

 [image: First Edition]

 20 Recipes for Programming MVC 3

Jamie Munro

Editor
Mike Hendrickson

Editor
Shawn Wallace

Copyright © 2011 Jamie Munro

O’Reilly books may be purchased for educational, business, or sales
 promotional use. Online editions are also available for most titles
 (http://my.safaribooksonline.com).
 For more information, contact our corporate/institutional sales
 department: (800) 998-9938 or corporate@oreilly.com.

Nutshell Handbook, the Nutshell Handbook logo, and the O’Reilly logo
 are registered trademarks of O’Reilly Media, Inc. 20 Recipes for
 Programming MVC 3, the image of a Garganey duck, and related
 trade dress are trademarks of O’Reilly Media, Inc.
Many of the designations used by manufacturers and sellers to
 distinguish their products are claimed as trademarks. Where those
 designations appear in this book, and O’Reilly Media, Inc., was aware of a
 trademark claim, the designations have been printed in caps or initial
 caps.

While every precaution has been taken in the preparation of this
 book, the publisher and authors assume no responsibility for errors or
 omissions, or for damages resulting from the use of the information
 contained herein.

[image:]

O'Reilly Media

Dedication

To my wife and kids: you are a dream come true!

Preface

About The Book

The goal of a Model-View-Controller (MVC) framework is to allow
 developers to easily separate their code in distinct aspects to simplify
 development tasks. The model layer allows us to integrate with data;
 usually a database table. The view layer allows us to represent our data
 in a visual fashion using a combination of HTML and CSS. The controller
 layer is the middleman between the model and view. The controller is used
 to retrieve data from a model and make that data available for a
 view.
The goal of this book is to provide web developers a cookbook of
 “recipes” that are required by many developers on a day-to-day basis. Each
 code sample contains a complete working example of how to implement
 authentication, email, AJAX, data validation, and many other examples. You
 will quickly find yourself referring to one of these samples for every
 website that you build.

Prerequisites

Before beginning with this book, it is important to have a good
 understanding of web development. This book is heavily focused on
 providing useful code samples. Each code sample is well described;
 however, it is assumed that the reader is already familiar with many
 aspects of web development.
I would highly recommend reviewing ASP.NET’s MVC website before
 starting. Within a few quick minutes you will be up-to-speed and ready to
 go—it’s that easy.

Conventions Used in This Book

The following typographical conventions are used in this
 book:
	Italic
	Indicates new terms, URLs, email addresses, filenames, and
 file extensions.

	Constant width
	Used for program listings, as well as within paragraphs to
 refer to program elements such as variable or function names,
 databases, data types, environment variables, statements, and
 keywords.

	Constant width
 bold
	Shows commands or other text that should be typed literally by
 the user.

	Constant width italic
	Shows text that should be replaced with user-supplied values
 or by values determined by context.

Tip
This icon signifies a tip, suggestion, or general note.

Caution
This icon indicates a warning or caution.

Tools

There are many Integrated Development Environments (IDEs) available
 on the Internet. I have several favorites; one for each language that I
 develop in. For example, if I’m developing in PHP, I really like PHPStorm
 by Jet Brains. When I’m developing in .NET, there is only one clear
 choice: Microsoft Visual Studio.
If you are an individual just looking to get started, I would
 recommend the express edition: http://www.microsoft.com/express/Downloads/. It’s available
 for free, you simply need to register within 30 days of use. I would also
 suggest that you download and install SQL Server 2008 R2 Express as
 well.
Visual Studio Developer Express will allow us to create and maintain
 our projects, while SQL Server Express will allow us to create and
 maintain our databases. All rich Internet applications these days contain
 a database of some sort to store data captured from user input.
At the time of writing this book, the current version of Visual
 Studio does not contain MVC 3 templates by default. These need to be
 downloaded before you begin. Visit ASP.NET’s MVC web page to download
 and install it.

Using Code Examples

This book is here to help you get your job done. In general, you may
 use the code in this book in your programs and documentation. You do not
 need to contact us for permission unless you’re reproducing a significant
 portion of the code. For example, writing a program that uses several
 chunks of code from this book does not require permission. Selling or
 distributing a CD-ROM of examples from O’Reilly books does require
 permission. Answering a question by citing this book and quoting example
 code does not require permission. Incorporating a significant amount of
 example code from this book into your product’s documentation does require
 permission.
Not all code is optimized for best performance or error handling.
 Regions are used throughout the examples to allow the code to be
 suppressed in future examples. Partial views are used as well to help
 separate the code between recipes and focus more on the changes.
Tip
All code, data and examples can be downloaded from our the book’s
 web page at http://www.oreilly.com/catalog/0636920021407.

We appreciate, but do not require, attribution. An attribution
 usually includes the title, author, publisher, and ISBN. For example:
 “20 Recipes for Programming MVC 3 by Jamie Munro
 (O’Reilly). Copyright 2011 Jamie Munro, 978-1-449-30986-2.”
If you feel your use of code examples falls outside fair use or the
 permission given above, feel free to contact us at
 permissions@oreilly.com.

Safari® Books Online

Note
Safari Books Online is an on-demand digital library that lets you
 easily search over 7,500 technology and creative reference books and
 videos to find the answers you need quickly.

With a subscription, you can read any page and watch any video from
 our library online. Read books on your cell phone and mobile devices.
 Access new titles before they are available for print, and get exclusive
 access to manuscripts in development and post feedback for the authors.
 Copy and paste code samples, organize your favorites, download chapters,
 bookmark key sections, create notes, print out pages, and benefit from
 tons of other time-saving features.
O’Reilly Media has uploaded this book to the Safari Books Online
 service. To have full digital access to this book and others on similar
 topics from O’Reilly and other publishers, sign up for free at http://my.safaribooksonline.com.

How to Contact Us

Please address comments and questions concerning this book to the
 publisher:
	O’Reilly Media, Inc.
	1005 Gravenstein Highway North
	Sebastopol, CA 95472
	800-998-9938 (in the United States or Canada)
	707-829-0515 (international or local)
	707-829-0104 (fax)

We have a web page for this book, where we list errata, examples,
 and any additional information. You can access this page at:
	http://www.oreilly.com/catalog/0636920021407/

To comment or ask technical questions about this book, send email
 to:
	bookquestions@oreilly.com

For more information about our books, courses, conferences, and
 news, see our website at http://www.oreilly.com.
Find us on Facebook: http://facebook.com/oreilly
Follow us on Twitter: http://twitter.com/oreillymedia
Watch us on YouTube: http://www.youtube.com/oreillymedia

Chapter 1. The Recipes

1.1. Restricting Access to Views with Password Protection

Problem

You want to prevent access to specific pages of your website
 unless a user has registered and logged in with a username and
 password.

Solution

Implement ASP.NET’s AuthorizeAttribute, FormsAuthentication, and Membership creation/validation through the use
 of an AccountController, AccountModels, and several MVC views.

Discussion

The MVC team at Microsoft have made a lot of improvements to the
 AccountController. It has been
 updated to use FormsAuthentication
 along with the Membership class to
 create new users, validate existing users, and create cookies to check
 the logged in state of users.
Unlike MVC 2, in version 3, the new project dialog has been
 updated to provide several different start up applications:
 Empty, Internet Application,
 and Intranet Application. An empty application will
 set up your folder structure required for MVC. An Internet
 Application, the default template, will create an MVC
 application with several features pre-configured, including a basic
 layout and an AccountController that
 contains multiple actions to register and log users the application. The
 third template, Intranet Application, is quite
 similar to the Internet Application with the exception that instead of
 using the Membership class, it will
 use Windows Authentication.
For most websites, the default Internet
 Application should be used. If you haven’t already done so,
 create a new MVC 3 Internet Application now. This will generate an
 AccountController, AccountModels, and several Account views that
 contain forms for users to register, log in, and change their password
 with.
Note
It is important to note the name of your new MVC application.
 Throughout the examples in this book, the
 namespace will be MvcApplication4. If your application name
 is different, all of the namespaces in the subsequent examples must be
 updated to reflect your namespace.

To prevent users from accessing certain views, MVC provides an
 AuthorizeAttribute that is placed in
 a controller above the action requiring the user to be logged in to view
 the particular content. Open the AccountController and you will see that this
 is done here:
 //
 // GET: /Account/ChangePassword

 [Authorize]
 public ActionResult ChangePassword()
 {
 return View();
 }
When a user attempts to access the page /Account/ChangePassword, if they have not
 previously logged in or registered on your website, MVC will
 automatically redirect them to the login page. If they have already
 logged in, no redirect will take place and the view will be displayed to
 them. The URL that the user is redirected to when not logged in is
 defined in the Web.config file
 here:
 <authentication mode="Forms">
 <forms loginUrl="~/Account/LogOn" timeout="2880" />
 </authentication>
If the user has never registered before, they will end up at the
 registration page. The default registration collects the following
 information:
	Username

	Email Address

	Password

The functionality that creates a new Membership for the user is completed inside
 the AccountController in the Register function. The Register function accepts one parameter called
 model that is of type RegisterModel.
 In the AccountModels, there is a
 class definition called RegisterModel
 that defines public variables for each of the form elements on the
 register page.
Note
It’s important to ensure that every time a model is being posted
 through a form that one of the first conditional checks is for
 ModelState.IsValid. In a future
 example, when validation is implemented, this boolean field verifies
 that the data entered through the form is valid data and matches the
 model definition.

 [HttpPost]
 public ActionResult Register(RegisterModel model)
 {
 if (ModelState.IsValid)
 {
 // Attempt to register the user
 MembershipCreateStatus createStatus;
 Membership.CreateUser(model.UserName,
 model.Password, model.Email, null, null,
 true, null, out createStatus);

 if (createStatus ==
 MembershipCreateStatus.Success)
 {
 FormsAuthentication.SetAuthCookie(
 model.UserName,
 false /* createPersistentCookie */);
 return RedirectToAction("Index", "Home");
 }
 else
 {
 ModelState.AddModelError("",
 ErrorCodeToString(createStatus));
 }
 }

 // If we got this far, something failed,
 // redisplay form
 return View(model);
 }
The above code was generated automatically, and does three
 important things:
	Creates a new user through the Membership.CreateUser() function with the
 data that was entered by the user.

	Ensures that the user was successfully created, and if so, a
 FormsAuthentication.SetAuthCookie
 is set that is used to validate the user on subsequent page
 calls.

	If the user was created successfully, the user is redirected
 back to the homepage (or if there was an error creating the user, an
 error message is set and passed to the view and is redisplayed with
 an error message to the user).

If you have installed the full version of Visual Studio, SQL
 Express is also installed allowing you to view your databases that are
 created. However, if you have only installed the basic version of Visual
 Studio, SQL Express can be downloaded from Microsoft for free as
 well.
The default database connection defined in the Web.config will
 create a SQL Express database in the App_Data folder of the application. This local
 SQL Express database will contain the various tables required by the
 Membership class to store the users, profile data,
 roles, etc., for the application.
 <connectionStrings>
 <add name="ApplicationServices"
 connectionString="data source=.\SQLEXPRESS;
 Integrated Security=SSPI;
 AttachDBFilename=|DataDirectory|aspnetdb.mdf;
 User Instance=true"
 providerName="System.Data.SqlClient" />
 </connectionStrings>
When a user visits the website again in the future, if the
 FormsAuthentication cookie is still
 present (because they chose the “remember me” option during login—or
 they didn’t close their web browser) then the content will be displayed
 to them without being required to log in or register. However, if the
 cookie isn’t present, but the user has already registered, they will be
 redirected to the login page. Once the user enters their login
 information and submits the form, the AccountController will once again handle the
 processing to validate the user through the Membership class. This is shown here:
 [HttpPost]
 public ActionResult LogOn(LogOnModel model,
 string returnUrl)
 {
 if (ModelState.IsValid)
 {
 if (Membership.ValidateUser(model.UserName,
 model.Password))
 {
 FormsAuthentication.SetAuthCookie(
 model.UserName, model.RememberMe);
 if (Url.IsLocalUrl(returnUrl)
 && returnUrl.Length > 1
 && returnUrl.StartsWith("/")
 && !returnUrl.StartsWith("//")
 && !returnUrl.StartsWith("/\\"))
 {
 return Redirect(returnUrl);
 }
 else
 {
 return RedirectToAction("Index", "Home");
 }
 }
 else
 {
 ModelState.AddModelError("",
 "The user name or password provided
 is incorrect.");
 }
 }

 // If we got this far, something failed,
 // redisplay form
 return View(model);
 }
The above code, once again automatically generated, does three
 important things:
	Validates the user through the Membership.ValidateUser() function with
 the username and password entered.

	If the login was successful, a FormsAuthentication.SetAuthCookie is
 set.

	If the user was validated, the user is redirected back to the
 homepage (or if they were not validated, an error message is set and
 passed to the view that is redisplayed with an error message to the
 user).

The AuthorizeAttribute also
 provides further restriction options by limiting pages to certain groups
 or even only certain users. This can be accomplished as follows:
 // Retrieve a list of all users to allow an admin
 // to manage them
 [Authorize(Roles = "Admin")]
 public ActionResult UserAdmin()
 {
 MembershipUserCollection users =
 Membership.GetAllUsers();
 return View(users);
 }

 // Create some custom reports for me only
 [Authorize(Users = "Jamie")]
 public ActionResult JamieAdmin()
 {
 // Perform some logic to generate usage reports
 ...
 return View();
 }
These simple examples are merely the beginning of how content can
 be restricted. Some next steps would be to consider exploring adding
 custom groups to further advance the definition of the access
 control.

See Also

AuthorizeAttribute,
 FormsAuthentication,
 and Membership

1.2. Automating Generation of Controllers and Views

Problem

You want to allow dynamic content to be managed through your
 website.

Solution

Automatically generate a controller and multiple views through
 scaffolding allowing users to Create, Read, Update, and Delete (also
 known as CRUD) data with the Entity Framework
 Code-First and Database-First
 approaches.

Discussion

Before the controller and views can be scaffolded, a model and
 DbContext need to be created that
 define what data is to be collected (hence the
 Code-First approach). In the following example, two
 classes are created that will provide the ability to manage a list of
 books. The first class contains the definition of the book data that
 will be stored in the SQL Express database. The second class contains
 the DbContext that creates a DbSet of the Book class. To create the model, right click
 on the Models folder and select
 Add→Class. In the filename field type: Book.cs and replace the generated class with
 the following code:
using System;
using System.Collections.Generic;
using System.Linq;
using System.Web;
using System.Data.Entity;

namespace MvcApplication4.Models
{
 public class Book
 {
 public int ID { get; set; }
 public string Title { get; set; }
 public string Isbn { get; set; }
 public string Summary { get; set; }
 public string Author { get; set; }
 public string Thumbnail { get; set; }
 public double Price { get; set; }
 public DateTime Published { get; set; }
 }

 public class BookDBContext : DbContext
 {
 public DbSet<Book> Books { get; set; }
 }
}
With the Book model and
 BookDBContext created, the
 scaffolding of the controller and view can now be completed. To begin,
 right click on the Controllers folder
 and select Add→Controller (see Figure 1-1).
[image: Adding a new controller]

Figure 1-1. Adding a new controller

Note
People have different naming conventions for controllers. As
 much as possible, I attempt to use a plural name for my controller and
 a singular name for my model classes. The reasoning behind this is the
 controller provides the ability to view, add, edit, and delete one or
 more books; while the model pertains to a single book record.

As you can see in the above picture, the new controller is named
 BooksController. From the template
 dropdown, choose a controller with read/write actions and views, using
 the Entity Framework. The model class is the previously created Book class and the Data context class is the
 previously created BookDBContext
 class. Razor is the default type for the views, so this can be left
 as-is. Once you have filled out and entered the correct information,
 press Add and wait several seconds as the files are
 created (see Figure 1-2).
Warning
If you see an error underneath the model class indicating no
 models can be found, try building or running the solution first, then
 try again.

[image: Newly scaffolded files]

Figure 1-2. Newly scaffolded files

The Entity Framework also provides the
 ability to scaffold controllers and views by using a different method,
 Database-First. This is done by creating an Entity
 Data Model to an already existing database. In large projects, it is
 quite common to separate based on the strength of the resources
 available. For example, a good front-end web developer might not be an
 expert at database design. So the task of designing a database will be
 given to an expert.
In the next example, a connection to the previously created
 database containing the Books table will be created and scaffolded from
 that instead of a model. Begin by creating a new application. The old
 application can be used again, but creating a new application will allow
 you to decide your preference for creating models,
 Code-First or
 Database-First.
Once the application is created, right click on the Models folder and select Add→New
 Item. In the search box in the top right corner, type
 Entity. From the search results,
 select ADO.NET Entity Data
 Model. Update the name of the file to be BookModel.edmx. Now it’s time to go through a
 wizard to set up the database connection:
	Select Generate from database.

	Select the New connection button.

	Select Microsoft SQL Server from the drop-down and press
 Continue.

	In the Connection Properties dialog, under Server Name, select
 your SQL Express database.

	Under the Connect to a database drop-down, select the database
 that was automatically created by MVC in the last example and press
 OK.

Update the connection string for Web.config to be SQLExpressConnection and press Next. A
 connection will be now made to the database. Expand the Tables and
 select the Books table.
After selecting Finish, the new Entity Diagram is created under
 the Models directory. Before the
 controller can be scaffolded, the solution must be built. Once the
 project is built, just like in the Code-First
 example, right click on the Controllers folder and select
 Add→Controller.
When adding the new controller in this approach, the Book is still the Model class; however, for
 the Data context class, Entities is
 chosen instead which contains the connection to the database.
In future recipes, the Code-First approach
 will be used to allow for more complete code examples instead of
 requiring database tables to be manually created and allow for more
 focus on MVC.

See Also

ADO.NET
 Entity Framework Overview

1.3. Validating User Input

Problem

You need to ensure that the data being captured in your form
 contains the data expected based on your database or model
 design.

Solution

.NET 4.0 contains a new DataAnnotations namespace that provides many
 useful metadata attribute classes that have been implemented in MVC 3.
 For the purpose of validating form input the following attribute classes
 can be used to provide a wide variety of validation options: RequiredAttribute, RegularExpressionAttribute, RangeAttribute, and DataTypeAttribute. When custom validation is
 required, MVC 3 also supports the improvements to the ValidationAttribute class allowing
 developer-defined validation.

Discussion

The following example is going to extend the Code-First
 Book model that was created in the previous recipe. It will
 be updated to ensure the following:
	A book title is entered.

	A valid ISBN is entered.

	A book summary is entered.

	An author of the book is entered.

	A valid dollar amount for the price of the book is
 entered.

	A valid published date is entered.

Five of the six validation requirements can be met with the
 built-in validation methods provided with MVC 3. The ISBN validation;
 however, needs to be done in a different format—it requires a custom
 validation method:
using System;
using System.Collections.Generic;
using System.Linq;
using System.Web;
using System.Data.Entity;
using System.ComponentModel.DataAnnotations;
using MvcApplication4.Validations;

namespace MvcApplication4.Models
{
 public class Book
 {
 public int ID { get; set; }

 [Required]
 public string Title { get; set; }

 [Required]
 [IsbnValidation]
 public string Isbn { get; set; }

 [Required]
 public string Summary { get; set; }

 [Required]
 public string Author { get; set; }

 public string Thumbnail { get; set; }

 [Range(1, 100)]
 public double Price { get; set; }

 [DataType(DataType.Date)]
 [Required]
 public DateTime Published { get; set; }
 }

 public class BookDBContext : DbContext
 {
 public DbSet<Book> Books { get; set; }
 }
}
In the above example, the [Required] data annotation was added above
 each field that must be provided by the user. Above the ISBN number,
 [IsbnValidation] was also added,
 informing MVC 3 that it must call the IsValid
 operation from the soon-to-be created
 IsbnValidationAttribute class. To validate the price,
 the [Range] annotation was used. This
 could also be accomplished with the [RegularExpression] attribute as
 follows:
 [RegularExpression (@"(\b[\d\.]*)")]
 public double Price { get; set; }
Finally, the published date is validated by telling MVC that the
 DataType of this field is a date. The IsbnValidation data attribute will currently
 be displaying an error because this class has not been implemented. This
 class will be implemented in the following example.
A valid ISBN is defined as 10 or 13 characters long. To help keep
 the code organized, the custom validation will be placed in a separate
 folder where other custom validation that might be needed can be added
 as well. Right click on the project and select Add→New
 Folder. The folder should be named Validations. Once created, right click on the
 new folder and select Add→Class. Name the class
 IsbnValidationAttribute.cs. This
 class will extend the ValidationAttribute class and
 override the IsValid method to perform validation on the ISBN number
 entered:
using System;
using System.Collections.Generic;
using System.Linq;
using System.Web;
using System.Text.RegularExpressions;

namespace MvcApplication4.Validations
{
 [AttributeUsage(AttributeTargets.Field |
 AttributeTargets.Property, AllowMultiple = false,
 Inherited = true)]

 public class IsbnValidationAttribute :
 System.ComponentModel.DataAnnotations.ValidationAttribute
 {
 /**
 * This class is courtesy:
 * http://www.java2s.com/Open-Source/CSharp/
 * Inversion-of-Control-Dependency-Injection/Spring.net/
 * Spring/Validation/Validators/ISBNValidator.cs.htm
 *
 * This class is used for demonstration purposes
 * of performing an ISBN validation. Should you
 * wish to use this in your project, please
 * consult the license agreement here:
 * http://www.apache.org/licenses/LICENSE-2.0
 **/

 private static readonly String SEP = "(?:\\-|\\s)";
 private static readonly String GROUP = "(\\d{1,5})";
 private static readonly String PUBLISHER = "(\\d{1,7})";
 private static readonly String TITLE = "(\\d{1,6})";

 static readonly String ISBN10_PATTERN =
 "^(?:(\\d{9}[0-9X])|(?:" + GROUP + SEP + PUBLISHER +
 SEP + TITLE + SEP + "([0-9X])))$";

 static readonly String ISBN13_PATTERN =
 "^(978|979)(?:(\\d{10})|(?:" + SEP + GROUP + SEP +
 PUBLISHER + SEP + TITLE + SEP + "([0-9])))$";

 public IsbnValidationAttribute() :
 base("Invalid ISBN number")
 {
 }

 public override bool IsValid(object value)
 {
 // Convert to string and fix up the ISBN
 string isbn = value.ToString();
 string code = (isbn == null)
 ? null :
 isbn.Trim().Replace("-", "").Replace(" ", "");

 // check the length
 if ((code == null) || (code.Length < 10
 || code.Length > 13))
 {
 return false;
 }

 // validate/reformat using regular expression
 Match match;
 String pattern;
 if (code.Length == 10)
 {
 pattern = ISBN10_PATTERN;
 }
 else
 {
 pattern = ISBN13_PATTERN;
 }

 match = Regex.Match(code, pattern);
 return match.Success && match.Index == 0 &&
 match.Length == code.Length;
 }
 }
}
The above example contains a standard ISBN validation check
 provided as a demonstration from the CSharp
 Open Source example. If the ISBN matches one of the two regular
 expression patterns, the IsValid
 function will return true; otherwise, it will return false, requiring
 the user to try again.
If you go to the book’s create page in your web browser, when you
 press Submit, the above error messages will appear until the form
 contains valid data. As you may recall in the first recipe, this is done
 by checking that the ModelState.IsValid is equal to true.

