

Programming ASP.NET MVC 4

Jess Chadwick, Todd Snyder, and Hrusikesh Panda

Beijing • Cambridge • Farnham • Köln • Sebastopol • Tokyo

D
ow

n
lo

a
d
 f
ro

m
 W

o
w

!
e
B
o
o
k

<
w

w
w

.w
o
w

e
b
o
o
k.

co
m

>

Programming ASP.NET MVC 4
by Jess Chadwick, Todd Snyder, and Hrusikesh Panda

Copyright © 2012 Jess Chadwick, Todd Synder, Hrusikesh Panda. All rights reserved.
Printed in the United States of America.

Published by O’Reilly Media, Inc., 1005 Gravenstein Highway North, Sebastopol, CA 95472.

O’Reilly books may be purchased for educational, business, or sales promotional use. Online editions
are also available for most titles (http://my.safaribooksonline.com). For more information, contact our
corporate/institutional sales department: 800-998-9938 or corporate@oreilly.com.

Editor: Rachel Roumeliotis
Production Editor: Rachel Steely
Copyeditor: Rachel Head
Proofreader: Leslie Graham, nSight

Indexer: Lucie Haskins
Cover Designer: Karen Montgomery
Interior Designer: David Futato
Illustrators: Robert Romano and Rebecca Demarest

October 2012: First Edition.

Revision History for the First Edition:
2012-09-14 First release

See http://oreilly.com/catalog/errata.csp?isbn=9781449320317 for release details.

Nutshell Handbook, the Nutshell Handbook logo, and the O’Reilly logo are registered trademarks of
O’Reilly Media, Inc. Programming ASP.NET MVC 4, the image of a scabbardfish, and related trade dress
are trademarks of O’Reilly Media, Inc.

Many of the designations used by manufacturers and sellers to distinguish their products are claimed as
trademarks. Where those designations appear in this book, and O’Reilly Media, Inc., was aware of a
trademark claim, the designations have been printed in caps or initial caps.

While every precaution has been taken in the preparation of this book, the publisher and authors assume
no responsibility for errors or omissions, or for damages resulting from the use of the information con-
tained herein.

ISBN: 978-1-449-32031-7

[LSI]

1347629749

http://my.safaribooksonline.com/?portal=oreilly
mailto:corporate@oreilly.com
http://oreilly.com/catalog/errata.csp?isbn=9781449320317

Table of Contents

Preface . xiii

Part I. Up and Running

1. Fundamentals of ASP.NET MVC . 3
Microsoft’s Web Development Platforms 3

Active Server Pages (ASP) 3
ASP.NET Web Forms 4
ASP.NET MVC 4

The Model-View-Controller Architecture 4
The Model 5
The View 6
The Controller 6

What’s New in ASP.NET MVC 4? 6
Introduction to EBuy 8
Installing ASP.NET MVC 9
Creating an ASP.NET MVC Application 9

Project Templates 10
Convention over Configuration 13
Running the Application 15

Routing 15
Configuring Routes 16

Controllers 18
Controller Actions 19
Action Results 19
Action Parameters 21
Action Filters 23

Views 24
Locating Views 24
Hello, Razor! 26
Differentiating Code and Markup 27

iii

Layouts 28
Partial Views 30
Displaying Data 31
HTML and URL Helpers 33

Models 34
Putting It All Together 35

The Route 35
The Controller 35
The View 38

Authentication 41
The AccountController 42

Summary 44

2. ASP.NET MVC for Web Forms Developers . 45
It’s All Just ASP.NET 45

Tools, Languages, and APIs 46
HTTP Handlers and Modules 46
Managing State 46
Deployment and Runtime 47

More Differences than Similarities 47
Separation of Application Logic and View Logic 48
URLs and Routing 48
State Management 49
Rendering HTML 50

Authoring ASP.NET MVC Views Using Web Forms Syntax 54
A Word of Caution 55

Summary 56

3. Working with Data . 57
Building a Form 57
Handling Form Posts 59
Saving Data to a Database 59

Entity Framework Code First: Convention over Configuration 60
Creating a Data Access Layer with Entity Framework Code First 60

Validating Data 61
Specifying Business Rules with Data Annotations 63
Displaying Validation Errors 65

Summary 68

4. Client-Side Development . 69
Working with JavaScript 69
Selectors 71
Responding to Events 74

iv | Table of Contents

DOM Manipulation 76
AJAX 77
Client-Side Validation 79
Summary 83

Part II. Going to the Next Level

5. Web Application Architecture . 87
The Model-View-Controller Pattern 87

Separation of Concerns 87
MVC and Web Frameworks 88

Architecting a Web Application 90
Logical Design 90
ASP.NET MVC Web Application Logical Design 90
Logical Design Best Practices 92
Physical Design 93
Project Namespace and Assembly Names 93
Deployment Options 94
Physical Design Best Practices 94

Design Principles 96
SOLID 96
Inversion of Control 102

Don’t Repeat Yourself 110
Summary 110

6. Enhancing Your Site with AJAX . 111
Partial Rendering 111

Rendering Partial Views 112
JavaScript Rendering 117

Rendering JSON Data 118
Requesting JSON Data 119
Client-Side Templates 120

Reusing Logic Across AJAX and Non-AJAX Requests 123
Responding to AJAX Requests 124
Responding to JSON Requests 125
Applying the Same Logic Across Multiple Controller Actions 126

Sending Data to the Server 128
Posting Complex JSON Objects 129
Model Binder Selection 131
Sending and Receiving JSON Data Effectively 132

Cross-Domain AJAX 133
JSONP 133

Table of Contents | v

Enabling Cross-Origin Resource Sharing 137
Summary 138

7. The ASP.NET Web API . 139
Building a Data Service 139

Registering Web API Routes 141
Leaning on Convention over Configuration 142
Overriding Conventions 143
Hooking Up the API 143

Paging and Querying Data 146
Exception Handling 147
Media Formatters 149
Summary 152

8. Advanced Data . 153
Data Access Patterns 153

Plain Old CLR Objects 153
Using the Repository Pattern 154
Object Relational Mappers 156

Entity Framework Overview 158
Choosing a Data Access Approach 159
Database Concurrency 160

Building a Data Access Layer 161
Using Entity Framework Code First 161
The EBuy Business Domain Model 163
Working with a Data Context 167

Sorting, Filtering, and Paging Data 168
Summary 174

9. Security . 175
Building Secure Web Applications 175

Defense in Depth 175
Never Trust Input 176
Enforce the Principle of Least Privilege 176
Assume External Systems Are Insecure 176
Reduce Surface Area 176
Disable Unnecessary Features 177

Securing an Application 177
Securing an Intranet Application 178
Forms Authentication 183

Guarding Against Attacks 192
SQL Injection 192
Cross-Site Scripting 198

vi | Table of Contents

Cross-Site Request Forgery 199
Summary 201

10. Mobile Web Development . 203
ASP.NET MVC 4 Mobile Features 203
Making Your Application Mobile Friendly 205

Creating the Auctions Mobile View 205
Getting Started with jQuery Mobile 207
Enhancing the View with jQuery Mobile 209
Avoiding Desktop Views in the Mobile Site 216

Improving Mobile Experience 216
Adaptive Rendering 217

The Viewport Tag 217
Mobile Feature Detection 218
CSS Media Queries 220
Browser-Specific Views 221

Creating a New Mobile Application from Scratch 224
The jQuery Mobile Paradigm Shift 224
The ASP.NET MVC 4 Mobile Template 224
Using the ASP.NET MVC 4 Mobile Application Template 226

Summary 229

Part III. Going Above and Beyond

11. Parallel, Asynchronous, and Real-Time Data Operations . 233
Asynchronous Controllers 233

Creating an Asynchronous Controller 234
Choosing When to Use Asynchronous Controllers 236

Real-Time Asynchronous Communication 236
Comparing Application Models 237
HTTP Polling 237
HTTP Long Polling 238
Server-Sent Events 239
WebSockets 240
Empowering Real-Time Communication 241
Configuring and Tuning 245

Summary 246

12. Caching . 247
Types of Caching 247

Server-Side Caching 248
Client-Side Caching 248

Table of Contents | vii

Server-Side Caching Techniques 248
Request-Scoped Caching 248
User-Scoped Caching 249
Application-Scoped Caching 250
The ASP.NET Cache 251
The Output Cache 252
Donut Caching 255
Donut Hole Caching 257
Distributed Caching 259

Client-Side Caching Techniques 264
Understanding the Browser Cache 264
App Cache 265
Local Storage 268

Summary 269

13. Client-Side Optimization Techniques . 271
Anatomy of a Page 271

Anatomy of an HttpRequest 272
Best Practices 273

Make Fewer HTTP Requests 274
Use a Content Delivery Network 274
Add an Expires or a Cache-Control Header 276
GZip Components 278
Put Stylesheets at the Top 279
Put Scripts at the Bottom 279
Make Scripts and Styles External 281
Reduce DNS Lookups 282
Minify JavaScript and CSS 282
Avoid Redirects 283
Remove Duplicate Scripts 285
Configure ETags 285

Measuring Client-Side Performance 286
Putting ASP.NET MVC to Work 289

Bundling and Minification 289
Summary 293

14. Advanced Routing . 295
Wayfinding 295
URLs and SEO 297
Building Routes 298

Default and Optional Route Parameters 299
Routing Order and Priority 301
Routing to Existing Files 301

viii | Table of Contents

Ignoring Routes 302
Catch-All Routes 302

Route Constraints 303
Peering into Routes Using Glimpse 305

Attribute-Based Routing 306
Extending Routing 310

The Routing Pipeline 310
Summary 315

15. Reusable UI Components . 317
What ASP.NET MVC Offers out of the Box 317

Partial Views 317
HtmlHelper Extensions or Custom HtmlHelpers 317
Display and Editor Templates 318
Html.RenderAction() 318

Taking It a Step Further 319
The Razor Single File Generator 319
Creating Reusable ASP.NET MVC Views 321
Creating Reusable ASP.NET MVC Helpers 325

Unit Testing Razor Views 327
Summary 328

Part IV. Quality Control

16. Logging . 331
Error Handling in ASP.NET MVC 331

Enabling Custom Errors 332
Handling Errors in Controller Actions 333
Defining Global Error Handlers 334

Logging and Tracing 336
Logging Errors 336
ASP.NET Health Monitoring 338

Summary 341

17. Automated Testing . 343
The Semantics of Testing 343

Manual Testing 344
Automated Testing 345

Levels of Automated Testing 345
Unit Tests 345
Fast 347
Integration Tests 348

Table of Contents | ix

Acceptance Tests 349
What Is an Automated Test Project? 350

Creating a Visual Studio Test Project 350
Creating and Executing a Unit Test 352

Testing an ASP.NET MVC Application 354
Testing the Model 355
Test-Driven Development 358
Writing Clean Automated Tests 359
Testing Controllers 361
Refactoring to Unit Tests 364
Mocking Dependencies 365
Testing Views 370

Code Coverage 372
The Myth of 100% Code Coverage 374

Developing Testable Code 374
Summary 376

18. Build Automation . 377
Creating Build Scripts 378

Visual Studio Projects Are Build Scripts! 378
Adding a Simple Build Task 378
Executing the Build 379
The Possibilities Are Endless! 380

Automating the Build 380
Types of Automated Builds 381
Creating the Automated Build 383

Continuous Integration 386
Discovering Issues 386
The Principles of Continuous Integration 386

Summary 391

Part V. Going Live

19. Deployment . 395
What Needs to Be Deployed 395

Core Website Files 395
Static Content 398
What Not to Deploy 398
Databases and Other External Dependencies 399
What the EBuy Application Requires 400

Deploying to Internet Information Server 401
Prerequisites 401

x | Table of Contents

Creating and Configuring an IIS Website 402
Publishing from Within Visual Studio 403

Deploying to Windows Azure 407
Creating a Windows Azure Account 408
Creating a New Windows Azure Website 408
Publishing a Windows Azure Website via Source Control 409

Summary 410

Part VI. Appendixes

A. ASP.NET MVC and Web Forms Integration . 415

B. Leveraging NuGet as a Platform . 423

C. Best Practices . 443

D. Cross-Reference: Targeted Topics, Features, and Scenarios 455

Index . 459

Table of Contents | xi

Preface

The web application landscape is vast and varied. Microsoft’s ASP.NET Framework—
built on top of the mature and robust .NET Framework—is one of the most trusted
platforms in the industry. ASP.NET MVC is Microsoft’s latest addition to the world of
ASP.NET providing web developers with an alternative development approach that
helps you build web applications with ease.

The main goal of this book is simple: to help you to build a complete understanding
of the ASP.NET MVC 4 Framework from the ground up. However, it doesn’t stop there
—the book combines fundamental ASP.NET MVC concepts with real-world insight,
modern web technologies (such as HTML 5 and the jQuery JavaScript Framework),
and powerful architecture patterns so that you’re ready to produce not just a website
that uses the ASP.NET MVC Framework, but a stable and scalable web application
that is easy to grow and maintain with your expanding needs.

Audience
This book is for people who want to learn how to leverage the Microsoft ASP.NET
MVC Framework to build robust and maintainable websites. Though the book uses
many code examples to describe this process in detail, it is not simply targeted at ap-
plication developers. Much of the book introduces concepts and techniques that benefit
both developers writing application code and the leaders driving these development
projects.

Assumptions This Book Makes
While this book aims to teach you everything you need to know in order to create robust
and maintainable web applications with the ASP.NET MVC Framework, it assumes
that you already have some fundamental knowledge about application development
with the Microsoft .NET Framework. In other words, you should already be comfort-
able using HTML, CSS, and JavaScript to produce a very basic website and have enough
knowledge of the .NET Framework and the C# language to create a “Hello World”
application.

xiii

Code throughout this book can be found at: https://github.com/Program
mingAspNetMvcBook/CodeExamples

Conventions Used in This Book
The following typographical conventions are used in this book:

Italic
Indicates new terms, URLs, email addresses, databases and tables, filenames, and
file extensions.

Constant width
Used for program listings, as well as within paragraphs to refer to program elements
such as variable or function names, data types, environment variables, statements,
and keywords.

Constant width bold
Used for emphasis in code and to show commands or other text that should be
typed literally by the user.

Constant width italic
Shows text that should be replaced with user-supplied values or by values deter-
mined by context.

This icon signifies a tip, suggestion, or general note.

This icon indicates a warning or caution.

Using Code Examples
This book is here to help you get your job done. In general, you may use the code in
this book in your programs and documentation. You do not need to contact us for
permission unless you’re reproducing a significant portion of the code. For example,
writing a program that uses several chunks of code from this book does not require
permission. Selling or distributing a CD-ROM of examples from O’Reilly books does
require permission. Answering a question by citing this book and quoting example
code does not require permission. Incorporating a significant amount of example code
from this book into your product’s documentation does require permission.

xiv | Preface

D
ow

n
lo

a
d
 f
ro

m
 W

o
w

!
e
B
o
o
k

<
w

w
w

.w
o
w

e
b
o
o
k.

co
m

>

https://github.com/ProgrammingAspNetMvcBook/CodeExamples
https://github.com/ProgrammingAspNetMvcBook/CodeExamples

We appreciate, but do not require, attribution. An attribution usually includes the title,
author, publisher, and ISBN. For example: “Programming ASP.NET MVC 4 by Jess
Chadwick, Todd Synder, and Hrusikesh Panda (O’Reilly). Copyright 2012 Jess Chad-
wick, Todd Synder, and Hrusikesh Panda, 978-1-449-32031-7.”

If you feel your use of code examples falls outside fair use or the permission given above,
feel free to contact us at permissions@oreilly.com.

Safari® Books Online
Safari Books Online is an on-demand digital library that lets you easily
search over 7,500 technology and creative reference books and videos to
find the answers you need quickly.

With a subscription, you can read any page and watch any video from our library online.
Read books on your cell phone and mobile devices. Access new titles before they are
available for print, and get exclusive access to manuscripts in development and post
feedback for the authors. Copy and paste code samples, organize your favorites, down-
load chapters, bookmark key sections, create notes, print out pages, and benefit from
lots of other time-saving features.

O’Reilly Media has uploaded this book to the Safari Books Online service. To have full
digital access to this book and to other books on similar topics from O’Reilly and other
publishers, sign up for free at http://my.safaribooksonline.com.

How to Contact Us
Please address comments and questions concerning this book to the publisher:

O’Reilly Media, Inc.
1005 Gravenstein Highway North
Sebastopol, CA 95472
800-998-9938 (in the United States or Canada)
707-829-0515 (international or local)
707-829-0104 (fax)

We have a web page for this book, where we list errata, examples, and any additional
information. You can access this page at:

http://bit.ly/Programming_ASP_NET

To comment or ask technical questions about this book, send email to:

bookquestions@oreilly.com

For more information about our books, courses, conferences, and news, see our website
at http://www.oreilly.com.

Preface | xv

mailto:permissions@oreilly.com
http://my.safaribooksonline.com/?portal=oreilly
http://bit.ly/Programming_ASP_NET
mailto:bookquestions@oreilly.com
http://www.oreilly.com

Find us on Facebook: http://facebook.com/oreilly

Follow us on Twitter: http://twitter.com/oreillymedia

Watch us on YouTube: http://www.youtube.com/oreillymedia

xvi | Preface

http://facebook.com/oreilly
http://twitter.com/oreillymedia
http://www.youtube.com/oreillymedia

PART I

Up and Running

CHAPTER 1

Fundamentals of ASP.NET MVC

Microsoft ASP.NET MVC is a web application development framework built on top
of Microsoft’s popular and mature .NET Framework. The ASP.NET MVC Framework
leans heavily on proven developmental patterns and practices that place an emphasis
on a loosely coupled application architecture and highly maintainable code.

In this chapter we’ll take a look at the fundamentals of what makes ASP.NET MVC
tick—from its proud lineage and the architectural concepts on which it is built, to the
use of Microsoft Visual Studio 2011 to create a fully functioning ASP.NET MVC web
application. Then we’ll dive into the ASP.NET MVC web application project and see
just what ASP.NET MVC gives you right from the start, including a working web page
and built-in forms authentication to allow users to register and log in to your site.

By the end of the chapter, you’ll have not only a working ASP.NET MVC web appli-
cation, but also enough understanding of the fundamentals of ASP.NET MVC to begin
building applications with it immediately. The rest of this book simply builds on these
fundamentals, showing you how to make the most of the ASP.NET MVC Framework
in any web application.

Microsoft’s Web Development Platforms
Understanding the past can be a big help in appreciating the present; so, before we get
into what ASP.NET MVC is and how it works, let’s take a minute to see just where it
came from.

Long ago, Microsoft saw the need for a Windows-based web development platform,
and the company worked hard to produce a solution. Over the past two decades,
Microsoft has given the development community several web development platforms.

Active Server Pages (ASP)
Microsoft’s first answer to web development was Active Server Pages (ASP), a scripting
language in which code and markup are authored together in a single file, with each

3

physical file corresponding to a page on the website. ASP’s server-side scripting ap-
proach became widely popular and many websites grew out of it. Some of these sites
continue to serve visitors today. After a while, though, developers wanted more. They
asked for features such as improved code reuse, better separation of concerns, and
easier application of object-oriented programming principles. In 2002, Microsoft
offered ASP.NET as a solution to these concerns.

ASP.NET Web Forms
Like ASP, ASP.NET websites rely on a page-based approach where each page on the
website is represented in the form of a physical file (called a Web Form) and is accessible
using that file’s name. Unlike a page using ASP, a Web Forms page provides some
separation of code and markup by splitting the web content into two different files:
one for the markup and one for the code. ASP.NET and the Web Forms approach
served developers’ needs for many years, and this continues to be the web development
framework of choice for many .NET developers. Some .NET developers, however,
consider the Web Forms approach too much of an abstraction from the underlying
HTML, JavaScript, and CSS. Some developers just can’t be pleased! Or can they?

ASP.NET MVC
Microsoft was quick to spot the growing need in the ASP.NET developer community
for something different than the page-based Web Forms approach, and the company
released the first version of ASP.NET MVC in 2008. Representing a total departure
from the Web Forms approach, ASP.NET MVC abandons the page-based architecture
completely, relying on the Model-View-Controller (MVC) architecture instead.

Unlike ASP.NET Web Forms, which was introduced as a replacement
to its predecessor, ASP, ASP.NET MVC does not in any way replace the
existing Web Forms Framework. Quite the contrary—both ASP.NET
MVC and Web Forms applications are built on top of the common
ASP.NET Framework, which provides a common web API that both
frameworks leverage quite heavily.

The idea that ASP.NET MVC and Web Forms are just different ways of
making an ASP.NET website is a common theme throughout this book;
in fact, both Chapter 2 and Appendix A explore this concept in depth.

The Model-View-Controller Architecture
The Model-View-Controller pattern is an architectural pattern that encourages strict
isolation between the individual parts of an application. This isolation is better known
as separation of concerns, or, in more general terms, “loose coupling.” Virtually all

4 | Chapter 1: Fundamentals of ASP.NET MVC

aspects of MVC—and, consequently, the ASP.NET MVC Framework—are driven by
this goal of keeping disparate parts of an application isolated from each other.

Architecting applications in a loosely coupled manner brings a number of both short-
and long-term benefits:

Development
Individual components do not directly depend on other components, which means
that they can be more easily developed in isolation. Components can also be readily
replaced or substituted, preventing complications in one component from affecting
the development of other components with which it may interact.

Testability
Loose coupling of components allows test implementations to stand in for “pro-
duction” components. This makes it easier to, say, avoid making calls to a database,
by replacing the component that makes database calls with one that simply returns
static data. The ability for components to be easily swapped with mock represen-
tations greatly facilitates the testing process, which can drastically increase the
reliability of the system over time.

Maintenance
Isolated component logic means that changes are typically isolated to a small num-
ber of components—often just one. Since the risk of change generally correlates to
the scope of the change, modifying fewer components is a good thing!

The MVC pattern splits an application into three layers: the model, the view, and the
controller (see Figure 1-1). Each of these layers has a very specific job that it is respon-
sible for and—most important—is not concerned with how the other layers do their
jobs.

Figure 1-1. The MVC architecture

The Model
The model represents core business logic and data. Models encapsulate the properties
and behavior of a domain entity and expose properties that describe the entity. For
example, the Auction class represents the concept of an “auction” in the application

The Model-View-Controller Architecture | 5

and may expose properties such as Title and CurrentBid, as well as exposing behavior
in the form of methods such as Bid().

The View
The view is responsible for transforming a model or models into a visual representation.
In web applications, this most often means generating HTML to be rendered in the
user’s browser, although views can manifest in many forms. For instance, the same
model might be visualized in HTML, PDF, XML, or perhaps even in a spreadsheet.

Following separation of concerns, views should concentrate only on displaying data
and should not contain any business logic themselves—the business logic stays in the
model, which should provide the view with everything it needs.

The Controller
The controller, as the name implies, controls the application logic and acts as the co-
ordinator between the view and the model. Controllers receive input from users via the
view, then work with the model to perform specific actions, passing the results back to
the view.

What’s New in ASP.NET MVC 4?
This book explores the ASP.NET MVC Framework in depth, showing how to make
the most of the features and functionality it offers. Since we’re now up to the fourth
version of the framework, however, much of what the book covers is functionality that
existed prior to this latest version. If you are already familiar with previous versions of
the framework, you’re probably eager to skip over what you already know and begin
learning all about the new additions.

