76-8 Paperback: 412 pages

Build enterprise-ready business applications
with Silverlight

1. An introduction to building enterprise-ready
business applications with Silverlight quickly.

2. Get hold of the basic tools and skills needed to
get started in Silverlight application development

3. Integrate different media types, taking the
RIA experience further with Silverlight, and
much more!

4. Rapidly manage business focused controls, data,
and business logic connectivity.

3D Game Development with
Microsoft Silverlight 3:
Beginner's Guide
ISBN: 978-1-847198-92-1 Paperback: 452 pages

A practical guide to creating real-time responsive online
3D games in Silverlight 3 using C#, XBAP WPF, XAML,
Balder, and Farseer Physics Engine

1. Develop online interactive 3D games and scenes
in Microsoft Silverlight 3 and XBAP WPF

2. Enhance development with animated 3D
characters, sounds, music, physics, stages,
gauges, and backgrounds

3. Packed with inspiring, realistic examples offering
impressive graphics, strong performance, and a
rich interactive experience

Please check www.PacktPub.com for information on our titles

D
ow

n
lo

a
d
 f
ro

m
 W

o
w

!
e
B
o
o
k

<
w

w
w

.w
o
w

e
b
o
o
k.

co
m

>

	Cover
	Copyright
	Credits
	About the Authors
	About the Reviewers
	www.PacktPub.com
	Table of Contents
	Preface
	Chapter 1: Learning the Nuts and Bolts of Silverlight 5
	Introduction
	Getting our environment ready to start building Silverlight applications
	Creating our first service-enabled and data-driven Silverlight 5 application using Visual Studio 2010
	Using the workflow between Visual Studio 2010 and Blend 5
	Using source control in Visual Studio 2010 and Blend 5
	Deploying a Silverlight application on the server

	Chapter 2: An Introduction to Data Binding
	Introduction
	Displaying data in Silverlight applications
	Creating dynamic bindings
	Binding data to another UI element
	Binding collections to UI elements
	Enabling a Silverlight application to automatically update its UI
	Obtaining data from any UI element it is bound to
	Using the different modes of data binding to allow persisting data
	Debugging data binding expressions in Visual Studio
	Data binding from Expression Blend 5
	Using Expression Blend 5 for sample data generation

	Chapter 3: Advanced Data Binding
	Introduction
	Hooking into the data binding process
	Replacing converters with Silverlight 5 BindingBase properties
	Validating data-bound input
	Validating data input using attributes
	Validating using IDataErrorInfo and INotifyDataErrorInfo
	Using templates to customize the way data is shown by controls
	Using implicit data templates
	Using the Ancestor RelativeSource binding
	Creating custom markup extensions
	Building a change-aware collection type
	Combining converters, data binding, and DataContext into a custom DataTemplate

	Chapter 4: The Data Grid
	Introduction
	Displaying data in a customized DataGrid
	Inserting, updating, and deleting data in a DataGrid
	Sorting and grouping data in a DataGrid
	Filtering and paging data in a DataGrid
	Using custom columns in the DataGrid
	Implementing master-detail in the DataGrid
	Validating the DataGrid

	Chapter 5: Working with Local Data
	Introduction
	Reading data from and storing data in the isolated storage
	Working with IsolatedStorageSettings
	Caching data between different Silverlight applications using isolated storage
	Using the Sterling database

	Chapter 6: MVVM
	Introduction
	Creating a basic MVVM application
	Using MVVM Light to enable MVVM applications
	Connecting a View to a ViewModel using a ViewModelLocator
	Connecting a View to a ViewModel using MEF
	Using commands to pass your events to the ViewModel
	Communicating between different ViewModels
	Leveraging a messenger to wrap application-wide messages

	Chapter 7: Working with Services
	Introduction
	Connecting and reading from a standardized service
	Persisting data using a standardized service
	Configuring cross-domain calls
	Working cross-domain from a trusted Silverlight application
	Reading XML using HttpWebRequest
	Reading out an RSS feed
	Accessing a database in the cloud
	Accessing a service in the cloud
	Running a Silverlight application from the cloud
	Using socket communication in Silverlight

	Chapter 8: Talking to WCF and ASMX Services
	Introduction
	Invoking a service that exposes data
	Invoking a service such as Bing.com
	Optimizing performance using binary XML
	Debugging a service in Silverlight
	Using ASP.NET Authentication in Silverlight
	Uploading files to a WCF service
	Displaying images as a stream from a WCF service

	Chapter 9: Talking to WCF and ASMX Services—One Step Beyond
	Introduction
	Using duplex communication over HTTP
	Using duplex communication with the WCF net.tcp binding
	Ensuring data is encrypted
	Securing service communication using message-based security
	Integrating Windows Identity Foundation in Silverlight
	Calling a WCF service from Silverlight using ChannelFactory

	Chapter 10: Talking to REST and WCF Data Services
	Introduction
	Reading data from a REST service
	Parsing REST results with LINQ To XML
	Persisting data using a REST service
	Working with the ClientHttp stack
	Communicating with a REST service using JSON
	Using WCF Data Services with Silverlight
	Reading data using WCF Data Services
	Persisting data using WCF Data Services
	Talking to Flickr
	Talking to Twitter over REST
	Passing credentials and cross-domain access to Twitter from a trusted Silverlight application

	Chapter 11: Using WCF RIA Services
	Introduction
	Setting up a data solution to work with WCF RIA Services
	Using a WCF RIA Services class library
	Getting data on the client
	Using LoadBehavior to control what happens to your data once it's sent to the client
	Controlling the server-side query from the client
	Sorting and filtering data on the server
	Paging through your data
	Persisting a change set/unit of work
	Working with concurrency and transactions

	Chapter 12: Advanced WCF RIA Services
	Introduction
	Tracking a user's identity – default Windows authentication
	Tracking a user's identity – a custom authentication service
	Integrating Windows Identity Foundation with WCF RIA Services
	with WCF RIA Services
	Controlling a user's access to services and service methods
	Validating data: using data annotations
	Validating data: writing a custom validator
	Validating data: server-side validation with client-side feedback
	Validating data: triggering validation when needed
	Validating data: using the ValidationContext
	Handling errors on the server
	Using SQL Azure with WCF RIA Services
	Exposing WCF RIA Domain Services as OData endpoints
	Exposing WCF RIA Domain Services for other technologies

	Chapter 13: Windows Phone 7
	Introduction
	Getting our environment ready to start building Windows Phone 7 applications
	Building your first data-driven Windows Phone 7 application
	Getting data on your Windows phone 7 using WCF
	Accessing REST services from Windows Phone 7 using XML
	Accessing REST services from Windows Phone 7 using JSON
	Working with push notifications using the cloud
	Storing data in a local SQL CE database
	Using the background transfer service

	Appendix
	Creating a REST service from WCF
	Installing an SQL Server database
	Working with Fiddler
	Working with the Silverlight control toolkit
	Working with WIF
	Installing the WCF RIA Services Toolkit
	Installing and using NuGet

	Index