See Also

DataAnnotations
 Namespace

1.4. Implementing Multiple Languages

Problem

The Internet is used by millions of people in hundreds of
 different countries and hundreds of different languages; even English
 has multiple different dialects between Canada, USA, and Great Britain.
 It is important to not limit the exposure of your website by only
 offering your website in one language.

Solution

Create resource files and add all of the static text as key/value
 pairs and implement the CurrentUICulture to provide the ability to
 change languages.

Discussion

Resource files are text-based XML files that are used to make
 static websites support multiple languages. You create a main resource
 file that contains your default language. Then everywhere that text is
 stored in your controllers, models, or views, you create a key/value
 pair for the text. Figure 1-3 shows an example resource
 file.
[image: Sample resource file]

Figure 1-3. Sample resource file

Note
When you create a resource file, in the top-right corner make
 sure that the Access Modifier is set to Public instead of the default No code generation. MVC won’t be able to
 access the file if it is not public.

To create your resource file, begin by right-clicking your MVC
 application and select Add→New
 Folder. Call the new folder Resources. With the new folder selected,
 right-click and select Add→New
 Item. In the search type resource and
 select the Resources File.
As you can see in the above example, I have created one entry per
 field in the Book model class. The next step is to update the model to
 reference these values in the
 DisplayAttribute:
using System;
using System.Collections.Generic;
using System.Linq;
using System.Web;
using System.Data.Entity;
using System.ComponentModel.DataAnnotations;
using MvcApplication4.Validations;

namespace MvcApplication4.Models
{
 public class Book
 {
 public int ID { get; set; }

 [Required]
 [Display(Name = "TitleDisplay",
 ResourceType = typeof(Resources.Resource1))]
 public string Title { get; set; }

 [Display(Name = "IsbnDisplay",
 ResourceType = typeof(Resources.Resource1))]
 [Required]
 [IsbnValidation]
 public string Isbn { get; set; }

 [Display(Name = "SummaryDisplay",
 ResourceType = typeof(Resources.Resource1))]
 [Required]
 public string Summary { get; set; }

 [Display(Name = "AuthorDisplay",
 ResourceType = typeof(Resources.Resource1))]
 [Required]
 public string Author { get; set; }

 [Display(Name = "ThumbnailDisplay",
 ResourceType = typeof(Resources.Resource1))]
 public string Thumbnail { get; set; }

 [Display(Name = "PriceDisplay",
 ResourceType = typeof(Resources.Resource1))]
 [Range(1, 100)]
 public double Price { get; set; }

 [Display(Name = "PublishedDisplay",
 ResourceType = typeof(Resources.Resource1))]
 [DataType(DataType.Date)]
 [Required]
 public DateTime Published { get; set; }
 }

 public class BookDBContext : DbContext
 {
 public DbSet<Book> Books { get; set; }
 }
}
In the above example, the DisplayAttribute is
 used to retrieve the key from the resource file by specifying the key in
 the name field and the resource file in the resource type. A similar
 process must be completed for each view and controller.
Note
To help make debugging resource files easier and avoid
 processing data within a view, I suggest setting ViewBag variables in a controller and
 referencing these values in the view. It is possible to access the
 resource file directly from a view; however, views are not compiled by
 Visual Studio and you will receive a run-time error if you make a
 mistake. Whereas if you place the resource access in the controller,
 Visual Studio will display an error if the specified resource key is
 not found.

The following example will update the Books Index view to move the
 static text to the resource file. If you examine the index view, there
 are not a lot of items that need to be moved to the resource file.
 Create the key/value pairs shown in Table 1-1.
Table 1-1. Resource file updates
	Key	Value
	BookIndexTitle	Index
	CreateLink	Create New
	EditLink	Edit
	DetailsLink	Details
	DeleteLink	Delete

Since only one resource file is being created, all keys must be
 unique to the entire project. As you can see, I have made the bottom
 four keys quite generic, as these can be used by all future views that
 contain these links.
Once the resource file updates have been completed, open the
 BooksController and replace the Index() function with the following:
//
// GET: /Books/

public ViewResult Index()
{
 #region ViewBag Resources
 ViewBag.Title =
 Resources.Resource1.BookIndexTitle;
 ViewBag.CreateLink =
 Resources.Resource1.CreateLink;
 ViewBag.TitleDisplay =
 Resources.Resource1.TitleDisplay;
 ViewBag.IsbnDisplay =
 Resources.Resource1.IsbnDisplay;
 ViewBag.SummaryDisplay =
 Resources.Resource1.SummaryDisplay;
 ViewBag.AuthorDisplay =
 Resources.Resource1.AuthorDisplay;
 ViewBag.ThumbnailDisplay =
 Resources.Resource1.ThumbnailDisplay;
 ViewBag.PriceDisplay =
 Resources.Resource1.PriceDisplay;
 ViewBag.PublishedDisplay =
 Resources.Resource1.PublishedDisplay;
 ViewBag.EditLink =
 Resources.Resource1.EditLink;
 ViewBag.DetailsLink =
 Resources.Resource1.DetailsLink;
 ViewBag.DeleteLink =
 Resources.Resource1.DeleteLink;
 #endregion

 return View(db.Books.ToList());
}
Note
In the above code example, a #region tag named ViewBag Resources has been added around all
 of the variables. In future examples, this region will be hidden to
 help provide focus on any new code being added to the
 BooksController.

Finally the Books Index view must be updated to reference these
 ViewBag properties instead of the
 static text that was previously there:
@model IEnumerable<MvcApplication6.Models.Book>

<h2>@ViewBag.Title</h2>

<p>
 @Html.ActionLink((string)ViewBag.CreateLink, "Create")
</p>
<table>
 <tr>
 <th>
 @ViewBag.TitleDisplay
 </th>
 <th>
 @ViewBag.IsbnDisplay
 </th>
 <th>
 @ViewBag.SummaryDisplay
 </th>
 <th>
 @ViewBag.AuthorDisplay
 </th>
 <th>
 @ViewBag.ThumbnailDisplay
 </th> <th>
 @ViewBag.PriceDisplay
 </th>
 <th>
 @ViewBag.PublishedDisplay
 </th>
 <th></th>
 </tr>

@foreach (var item in Model) {
 <tr>
 <td>
 @Html.DisplayFor(modelItem => item.Title)
 </td>
 <td>
 @Html.DisplayFor(modelItem => item.Isbn)
 </td>
 <td>
 @Html.DisplayFor(modelItem => item.Summary)
 </td>
 <td>
 @Html.DisplayFor(modelItem => item.Author)
 </td>
 <td>
 @Html.DisplayFor(modelItem => item.Thumbnail)
 </td>
 <td>
 @Html.DisplayFor(modelItem => item.Price)
 </td>
 <td>
 @Html.DisplayFor(modelItem => item.Published)
 </td>
 <td>
 @Html.ActionLink((string)ViewBag.EditLink,
 "Edit", new { id=item.ID }) |
 @Html.ActionLink((string)ViewBag.DetailsLink,
 "Details", new { id = item.ID }) |
 @Html.ActionLink((string)ViewBag.DeleteLink,
 "Delete", new { id = item.ID })
 </td>
 </tr>
}

</table>
This same logic should be completed for the remaining views and
 controller actions as well. Once all views and actions have been
 updated, the resource file must be duplicated into another
 language.
To avoid extra typing, I would suggest waiting to do this process
 until all of the text has been added to your resource file. With the
 main resource file selected, right-click it and select Copy. Then select
 the Resources folder, right-click, and choose
 Paste. This file then must be renamed as Resources1.fr.resx. Replace Resources1 with the name of your main resource
 file and rename fr with the language
 you wish to set up. This file can be then sent to a translator and
 updated by the translator to replace the English text with the
 appropriate wording in the other language.
To perform the language change, the Global.asax.cs file must be updated to change
 the CurrentUICulture for each request
 that occurs. This can be done by adding the following code to the
 Application_AcquireRequestState()
 function:
using System;
using System.Collections.Generic;
using System.Linq;
using System.Web;
using System.Web.Mvc;
using System.Web.Routing;
using MvcApplication4.Models;
using System.Data.Entity;
using System.Globalization;
using System.Threading;

namespace MvcApplication4
{

 public class MvcApplication : System.Web.HttpApplication
 {
 ...

 protected void Application_AcquireRequestState(
 object sender, EventArgs e)
 {
 if (HttpContext.Current.Session != null)
 {
 CultureInfo ci =
 (CultureInfo)this.Session["CurrentLanguage"];
 if (ci == null)
 {
 ci = new CultureInfo("en");
 this.Session["CurrentLanguage"] = ci;
 }

 Thread.CurrentThread.CurrentUICulture = ci;
 Thread.CurrentThread.CurrentCulture =
 CultureInfo.CreateSpecificCulture(ci.Name);
 }
 }
 }
}
In the above code example, the CurrentUICulture is set based on the CurrentLanguage session variable. If a valid
 CultureInfo is not found, it will be
 defaulted to English. By default this session variable will not exist. A
 new action must be created in the HomeController to
 allow the user to switch languages:
using System;
using System.Collections.Generic;
using System.Linq;
using System.Web;
using System.Web.Mvc;
using System.Globalization;

namespace MvcApplication4.Controllers
{
 public class HomeController : Controller
 {
 public ActionResult Index()
 {
 ViewBag.Message = "Welcome to ASP.NET MVC!";

 return View();
 }

 public ActionResult ChangeLanguage(string language)
 {
 Session["CurrentLanguage"] =
 new CultureInfo(language);
 return Redirect("Index");
 }

 public ActionResult About()
 {
 return View();
 }
 }
}
The new action ChangeLanguage
 accepts one parameter, the new language name. This is stored in the
 session variable that is referenced in the Global.asax.cs file. Finally, links must be
 created to switch languages. This should be available from every page,
 so the Shared _Layout.cshtml view
 must be edited to add the following links:
[@Html.ActionLink("English", "ChangeLanguage", "Home",
 new { language = "en" }, null)]
[@Html.ActionLink("Français", "ChangeLanguage", "Home",
 new { language = "fr" }, null)]
I’ve placed these beside the Log On link. As your website grows,
 it is now quite easy to add additional languages by creating a new
 resource file and adding a new link allowing the user to select the new
 language.
In the original problem I discussed the English dialect having
 multiple versions for Canada, USA, UK, etc. If you wish to separate a
 language by country, you can add a hyphen (-) and the country code after
 the language code. For example, en-GB would be used for English in the
 UK. You would also need to update your links to include this in the
 language name so that CurrentUICulture will be
 updated properly.

See Also

CurrentUICulture

1.5. Sending a Welcome Email

Problem

Many sites require people to register to access content or post a
 comment. With so many websites, it’s quite difficult for people to
 remember each site they have registered for. By updating the
 registration process, an email can be sent that reminds the user where
 they just signed up, so they are able to return again later.

Solution

Implement the SmtpClient and
 MailMessage classes to send email to
 a user after registering.

Discussion

To send an email you need to configure an SMTP server, port,
 username, and password. To allow for easy configuration, I would suggest
 placing these in the appSettings of
 your Web.config file:
 <appSettings>
 <add key="webpages:Version" value="1.0.0.0" />
 <add key="ClientValidationEnabled" value="true" />
 <add key="UnobtrusiveJavaScriptEnabled" value="true" />
 <add key="smtpServer" value="localhost" />
 <add key="smtpPort" value="25" />
 <add key="smtpUser" value="" />
 <add key="smtpPass" value="" />
 <add key="adminEmail" value="no-reply@no-reply.com" />
 </appSettings>
These values should be updated as necessary to reflect your SMTP
 server, port, username, and password.
Note
If this is for a website that will require a development server
 as well as a live or staging environment, placing configuration
 settings in your Web.config
 provides the ability to use Visual Studio’s XML transformations to
 easily update for the different environments.

To help organize the project a new folder and class will be
 created to contain the functions necessary to send emails. Right-click
 on the project and select Add→New Folder and name
 it Utils. Now right-click on the
 newly created Utils folder, select
 Add→Class, and name it MailClient.cs.
The MailClient class and its
 functions will be defined as static
 to provide easy access to the class and its functions. When it is
 integrated into future functions it won’t require instantiating new
 objects. Below is a complete listing of the MailClient class:
using System;
using System.Collections.Generic;
using System.Linq;
using System.Web;
using System.Net.Mail;
using System.Net;
using System.Configuration;

namespace MvcApplication4.Utils
{
 public static class MailClient
 {
 private static readonly SmtpClient Client;

 static MailClient()
 {
 Client = new SmtpClient
 {
 Host =
 ConfigurationManager.AppSettings["SmtpServer"],
 Port =
 Convert.ToInt32(
 ConfigurationManager.AppSettings["SmtpPort"]),
 DeliveryMethod = SmtpDeliveryMethod.Network
 };
 Client.UseDefaultCredentials = false;
 Client.Credentials = new NetworkCredential(
 ConfigurationManager.AppSettings["SmtpUser"],
 ConfigurationManager.AppSettings["SmtpPass"]);
 }

 private static bool SendMessage(string from, string to,
 string subject, string body)
 {
 MailMessage mm = null;
 bool isSent = false;
 try
 {
 // Create our message
 mm = new MailMessage(from, to, subject, body);
 mm.DeliveryNotificationOptions =
 DeliveryNotificationOptions.OnFailure;

 // Send it
 Client.Send(mm);
 isSent = true;
 }
 // Catch any errors, these should be logged and
 // dealt with later
 catch (Exception ex)
 {
 // If you wish to log email errors,
 // add it here...
 var exMsg = ex.Message;
 }
 finally
 {
 mm.Dispose();
 }

 return isSent;
 }

 public static bool SendWelcome(string email)
 {
 string body = "Put welcome email content here...";

 return SendMessage(
 ConfigurationManager.AppSettings["adminEmail"],
 email, "Welcome message", body);
 }
 }
}
The class begins by instantiating a new SmtpClient variable with the settings defined
 from the Web.config. Next a SendMessage function is created. This function
 is private and should not be called directly from outside of this class.
 This function is what performs the actual sending. It creates a new
 MailMessage object and sends it
 through the SmtpClient object created
 earlier. Finally, a SendWelcome
 function is created that accepts the users email address. It generates a
 generic message that should be updated to send your welcome email and it
 is sent by calling the SendMessage
 function.
To actually send the email after the user registers, the Register function in the AccountController must be updated to call the
 SendWelcome function after the user
 is successfully created:
using System;
using System.Collections.Generic;
using System.Linq;
using System.Web;
using System.Web.Mvc;
using System.Web.Routing;
using System.Web.Security;
using MvcApplication4.Models;
using MvcApplication4.Utils;

namespace MvcApplication4.Controllers
{
 public class AccountController : Controller
 {
 ...

 //
 // POST: /Account/Register

 [HttpPost]
 public ActionResult Register(RegisterModel model)
 { if (ModelState.IsValid)
 {
 // Attempt to register the user
 MembershipCreateStatus createStatus;
 Membership.CreateUser(model.UserName,
 model.Password, model.Email, null, null,
 true, null, out createStatus);

 if (createStatus ==
 MembershipCreateStatus.Success)
 {
 // Send welcome email
 MailClient.SendWelcome(model.Email);
 FormsAuthentication.SetAuthCookie(
 model.UserName,
 false /* createPersistentCookie */);
 return RedirectToAction("Index", "Home");
 }
 else
 {
 ModelState.AddModelError("",
 ErrorCodeToString(createStatus));
 }
 }

 // If we got this far, something failed,
 // redisplay form
 return View(model);
 }
 }
}
The preceding code contains a basic example to extend your
 registration process to send a user a welcome email. In today’s society,
 with the number of automated form processing applications that exist, it
 might be a good idea to further this example and change it from a
 welcome email to a “verify your email address” message. This could be
 done by updating the email to click a link in the welcome email that
 validates the account before the user can log in.

See Also

SmtpClient
 and MailMessage

1.6. Retrieving a Forgotten Password

Problem

You or one of your website users have registered on your site and
 now they cannot remember their password and need a way to retrieve
 it.

Solution

To allow users to retrieve their password, a new action and view
 must be added to the AccountController. The function
 will use the Membership class to
 search for a matching user and send them an email containing their
 password.

Discussion

By default, MVC Internet Applications perform a one-way hash of
 the passwords making them impossible to retrieve. In the example below,
 the default encryption method will be changed to a two-way hash. It’s
 not quite as secure, but it avoids forcing the user to reset their
 password if they forgot it.
To start, the membership
 settings in Web.config file needs to
 be adjusted:
<?xml version="1.0"?>
<configuration>
 ...

 <system.web>
 ...