The list below gives a brief description of each of the features new to version 4 of
ASP.NET MVC, along with references pointing you to the sections of the book that
show these features in action:

Asynchronous controllers
Internet Information Server (IIS) processes each request it receives on a new thread,
so each new request ties up one of the finite number of threads available to IIS,
even if that thread is sitting idle (for example, waiting for a response from a database
query or web service). And, while recent updates in .NET Framework 4.0 and IIS
7 have drastically increased the default number of threads available to the IIS thread
pool, it’s still a good practice to avoid holding on to system resources for longer
than you need to. Version 4 of the ASP.NET MVC Framework introduces asyn-
chronous controllers to better handle these types of long-running requests in a more
asynchronous fashion. Through the use of asynchronous controllers, you can tell
the framework to free up the thread that is processing your request, letting it

6 | Chapter 1: Fundamentals of ASP.NET MVC

perform other processing tasks while it waits for the various tasks in the request to
finish. Once they finish, the framework picks up where it left off, and returns the
same response as if the request had gone through a normal synchronous controller
—except now you can handle many more requests at once! If you’re interested in
learning more about asynchronous controllers, see Chapter 11, which explains
them in depth.

Display modes
A growing number of devices are Internet-connected and ready to surf your site,
and you need to be ready for them. Many times, the data displayed on these devices
is the same as the data displayed on desktop devices, except the visual elements
need to take into consideration the smaller form factor of mobile devices. ASP.NET
MVC display modes provide an easy, convention-based approach for tailoring views
and layouts to target different devices. Chapter 10 shows how to apply display
modes to your site as part of a holistic approach to adding mobile device support
to your sites.

Bundling and minification
Even though it may seem like the only way to get on the Internet these days is
through some sort of high-speed connection, that doesn’t mean you can treat the
client-side resources that your site depends on in a haphazard manner. In fact,
when you consider how the overall download times are increasing, wasting even
fractions of a second in download times can really add up and begin to have a very
negative effect on the perceived performance of your site. Concepts such as script
and stylesheet combining and minification may not be anything new, but with
the .NET Framework 4.5 release, they are now a fundamental part of the frame-
work. What’s more, ASP.NET MVC embraces and extends the core .NET Frame-
work functionality to make this tooling even more usable in your ASP.NET MVC
applications. Chapter 13 helps you tackle all of these concepts and also shows you
how to use the new tooling offered in the core ASP.NET and ASP.NET MVC
Frameworks.

Web API
Simple HTTP data services are rapidly becoming the primary way to supply data
to the ever-increasing variety of applications, devices, and platforms. ASP.NET
MVC has always provided the ability to return data in various formats, including
JSON and XML; however, the ASP.NET Web API takes this interaction a step
further, providing a more modern programming model that focuses on providing
full-fledged data services rather than controller actions that happen to return data.
In Chapter 6, you’ll see how to really take advantage of AJAX on the client—and
you’ll use ASP.NET Web API services to do it!

What’s New in ASP.NET MVC 4? | 7

Did You Know…?
ASP.NET MVC is open source! That’s right—as of March 2012, the entire source
code for the ASP.NET MVC, Web API, and Web Pages Frameworks is available to
browse and download on CodePlex. What’s more, developers are free to create their
own forks and even submit patches to the core framework source code!

Introduction to EBuy
This book aims to show you not only the ins and outs of the ASP.NET MVC Frame-
work, but also how to leverage the framework in real-world applications. The problem
with such applications is that the very meaning of “real-world” indicates a certain level
of complexity and uniqueness that can’t be adequately represented in a single demo
application.

Instead of attempting to demonstrate solutions to every problem you may face, we—
the authors of this book—have assembled a list of the scenarios and issues that we have
most frequently encountered and that we most frequently hear of others encountering.
Though this list of scenarios may not include every scenario you’ll face while developing
your application, we believe it represents the majority of the real-world problems that
most developers face over the course of creating their ASP.NET MVC applications.

We’re not kidding, we actually wrote a list—and it’s in the back of this
book! Appendix D has a cross-referenced list of all the features and sce-
narios we cover and the chapter(s) in which we cover them.

In order to cover the scenarios on this list, we came up with a web application that
combines them all into as close to a real-world application as we could get, while still
limiting the scope to something everyone understands: an online auction site.

Introducing EBuy, the online auction site powered by ASP.NET MVC! From a high
level, the goals of the site are pretty straightforward: allow users to list items they wish
to sell, and bid on items they wish to buy. As you take a deeper look, however, you’ll
begin to see that the application is a bit more complex than it sounds, requiring not
only everything ASP.NET MVC has to offer, but also integration with other technolo-
gies.

EBuy is not just a bunch of code that we ship along with the book, though. Each chapter
of the book not only introduces more features and functionality, but uses them to build
the EBuy application—from new project to deployed application, preferably while you
follow along and write the code, too!

8 | Chapter 1: Fundamentals of ASP.NET MVC

http://aspnetwebstack.codeplex.com

OK, we’ll admit that EBuy is also “just a bunch of code.” In fact, you
can download EBuy in its entirety from the book’s website: http://www
.programmingaspnetmvc.com.

Now, let’s stop talking about an application that doesn’t exist yet and
start building it!

Installing ASP.NET MVC
In order to begin developing ASP.NET MVC applications, you’ll need to download and
install the ASP.NET MVC 4 Framework. This is as easy as visiting the ASP.NET MVC
website and clicking the Install button.

This launches the Web Platform Installer, a free tool that simplifies the installation of
many web tools and applications. Follow the Web Platform Installer wizard to down-
load and install ASP.NET MVC 4 and its dependencies to your machine.

Note that in order to install and use ASP.NET MVC 4, you must have at least PowerShell
2.0 and Visual Studio 2010 Service Pack 1 or Visual Web Developer Express 2010
Service Pack 1. Luckily, if you do not already have them installed, the Web Platform
Installer should figure it out and proceed to download and install the latest versions of
PowerShell and Visual Studio for you!

If you are currently using the previous version of ASP.NET MVC and
would like to both create ASP.NET MVC 4 applications and continue
working with ASP.NET MVC 3 applications, fear not—ASP.NET MVC
can be installed and run side by side with ASP.NET MVC 3 installations.

Once you’ve gotten everything installed, it’s time to proceed to the next step: creating
your first ASP.NET MVC 4 application.

Creating an ASP.NET MVC Application
The ASP.NET MVC 4 installer adds a new Visual Studio project type named ASP.NET
MVC 4 Web Application. This is your entry point to the world of ASP.NET MVC and
is what you’ll use to create the new EBuy web application project that you’ll build on
as you progress through this book.

To create a new project, select the Visual C# version of the ASP.NET MVC 4 Web
Application template and enter Ebuy.Website into the Name field (see Figure 1-2).

Creating an ASP.NET MVC Application | 9

http://www.programmingaspnetmvc.com
http://www.programmingaspnetmvc.com
http://www.asp.net/mvc
http://www.asp.net/mvc

Figure 1-2. Creating the EBuy project

When you click OK to continue, you’ll be presented with another dialog with more
options (see Figure 1-3).

This dialog lets you customize the ASP.NET MVC 4 application that Visual Studio is
going to generate for you by letting you specify what kind of ASP.NET MVC site you
want to create.

Project Templates
To begin, ASP.NET MVC 4 offers several project templates, each of which targets a
different scenario:

Empty
The Empty template creates a bare-bones ASP.NET MVC 4 application with the
appropriate folder structure that includes references to the ASP.NET MVC assem-
blies as well as some JavaScript libraries that you’ll probably use along the way.
The template also includes a default view layout and generates a Global.asax file
that includes the standard configuration code that most ASP.NET MVC applica-
tions will need.

10 | Chapter 1: Fundamentals of ASP.NET MVC

Basic
The Basic template creates a folder structure that follows ASP.NET MVC 4 con-
ventions and includes references to the ASP.NET MVC assemblies. This template
represents the bare minimum that you’ll need to begin creating an ASP.NET MVC
4 project, but no more—you’ll have to do all the work from here!

Internet Application
The Internet Application template picks up where the Empty template leaves off,
extending the Empty template to include a simple default controller (Home
Controller), an AccountController with all the logic required for users to register
and log in to the website, and default views for both of these controllers.

Intranet Application
The Intranet Application template is much like the Internet Application template,
except that it is preconfigured to use Windows-based authentication, which is
desirable in intranet scenarios.

Figure 1-3. Customizing the EBuy project

Creating an ASP.NET MVC Application | 11

Mobile Application
The Mobile Application template is another variation of the Internet Application
template. This template, however, is optimized for mobile devices and includes the
jQuery Mobile JavaScript framework and views that apply the HTML that works
best with jQuery Mobile.

Web API
The Web API template is yet another variation of the Internet Application template
that includes a preconfigured Web API controller. Web API is the new lightweight,
RESTful HTTP web services framework that integrates quite nicely with ASP.NET
MVC. Web API is a great choice for quickly and easily creating data services that
your AJAX-enabled applications can easily consume. Chapter 6 covers this new
API in great detail.

The New ASP.NET MVC Project dialog also lets you select a view engine, or syntax
that your views will be written in. We’ll be using the new Razor syntax to build the
EBuy reference application, so you can leave the default value (“Razor”) selected. Rest
assured that you can change the view engine your application uses at any time—this
option exists only to inform the wizard of the kind of views it should generate for you,
not to lock the application into a specific view engine forever.

Finally, choose whether or not you’d like the wizard to generate a unit test project for
this solution. Once again, you don’t have to worry about this decision too much—as
with any other Visual Studio solution, you are able to add a unit test project to an
ASP.NET MVC web application anytime you’d like.

When you’re happy with the options you’ve selected, click OK to have the wizard
generate your new project!

NuGet Package Management
If you pay attention to the status bar as Visual Studio creates your new web application
project, you may notice messages (such as “Installing package AspNetMvc…”) referring
to the fact that the project template is utilizing the NuGet Package Manager to install
and manage the assembly references in your application. The concept of using a pack-
age manager to manage application dependencies—especially as part of the new project
template phase—is quite powerful, and also new to ASP.NET MVC 4 project types.

Introduced as part of the ASP.NET MVC 3 installer, NuGet offers an alternative work-
flow for managing application dependencies. Though it is not actually part of the
ASP.NET MVC Framework, NuGet is doing much of the work behind the scenes to
make your projects possible.

A NuGet package may contain a mixture of assemblies, content, and even tools to aid
in development. In the course of installing a package, NuGet will add the assemblies
to the target project’s References list, copy any content into the application’s folder
structure, and register any tools in the current path so that they can be executed from
the Package Manager Console.

12 | Chapter 1: Fundamentals of ASP.NET MVC

However, the most important aspect of NuGet packages—indeed, the primary reason
NuGet was created to begin with—has to do with dependency management. .NET ap-
plications are not monolithic, single-assembly applications—most assemblies rely on
references to other assemblies in order to do their job. What’s more, assemblies gen-
erally depend on specific versions (or, at least, a minimum version) of other assemblies.

In a nutshell, NuGet calculates the potentially complex relationships between all of the
assemblies that an application depends on, then makes sure that you have all of the
assemblies you need—and the correct versions of those assemblies.

Your gateway to NuGet’s power is the NuGet Package Manager. You can access the
NuGet Package Manager in two ways:

The graphical user interface
The NuGet Package Manager has a graphical user interface (GUI) that makes it
easy to search for, install, update, and uninstall packages for a project. You can
access the graphical Package Manager interface by right-clicking the website
project in the Solution Explorer and selecting the “Manage NuGet Packages…”
option.

The Console mode
The Library Package Manager Console is a Visual Studio window containing an
integrated PowerShell prompt specially configured for Library Package Manager
access. If you do not see the Package Manager Console window already open in
Visual Studio, you can access it via the Tools > Library Package Manager > Package
Manager Console menu option. To install a package from the Package Manager
Console window, simply type the command Install-Package _Package Name_. For
example, to install the Entity Framework package, execute the Install-Package
EntityFramework command. The Package Manager Console will proceed to down-
load the EntityFramework package and install it into your project. After the
“Install-Package” step has completed, the Entity Framework assemblies will be
visible in the project’s References list.

Convention over Configuration
To make website development easier and help developers be more productive,
ASP.NET MVC relies on the concept of convention over configuration whenever pos-
sible. This means that, instead of relying on explicit configuration settings, ASP.NET
MVC simply assumes that developers will follow certain conventions as they build their
applications.

The ASP.NET MVC project folder structure (Figure 1-4) is a great example of the
framework’s use of convention over configuration. There are three special folders in
the project that correspond to the elements of the MVC pattern: the Controllers,
Models, and Views folders. It’s pretty clear at a glance what each of these folders
contains.

Creating an ASP.NET MVC Application | 13

Figure 1-4. The ASP.NET MVC project folder structure

When you look at the contents of these folders, you’ll find even more conventions at
work. For example, not only does the Controllers folder contain all of the application’s
controller classes, but the controller classes all follow the convention of ending their
names with the Controller suffix. The framework uses this convention to register the
application’s controllers when it starts up and associate controllers with their corre-
sponding routes.

Next, take a look at the Views folder. Beyond the obvious convention dictating that the
application’s views should live under this folder, it is split into subfolders: a Shared
folder, and an optional folder to contain the views for each controller. This convention
helps save developers from providing explicit locations of the views they’d like to dis-
play to users. Instead, developers can just provide the name of a view—say, “Index”—
and the framework will try its best to find the view within the Views folder, first in the
controller-specific folder and then, failing that, in the Shared views folder.

14 | Chapter 1: Fundamentals of ASP.NET MVC

At first glance, the concept of convention over configuration may seem trivial. However,
these seemingly small or meaningless optimizations can really add up to significant
time savings, improved code readability, and increased developer productivity.

Running the Application
Once your project is created, feel free to hit F5 to execute your ASP.NET MVC website
and watch it render in your browser.

Congratulations, you’ve just created your first ASP.NET MVC 4 application!

After you’ve calmed down from the immense excitement you experience as a result of
making words show up in a web browser, you might be left wondering, “What just
happened? How did it do that?”

Figure 1-5 shows, from a high level, how ASP.NET MVC processes a request.

Figure 1-5. The ASP.NET MVC request lifecycle

Though we’ll spend the rest of this book diving deeper and deeper into the components
of that diagram, the next few sections start out by explaining those fundamental build-
ing blocks of ASP.NET MVC.

Routing
All ASP.NET MVC traffic starts out like any other website traffic: with a request to a
URL. This means that, despite the fact that it is not mentioned anywhere in the name,
the ASP.NET Routing framework is at the core of every ASP.NET MVC request.

In simple terms, ASP.NET routing is just a pattern-matching system. At startup,
the application registers one or more patterns with the framework’s route table to tell
the routing system what to do with any requests that match those patterns. When the
routing engine receives a request at runtime, it matches that request’s URL against the
URL patterns registered with it (Figure 1-6).

When the routing engine finds a matching pattern in its route table, it forwards the
request to the appropriate handler for that request.

Routing | 15

Otherwise, when the request’s URL does not match any of the registered route patterns,
the routing engine indicates that it could not figure out how to handle the request by
returning a 404 HTTP status code.

Configuring Routes
ASP.NET MVC routes are responsible for determining which controller method (other-
wise known as a controller action) to execute for a given URL. They consist of the
following properties:

Unique name
A name may be used as a specific reference to a given route

URL pattern
A simple pattern syntax that parses matching URLs into meaningful segments

Defaults
An optional set of default values for the segments defined in the URL pattern

Constraints
A set of constraints to apply against the URL pattern to more narrowly define the
URLs that it matches

Figure 1-6. ASP.NET routing

16 | Chapter 1: Fundamentals of ASP.NET MVC

The default ASP.NET MVC project templates add a generic route that uses the follow-
ing URL convention to break the URL for a given request into three named segments,
wrapped with brackets ({}): “controller”, “action”, and “id”:

{controller}/{action}/{id}

This route pattern is registered via a call to the MapRoute() extension method that runs
during application startup (located in App_Start/RouteConfig.cs):

routes.MapRoute(
 "Default", // Route name
 "{controller}/{action}/{id}", // URL with parameters
 new { controller = "Home", action = "Index",
 id = UrlParameter.Optional } // Parameter defaults
);

In addition to providing a name and URL pattern, this route also defines a set of default
parameters to be used in the event that the URL fits the route pattern, but doesn’t
actually provide values for every segment.

For instance, Table 1-1 contains a list of URLs that match this route pattern, along with
corresponding values that the routing framework will provide for each of them.

Table 1-1. Values provided for URLs that match our route pattern

URL Controller Action ID

/auctions/auction/1234 AuctionsController Auction 1234

/auctions/recent AuctionsController Recent

/auctions AuctionsController Index

/ HomeController Index

The first URL (/auctions/auction/1234) in the table is a perfect match because it satisfies
every segment of the route pattern, but as you continue down the list and remove
segments from the end of the URL, you begin to see defaults filling in for values that
are not provided by the URL.

This is a very important example of how ASP.NET MVC leverages the concept of
convention over configuration: when the application starts up, ASP.NET MVC dis-
covers all of the application’s controllers by searching through the available assemblies
for classes that implement the System.Web.Mvc.IController interface (or derive from a
class that implements this interface, such as System.Web.Mvc.Controller) and whose
class names end with the suffix Controller. When the routing framework uses this list
to figure out which controllers it has access to, it chops off the Controller suffix from
all of the controller class names. So, whenever you need to refer to a controller, you do
so by its shortened name, e.g., AuctionsController is referred to as Auctions, and Home
Controller becomes Home.

Routing | 17

What’s more, the controller and action values in a route are not case-sensitive. This
means that each of these requests—/Auctions/Recent, /auctions/Recent, /auctions/
recent, or even /aucTionS/rEceNt—will successfully resolve to the Recent action in the
AuctionsController.

URL route patterns are relative to the application root, so they do not
need to start with a forward slash (/) or a virtual path designator (~/).
Route patterns that include these characters are invalid and will cause
the routing system to throw an exception.

As you may have noticed, URL routes can contain a wealth of information that the
routing engine is able to extract. In order to process an ASP.NET MVC request, how-
ever, the routing engine must be able to determine two crucial pieces of information:
the controller and the action. The routing engine can then pass these values to the
ASP.NET MVC runtime to create and execute the specified action of the appropriate
controller.

Controllers
In the context of the MVC architectural pattern, a controller responds to user input
(e.g., a user clicking a Save button) and collaborates between the model, view, and
(quite often) data access layers. In an ASP.NET MVC application, controllers are classes
that contain methods that are called by the routing framework to process a request.

To see an example of an ASP.NET MVC controller, take a look at the HomeController
class found in Controllers/HomeController.cs:

using System.Web.Mvc;

namespace Ebuy.Website.Controllers
{
 public class HomeController : Controller
 {
 public ActionResult Index()
 {
 ViewBag.Message = "Your app description page.";

 return View();
 }

 public ActionResult About()
 {
 ViewBag.Message = "Your quintessential app description page.";

 return View();
 }

 public ActionResult Contact()

18 | Chapter 1: Fundamentals of ASP.NET MVC

 {
 ViewBag.Message = "Your quintessential contact page.";

 return View();
 }
 }
}

Controller Actions
As you can see, controller classes themselves aren’t very special; that is, they don’t look
much different from any other .NET class. In fact, it’s the methods in controller
classes—referred to as controller actions—that do all the heavy lifting that’s involved
in processing requests.

You’ll often hear the terms controller and controller action used some-
what interchangeably, even throughout this book. This is because the
MVC pattern makes no differentiation between the two. However, the
ASP.NET MVC Framework is mostly concerned with controller actions
since they contain the actual logic to process the request.

For instance, the HomeController class we just looked at contains three actions: Index,
About, and Contact. Thus, given the default route pattern {controller}/{action}/
{id}, when a request is made to the URL /Home/About, the routing framework deter-
mines that it is the About() method of the HomeController class that should process the
request. The ASP.NET MVC Framework then creates a new instance of the Home
Controller class and executes its About() method.

In this case, the About() method is pretty simple: it passes data to the view via the
ViewBag property (more on that later), and then tells the ASP.NET MVC Framework
to display the view named “About” by calling the View() method, which returns an
ActionResult of type ViewResult.

Action Results
It is very important to note that it is the controller’s job to tell the ASP.NET MVC
Framework what it should do next, but not how to do it. This communication occurs
through the use of +ActionResult+s, the return values which every controller action is
expected to provide.

For example, when a controller decides to show a view, it tells the ASP.NET MVC
Framework to show the view by returning a ViewResult. It does not render the view
itself. This loose coupling is another great example of separation of concerns in action
(what to do versus how it should be done).

Controllers | 19

Despite the fact that every controller action needs to return an ActionResult, you will
rarely be creating them manually. Instead, you’ll usually rely on the helper methods
that the System.Web.Mvc.Controller base class provides, such as:

Content()
Returns a ContentResult that renders arbitrary text, e.g., “Hello, world!”

File()
Returns a FileResult that renders the contents of a file, e.g., a PDF.

HttpNotFound()
Returns an HttpNotFoundResult that renders a 404 HTTP status code response.

JavaScript():: Returns a JavaScriptResult
that renders JavaScript, e.g., “function hello() { alert(Hello, World!); }”.

Json()
Returns a JsonResult that serializes an object and renders it in JavaScript Object
Notation (JSON) format, e.g., “{ “Message”: Hello, World! }”.

PartialView()
Returns a PartialViewResult that renders only the content of a view (i.e., a view
without its layout).

Redirect()
Returns a RedirectResult that renders a 302 (temporary) status code to redirect
the user to a given URL, e.g., “302 http://www.ebuy.com/auctions/recent”. This
method has a sibling, RedirectPermanent(), that also returns a RedirectResult, but
uses HTTP status code 301 to indicate a permanent redirect rather than a tempo-
rary one.

RedirectToAction() and RedirectToRoute()
Act just like the Redirect() helper, only the framework dynamically determines
the external URL by querying the routing engine. Like the Redirect() helper, these
two helpers also have permanent redirect variants: RedirectToActionPermanent()
and RedirectToRoutePermanent().

View()
Returns a ViewResult that renders a view.

As you can tell from this list, the framework provides an action result for just about
any situation you need to support, and, if it doesn’t, you are free to create your own!

20 | Chapter 1: Fundamentals of ASP.NET MVC

D
ow

n
lo

a
d
 f
ro

m
 W

o
w

!
e
B
o
o
k

<
w

w
w

.w
o
w

e
b
o
o
k.

co
m

>

http://www.ebuy.com/auctions/recent

Though all controller actions are required to provide an ActionResult
that indicates the next steps that should be taken to process the request,
not all controller actions need to specify ActionResult as their return
type. Controller actions can specify any return type that derives from
ActionResult, or even any other type.

When the ASP.NET MVC Framework comes across a controller action
that returns a non-ActionResult type, it automatically wraps the value
in a ContentResult and renders the value as raw content.

Action Parameters
Controller actions are—when it comes down to it—just like any other method. In fact,
a controller action can even specify parameters that ASP.NET MVC populates, using
information from the request, when it executes. This functionality is called model bind-
ing, and it is one of ASP.NET MVC’s most powerful and useful features.

Before diving into how model binding works, first take a step back and consider an
example of the “traditional” way of interacting with request values:

public ActionResult Create()
{
 var auction = new Auction() {
 Title = Request["title"],
 CurrentPrice = Decimal.Parse(Request["currentPrice"]),
 StartTime = DateTime.Parse(Request["startTime"]),
 EndTime = DateTime.Parse(Request["endTime"]),
 };
 // ...
}

The controller action in this particular example creates and populates the properties
of a new Auction object with values taken straight from the request. Since some of
Auction’s properties are defined as various primitive, non-string types, the action also
needs to parse each of those corresponding request values into the proper type.

This example may seem simple and straightforward, but it’s actually quite frail: if any
of the parsing attempts fails, the entire action will fail. Switching to the various Try
Parse() methods may help avoid most exceptions, but applying these methods also
means additional code.

The side effect of this approach is that every action is very explicit. The downside to
writing such explicit code is that it puts the burden on you, the developer, to perform
all the work and to remember to perform this work every time it is required. A larger
amount of code also tends to obscure the real goal: in this example, adding a new
Auction to the system.

Controllers | 21

Model binding basics

Not only does model binding avoid all of this explicit code, it is also very easy to apply.
So easy, in fact, that you don’t even need to think about it.

For example, here’s the same controller action as before, this time using model-bound
method parameters:

public ActionResult Create(
 string title, decimal currentPrice,
 DateTime startTime, DateTime endTime
)
{
 var auction = new Auction() {
 Title = title,
 CurrentPrice = currentPrice,
 StartTime = startTime,
 EndTime = endTime,
 };
 // ...
}

Now, instead of retrieving the values from the Request explicitly, the action declares
them as parameters. When the ASP.NET MVC framework executes this method, it
attempts to populate the action’s parameters using the same values from the request
that the previous example showed. Note that—even though we’re not accessing the
Request dictionary directly—the parameter names are still very important, because they
still correspond to values from in the Request.

The Request object isn’t the only place the ASP.NET MVC model binder gets its values
from, however. Out of the box, the framework looks in several places, such as route
data, query string parameters, form post values, and even serialized JSON objects. For
example, the following snippet retrieves the id value from the URL simply by declaring
a parameter with the same name:

Example 1-1. Retrieving the id from a URL (e.g. /auctions/auction/123)

public ActionResult Auction(long id)
{
 var context = new EBuyContext();
 var auction = context.Auctions.FirstOrDefault(x => x.Id == id);
 return View("Auction", auction);
}

Where and how the ASP.NET MVC model binder finds these values is
actually quite configurable and even extensible. See Chapter 8 for an in-
depth discussion of ASP.NET MVC model binding.

22 | Chapter 1: Fundamentals of ASP.NET MVC

As these examples demonstrate, model binding lets ASP.NET MVC handle much of
the mundane, boilerplate code so the logic within the action can concentrate on pro-
viding business value. The code that is left is much more meaningful, not to mention
more readable.

Model binding complex objects

Applying the model binding approach even to simple, primitive types can make a pretty
big impact in making your code more expressive. In the real world, though, things are
much more complex—only the most basic scenarios rely on just a couple of parameters.
Luckily, ASP.NET MVC supports binding to complex types as well as to primitive
types.

This example takes one more pass at the Create action, this time skipping the middle-
man primitive types and binding directly to an Auction instance:

public ActionResult Create(Auction auction)
{
 // ...
}

The action shown here is equivalent to what you saw in the previous example. That’s
right—ASP.NET MVC’s complex model binding just eliminated all of the boilerplate
code required to create and populate a new Auction instance! This example shows the
true power of model binding.

Action Filters
Action filters provide a simple yet powerful technique to modify or enhance the
ASP.NET MVC pipeline by “injecting” logic at certain points, helping to address “cross-
cutting concerns” that apply to many (or all) components of an application. Application
logging is a classic example of a cross-cutting concern in that it is equally applicable to
any component in an application, regardless of what that component’s primary
responsibility may be.

Action filter logic is primarily introduced by applying an ActionFilterAttribute to a
controller action in order to affect how that action executes, as is the case in the fol-
lowing example that protects a controller action from unauthorized access by applying
the AuthorizeAttribute:

[Authorize]
public ActionResult Profile()
{
 // Retrieve profile information for current user
 return View();
}

Controllers | 23

The ASP.NET MVC Framework includes quite a few action filters that target common
scenarios. You’ll see these action filters in use throughout this book, helping accom-
plish a variety of tasks in a clean, loosely coupled way.

Action filters are a great way to apply custom logic throughout your site.
Keep in mind that you are free to create your own action filters by ex-
tending the ActionFilterAttribute base class or any of the ASP.NET
MVC action filters.

Views
In the ASP.NET MVC Framework, controller actions that wish to display HTML to
the user return an instance of ViewResult, a type of ActionResult that knows how to
render content to the response. When it comes time to render the view, the ASP.NET
MVC Framework will look for the view using the name provided by the controller.

Take the Index action in the HomeController:

public ActionResult Index()
{
 ViewBag.Message = "Your app description page.";
 return View();
}

This action takes advantage of the View() helper method to create a ViewResult. Calling
View() without any parameters, as in this example, instructs ASP.NET MVC to find a
view with the same name as the current controller action. In this instance, ASP.NET
MVC will look for a view named “Index”, but where will it look?

Locating Views
ASP.NET MVC relies on the convention that keeps all the application’s views under-
neath the Views folder in the root of the website. More specifically, ASP.NET MVC
expects views to live within folders named after the controller to which they relate.

Thus, when the framework wants to show the view for the Index action in the HomeCon
troller, it is going to look in the /Views/Home folder for a file named Index. The
screenshot in Figure 1-7 shows that the project template was nice enough to include
an Index.cshtml view for us.

24 | Chapter 1: Fundamentals of ASP.NET MVC

Figure 1-7. Locating the Index view

When it does not find a view that matches the name of the view it is looking for in the
controller’s Views folder, ASP.NET MVC continues looking in the common /Views/
Shared folder.

The /Views/Shared folder is a great place to keep views that are shared
across multiple controllers.

Now that you’ve found the view that the action requested, open it up and take a look
at what’s inside: HTML markup and code. But, it’s not just any HTML markup and
code—it’s Razor!

Views | 25

Hello, Razor!
Razor is a syntax that allows you to combine code and content in a fluid and expressive
manner. Though it introduces a few symbols and keywords, Razor is not a new lan-
guage. Instead, Razor lets you write code using languages you probably already know,
such as C# or Visual Basic .NET.

Razor’s learning curve is very short, because it lets you work with your existing skills
rather than requiring you to learn an entirely new language. Therefore, if you know
how to write HTML and .NET code using C# or Visual Basic .NET, you can easily
write markup such as the following:

<div>This page rendered at @DateTime.Now</div>

Which produces the following output:

<div>This page rendered at 12/7/1941 7:38:00 AM</div>

This example begins with a standard HTML tag (the <div> tag), followed by a bit of
“hardcoded” text, then a bit of dynamic text rendered as the result of referencing a .NET
property (System.DateTime.Now), followed by the closing (</div>) tag.

Razor’s intelligent parser allows developers to be more expressive with their logic and
make easier transitions between code and markup. Though Razor’s syntax might be
different from other markup syntaxes (such as the Web Forms syntax), it’s ultimately
working toward the same goal: rendering HTML.

To illustrate this point, take a look at the following snippets that show examples of
common scenarios implemented in both Razor markup and Web Forms markup.

Here is an if/else statement using Web Forms syntax:

<% if(User.IsAuthenticated) { %>
 Hello, <%: User.Username %>!
<% } %>
<% else { %>
 Please <%: Html.ActionLink("log in") %>
<% } %>

and using Razor syntax:

@if(User.IsAuthenticated) {
 Hello, @User.Username!
} else {
 Please @Html.ActionLink("log in")
}

And here is a foreach loop using Web Forms syntax:

<% foreach(var auction in auctions) { %>
 <a href="<%: auction.Href %>"><%: auction.Title %>
<% } %>

26 | Chapter 1: Fundamentals of ASP.NET MVC

and using Razor syntax:

@foreach(var auction in auctions) {
 @auction.Title
}

Though they use a different syntax, the two snippets for each of the examples render
the same HTML.

Differentiating Code and Markup
Razor provides two ways to differentiate code from markup: code nuggets and code
blocks.

Code nuggets

Code nuggets are simple expressions that are evaluated and rendered inline. They can
be mixed with text and look like this:

 Not Logged In: @Html.ActionLink("Login", "Login")

The expression begins immediately after the @ symbol, and Razor is smart enough to
know that the closing parenthesis indicates the end of this particular statement.

The previous example will render this output:

Not Logged In: Login

Notice that code nuggets must always return markup for the view to render. If you
write a code nugget that evaluates to a void value, you will receive an error when the
view executes.

Code blocks

A code block is a section of the view that contains strictly code rather than a combination
of markup and code. Razor defines code blocks as any section of a Razor template
wrapped in @{ } characters. The @{ characters mark the beginning of the block, followed
by any number of lines of fully formed code. The } character closes the code block.

Keep in mind that the code within a code block is not like code in a code nugget. It is
regular code that must follow the rules of the current language. For example, each line
of code written in C# must include a semicolon (;) at the end, just as if it lived within
a class in a .cs file.

Here is an example of a typical code block:

@{
 LayoutPage = "~/Views/Shared/_Layout.cshtml";
 View.Title = "Auction " + Model.Title;
}

Views | 27

Code blocks do not render anything to the view. Instead, they allow you to write
arbitrary code that requires no return value.

Also, variables defined within code blocks may be used by code nuggets in the same
scope. That is, variables defined within the scope of a foreach loop or similar container
will be accessible only within that container, while variables that are defined at the top
level of a view (not in any kind of container) will be accessible to any other code blocks
or code nuggets in that same view.

To better clarify this, take a look at a view with a few variables defined at different
scopes:

@{
 // The title and bids variables are
 // available to the entire view
 var title = Model.Title;
 var bids = Model.Bids;
}

<h1>@title<h1>
<div class="items">
<!-- Loop through the objects in the bids variable -->
@foreach(var bid in bids) {
 <!-- The bid variable is only available within the foreach loop -->
 <div class="bid">
 @bid.Username
 @bid.Amount
 </div>
}

<!-- This will throw an error: the bid variable does not exist at this scope! -->
<div>Last Bid Amount: @bid.Amount</div>
</div>

Code blocks are a means to execute code within a template and do not render anything
to the view. In direct contrast to the way that code nuggets must provide a return value
for the view to render, the view will completely ignore values that a code block returns.

Layouts
Razor offers the ability to maintain a consistent look and feel throughout your entire
website through layouts. With layouts, a single view acts as a template for all other
views to use, defining the site-wide page layout and style.

A layout template typically includes the primary markup (scripts, CSS stylesheets, and
structural HTML elements such as navigation and content containers), specifying lo-
cations within the markup in which views can define content. Each view in the site then
refers to this layout, including only the content within the locations the layout has
indicated.

Take a look at a basic Razor layout file (_Layout.cshtml):

28 | Chapter 1: Fundamentals of ASP.NET MVC

<!DOCTYPE html>

<html lang="en">
 <head>
 <meta charset="utf-8" />
 <title>@View.Title</title>
 </head>
 <body>
 <div class="header">
 @RenderSection("Header")
 </div>

 @RenderBody()

 <div class="footer">
 @RenderSection("Footer")
 </div>
 </body>
</html>

The layout file contains the main HTML content, defining the HTML structure for the
entire site. The layout relies on variables (such as @View.Title) and helper functions
like @RenderSection([Section Name]) and @RenderBody() to interact with individual
views.

Once a Razor layout is defined, views reference the layout and supply content for the
sections defined within the layout.

The following is a basic content page that refers to the previously defined
_Layout.cshtml file:

@{ Layout = "~/_Layout.cshtml"; }

@section Header {
 <h1>EBuy Online Auction Site<h1>
}

@section Footer {
 Copyright @DateTime.Now.Year
}

<div class="main">
 This is the main content.
</div>

Razor layouts and the content views that depend on them are assembled together like
puzzle pieces, each one defining one or more portions of the entire page. When all the
pieces get assembled, the result is a complete web page.

Views | 29

Partial Views
While layouts offer a helpful way to reuse portions of markup and maintain a consistent
look and feel throughout multiple pages in your site, some scenarios may require a
more focused approach.

The most common scenario is needing to display the same high-level information in
multiple locations in a site, but only on a few specific pages and in different places on
each of those pages.

For instance, the Ebuy auction site may render a list of compact auction details—
showing only the auction’s title, current price, and perhaps a thumbnail of the item—
in multiple places in the site such as the search results page as well as a list of featured
auctions on the site’s homepage.

ASP.NET MVC supports these kinds of scenarios through partial views.

Partial views are views that contain targeted markup designed to be rendered as part
of a larger view. The following snippet demonstrates a partial view to display the com-
pact auction details mentioned in the scenario above:

@model Auction

<div class="auction">

 <h4>@Model.Title</h4>
 <p>Current Price: @Model.CurrentPrice</p>
</div>

To render this snippet as a partial view, simply save it as its own standalone view file
(e.g. /Views/Shared/Auction.cshtml) and use one of ASP.NET MVC’s HTML Helpers
—Html.Partial()—to render the view as part of another view.

To see this in action, take a look at the following snippet, which iterates over a collection
of auction objects and uses the partial view above to render the HTML for each auction:

@model IEnumerable<Auction>

<h2>Search Results</h2>

@foreach(var auction in Model) {
 @Html.Partial("Auction", auction)
}

Notice that the first parameter to the Html.Partial() helper method is a string con-
taining the name of the view without its extension.

This is because the Html.Partial() helper method is just a simple layer on top of
ASP.NET MVC’s powerful view engine, which renders the view very similar to what
occurs after a controller action calls the View() method to return a view action result:
the engine uses the view name to locate and execute the appropriate view.

30 | Chapter 1: Fundamentals of ASP.NET MVC

In this way, partial views are developed and executed almost exactly like any other kind
of view. The only difference is that they are designed to be rendered as part of a larger
view.

The second parameter (auction in the example above) accepts the partial view’s model,
just like the model parameter in the View(_View Name_, _[Model]_) controller helper
method. This second model parameter is optional; when it’s not specified, it defaults
to the model in the view from which the Html.Partial() helper was called. For instance,
if the second auction parameter were omitted in the example above, ASP.NET MVC
would pass the view’s Model property (of type IEnumerable<Auction>) in its place.

The examples above show how partial views can provide reusable sec-
tions of markup that can help reduce duplication and complexity in your
views.

Though useful, this is only one way to take advantage of partial views—
“Partial Rendering” on page 111 shows how to take advantage of partial
views to provide a simple and effective way to enhance your site with
AJAX.

Displaying Data
The MVC architecture depends on the model, view, and controller all remaining sep-
arate and distinct, while still working together to accomplish a common goal. In this
relationship, it is the controller’s job to be the “traffic cop,” coordinating various parts
of the system to execute the application’s logic. This processing typically results in some
kind of data that needs to be relayed to the user. Alas, it is not the controller’s job to
display things to the user—that is what views are for! The question then becomes, how
does the controller communicate this information to the view?

ASP.NET MVC offers two ways to communicate data across model-view-controller
boundaries: ViewData and TempData. These objects are dictionaries available as proper-
ties in both controllers and views. Thus, passing data from a controller to a view can
be as simple as setting a value in the controller, as in this snippet from
HomeController.cs:

public ActionResult About()
{
 ViewData["Username"] = User.Identity.Username;

 ViewData["CompanyName"] = "EBuy: The ASP.NET MVC Demo Site";
 ViewData["CompanyDescription"] =
 "EBuy is the world leader in ASP.NET MVC demoing!";

 return View("About");
}

and referencing the value in the view, as in this portion of the About.cshtml file:

Views | 31

<h1>@ViewData["CompanyName"]</h1>
<div>@ViewData["CompanyDescription"]</div>

Cleaner access to ViewData values via ViewBag

ASP.NET MVC controllers and views that expose the ViewData property also expose a
similar property named ViewBag. The ViewBag property is simply a wrapper around the
ViewData that exposes the ViewData dictionary as a dynamic object.

For example, any references to values in the ViewData dictionary in the preceding snip-
pets can be replaced with references to dynamic properties on the ViewBag object, as in:

public ActionResult About()
{
 ViewBag.Username = User.Identity.Username;

 ViewBag.CompanyName = "EBuy: The ASP.NET MVC Demo Site";
 ViewBag.CompanyDescription = "EBuy is the world leader in ASP.NET MVC demoing!";

 return View("About");
}

and:

<h1>@ViewBag.CompanyName</h1>
<div>@ViewBag.CompanyDescription</div>

View models

In addition to its basic dictionary behavior, the ViewData object also offers a Model
property, which represents the primary object that is the target of the request. Though
the ViewData.Model property is conceptually no different from ViewData["Model"], it
promotes the model to a first-class citizen and recognizes it as more important than the
other data that might be in the request.

For example, the previous two snippets showed that the CompanyName and CompanyDe
scription dictionary values are clearly related to each other and represent a great
opportunity to wrap together in a model.

Take a look at CompanyInfo.cs:

public class CompanyInfo
{
 public string Name { get; set; }
 public string Description { get; set; }
}

the About action in HomeController.cs:

public ActionResult About()
{
 ViewBag.Username = User.Identity.Username;

 var company = new CompanyInfo {
 Name = "EBuy: The ASP.NET MVC Demo Site",

32 | Chapter 1: Fundamentals of ASP.NET MVC

 Description = "EBuy is the world leader in ASP.NET MVC demoing!",
 };

 return View("About", company);
}

and this snippet from About.cshtml:

@{ var company = (CompanyInfo)ViewData.Model; }

<h1>@company.Name</h1>
<div>@company.Description</div>

In these snippets, the references to the CompanyName and CompanyDescription dictionary
values have been merged into an instance of a new class named CompanyInfo (com
pany). The updated HomeController.cs snippet also shows an overload of the View()
helper method in action. This overload continues to accept the name of the desired
view as the first parameter. The second parameter, however, represents the object that
will be assigned to the ViewData.Model property.

Now, instead of setting the dictionary values directly, company is passed as the model
parameter to the View() helper method and the view (About.cshtml) can get a local
reference to the company object and access its values.

Strongly typed views

By default, the Model property available within Razor views is dynamic, which means
that you are able to access its values without needing to know its exact type.

However, given the static nature of the C# language and Visual Studio’s excellent In-
telliSense support for Razor views, it is often beneficial to specify the type of the page’s
model explicitly.

Luckily, Razor makes this pretty easy—simply use the @model keyword to indicate the
model’s type name:

@model Auction

<h1>@Model.Name</h1>
<div>@Model.Description</div>

This example modifies the previous Auction.cshtml example, avoiding the need to add
an intermediary variable to cast the ViewData.Model into. Instead, the first line uses the
@model keyword to indicate that the model’s type is CompanyInfo, making all references
to ViewData.Model strongly typed and directly accessible.

HTML and URL Helpers
The primary goal of most web requests is to deliver HTML to the user, and as such,
ASP.NET MVC goes out of its way to help you create HTML. In addition to the Razor
markup language, ASP.NET MVC also offers many helpers to generate HTML simply

Views | 33

and effectively. The two most important of these helpers are the HtmlHelper and Url
Helper classes, exposed in controllers and views as the Html and Url properties,
respectively.

Here are some examples of the two helpers in action:

@Html.ActionLink("Homepage", "Index", "Home")

The rendered markup looks like this:

 Homepage

For the most part, the HtmlHelper and UrlHelper types don’t have many methods of
their own and are merely shims that the framework attaches behaviors to via extension
methods. This makes them an important extensibility point, and you’ll see references
to the two types throughout this book.

Though there are far too many methods to list in this section, the one thing to take
away at this point is: the HtmlHelper class helps you generate HTML markup and the
UrlHelper class helps you generate URLs. Keep this in mind, and turn to these helpers
anytime you need to generate URLs or HTML.

Models
Now that we’ve covered controllers and views, it’s time to complete the definition of
MVC by discussing models, which are usually considered the most important part of
the MVC architecture. If they are so important, why are they the last to be explained?
Well, the model layer is notoriously difficult to explain because it is the layer that
contains all of the business logic for the application—and that logic is different for every
application.

From a more technical standpoint, the model typically consists of normal classes that
expose data in the form of properties and logic in the form of methods. These classes
come in all shapes and sizes, but the most common example is the “data model” or
“domain model,” whose primary job is to manage data.

For example, take a look at the following snippet, which shows the Auction class—the
model that will drive the entire EBuy reference application:

public class Auction
{
 public long Id { get; set; }
 public string Title { get; set; }
 public string Description { get; set; }
 public decimal StartPrice { get; set; }
 public decimal CurrentPrice { get; set; }
 public DateTime StartTime { get; set; }
 public DateTime EndTime { get; set; }
}

34 | Chapter 1: Fundamentals of ASP.NET MVC

Though we will add various functionality such as validation and behavior to the Auc
tion class throughout this book, this snippet is still very representative of a model in
that it defines the data that makes up an “auction.”

And, just as we will build on the Auction class throughout the book, be on the lookout
for more kinds of classes (such as services and helpers) that all work together to make
up the “Model” in “MVC.”

Putting It All Together
So far we’ve described all the parts that make up an ASP.NET MVC application, but
the discussion has focused on the code that Visual Studio generates for us as part of
the project template. In other words, we haven’t actually made anything yet. So let’s
change that!

This section will focus on how to implement a feature from scratch, creating everything
you need to accomplish an example scenario: displaying an auction. As a recap, every
ASP.NET MVC request requires at least three things: a route, a controller action, and
a view (and, optionally, a model).

The Route
To figure out the routing pattern that you’d like to use for a given feature, you must
first determine what you’d like your URL for that feature to look like. In this example
we are going to choose a relatively standard URL of Auctions/Details/[Auction ID]; for
example, http://www.ebuy.biz/Auctions/Details/1234.

What a nice surprise—the default route configuration already supports this URL!

The Controller
Next, we’ll need to create a controller to host the actions that will process the request.

Since controllers are merely classes that implement the ASP.NET MVC controller
interface, you could manually add a new class to the Controllers folder that derives
from System.Web.Mvc.Controller and begin adding controller actions to that class.
However, Visual Studio offers a bit of tooling to take most of the work out of creating
new controllers: simply right-click on the Controllers folder and choose the Add > Con
troller... menu option, which will pop up the Add Controller dialog shown
in Figure 1-8.

Putting It All Together | 35

Figure 1-8. Adding a controller to an ASP.NET MVC application

The Add Controller dialog begins by asking for the name of the new controller class
(in this case, we’ll call it AuctionsController) and follows up by asking which scaffold-
ing template you’d like to use, along with providing a set of options to give you a little
bit of control over how ASP.NET MVC is going to generate the new controller class.

Controller templates

The Add Controller dialog offers several different controller templates that can help
you get started developing your controllers more quickly:

Empty MVC controller
The default template (“Empty MVC controller”) is the simplest one. It doesn’t offer
any customization options because, well, it’s too simple to have any options! It
merely creates a new controller with the given name that has a single generated
action named Index.

MVC controller with read/write actions and views, using Entity Framework
The “MVC controller with read/write actions and views, using Entity Framework”
template is just as impressive as it sounds. This template starts with the same output
as the “MVC controller with empty read/write actions” template (see below) and
then kicks it up a notch, generating code to help you access objects stored in an
Entity Framework context and even generating Create, Edit, Details, and Delete
views for those objects! This template is a great kick-start when your project uses
Entity Framework to access your data, and in some cases the code it generates may
be all that you need to support the Read, Edit, Update, and Delete operations for
that data.

36 | Chapter 1: Fundamentals of ASP.NET MVC

MVC controller with empty read/write actions
The next option—“MVC controller with empty read/write actions”—generates
the same code as the “Empty MVC controller” template, but adds a few more
actions that you’ll most likely need in order to expose standard “data access” op-
erations: Details, Create, Edit, and Delete.

API controller templates
The final three templates—“Empty API controller,” “API controller with empty
read/write actions,” and “API controller with read/write actions and views, using
Entity Framework”—are the Web API counterparts to the MVC controller tem-
plates of the same names. We will cover these templates in more detail when we
discuss ASP.NET MVC’s Web API functionality in Chapter 6.

An interesting thing to notice about the controller code that Visual Stu-
dio generates is that the Index and Details actions each have only one
method, while the Create, Edit, and Delete actions each have two over-
loads—one decorated with an HttpPost Attribute, and one without.