 <membership>
 <providers>
 <clear />
 <add name="AspNetSqlMembershipProvider" type=
 "System.Web.Security.SqlMembershipProvider"
 connectionStringName="ApplicationServices"
 enablePasswordRetrieval="true" enablePasswordReset=
 "false" requiresQuestionAndAnswer="false"
 requiresUniqueEmail="false" passwordFormat=
 "Encrypted" maxInvalidPasswordAttempts="5"
 minRequiredPasswordLength="6"
 minRequiredNonalphanumericCharacters="0"
 passwordAttemptWindow="10" applicationName="/" />
 </providers>
 </membership>

 <machineKey
 validationKey=
"2CF9FF841A23366CFA5D655790D9308656B1F7532C0B95B5C067F80C45E59875
E2F3D68DAC63B5024C31D974D4BE151341FB8A31FC4BC3705DF5398B553FC3C3"
 decryptionKey="8E71407B62F47CCA3AAA6546B3880E1A0EF9833700
E0A0C511710F537E64B8B6" validation="SHA1" decryption="AES" />

 ...
 </system.web>

 ...
</configuration>
Four key items in the above example were changed/added:
	enablePasswordRetrieval was
 changed from false to true

	enablePasswordReset was
 changed from true to false

	passwordFormat="Encrypted"
 was added

	machineKey was generated
 for the encryption

With the configuration changes complete, a new model must be
 created for the Forgot Password view. This class should be placed in the
 AccountModels.cs class:
using System;
using System.Collections.Generic;
using System.ComponentModel.DataAnnotations;
using System.Globalization;
using System.Web.Mvc;
using System.Web.Security;

namespace MvcApplication4.Models
{

 public class ChangePasswordModel
 {
 ...
 }

 public class LogOnModel
 {
 ...
 }

 public class RegisterModel
 {
 ...
 }

 public class ForgotPasswordModel
 {
 [Required]
 [DataType(DataType.EmailAddress)]
 [Display(Name = "Email address")]
 public string Email { get; set; }
 }
}

Before the new view can be added, the application must be built.
 Click Build→Build Solution or press F6. Once the
 application has finished building, the new view can be added. Expand the
 Views folder and right-click on the
 Account folder and select
 Add→View (Figure 1-4). This view
 will be called ForgotPassword.
 Because this view will be strongly-typed to the ForgotPasswordModel previously created, be
 sure that it is selected from the Model class drop-down menu.
[image: Forgot Password view]

Figure 1-4. Forgot Password view

After the view is created, a form is added to it. The form is
 quite basic—it accepts the user’s email address:
@model MvcApplication4.Models.ForgotPasswordModel

@{
 ViewBag.Title = "ForgotPassword";
}

<h2>ForgotPassword</h2>
<p>
 Use the form below to retrieve your password.
</p>

<script src="@Url.Content("~/Scripts/jquery.validate.min.js")"
 type="text/javascript"></script>
<script src="@Url.Content(
 "~/Scripts/jquery.validate.unobtrusive.min.js")"
 type="text/javascript"></script>

@using (Html.BeginForm()) {
 @Html.ValidationSummary(true, "Password retrieval was
unsuccessful. Please correct the errors and try again.")
 <div>
 <fieldset>
 <legend>Account Information</legend>

 <div class="editor-label">
 @Html.LabelFor(m => m.Email)
 </div>
 <div class="editor-field">
 @Html.TextBoxFor(m => m.Email)
 @Html.ValidationMessageFor(m => m.Email)
 </div>

 <p>
 <input type="submit" value="Retrieve Password" />
 </p>
 </fieldset>
 </div>
}
Next the previously created MailClient class is updated to include a new
 function that will send the user their forgotten password:
using System;
using System.Collections.Generic;
using System.Linq;
using System.Web;
using System.Net.Mail;
using System.Net;
using System.Configuration;

namespace MvcApplication4.Utils
{
 public class MailClient
 {
 private static readonly SmtpClient Client;

 static MailClient()
 {
 ...
 }

 private static bool SendMessage(string from, string to,
 string subject, string body)
 {
 ...
 }

 public static bool SendWelcome(string email)
 {
 ...
 }

 public static bool SendLostPassword(string email,
 string password)
 {
 string body = "Your password is: " + password;

 return SendMessage("no-reply@no-reply.com", email,
 "Lost Password", body);
 }
 }
}
This function is very similar to the previous one, with the
 exception that a second parameter is added—the user’s password. The
 password is added to the body of the email being sent to the
 user.
Finally, inside of the AccountController, two ForgotPassword functions are created. The
 first function will simply load the previously created view. The second
 function will accept the ForgotPasswordModel form that is posted. Using
 the email address collected in the form, it will search the Membership database for users matching that
 email address. For each user that is found, one email will be sent to
 them with their password:
using System;
using System.Collections.Generic;
using System.Linq;
using System.Web;
using System.Web.Mvc;
using System.Web.Routing;
using System.Web.Security;
using MvcApplication4.Models;
using MvcApplication4.Utils;

namespace MvcApplication4.Controllers
{
 public class AccountController : Controller
 {
 ...

 //
 // Get: /Account/ForgotPassword

 public ActionResult ForgotPassword()
 {
 return View();
 }

 //
 // Post: /Account/ForgotPassword
 [HttpPost]
 public ActionResult ForgotPassword(
 ForgotPasswordModel model)
 {
 if (ModelState.IsValid)
 {
 MembershipUserCollection users =
 Membership.FindUsersByEmail(model.Email);
 if (users.Count > 0)
 {
 foreach (MembershipUser user in users)
 {
 MailClient.SendLostPassword(model.Email,
 user.GetPassword());
 }

 return RedirectToAction("LogOn");
 }
 }

 // If we got this far, something failed,
 // redisplay form
 return View(model);
 }

 ...
 }
}
In the last two recipes, basic emails have been sent to the users.
 These examples can easily be enhanced to send more complex emails or
 even emails containing HTML content. To
 send HTML emails, there is a boolean variable IsBodyHtml on the MailMessage class that can be set to true.

See Also

Membership.Providers
 Property

1.7. Sorting a List of Results

Problem

You have a large list (say, a list of books), and you cannot
 easily find the one you are looking for. Sorting them by one of the
 columns in the list should help you find what you are looking for
 faster.

Solution

Update the list of books to make the column headings a link. Once
 the link is clicked on, implement the Dynamic Linq
 Library to sort the results based on the column selected (ascending or descending—clicking
 the link again will reverse the order).

Discussion

I was a bit surprised by the effort required to add sorting to the
 automatically generated views, compared to other frameworks I’ve used.
 Hopefully in future versions of MVC, this will become a part of the
 scaffolding process. The other part that I thought required quite a bit
 of effort was the example provided on the homepage of ASP.NET MVC where
 you need to use a switch statement with one case per sorting option. In
 the case of the book example, there are only five columns to be sorted,
 so it wouldn’t be too bad—but as this functionality gets replicated to
 other lists, perhaps authors, etc., the work will continue to grow. In
 the example below, the work is simplified by taking advantage of the
 Dynamic Linq Library.
By default, the Linq library
 being used allows for strongly-typed expressions to build results from a
 database. This provides some great advantages, such as full IntelliSense
 support and compiler-time error messages if a mistake is made. However,
 as I mentioned above, it also becomes a lot of work to build useful
 functionality.
To add sorting both the BooksController and the Books/Index view require changes. Below is the
 updated index view:
@model IEnumerable<MvcApplication4.Models.Book>

<h2>@ViewBag.Title</h2>

<p>
 @Html.ActionLink((string)ViewBag.CreateLink, "Create")
</p>
<table>
 <tr>
 <th>
 @Html.ActionLink((string)ViewBag.TitleDisplay,
 "Index", new { sortOrder = ViewBag.TitleSortParam })
 </th>
 <th>
 @Html.ActionLink((string)ViewBag.IsbnDisplay,
 "Index", new { sortOrder = ViewBag.IsbnSortParam })
 </th>
 <th>
 @ViewBag.SummaryDisplay
 </th>
 <th>
 @Html.ActionLink((string)ViewBag.AuthorDisplay,
 "Index", new { sortOrder = ViewBag.AuthorSortParam })
 </th> <th>
 @ViewBag.ThumbnailDisplay
 </th>
 <th>
 @Html.ActionLink((string)ViewBag.PriceDisplay,
 "Index", new { sortOrder = ViewBag.PriceSortParam })
 </th>
 <th>
 @Html.ActionLink((string)ViewBag.PublishedDisplay,
 "Index", new { sortOrder =
 ViewBag.PublishedSortParam })
 </th>
 <th></th>
 </tr>

@foreach (var item in Model) {
 <tr>
 <td>
 @Html.DisplayFor(modelItem => item.Title)
 </td>
 <td>
 @Html.DisplayFor(modelItem => item.Isbn)
 </td>
 <td>
 @Html.DisplayFor(modelItem => item.Summary)
 </td>
 <td>
 @Html.DisplayFor(modelItem => item.Author)
 </td>
 <td>
 @Html.DisplayFor(modelItem => item.Thumbnail)
 </td>
 <td>
 @Html.DisplayFor(modelItem => item.Price)
 </td>
 <td>
 @Html.DisplayFor(modelItem => item.Published)
 </td>
 <td>
 @Html.ActionLink((string)ViewBag.EditLink,
 "Edit", new { id=item.ID }) |
 @Html.ActionLink((string)ViewBag.DetailsLink,
 "Details", new { id = item.ID }) |
 @Html.ActionLink((string)ViewBag.DeleteLink,
 "Delete", new { id = item.ID })
 </td>
 </tr>
}

</table>
In the above example, the previously created <th> tags have been updated to no longer
 be static text, instead they have been converted to HTML links using the
 ActionLink function from the HTML
 helper.
Next the BookController’s Index() function needs to be updated. This
 function will accept a new parameter called sortOrder. This variable will then be used to
 perform a Dynamic Linq query to sort the results by
 this column. A few new ViewBag
 variables are also created that contains the sort condition used by each
 column.
Microsoft has provided a free DynamicQuery class that extends the Linq namespace, allowing you to build dynamic
 queries by building expressions. To download the library for C#, visit
 http://msdn2.microsoft.com/en-us/vcsharp/bb894665.aspx.
 Once downloaded, you will need to extract the files to a location on
 your hard drive. The dynamic LINQ library class can be found here:
 ~\CSharpSamples\LinqSamples\DynamicQuery\DynamicQuery\Dynamic.cs.
 This file must be added to the project. For organization purposes I
 would suggest adding it to the previously created Utils directory. Right-click on the Utils directory and select
 Add→Existing Item and navigate to the dynamic class
 (or you can drag the file from the folder onto the Utils folder in your MVC application).
Once added the BooksController
 is updated as follows:
using System;
using System.Collections.Generic;
using System.Data;
using System.Data.Entity;
using System.Linq;
using System.Linq.Dynamic;
using System.Web;
using System.Web.Mvc;
using MvcApplication4.Models;
using MvcApplication4.Resources;

namespace MvcApplication4.Controllers
{
 public class BooksController : Controller
 {
 private BookDBContext db = new BookDBContext();

 //
 // GET: /Books/

 public ViewResult Index(string sortOrder)
 {
 #region ViewBag Resources
 ...
 #endregion

 #region ViewBag Sort Params
 // Define the sort orders - if the same link is
 // clicked twice, reverse the direction from
 // ascending to descending
 ViewBag.TitleSortParam = (sortOrder == "Title")
 ? "Title desc" : "Title";
 ViewBag.IsbnSortParam = (sortOrder == "Isbn")
 ? "Isbn desc" : "Isbn"; ViewBag.AuthorSortParam = (sortOrder == "Author")
 ? "Author desc" : "Author";
 ViewBag.PriceSortParam = (sortOrder == "Price")
 ? "Price desc" : "Price";
 ViewBag.PublishedSortParam =
 (String.IsNullOrEmpty(sortOrder))
 ? "Published desc" : "";

 // Default the sort order
 if (String.IsNullOrEmpty(sortOrder))
 {
 sortOrder = "Published desc";
 }
 #endregion

 var books = db.Books.OrderBy(sortOrder);

 return View(books.ToList());
 }

 ...
 }
}
Warning
The above example allows sorting based on the sortOrder variable passed in. The code above
 is slightly insecure and is meant to demonstrate the process of
 performing dynamic LINQ queries with minimal effort. Because this
 variable can be passed in through the URL, it is important to add some
 more validation around the inputted data to ensure a user is not
 attempting something malicious.

See Also

System.Linq.Expressions
 Namespace

1.8. Paging Through a List of Results

Problem

You have a long list of results that either take too long to load,
 or you simply can’t find the result you are looking for in the long
 list. Breaking the results up into multiple pages will reduce the page
 load time and help find results faster, especially when the results are
 sorted.

Solution

Implement PagedList.MVC to
 navigate between pages of a list of records.

Discussion

To add paging to an application you need to install a new library
 called PagedList.Mvc through the
 NuGet Library. This will allow a paged list of
 books rather than the complete list. To install the package, select the
 Tools menu→Library Package Manager→Add Library Package
 Reference. From the left, select the Online button. In the
 search box, enter PagedList and click
 the Install button beside the PagedList.MVC package (see Figure 1-5).
[image: PagedList.MVC library package]

Figure 1-5. PagedList.MVC library package

Once the PagedList is
 installed, the code to create the pagination links will be added as a
 partial view. This will allow the code to be reused on future lists that
 require paging of results. Because the paging process doesn’t really
 contain many dynamic variables, this is a perfect opportunity to reuse
 the HTML on every list of results with very minimal effort, while
 maintaining a consistent look.
Note
A partial view is a great spot to place reusable HTML code that
 doesn’t belong to any one view—or as in the example below—that will be
 used multiple times.

To begin, expand the Views
 folder and right-click on the Shared
 folder and select Add→View. In the dialog box,
 enter the name as _Paging and be sure
 to select the checkbox for Create as partial view.
 When you are done, press Add. The content for the
 new view is as follows:
<p>
 @if (Model.HasPreviousPage)
 {
 @Html.ActionLink("<< First", "Index", new {
 page = 1, sortOrder = ViewBag.CurrentSortOrder })
 @Html.Raw(" ");
 @Html.ActionLink("< Prev", "Index", new {
 page = Model.PageNumber - 1, sortOrder =
 ViewBag.CurrentSortOrder })
 }
 else
 {
 @:<< First
 @Html.Raw(" ");
 @:< Prev
 }

 @if (Model.HasNextPage)
 {
 @Html.ActionLink("Next >", "Index", new {
 page = Model.PageNumber + 1,
 sortOrder = ViewBag.CurrentSortOrder })
 @Html.Raw(" ");
 @Html.ActionLink("Last >>", "Index", new {
 page = Model.PageCount,
 sortOrder = ViewBag.CurrentSortOrder })
 }
 else
 {
 @:Next >
 @Html.Raw(" ")
 @:Last >>
 }
</p>
The following partial view creates up to four links: first,
 previous, next, and last. I say up to four because if there are no
 previous pages available, the first and previous link are disabled. Same
 for when there is no next page: the next and last links are disabled.
 Each link passes two variables to the Index() function: a page number and the
 current sort order. The current sort order is passed to ensure that when
 switching between pages, the user doesn’t lose the sorting they
 chose.
Next, the Books/Index view
 needs a few changes:
@model PagedList.IPagedList<MvcApplication4.Models.Book>

<h2>@ViewBag.Title</h2>

<p>
 @Html.ActionLink((string)ViewBag.CreateLink, "Create")
</p>

@Html.Partial("_Paging")

<table>
 <tr>
 <th>
 @Html.ActionLink((string)ViewBag.TitleDisplay,
 "Index", new { sortOrder = ViewBag.TitleSortParam })
 </th>
 <th>
 @Html.ActionLink((string)ViewBag.IsbnDisplay,
 "Index", new { sortOrder = ViewBag.IsbnSortParam })
 </th>
 <th>
 @ViewBag.SummaryDisplay
 </th>
 <th>
 @Html.ActionLink((string)ViewBag.AuthorDisplay,
 "Index", new { sortOrder =
 ViewBag.AuthorSortParam })
 </th>
 <th>
 @ViewBag.ThumbnailDisplay
 </th>
 <th>
 @Html.ActionLink((string)ViewBag.PriceDisplay,
 "Index", new { sortOrder = ViewBag.PriceSortParam })
 </th>
 <th>
 @Html.ActionLink((string)ViewBag.PublishedDisplay,
 "Index", new { sortOrder =
 ViewBag.PublishedSortParam })
 </th>
 <th></th>
 </tr>

@foreach (var item in Model) {
 <tr>
 <td>
 @Html.DisplayFor(modelItem => item.Title)
 </td>
 <td>
 @Html.DisplayFor(modelItem => item.Isbn)
 </td>
 <td>
 @Html.DisplayFor(modelItem => item.Summary)
 </td>
 <td>
 @Html.DisplayFor(modelItem => item.Author)
 </td> <td>
 @Html.DisplayFor(modelItem => item.Thumbnail)
 </td>
 <td>
 @Html.DisplayFor(modelItem => item.Price)
 </td>
 <td>
 @Html.DisplayFor(modelItem => item.Published)
 </td>
 <td>
 @Html.ActionLink((string)ViewBag.EditLink,
 "Edit", new { id=item.ID }) |
 @Html.ActionLink((string)ViewBag.DetailsLink,
 "Details", new { id = item.ID }) |
 @Html.ActionLink((string)ViewBag.DeleteLink,
 "Delete", new { id = item.ID })
 </td>
 </tr>
}

</table>

@Html.Partial("_Paging")
The above example contains three subtle changes to the view.
 Firstly, the strongly-typed model has been updated to be of type
 PagedList.IPagedList and the shared
 _Paging view has been included twice:
 once above the table and once below the table.
Note
You might notice that the sorting links were not updated to
 include the page number like the paging links were. This is done
 purposely, as the expected functionality of changing the sort order is
 to begin back at page 1 again.

Finally, the BooksController
 needs to be updated as well. The Index() function is updated to accept a new
 parameter, page, and instead of returning the books as a list, the books
 are being returned as a paged list instead. Also, inside of the sort
 order region, a new ViewBag variable
 has been added that sets the current sort order (used in the
 _Paging partial view):
using System;
using System.Collections.Generic;
using System.Data;
using System.Data.Entity;
using System.Linq;
using System.Linq.Dynamic;
using System.Web;
using System.Web.Mvc;
using MvcApplication4.Models;
using MvcApplication4.Utils;
using PagedList;

namespace MvcApplication4.Controllers
{
 public class BooksController : Controller
 {
 private BookDBContext db = new BookDBContext();

 //
 // GET: /Books/

 public ViewResult Index(string sortOrder, int page = 1)
 {
 #region ViewBag Resources
 ...
 #endregion

 #region ViewBag Sort Params
 ...
 ViewBag.CurrentSortOrder = sortOrder;
 #endregion

 var books = db.Books.OrderBy(sortOrder);

 int maxRecords = 1;
 int currentPage = page - 1;
 return View(books.ToPagedList(currentPage,
 maxRecords));
 }

 ...
 }
}
If you wish to further extend the partial view to reuse in other
 list results, you only need to ensure that the same ViewBag variables are set for each list. In
 case the list results aren’t in the Index action like this one is, you
 could update the Html.ActionLink
 calls to potentially use another ViewBag variable that defines the
 action—making it dynamic.

1.9. Filtering a List of Results

Problem

When sorting and paging are not enough to help users find their
 results, filtering by specific content is another way to help users find
 what they are looking for.

Solution

Add new links to allow a user to filter a list of results by
 predefined criteria and using the Linq library to perform the filtering of
 data.

Discussion

To add filter links, changes need to be made to both the Books/Index view and the BooksController. The changes to the view are
 quite similar to the previous two recipes. HTML links must be added that
 allow the user to choose how they want to filter the content. Three new
 links will be added: All, New Releases, and Coming Soon. New Releases
 will be defined as something published within the last 2 weeks, and
 Coming Soon is defined as something not yet published.
Below is the new Books/Index
 view. The three new links all contain the current sort order as a
 parameter (to maintain the user’s current sort option) and the last two
 links contain a new variable called filter. Like the paging links, if
 the active filter is the link that should be displayed, it is not set as
 a link and text is displayed to identify to the user the current filter
 option. To ensure the filter is maintained when the user changes the
 sort order, those links are also updated to pass the current filter as
 well:
@model PagedList.IPagedList<MvcApplication4.Models.Book>

<h2>@MvcApplication4.Resources.Resource1.BookIndexTitle</h2>

<p>
 @Html.ActionLink("Create New", "Create")
</p>
<p>
 Show:
 @if (ViewBag.CurrentFilter != "")
 {
 @Html.ActionLink("All", "Index", new {
 sortOrder = ViewBag.CurrentSortOrder })
 }
 else
 {
 @:All
 }
 |
 @if (ViewBag.CurrentFilter != "NewReleases")
 {
 @Html.ActionLink("New Releases", "Index", new {
 filter = "NewReleases", sortOrder =
 ViewBag.CurrentSortOrder })
 }
 else
 {
 @:New Releases
 }
 |
 @if (ViewBag.CurrentFilter != "ComingSoon")
 {
 @Html.ActionLink("Coming Soon", "Index", new {
 filter = "ComingSoon", sortOrder =
 ViewBag.CurrentSortOrder })
 } else
 {
 @:Coming Soon
 }
</p>
@Html.Partial("_Paging")
<table>
 <tr>
 <th>
 @Html.ActionLink("Title", "Index", new {
 sortOrder = ViewBag.TitleSortParam,
 filter = ViewBag.CurrentFilter })
 </th>
 <th>
 @Html.ActionLink("Isbn", "Index", new {
 sortOrder = ViewBag.IsbnSortParam,
 filter = ViewBag.CurrentFilter })
 </th>
 <th>
 Summary
 </th>
 <th>
 @Html.ActionLink("Author", "Index", new {
 sortOrder = ViewBag.AuthorSortParam,
 filter = ViewBag.CurrentFilter })
 </th>
 <th>
 Thumbnail
 </th>
 <th>
 @Html.ActionLink("Price", "Index", new {
 sortOrder = ViewBag.PriceSortParam,
 filter = ViewBag.CurrentFilter })
 </th>
 <th>
 @Html.ActionLink("Published", "Index", new {
 sortOrder = ViewBag.PublishedSortParam,
 filter = ViewBag.CurrentFilter })
 </th>
 <th></th>
 </tr>

@foreach (var item in Model)
{
 <tr>
 <td>
 @Html.DisplayFor(modelItem => item.Title)
 </td>
 <td>
 @Html.DisplayFor(modelItem => item.Isbn)
 </td>
 <td>
 @Html.DisplayFor(modelItem => item.Summary)
 </td> <td>
 @Html.DisplayFor(modelItem => item.Author)
 </td>
 <td>
 @Html.DisplayFor(modelItem => item.Thumbnail)
 </td>
 <td>
 @Html.DisplayFor(modelItem => item.Price)
 </td>
 <td>
 @Html.DisplayFor(modelItem => item.Published)
 </td>
 <td>
 @Html.ActionLink("Edit",
 "Edit", new { id = item.ID }) |
 @Html.ActionLink("Details",
 "Details", new { id = item.ID }) |
 @Html.ActionLink("Delete",
 "Delete", new { id = item.ID })
 </td>
 </tr>
}