This is because Create, Edit, and Delete all involve two requests in order
to complete: the first request returns the view that the user can interact
with to create the second request, which actually performs the desired
action (creating, editing, or deleting data). This is a very common in-
teraction on the Web, and you’ll see several examples of it throughout
this book.

Unfortunately, we have not yet reached the point in the book where we are able to use
Entity Framework, so for now you can choose the “MVC controller with empty read/
write actions” option and click Add to have Visual Studio generate the next controller
class.

After Visual Studio is done creating the AuctionsController, find the Details action
and update it so it creates a new instance of the Auction model shown earlier and passes
that instance to the view using the View(object model) method.

Yes, this is a silly example. Normally, you’d retrieve this information from somewhere
such as a database—and we will show you how to do just that in Chapter 4—but for
this example, we are using hardcoded values:

public ActionResult Details(long id = 0)
{
 var auction = new Ebuy.Website.Models.Auction {
 Id = id,
 Title = "Brand new Widget 2.0",
 Description = "This is a brand new version 2.0 Widget!",
 StartPrice = 1.00m,
 CurrentPrice = 13.40m,
 StartTime = DateTime.Parse("6-15-2012 12:34 PM"),
 EndTime = DateTime.Parse("6-23-2012 12:34 PM"),
 };

Putting It All Together | 37

 return View(auction);
}

The View
With a Details controller action in place and providing data to a view, it’s time to create
that view.

As with the controller class in the previous section, you are free to manually add new
views (and folders to store them in) directly to the Views folder; however, if you’re the
type who prefers a bit more automation, Visual Studio offers yet another wizard to do
the work of creating the views—and the folders they live in—for you.

To add a view using the Visual Studio wizard, simply right-click anywhere within the
code of the action in a controller and choose the Add View option, which will display
the Add View wizard (Figure 1-9). This is actually quite similar to the Add Controller
dialog you just used to generate the AuctionsController.

Figure 1-9. Adding a view to an ASP.NET MVC application

The Add View dialog starts off by asking what you’d like to call the new view, defaulting
to the name of the controller action from which you triggered the dialog (e.g., Details
when called from the Details action). Then, the dialog allows you to choose the syntax

38 | Chapter 1: Fundamentals of ASP.NET MVC

(aka “View Engine”) that you’d like to use when authoring the view. This value defaults
to the syntax you chose when you created the web project, but (as promised earlier)
you are free to switch between syntaxes if it suits you, perhaps using Razor for some
views and the “ASPX” Web Forms syntax for others.

As in the Add Controller dialog, the rest of the options in the Add View wizard have
to do with the code and markup that Visual Studio is going to generate when it creates
the new view. For example, you can choose to have a strongly typed view model (as
discussed in “Strongly typed views” on page 33) by selecting the model type from the
list of classes in your project, or typing the type name in yourself. If you choose a
strongly typed view, the wizard also lets you choose a template (e.g., Edit, Create,
Delete), which analyzes the model type and generates the appropriate form fields for
that type.

This is a great way to get up and running quickly and can save you quite a bit of typing,
so let’s take advantage of it by checking the “Create a strongly typed view” checkbox,
choosing our Auction model from the “Model class” drop-down list, and selecting the
Details scaffold template.

Visual Studio will only include in the “Model class” drop-down classes
that it has been able to compile successfully, so if you do not see the
Auction class you created earlier, try to compile the solution and then
open the Add View dialog again.

Finally, you’ll need to tell Visual Studio whether this view is a partial view or should
refer to a layout. When you’re using the ASPX Web Forms syntax to author your pages
and you choose the “Create as a partial view” option, Visual Studio will create it as a
User Control (.ascx) rather than a full page (.aspx). When using the Razor syntax,
however, the “Create as a partial view” option has very little effect—Visual Studio
creates the same type of file (.cshtml or .vbhtml) for both partial views and full pages.
In the case of Razor syntax, the only effect this checkbox has is on the markup that gets
generated inside of the new view.

For the purposes of this demo, you can leave the defaults alone: “Create as a partial
view” should remain unchecked, while “Use a layout or master page” should be
checked, with the layout text box left empty (see Figure 1-10).

Putting It All Together | 39

Figure 1-10. Customizing your view

When you’re ready, click the Add button to have Visual Studio add the new view to
your project. After it’s finished, you will see that Visual Studio has analyzed the Auc
tion model and generated the required HTML markup—complete with references to
HTML helpers such as Html.DisplayFor—to display all of the Auction fields.

At this point, you should be able to run your site, navigate to the controller action
(e.g., /auctions/details/1234), and see the details of the Auction object rendered in your
browser, as shown in Figure 1-11.

It sure isn’t pretty, but remember, the HTML that Visual Studio generates is just a
starting point to help you save time. Once it’s generated, you can feel free to change it
however you like.

Congratulations—you have just created your first controller action and view from
scratch!

40 | Chapter 1: Fundamentals of ASP.NET MVC

Figure 1-11. The new view rendered in a browser

Authentication
So far we’ve covered just about everything you need to know in order to create an
ASP.NET MVC application, but there is one more very important concept that you
should know about before you continue with the rest of the book: how to protect your
site by requiring users to authenticate themselves before they can access certain con-
troller actions.

You may have noticed that the Internet Application template generates an AccountCon
troller—along with some views to support it—which provides a full implementation
of forms authentication right out of the box. This is an acknowledgment that security
and authentication are crucial to just about every web application and that, at some
point, you’ll probably want to lock down some or all of your site to restrict access to
specific users (or groups of users) and prevent unauthorized access by all other visitors.
So, since you’ll most likely need it anyway, why shouldn’t Visual Studio generate the
controller and views to get you started?

Authentication | 41

The traditional tactic used to lock down ASP.NET applications is to apply authorization
settings to specific pages or directories via web.config configuration settings. Unfortu-
nately, this approach does not work in ASP.NET MVC applications because ASP.NET
MVC applications rely on routing to controller actions, not to physical pages.

Instead, the ASP.NET MVC Framework provides the AuthorizeAttribute, which can
be applied to individual controller actions—or even entire controllers—to restrict ac-
cess only to authenticated users or, alternatively, to specific users and user roles.

Take a look at the Profile action on the UsersController that we’ll create later in the
book, which displays the profile information for the current user:

public class UsersController
{
 public ActionResult Profile()
 {
 var user = _repository.GetUserByUsername(User.Identity.Name);
 return View("Profile", user);
 }
}

Clearly, this action will fail if the user is not logged in. Applying the AuthorizeAttri
bute to this controller action causes any requests made to this action by users who are
not authenticated to be rejected:

public class UsersController
{
 [Authorize]
 public ActionResult Profile()
 {
 var user = _repository.GetUserByUsername(User.Identity.Name);
 return View("Profile", user);
 }
}

If you’d like to be even more specific about the users who can access the controller
action, the AuthorizeAttribute exposes the Users property, which accepts a comma-
delimited whitelist of acceptable usernames, as well as the Roles property, which
accepts a list of allowed roles.

Now, when nonauthenticated users attempt to access this URL, they will instead be
redirected to the login URL: the Login action on the AccountController.

The AccountController
In order to help you get a jump-start on your application, the ASP.NET MVC Internet
Application project template includes the AccountController, which contains control-
ler actions that leverage the ASP.NET Membership Providers.

The AccountController provides quite a bit of functionality out of the box, along with
the views to support each controller action. This means that your brand new ASP.NET

42 | Chapter 1: Fundamentals of ASP.NET MVC

MVC application already contains the following fully implemented features, without
any coding on your part:

• Login

• Logoff

• New user registration

• Change password

Thus, when you apply the AuthorizeAttribute to any of your controller actions, users
are redirected to the existing login page that the project template creates for you (see
Figure 1-12).

Figure 1-12. The default login page

And, when users need to create a new account in order to log in, they can click the
Register link to view the prebuilt Registration page (Figure 1-13).

Plus, if you don’t like the out-of-the-box views, they are easily customizable to meet
your needs.

As this section shows, not only does the ASP.NET MVC Framework make it very easy
to protect controller actions, but the default project template implements just about
everything users will need to authenticate themselves on your site!

Authentication | 43

Figure 1-13. The default registration page

Summary
ASP.NET MVC leverages the time-tested Model-View-Controller architecture pattern
to provide a website development framework that encourages loosely coupled archi-
tecture and many other popular object-oriented programming patterns and practices.

The ASP.NET MVC Framework gets you on the ground running right from the start
with helpful project templates and a “convention over configuration” approach that
cuts down on the amount of configuration required to create and maintain your ap-
plication, freeing up more of your time so you can be more productive in getting your
application completed and out the door.

This chapter introduced you to the fundamental concepts and basic skills that you need
in order to get up and running building ASP.NET MVC 4 applications. The rest of this
book will expand on this foundation, showing more features that the ASP.NET MVC
Framework has to offer to help you build robust, maintainable web applications using
the MVC architectural pattern.

So, what are you waiting for? Keep reading and learn everything you need to know to
build the greatest web applications you’ve ever written!

44 | Chapter 1: Fundamentals of ASP.NET MVC

CHAPTER 2

ASP.NET MVC for Web Forms
Developers

Even though their architectural approaches are quite different, ASP.NET MVC and
Web Forms actually have a lot in common. After all, they are both built on top of the
core ASP.NET APIs and the .NET Framework. So, if you are a Web Forms developer
looking to learn the ASP.NET MVC Framework, you’re already further ahead than you
may think!

In this chapter, we’ll compare and contrast the ASP.NET MVC and Web Forms Frame-
works to show how many of the concepts you use to build Web Forms applications
relate to the ASP.NET MVC way of doing things. Note that this chapter is geared toward
helping developers who are very familiar with the Web Forms Framework and want to
translate that knowledge over to ASP.NET MVC to get up and running more quickly.
If you are not very familiar with the Web Forms Framework, you may consider skipping
this chapter and moving along to the rest of the book.

It’s All Just ASP.NET
You may not have known it, but the framework you’ve been using to develop web pages
using the .NET Framework—what you probably call “ASP.NET"—can actually be
broken down into two parts: the visual user interface components (aka “Web Forms”)
and the nonvisual “backend” web components (aka “ASP.NET”). The two parts are
most easily broken down by their .NET namespaces: everything under the
System.Web.UI.* namespaces can be considered “Web Forms” and the rest of the Sys
tem.Web.* namespaces can be considered “ASP.NET.”

Like Web Forms, ASP.NET MVC (whose classes fall under the System.Web.Mvc.*
namespace) is built on top of the strong shoulders of the ASP.NET platform. As such,
the two frameworks can be both very similar and incredibly different, depending on
how you look at them. This section examines the similarities between the two frame-
works, while the rest of the chapter continues on to expose their numerous differences.

45

Tools, Languages, and APIs
For starters, both frameworks have access to the full extent of the .NET Framework
and everything it has to offer. Naturally, both frameworks rely on the .NET languages
of C# and Visual Basic .NET to interact with the .NET Framework, and can access
compiled assemblies developed with any other language that the .NET Framework
supports.

As a nice side effect, this feature makes your existing ASP.NET code highly reusable.
For instance, if you have an existing Web Forms application that accesses data stored
in XML files via the System.Xml API, you’ll most likely be able to reuse this code in an
ASP.NET MVC application with little or no modification.

It should also come as no surprise that you’ll use Visual Studio to edit ASP.NET MVC
websites and the projects they depend on, just like working with Web Forms applica-
tions (or any other .NET-based applications). You may even notice a few common
artifacts, such as web.config and Global.asax, both of which play a large role in both
ASP.NET MVC and Web Forms applications.

HTTP Handlers and Modules
Perhaps the most notable parts of the .NET Framework that ASP.NET MVC and Web
Forms share are HTTP handlers and HTTP modules. And, even though most classes in
the Web Forms API (the System.Web.UI namespace) simply won’t work in an ASP.NET
MVC application, HTTP handlers and modules are actually part of the core ASP.NET
(System.Web) API, so they are still quite functional in the context of an ASP.NET MVC
application. In fact, the ASP.NET MVC pipeline itself starts out by handling incoming
requests with an HTTP handler!

Be sure to read about all of the differences between the ASP.NET MVC
and Web Forms Frameworks in this chapter and consider how they
apply to HTTP handlers and modules. Though HTTP handlers and
modules themselves function just fine in an ASP.NET MVC application,
keep in mind that there are certain aspects—such as View State—that
will not work as expected.

Managing State
Managing state—the data related to a user—is an important part of any application,
and the stateless nature of the Web makes this a particularly complex task within web
applications.

To help deal with state management, ASP.NET Web Forms uses the View State mech-
anism, wherein state data for a request is serialized and stored in a hidden form field
that gets posted back to the server with every subsequent request. View State is such a
critical part of the Web Forms platform that nearly every page and component in the

46 | Chapter 2: ASP.NET MVC for Web Forms Developers

D
ow

n
lo

a
d
 f
ro

m
 W

o
w

!
e
B
o
o
k

<
w

w
w

.w
o
w

e
b
o
o
k.

co
m

>

framework relies on it at some point. The View State abstraction also has its detriments,
though, not the least of which is the fact that every request that contains View State
must be a form post and that the potential size of the data in this field—data that is
often not even necessary—can become quite large if it is not properly used.

As “State Management” on page 49 explains, ASP.NET MVC’s approach to state
management is dramatically different, and in most cases, it leaves state management
up to the developer to implement (or not). Most importantly, however, ASP.NET MVC
deserts View State completely.

Luckily, the ASP.NET platform offers several state management techniques in addition
to View State that continue to work in exactly the same way in ASP.NET MVC. Feel
free to use the ASP.NET cache and session state, or even the HttpContext.Items APIs,
just as you always have to help manage state in ASP.NET MVC applications.

Deployment and Runtime
ASP.NET MVC websites get deployed to the same kind of production environment as
Web Forms applications. This means that just about everything you’ve already learned
about deploying and maintaining an ASP.NET application—e.g., to do with Internet
Information Server (IIS), .NET application pools, tracing, troubleshooting, and even
deploying assemblies’ bin folders—continues to be quite relevant to deploying and
maintaining ASP.NET MVC applications. Though ASP.NET MVC and Web Forms
applications follow quite different architectures, in the end it’s all .NET code that gets
deployed and executed to process HTTP requests.

More Differences than Similarities
The number of similarities that the previous section pointed out may have you thinking
that ASP.NET MVC and Web Forms seem almost like the same framework. As you
analyze the two frameworks more deeply, however, it becomes quite clear that they are
much more different than their numerous similarities make them seem.

Table 2-1 illustrates this fact, comparing and contrasting a number of the frameworks’
core components.

Table 2-1. Fundamental differences between ASP.NET MVC and Web Forms

Web Forms ASP.NET MVC

Views tightly coupled to logic View and logic kept very separate

Pages (file-based URLs) Controllers (route-based URLs)

State management (View State) No automatic state management

Web Forms syntax Customizable syntax (Razor as default)

Server controls HTML helpers

More Differences than Similarities | 47

Web Forms ASP.NET MVC

Master pages Layouts

User controls Partial views

Please note that—especially since both frameworks are built on top of
the ASP.NET platform—in many ways it is quite possible to make Web
Forms behave more like ASP.NET MVC, and vice versa. That is to say,
you are certainly able to apply many MVC techniques to Web Forms
applications, and vice versa.

However, keep in mind that the comparisons made throughout this
chapter refer to the standard development practices for each framework,
i.e., the way you see things done in “official” channels such as the API
documentation and tutorials.

Separation of Application Logic and View Logic
The most important difference between ASP.NET MVC and Web Forms is the funda-
mental architectural concepts they each employ.

For instance, Web Forms was introduced (ironically enough) to provide a better sep-
aration of concerns than its predecessor, the ASP Framework, which effectively forced
developers to combine their business logic and markup in one single file. Web Forms
not only gave developers the ability to separate their business logic from their markup,
it also provided a much more powerful development platform—the .NET Frame-
work—in which to write the code that drove that business logic. But despite all of the
advantages that Web Forms provided over traditional ASP scripts, the Web Forms
architecture is still very much focused on “the page”; though the code is moved to
another location, it is still quite difficult to truly separate the business logic that handles
a request from the view that the user sees.

ASP.NET MVC, on the other hand, is built from the ground up on the concept of
separation of concerns driven by loosely coupled components that work together to
process a request. This approach not only benefits the development lifecycle by in-
creasing the ability to develop individual components in relative isolation, as well as
the ability to test those components, but it also provides the ability to handle requests
much more dynamically, as the next section demonstrates.

URLs and Routing
Under the Web Forms architecture, every one of a website’s external URLs is repre-
sented by a physical .aspx page, and each of those pages is tightly coupled to a single
optional class (aka “code-behind”) that contains the logic for the page. Pages cannot
dynamically choose the class they are bound to, and code-behind classes cannot render
alternate views.

48 | Chapter 2: ASP.NET MVC for Web Forms Developers

The Web Forms page-based approach stands in stark contrast to the way that ASP.NET
MVC handles requests, relying instead on potentially complex routing rules to dynam-
ically map external URLs to the appropriate controller actions and allowing the con-
troller action logic to dictate which view will be displayed to the user.

For instance, the pipeline may respond differently to a user navigating to the URL /
auctions/details/123 in her browser than it responds to an AJAX request to that same
URL, simply based on the fact that the AJAX request contains a special header that
identifies it as an AJAX request. In the case of the user navigating directly to the URL,
the server may return a full web page complete with HTML, JavaScript, and CSS,
whereas the server may respond to the AJAX request with only the serialized data for
the requested Auction and nothing more. What’s more, the server may even choose to
serialize the Auction data in different formats—e.g., JSON or XML—based on aspects
of the request such as the value of a query string parameter.

This kind of dynamic processing is simply not something that the Web Forms Frame-
work easily supports without resorting to the use of HTTP modules or HTTP handlers.

ASP.NET’s routing functionality is not limited to ASP.NET MVC ap-
plications—it can also be used to customize the URLs in a Web Forms
application.

The primary difference between the two uses is that routing is such a
critical component in the ASAP.NET MVC architecture that the frame-
work could not operate without it, whereas Web Forms applications
primarily use routing to avoid page file path restrictions and to gain
better control over their URLs.

State Management
Perhaps the most controversial difference between Web Forms and ASP.NET MVC is
how they each handle the user’s state across requests—specifically, ASP.NET MVC
ditches View State. How can something so fundamental be completely removed? The
short answer is that ASP.NET MVC embraces the stateless nature of the Web. However,
to gain a better idea of what this really means, let’s revisit the history of Web Forms
one more time.

In addition to providing a better development platform than ASP, one of the original
goals for the Web Forms Framework was to bring “thick,” native client application
development techniques—such as “drag and drop” and other Rapid Application
Development (RAD) concepts—to the Web.

In order to bring the Web and native client development experiences closer together,
Web Forms had to create a layer of abstraction on top of fundamental web development
concepts such as HTML markup and styling. One of the most significant concepts in
native application development is that a native application is stateful, which means that

More Differences than Similarities | 49

the application is aware of the state of its interaction with the user and can even persist
that state in order to reuse it across instances of the application.

The Web, on the other hand, is based on HTTP requests, with each request involving
a single client request and a single server response. A web server must handle every
HTTP request in isolation, unaware of any previous or future messages that may be
exchanged with a given client—in effect, preventing the server and the client from
having an on-going conversation in which the server is able to remember its previous
interactions with the client.

In order to apply stateful interactions across a stateless medium, an abstraction must
be applied—thus View State was born. Simply put, View State serializes the state of the
interaction between the client and the server and stores that information in a hidden
form field on every page that the server sends to the client. It’s then the client’s re-
sponsibility to pass along this serialized state on every subsequent request in the
conversation.

Rather than attempt to duplicate this abstraction, ASP.NET MVC embraces the state-
less nature of the Web and provides no out-of-the-box alternative to View State other
than server-side techniques such as caching and session state. Instead, ASP.NET MVC
expects requests to include all the data that the server needs in order to process them.
For instance, rather than retrieving an Auction from the database and serializing the
whole object down to the client so the client can send the Auction object back during
subsequent requests, ASP.NET MVC responses might reply with simply the Auction’s
ID. Then, subsequent requests will include just the Auction’s ID, which the ASP.NET
MVC controller processing the request uses to retrieve the Auction from the database
for each request.

Clearly, both approaches have their benefits and trade-offs. Whereas View State makes
many ongoing client interactions much simpler, the data contained within it can quickly
and easily become unwieldy, using up a significant amount of bandwidth for data that
may never be used. In other words, View State is meant to make developers’ lives easier
without their having to think about it, but it comes at the cost of increased bandwidth,
particularly when developers do not stop to consider what data their pages are storing.

ASP.NET MVC’s approach, on the other hand, may decrease page sizes, but at the cost
of increased backend processing and (perhaps) database requests in order to fully re-
hydrate the request’s state on the server.

Rendering HTML
Every website is different, but one thing all websites have in common is that their need
to generate HTML. One of the primary requirements for any web application frame-
work is the ability to help developers render that HTML as productively as possible.
Both ASP.NET MVC and Web Forms do this very well—but they do so in drastically
different ways.

50 | Chapter 2: ASP.NET MVC for Web Forms Developers

Web Forms views are easily distinguishable at a glance; just about everything in Web
Forms views—from <label> tags to partially rendered AJAX sections—uses server tags
to render HTML.

For instance, here’s an example of the HTML view of a typical Web Forms page:

<%@ Page Title="EBuy Auction Listings" Language="C#" AutoEventWireup="true"
 MasterPageFile="~/Layout.master"
 CodeBehind="Default.aspx.cs" Inherits="EBuy.Website._Default" %>
<%@ Register TagPrefix="uc" TagName="SecondaryActions"
 Src="~/Controls/SecondaryActions.ascx" %>

<asp:Content ID="HeaderContent" runat="server" ContentPlaceHolderID="HeadContent">
 <uc:SecondaryActions runat="server" />
</asp:Content>

<asp:Content ID="BodyContent" runat="server" ContentPlaceHolderID="MainContent">

<div class="container">
 <header>
 <h3>Auctions</h3>
 </header>

 <asp:Repeater id="auctions" runat="server" DataSource="<%# Auctions %>">

 <HeaderTemplate>
 <ul id="auctions">
 </HeaderTemplate>

 <ItemTemplate>

 <h4 class="title">
 <asp:HyperLink runat="server"
 NavigateUrl='<%# DataBinder.Eval(Container.DataItem, "Url") %>'>
 <%# Container.DataItem("title") %>
 </asp:HyperLink>
 </h4>

 </ItemTemplate>

 <FooterTemplate>

 </FooterTemplate>

 </asp:Repeater>

</div>

<script type="text/javascript"
 src="<%: RelativeUrl("~/scripts/jquery.js") %>"></script>
</asp:Content>

Now, compare that view to its Razor equivalent:

@model IEnumerable<Auction>

More Differences than Similarities | 51

@{
 ViewBag.Title = "EBuy Auction Listings";
}

@section HeaderContent {
 @Html.Partial("SecondaryActions")
}

<div class="container">
 <header>
 <h3>Auctions</h3>
 </header>

 <ul id="auctions">

 @foreach(var auction in Model.Auctions) {

 <h4 class="title">
 @auction.Title
 </h4>

 }

</div>

<script type="text/javascript" src="~/scripts/jquery.js"></script>

Both examples effectively render the same HTML, though they do it in very different
ways.

Notice how Razor takes a much more code-focused approach to HTML generation,
relying on code constructs like foreach loops rather than on special server-side HTML
tags such as the <asp:Repeater> control.

For instance, compare how Web Forms and Razor each render a simple anchor tag to
an arbitrary URL. Here’s how it’s done in Web Forms:

<asp:HyperLink runat="server" NavigateUrl='<%# auction.Url %>'>
 <%: auction.Title %>
</asp:HyperLink>

And in Razor:

@auction.Title

These two examples are representative of the differences in the approaches of the two
frameworks: Razor helps developers write HTML themselves, whereas Web Forms
views lean on declarative markup on server controls to render HTML for them.