</table>

@Html.Partial("_Paging")
The partial view for the paging links created in the last recipe
 also requires updating. In the example below, the four paging links have
 been updated to pass the current filter option along with the page and
 sort order values:
<p>
 @if (Model.HasPreviousPage)
 {
 @Html.ActionLink("<< First", "Index", new {
 page = 1,
 sortOrder = ViewBag.CurrentSortOrder,
 filter = ViewBag.CurrentFilter })
 @Html.Raw(" ");
 @Html.ActionLink("< Prev", "Index", new {
 page = Model.PageNumber - 1,
 sortOrder = ViewBag.CurrentSortOrder,
 filter = ViewBag.CurrentFilter })
 }
 else
 {
 @:<< First
 @Html.Raw(" ");
 @:< Prev
 }

 @if (Model.HasNextPage)
 {
 @Html.ActionLink("Next >", "Index", new {
 page = Model.PageNumber + 1,
 sortOrder = ViewBag.CurrentSortOrder,
 filter = ViewBag.CurrentFilter })
 @Html.Raw(" ");
 @Html.ActionLink("Last >>", "Index", new {
 page = Model.PageCount,
 sortOrder = ViewBag.CurrentSortOrder,
 filter = ViewBag.CurrentFilter })
 }
 else
 {
 @:Next >
 @Html.Raw(" ")
 @:Last >>
 }
</p>
Next are the changes to the BooksController. The Index() function is being updated again. It is
 now accepting a new variable for the filter. Based on the filter
 options, the list of books will be reduced based on the user’s
 selection. There are two approaches that could be used to implement the
 filtering:
	Use dynamic Linq again to create a
 string-based where clause

	Use standard Linq and a switch statement to
 create a strongly-typed where clause

Because filter links typically don’t contain too many entries
 compared to sortable headers, this recipe will use the second approach.
 By using the second approach, the warning in the sorting recipe doesn’t
 need to be considered because it is strongly-typed and not dynamic, so
 extra checking of the input is not required to prevent dangerous SQL
 injection.
using System;
using System.Collections.Generic;
using System.Data;
using System.Data.Entity;
using System.Linq;
using System.Linq.Dynamic;
using System.Web;
using System.Web.Mvc;
using MvcApplication4.Models;
using MvcApplication4.Utils;
using PagedList;

namespace MvcApplication4.Controllers
{
 public class BooksController : Controller
 {
 private BookDBContext db = new BookDBContext();

 //
 // GET: /Books/

 public ViewResult Index(string sortOrder,
 string filter, int page = 1)
 {
 #region ViewBag Resources
 ...
 #endregion

 #region ViewBag Sort Params
 ...
 #endregion

 var books = from b in db.Books select b;

 #region Filter Switch
 switch (filter)
 {
 case "NewReleases":
 var startDate = DateTime.Today.AddDays(-14);
 books = books.Where(b => b.Published
 <= DateTime.Today.Date
 && b.Published >= startDate
);
 break;

 case "ComingSoon":
 books = books.Where(b => b.Published >
 DateTime.Today.Date);
 break;

 default:
 // No filter needed
 break;
 }

 ViewBag.CurrentFilter =
 String.IsNullOrEmpty(filter) ? "" : filter;
 #endregion

 books = books.OrderBy(sortOrder);

 int maxRecords = 1;
 int currentPage = page - 1;
 return View(books.ToPagedList(currentPage,
 maxRecords));
 }

 ...
 }
}
In the above example, if the user chose to filter by New Releases,
 a search is performed to return any books that were published today or
 within the past 14 days. Or if the user chose Coming Soon, a search is
 performed to return any books that will be published after today.
 Otherwise, no filtering is required and all books are returned.

1.10. Searching a List of Results by Keyword

Problem

When sorting, paging, and filtering are not enough to help you
 find what you are looking for, the next best alternative is to let the
 user type what they want to find.

Solution

Create a new form and text input with the Html Helper and update
 the previous filtered results by the user-entered keyword with the
 Linq library.

Discussion

Much like the previous recipes, adding a keyword search requires
 changes to both the Books/Index view
 and BooksController. The view will be
 changed by adding a new form and textbox input for the user to enter
 their keyword of choice. Also, to ensure that the user’s keyword is
 maintained when changing the sort order, filter, or paging through
 links, the code will be updated to maintain the user’s keyword. The
 example below contains the updated Books/Index view:
@model PagedList.IPagedList<MvcApplication4.Models.Book>

<h2>@MvcApplication4.Resources.Resource1.BookIndexTitle</h2>

<p>
 @Html.ActionLink("Create New", "Create")
</p>
<p>
 Show:
 @if (ViewBag.CurrentFilter != "")
 {
 @Html.ActionLink("All", "Index", new {
 sortOrder = ViewBag.CurrentSortOrder,
 Keyword = ViewBag.CurrentKeyword })
 }
 else
 {
 @:All
 }
 |
 @if (ViewBag.CurrentFilter != "NewReleases")
 {
 @Html.ActionLink("New Releases", "Index", new {
 filter = "NewReleases",
 sortOrder = ViewBag.CurrentSortOrder,
 Keyword = ViewBag.CurrentKeyword })
 }
 else
 {
 @:New Releases
 }
 |
 @if (ViewBag.CurrentFilter != "ComingSoon")
 {
 @Html.ActionLink("Coming Soon", "Index", new {
 filter = "ComingSoon",
 sortOrder = ViewBag.CurrentSortOrder,
 Keyword = ViewBag.CurrentKeyword })
 }
 else
 {
 @:Coming Soon
 }
</p>
@using (Html.BeginForm())
{
 @:Search: @Html.TextBox("Keyword")
 <input type="submit" value="Search" />
}
@Html.Partial("_Paging")
<table>
 <tr>
 <th>
 @Html.ActionLink("Title", "Index", new {
 sortOrder = ViewBag.TitleSortParam,
 filter = ViewBag.CurrentFilter,
 Keyword = ViewBag.CurrentKeyword })
 </th>
 <th>
 @Html.ActionLink("Isbn", "Index", new {
 sortOrder = ViewBag.IsbnSortParam,
 filter = ViewBag.CurrentFilter,
 Keyword = ViewBag.CurrentKeyword })
 </th>
 <th>
 Summary
 </th>
 <th>
 @Html.ActionLink("Author", "Index", new {
 sortOrder = ViewBag.AuthorSortParam,
 filter = ViewBag.CurrentFilter,
 Keyword = ViewBag.CurrentKeyword })
 </th>
 <th>
 Thumbnail
 </th>
 <th>
 @Html.ActionLink("Price", "Index", new {
 sortOrder = ViewBag.PriceSortParam, filter = ViewBag.CurrentFilter,
 Keyword = ViewBag.CurrentKeyword })
 </th>
 <th>
 @Html.ActionLink("Published", "Index", new {
 sortOrder = ViewBag.PublishedSortParam,
 filter = ViewBag.CurrentFilter,
 Keyword = ViewBag.CurrentKeyword })
 </th>
 <th></th>
 </tr>

@foreach (var item in Model)
{
 <tr>
 <td>
 @Html.DisplayFor(modelItem => item.Title)
 </td>
 <td>
 @Html.DisplayFor(modelItem => item.Isbn)
 </td>
 <td>
 @Html.DisplayFor(modelItem => item.Summary)
 </td>
 <td>
 @Html.DisplayFor(modelItem => item.Author)
 </td>
 <td>
 @Html.DisplayFor(modelItem => item.Thumbnail)
 </td>
 <td>
 @Html.DisplayFor(modelItem => item.Price)
 </td>
 <td>
 @Html.DisplayFor(modelItem => item.Published)
 </td>
 <td>
 @Html.ActionLink("Edit",
 "Edit", new { id = item.ID }) |
 @Html.ActionLink("Details",
 "Details", new { id = item.ID }) |
 @Html.ActionLink("Delete",
 "Delete", new { id = item.ID })
 </td>
 </tr>
}

</table>

@Html.Partial("_Paging")
The shared paging view also needs to be updated to maintain the
 current keyword as well:
<p>
 @if (Model.HasPreviousPage)
 {
 @Html.ActionLink("<< First", "Index", new {
 page = 1,
 sortOrder = ViewBag.CurrentSortOrder,
 filter = ViewBag.CurrentFilter,
 Keyword = ViewBag.CurrentKeyword })
 @Html.Raw(" ");
 @Html.ActionLink("< Prev", "Index", new {
 page = Model.PageNumber - 1,
 sortOrder = ViewBag.CurrentSortOrder,
 filter = ViewBag.CurrentFilter,
 Keyword = ViewBag.CurrentKeyword })
 }
 else
 {
 @:<< First
 @Html.Raw(" ");
 @:< Prev
 }

 @if (Model.HasNextPage)
 {
 @Html.ActionLink("Next >", "Index", new {
 page = Model.PageNumber + 1,
 sortOrder = ViewBag.CurrentSortOrder,
 filter = ViewBag.CurrentFilter,
 Keyword = ViewBag.CurrentKeyword })
 @Html.Raw(" ");
 @Html.ActionLink("Last >>", "Index", new {
 page = Model.PageCount,
 sortOrder = ViewBag.CurrentSortOrder,
 filter = ViewBag.CurrentFilter,
 Keyword = ViewBag.CurrentKeyword })
 }
 else
 {
 @:Next >
 @Html.Raw(" ")
 @:Last >>
 }
</p>
Finally the BooksController
 needs to be updated. In the example below, the Index
 function is updated to accept a new keyword parameter and if the user
 has entered a keyword the books title and author are searched by that
 keyword. If you wish to add other fields as well, simply update the
 example below to include the additional fields:
using System;
using System.Collections.Generic;
using System.Data;
using System.Data.Entity;
using System.Linq;
using System.Linq.Dynamic;
using System.Web;
using System.Web.Mvc;
using MvcApplication4.Models;
using MvcApplication4.Utils;
using PagedList;

namespace MvcApplication4.Controllers
{
 public class BooksController : Controller
 {
 private BookDBContext db = new BookDBContext();

 //
 // GET: /Books/

 public ViewResult Index(string sortOrder, string filter,
 string Keyword, int page = 1)
 {
 #region ViewBag Resources
 ...
 #endregion

 #region ViewBag Sort Params
 ...
 #endregion

 var books = from b in db.Books select b;

 #region Keyword Search
 if (!String.IsNullOrEmpty(Keyword))
 {
 books = books.Where(b =>
 b.Title.ToUpper().Contains(Keyword.ToUpper())
 || b.Author.ToUpper().Contains(
 Keyword.ToUpper()));
 }
 ViewBag.CurrentKeyword =
 String.IsNullOrEmpty(Keyword) ? "" : Keyword;
 #endregion

 #region Filter Switch
 ...
 #endregion

 int maxRecords = 1;
 int currentPage = page - 1;
 return View(books.ToPagedList(currentPage,
 maxRecords));
 }

 ...
 }
}

1.11. Uploading a File Through a Form

Problem

You want to allow users to upload and save a file to your
 website.

Solution

Implement a file upload and save the file to disk using HttpPostedFileBase.

Discussion

In the following example, the previously created views to add and
 edit books will be updated to allow a user to select a file to upload
 for the thumbnail field. To begin the Books/Create view must be updated to change
 the enctype of the form and replace
 the scaffolded textbox for the thumbnail field. Below is the updated
 create view:
@model MvcApplication4.Models.Book

@{
 ViewBag.Title = "Create";
}

<h2>Create</h2>

<script src="@Url.Content("~/Scripts/jquery.validate.min.js")"
 type="text/javascript"></script>
<script src="
 @Url.Content("~/Scripts/jquery.validate.unobtrusive.min.js")"
 type="text/javascript"></script>

@using (Html.BeginForm("Create", "Books", FormMethod.Post,
 new { enctype = "multipart/form-data" }))
{
 @Html.ValidationSummary(true)
 <fieldset>
 <legend>Book</legend>

 <div class="editor-label">
 @Html.LabelFor(model => model.Title)
 </div>
 <div class="editor-field">
 @Html.EditorFor(model => model.Title)
 @Html.ValidationMessageFor(model => model.Title)
 </div>

 <div class="editor-label">
 @Html.LabelFor(model => model.Isbn)
 </div>
 <div class="editor-field">
 @Html.EditorFor(model => model.Isbn)
 @Html.ValidationMessageFor(model => model.Isbn)
 </div>

 <div class="editor-label">
 @Html.LabelFor(model => model.Summary)
 </div>
 <div class="editor-field">
 @Html.EditorFor(model => model.Summary)
 @Html.ValidationMessageFor(model => model.Summary)
 </div>

 <div class="editor-label">
 @Html.LabelFor(model => model.Author)
 </div>
 <div class="editor-field">
 @Html.EditorFor(model => model.Author)
 @Html.ValidationMessageFor(model => model.Author)
 </div>

 <div class="editor-label">
 @Html.LabelFor(model => model.Thumbnail)
 </div>
 <div class="editor-field">
 <input type="file" name="file" />
 @Html.ValidationMessageFor(model => model.Thumbnail)
 </div>

 <div class="editor-label">
 @Html.LabelFor(model => model.Price)
 </div>
 <div class="editor-field">
 @Html.EditorFor(model => model.Price)
 @Html.ValidationMessageFor(model => model.Price)
 </div>

 <div class="editor-label">
 @Html.LabelFor(model => model.Published)
 </div>
 <div class="editor-field">
 @Html.EditorFor(model => model.Published)
 @Html.ValidationMessageFor(model => model.Published)
 </div>

 <p>
 <input type="submit" value="Create" />
 </p>
 </fieldset>
}

<div>
 @Html.ActionLink("Back to List", "Index")
</div>
The books edit view must also be updated in the same way, with the
 exception that a hidden field has been added (passing in the old
 thumbnail). This will be used in the BooksController to delete the old file before
 uploading the new file:
@model MvcApplication4.Models.Book

@{
 ViewBag.Title = "Edit";
}

<h2>Edit</h2>

<script src="@Url.Content("~/Scripts/jquery.validate.min.js")"
 type="text/javascript"></script>
<script src="
 @Url.Content("~/Scripts/jquery.validate.unobtrusive.min.js")"
 type="text/javascript"></script>

@using (Html.BeginForm("Edit", "Books", FormMethod.Post,
 new { enctype = "multipart/form-data" }))
{
 @Html.ValidationSummary(true)
 <fieldset>
 <legend>Book</legend>

 @Html.HiddenFor(model => model.ID)

 <div class="editor-label">
 @Html.LabelFor(model => model.Title)
 </div>
 <div class="editor-field">
 @Html.EditorFor(model => model.Title)
 @Html.ValidationMessageFor(model => model.Title)
 </div>

 <div class="editor-label">
 @Html.LabelFor(model => model.Isbn)
 </div>
 <div class="editor-field">
 @Html.EditorFor(model => model.Isbn)
 @Html.ValidationMessageFor(model => model.Isbn)
 </div>

 <div class="editor-label">
 @Html.LabelFor(model => model.Summary)
 </div>
 <div class="editor-field">
 @Html.EditorFor(model => model.Summary)
 @Html.ValidationMessageFor(model => model.Summary)
 </div>

 <div class="editor-label">
 @Html.LabelFor(model => model.Author)
 </div>
 <div class="editor-field">
 @Html.EditorFor(model => model.Author)
 @Html.ValidationMessageFor(model => model.Author)
 </div>

 <div class="editor-label">
 @Html.LabelFor(model => model.Thumbnail)
 </div>
 <div class="editor-field">
 <input type="file" name="file" />
 @Html.HiddenFor(model => model.Thumbnail)
 @Html.ValidationMessageFor(model => model.Thumbnail)
 </div>

 <div class="editor-label">
 @Html.LabelFor(model => model.Price)
 </div>
 <div class="editor-field">
 @Html.EditorFor(model => model.Price)
 @Html.ValidationMessageFor(model => model.Price)
 </div>

 <div class="editor-label">
 @Html.LabelFor(model => model.Published)
 </div>
 <div class="editor-field">
 @Html.EditorFor(model => model.Published)
 @Html.ValidationMessageFor(model => model.Published)
 </div>

 <p>
 <input type="submit" value="Save" />
 </p>
 </fieldset>
}

<div>
 @Html.ActionLink("Back to List", "Index")
</div>
Since both the Create and
 Edit functions in the BooksController will save the uploaded file, a
 new class will be created to avoid duplicating code. This class will be
 created in the Utils folder. With the
 Utils folder selected, right-click
 and select Add→Class. This class will be called
 FileUpload.cs.
This new class will be responsible for two key functions: saving
 the file and deleting the file. In the following example, the FileUpload class receives an HttpPostedFileBase variable and saves it to a
 specific spot on the web server. Another function does the opposite, it
 receives the name of the file and deletes it from the web server:
using System;
using System.Collections.Generic;
using System.Linq;
using System.Web;
using System.IO;

namespace MvcApplication4.Utils
{
 public static class FileUpload
 {
 public static char DirSeparator =
 System.IO.Path.DirectorySeparatorChar;
 public static string FilesPath = "Content" +
 DirSeparator + "Uploads" + DirSeparator;

 public static string UploadFile(HttpPostedFileBase file)
 {
 // Check if we have a file
 if (null == file) return "";
 // Make sure the file has content
 if (!(file.ContentLength > 0)) return "";

 string fileName = file.FileName;
 string fileExt = Path.GetExtension(file.FileName);

 // Make sure we were able to determine a proper
 // extension
 if (null == fileExt) return "";

 // Check if the directory we are saving to exists
 if (!Directory.Exists(FilesPath))
 {
 // If it doesn't exist, create the directory
 Directory.CreateDirectory(FilesPath);
 }

 // Set our full path for saving
 string path = FilesPath + DirSeparator + fileName;

 // Save our file
 file.SaveAs(Path.GetFullPath(path));

 // Return the filename
 return fileName;
 }

 public static void DeleteFile(string fileName)
 {
 // Don't do anything if there is no name
 if (fileName.Length == 0) return;

 // Set our full path for deleting
 string path = FilesPath + DirSeparator + fileName;

 // Check if our file exists
 if (File.Exists(Path.GetFullPath(path)))
 {
 // Delete our file
 File.Delete(Path.GetFullPath(path));
 }
 }

 }
}
The class and functions inside are defined as static to avoid the
 need to instantiate the class in the BooksController. At the top of the class, a
 constant is created that defines where files will be saved—this should
 be updated as needed to save in a different location on your website. In
 the UploadFile function, if the directory of where
 files will be uploaded doesn’t already exist, it will be created using
 the CreateDirectory function from the
 System.IO.Directory class. A similar
 check is done in the delete function to make sure the file exists before
 deleting it with the File.Delete
 function. If this check is not performed, an error would be returned if
 the function attempted to delete a file that does not exist.
Finally the BooksController
 needs to be updated. In the following example, three important changes
 are done:
	The Create function is
 updated to call the UploadFile
 function.

	The Edit function is
 updated to first call the DeleteFile function, then call the
 UploadFile function.

	The DeleteConfirmed
 function is updated to call the DeleteFile function before deleting the
 book from the database.

using System;
using System.Collections.Generic;
using System.Data;
using System.Data.Entity;
using System.Linq;
using System.Linq.Dynamic;
using System.Web;
using System.Web.Mvc;
using MvcApplication4.Models;
using MvcApplication4.Utils;
using PagedList;

namespace MvcApplication4.Controllers
{
 public class BooksController : Controller
 {
 private BookDBContext db = new BookDBContext();

 ...

 //
 // GET: /Books/Create

 public ActionResult Create()
 {
 return View();
 }

 //
 // POST: /Books/Create

 [HttpPost]
 public ActionResult Create(Book book,
 HttpPostedFileBase file)
 {
 if (ModelState.IsValid)
 {
 // Upload our file
 book.Thumbnail = FileUpload.UploadFile(file);

 db.Books.Add(book);
 db.SaveChanges();
 return RedirectToAction("Index");
 }

 return View(book);
 }

 //
 // GET: /Books/Edit/5

 public ActionResult Edit(int id)
 {
 Book book = db.Books.Find(id);
 return View(book);
 }

 //
 // POST: /Books/Edit/5

 [HttpPost]
 public ActionResult Edit(Book book,
 HttpPostedFileBase file)
 {
 if (ModelState.IsValid)
 {
 // Delete old file
 FileUpload.DeleteFile(book.Thumbnail);

 // Upload our file
 book.Thumbnail = FileUpload.UploadFile(file);

 db.Entry(book).State = EntityState.Modified;
 db.SaveChanges();
 return RedirectToAction("Index");
 }
 return View(book);
 }

 //
 // GET: /Books/Delete/5

 public ActionResult Delete(int id)
 {
 Book book = db.Books.Find(id);
 return View(book);
 }

 //
 // POST: /Books/Delete/5

 [HttpPost, ActionName("Delete")]
 public ActionResult DeleteConfirmed(int id)
 {
 Book book = db.Books.Find(id);

 // Delete old file
 FileUpload.DeleteFile(book.Thumbnail);

 db.Books.Remove(book);
 db.SaveChanges();
 return RedirectToAction("Index");
 }

 ...
 }
}

See Also

HttpPostedFileBase

1.12. Resizing an Image to Create a Thumbnail

Problem

You allow a user to upload an image, but typically this will be
 from a camera with pictures that are quite large, so you want to display
 a sample or thumbnail of the image on your website, allowing the user to
 preview the image before seeing the full image.