HTML helpers versus server controls

Let’s revisit that last sentence for a second, because it’s pretty important. Using the
Web Forms abstraction, it is actually possible to write an entire web page without

52 | Chapter 2: ASP.NET MVC for Web Forms Developers

writing any HTML by using the full suite of server controls—HTML-rendering com-
ponents exposed in the form of declarative markup (such as the <asp:Hyperlink> tag
shown earlier) that the framework provides out of the box in order to take care of most
HTML needs.

Meanwhile, ASP.NET MVC’s approach to rendering markup is nearly the opposite of
the Web Forms approach, because it expects developers to write the bulk of the HTML
that gets sent to the browser. This doesn’t mean that ASP.NET MVC can’t help generate
some of that HTML, however. It does this through HTML helpers—HTML-rendering
logic exposed via extension methods that developers can call in their views to generate
HTML where it’s needed.

Logically, HTML helpers and server controls are practically the same: they are both
code-based components that are executed within a view in order to generate HTML so
developers don’t have to write it themselves.

The primary difference between HTML helpers and server controls comes in the tech-
nical implementation: whereas server controls are full-blown classes that derive from
a particular base class, HTML helpers are exposed in the form of extension methods
that extend the HtmlHelper object present in ASP.NET MVC views.

Yet another important difference between HTML helpers and server controls is some-
thing that we’ve covered a few times in this chapter already: most server controls lev-
erage View State in some way, whereas HTML helpers must function without it.

Outside of these differences, most of the common server controls that you’re used to
using have an HTML helper equivalent.

As opposed to the Web Forms <asp:HyperLink> tag, for instance, ASP.NET MVC offers
the Html.ActionLink() method. For example:

@Html.ActionLink(auction.Title, "Details", "Auction")

In this example we are passing three parameters to the Html.ActionLink() method—
the text to display to the user, and the names of the action (“Details”) and controller
(“Auction”) that should be used to build the URL—which renders the following:

My Auction Title

Unlike Web Forms, ASP.NET MVC doesn’t offer HTML helpers to generate all your
markup, but it does provide helpers to address the majority of nontrivial markup
generation scenarios.

In the same manner as Web Forms server controls, you are free to create
your own HTML helpers in order to encapsulate bits of highly reusable
rendering logic.

More Differences than Similarities | 53

Partial views versus user controls

Just as HTML helpers are equivalent to Web Forms server controls, ASP.NET MVC
partial views and Web Forms user controls are essentially the same thing: sections of a
view that are stored in separate files, allowing developers to break one view into many
smaller views and then reassemble them by combining them at runtime. Like user
controls, partial views offer a great way to encapsulate portions of a view, and even to
reuse those sections in multiple views.

Layouts versus master pages

Finally, we come to one of the most important and fundamental view concepts of all:
the ability to define the structure, layout, and overall theme of a site and share that
definition with all of the pages in the site. Yes, we’re referring to master pages, or as
they are called in the ASP.NET MVC world, layouts.

ASP.NET MVC layouts let developers specify a bunch of HTML that will be wrapped
around the content on every page. Like master pages, ASP.NET MVC layouts allow
developers to specify the content in multiple sections of the page. And, like Web Forms
content pages, ASP.NET MVC views typically indicate which layout they expect to
render within, but there is one major difference: this setting merely acts as a “recom-
mendation” to the ASP.NET MVC pipeline, which is free to change the view’s layout
to whatever it likes—including removing it completely to render the view without a
layout at all (as in the case of an AJAX request).

Authoring ASP.NET MVC Views Using Web Forms Syntax
Now that we’re reaching the end of the chapter, it’s time to let you in on a secret we’ve
been keeping from you: Razor is not the only way to author ASP.NET MVC views. In
fact, if you’re not quite ready to leave behind your Web Forms roots completely,
ASP.NET MVC gives you the option to continue writing ASP.NET MVC views using
the Web Forms syntax.

Now, before you get too excited about the prospect, keep in mind that you’ll only be
using the Web Forms syntax and not the Web Forms Framework. In other words,
everything in this chapter remains true no matter which syntax you are using: URL
routes still choose which controllers to run, which in turn choose which view to display;
ASP.NET server controls still will not work as you expect them to and, perhaps most
important, ViewState will remain unpopulated.

What all that really means is that authoring ASP.NET MVC views using the Web Forms
syntax effectively just means using the <% %> code syntax (as opposed to Razor’s @
syntax) within .aspx, .ascx, and even master files (.master). Master pages are the ex-
ception to this rule, however—they continue to work almost exactly as they work in
Web Forms applications, so ASP.NET MVC views can still take advantage of separating
site-wide markup from markup generated by individual content pages.

54 | Chapter 2: ASP.NET MVC for Web Forms Developers

Not only does ASP.NET MVC support views in both Razor and Web
Forms syntax, you can even mix and match them! For instance, a Razor
view may call @Html.Partial("MyPartial"), referring to the MyPartial
view, which happens to be a Web Forms user control. However, you
cannot mix and match layout styles: the Razor layout and Web Forms
master pages approaches are not compatible with each other, which
means that Razor views cannot refer to Web Forms master pages, and
Web Forms content pages cannot refer to Razor layouts.

A Word of Caution
Although we’ve spent the bulk of this chapter discussing how much of your current
Web Forms skill set you’ll be able to use when you start using ASP.NET MVC, you
need to consider that there is a downside to learning ASP.NET MVC after building
years of experience with Web Forms: for all of their commonality and similarities, the
architecture and goals that drive the ASP.NET MVC and Web Forms Frameworks are
fundamentally very different. And this can create problems if you are used to doing
things “the Web Forms way” and then you try to apply those approaches to ASP.NET
MVC.

As discussed earlier, the most important and “dangerous” difference between the
frameworks is that Web Forms tries its hardest to introduce and maintain state, while
ASP.NET MVC does not. From a technical standpoint, what this boils down to is that
you no longer have View State when you move from Web Forms to ASP.NET MVC,
and most of those “stateful” things that Web Forms does for you will not work.

Likewise, you need to be mindful of what kinds of things you were putting into View
State to begin with. Oftentimes, the convenience of View State turns it into a dumping
ground for data that will be reused across requests. When this is the case, you may need
to figure out “the ASP.NET MVC way” to accomplish the same task and find other
places to temporarily persist this data, such as session state or the application cache.

The next-largest difference is the way that you author view markup. Whereas Web
Forms relies on tag-based server controls and user controls, ASP.NET MVC leverages
HTML helpers and partial views. While conceptually very similar, the two approaches
are not interchangeable and they should not (and often cannot) be mixed together.

Using the Razor syntax helps to avoid this issue by making it very obvious that you are
not writing Web Forms pages. However, ASP.NET does offer the ASPX view engine,
which lets you use the Web Forms syntax to create ASP.NET MVC views. While the
ASPX view engine does a fine job at rendering HTML, if you are not careful you may
find yourself trying to use parts of the Web Forms Framework—much to your chagrin.
To avoid confusion by showing something that looks like Web Forms, all views shown
in this book will use the Razor syntax.

Though they are very real concerns, these issues should not keep you from learning
and using ASP.NET MVC, or even from using the ASPX view engine if you feel more

Authoring ASP.NET MVC Views Using Web Forms Syntax | 55

comfortable with the Web Forms syntax. Just keep in mind the concepts mentioned in
this chapter as you implement ASP.NET MVC functionality. If you keep asking your-
self, “Does this fit into the MVC approach?” or “Am I using the features of the ASP.NET
MVC framework to their full extent?” you should be able to fully capitalize on your
Web Forms skill set while avoiding these mistakes.

Summary
Because the ASP.NET MVC and Web Forms Frameworks share such a common base,
Web Forms developers have a real leg up when it comes to learning ASP.NET MVC.
This chapter demonstrated the similarities in the two frameworks, while also show-
casing how differently they handle certain scenarios. Later in the book, Appendix A
will show you how to capitalize on the core functionality the frameworks share, with
examples of how to easily migrate and port existing Web Forms applications to
ASP.NET MVC.

56 | Chapter 2: ASP.NET MVC for Web Forms Developers

CHAPTER 3

Working with Data

It’s rare to find an application that doesn’t deal with data in some way, so it’s probably
no surprise that ASP.NET MVC provides excellent support at all levels of the frame-
work to make working with data much easier. In this chapter, we’ll take a look at the
tools that provide that support and show you how to leverage them in your data-driven
scenarios by adding this functionality to the EBuy reference application.

Since EBuy is an auction site, the site’s most important scenario is allowing users to
create auction listings that contain the details of the items they would like to sell. So,
let’s take a look at how ASP.NET MVC can help us support this important scenario.

Building a Form
The concept of an HTML form is as old as the Web itself. Though browsers have gotten
more advanced, to the point that you can style an HTML form to look just about any
way you like and apply JavaScript to make it behave in ways you wouldn’t have believed
possible five years ago, underneath it all is still just a bunch of plain old form fields
ready to be populated and posted back to the server.

While ASP.NET MVC encourages you to author much of your HTML markup “by
hand,” the framework offers an array of HTML helpers to help generate HTML form
markup, such as Html.TextBox, Html.Password, and Html.HiddenField, just to name a
few. ASP.NET MVC also offers a few “smarter” helpers, such as Html.LabelFor and
Html.EditorFor, that dynamically determine the appropriate HTML based on the name
and type of the model property that is passed in.

It’s these helpers that we’ll leverage in the sample EBuy website to build the HTML
form that allows users to post to the AuctionsController.Create action to create new
auctions. To see these helpers in action, add a new view called Create.cshtml and pop-
ulate it with the following markup:

<h2>Create Auction</h2>

@using (Html.BeginForm()) {

57

 <p>
 @Html.LabelFor(model => model.Title)
 @Html.EditorFor(model => model.Title)
 </p>
 <p>
 @Html.LabelFor(model => model.Description)
 @Html.EditorFor(model => model.Description)
 </p>
 <p>
 @Html.LabelFor(model => model.StartPrice)
 @Html.EditorFor(model => model.StartPrice)
 </p>
 <p>
 @Html.LabelFor(model => model.EndTime)
 @Html.EditorFor(model => model.EndTime)
 </p>
 <p>
 <input type="submit" value="Create" />
 </p>
}

Then add the following actions to the controller to render this view:

 [HttpGet]
 public ActionResult Create()
 {
 return View();
 }

This view renders the following HTML to the browser:

<h2>Create Auction</h2>

<form action="/auction/create" method="post">
 <p>
 <label for="Title">Title</label>
 <input id="Title" name="Title" type="text" value="">
 </p>
 <p>
 <label for="Description">Description</label>
 <input id="Description" name="Description" type="text" value="">
 </p>
 <p>
 <label for="StartPrice">StartPrice</label>
 <input id="StartPrice" name="StartPrice" type="text" value="">
 </p>
 <p>
 <label for="EndTime">EndTime</label>
 <input id="EndTime" name="EndTime" type="text" value="">
 </p>
 <p>
 <input type="submit" value="Create">
 </p>
</form>

58 | Chapter 3: Working with Data

The user can then populate the values in this form and submit it to the /auctions/cre-
ate action. Though from the browser’s point of view it seems like the form is posting
back to itself (the URL to render this form initially is also /auctions/create), this is where
the second Create controller action with the HttpPostAttribute comes into play, telling
ASP.NET MVC that it is this overload that handles the POST action of a form post.

Once you’ve verified all this, it’s time to actually do something with those submitted
form values—but what?

Handling Form Posts
Before you can work with values that are getting posted to a controller, you first need
to retrieve them from the request. As you may remember from “Action Parame-
ters” on page 21, the simplest way is to use a model as an action parameter and, lucky
for us, we happen to have created a model already: refer back to the Auction class from
“Models” on page 34.

To bind to the Auction class we created earlier, simply specify a parameter of type
Auction as one of the Create controller action’s parameters:

[HttpPost]
public ActionResult Create(Auction auction)
{
 // Create Auction in database

 return View(auction);
}

The most important aspect of the Auction model at this point is the fact that the property
names (Title, Description, etc.) match the form field names that get posted to the
Create action. These property names are crucial, as ASP.NET MVC model binding
attempts to populate their values from the form fields with matching names.

If you run the application, submit your form post, and refresh the page, you’ll see that
the Auction model is populated with the values that you entered. For now, the action
just returns the populated auction parameter back to the view, which you might use
to display the form values back to the user to confirm his submission.

This is helpful because it gets us one step closer to actually achieving something useful
with our application, but there is still more that we need to do, starting with actually
saving the data.

Saving Data to a Database
Though the ASP.NET MVC Framework does not have any kind of data access built
directly into it, there are many popular .NET data access libraries that can help make
working with a database easier.

Saving Data to a Database | 59

Microsoft’s Entity Framework—also known as “EF"—is one such library. Entity
Framework is a simple and flexible object relational mapping (ORM) framework that
helps developers query and update data stored in a database in an object-oriented way.
What’s more, Entity Framework is actually part of the .NET Framework, with Micro-
soft’s full support and a wealth of available documentation to back it.

Entity Framework offers a few different approaches to define a data model and use that
model to access a database, but perhaps the most intriguing technique is an approach
labeled Code First. Code First development refers to the development mindset wherein
your application’s model is the central focus and primary driver behind everything that
happens during development.

Entity Framework Code First: Convention over Configuration
Using Code First development, database interaction is performed via the simple model
classes (aka Plain Old CLR Objects, or POCOs). Entity Framework’s Code First ap-
proach even goes so far as to generate a database schema from your model and use that
schema to create a database and its entities (tables, relations, etc.) when you run the
application.

Code First does this by following certain conventions that automatically evaluate the
various properties and classes that make up your model layer to determine how infor-
mation in those models should be saved and even how the relations between the various
model classes can be best represented in terms of database relationships.

For example, in the EBuy reference application, the Auction class maps to an Auc-
tions database table and each of its properties represent columns in that table. These
table and column names are derived automatically from the names of the class and its
members.

The Auction model shown earlier is pretty simple, but as the needs of our application
grow, so will the complexity of our model: we’ll add more properties, business logic,
and even relationships to other models. This is no concern for Entity Framework Code
First, however, because it is usually able to figure out these more complex models just
as easily as the simple models. Chapter 8 builds on the simple Auction model shown
in this chapter to add more realistic complexity and shows how Entity Framework Code
First is able cover these more advanced mappings—and also what to do when it can’t.

Creating a Data Access Layer with Entity Framework Code First
At the center of the Entity Framework Code First approach lies the Sys
tem.Data.Entity.DbContext class. It’s this class (or, rather, the classes that you create
that derive from this class) that acts as your gateway to the database, providing all of
the data-related actions you might need.

60 | Chapter 3: Working with Data

To begin using the DbContext class, you need to create your own class that derives from
it, which, as it turns out, is pretty easy:

using System.Data.Entity;

public class EbuyDataContext : DbContext
{
 public DbSet<Auction> Auctions { get; set; }
}

In this example (EbuyDataContext.cs), we created a custom data context class named
EbuyDataContext that derives from DbContext. This particular class defines a Sys
tem.Data.Entity.DbSet<T> property, where T is the entity that is going to be edited and
saved in the database. In the above example, we defined System.Data.Entity.DbSet<Auc
tion> to indicate that the application needs to save and edit instances of the Auction
class in the database. You can define more than one entity in the data context, though,
and as we progress, we’ll be adding more entities (or DbSet properties) to our EbuyDa
taContext class.

If creating a custom data context is easy, using it is even easier, as the following example
demonstrates. The following snippet revises the Create controller action to save the
posted Auction object to the database simply by adding the Auction object to the Ebuy
DataContext.Auctions collection and saving the changes:

[HttpPost]
public ActionResult Create(Auction auction)
{
 var db = new EbuyDataContext();
 db.Auctions.Add(auction);
 db.SaveChanges();

 return View(auction);
}

This time when you run the application and submit the populated form, the Auctions
table in the database will have a new row containing the information posted in the form.

If you continue to play with this example and experiment with some different values
in the form fields, you may start to notice that ASP.NET MVC’s model binding is very
forgiving, letting users enter just about anything and failing silently when it is unable
to convert the form post values to strong types (e.g., when the user enters “ABC” to
populate an int property). If you need more strict control over what kind of data gets
saved into your database, you must apply data validation to your model.

Validating Data
When it comes to data, there are usually a number of rules and constraints that apply,
such as fields that should never be empty or whose values need to be within a certain
range in order to be considered “valid.” Naturally, ASP.NET MVC recognizes such an
important concept by integrating it right into the processing of each request.

Validating Data | 61

As part of the process of executing a controller action, the ASP.NET MVC Framework
validates any data that is passed to that controller action, populating a ModelState object
with any validation failures it finds and passing that object to the controller. Then,
controller actions can query the ModelState to discover whether the request is valid and
react accordingly; for example, saving the valid object to the database, or returning the
user back to the original form to correct the validation errors from an invalid request.

Here is an example of AuctionsController.Create updated to check the ModelState
dictionary, applying the “save or correct” logic just described:

[HttpPost]
public ActionResult Create(Auction auction)
{
 if (ModelState.IsValid)
 {
 var db = new EbuyDataContext();
 db.Auctions.Add(auction);
 db.SaveChanges();
 return RedirectToAction("Index");
 }

 return View(auction);
}

Though it does a great job of it, the ASP.NET MVC Framework is not the only thing
that can add validation errors to ModelState. Developers are free to execute their own
logic to discover issues that the framework doesn’t catch and manually add those errors
directly using the ModelState.AddModelError(string key, string message) method.

Let’s say, for example, that we require auctions to last at least one day. In other words,
the auction’s EndTime must be greater than the current time + 1 day. The AuctionsCon
troller.Create action can explicitly check for this before proceeding in its attempt to
save the auction, and save a custom error message should this situation arise:

[HttpPost]
public ActionResult Create(Auction auction)
{
 if (auction.EndTime <= DateTime.Now.AddDays(1))
 {
 ModelState.AddModelError(
 "EndTime",
 "Auction must be at least one day long"
);
 }

 if (ModelState.IsValid)
 {
 var db = new EbuyDataContext();
 db.Auctions.Add(auction);
 db.SaveChanges();
 return RedirectToAction("Index");
 }

62 | Chapter 3: Working with Data

 return View(auction);
}

While this approach works quite well, it does tend to break the application’s separation
of concerns. Namely, controllers should not contain business logic such as this: busi-
ness logic belongs in the model. So, let’s move the business logic to the model!

Specifying Business Rules with Data Annotations
The practice of ensuring quality data—data validation—is such a common application
development task that it’s only natural for developers to turn to one of the many frame-
works available to help them define and execute data validation logic in the most ef-
fective way possible.

This need is so common, in fact, that Microsoft ships a very effective and easy-to-use
data validation API called Data Annotations in the core .NET Framework. As its name
implies, the Data Annotations API provides a set of .NET attributes that developers
can apply to data object class properties. These attributes offer a very declarative way
to apply validation rules directly to a model.

What’s more, ASP.NET MVC’s model binding provides support for data annotations
without any additional configuration. To see ASP.NET MVC data annotation support
in action, let’s walk through the process of applying validation to the Auction class. To
begin applying validation logic, first consider what you’d expect the values of the
Auction class’s properties to be. Which fields should be required? Do any of the fields
have particular ranges that would make them valid or invalid?

Required fields

Since an auction’s Title and Description are crucial for describing the item being sold,
we’ll apply the RequiredAttribute data annotation to those two fields to mark them as
fields that are required to have data in order to be considered valid:

[Required]
public string Title { get; set; }

[Required]
public string Description { get; set; }

In addition to marking a field as “Required,” you can also ensure that string values
meet a minimum length by applying the StringLengthAttribute. For example, we’ve
decided that auction titles should be kept short, enforcing a maximum of 50 characters:

[Required, StringLength(50)]
public string Title { get; set; }

Now if a user submits the form with a Title longer than 50 characters, ASP.NET MVC
model validation will fail.

Validating Data | 63

Valid ranges

Next, consider the auction’s starting price: it’s represented by the StartPrice property
using the decimal type. Since decimal is a value type, the StartPrice property will always
at least default to 0, so it is redundant to mark it as a required field. However, auction
starting prices have logic beyond just requiring a value: those values must never be
negative, because a negative starting price would mean that the seller would owe the
buyer money! To address this concern, apply the RangeAttribute to the StartPrice field
and specify a minimum value of 1. Since the RangeAttribute requires a maximum value,
specify an upper limit as well.

[Range(1, 10000]
public decimal StartPrice { get; set; }

This example shows a range using a double, but the RangeAttribute annotation also has
an overload (Range(Type type, string min, string max)) to support a range of any
type that implements IComparable and can be created by parsing or converting the string
values. A good example of this is validating a date range; for instance, guaranteeing
that a date is later than a certain point in time:

[Range(typeof(DateTime), "1/1/2012", "12/31/9999"]
public DateTime EndTime { get; set; }

This example ensures that the value of the EndTime property is at least later than January
1, 2012.

The .NET attribute parameters must be compile-time values and cannot
be evaluated at runtime, excluding the use of values such as Date
Time.Now to ensure a date in the future. Instead, we must settle on picking
an arbitrary date such as 1/1/2012, which may not ensure a date after
the time the form value is posted but can at least avoid dates in the
distant past.

This lack of accuracy is a trade-off we have chosen to be able to leverage
the RangeAttribute. If your situation demands greater accuracy, you will
have to fall back to the CustomValidationAttribute, which enables you
to execute arbitrary code to validate properties. While the ability to
execute arbitrary code via the CustomValidatorAttribute is certainly
powerful, it is a less declarative approach that limits the information
available to other components, such as the ASP.NET MVC client vali-
dation framework.

Custom error messages

Lastly, it’s important to note that all of the data annotations provide an ErrorMessage
property that you can use to specify an error message that will be shown to the user
instead of the default error message generated by the Data Annotations API. Go ahead
and specify a value for this property for each of the data annotations we’ve added to
the model.

64 | Chapter 3: Working with Data

The final class—updated to include all of the data annotations discussed in this
section—should look something like this:

public class Auction
{
 [Required]
 [StringLength(50,
 ErrorMessage = "Title cannot be longer than 50 characters")]
 public string Title { get; set; }

 [Required]
 public string Description { get; set; }

 [Range(1, 10000,
 ErrorMessage = "The auction's starting price must be at least 1")]
 public decimal StartPrice { get; set; }

 public decimal CurrentPrice { get; set; }
 public DateTime EndTime { get; set; }
}

Now that all of the validation logic is safely defined in the model, let’s jump back to
the controller and view and see how to display these validation errors to the user.

Displaying Validation Errors
You can tell that the validation rules you’ve added are working by setting a breakpoint
in the Create action, submitting invalid values, and inspecting the ModelState property
to see that the validation errors are, in fact, getting added. The fact that the controller
returns the Create view instead of adding the new auction and redirecting you to an-
other page is further proof that your validation rules are correct and the validation
framework is working. The problem is, though the Create view may show the invalid
fields with a red border to show that they are invalid, it still doesn’t show any of the
error messages to indicate to the user exactly what went wrong. So, let’s take care of
that!

As a refresher, this is what the markup for the Title property currently looks like:

<p>
 @Html.LabelFor(model => model.Title)
 @Html.EditorFor(model => model.Title)
 @ViewData.ModelState["Title"]
</p>

What we need to do is add one more line to that markup to display any Title-related
validation messages that may occur. The simplest way to find out if the Title property
has any validation errors is to query ModelState directly—we can get to it via View
Data.ModelState, and ViewData.ModelState["Title"] returns an object that contains a
collection of errors that apply to the Title property.