Solution

Update the existing file upload to resize an image with the
 following classes: FileStream,
 Image, Bitmap, and Graphics class to a specific width and
 height.

Discussion

In the following example, the previously created FileUpload class will be updated and
 reorganized. A new function called ResizeImage is
 created to perform the resizing. The resized image will be saved in a
 subfolder of where the previous files were saved, called Thumbnails. The DeleteFile
 function is also updated to remove both the thumbnail and original
 image, and a new function is created and called twice from the delete
 function to avoid duplicating code. The partial file upload class is
 displayed below, identifying the changes:
using System;
using System.Collections.Generic;
using System.Linq;
using System.Web;
using System.IO;
using System.Drawing;
using System.Drawing.Drawing2D;

namespace MvcApplication4.Utils
{
 public static class FileUpload
 {
 public static char DirSeparator =
 System.IO.Path.DirectorySeparatorChar;
 public static string FilesPath = "Content" +
 DirSeparator + "Uploads" + DirSeparator;

 public static string UploadFile(HttpPostedFileBase file)
 {
 ...

 // Save our thumbnail as well
 ResizeImage(file, 150, 100);

 ...
 }

 public static void DeleteFile(string fileName)
 {
 // Don't do anything if there is no name
 if (fileName.Length == 0) return;

 // Set our full path for deleting
 string path = FilesPath + DirSeparator + fileName;
 string thumbPath = FilesPath + DirSeparator +
 "Thumbnails" + DirSeparator + fileName;

 RemoveFile(path);
 RemoveFile(thumbPath);
 }

 private static void RemoveFile(string path)
 {
 // Check if our file exists
 if (File.Exists(Path.GetFullPath(path)))
 {
 // Delete our file
 File.Delete(Path.GetFullPath(path));
 }
 }

 public static void ResizeImage(HttpPostedFileBase file,
 int width, int height)
 { string thumbnailDirectory =
 String.Format(@"{0}{1}{2}", FilesPath,
 DirSeparator, "Thumbnails");

 // Check if the directory we are saving to exists
 if (!Directory.Exists(thumbnailDirectory))
 {
 // If it doesn't exist, create the directory
 Directory.CreateDirectory(thumbnailDirectory);
 }

 // Final path we will save our thumbnail
 string imagePath =
 String.Format(@"{0}{1}{2}", thumbnailDirectory,
 DirSeparator, file.FileName);
 // Create a stream to save the file to when we're
 // done resizing
 FileStream stream = new FileStream(Path.GetFullPath(
 imagePath), FileMode.OpenOrCreate);

 // Convert our uploaded file to an image
 Image OrigImage = Image.FromStream(file.InputStream);
 // Create a new bitmap with the size of our
 // thumbnail
 Bitmap TempBitmap = new Bitmap(width, height);

 // Create a new image that contains quality
 // information
 Graphics NewImage = Graphics.FromImage(TempBitmap);
 NewImage.CompositingQuality =
 CompositingQuality.HighQuality;
 NewImage.SmoothingMode =
 SmoothingMode.HighQuality;
 NewImage.InterpolationMode =
 InterpolationMode.HighQualityBicubic;

 // Create a rectangle and draw the image
 Rectangle imageRectangle = new Rectangle(0, 0,
 width, height);
 NewImage.DrawImage(OrigImage, imageRectangle);

 // Save the final file
 TempBitmap.Save(stream, OrigImage.RawFormat);

 // Clean up the resources
 NewImage.Dispose();
 TempBitmap.Dispose();
 OrigImage.Dispose();
 stream.Close();
 stream.Dispose();
 }
 }
}
A lot is happening in the above example, specifically in the
 ResizeImage function. Firstly, if the
 Thumbnails directory doesn’t already
 exist, it will be created. Next, a new FileStream is created for editing with the
 full path to where the final thumbnail will be saved.
Then the original uploaded image is converted to an object of the
 Image class using the InputStream of the uploaded file. A new
 Bitmap image is created based on the
 width and height of the thumbnail that will be created. This Bitmap image is then used to create a new
 Graphics object. The Graphics object, NewImage, is then used to set and define the
 quality, smooth, interpolation mode. Without these settings, the
 thumbnail image would not look good and be extremely pixelated and
 resized awkwardly.
Once this is all set, a new Rectangle is created and the original image is
 drawn to the Graphics object. This is
 what performs the actually resizing. Finally the Bitmap is saved and all of the objects created
 are disposed of, to free up resources.
Note
In the above example, a few important things (that should be
 updated before using in production) have been left out to focus on the
 resizing of the image. They are: validating that the uploaded file is
 an image; and checking the orientation of the original image to create
 a thumbnail that is not a fixed size of 150 pixels by 150 pixels, but
 resized to contain a constant width and allowing the height to be
 calculated to match the original orientation.

See Also

FileStream,
 Image,
 Bitmap,
 and Graphics

1.13. Implementing Ajax to Enhance the User Experience

Problem

When you click a link and the full web page is reloaded with the
 updated content, this can feel like a slow process, especially when only
 a small amount of the content is being updated.

Solution

Update previously created Html.ActionLink calls to use the Ajax helper
 and the Ajax.ActionLink to only
 reload the content being changed.

Discussion

MVC provides several great helper classes. So far throughout this
 book, the HTML helper class has been used extensively. In all of the
 views created, it was used at least once in each of them. In this
 recipe, the HTML helper class will be swapped out in the Books/Index view and replaced with the Ajax
 helper class.
Implementing Ajax requires a bit of additional setup before it can
 be used. Oftentimes I have found that this additional work can deter
 developers from using it. Let it be known that the additional setup time
 required is well worth it, because the benefits gained in the user
 experience are well worth the effort.
The setup starts with the Web.config file. Two keys must be set to
 true, ClientValidationEnabled and UnobtrusiveJavaScriptEnabled:
<?xml version="1.0"?>
<configuration>
 <connectionStrings>
 <add name="ApplicationServices" connectionString=
 "data source=.\SQLEXPRESS;Integrated Security=SSPI;
 AttachDBFilename=|DataDirectory|aspnetdb.mdf;
 User Instance=true" providerName="System.Data.SqlClient"/>
 </connectionStrings>

 <appSettings>
 <add key="webpages:Version" value="1.0.0.0" />
 <add key="ClientValidationEnabled" value="true" />
 <add key="UnobtrusiveJavaScriptEnabled" value="true" />
 <add key="smtpServer" value="localhost" />
 <add key="smtpPort" value="25" />
 <add key="smtpUser" value="" />
 <add key="smtpPass" value="" />
 </appSettings>

 <system.web>
 <compilation debug="true" targetFramework="4.0">
 <assemblies>
 <add assembly="System.Web.Abstractions,
 Version=4.0.0.0, Culture=neutral,
 PublicKeyToken=31BF3856AD364E35" />
 <add assembly="System.Web.Helpers,
 Version=1.0.0.0, Culture=neutral,
 PublicKeyToken=31BF3856AD364E35" />
 <add assembly="System.Web.Routing,
 Version=4.0.0.0, Culture=neutral,
 PublicKeyToken=31BF3856AD364E35" />
 <add assembly="System.Web.Mvc,
 Version=3.0.0.0, Culture=neutral,
 PublicKeyToken=31BF3856AD364E35" />
 <add assembly="System.Web.WebPages,
 Version=1.0.0.0, Culture=neutral,
 PublicKeyToken=31BF3856AD364E35" /> <add assembly="System.Data.Entity,
 Version=4.0.0.0, Culture=neutral,
 PublicKeyToken=b77a5c561934e089" />
 </assemblies>
 </compilation>

 ...
 </system.web>

 ...
</configuration>
The final setup step that needs to be completed is to include
 several JavaScript files. This will be done in the shared layout that is
 used by all of the views created to date. In Views/Shared/_Layout.cshtml, two JavaScript
 files have been included in the <head> tag:
<!DOCTYPE html>
<html>
<head>
 <title>@ViewBag.Title</title>
 <link href="@Url.Content("~/Content/Site.css")"
 rel="stylesheet" type="text/css" />
 <script src="@Url.Content("~/Scripts/jquery-1.5.1.min.js")"
 type="text/javascript"></script>
 <script src="
 @Url.Content("~/Scripts/jquery.unobtrusive-ajax.min.js")"
 type="text/javascript"></script>
</head>
<body>
 <div class="page">
 <div id="header">
 <div id="title">
 <h1>My MVC Application</h1>
 </div>
 <div id="logindisplay">
 @Html.Partial("_LogOnPartial")
 [@Html.ActionLink("English", "ChangeLanguage",
 "Home", new { language = "en" }, null)]
 [@Html.ActionLink("Français", "ChangeLanguage",
 "Home", new { language = "fr" }, null)]
 </div>
 <div id="menucontainer">
 <ul id="menu">

 @Html.ActionLink("Home", "Index", "Home")

 @Html.ActionLink("About", "About", "Home")

 </div>
 </div> <div id="main">
 @RenderBody()
 </div>
 <div id="footer">
 </div>
 </div>
</body>
</html>
These files are automatically included in the base MVC 3
 application. That completes the core of the Ajax setup. Next, the
 Books/Index view will be updated. In
 the following example, the three filter links and sortable header links
 have been updated to use the Ajax.ActionLink instead of the Html.ActionLink:
@model PagedList.IPagedList<MvcApplication4.Models.Book>

@if (IsAjax)
{
 Layout = null;
}

<h2>@MvcApplication4.Resources.Resource1.BookIndexTitle</h2>

<p>
 @Html.ActionLink("Create New", "Create")
</p>
<p>
 Show:
 @if (ViewBag.CurrentFilter != "")
 {
 @Ajax.ActionLink("All", "Index", new {
 sortOrder = ViewBag.CurrentSortOrder,
 Keyword = ViewBag.CurrentKeyword },
 new AjaxOptions { UpdateTargetId = "main" })
 }
 else
 {
 @:All
 }
 |
 @if (ViewBag.CurrentFilter != "NewReleases")
 {
 @Ajax.ActionLink("New Releases", "Index", new {
 filter = "NewReleases",
 sortOrder = ViewBag.CurrentSortOrder,
 Keyword = ViewBag.CurrentKeyword },
 new AjaxOptions { UpdateTargetId = "main" })
 }
 else
 {
 @:New Releases
 }
 |
 @if (ViewBag.CurrentFilter != "ComingSoon") {
 @Ajax.ActionLink("Coming Soon", "Index", new {
 filter = "ComingSoon",
 sortOrder = ViewBag.CurrentSortOrder,
 Keyword = ViewBag.CurrentKeyword },
 new AjaxOptions { UpdateTargetId = "main" })
 }
 else
 {
 @:Coming Soon
 }
</p>
@using (Html.BeginForm())
{
 @:Search: @Html.TextBox("Keyword")
 <input type="submit" value="Search" />
}
@Html.Partial("_Paging")
<table>
 <tr>
 <th>
 @Ajax.ActionLink("Title", "Index", new {
 sortOrder = ViewBag.TitleSortParam,
 filter = ViewBag.CurrentFilter,
 Keyword = ViewBag.CurrentKeyword },
 new AjaxOptions { UpdateTargetId = "main" })
 </th>
 <th>
 @Ajax.ActionLink("Isbn", "Index", new {
 sortOrder = ViewBag.IsbnSortParam,
 filter = ViewBag.CurrentFilter,
 Keyword = ViewBag.CurrentKeyword },
 new AjaxOptions { UpdateTargetId = "main" })
 </th>
 <th>
 Summary
 </th>
 <th>
 @Ajax.ActionLink("Author", "Index", new {
 sortOrder = ViewBag.AuthorSortParam,
 filter = ViewBag.CurrentFilter,
 Keyword = ViewBag.CurrentKeyword },
 new AjaxOptions { UpdateTargetId = "main" })
 </th>
 <th>
 Thumbnail
 </th>
 <th>
 @Ajax.ActionLink("Price", "Index", new {
 sortOrder = ViewBag.PriceSortParam,
 filter = ViewBag.CurrentFilter,
 Keyword = ViewBag.CurrentKeyword },
 new AjaxOptions { UpdateTargetId = "main" })
 </th> <th>
 @Ajax.ActionLink("Published", "Index", new {
 sortOrder = ViewBag.PublishedSortParam,
 filter = ViewBag.CurrentFilter,
 Keyword = ViewBag.CurrentKeyword },
 new AjaxOptions { UpdateTargetId = "main" })
 </th>
 <th></th>
 </tr>

@foreach (var item in Model)
{
 <tr>
 <td>
 @Html.DisplayFor(modelItem => item.Title)
 </td>
 <td>
 @Html.DisplayFor(modelItem => item.Isbn)
 </td>
 <td>
 @Html.DisplayFor(modelItem => item.Summary)
 </td>
 <td>
 @Html.DisplayFor(modelItem => item.Author)
 </td>
 <td>
 @Html.DisplayFor(modelItem => item.Thumbnail)
 </td>
 <td>
 @Html.DisplayFor(modelItem => item.Price)
 </td>
 <td>
 @Html.DisplayFor(modelItem => item.Published)
 </td>
 <td>
 @Html.ActionLink("Edit",
 "Edit", new { id = item.ID }) |
 @Html.ActionLink("Details",
 "Details", new { id = item.ID }) |
 @Html.ActionLink("Delete",
 "Delete", new { id = item.ID })
 </td>
 </tr>
}

</table>

@Html.Partial("_Paging")
The key thing that was done is that new AjaxOptions were added as the last parameter
 of the ActionLink function. This
 means that when the Ajax link is clicked by the user, the results of the
 Ajax request should update the HTML element with the
 id of main. If you
 look in the shared layout altered earlier, you will notice that it
 contains a <div> with the
 id of main. In
 fact, this <div> is the
 container for the @RenderBody()
 function which is where the output of a view goes.
The other important thing that was done is a check for Ajax done
 at the top of the view. If the request was completed via Ajax, the
 layout is set to null. This is an extremely important factor because if
 this isn’t done, the results of the Ajax request will contain not only
 the results of the view, but the full layout as well, which would be
 placed inside of the layout again.
To finish off this example, the Shared/_Paging view will also be updated to
 use the Ajax helper as well:
<p>
 @if (Model.HasPreviousPage)
 {
 @Ajax.ActionLink("<< First", "Index", new {
 page = 1,
 sortOrder = ViewBag.CurrentSortOrder,
 filter = ViewBag.CurrentFilter,
 Keyword = ViewBag.CurrentKeyword },
 new AjaxOptions { UpdateTargetId = "main" })
 @Html.Raw(" ");
 @Ajax.ActionLink("< Prev", "Index", new {
 page = Model.PageNumber - 1,
 sortOrder = ViewBag.CurrentSortOrder,
 filter = ViewBag.CurrentFilter,
 Keyword = ViewBag.CurrentKeyword },
 new AjaxOptions { UpdateTargetId = "main" })
 }
 else
 {
 @:<< First
 @Html.Raw(" ");
 @:< Prev
 }

 @if (Model.HasNextPage)
 {
 @Ajax.ActionLink("Next >", "Index", new {
 page = Model.PageNumber + 1,
 sortOrder = ViewBag.CurrentSortOrder,
 filter = ViewBag.CurrentFilter,
 Keyword = ViewBag.CurrentKeyword },
 new AjaxOptions { UpdateTargetId = "main" })
 @Html.Raw(" ");
 @Ajax.ActionLink("Last >>", "Index", new {
 page = Model.PageCount,
 sortOrder = ViewBag.CurrentSortOrder,
 filter = ViewBag.CurrentFilter,
 Keyword = ViewBag.CurrentKeyword },
 new AjaxOptions { UpdateTargetId = "main" })
 }
 else
 {
 @:Next >
 @Html.Raw(" ")
 @:Last >>
 }
</p>
Now when the user clicks on a link that changes the list of books,
 the full page is not reloaded and only the list of books is updated,
 providing a much better and faster user experience.
Also, if the client does not support JavaScript (e.g., when a
 search engine visits), the link will still function normally, allowing
 both a user with JavaScript disabled and the search engine to still
 access the content through a normal full page reload.

See Also

AjaxHelper

1.14. Submitting a Form with Ajax

Problem

You have a page that lists important detail and you want to allow
 the user to quickly and easily submit a form without reloading the whole
 page and losing their place on the website.

Solution

Using the AjaxHelper, create a
 new form that is submitted by Ajax and automatically updates the
 existing content with the newly submitted item.

Discussion

The following example is going to put several of the previous
 recipes together, to demonstrate how to allow users to submit a comment
 on a book without being redirected to different pages to both see the
 comments and submit their own comment.
To start with, a new model must be created that will store the
 comments for a book. With the Models
 folder selected, right-click and choose Add→Class.
 The name of the class will be BookComment.cs. This model will store the
 comment submitted about a specific book:
using System;
using System.Collections.Generic;
using System.Linq;
using System.Web;
using System.ComponentModel.DataAnnotations;

namespace MvcApplication4.Models
{
 public class BookComment
 {
 public int ID { get; set; }
 [Required]
 public string Comment { get; set; }
 public DateTime Created { get; set; }

 public int BookId { get; set; }
 public virtual Book Book { get; set; }
 }

}
Next, the previously created BookDBContext must be updated to contain a
 reference to this table. This class was previously created in the
 original Book model. At this point,
 it would make sense to create a new file specifically to store this
 class, as it might continue to grow in your project with future tables.
 Right-clicking on the Models folder again, select
 Add→Class. The name of this class will be BookDBContext:
using System;
using System.Collections.Generic;
using System.Linq;
using System.Web;
using System.Data.Entity;

namespace MvcApplication4.Models
{
 public class BookDBContext : DbContext
 {
 public DbSet<Book> Books { get; set; }
 public DbSet<BookComment> BookComments { get; set; }
 }
}
At this point, you should rebuild your application so that the
 newly created model will appear in the next step.
Once this class is created, you can remove it from the Book model class. Next, a new controller must
 be created that will perform the listing of comments and the ability to
 manage them. With the Controllers
 folder selected, click Add→Controller. The name of
 the controller will be BookCommentsController.cs. To minimize the
 typing required, the new controller will be scaffolded with the
 Entity Framework. For the Model Class, choose the
 newly created BookComment model. For
 the Data context class, choose the previously created BookDBContext. Select Add
 once all of the settings are chosen.
When you run the application the next time, you should receive an
 error indicating that the BookDBContext has changed since it was last
 used. To solve this, you must create an initializer for the DBContext. Because this is not a production
 website, the initializer is going to drop and recreate the
 database. To perform this, right-click on the Models folder and select
 Add→Class. This class will be called BookInitializer.cs:
using System;
using System.Collections.Generic;
using System.Linq;
using System.Web;
using System.Data.Entity;

namespace MvcApplication4.Models
{
 public class BookInitializer :
 DropCreateDatabaseIfModelChanges<BookDBContext>
 {
 }
}
Next the Global.asax.cs must be
 updated to call this BookInitializer
 on Application_Start:
using System;
using System.Collections.Generic;
using System.Linq;
using System.Web;
using System.Web.Mvc;
using System.Web.Routing;
using MvcApplication4.Models;
using System.Data.Entity;
using System.Globalization;
using System.Threading;

namespace MvcApplication4
{

 public class MvcApplication : System.Web.HttpApplication
 {
 ...

 protected void Application_Start()
 {
 Database.SetInitializer<BookDBContext>(
 new BookInitializer());

 ...
 }

 ...
 }
}
The setup work is now all complete, and it’s time to perform the
 necessary updates to allow users to comment on a book with Ajax. This
 process will be started with the Books/Details view, as this is the most
 logical spot to display comments about the book:
@model MvcApplication4.Models.Book

@{
 ViewBag.Title = "Details";
}

<h2>Details</h2>

<fieldset>
 <legend>Book</legend>

 <div class="display-label">Title</div>
 <div class="display-field">
 @Html.DisplayFor(model => model.Title)
 </div>

 <div class="display-label">Isbn</div>
 <div class="display-field">
 @Html.DisplayFor(model => model.Isbn)
 </div>

 <div class="display-label">Summary</div>
 <div class="display-field">
 @Html.DisplayFor(model => model.Summary)
 </div>

 <div class="display-label">Author</div>
 <div class="display-field">
 @Html.DisplayFor(model => model.Author)
 </div>

 <div class="display-label">Thumbnail</div>
 <div class="display-field">
 @Html.DisplayFor(model => model.Thumbnail)
 </div>