You can then iterate over this collection to render the error messages to the page:

Validating Data | 65

<p>
 @Html.LabelFor(model => model.Title)
 @Html.EditorFor(model => model.Title)
 @foreach(var error in ViewData.ModelState["Title"].Errors)
 {
 @error.ErrorMessage
 }
</p>

Though this works just fine, ASP.NET MVC offers an even better approach to render
all of the errors for a given property: the Html.ValidationMessage(string modelName)
helper. The Html.ValidationMessage() helper lets you replace the entire foreach loop
shown above with a single method call to accomplish the same result:

@Html.ValidationMessageFor(model => model.Title)

Add a call to the Html.ValidationMessage() for each of the properties in your model.
ASP.NET MVC will now render all of the validation issues that may have occurred,
right inline with the form fields to which they apply.

In addition to the property-level Html.ValidationMessage() helper, ASP.NET MVC also
provides the Html.ValidationSummary() helper. Html.ValidationSummary() lets you ren-
der all of the validation exceptions for the form in one place (e.g., at the top of the
form), to give the user a summary of all the issues she needs to correct in order to submit
the form successfully.

This helper is incredibly simple to use—just make a call to Html.ValidationSummary()
anywhere you’d like the summary to appear:

@using (Html.BeginForm())
{
 @Html.ValidationSummary()

 <p>
 @Html.LabelFor(model => model.Title)
 @Html.EditorFor(model => model.Title)
 @Html.ValidationMessageFor(model => model.Title)
 </p>

 <!-- The rest of the form fields... -->
}

Now, when you submit invalid form field values, you’ll see any error messages in two
places (as in Figure 3-1): in the validation summary (from the call to Html.Validation
Summary()) and next to the value itself (from the call to Html.ValidationMessage()).

66 | Chapter 3: Working with Data

Figure 3-1. Showing errors via the Html.ValidationSummary() helper

If you’d like to avoid displaying duplicate error messages, you can modify the calls to
Html.ValidationMessage() and specify a shorter, custom error message such as a simple
asterisk:

<p>
 @Html.LabelFor(model => model.Title)
 @Html.EditorFor(model => model.Title)
 @Html.ValidationMessageFor(model => model.Title, "*")
</p>

Here is the full markup for the Create view after we’ve applied all of the validation
markup:

<h2>Create Auction</h2>

@using (Html.BeginForm())
{
 @Html.ValidationSummary()

 <p>
 @Html.LabelFor(model => model.Title)
 @Html.EditorFor(model => model.Title)
 @Html.ValidationMessageFor(model => model.Title, "*")
 </p>
 <p>
 @Html.LabelFor(model => model.Description)
 @Html.EditorFor(model => model.Description)
 @Html.ValidationMessageFor(model => model.Description, "*")
 </p>
 <p>
 @Html.LabelFor(model => model.StartPrice)
 @Html.EditorFor(model => model.StartPrice)
 @Html.ValidationMessageFor(model => model.StartPrice)
 </p>
 <p>

Validating Data | 67

 @Html.LabelFor(model => model.EndTime)
 @Html.EditorFor(model => model.EndTime)
 @Html.ValidationMessageFor(model => model.EndTime)
 </p>
 <p>
 <input type="submit" value="Create" />
 </p>
}

All of the validation shown thus far is server-side validation, requiring a
full round-trip between the browser and the server and requiring the
server to process each potentially invalid request and respond with a
fully rendered view.

While this approach works, it is certainly not optimal. Chapter 4 shows
how to implement client-side validation to take this approach one step
further and perform most—if not all—of the validation right in the
browser. This avoids any additional requests to the server, saving both
bandwidth and server resources.

Summary
In this chapter, we talked about using the Entity Framework Code First approach to
create and maintain the application’s database. You saw how easy it is with Entity
Framework to set up the database through a few lines of code, without having to draw
a schema diagram first or write SQL queries to model and create the database. We
talked about how Entity Framework works automagically by following conventions
and what some the basic conventions are. We also touched upon taking advantage of
ASP.NET MVC’s model binder feature to automatically populate the state objects from
the incoming request.

68 | Chapter 3: Working with Data

CHAPTER 4

Client-Side Development

The Internet has come a long way from web pages consisting of simple HTML markup
and JavaScript. Popular web applications such as Gmail and Facebook have trans-
formed users’ expectations of websites: they are no longer satisfied with basic text but
instead demand rich, interactive experiences that rival those provided by native desktop
applications. As users’ demands grow, modern browsers fight to keep up and do their
best to implement features and specifications—such as HTML 5 and CSS3—that make
these kinds of applications possible.

Though most of this book focuses on the server-side aspects of developing web appli-
cations with the ASP.NET MVC Framework, this chapter takes a break to explore the
fundamentals of creating rich web applications, showing how to use jQuery library to
simplify client-side development.

Working with JavaScript
Browser incompatibilities have plagued web developers for decades. The differences in
functionality and lack of standards between browsers have given rise to numerous cli-
ent-side libraries and frameworks that attempt to address these problems by abstracting
away the differences between browsers to provide a truly standard cross-browser API.

Emerging as the overwhelming favorite of these numerous libraries is the jQuery Java-
Script Library, which, following its mantra of “Write less, Do more,” greatly simplifies
HTML Document Object Model (DOM) traversal, event handling, animation, and
AJAX interactions. As of version 3 of the ASP.NET MVC Framework, the jQuery Li-
brary is included in the ASP.NET MVC web application project templates, making it
quite easy to get up and running and leverage jQuery with minimum work.

To see how jQuery helps abstract browser inconsistencies, take a look at the following
code, which tries to find out the width and the height of the browser window:

var innerWidth = window.innerWidth,
 innerHeight = window.innerHeight;

69

http://jquery.com
http://jquery.com

alert("InnerWidth of the window is: " + innerWidth);
alert("InnerHeight of the window is: " + innerHeight);

This script shows alert dialogs with the correct height and width in most browsers,
but it will throw an error in Internet Explorer 6-8. Why? Well, it turns out that these
versions of Internet Explorer (IE) provide the same information with document.Docu
mentElement.clientWidth and document.DocumentElement.clientHeight properties in-
stead.

So, in order to make this snippet of code work properly across all browsers, it must be
tweaked to address IE’s inconsistency, as shown in the following listing:

var innerWidth, innerHeight;

// all browsers except IE < 9
if (typeof window.innerWidth !== "undefined") {
 innerWidth = window.innerWidth;
 innerHeight = window.innerHeight;
}
else {
 innerWidth = document.documentElement.clientWidth,
 innerHeight = document.documentElement.clientHeight
}

alert("InnerWidth of the window is: " + innerWidth);
alert("InnerHeight of the window is: " + innerHeight);

With these changes in place, the script now works correctly in all major browsers.

Due to noncompliance with or different interpretations of W3C standards, browsers
are full of quirks like this. Older browsers are notorious for not complying with the
standards, or complying only partially. And while newer specifications like HTML 5
and CSS3 are still in a draft state, modern browsers are rushing to provide draft im-
plementation of these by using their own vendor-specific twists. Imagine factoring all
of these variations into your application for almost every single DOM element that you
might access—not only would your code become lengthy and unwieldy, but it would
constantly need updating as browsers and standards evolve and gaps in the specification
are plugged, leading to a maintenance nightmare.

A good way to isolate your application code from such inconsistencies is to use a
framework or library that acts as a layer between your application and the DOM access
and manipulation code. jQuery is an excellent and lightweight framework that greatly
reduces this friction. jQuery’s simple APIs make accessing and manipulating the DOM
easy and intuitive and reduce the amount of code you need to write, allowing you to
focus on your application’s functionality rather than worrying about browser incon-
sistencies and writing repetitive boilerplate code.

Consider the snippet we just looked at, rewritten using jQuery:

var innerWidth = $(window).width(),
 innerHeight = $(window).height();

70 | Chapter 4: Client-Side Development

D
ow

n
lo

a
d
 f
ro

m
 W

o
w

!
e
B
o
o
k

<
w

w
w

.w
o
w

e
b
o
o
k.

co
m

>

alert("InnerWidth of the window is: " + innerWidth);
alert("InnerHeight of the window is: " + innerHeight);

This code looks fairly similar to the pure JavaScript code, with the following minor
changes:

• The window object is wrapped in the special $() function, which returns a jQuery-
fied object (more on this special function later).

• It makes function calls to .width() and .height() instead of accessing
the .height and .width properties.

You can see the benefits of using jQuery—the code is quite similar to regular JavaScript,
making it easier to learn and understand, yet it’s powerful enough to abstract away all
cross-browser issues. Furthermore, with all of our cross-browser headaches taken care
of by jQuery, the amount of code required to achieve the same functionality is reduced
to just one line per property.

Not only does jQuery make it easy to get property values, it also makes it easy to set
them:

// set the width to 480 pixels
$(window).width("480px");

// set the height to 940 pixels
$(window).height("940px");

Notice that the same functions are used to both set and get property values, the only
difference being that the setter function call takes a parameter with the new value. Using
a single API in different ways to get and set values makes the jQuery syntax easy to
remember as well as easier to read.

Selectors
The first step in manipulating DOM elements is to get a reference to the desired element.
You can do this in many ways: through its ID, its class name, or one of its attributes,
or by using JavaScript logic to navigate the DOM’s tree structure and manually locate
the element.

For example, the following shows how to use standard JavaScript code to search for a
DOM element by its ID:

<div id="myDiv">Hello World!</div>

<script type="text/javascript">
 document.getElementById("myDiv").innerText = "Hello jQuery";
</script>

In this simple example, you get a reference to the <div> element by calling the docu
ment.getElementById() method, passing it the ID element’s ID, and then changing the
inner text to “Hello jQuery”. This code will work exactly the same way in every browser,

Selectors | 71

because document.getElementById() is part of the JavaScript language and is supported
by all major browsers.

Consider another scenario where you want to access an element by its class name:

<div class="normal">Hello World!</div>

<script type="text/javascript">
 document.getElementsByClassName("normal")[0].innerText = "Hello jQuery";
</script>

This seems straightforward—instead of document.getElementById(), you use docu
ment.getElementsByClassName() and access the first element of the array to set the
innerText property. But wait, where did the array come from? document.getElements
ByClassName() returns an array containing all elements that have the same class name.
Luckily, in the example above we have only one <div>, so we know that the first element
is the one we’re looking for.

In a real-world application, though, the page will likely contain several elements that
may or may not have IDs, and there may be more than one element with the same class
name (and some elements without any class name at all). Elements will be nested in
container elements such as <div>, <p>, and , as per the page design. Since the
DOM is nothing but a hierarchal tree structure, what you end up having is elements
nested inside one another and everything nested inside the root: document.

Consider the following example:

<div class="normal">
 <p>Hello World!</p>
 <div>
 Welcome!
 </div>
</div>

To access the and change its content, you would have to grab the outermost
<div> (having class="normal"), traverse through its child nodes, check each node to see
if it is a , and then do some manipulation on the .

A typical JavaScript code to grab the would look like:

var divNode = document.getElementsByClassName("normal")[0];

for(i=0; i < divNode.childNodes.length; i++) {
 var childDivs = divNode.childNodes[i].getElementsByTagName("div");
 for(j=0; j < childDivs.childNodes.length; j++) {
 var span = childDivs.childNodes[j].getFirstChild();
 return span;
 }
}

All this code to grab just one ! Now what if you wanted to access the <p> tag?
Can this code be reused? Certainly not, because the <p> element is at a different node
in the tree. You would need to write similar code to grab the <p> element, or tweak it

72 | Chapter 4: Client-Side Development

with conditions to find that element. And what if there were other tags within
the child <div>? How would you get to a specific ? Answering these questions
will make this code grow bigger and bigger, as you fill it with all sorts of conditional
logic.

What if you then wanted to repeat this exercise in a different place that has a slightly
different structure? Or if, in the future, the markup changes a little bit, altering the
structure? You’d have to adjust all of your functions to take the new hierarchy into
account. Clearly, if we continue in this manner, the code will soon become unwieldy,
lengthy, and invariably error prone.

jQuery selectors help us tidy up the mess. By using predefined conventions, we can
traverse the DOM in just a few lines of code. Let’s take a look now to see how these
conventions reduce the amount of code needed to perform the same actions as in the
previous examples.

Here’s how we can rewrite the traversing logic with jQuery selectors. Selecting an ele-
ment by ID becomes:

$("#myDiv").text("Hello jQuery!");

We call jQuery’s $() function, passing in a predefined pattern. The “#” in the pattern
signifies an ID selector, so the pattern #myDiv is the equivalent of saying document.getE
lementById("myDiv").

Once you get a reference to the element, you can change its inner text via jQuery’s
text() method. This is similar to setting the innerText property, but it’s less verbose.

An interesting thing to note here is that almost all jQuery methods return a jQuery
object, which is a wrapper around the native DOM element. This wrapping allows for
“chaining” of calls—e.g., you can change the text and the color of an element in one
go by saying:

$(".normal > span") // returns a jQuery object
 .contains("Welcome!") // again returns a jQuery object
 .text("...") // returns a jQuery object again
 .css({color: "red"});

Because each call (.text(), .css()) returns the same jQuery object, the calls can be
made successively. This style of chaining calls makes the code “fluent,” which makes
it easy to read, and since you do not have to repeat the element access code, the amount
of overall code that you write is reduced.

Similar to the ID pattern, selecting by class name becomes:

$(".normal").text("Hello jQuery!");

The pattern for a class-based selector is ".className".

Selectors | 73

Recall that getElementsByClassName() returns an array—in this case,
jQuery will change the text on all elements in array! So, if you have
multiple elements with the same class name, you need to put additional
filters in place to get to the right element.

Now, let’s see how easy it is to access elements with a parent-child relation and grab
the from our original example:

$(".normal > span").text("Welcome to jQuery!");

The “>” indicates the parent > child relation. We can even filter based on the content
of the span (or any element):

$(".normal > span").contains("Welcome!").text("Welcome to jQuery!");

The .contains() filters out elements that contain the specified text. So, if there are
multiple spans, and the only way to differentiate (in the absence of ID, class name, etc.)
is by checking for content, jQuery selectors make that easy, too.

jQuery offers many more selector patterns. To learn about them, check out the jQuery
documentation site.

Responding to Events
Every DOM element on the HTML page is capable of raising events, such as “click,”
“mouse move,” “change,” and many more. Events expose a powerful mechanism to
add interaction to the page: you can listen for events, and perform one or more actions
in response, enhancing the user experience.

For example, consider a form with many fields. By listening for the onClick event on
the Submit button, you can perform validation on the user’s input and show any error
messages without refreshing the page.

Let’s add a button that alerts “hello events!” when clicked. In traditional HTML/Java-
Script, the code would look like:

<input id="helloButton" value="Click Me" onclick="doSomething();">

<script type="text/javascript">
 function doSomething() {
 alert("hello events!");
 }
</script>

The onclick event handler (or listener) is specified in the markup: onclick="doSome
thing();". When this button is clicked, this code will show the standard message box
displaying the text “hello events!”

You can also attach event handlers in a nonintrusive manner, like this:

74 | Chapter 4: Client-Side Development

http://api.jquery.com/category/selectors
http://api.jquery.com/category/selectors

<input id="helloButton" value="Click Me">

<script type="text/javascript">
 function doSomething() {
 alert("hello events!");
 }

 document.getElementById("helloButton").onclick = doSomething;
</script>

Notice how the markup does not specify the onclick behavior anymore? Here, we’ve
separated presentation from behavior, attaching the behavior outside the presentation
logic. This not only results in cleaner code, but also ensures that we can reuse the
presentation logic and behaviors elsewhere without making many changes.

This is a very simple example to show how basic event handling works. In the real
world, your JavaScript functions will look much more complicated and may do more
than display a simple alert to the user.

Now, let’s look at the corresponding jQuery code for specifying event handlers:

<input id="helloButton" value="Click Me">

<script type="text/javascript">
 function doSomething() {
 alert("hello events!");
 }

 $(function() {
 $("#helloButton").click(doSomething);
 });
</script>

With jQuery, you first get a reference to the button using the $("#helloButton") selec-
tor, and then call .click() to attach the event handler. .click() is actually shorthand
for .bind("click", handler).

$(function) is a shortcut that tells jQuery to attach the event handlers once the DOM
is loaded in the browser. Remember that the DOM tree is loaded in a top-to-bottom
fashion, with the browser loading each element as it encounters it in the tree structure.

The browser triggers a window.onload event as soon as it is done parsing the DOM tree
and loading all the scripts, style sheets, and other resources. The $() listens for this
event and executes the function (which is actually an event handler!) that attaches
various element event handlers.

In other words, $(function(){…}) is the jQuery way of scripting:

window.onload = function() {
 $("#helloButton").click(function() {
 alert("hello events!");
 });
}

Responding to Events | 75

You can also specify the event handler inline, like this:

$(function() {
 $("#helloButton").click(function() {
 alert("hello events!");
 });
});

Interestingly, if you don’t pass a function to .click(), it triggers a click event. This is
useful if you want to programmatically click the button:

$("#helloButton").click(); // will display "hello events!"

DOM Manipulation
jQuery offers a simple and powerful mechanism to manipulate the DOM, or alter
properties of the DOM itself or any element.

For example, to alter CSS properties of an element:

// will turn the color of the button's text to red
$("#helloButton").css("color", "red");

You’ve already seen some of this in action; remember the “height” example from earlier
in the chapter?

// will return the height of the element
var height = $("#elem").height();

In addition to simple manipulations like these, jQuery allows you to create, replace,
and remove any markup from a group of elements or the document root with ease.

The following example demonstrates adding a group of elements to an existing <div>:

<div id="myDiv">
</div>

<script type="text/javascript">
 $("#myDiv").append("<p>I was inserted <i>dynamically</i></p>");
</script>

This results in:

<div id="myDiv">
 <p>I was inserted <i>dynamically</i></p>
</div>

It is just as easy to remove any element (or a set of elements):

<div id="myDiv">
 <p>I was inserted <i>dynamically</i></p>
</div>

<script type="text/javascript">
 $("#myDiv").remove("p"); // will remove the <p> and its children
</script>

76 | Chapter 4: Client-Side Development

This code results in:

<div id="myDiv">
</div>

jQuery provides several methods to control the placement of markup, as Table 4-1
illustrates.

Table 4-1. Commonly used DOM manipulation methods

Method Description

.prepend() Inserts at the beginning of the matched element

.before() Inserts before the matched element

.after() Inserts after the matched element

.html() Replaces all the HTML inside the matched element

AJAX
AJAX (Asynchronous JavaScript and XML) is a technique that enables a page to request
or submit data without doing a refresh or postback.

Using asynchronous requests to access data behind the scenes (on demand) greatly
enhances the user experience because the user does not have to wait for the full page
to load. And since the full page doesn’t have to reload, the amount of data requested
from the server can be significantly smaller, which results in even faster response times.

At the heart of AJAX is the XmlHttpRequest object, which was originally developed by
Microsoft for use in Outlook Web Access with Exchange Server 2000. It was soon
adopted by industry heavyweights such as Mozilla, Google, and Apple and is now a
W3C standard (http://www.w3.org/TR/XMLHttpRequest/).

A typical AJAX request with XmlHttpRequest object would look like:

// instantiate XmlHttpRequest object
var xhr = new XMLHttpRequest();

// open a new 'GET' request to fetch google.com's home page
xhr.open("GET", "http://www.google.com/", false);

// send the request with no content (null)
xhr.send(null);

if (xhr.status === 200) { // The 200 HTTP Status Code indicates a successful request

 // will output reponse text to browser's console (Firefox, Chrome, IE 8+)
 console.log(xhr.responseText);
}
else { // something bad happened, log the error
 console.log("Error occurred: ", xhr.statusText);
}

AJAX | 77

http://www.w3.org/TR/XMLHttpRequest/

This example creates a synchronous request (the third parameter in xhr.open()), which
means that the browser will pause the script execution until the response comes back.
You typically want to avoid these kinds of synchronous AJAX requests at all costs
because the web page will be unresponsive until the response comes back, resulting in
a very poor user experience.

Luckily, it’s quite easy to switch from a synchronous request to an asynchronous
request: simply set the third parameter in xhr.open() to true. Now, because of the
asynchronous nature, the browser will not stop; it will execute the next line (the
xhr.status check) immediately. This will most likely fail because the request may not
have completed executing.

To handle this situation, you need to specify a callback—a function that gets called as
soon as the request is processed and a response is received.

Let’s look at the modified code now:

// instantiate XmlHttpRequest object
var xhr = new XMLHttpRequest();

// open a new asynchronous 'GET' request to fetch google.com's home page
xhr.open("GET", "http://www.google.com/", true);

// attach a callback to be called as soon as the request is processed
xhr.onreadystatechange = function (evt) {

 // as the request goes through different stages of processing,
 // the readyState value will change
 // this function will be called every time it changes,
 // so readyState === 4 checks if the processing is completed
 if (xhr.readyState === 4) {
 if (xhr.status === 200) {
 console.log(xhr.responseText)
 }
 else {
 console.log("Error occurred: ", xhr.statusText);
 }
 }
};

// send the request with no content (null)
xhr.send(null);

This code is almost identical to the synchronous version, except that it has a callback
function that gets executed whenever the server sends back any information.

You must attach any callbacks before issuing xhr.send(), or they will
not be called.

78 | Chapter 4: Client-Side Development

Let’s look at the equivalent jQuery code. jQuery offers an .ajax() method and various
shorthands for accomplishing common tasks using AJAX.

Here’s the jQuery version:

$.ajax("google.com") // issue a 'GET' request to fetch google.com's home page
 .done(function(data) { // success handler (status code 200)
 console.log(data);
 })
 .fail(function(xhr) { // error handler (status code not 200)
 console.log("Error occurred: ", xhr.statusText);
 });

The first line specifies the URL from which you want to request data. The code then
specifies the callback functions for the success and error conditions (jQuery takes care
of checking for readyState and the status code).

Notice how we didn’t have to specify the type of request (GET) or whether it is asyn-
chronous or not. This is because jQuery uses GET by default and $.ajax() is asynchro-
nous by default.

You can override these parameters (and more) to fine-tune your request:

$.ajax({
 url: "google.com",
 async: true, // false makes it synchronous
 type: "GET", // 'GET' or 'POST' ('GET' is the default)
 done: function(data) { // success handler (status code 200)
 console.log(data);
 },
 fail: function(xhr) { // error handler (status code not 200)
 console.log("Error occurred: ", xhr.statusText);
 }
});

jQuery AJAX offers many more parameters than what’s shown here. See the jQuery
documentation site for details.

.done() and .fail() were introduced in jQuery 1.8. If you’re using an
older version of jQuery, use .success() and .error(), respectively.

Client-Side Validation
In Chapter 3, you were introduced to server-side validation techniques. In this section,
you’ll see how you can enhance the user experience by performing some of the same
validations purely on the client side (without making a round-trip to the server), with
the help of jQuery and the jQuery validation plug-in.

Client-Side Validation | 79

http://api.jquery.com/jQuery.ajax

ASP.NET MVC (starting with version 3) offers unobtrusive client-side validation out
of the box. Client validation comes enabled by default, but you easily enable or disable
it by tweaking these two settings in your web.config file:

<configuration>
 <appSettings>
 <add key="ClientValidationEnabled" value="true"/>
 <add key="UnobtrusiveJavaScriptEnabled" value="true"/>
 </appSettings>
</configuration>

The good part about performing client-side validation with the jQuery validation plug-
in is that it can take advantage of the DataAnnotation attributes defined in your model,
which means that you have to do very little to start using it.

Let’s revisit the Auction model from Chapter 3 to see how data annotations were used
in input validation:

public class Auction
{
 [Required]
 [StringLength(50,
 ErrorMessage = "Title cannot be longer than 50 characters")]
 public string Title { get; set; }

 [Required]
 public string Description { get; set; }

 [Range(1, 10000,
 ErrorMessage = "The auction's starting price must be at least 1")]
 public decimal StartPrice { get; set; }

 public decimal CurrentPrice { get; set; }
 public DateTime EndTime { get; set; }
}

And here’s the view that renders out the validation messages:

<h2>Create Auction</h2>

@using (Html.BeginForm())
{
 @Html.ValidationSummary()

 <p>
 @Html.LabelFor(model => model.Title)
 @Html.EditorFor(model => model.Title)
 @Html.ValidationMessageFor(model => model.Title, "*")
 </p>
 <p>
 @Html.LabelFor(model => model.Description)
 @Html.EditorFor(model => model.Description)
 @Html.ValidationMessageFor(model => model.Description, "*")
 </p>
 <p>
 @Html.LabelFor(model => model.StartPrice)

80 | Chapter 4: Client-Side Development

 @Html.EditorFor(model => model.StartPrice)
 @Html.ValidationMessageFor(model => model.StartPrice)
 </p>
 <p>
 @Html.LabelFor(model => model.EndTime)
 @Html.EditorFor(model => model.EndTime)
 @Html.ValidationMessageFor(model => model.EndTime)
 </p>
 <p>
 <input type="submit" value="Create" />
 </p>
}

The validation we’re performing is quite simple, yet with server-side validation, the
page has to be submitted via a postback, inputs have to be validated on the server, and,
if there are errors, the messages need to be sent back to the client and, after a full page
refresh, shown to the user.

With client-side validation, the inputs are checked as soon as they are submitted, so
there is no postback to the server, there’s no page refresh, and the results are shown
instantly to the user!

To begin with client-side validation, go ahead and reference the jQuery validation plug-
in scripts in the view:

<script src="@Url.Content("~/Scripts/jquery.validate.min.js")"
 type="text/javascript"></script>
<script src="@Url.Content("~/Scripts/jquery.validate.unobtrusive.min.js")"
 type="text/javascript"></script>

If you use Visual Studio’s “Add View” wizard to generate Create or Edit
views, you may choose the “Reference script libraries” option to have
Visual Studio add these references automatically. Instead of the
<script> tag references shown above, however, Visual Studio will ach-
ieve the same thing through a reference to the ~/bundles/jquery-val
script bundle toward the bottom of the view. See “Bundling and Mini-
fication” on page 289 for more information about script bundling.

If you run the application now and inspect the Create Auction page’s source (using
“View Source”), you’ll see the following markup being rendered (with unobtrusive
JavaScript and client-side validation enabled):

<form action="/Auctions/Create" method="post" novalidate="novalidate">
 <div class="validation-summary-errors" data-valmsg-summary="true">

 The Description field is required.
 The Title field is required.
 Auction may not start in the past

 </div>
 <p>
 <label for="Title">Title</label>

Client-Side Validation | 81

 <input class="input-validation-error"
 data-val="true"
 data-val-length="Title cannot be longer than 50 characters"
 data-val-length-max="50"
 data-val-required="The Title field is required."
 id="Title" name="Title" type="text" value="">

 <span class="field-validation-error"
 data-valmsg-for="Title"
 data-valmsg-replace="false">*
 </p>
 <p>
 <label for="Description">Description</label>

 <input class="input-validation-error"
 data-val="true"
 data-val-required="The Description field is required."
 id="Description" name="Description" type="text" value="">

 <span class="field-validation-error"
 data-valmsg-for="Description"
 data-valmsg-replace="false">*
 </p>
 <p>
 <label for="StartPrice">StartPrice</label>

 <input data-val="true"
 data-val-number="The field StartPrice must be a number."
 data-val-range="The auction's starting price must be at least 1"
 data-val-range-max="10000"
 data-val-range-min="1"
 data-val-required="The StartPrice field is required."
 id="StartPrice" name="StartPrice" type="text" value="0">

 <span class="field-validation-valid"
 data-valmsg-for="StartPrice"
 data-valmsg-replace="true">
 </p>
 <p>
 <label for="EndTime">EndTime</label>

 <input data-val="true"
 data-val-date="The field EndTime must be a date."
 id="EndTime" name="EndTime" type="text" value="">

 <span class="field-validation-valid"
 data-valmsg-for="EndTime"
 data-valmsg-replace="true">
 </p>
 <p>
 <input type="submit" value="Create">
 </p>
</form>

82 | Chapter 4: Client-Side Development

With unobtrusive JavaScript and client-side validation enabled, ASP.NET MVC ren-
ders the validation criteria and corresponding messages as data-val- attributes. The
jQuery validation plug-in will use these attributes to figure out the validation rules and
the corresponding error messages that will be displayed if the rules are not satisfied.

Go ahead now and try to submit the form with some invalid values. You’ll see that the
“submit” did not actually submit the form; instead, you’ll see error messages next to
the invalid inputs.

Behind the scenes, the jQuery validation plug-in attaches an event handler to the
form’s onsubmit event. Upon form submit, the jQuery validation plug-in scans through
all the input fields and checks for errors against the given criteria. When it finds an
error, it shows the corresponding error message.

Being unobtrusive in nature, the jQuery validation plug-in doesn’t emit any code to the
page, nor is anything required on your part to wire up the client-side validation logic
with the page’s events. Rather, the code to attach to the onsubmit event, as well as the
validation logic, is part of the jquery.validate.js and jquery.validate.unobtrusive.js files.

The good thing about being unobtrusive is that if you forget to include these two scripts,
the page will still render without any errors—only, the client-side validation will not
happen client side!

This section was meant to show you how easy it is to start taking advantage of client-
side validation and was kept simple and minimal purposefully. The jQuery validation
plug-in is quite complex and offers many more features and customizations. You’re
encouraged to learn more about the plug-in at the official documentation page.

Summary
jQuery makes cross-browser development a joyful experience. ASP.NET MVC’s sup-
port of jQuery out of the box means you can quickly build a rich and highly interactive
client-side user interface (UI) with very few lines of code. With client-side validation
and unobtrusive JavaScript, validating user input can be done with minimal effort. All
of these techniques combined can help you develop highly interactive and immersive
web applications with ease.

Summary | 83

http://docs.jquery.com/Plugins/Validation

PART II

Going to the Next Level

CHAPTER 5

Web Application Architecture

The first few chapters of this book introduced you to several core concepts that are
essential to understanding how to use the ASP.NET MVC Framework. This chapter
builds upon those core concepts, elaborating on the fundamental design patterns and
principles used to build the ASP.MVC Framework and exploring how to apply these
patterns and principles to build an ASP.NET MVC web application.

The Model-View-Controller Pattern
The Model-View-Controller (MVC) pattern is a user interface architecture pattern that
promotes separation of concerns across multiple application layers. Instead of putting
all the logic and data access code for an application in a single place, MVC promotes
separating the application’s logic into specific classes, each with a small, specific set of
responsibilities.

The MVC pattern is not a new concept, and it’s certainly not specific to the .NET
Framework or even to web development; in fact, it was originally created by the pro-
grammers at Xerox PARC in the late 1970s and applied to applications that used the
SmallTalk programming language. Since that time, many have considered MVC one of
the most misquoted patterns ever created. This is because MVC is a very high-level
pattern that has engendered many related implementations and subpatterns.

Separation of Concerns
Separation of concerns is a computer science principle that promotes separating the
responsibility for an application or use case across multiple components, where each
component has a distinct, small set of responsibilities. A “concern” can be associated
with a specific set of features or behaviors. Separation of concerns is traditionally
achieved by using encapsulation and abstraction to better isolate one set of concerns
from another. For example, separation of concerns may be applied to application ar-
chitecture by separating the different layers of the application into presentation, busi-
ness, and data access layers, each of which is logically and physically separate.

87

Separation of concerns is a powerful principle that is frequently used in the design of
platforms and frameworks. For example, web pages in the early days of the Web con-
tained markup that combined the layout, style, and even data all in the same document.
Over the years, standards based on separation of concerns emerged, and what was once
one document is now split into three parts: an HTML document, which mainly focuses
on the structure of content; one or more CSS stylesheets that define the style of the
document; and JavaScript to attach behaviors to the document.

In the context of the Model-View-Controller (MVC) pattern, separation of concerns is
used to define the responsibilities of the key components: model, view, and controller.

Figure 5-1 shows the interaction between the different MVC components and their core
responsibilities.

Figure 5-1. MVC separation of concerns

It is important to note that while each individual component has its own responsibili-
ties, components can and do rely on each other. For example, in MVC, controllers are
responsible for retrieving data from the model and syncing changes from a view back
into the model. A controller can be associated with one or more views. Each of these
views is responsible for displaying data in a particular way, but it relies on the controller
to process and retrieve that data. While components may rely quite heavily on other
components, it is critical for each component to concentrate on its own responsibilities
and leave the other responsibilities to other components.

MVC and Web Frameworks
The original MVC pattern was designed with the assumption that the view, controller,
and model were all within the same context. The pattern relies heavily on each com-
ponent being able to directly interact with the others and share state across user inter-
actions. For example, controllers would use the observer pattern to monitor changes
to the view and react to user input. This approach works great when the controller,
view, and model all exist under the same memory context.

88 | Chapter 5: Web Application Architecture

In a web application things are stateless, and the view (HTML) runs on a client inside
of a browser. A controller can’t use the observer pattern to monitor changes; instead,
an HTTP request needs to be sent from the view to a controller. To address this, the
front controller pattern (Figure 5-2) has been adopted. The main concept behind this
pattern is that when an HTTP request is sent, a controller intercepts and processes it.
The controller is responsible for determining how to process the request and for sending
the result back to the client.

Figure 5-2. The front controller pattern

The power of the front controller pattern becomes apparent when you consider that
modern web applications are often expected to execute the same logic for multiple
requests, yet potentially return different content for each individual request. For in-
stance, the same controller action can process both a normal browser request and an
AJAX request, yet the browser expects a fully rendered web page (with layout, style-
sheets, scripts, etc.), whereas the AJAX request might expect a partial HTML view or
even raw JSON data. In all of these instances, the controller logic remains the same and
the view can remain unaware of where its data came from.

In an ASP.NET MVC application, the routing and view engines are involved with pro-
cessing an HTTP request. When a request URI (e.g., /auctions/detail/25) is received,
the ASP.NET MVC runtime looks it up in the route table and invokes the corresponding
controller action. The controller handles the request and determines what type of result

The Model-View-Controller Pattern | 89

to return. When a view result is returned, the ASP.NET MVC Framework delegates to
the view engine the task of loading and rendering the corresponding requested view.

Architecting a Web Application
The core design of the ASP.NET MVC Framework is driven by the principle of sepa-
ration of concerns. In addition to routing and view engines, the framework promotes
the use of action filters, which are used to handle cross-cutting concerns such as secu-
rity, caching, and error handling. When designing and architecting an ASP.NET MVC
web application, it’s important to understand how the framework uses this principle
and how to design your application to take advantage of it.

Logical Design
The logical (conceptual) architecture of an application focuses on the relationships and
interactions between components, and those components are grouped into logical lay-
ers that support specific sets of features.

Components should be designed to enforce the separation of concerns and use ab-
straction for cross-component communication. Cross-cutting concerns such as secu-
rity, logging, and caching should be isolated into different application services. These
services should support a plug-and-play module approach. Switching between different
security authentication types or implementing different logging sources should have
no impact on other parts of the application.

ASP.NET MVC Web Application Logical Design
The ASP.NET MVC Framework was designed to promote this type of logical design.
In addition to isolating the view, controller, and model, the framework includes several
action filters that handle different types of cross-cutting concerns and multiple action
result types for views, JSON, XML, and partial pages. Since the framework supports
endless extensibility, developers can create and plug in their own custom action filters
and results.

SingleSignOnAttribute is an example of a custom ActionFilter that has been
created for supporting Single Sign On Authentication across multiple ASP.NET Web
applications:

public class SingleSignOnAttribute : ActionFilterAttribute, IActionFilter
{
 void OnActionExecuted(ActionExecutedContext filterContext)
 {
 // Verify security token and authenticate user
 }

 void OnActionExecuting(ActionExecutingContext filterContext)
 {

90 | Chapter 5: Web Application Architecture

 // Preprocessing code used to verify if security token exists
 }
}

The best way to communicate the logical design of an application is to create a visual
representation of each component and its corresponding layer. Figure 5-3 shows the
typical logical design of an ASP.NET MVC web application. Take note of how cross-
cutting concerns have been separated into different application services.

Table 5-1 describes the different elements in Figure 5-3.

Figure 5-3. Web application logical architecture

Table 5-1. Component descriptions

Name Layer Description

HTML/CSS Client The UI elements used to describe the layout and style of the
application

JavaScript Client Any client-side logic used for validation and business
processing

Security Client Security token (cookie)

Logging Client Local service used for logging and monitoring

Architecting a Web Application | 91

Name Layer Description

Local Storage Client HTML 5 local storage (used for caching/offline storage)

Browser Cache Client Cache provided by the browser, used for storing HTML, CSS,
images, etc.

View Web Server Server-side view used to render HTML

Controller Web Server Application controller, handles user input and orchestration

Model Web Server A collection of classes representing the business domain model
for the application

Service Layer Web Server Service layer used for encapsulating complex business
processes and persistence

Repository Web Server Data access components (object relational mapper)

Security Web Server Security service used for authenticating and authorizing users

Logging Web Server Application service used for logging

Monitoring Web Server Application service used for health monitoring

Session/Caching Data Application service used for managing transit state

External Service Data Any external systems the application depends on

Logical Design Best Practices
A layered application design such as the one shown in Figure 5-3 offers the most flexible
application architecture. Each layer deals with a specific set of responsibilities, and
layers are only dependent on layers lower down the stack. For example, the data access
repository exists at the same layer as the model, so it’s perfectly acceptable for it to have
a dependency. The model is isolated from the underlying data store; it doesn’t care how
the repository handles persistence or even if it saves to a local file or database.

A common debate when architecting a web application is the issue of where to enforce
business and validation rules. The MVC pattern promotes that the model should be
responsible for business logic. This is true, though in a distributed application, each
layer should share some level of responsibility for validating user input. Ideally, input
should always be checked before sending it across the wire to another layer.

Each layer should take responsibility for the level of validation it can enforce. Down-
stream layers should never assume that a calling layer has verified everything. On the
client side, JavaScript (JQuery) should be used to verify required fields and restrict input
for common UI controls (Numeric, DateTime, etc…). The application business model
should enforce all business and validation rules, while the database layer should use
strongly typed fields and enforce constraints to prevent foreign key violations.

92 | Chapter 5: Web Application Architecture

D
ow

n
lo

a
d
 f
ro

m
 W

o
w

!
e
B
o
o
k

<
w

w
w

.w
o
w

e
b
o
o
k.

co
m

>

What you want to avoid is duplicating complex business logic across each layer. If a
screen has special logic or features for an administrator as compared to a normal user,
the business model should identify which features are enabled or disabled and provide
a flag to hide or disable administration fields for normal users.

Physical Design
The role of physical architecture design is to define the physical components and de-
ployment model for the web application. Most web applications are based on the N-
Tier model. The client tier consists of HTML, CSS, and JavaScript that runs inside a
web browser. The client makes HTTP requests to retrieve HTML content directly or
executes an AJAX request (which returns a partial HTML page, XML, or JSON data).
The application layer includes the ASP.NET MVC Framework (running under the IIS
web server) and any custom or third-party assemblies used by the application. The data
layer may consist of one or more relational or NoSQL databases, or one or more external
SOAP or REST-based web services or other third-party application programming in-
terfaces (APIs).

Project Namespace and Assembly Names
Before an ASP.NET MVC web application can be deployed, the developer needs to
decide how to physically separate the application code into different namespaces and
assemblies. There are many different approaches to take when designing an ASP.NET
MVC application. A developer can decide to keep all the application’s components
inside the website assembly, or separate components into different assemblies. In most
cases it’s a good idea to separate the business and data access layers into different
assemblies than the website. This is typically done to better isolate the business model
from the UI and make it easier to write automated test that focuses on the core appli-
cation logic. In addition, using this approach makes it possible to reuse the business
and data access layers from other applications (console applications, websites, web
services, etc.).

A common root namespace (e.g., company.{ApplicationName}) should be consistently
used across all assemblies. Each assembly should have a unique sub-namespace that
matches the name of the assembly. Figure 5-4 shows the project structure of the Ebuy
reference application. The functionality for the application has been divided into three
projects: Ebuy.WebSite contains the view, controllers, and other web-related files;
Ebuy.Core contains the business model for the application; and the CustomExten-
tions project contains the custom extensions used by the application for model binding,
routing, and controllers. In addition, the project has two testing projects (not shown):
UnitTests and IntegrationTests.

Architecting a Web Application | 93

Figure 5-4. Visual Studio project structure

Deployment Options
Once the Visual Studio solution and project structure have been defined, a developer
can use an automated or manual process to deploy the compiled application to a web
server. See Chapter 19 for additional details on how to deploy ASP.NET MVC web
applications.

Figure 5-5 shows an ASP.NET MVC web application that has been configured to use
a multiserver web farm and clustered SQL Server database. ASP.NET MVC web ap-
plications support all kinds of deployment models. The application can be self-con-
tained and use a local SQL Server Express database or use an Enterprise N-Tier model.

Physical Design Best Practices
There are no silver bullets to architecting a web application, and every choice has trade-
offs. It’s important that an application design be flexible and include proper monitor-
ing, so real-time data can be used to make informed decisions on how to best tweak
the application. This is one of the areas where the ASP.NET MVC Framework shines.
It was designed with flexibility and extensibility in mind. The framework makes it easy

94 | Chapter 5: Web Application Architecture

to take advantage of the services built into IIS and ASP.NET, and it offers lots of ex-
tensibility and the ability to plug in different components and services.

There are many factors that you need to consider when designing a web application.
Four of the more important ones are performance, scalability, bandwidth, and latency.
Choices made to address one or more of these concerns can have an impact on the
other factors. Setting up a monitoring strategy is a good way to properly evaluate how
the application is working, especially under load, and determine the proper balance
factors.

Performance and scalability

Choices to address either performance or scalability can very easily significantly affect
the other factor. If the design for an application requires a large amount of data to be
kept cached, this can have an impact on the memory usage requirement for the appli-
cation. The IIS worker process needs to be properly configured to take into account
the memory usage requirement: if too much memory gets allocated, the worker process
will get recycled. Understanding how the .NET garbage collector frees resources can
have a significant impact, too. Continually loading a large collection or data set into
session state can cause the object to get pushed into the .NET garbage collector gen-
eration 2 or the large object heap.

Using a web farm is a good way to increase the scalability of a web application. It’s
critical that this be addressed by the application’s technical design. Using a farm affects
how the application handles transient state. If the load balancing hardware and soft-
ware supports it, a sticky session approach can be used to ensure that a user will always
be routed back to the server that established her original session.

Figure 5-5. Web application physical design

Architecting a Web Application | 95

An alternative approach is using a session state server or persisting session state to a
database. It is always a good idea to minimize the use of session state and make sure
to have defined timeout rules for cached data.

Since the location of where session state and data are cached is configurable, it’s im-
portant to make sure all classes that might be used have been properly set up for seri-
alization. This can be done by using the .NET SerializableAttribute, implementing
the ISerializeable interface, or using Windows Communication Foundation (WCF)
data contract serialization or one of the other supported .NET serialization methods.

Bandwidth and latency

Dealing with bandwidth and latency can be extremely tricky. Latency is usually a fixed
constraint; if a server is located in New York and the user browses the site from Japan,
there can be a significant (potentially five-second) latency for each request. There are
plenty of things that can be done to address this, including compressing JavaScript files,
using image maps, and limiting the number of requests. Bandwidth is usually more
variable, but it can incur a significant cost if the application requires large amounts of
data to be sent across the wire. The best option to address these factors is to minimize
the number of requests and keep the payload size small. Good strategies to use are
enabling paging for large result sets, sending only the necessary fields across the wire,
and utilizing client-side validation and caching where possible.

Design Principles
When designing an application, framework, or class, it’s important to think about the
extensibility of your code and not just the best way to implement an initial set of fea-
tures. This idea was baked into the design of the ASP.NET MVC Framework. Through-
out, the framework uses and promotes the fundamental principles and best practices
of object-oriented design.

SOLID
SOLID is an acronym that describes a particular set of application development prin-
ciples that drive proper object-oriented design and development. When applied across
an entire application, these techniques work together to create modular components
that are easy to test and resilient to change.

SOLID consists of the following principles.

The Single Responsibility Principle

The Single Responsibility Principle (SRP) states that objects should have a single re-
sponsibility and all of their behaviors should focus on that one responsibility. A good
example of this is having different controllers for different screens. For instance, the

96 | Chapter 5: Web Application Architecture

HomeController should only contain operations related to the home page, while the
ProductController should only handle the operations for the product pages. Likewise,
views should focus on rendering the UI and avoid any data access logic.

The ErrorLoggerManager class shown below is a common example of a class that breaks
SRP. The class has two methods, one for logging errors to the event log and one for
logging errors to a file. While at first it may seem harmless to group these methods
together, this class currently has too many responsibilities; this will become more
apparent when additional logging methods are introduced. A common code
smell to watch out for is any class named xxxManager. It more than likely has too many
responsibilities.

public class ErrorLoggerManager
{
 public void LogErrorToEventLog(Exception e)
 {
 // Logging code
 }

 public void LogErrorToFile(Exception e)
 {
 // Logging code
 }
}

The Open/Closed Principle

The Open/Closed Principle (OCP) encourages components that are open for extension,
but closed for modification. This complements SRP by pointing out that, rather than
adding more and more behavior and responsibility to a class, you should instead choose
to inherit from the class to extend its capabilities. A good example of this would be a
cross-cutting service such as error logging: instead of adding the ability to log errors to
a database and to a file in the same class, you should create an abstraction from which
the different methods of logging can inherit. By doing this you isolate the inner working
of logging to a database or a file from the other implementations.

Looking back over the ErrorLoggerManager class one more time, it should be easy to see
how the class breaks both SRP and OCP. The class currently has two methods that are
very specific to their implementation: LogErrorToEventLog for logging errors to the event
log, and LogErrorToFile for logging errors to a file. When additional error logging types
are required, the maintainability of this class will quickly get out of hand.

public class ErrorLoggerManager
{
 public void LogErrorToEventLog(Exception e)
 {
 // Logging code
 }

 public void LogErrorToFile(Exception e)
 {

Design Principles | 97

 // Logging code
 }
}

Here is the updated version of the ErrorLogger class designed to enforce SRP and OCP.
An interface called ILogSource has been introduced that each type of logging imple-
ments. Two additional classes have also been created: EventLogSource and FileLog
Source. Both classes deal with a specific type of logging. Now when additional logging
types are introduced, none of the existing classes needs to be changed.

public class ErrorLogger
{
 public void Log(ILogSource source)
 {
 // Logging code
 }
}

public interface ILogSource
{
 LogError(Exception e);
}

public class EventLogSource : ILogSource
{
 public void LogError(Exception e)
 {
 LogError(Exception e);
 }
}

public class FileLogSource : ILogSource
{
 public void LogError(Exception e)
 {
 LogError(Exception e);
 }
}

At this point, you might be thinking to yourself that while this approach may seem
cleaner, it also requires a lot more code. While this may be true, the examples through-
out this book will show the many benefits that come from loosely coupled components
that follow this pattern.

The Liskov Substitution Principle

The Liskov Substitution Principle (LSP) states that objects should be easily replaceable
by instances of their subtypes without influencing the behavior and rules of the objects.
For example, though it may seem to be a good idea to have a common base class or
interface, this approach may indirectly introduce code that breaks LSP.