 <div class="display-label">Price</div>
 <div class="display-field">
 @Html.DisplayFor(model => model.Price)
 </div>

 <div class="display-label">Published</div>
 <div class="display-field">
 @Html.DisplayFor(model => model.Published)
 </div>
</fieldset>
<fieldset>
 <legend>Comments</legend>
 <div id="Comments">
 @{Html.RenderAction("Index", "BookComments",
 new { BookId = Model.ID });}
 </div>
</fieldset>
<p>
 @Html.ActionLink("Edit", "Edit", new { id=Model.ID }) |
 @Html.ActionLink("Back to List", "Index")
</p>
In the above example, a new <fieldset> has been added beneath the
 details of the book. Inside this <fieldset> a new <div> has been created with the
 id of Comments. Inside this
 <div> an Html.RenderAction is performed to the BookComments Index function passing a parameter called
 BookId with the id of the current
 book.
Next, the BookComments/Index
 view needs to be updated. In the following example, the Create
 New link is updated to display the form via Ajax instead of
 redirecting the user to a new page. A new <div> has been placed right beneath this
 link, which will be used to populate the form when the Ajax call
 completes. A few links have been removed as well, because no comment
 managing will be provided—only the ability to add comments.
@model IEnumerable<MvcApplication4.Models.BookComment>

@{
 ViewBag.Title = "Index";
}

<h2>Index</h2>

<p>
 @Ajax.ActionLink("Create New", "Create", new {
 BookId = ViewBag.BookId },
 new AjaxOptions { UpdateTargetId = "AddComment" })
</p>
<div id="AddComment"></div>
<table>
 <tr>
 <th>
 Comment
 </th>
 <th>
 Created
 </th>
 </tr>

@foreach (var item in Model) {
 <tr>
 <td>
 @Html.DisplayFor(modelItem => item.Comment)
 </td>
 <td>
 @Html.DisplayFor(modelItem => item.Created)
 </td>
 <td>
 @Html.DisplayFor(modelItem => item.Book.Title)
 </td>
 </tr>
}

</table>
The final view that requires changes
 is the automatically generated BookComments/Create view. This view is updated to use
 the Ajax.BeginForm instead of the
 default Html.BeginForm. The other
 thing that is done is tell the form to call a JavaScript function called
 ReloadComments when the Ajax submit
 is completed. This function performs an Ajax request with JQuery to
 retrieve the updated comments list. A hidden form field was also created
 with the BookId instead of the automatically created
 drop-down list of books.
@model MvcApplication4.Models.BookComment

@{
 ViewBag.Title = "Create";
}

<h2>Create</h2>

<script src="@Url.Content("~/Scripts/jquery.validate.min.js")"
 type="text/javascript"></script>
<script src="
 @Url.Content("~/Scripts/jquery.validate.unobtrusive.min.js")"
 type="text/javascript"></script>
<script type="text/javascript">
 function ReloadComments() {
 $("#Comments").load("@Url.Content(
 "~/BookComments/Index?BookId=" + ViewBag.BookId)");
 }
</script>
@using (Ajax.BeginForm(new AjaxOptions {
 OnComplete="ReloadComments()" }))
{
 @Html.Hidden("BookId", (int)ViewBag.BookId);
 @Html.ValidationSummary(true)
 <fieldset>
 <legend>BookComment</legend>

 <div class="editor-label">
 @Html.LabelFor(model => model.Comment)
 </div>
 <div class="editor-field">
 @Html.EditorFor(model => model.Comment)
 @Html.ValidationMessageFor(model => model.Comment)
 </div>

 <p>
 <input type="submit" value="Create" />
 </p>
 </fieldset>
}
To complete this example, a few changes are required to the
 BookCommentsController:
using System;
using System.Collections.Generic;
using System.Data;
using System.Data.Entity;
using System.Linq;
using System.Web;
using System.Web.Mvc;
using MvcApplication4.Models;

namespace MvcApplication4.Controllers
{
 public class BookCommentsController : Controller
 {
 private BookDBContext db = new BookDBContext();

 //
 // GET: /BookComments/

 public ActionResult Index(int BookId)
 {
 ViewBag.BookId = BookId;
 var bookcomments = db.BookComments.Include(
 b => b.Book).Where(b => b.BookId == BookId);
 return PartialView(bookcomments.ToList());
 }

 //
 // GET: /BookComments/Create

 public ActionResult Create(int BookId)
 {
 ViewBag.BookId = BookId;
 return PartialView();
 }

 //
 // POST: /BookComments/Create

 [HttpPost]
 public ActionResult Create(BookComment bookcomment)
 {
 if (ModelState.IsValid)
 {
 bookcomment.Created = DateTime.Now;
 db.BookComments.Add(bookcomment);
 db.SaveChanges();
 }

 ViewBag.BookId = bookcomment.BookId;
 return PartialView(bookcomment);
 }

 protected override void Dispose(bool disposing)
 {
 db.Dispose();
 base.Dispose(disposing);
 }
 }
}
In the above example, the Index
 function has been updated to accept an integer for the BookId. This is set to the ViewBag. The other important change to this
 function is, instead of returning a full view, only a partial view is
 returned (preventing the full layout from being displayed). If you
 recall in the previous example, we reused the same view to perform the
 Ajax request, and had to check within the view to see if it was an Ajax
 request, to disable the layout. Since this view is only displayed via
 Ajax, it’s simpler to update the controller to return a partial
 view.
Finally, the Create functions
 have been updated as well. The basic Create function has been updated just like the
 Index to accept a BookId and return a partial view. The second
 Create function has been updated to
 set the created date of the comment to now, and if
 there is an error, to return a partial view. The additional Edit, Details, and Delete functions have been removed since they
 are not being used. These views can also be deleted since they are not
 being used.
Now when a user is viewing the details of a book, they can see the
 list of comments already posted and if they wish to add their own
 comment, they can click the Create New link, enter
 their comment, click Submit, and automatically see their newly created
 comment without ever having to leave the book details page.

1.15. Enabling a CAPTCHA

Problem

Unfortunately there are people who use automated programs to
 submit forms, causing a lot of spam throughout the Internet. One of the
 ways to prevent this is to implement a CAPTCHA (an acronym for
 “Completely Automated Public Turing test to tell Computers and Humans
 Apart”), which forces users to type a generated word into a text
 box.

Solution

Install the ASP.NET Web Helpers Library from
 NuGet to integrate a CAPTCHA into the BookCommentsController.

Discussion

A new library package is required to enable a CAPTCHA on a form.
 Microsoft has created a NuGet Web
 Helpers library that contains a built in CAPTCHA class that easily let’s
 us render and validate the CAPTCHA entered by the user.
With the MVC Application project selected in Visual Studio, click
 Tools→Library Package Manager→Add Library Package
 Reference. Once loaded, select the Online button on the left.
 On the first page, there should be a package called microsoft-web-helpers—if it is not there, try
 searching for it in the top right. Once found, click the
 Install button.
The most typical places where automated form submission software
 is used are comment submissions. Since in a previous recipe, comments on
 books were added, this is a perfect spot to add the CAPTCHA. Before
 starting, you must register your domain at the RECAPTCHA website. When
 you have completed registration, you will receive a public and private
 key for your domain. Copy and paste these somewhere for future
 use.
Note
If you are not using Ajax to include the CAPTCHA, you can
 simplify the view changes by simply adding the two following lines in
 your view:
@using
 Microsoft.Web.Helpers;
@ReCaptcha.GetHtml("<your_public_key>",
 "<your_private_key>")

With the setup complete, it’s time to start updating the code. A
 small update must be made to the BookComments/Index view. This view was
 previously created to Ajax the create comment on the page. This Ajax
 request needs to be updated to display the CAPTCHA button, by calling
 the DisplayCaptcha JavaScript function when the
 request is complete.
@model IEnumerable<MvcApplication4.Models.BookComment>

@{
 ViewBag.Title = "Index";
}

<h2>Index</h2>

<p>
 @Ajax.ActionLink("Create New", "Create", new {
 BookId = ViewBag.BookId },
 new AjaxOptions { UpdateTargetId = "AddComment",
 OnComplete = "DisplayCaptcha" })
</p>
<div id="AddComment"></div>

...

<script type="text/javascript" src=
 "http://www.google.com/recaptcha/api/js/recaptcha_ajax.js">
</script>
<script type="text/javascript">
 function DisplayCaptcha() {
 Recaptcha.destroy();
 Recaptcha.create("<your_public_key>", "captcha", {});
 }
</script>
Now the BookComments/Create
 view needs to be updated in a similar fashion. First, a new spot needs
 to be created for the CAPTCHA to be displayed. Also, a new HTML error
 message is added to tell the user when they enter an incorrect caption.
 Finally, the ReloadComments
 JavaScript function is updated to not automatically reload the comments
 (only when there are no errors).
@model MvcApplication4.Models.BookComment
@{
 ViewBag.Title = "Create";
}

<h2>Create</h2>

@section JavascriptAndCSS {
<script src="@Url.Content("~/Scripts/jquery.validate.min.js")"
 type="text/javascript"></script>
<script src="
 @Url.Content("~/Scripts/jquery.validate.unobtrusive.min.js")"
 type="text/javascript"></script>
}

<script type="text/javascript">
 function ReloadComments() {
 var reload = "@ViewBag.RefreshComments";
 if (reload == "False") {
 DisplayCaptcha();
 } else {
 $("#Comments").load(
 "/BookComments/Index?BookId=@ViewBag.BookId");
 }
 }
</script>
@using (Ajax.BeginForm(new AjaxOptions {
 UpdateTargetId="AddComment", OnComplete="ReloadComments" }))
{
 @Html.Hidden("BookId", (int)ViewBag.BookId);
 @Html.ValidationSummary(true)
 <fieldset>
 <legend>BookComment</legend>

 <div class="editor-label">
 @Html.LabelFor(model => model.Comment)
 </div>
 <div class="editor-field">
 @Html.TextAreaFor(model => model.Comment)
 @Html.ValidationMessageFor(model => model.Comment)
 </div>

 <div class="editor-label">
 Are you human?
 </div>

 <div class="editor-field">
 <div id="captcha"></div>
 @Html.ValidationMessage("Captcha")
 </div>

 <p>
 <input type="submit" value="Create" />
 </p>
 </fieldset>
}
Finally, the BookCommentsController needs to be updated to
 validate the CAPTCHA entered by the user. If the CAPTCHA is invalid, an
 error message is added to the ModelState so the view will display it
 properly.
using System;
using System.Collections.Generic;
using System.Data;
using System.Data.Entity;
using System.Linq;
using System.Web;
using System.Web.Mvc;
using MvcApplication4.Models;
using Microsoft.Web.Helpers;

namespace MvcApplication4.Controllers
{
 public class BookCommentsController : Controller
 {
 private BookDBContext db = new BookDBContext();

 //
 // GET: /BookComments/

 public ActionResult Index(int BookId)
 {
 ViewBag.BookId = BookId;
 var bookcomments = db.BookComments.Include(
 b => b.Book).Where(b => b.BookId == BookId);
 return PartialView(bookcomments.ToList());
 }

 //
 // GET: /BookComments/Create

 public ActionResult Create(int BookId)
 {
 ViewBag.BookId = BookId;
 ViewBag.RefreshComments = false;
 return PartialView();
 }

 //
 // POST: /BookComments/Create

 [HttpPost]
 public ActionResult Create(BookComment bookcomment)
 { ViewBag.RefreshComments = false;
 var captchaSuccess = ReCaptcha.Validate(
 "<your_private_key>");

 if (ModelState.IsValid && captchaSuccess)
 {
 bookcomment.Created = DateTime.Now;
 db.BookComments.Add(bookcomment);
 db.SaveChanges();

 ViewBag.RefreshComments = true;
 }

 // if captcha failed add error message
 if (!captchaSuccess)
 {
 ModelState.AddModelError("Captcha",
 "Invalid CAPTCHA");
 }

 ViewBag.BookId = bookcomment.BookId;
 return PartialView(bookcomment);
 }

 protected override void Dispose(bool disposing)
 {
 db.Dispose();
 base.Dispose(disposing);
 }
 }
}

1.16. Mobilizing Your Website

Problem

By default, your website probably won’t display well on a mobile
 device. Granted, some devices are good enough to make it fit on the
 phone, but it won’t be fluid and you probably don’t want to build a
 whole new website for a mobile phone, as that becomes costly.

Solution

Using the JQuery Mobile NuGet package, alter
 the shared layout and views and make a website that will look good both
 on a traditional browser and most mobile
 phones.

Discussion

First and foremost, if you have been reading the roadmap regarding
 MVC 4, you will have noticed a lot of discussion around mobile
 enhancements—specifically the adaptation of using the JQuery Mobile
 toolkit that will be used in this example. Unfortunately, at this time it’s too early
 to tell how far this will be taken in MVC 4, as a lot of things indicate
 that we “might” provide it. So instead of waiting for it, I will provide
 an extremely straightforward solution that requires minimal effort to
 maintain both a mobile web application and a regular web application.
 Furthermore, with Windows 8 coming out soon and support for HTML5 web
 applications right on the desktop, it will also be a desktop
 application.
Note
Maintaining multiple versions of the same website does come with
 risks and additional time requirements. Each time you add new
 functionality, you must firstly test the new functionality in the
 multiple environments, as well as regression test in the multiple
 environments. Also, just because this is considered “straightforward”
 doesn’t mean that it’s mindless: a lot of thought must be given to the
 organization of the page structure to ensure it’s built as best as
 possible for both major platforms: desktop browser and mobile
 browser.

To begin with, the JQuery Mobile package
 needs to be added through the NuGet package
 manager. With the current build of MVC 3, JQuery 1.5.x is included by
 default with the application. The current version of JQuery Mobile
 depends on version 1.6.x, so the versions of JQuery must be updated.
 Luckily the NuGet package manager has created a
 simple way to perform this.
With the MVC Application project selected, click
 Tools→Library Package Manager→Add Library Package Reference.
 Instead of adding the JQuery Mobile package, the existing JQuery
 packages must be updated. On the left, select the
 Update button. This will contain a list of the
 currently installed packages that have been updated. Before updating the
 base JQuery package, several of its child packages must be updated
 first.
Warning
If you receive any errors while updating any of the packages
 because of reference issues, be sure to read the versions indicated
 and try updating those packages first.

I found the following order to work successfully (click each and
 then select Update, then move on to the next):
 Jquery.Validation,
 Jquery.vs.doc,
 Jquery.ui.combined, and finally the
 JQuery package itself.
Note
Several changes have occurred between JQuery 1.5.x and JQuery
 1.6.x, so before updating your version, please read the changelog to
 ensure that your existing code will not cease to function because of
 the upgrade.

Once all the package updates have been performed, you can now
 click on the Online button from the left menu. In
 the search box, type Jquery.Mobile
 and click Install. This will install the necessary
 CSS and JavaScript files required to use the JQuery add-on.
The JQuery Mobile plugin is based on HTML5 syntax. Using this
 syntax, various CSS and JavaScript manipulations are done within the
 page to provide the desired look that closely matches built-in
 applications on some of the more popular smartphones.
The purpose of this example is demonstrate how an existing website
 can be updated to use this new library and still maintain a web version
 as well as a mobile version. To begin, the Shared/_Layout view needs to be updated to
 match the JQuery Mobile page anatomy syntax.
<!DOCTYPE html>

<html>
<head>
 <title>@ViewBag.Title</title>
 <link href="@Url.Content(
 "~/Content/jquery.mobile-1.0b1.min.css")"
 rel="stylesheet" type="text/css" />
 <script src="@Url.Content("~/Scripts/jquery-1.6.2.min.js")"
 type="text/javascript"></script>

 <script type="text/javascript">
 $(document).ready(function () {
 if (window.innerWidth > 480) {
 $("link[rel=stylesheet]").attr({ href:
 "@Url.Content("~/Content/Site.css")" });
 }
 });
 </script>

 <script src="@Url.Content(
 "~/Scripts/jquery.mobile-1.0b1.min.js")"
 type="text/javascript"></script>

 @RenderSection("JavaScriptAndCSS", required: false)
</head>
<body>
 <div class="page" data-role="page">
 <div id="header" data-role="header">
 <div id="title">
 <h1>My MVC Application</h1>
 </div>
 <div id="logindisplay" class="ui-bar">
 @Html.Partial("_LogOnPartial")
 [@Html.ActionLink("English", "ChangeLanguage",
 "Home", new { language = "en" }, null)]
 [@Html.ActionLink("Français", "ChangeLanguage",
 "Home", new { language = "fr" }, null)]
 </div>
 <div id="menucontainer" class="ui-bar">
 <ul id="menu">
 @Html.ActionLink("Home", "Index", "Home",
 null, new Dictionary<string, object>
 {{ "data-role", "button" }}) @Html.ActionLink("About", "About", "Home",
 null, new Dictionary<string, object>
 {{ "data-role", "button" }})

 </div>
 </div>
 <div id="main" data-role="content">
 @RenderBody()
 </div>
 <div id="footer" data-role="footer">
 </div>
 </div>
</body>
</html>
Hopefully the above example looks pretty similar to you. This is
 the shared layouts’ base HTML as was created with the project template.
 To make it function for JQuery Mobile, the following things have been
 done:
	Included the JQuery Mobile CSS file

	Included the JQuery Mobile JavaScript file

	Added multiple data-role
 attributes to the existing <div> tags that contained the page,
 header, content, and footer elements, as well as several other
 classes and data-role for menu affects

	Added some JavaScript detection to swap out the CSS if the
 browser size is greater than 480 pixels, to include the default
 CSS

Note
There are several ways to accomplish the last item (e.g., use
 the @media tag in CSS to target
 screen sizes, perform phone and browser detection, and so on). Based
 on your needs you will need to determine what’s the best solution.
 Maybe your website should perform some sort of detection, or perhaps
 even web browsers should use the mobile template—it’s up to
 you.

If you were to run the application twice (once in full screen
 mode, and once on your mobile device or by simply resizing the browser
 below 480 pixels), you will see two very different websites (see Figures
 1-6 and 1-7).
[image: Default MVC template]

Figure 1-6. Default MVC template

[image: Default JQuery Mobile template]

Figure 1-7. Default JQuery Mobile template

As you can tell, there is still a lot of work to be done to make
 everything look good, but by adding a few additional data-role attributes to the default layout,
 90% of the work has been completed already. The next steps are exploring
 particular features that are of interest for your website. JQuery Mobile
 has full functionality for the following basic smartphone
 features:
	Navbars (in header or footer, with or without icons)

	Page transitions

	Dialogs

	Buttons

	Forms

	List views (that provide the typical finger scrolling on the
 mobile platform)

	Full theming support to swap out the complete
 look-and-feel

Example Navbars:
<div id="logindisplay" class="ui-bar">
 @Html.Partial("_LogOnPartial")
 @Html.ActionLink("English", "ChangeLanguage", "Home",
 new { language = "en" }, null)]
 @Html.ActionLink("Français", "ChangeLanguage", "Home",
 new { language = "fr" }, null)]
</div>
The following example will render typical smartphone-looking
 buttons, and additional links will all be added with the same
 style.
Example Page Transition:
@Html.ActionLink("My Cool Link", "SomeAction", "Home", null,
 new Dictionary<string, object>
 {{ "data-transition", "slide" }})
The following page transition will slide in the new content once
 the link has been loaded via Ajax. In our standard website, this would
 work as every other link currently does.
Example Dialog:
@Html.ActionLink("My Cool Link", "SomeAction", "Home", null,
 new Dictionary<string, object>
 {{ "data-rel", "dialog" }})
Just like the previous example, this will render a generic link
 for a web browser, but in the mobile version, the standard popup would
 be displayed.
Example Button:
<div data-role="page">
 <div data-role="header">
 @Html.ActionLink("Cancel", "SomeAction", "Home", null,
 new Dictionary<string, object>
 {{ "data-icon", "delete" }})
 <h1>Page Title</h1>
 @Html.ActionLink("Save", "SomeAction", "Home", null,
 new Dictionary<string, object>
 {{ "data-icon", "check" }})
 </div>
</div>
As you might expect because these buttons are placed within the
 header, they will be rendered in the top bar, one on the left and one on
 the right, mimicking standard header button functionality in smartphones
 today.
Example Form Item:
 <div class="editor-label">
 @Html.LabelFor(model => model.ShortName)
 </div>
 <div class="editor-field">
 @Html.EditorFor(model => model.ShortName)
 @Html.ValidationMessageFor(model => model.ShortName)
 </div>
There is no change required. Most of the built-in form
 functionality will render exactly as expected with JQuery Mobile.
Example List View:
<ul data-role="listview" data-inset="true">
 <li data-role="list-divider">Books
 @foreach (var item in Model)
 {
 @Html.ActionLink(
 item.Title, "Details", new { id = item.ID })

 }

The above example will list all of the books, with their title set
 up as a link to the details page in a standard scrollable list.
Changing Theme Example:
Currently, JQuery Mobile contains five built-in themes, lettered
 from a through e. Each of the above items can have their theme changed
 by appending a new attribute called data-theme with a
 different letter (a through e).

See Also

JQuery Mobile

1.17. Paging Through Content Without the Pages

Problem

A lot of websites today interact with a database. If your website
 receives a lot of traffic, the SQL queries to retrieve the data can be
 quite intense. More importantly because the average user clicks a link
 within 15 seconds of arriving at your website, the work to retrieve and
 generate the content might be unnecessary, especially when the content
 is “below the fold” (not visible without scrolling first). To help solve
 this issue, content will be loaded “on-demand”. Enough content will be
 loaded to make the page feel populated and as the user scrolls down to
 read it, more content will be populated behind the scenes without
 affecting the user experience.

Solution

Using Asynchronous controllers
 along with JQuery to load a specific amount of upfront content and then
 load further content on-demand when the user begins scrolling through
 the website content.

Discussion

Asynchronous controllers are
 probably underused in many MVC applications to date—most likely because
 people don’t know about them, or more importantly, don’t know when to
 use them. The following is an excerpt from the MSDN site listed in the
 See Also section:
“In applications where thread starvation might occur, you can
 configure actions to be processed asynchronously. An asynchronous
 request takes the same amount of time to process as a synchronous
 request. For example, if a request makes a network call that requires
 two seconds to complete, the request takes two seconds whether it is
 performed synchronously or asynchronously. However, during an
 asynchronous call, the server is not blocked from responding to other
 requests while it waits for the first request to complete. Therefore,
 asynchronous requests prevent request queuing when there are many
 requests that invoke long-running operations.”

In this example, using Asynchronous requests is the perfect
 solution because it will free up IIS to serve more important requests,
 such as a new user arriving at the site for the first time. Where as,
 loading on-demand content for a user is less important because most
 people won’t even notice the additional content being loaded.
In a typical social website, a user’s comments are most likely to
 contain the most activity. In a previous recipe, the ability to comment
 on a book was created. In this example, the homepage of the site will be
 updated to list the most recent comments. Enough comments will be
 displayed so that scroll bars will appear. Once the user begins
 scrolling, an Ajax request to an asynchronous controller will be made to
 retrieve additional comments.
To begin, the Home/Index view
 must be updated to display the most recent comments. To provide some
 context around the comment, basic details about the book will also be
 displayed with links to view the book. A new controller will be created
 to display the comments, so this view will simply call the render
 function of the view to be created further down.
@model IEnumerable<MvcApplication4.Models.BookComment>

@{
 ViewBag.Title = "Home Page";
}

<h2>@ViewBag.Message</h2>
<p>
 To learn more about ASP.NET MVC visit
 <a href="http://asp.net/mvc"
 title="ASP.NET MVC Website">
 http://asp.net/mvc.
</p>

<script type="text/javascript">
var lastY = 0;
var currentY = 0;
var page = 1;
var maxPages = @ViewBag.maxPages;

$(window).scroll(function () {
 if (page < maxPages) {
 currentY = $(window).scrollTop();
 if (currentY - lastY > 200 * (page - 1)) {
 lastY = currentY;
 page++;
 $.get('CommentFeed/Comments?page=' + page,
 function(data) {
 $('#comments').append(data);
 });
 }
 }
});
</script>

<div id="comments">
 <h2>Recent Comments</h2>
 @Html.Partial("../CommentFeed/Comments", Model)
</div>
In the above example, there is also some relatively complex
 JavaScript code that is executed when the window is scrolled. Several
 global JavaScript variables are defined to keep track of the current “y”
 scroll location, the last “y” scroll location, and the current page
 being retrieved. When the window’s scrollTop position minus the last scroll
 location is greater than a specific number, new book comments are
 retrieved through Ajax and appended to the list of comments. For your
 own website, you will need to adjust the number of pixels that works
 best, based on the height of the content, to ensure that new content is
 always retrieved in advance.
Next, the HomeController needs
 updating to retrieve the list of book comments. The comments are ordered
 by the created date in descending order to ensure the newest comments
 are displayed first. To prevent intense database load, the list of
 comments will be reduced to a small number. This should be adjusted on
 your website to ensure there is just enough content to cause scrollbars.
 In the example below, the comments are limited to 3. The maximum number
 of pages is also determined by dividing the total count of comments by
 3. The max pages are used to prevent further Ajax calls once the maximum
 comments have been returned.
using System;
using System.Collections.Generic;
using System.Linq;
using System.Web;
using System.Web.Mvc;
using System.Globalization;
using System.Data.Entity;
using MvcApplication4.Models;

namespace MvcApplication4.Controllers
{
 public class HomeController : Controller
 {
 private BookDBContext db = new BookDBContext();

 public ActionResult Index()
 {
 ViewBag.Message = "Welcome to ASP.NET MVC!";

 // Get our recent comments
 var bookcomments = db.BookComments.Include(
 b => b.Book).OrderByDescending(b => b.Created).
 Take(3);
 var count = db.BookComments.Count();
 ViewBag.maxPages = count / 3 + 1;

 return View(bookcomments);
 }

 ...
 }
}
This same functionality needs to be duplicated into a new
 asynchronous controller. With the Controllers folder selected, right-click and
 select Add→Controller. The new controller will be
 called CommentFeedController. This
 controller doesn’t need the scaffolded functions, so under the
 Template drop-down, change the selection to
 Empty controller and press
 Add.
This controller will look slightly different than a typical
 controller. With asynchronous controllers, one view is split into two
 functions. The first function performs the asynchronous request (e.g.,
 retrieve the comments). The second function receives the results of the
 asynchronous call and returns or displays the results.
Note
In the following example, a partial view is rendered. In some
 applications, it might be beneficial to reduce the network traffic,
 return a JSON result, and let the JavaScript code deal with the
 display. However, to simplify this example and focus on asynchronous
 controllers, the former will be used and a partial view is
 returned.

using System;
using System.Collections.Generic;
using System.Linq;
using System.Web;
using System.Web.Mvc;
using MvcApplication4.Models;
using System.Data.Entity;

namespace MvcApplication4.Controllers
{
 public class CommentFeedController : AsyncController
 {
 private BookDBContext db = new BookDBContext();

 public void CommentsAsync(int page)
 {
 AsyncManager.OutstandingOperations.Increment();
 AsyncManager.Sync(() =>
 {
 var bookcomments = db.BookComments.Include(
 b => b.Book).OrderByDescending(b =>
 b.Created).Skip(page * 3).Take(3);
 AsyncManager.Parameters["bookcomments"] =
 bookcomments;
 AsyncManager.OutstandingOperations.Decrement();
 });
 }

 public ActionResult CommentsCompleted(
 IEnumerable<BookComment> bookcomments)
 {
 return PartialView(bookcomments);
 }

 }
}
The first function, CommentsAsync, receives the current page
 passed in from JavaScript and uses this value to retrieve the next three
 comments. The first thing that happens is that the outstanding
 operations are incremented. Then through the Sync method, the comments are retrieved and
 passed as a variable to the second function. The final thing that
 happens is that the outstanding operations is decremented. It’s
 important that the increment and decrement counter match; otherwise, the
 sync manager will cancel the request after a certain period of time when
 they do not match, to prevent never-ending requests.
The second function receives the book comments and returns a
 partial view. This is the same partial view that is called from the
 Home/Index view. The final step in
 this process is to create the partial view. Begin by right-clicking on
 the Views folder and select
 Add→New Folder. This folder should be called CommentFeed to match the controller name. Then
 with this folder selected, right-click and select
 Add→View. The view will be called Comments—be sure to check the
 Partial View before adding it.
@model IEnumerable<MvcApplication4.Models.BookComment>

@foreach (var item in Model) {
 <h3><a href="@Url.Action("Details", "Books", new {
 ID=item.Book.ID })">
 @Html.DisplayFor(modelItem => item.Book.Title)
 </h3>
 <h4>Comment Posted: @Html.DisplayFor(
 modelItem => item.Created)</h4>
 <p>@MvcHtmlString.Create(Html.Encode(item.Comment).Replace(
 Environment.NewLine, "
"))</p>
}
The following view loops through the comments and first displays
 the title of the book and links to the details page of it, then the date
 the comment was created, and finally the actual comment itself. Because
 comments might contain linebreaks, each new line is replaced with a

 tag to match the spacing
 entered by the comment.

See Also

Asynchronous
 controllers

1.18. Displaying Search Results While Typing

Problem

When you are searching for something specific, it can be difficult
 (or take a long time) to find it while you are trying to type the exact
 wording. By displaying results while the user is typing, searching for
 something specific becomes much easier.

Solution

Updating the existing search on the book listing page to begin
 displaying results immediately as the user types using
 JQuery’s Autocomplete plugin.

Discussion

The Autocomplete plugin is not automatically included with MVC
 projects like the base JQuery library, so the first thing that needs to
 be done is to download the plugin by visiting http://jquery.com/. Two main files are required: the
 JavaScript file and the CSS file. Place the newly downloaded JavaScript
 file in the Scripts folder of your
 MVC application. The CSS file can be added to your Content directory.
This recipe will also introduce the use of rendering sections in a
 view. In the shared layout view two JavaScript files and one CSS file
 are automatically included on each page request. These are for the Ajax
 and unobtrusive Ajax and the sites main CSS file. The more content that
 is loaded each time, the slower the page view. So rather than
 automatically including JavaScript and CSS on every page when it’s not
 needed a new RenderSection() will be
 added in the shared layout. This will allow specific views to add
 additional JavaScript or CSS files inside the <head> tags, but not require every page
 to add them.
Below is an updated Views/Shared/_Layout.cshtml with the new
 RenderSection():
<!DOCTYPE html>
<html>
<head>
 <title>@ViewBag.Title</title>
 <link href="@Url.Content("~/Content/Site.css")"
 rel="stylesheet" type="text/css" />
 <script src="@Url.Content("~/Scripts/jquery-1.5.1.min.js")"
 type="text/javascript"></script>
 @RenderSection("JavaScriptAndCSS", required: false)
</head>
<body>
 <div class="page">
 <div id="header">
 <div id="title">
 <h1>My MVC Application</h1>
 </div>
 <div id="logindisplay">
 @Html.Partial("_LogOnPartial")
 [@Html.ActionLink("English", "ChangeLanguage",
 "Home", new { language = "en" }, null)]
 [@Html.ActionLink("Français", "ChangeLanguage",
 "Home", new { language = "fr" }, null)]
 </div>
 <div id="menucontainer">
 <ul id="menu">
 @Html.ActionLink("Home",
 "Index", "Home")
 @Html.ActionLink("About",
 "About", "Home")

 </div>
 </div> <div id="main">
 @RenderBody()
 </div>
 <div id="footer">
 </div>
 </div>
</body>
</html>
The main CSS file and core JQuery files have been left in because
 the CSS is required on every page and the JQuery is required by a vast
 majority of the pages. However, the new JQuery files and the previously
 added unobtrusive Ajax file are not required on every page.
Now there are two ways to use the autocomplete plugin:
	Setting the data to search in JavaScript

	Retrieving the results via Ajax when the user types

In my experience with this plugin, I’ve found that the
 autocomplete is much faster with solution 1, because it doesn’t need to
 request the data each time from the database. However, there is a limit
 to the use of this solution: only so many characters can be passed into
 the function, and also, rendering a large amount of JavaScript can cause
 the page to load slowly on the user’s computer. After some
 trial-and-error, I’ve determined the magic number is around 40,000
 results. If the number of results exceeds this, it’s best to use option
 2; otherwise, always stick to option 1 because the search is
 instantaneous rather than having a slight delay.
In this example, the books will be searched and we don’t have more
 than 40,000, so option one will be used. The BooksController must now be updated to set a
 ViewBag variable with the list of
 book titles. The autocomplete function requires a JavaScript array of
 items, so the books will be separated with a pipe (|). Then in the
 view, the books will be converted to an array with the JavaScript
 split() function. When the user is
 finished typing in their result, they should have selected an exact
 match title, so this function will be updated if only 1 book is returned
 and the user has performed a search that will automatically redirect
 them to the book details page.
using System;
using System.Collections.Generic;
using System.Data;
using System.Data.Entity;
using System.Linq;
using System.Linq.Dynamic;
using System.Web;
using System.Web.Mvc;
using MvcApplication4.Models;
using MvcApplication4.Utils;
using PagedList;

namespace MvcApplication4.Controllers
{
 public class BooksController : Controller
 {
 private BookDBContext db = new BookDBContext();

 //
 // GET: /Books/
 public ActionResult Index(string sortOrder,
 string filter, string Keyword, int page = 1)
 {
 #region ViewBag Resources
 ...
 #endregion

 #region ViewBag Sort Params
 ...
 #endregion

 var books = from b in db.Books select b;

 #region Keyword Search
 if (!String.IsNullOrEmpty(Keyword))
 {
 books = books.Where(b => b.Title.ToUpper().
 Contains(Keyword.ToUpper()) ||
 b.Author.ToUpper().Contains(
 Keyword.ToUpper()));

 // Should we redirect because of only one result?
 if (books.Count() == 1)
 {
 Book book = books.First();
 return RedirectToAction("Details",
 new { id = book.ID });
 }
 }
 ViewBag.CurrentKeyword =
 String.IsNullOrEmpty(Keyword) ? "" : Keyword;
 #endregion

 #region Filter switch
 ...
 #endregion

 books = books.OrderBy(sortOrder);

 int maxRecords = 1;
 int currentPage = page - 1;

 // Get all book titles
 ViewBag.BookTitles = FormatBooksForAutocomplete();

 return View(books.ToPagedList(currentPage,
 maxRecords));
 }

 private string FormatBooksForAutocomplete()
 {
 string bookTitles = String.Empty;
 var books = from b in db.Books select b;

 foreach (Book book in books)
 {
 if (bookTitles.Length > 0)
 {
 bookTitles += "|";
 }

 bookTitles += book.Title;
 }

 return bookTitles;
 }

 ...
 }
}
Finally the Books/Index view
 needs to be updated to initialize the JQuery autocomplete. The first
 thing to do is to use the @section
 tag to include the necessary JavaScript and CSS files. Next, the
 previously created search textbox is updated to set an id of KeywordSearch. Finally, the JavaScript code is
 added at the bottom of the view to set up the autocomplete function on
 the search textbox. This JavaScript is intentionally added at the bottom
 of the view to ensure that the view is fully rendered to the user,
 because “blocking” the load with the JavaScript processing might require
 a bit of work on the user’s computer to set up the data, depending on
 the number of results.
@model PagedList.IPagedList<MvcApplication4.Models.Book>

@if (IsAjax)
{
 Layout = null;
}

@section JavascriptAndCSS {
<link rel="stylesheet" href="
 @Url.Content("~/Content/jquery.autocomplete.css")"
 type="text/css" />
<script src="@Url.Content(
 "~/Scripts/jquery.unobtrusive-ajax.min.js")"
 type="text/javascript"></script>
<script type="text/javascript" src="@Url.Content(
 "~/Scripts/jquery.autocomplete.js")"></script>
}

...

@using (Html.BeginForm())
{
 @:Search: @Html.TextBox("Keyword",
 (string)ViewBag.CurrentKeyword,
 new { id = "KeywordSearch" })
 <input type="submit" value="Search" />
}

...

<script type="text/javascript">
 $(document).ready(function () {
 var data = "@ViewBag.BookTitles".split("|");
 $("#KeywordSearch").autocomplete(data);
 });
</script>
To implement option 2, an Ajax search, instead of passing the
 array of data to the autocomplete function, you would pass a URL. The
 URL would then need to accept a query string variable, q . This contains the user-entered search
 value. This would then be used to perform a search on the books that
 contain a partial match and would return them as a string separated by a
 delimiter. The JQuery documentation contains more complete examples of
 this, as well as other examples to update the output of the results
 (perhaps to include a thumbnail of the book cover).

See Also

Jquery.Autocomplete,
 RenderSection

1.19. Routing Users to a Specific Controller and Action

Problem

In today’s heavily fought battles for search engine supremacy,
 it’s quite difficult to win the race with a website address that looks
 like:
http://www.example.com/books/details?id=4.

 Using routes, the website can look like:
http://www.example.com/20-recipes-for-mvc3

 which provides much more context, both to the user and the search
 engine.

Solution

Use the MapRoute function from
 the RouteCollectionExtensions class
 to generate more friendly names to display content instead of numerical
 IDs.

Discussion

Routing is set up in MVC through the Web.config and the Global.asax.cs file. In the Web.config, the System.Web.Routing assembly is included and
 then used in the Global.asax.cs file
 to create a default routing mechanism for all controllers and actions in
 them. Hence when a BooksController is
 added, it can be accessed via the /Books URL without an extension, like
 in ASP.NET websites.
The following recipe will demonstrate several different useful
 techniques for setting up routes. The first route will allow the website
 to link directly to the title of the book. For example, if there is a
 book called 20 Recipes for Programming MVC 3, it
 could be accessed directly by visiting http://localhost/20
 Recipes for Programming MVC 3, whereas the current solution
 would require a more complicated URL like
 http://localhost/Books/Details?id=1.
To begin creating this route, open the Global.asax.cs file in the MVC project. A
 default route is created in the
 RegisterRoutes() function which is
 called from the Application_Start() function when the
 website first loads. The example below contains an updated RegisterRoutes function with the new route
 that is added with the MapRoute
 function:
using System;
using System.Collections.Generic;
using System.Linq;
using System.Web;
using System.Web.Mvc;
using System.Web.Routing;
using MvcApplication4.Models;
using System.Data.Entity;
using System.Globalization;
using System.Threading;

namespace MvcApplication4
{

 public class MvcApplication : System.Web.HttpApplication
 {
 public static void RegisterGlobalFilters(
 GlobalFilterCollection filters)
 {
 filters.Add(new HandleErrorAttribute());
 }

 public static void RegisterRoutes(RouteCollection routes)
 {
 routes.IgnoreRoute("{resource}.axd/{*pathInfo}");

 routes.MapRoute(
 "BookName", // Route name
 "{Keyword}", // URL with parameters new { controller = "Books", action = "Index",
 id = UrlParameter.Optional },
 new { Keyword = "\\w+" });

 routes.MapRoute(
 "Default", // Route name
 "{controller}/{action}/{id}",
 // URL with parameters
 new { controller = "Home", action = "Index",
 id = UrlParameter.Optional }
);

 }

 protected void Application_Start()
 {
 Database.SetInitializer<BookDBContext>(
 new BookInitializer());

 AreaRegistration.RegisterAllAreas();

 RegisterGlobalFilters(GlobalFilters.Filters);
 RegisterRoutes(RouteTable.Routes);
 }

 protected void Application_AcquireRequestState(
 object sender, EventArgs e)
 {
 if (HttpContext.Current.Session != null)
 {
 CultureInfo ci =
 (CultureInfo)this.Session["CurrentLanguage"];
 if (ci == null)
 {
 ci = new CultureInfo("en");
 this.Session["CurrentLanguage"] = ci;
 }

 Thread.CurrentThread.CurrentUICulture = ci;
 Thread.CurrentThread.CurrentCulture =
 CultureInfo.CreateSpecificCulture(ci.Name);
 }
 }
 }
}
In the above example, the MapRoute function accepts four
 parameters:
	The route name; in this case BookName.

	The URL with any parameters; in this case, {Keyword}, which is a variable that will be
 used later.

	The parameter defaults for the controller, action, and any
 additional variables; in this case, the default controller is
 Books and the default action is
 Index.

	The constraints (e.g., variables) for the URL; in this case,
 the previously mentioned Keyword
 variable is passed to the index action in the BooksController.

The above route will take advantage of the previous change to the
 BooksController when a keyword is
 being searched: that if only one result is returned, the user will be
 redirected to the details page. This provides the user with the ability
 to enter a book title or keyword in the URL after the domain name. If
 only one result is returned, the user will see that book; otherwise, the
 user will see a search result with their keyword.
In the next example, a new route will be created that is a bit
 more complicated. It will extend the RouteBase class, allowing for a much more
 complicated route. Instead of searching for the book by the title at the
 end of the domain name, a subdomain will be used instead. For example,
 http://mvc3book.localhost/ will return the book
 details for the aforementioned book 20 Recipes for Programming
 MVC 3.
To allow for this, the Book
 model must be updated to include a new parameter called ShortName. This parameter will be used as the
 subdomain, and allows for the books to be searched for through the
 to-be-created class that extends the RouteBase class.
using System;
using System.Collections.Generic;
using System.Linq;
using System.Web;
using System.ComponentModel.DataAnnotations;
using MvcApplication4.Validations;

namespace MvcApplication4.Models
{
 public class Book
 {
 public int ID { get; set; }

 [Required]
 public string ShortName { get; set; }

 [Required]
 [Display(Name = "TitleDisplay", ResourceType =
 typeof(Resources.Resource1))]
 public string Title { get; set; }

 [Display(Name = "IsbnDisplay", ResourceType =
 typeof(Resources.Resource1))]
 [Required]
 [IsbnValidation]
 public string Isbn { get; set; }

 [Display(Name = "SummaryDisplay", ResourceType =
 typeof(Resources.Resource1))]
 [Required]
 public string Summary { get; set; }

 [Display(Name = "AuthorDisplay", ResourceType =
 typeof(Resources.Resource1))]
 [Required]
 public string Author { get; set; }

 [Display(Name = "ThumbnailDisplay", ResourceType =
 typeof(Resources.Resource1))]
 public string Thumbnail { get; set; }

 [Display(Name = "PriceDisplay", ResourceType =
 typeof(Resources.Resource1))]
 [Range(1, 100)]
 public double Price { get; set; }

 [Display(Name = "PublishedDisplay", ResourceType =
 typeof(Resources.Resource1))]
 [DataType(DataType.Date)]
 [Required]
 public DateTime Published { get; set; }
 }

}
Now a new class must be created that will contain the logic behind
 the new route. With the Utils folder
 selected, right-click and select Add→Class. This
 new class will be called BookDomainRoute.cs. The following class will
 retrieve the domain name from the Request.Headers for the current HttpContext. The domain name will then be
 split into an array by the “.” operator. A bit of error checking is
 performed to ensure that we have a subdomain that is not
 www. Then the first piece of the subdomain, e.g.,
 the ShortName, is used to perform a
 search on the books table to find the particular book. If the book is
 found, a new object of the class RouteData is created that sets the controller
 to be Books, the action to be
 Details, and finally the ID to be the
 ID of the book. If no book is found, the homepage will be displayed. In
 the example below, it could easily be altered to direct the user to an
 error page—or even to the Books/Index page with a keyword search (as in
 the previous example).
using System;
using System.Collections.Generic;
using System.Linq;
using System.Web;
using System.Web.Routing;
using System.Web.Mvc;
using MvcApplication4.Models;

namespace MvcApplication4.Utils
{
 public class BookDomainRoute : RouteBase
 {
 private BookDBContext db = new BookDBContext();

 public override RouteData GetRouteData(
 HttpContextBase httpContext)
 {
 // Get the domain name
 var url = httpContext.Request.Url.Authority;
 // Split into array of parts
 var pieces = url.Split('.');

 // Ensure there is a subdomain and it's not www
 if (pieces.Length < 2 && pieces[0] != "www")
 {
 return null;
 }

 string ShortName = pieces[0];

 // Find the book by ShortName
 var books = from b in db.Books select b;
 books = books.Where(b =>
 b.ShortName.ToUpper().Contains(ShortName.ToUpper())
);

 // Check to make sure a book was found
 if (books.Count() == 0)
 {
 return null;
 }

 // Get the first result
 Book book = books.First();

 // Set the route data
 RouteData routeData = new RouteData(this,
 new MvcRouteHandler());
 routeData.Values.Add("controller", "Books");
 routeData.Values.Add("action", "Details");
 routeData.Values.Add("id", book.ID);

 return routeData;
 }

 public override VirtualPathData GetVirtualPath(
 RequestContext requestContext,
 RouteValueDictionary values)
 {
 return null;
 }
 }
}
Finally the Global.asax.cs file
 must be updated again to include the newly created route. A using
 statement is also added to the Utils
 directory so the new routing class can be found.
using System;
using System.Collections.Generic;
using System.Linq;
using System.Web;
using System.Web.Mvc;
using System.Web.Routing;
using MvcApplication4.Models;
using System.Data.Entity;
using System.Globalization;
using System.Threading;
using MvcApplication4.Utils;

namespace MvcApplication4
{

 public class MvcApplication : System.Web.HttpApplication
 {
 public static void RegisterGlobalFilters(
 GlobalFilterCollection filters)
 {
 filters.Add(new HandleErrorAttribute());
 }

 public static void RegisterRoutes(RouteCollection routes)
 {
 routes.IgnoreRoute("{resource}.axd/{*pathInfo}");

 routes.Add(new BookDomainRoute());

 routes.MapRoute(
 "BookName", // Route name
 "{Keyword}", // URL with parameters
 new { controller = "Books", action = "Index",
 id = UrlParameter.Optional },
 new { Keyword = "\\w+" });

 routes.MapRoute(
 "Default", // Route name
 "{controller}/{action}/{id}",
 // URL with parameters
 new { controller = "Home", action = "Index",
 id = UrlParameter.Optional }
);

 }

 protected void Application_Start()
 {
 Database.SetInitializer<BookDBContext>(
 new BookInitializer());

 AreaRegistration.RegisterAllAreas();

 RegisterGlobalFilters(GlobalFilters.Filters);
 RegisterRoutes(RouteTable.Routes);
 }

 protected void Application_AcquireRequestState(
 object sender, EventArgs e)
 {
 if (HttpContext.Current.Session != null)
 {
 CultureInfo ci =
 (CultureInfo)this.Session["CurrentLanguage"];
 if (ci == null)
 {
 ci = new CultureInfo("en");
 this.Session["CurrentLanguage"] = ci;
 }

 Thread.CurrentThread.CurrentUICulture = ci;
 Thread.CurrentThread.CurrentCulture =
 CultureInfo.CreateSpecificCulture(ci.Name);
 }
 }
 }
}
The following examples contain great starts to good uses for
 routes. Both can be easily updated to perform other routing—for example,
 subdomains could be used to display a user’s specific profile page, or
 the previously implemented multilingual recipe could be updated to use a
 routing class to allow URLs like en.example.com or fr.example.com to set
 the current language culture.

See Also

RouteCollectionExtension,
 RouteData

1.20. Caching Results for Faster Page Loads

Problem

As your website grows, both in popularity as well as dynamic
 content, these two factors begin to slow down the average load time.
 Many users causes a lot of web server and database requests. A lot of
 data requires strong database processing power to support it. To prevent
 spending a lot of money of simply adding more web servers, smarter
 programming to reduce unnecessary database or dynamic processing
 requests can significantly increase the overall speed of your web
 application.

Solution

Implement the OutputCacheAttribute to cache data that
 doesn’t change often or only changes with specific actions.

Discussion

Caching in MVC 3 is extremely easy. It’s as simple as adding the
 following attribute above an action in a controller:
[OutputCache (Duration=600)]
This will cache the results of the view automatically for 600
 seconds (or 10 minutes) and be shared for each user visiting this page.
 That means if you have 1,000 visitors requesting the same page in a
 matter of mere moments, caching the results can save on thousands of
 requests to the database, and lower the processing time required by IIS
 by simply loading an already fully processed view.
The output cache attribute looks quite simple, but when you start
 looking under the hood, it can be as complicated as under the hood of a
 car—unless you are a mechanic. This attribute allows you to define a lot
 about how to cache, from the duration to the location, to even adding
 SQL dependency. This will be explored later in this recipe.
The duration of the caching is quite simple: you tell MVC how many
 seconds a view should be cached for. The location is a little bit more
 complicated; this can be the client’s browser, the server, or a
 combination of them. A good way to determine where the caching should be
 done is to analyze the data being cached. If the data being cached is
 shared across multiple users, it makes sense to cache this on the
 server. However, if it is personal data, e.g., a customized homepage, it
 would make sense to cache this locally on the user’s browser. While
 caching is great, it also has its limitations. Typically the main
 limitation is memory; not everything can be cached on the server.
The most interesting option however, is the SQL dependency. The
 OutputCache allows data to be cached
 until it actually changes in the database. This is an extremely useful
 feature. Take for example, books: new books would not always be added
 daily, so the duration might be set to an extending caching time (24
 hours, perhaps). However, what if a new book comes in before the cache
 expires, or if it was a slow week and no new books were added for
 several days? In the first situation, a new book wouldn’t appear right
 away, which wouldn’t make users too happy. In the second example,
 unnecessary requests are being done to the server because no new books
 have been added. By enabling SQL dependency, the caching will
 automatically be reset as soon as the books table changes; exactly the
 effect we want.
Note
This is a very nice feature; in other programming languages when
 you need to manually control the cache, you would be required to
 invalidate the cache yourself as the data changes. Trust me on this
 one—it can be quite easy to miss a spot or two, preventing the cache
 from being cleared properly.

In the following example, the cache will be set up on the book
 listing page. By default, if you do not specify any values in the
 VaryByParam field, MVC 3 will
 automatically create one cache entry per unique variable combination.
 This is a pretty nice feature; however, in the book listings example, a
 keyword search field is accepted as one of the parameters. Since
 hundreds, if not thousands, of different keyword combinations could be
 entered, this variable should not be cached (see above warning about
 memory). Instead, the params will be defined to exclude this variable.
 Below is an updated BooksController
 to enable caching on this page:
using System;
using System.Collections.Generic;
using System.Data;
using System.Data.Entity;
using System.Linq;
using System.Linq.Dynamic;
using System.Web;
using System.Web.Mvc;
using MvcApplication4.Models;
using MvcApplication4.Utils;
using PagedList;

namespace MvcApplication4.Controllers
{
 public class BooksController : Controller
 {
 private BookDBContext db = new BookDBContext();

 //
 // GET: /Books/
 [OutputCache(Duration=600, VaryByParam=
 "sortOrder;filter;page")]
 public ViewResult Index(string sortOrder,
 string filter, string Keyword, int page = 1)
 {
 ...

 return View(books.ToPagedList(currentPage,
 maxRecords));
 }

 ...

 }
}
This code only will serve a pretty good caching solution and
 immediately reduce the server load. This example will now be extended to
 include SQL dependency, as it requires a bit of setup work to begin
 using it. To begin, the Web.config
 file needs updating. Firstly, a database connection must be defined; and
 secondly, a caching section must be defined for the SQL dependency as
 follows:
<?xml version="1.0"?>
<configuration>
 <connectionStrings>
 <add name="ApplicationServices" connectionString=
 "data source=.\SQLEXPRESS;Integrated Security=SSPI;
 AttachDBFilename=|DataDirectory|aspnetdb.mdf;
 User Instance=true" providerName="System.Data.SqlClient"
 />
 <add name="BooksDBContext" connectionString=
 "Server=.\SQLEXPRESS;Database=
 MvcApplication4.Models.BookDBContext;
 Trusted_Connection=true" providerName=
 "System.Data.SqlClient" />
 </connectionStrings>

 ...

 <system.web>
 <caching>
 <sqlCacheDependency enabled="true" pollTime="2000">
 <databases>
 <add name = "MvcApplication4.Models.BookDBContext"
 connectionStringName = "BooksDBContext"/>
 </databases>
 </sqlCacheDependency>
 </caching>
 ...
 </system.web>

 ...
</configuration>
In the above example, the pollTime variable is
 set to 2000 milliseconds, meaning that every 2 seconds, the cache
 database will be queried for changes. This should be altered as required
 for your needs.
Now the Global.asax.cs needs to
 be updated. In the Application_Start
 function, the SQL cache dependency must be set up, and each table that
 requires listening for updates must be set
 up with the EnableTableForNotifications function of the
 SqlCacheDependencyAdmin
 class.
using System;
using System.Collections.Generic;
using System.Linq;
using System.Web;
using System.Web.Mvc;
using System.Web.Routing;
using MvcApplication4.Models;
using System.Data.Entity;
using System.Globalization;
using System.Threading;
using MvcApplication4.Utils;

namespace MvcApplication4
{

 public class MvcApplication : System.Web.HttpApplication
 {
 ...

 protected void Application_Start()
 {
 Database.SetInitializer<BookDBContext>(
 new BookInitializer());

 AreaRegistration.RegisterAllAreas();

 RegisterGlobalFilters(GlobalFilters.Filters);
 RegisterRoutes(RouteTable.Routes);

 String connectionString =
System.Configuration.ConfigurationManager.ConnectionStrings
["BooksDBContext"].ConnectionString;
 System.Web.Caching.SqlCacheDependencyAdmin.
EnableNotifications(connectionString);
 System.Web.Caching.SqlCacheDependencyAdmin.
EnableTableForNotifications(connectionString, "books");
 }

 ...
 }
}
Next, a command line prompt is required to perform several actions
 to complete the SQL notifications. In Windows, perform the following
 steps:
Press Start -> Run
Type cmd and then press Enter
cd %windir%\Microsoft.NET\Framework\v4.0.30319\
aspnet_regsql.exe -S .\SQLEXPRESS -ed
 -d MvcApplication4.Models.BookDBContext -et -t books -E
Be sure to replace the server, database, and table name with your
 information. Also, if your database contains a username and password,
 you will need to add additional input parameters for them
 (-U and -P). Once the last command
 is run, two success messages should be displayed: one indicating
 successful enabling of caching on the database, and the second
 indicating successful enabling of caching on the specified table.
Finally, the BooksController
 requires a slight change to enable the SQL dependency. Also, since the
 application will be notified of changes, the short duration time that
 was previously set will be extended to use the max value for an Int32 value.
using System;
using System.Collections.Generic;
using System.Data;
using System.Data.Entity;
using System.Linq;
using System.Linq.Dynamic;
using System.Web;
using System.Web.Mvc;
using MvcApplication4.Models;
using MvcApplication4.Utils;
using PagedList;

namespace MvcApplication4.Controllers
{
 public class BooksController : Controller
 {
 private BookDBContext db = new BookDBContext();

 //
 // GET: /Books/
 [OutputCache(Duration=Int32.MaxValue, SqlDependency =
 "MvcApplication4.Models.BookDBContext:books",
 VaryByParam="sortOrder,filter,page")]
 public ViewResult Index(string sortOrder, string filter,
 string Keyword, int page = 1)
 {
 ...

 return View(books.ToPagedList(currentPage,
 maxRecords));
 }

 ...

 }
}
In previous versions of MVC, partial caching was not supported,
 meaning that only an entire action result could be cached. MVC 3 now
 supports partial caching. To enable this, you would create a child
 action as you did in Recipe 1.14, Submitting a Form
 with Ajax. The two actions in the BookCommentsController only return a
 PartialView, and both of these child actions could
 be cached without the need to cache the parent action. This is another
 great way to segregate your code and cache only the portions that don’t
 change frequently.

See Also

OutputCacheAttribute,
 SqlCacheDependencyAdmin

1.21. Going Further

In this book I have tried to provide you with many useful recipes
 that will help you in your day-to-day life to more easily accomplish
 recurring tasks or enhance a user’s overall experience on a website. By
 expanding upon the recipes involving Ajax, Mobile, jQuery, and caching and
 expanding these examples further, your websites should be able to take on
 a whole new user experience, with lightning-fast page results and
 extremely slick, responsive user interfaces.
Every day, developers are adding new library packages to the NuGet
 library that can further enhance the user experience or further reduce
 your development time. By leveraging these libraries, you will have an
 unlimited resource of features to enhance both your website and
 development arsenal.

About the Author
Jamie has been developing websites personally and professionally for the past 15 years. During this time he's helped engineer dozens of small and large projects using MVC .NET as the framework. Jamie is well versed in many web technologies as well as several software development languages.

Colophon

OEBPS/oreilly_large.gif
O’REILLY

OEBPS/httpatomoreillycomsourceoreillyimages915848.png
Add View

View name:

ForgotPassword

View engine:

Razor (CSHTML) -

Create a strongly-typed view

Model class:

[ForgotPasswordModel (MvcApplication4.Moc -

Scaffold template:

[[] Create as a partial view

Reference script libraries

Use a layout or master page:

(Leave empty if it is set in a Razor _viewstart file)

ContentPlaceHolder ID:

MainContent I

OEBPS/httpatomoreillycomsourceoreillyimages915842.png
Add Controller

Controller name:

BooksController

Scaffolding options

Template:

Controller with readwite actions and views, using Entity Framework.

Model class:

Book (MvcApplication4 Models)

Data context class:

BookDBContext (MvcApplication4 Models)

Views:

[Razor (csHTML)

OEBPS/httpatomoreillycomsourceoreillyimages915846.png
©® MvcApplicationd - Microsoft Visual Studio (Administrator) W (=6 e
Eile Edit View Project Build Debug Team Data Iools Architecture Test Apalyze Window Help

Dra-Sdd s 2B - -8-0] D:bug -|[Any cry ~| | | Register Rl = e P
1 Intall Web Components - i Publish: | Create Publish Settings ~| 4 f <

Resourcelresx %

- | Access Modifier:[public _+ Lleale
3 Solution McApplicationd’ (1 project)
2 Mvehpplicationd

89 Strings -) Add Resource = X Remove Resource

Name ~vae Comment
4 Propertes
AutorDilay uthor < Rereces
» | isonDisplay 5o iy
piceDisplay price S comen
PubishedDisplay published = Contellers
SummanyDislay Summary 5 Models
Thumbnaiisplay Thumbnail 4 & Resources
TitleDisplay Title + 3 ResourcelLresx
3 %) Resourcel Designer.cs
@ saips
= uis
= vaidations
o Views
4] Global.asax
13 packages.config
3 Web.config
|© orrors | 4 0 warmings ||
Description Fie Line Coumn_project
% evor st |3 B 3 solution Bxporer

OEBPS/httpatomoreillycomsourceoreillyimages915854.png
@ _Mobile - Mozilla Firefox:
File Edit View History Bookmarl
| O _Mobile

€ L httpy//localhost

My MVC Application

Log On Eng Frangai
[[[]

Welcome to ASP.NET MVC!

To learn more about ASPNET MVC visit

Recent Comments

Comment Posted: 8/1/2011 8:33:25 PM

test

e e ——— N)

OEBPS/httpatomoreillycomsourceoreillyimages915850.png
Add Library Package

Installed packa

o e]

2 PagedList Created by: Troy Goode

Al | PagedList makes it easier for Net developers to write pag Version: 3.1.00

NuGet offcal package source code. It allows you to take any IEnumerable(T) and by specif. eaie 100

Search Results (0 Votes)

PagedList.Mvc
‘Asp.Net MVC HtmiHelper method for View License Terms

More Information
‘generating paging control for use with Pag... Report Abuse

Updates

Recent package:

Adds an implementation of PagedList that uses AutoMapper generating paging control for use with
to emit ViewModels PagedList library.

Dependencies:
Pagedlist (2 13)

Each item above may have sub-dependencies
subject to additional license agreements.

MvcPaging
A Paging library for ASPNET MVC.

PagedListExt
Simple paged list implementation for ASP.NET MVC3 (razor).
In last release (0.27) AjaxPagerForPagedList added and so.

by.
)
-e AutoMapperPagedList ‘Asp.Net MVC HtmiHelper method for

I Each package is licensed to you by its

|| owner. Microsoft is not responsible

for, nor does it grant any licenses to,

third-party packages. 1

OEBPS/httpatomoreillycomsourceoreillyimages915852.png
@ _Moble -

Mozill irefox i

Eile dit View History Bookmarks Tools Help Related Links -

{0 _Mobile

€)% [nttpriocalnosts4se/Home/

My MVC Application

Welcome to ASP.NET MVC!
Tolearm more about ASP.NET MVC visit http://asp.net/mvc.
Recent Comments

test
Comment Posted: 8/1/2011 8:33:25 PM
test
test
Comment Posted: 8/1/2011 8:30:02 PM

test

test

Comment Posted: 8/1/2011 8:29:09 PM

test

[Log On] [Englsh] [Franc

OEBPS/httpatomoreillycomsourceoreillyimages915837.jpg
Smarter, Faster Web Development

20 Recipes for

O’REILLY*® Jamie Munro

OEBPS/httpatomoreillycomsourceoreillyimages915844.png
9@ MvcApplicationd - Microsoft Visual Studio (Administrator) - o | (5 S
Eile Edit View Project Build Debug Team Data Jools Architecture Test Apalyze Window Help

G-l G | % B9 - - E-0] b [pebvg -|[anycru ~| |8 | HappystugioTeaser FlRFERa R
7w R A | [0 %) 3 o 4 &1 3 () < | @ Install Web Components. § Publish: | Create Publish Settings = <3 <1 =i 5| *p % %,

BooksControllercs X

% MycApplicationd Controllers BooksController HEXD Jalsale
T using System; F[3 solution Mucapplicationd’ (1 project)
2 | using System.Collections.Generic; || + @ Wueapplications
5 |using Systen.bate; 4 Propertes
4 | using System.Data.Entity; 3 References
5 using System.Ling; | 3 App_Data
6 |using Systen.teb; 2 Content
7 | using System.Web.Mvc; 4 | Controllers.
8 |using MvcApplicationd.Models; #) AccountController.cs
9 9 BooksControllercs
10 =-namespace MvcApplicationd.Controllers @) HomeController.cs
u ¢ + @ Models
123 public class BooksController : Controller @ Acconiodelscs
= { @ Bookes
u private BookDBContext db = new BookDBContext(); S
P
5, .
z 11 GET: [Books/ -
| - 0 Createcshumi
;: ?ubhc ViewResult Index() € Delete.cshtml
2 return View(db.Books. ToList()); S\ Detaks il
2 ¥ - 1 Editcshtm|
¢ 5 2 Indexcstii
3 Home
; 2 shared
<]1#> Run - 02 Debug - 41 & [# - s 3 {) ViewsStartcshim!
5 Webconfig
& Globalasax
Resut TestNome Project rror Message 3 packagesconfig
5 Webconfig

Test Resuls 3 souton Bplorer