Take a look at ISecurityProvider and the classes that implement this interface.
Everything looks good, until the UserController goes to call RemoveUser on the

98 | Chapter 5: Web Application Architecture

ActiveDirectoryProvider class. In this example, only the DatabaseProvider class sup-
ports removing users. One way to address this issue would be to add type-specific logic,
which is what the UserController is currently doing. But this approach has a big draw-
back in that it breaks LSP. Raising an exception in this case is a bad idea and forces the
introduction of type-specific code. One way to resolve this issue is to utilize the SOLID
Interface Segregation Principle, discussed next.

public interface ISecurityProvider
{
 User GetUser(string name);
 void RemoveUser(User user);
}

public class DatabaseProvider : ISecurityProvider
{

 public User GetUser(string name)
 {
 // Code to add a new user
 }

 public void RemoveUser(User user)
 {
 // Code to save a user
 }

}

public class ActiveDirectoryProvider : ISecurityProvider
{

 public User GetUser(string name)
 {
 // Code to add a new user
 }

 public void RemoveUser(User user)
 {
 // AD does not allow users to be removed
 throw new NotImplementedException();
 }

}

public class UserController : Controller
{
 private ISecurityProvider securityProvider;

 public ActionResult RemoveUser(string name)
 {
 User user = securityProvider.GetUser(name);

 if (securityProvider is DatabaseProvider) // Breaks LSP
 securityProvider.Remove(user);

Design Principles | 99

 }
}

The Interface Segregation Principle

The Interface Segregation Principle (ISP) encourages the use—and at the same time,
limits the size—of interfaces throughout an application. In other words, instead of one
superclass interface that contains all the behavior for an object, there should exist mul-
tiple, smaller, more specific interfaces. A good example of this is how .NET has separate
interfaces for serialization and for disposing. A class would implement the interfaces
ISerializable and IDisposable, while a consumer who is only concerned with seriali-
zation would only care about the methods implemented by the ISerializable interface.

The following code is an example of ISP being used properly. Two separate interfaces
have been created—one (ISearchProvider) only contains methods for searching, while
the other (IRepository) defines methods for persisting an entity. Note how the Search
Controller is only concerned with the behavior for searching and only references the
ISearchProvider interface. This is powerful because you can use this technique to en-
force a level of security. For example, say you allow anyone to search for a product, but
only admins can add/remove products. By using ISP you can ensure that the Search
Controller that allows anonymous access can only search for products and not add/
remove them.

public interface ISearchProvider
{
 IList<T> Search<T>(Criteria criteria);
}

public interface IRepository<T>
{
 T GetById(string id);
 void Delete(T);
 void Save(T)
}

public class ProductRepository< : ISearchProvider, IRepository<Product>
{
 public IList<Product> Search(Criteria criteria)
 {
 // Search code
 }

 public Product GetById(string id)
 {
 // Data access code
 }

 public void Delete(Product product)
 {
 // Data access code
 }

100 | Chapter 5: Web Application Architecture

 public void Save(Product product)
 {
 // Data access code
 }
}

public class SearchController : Controller
{
 private ISearchProvider searchProvider;

 public SearchController(ISearchProvider provider)
 {
 this.searchProvider = provider;
 }

 public ActionResult SearchForProducts(Criteria criteria)
 {
 IList<Products> products = searchProvider.Search<Product>(criteria);
 return view(products);
 }
}

The Dependency Inversion Principle

The Dependency Inversion Principle (DIP) says that components that depend on each
other should interact via an abstraction and not directly with a concrete implementa-
tion. A good example of this would be a controller relying on an abstract class or in-
terface to communicate with a data access layer, as opposed to creating an instance of
a specific type of data access object itself.

There are several advantages to this principle: using abstraction allows different com-
ponents to be developed and changed independently of each other, it’s possible to
introduce new implementations of the abstraction, and it makes it easier to test since
the dependency can be mocked.

In the next section, we will dig deeper into how a particular implementation of DIP—
the Inversion of Control (IoC) principle—makes this easier by using a separate com-
ponent to manage the creation and lifetime of this abstraction.

The following code is an example of DIP being used. The SearchController class has a
dependency on the ISearchProvider interface. Instead of directly creating an instance
of the ProductRepository, the controller uses the instance of the ISearchProvider passed
in to its controller. The next section will cover how an IoC container can be used to
manage dependencies.

public class SearchController : Controller
{
 private ISearchProvider searchProvider;

 public SearchController(ISearchProvider provider)
 {
 this.searchProvider = provider;

Design Principles | 101

 }
}

public class ProductRepository : ISearchProvider
{
}

Inversion of Control
Now that you have grasped the concepts of the SOLID design principles, it’s time to
dig into the magic that glues all of these concepts together: Inversion of Control. IoC is
a design principle that promotes loosely coupled layers, components, and classes by
inverting the control flow of the application.

Compared with traditional procedural code where a single routine explicitly controls
the flow between itself and subroutines, IoC uses the concept of separating the execu-
tion of code from problem-specific code. This approach allows the different compo-
nents of the application to be developed independently of each other. For example, in
an MVC application, the model, view, and controller layers can be designed and built
independently.

Two popular implementations of the IoC design principle are dependency injection and
service location. Both of these use the same basic concept of a central container to
manage the lifetime of a dependency. The major difference between the two imple-
mentations revolves around how dependencies are accessed: a service locator relies on
the caller to invoke and ask for a dependency, while dependency injection is done by
injecting a dependency into a class by either populating its constructor, setting one of
its properties, or executing one of its methods.

Understanding dependencies

Understanding the different types of dependencies and how to manage the relationship
between dependencies is critical to minimizing the complexity of an application. De-
pendencies come in many forms: one .NET assembly can have one or more references
to other .NET assemblies; an MVC controller must inherit from the base ASP.NET
MVC controller class; and an ASP.NET application requires an IIS web server to host it.

Figure 5-6 shows the relationship between a controller and a repository class. In this
scenario, the controller directly creates an instance of the repository class. The con-
troller currently has a tight coupling to the repository class. Any change to the repository
public interface potentially affects the controller class. For instance, if a developer de-
cides to change the default constructor for the repository class to require one or more
parameters, this change will affect the controller class.

102 | Chapter 5: Web Application Architecture

Figure 5-6. Managing dependencies

In order to make the relationship between the controller and repository more loosely
coupled, a developer can introduce an abstraction IRepository and move the creation
of the repository class to a factory (pattern). Figure 5-7 illustrates this configuration.
The controller now is only dependent on the IRepository interface, and any changes
to the repository class constructor will not require changes to the controller class. While
this eliminates the tight coupling between the controller and the repository, it intro-
duces a new coupling between the controller and the factory class.

Figure 5-7. Using abstraction

Figure 5-8 shows how an IoC container can replace the factory class as a means to
manage the dependency between the controller and the repository classes. This imple-
mentation still has the controller using an interface IRepository for abstraction. Only
now, the controller knows nothing about how the repository is created—the IoC
container is responsible for both creating and “injecting” (i.e., passing) the repository
instance into the controller. Using an IoC container provides an additional level of
functionality over the factory, in that the IoC container allows the lifetime management
of the class to be configured.

Design Principles | 103

Figure 5-8. Managing dependencies with IoC

Service location

Using the service locator pattern is easy. A developer just needs to ask the IoC container
for a specific service class. The container looks to see if the requested class has been
configured, and based on the lifetime management rules for the class, it will either create
a new instance or return a previously created instance to the requester.

The service locator pattern works great if you need to directly access a particular service
in a single method or need to request a service by name, not just interface. The major
drawback to using this pattern is that your code needs direct access to the IoC container,
which could introduce a tight coupling between your code and the API of the IoC
container. One way to minimize this coupling is to abstract the IoC container away,
behind a custom interface.

The following is an example of a class directly asking the IoC container for a specific
service based on its registered interface:

public class AuctionsController : Controller
{
 private readonly IRepository _repository;

 public AuctionsController()
 {
 IRepository repository = Container.GetService<IRepository>();
 _repository = repository;
 }
}

Dependency injection

The dependency injection (DI) pattern promotes a more loosely coupled approach,
compared to the service locator pattern. DI uses an approach where dependencies are
passed in via constructors, properties, or methods. Typically, most developers use
constructor injection since in most cases the dependency is needed right away.

104 | Chapter 5: Web Application Architecture

However, certain IoC containers allow a lazy-loading approach for property injected
dependencies. In this case the dependency is not loaded until a property gets invoked.

The AuctionsController class has been set up to use constructor injection. The class
depends on a data repository to persist and retrieve auction-related data; however, the
controller has no direct reference to an actual implementation of a repository. Instead,
the controller relies on the IRepository interface and the IoC container determines the
appropriate IRepository implementation and “injects” it at runtime:

public class AuctionsController : Controller
{
 private readonly IRepository _repository;

 public AuctionsController(IRepository repository)
 {
 _repository = repository;
 }
}

Dependency injection really starts to shine in situations that involve multiple levels of
dependencies, i.e., when dependencies themselves have other dependencies. When the
IoC container goes to inject a dependency, it will check to see if it already has a previ-
ously loaded instance of the dependency. If it hasn’t, it will create a new instance and
check to see if it has any dependencies that need to be injected. In this scenario, as the
IoC container walks down the dependency tree, it creates the necessary dependencies.

The following example shows how chaining dependencies works. When the IoC con-
tainer creates an instance of the AuctionsController, it will detect that the class has a
dependency on an IRepository. The container will look to see if an instance of the
IRepository class has been registered and create an instance of the AuctionsReposi
tory class. Since the class has its own dependency, the container will create an instance
of the ErrorLogger class and inject it into the AuctionsRepository:

public class AuctionsController : Controller
{
 private readonly IRepository _repository;

 public AuctionsController(IRepository repository)
 {
 _repository = repository;
 }
}

public interface IRepository<T>
{
 T GetById(string id);
 void Delete(T);
 void Save(T)
}

public class AuctionsRepository : IRepository<Auction>
{

Design Principles | 105

 private readonly IErrorLogger _logger;

 public AuctionsRepository(IErrorLogger logger)
 {
 _logger = logger;
 }

 public Auctions GetById(string id)
 {
 // Data access code
 }

 public void Delete(Auctions auction)
 {
 // Data access code
 }

 public void Save(Auctions auction)
 {
 // Data access code
 }
}

public class ErrorLogger : IErrorLogger
{
 public void Log(Exception e)
 {
 // Logging code
 }
}

public interface IErrorLogger
{
 Log(Exception e);
}

Picking an IoC container

When using Inversion of Control, a developer needs to keep a couple of things in mind:
performance and error handling. Using an IoC container to manage and inject depen-
dencies can be costly. Dependencies need to have an appropriate lifetime cycle. If a
dependency is configured as a singleton, cross-threading issues could be introduced
and any external resources (e.g., connection strings) need to be properly managed. It
is critical to avoid using an IoC container to create a large collection; it would be a really
bad idea to use DI to create a 1,000-item collection. Missing or unregistered
dependencies can be a nightmare to debug. A developer needs to keep track of the
dependencies required and make sure they all get registered during the loading of the
application.

Since most of the IoC containers are very similar, choosing a particular container is
usually more about developer preference than an in-depth comparison of features.

106 | Chapter 5: Web Application Architecture

There are several containers available for .NET, each offering different approaches for
injecting and managing dependencies. Popular .NET IoC containers include:

1. Ninject: http://www.ninject.org

2. Castle Windsor: http://www.castleproject.org/container/index.html

3. Autofac: http://code.google.com/p/autofac/

4. StructureMap: http://structuremap.net/structuremap/index.html

5. Unity: http://unity.codeplex.com

6. MEF: http://msdn.microsoft.com/en-us/library/dd460648.aspx

For the EBuy reference application, we chose the Ninject container, because of the
popularity of the container in the ASP.NET MVC developer community. The container
includes a number of custom-built extensions for working with ASP.NET and supports
an easy-to-use fluent interface style for setting up and registering dependencies.

To initialize and use the Ninject IoC container, you need to set up its bootstrapper.
The bootstrapper is responsible for managing the modules registered with Ninject. The
important module to examine is the BindingsModule. Note the static Start() and
Stop() methods of the bootstrapper. These methods need to be called from the
Global.asax application start and end methods. Here’s how to set up the Ninject boot-
strapper:

private static readonly Bootstrapper bootstrapper = new Bootstrapper();

/// <summary>
/// Starts the application
/// </summary>
public static void Start()
{
 DynamicModuleUtility.RegisterModule(typeof(OnePerRequestModule));
 DynamicModuleUtility.RegisterModule(typeof(HttpApplicationInitializationModule));
 bootstrapper.Initialize(CreateKernel);
}

/// <summary>
/// Stops the application.
/// </summary>
public static void Stop()
{
 bootstrapper.ShutDown();
}

/// <summary>
/// Creates the kernel that will manage your application.
/// </summary>
/// <returns>The created kernel.</returns>
private static IKernel CreateKernel()
{
 var kernel = new StandardKernel();
 RegisterServices(kernel);
 return kernel;

Design Principles | 107

http://www.ninject.org
http://www.castleproject.org/container/index.html
http://code.google.com/p/autofac/
http://structuremap.net/structuremap/index.html
http://unity.codeplex.com
http://msdn.microsoft.com/en-us/library/dd460648.aspx

}

/// <summary>
/// Load your modules or register your services here!
/// </summary>
/// <param name="kernel">The kernel.</param>
private static void RegisterServices(IKernel kernel)
{
 kernel.Load(new BindingsModule());
}

The BindingsModule inherits from the Ninject base module class and contains the de-
pendency registration needed by the ASP.NET MVC Framework. Observe how the
controller and route dependencies have been defined using a singleton scope. This
means that both dependencies will be managed as a singleton and only one instance
will ever be created. Any custom dependencies should be registered in the Load()
method:

public class BindingsModule : Ninject.Modules.NinjectModule
{
 public override void Load()
 {
 Bind<ControllerActions>()
 .ToMethod(x => ControllerActions.DiscoverControllerActions())
 .InSingletonScope();

 Bind<IRouteGenerator>().To<RouteGenerator>().InSingletonScope();

 Bind<DataContext>().ToSelf().InRequestScope()
 .OnDeactivation(x => x.SaveChanges());

 Bind<IRepository>().To<Repository>().InRequestScope()
 .WithConstructorArgument("isSharedContext", true);
 }
}

When you register your own dependencies, you can define how the container should
manage their lifetime, choose which arguments to pass to a constructor, and define
what behavior to perform when a dependency is deactivated.

Using Inversion of Control to extend ASP.NET MVC

The ASP.NET MVC Framework relies heavily on the Inversion of Control principle.
Out of the box, the framework contains a default controller factory that handles the
creation of your application’s controller by intercepting the input request execution,
reading its MVC route and creating the specific controller, and calling a method on the
controller based on the route definition. The other major area where IoC comes into
play is in managing the view engine for your application and controlling the execution
between the controller and its corresponding view(s).

The real power of IoC emerges when you extend the ASP.NET Framework by over-
riding its dependency resolver with your own IoC to gain direct control over the way

108 | Chapter 5: Web Application Architecture

ASP.NET MVC manages dependencies and creates instances of objects. Overriding
ASP.NET MVC’s default dependency resolver is as simple as implementing the IDepen
dencyResolver interface and registering your custom dependency resolver with the
ASP.NET MVC Framework.

To see this in action, let’s take a look at how to build a custom dependency resolver
that uses the Ninject IoC. First, implement the IDependencyResolver interface, passing
these calls through to an instance of IKernel (Ninject’s IoC container class):

public class CustomDependencyResolver : IDependencyResolver
{
 private readonly Ninject.IKernel _kernel;

 public CustomDependencyResolver(Ninject.IKernel kernel)
 {
 _kernel = kernel;
 }

 public object GetService(Type serviceType)
 {
 return _kernel.TryGet(serviceType);
 }

 public IEnumerable<object> GetServices(Type serviceType)
 {
 return _kernel.GetAll(serviceType);
 }
}

Then, register this implementation by calling the static SetResolver() method on the
System.Web.Mvc.DependencyResolver class, like so:

Ninject.IKernel kernel = new Ninject.StandardKernel();
DependencyResolver.SetResolver(new CustomDependencyResolver(kernel));

Notice how we first had to create a Ninject IKernel instance to pass in to the CustomDe
pendencyResolver. Though every IoC container is implemented differently, most IoC
frameworks require you to configure the container before it is able to create and resolve
dependencies. In this example, Ninject’s StandardKernel provides the same default
configuration.

The snippet above will not work yet, however—you must first tell the StandardKer
nel about the classes and interfaces you want it to manage. With Ninject, this is done
using the Bind<T>() method. For example, the call to tell Ninject to use the concrete
implementation ErrorLogger whenever an IErrorLogger is required resembles:

kernel.Bind<IErrorLogger>().To<ErrorLogger>();

Here is an example of adding a new binding for the ErrorLogger class:

// Register services with container
kernel.Bind<IErrorLogger>().To<ErrorLogger>();

Design Principles | 109

Don’t Repeat Yourself
Don’t Repeat Yourself (DRY) is a design principle, closely related to the SOLID princi-
ples, that encourages developers to avoid duplicating code that is the same or very
similar.

Take a look at the SearchController class below; do you see any potential violations of
the DRY principle? Everything looks good until you consider that there may be dozens
of controllers in an application that all contain code exactly the same as or similar to
this. At first, it may seem like a good idea to move the CheckUserRight() method to a
base controller that all the controllers share. This approach would work, but the
ASP.NET MVC Framework offers an even better option: a developer can create a cus-
tom ActionFilter to handle this behavior.

public class SearchController : Controller
{
 public ActionResult Add(Product product)
 {
 if (CheckUserRights())
 // Code for adding product

 return View();
 }

 public ActionResult Remove(Product product)
 {
 if (CheckUserRights())
 // Code for removing product

 return View();
 }

 private bool CheckUserRights()
 {
 // Code to verify if the user can perform the operation
 }
}

Summary
This chapter covered the key design patterns and principles used during the design of
the ASP.NET MVC Framework. A developer can take advantage of these same princi-
ples (separation of concerns, Inversion of Control, and SOLID) to build a flexible and
maintainable ASP.NET MVC web application. Using these principles goes beyond just
writing better code. They are the fundamental building blocks for architecting a web
application.

110 | Chapter 5: Web Application Architecture

CHAPTER 6

Enhancing Your Site with AJAX

The concept of a web application has changed greatly over the last 20 years. HTML
was originally designed as a way to expose text-based content and easily link to other
text-based pages via the Internet. After a little while, however, users and content pro-
ducers alike wanted more from their web pages, so many websites began using Java-
Script and Dynamic HTML techniques in order to make their static HTML content
more interactive. Asynchronous JavaScript and XML—or, as it’s more commonly
known, AJAX—is a catchall term that refers to making asynchronous requests to the
web server, avoiding the need to navigate to a new page in order to get fresh data.

Rather than transmitting and redrawing the entire page, AJAX techniques request con-
tent asynchronously and then use that content to update various sections of the page.
AJAX techniques typically request one of two types of content: server-generated HTML
markup that the browser injects directly into the page, and raw serialized data that
client-side JavaScript logic uses to create new HTML or to update existing markup in
the browser.

In this chapter, we will take a look at how to take advantage of the powerful features
in ASP.NET MVC that help you incorporate AJAX techniques into your web
applications.

Partial Rendering
The concept of making an HTTP request to a server and receiving HTML markup in
response is the foundation of the World Wide Web. Therefore, making yet another
request for more server-generated HTML markup in order to update or replace a section
of the original page seems like a logical choice. This approach is called partial render-
ing, and it’s a very effective option for powering simple and effective AJAX behaviors.

The partial rendering technique involves making an asynchronous request to the server,
which replies with a chunk of HTML markup that is ready to insert right into the current
page.

111

For example, let’s say that you have the following document, ajax_content.html, that
you’d like to asynchronously insert into a page:

<h2>This is the AJAX content!</h2>

And here’s the page into which you want to insert this content:

<html>
<body>
<h1>Partial Rendering Demo</h1>
<div id="container" />
</body>
</html>

This example uses the <div id="container" /> element to mark where you want to
insert the dynamic content. You can then populate the <div id="container" /> element
with the server-side content in ajax_content.html using the jQuery .load() method:

$("#container").load('ajax_content.html')

The .load() method makes an asynchronous request for the server-side content, then
injects it into the #container element. After the call, the DOM will include the dynam-
ically retrieved server-side content:

<html>
<body>
<h1>Partial Rendering Demo</h1>
<div id="container">
 <h2>This is the AJAX content!</h2>
</div>
</body>
</html>

As this example shows, the partial rendering approach is a simple and effective way to
dynamically update sections of your web pages. What’s more, it’s incredibly easy to
implement in an ASP.NET MVC application!

Rendering Partial Views
For the most part, ASP.NET MVC treats a partial rendering request the same as any
other request—the request is routed to the appropriate controller action, and the con-
troller action performs any logic that it needs to.

The difference occurs toward the end of the request, when it comes time to render the
view. Whereas the normal course of action might be to use the Controller.View()
helper method to return a ViewResult, you instead call the Controller.Partial() helper
to return a PartialViewResult. This is very similar to the ViewResult, except that it only
renders the content of the view—it does not render the view’s layout.

To demonstrate the difference, let’s compare the rendered markup from a partial view
of an Auction with the rendered markup generated for the “normal” view of an Auction.

112 | Chapter 6: Enhancing Your Site with AJAX

Rendering a “normal” view

The following controller action (AuctionsController.cs) calls the Controller.View()
helper method that you’re already familiar with:

public class AuctionsController : Controller
{
 public ActionResult Auction(long id)
 {
 var db = new DataContext();
 var auction = db.Auctions.Find(id);

 return View("Auction", auction);
 }
}

Its corresponding Auction view (Auction.cshtml) looks like this:

@model Auction

<div class="title">@Model.Title</div>

<div class="overview">

 <p>
 Current Price:
 @Model.CurrentPrice
 </p>
</div>

<h3>Description</h3>
<div class="description">
 @Model.Description
</div>

This combination produces the final rendered HTML shown in Example 6-1.

Example 6-1. Rendered markup for “normal” Auction view

<!DOCTYPE html>
<html>
<head>
 <meta charset="utf-8" />
 <link href="/Content/Site.css" rel="stylesheet" type="text/css" />
 <link href="/Content/themes/base/jquery.ui.all.css" rel="stylesheet" type="text/css" />
 <script src="/Scripts/jquery-1.7.1.min.js" type="text/javascript"></script>
 <script src="/Scripts/jquery-ui-1.8.16.js" type="text/javascript"></script>
 <script src="/Scripts/modernizr-2.0.6.js" type="text/javascript"></script>
 <script src="/Scripts/AjaxLogin.js" type="text/javascript"></script>
</head>

<body>
 <header>
 <h1 class="site-title">EBuy: The ASP.NET MVC Demo Site</h1>
 <nav>
 <ul id="menu">
 Electronics

Partial Rendering | 113

 Home/Outdoors
 Collectibles

 </nav>
 </header>

 <section id="main">

<div class="title">Xbox 360 Kinect Sensor with Game Bundle</div>

<div class="overview">
 <img src="/Content/images/products/kinect.jpg" alt="Xbox 360 Kinect Sensor with Game ↵
 Bundle" />
 <p>
 Closing in 4 days, 19 hours
 </p>
 <div>
 Bid History
 </div>
 <p>
 Current Price:
 $43.00
 </p>
</div>

<h3>Description</h3>
<div class="description">
 You are the controller with Kinect for Xbox 360!
</div>

 </section>

 <footer>
 <p>© 2012 - EBuy: The ASP.NET MVC Demo Site</p>
 </footer>
</body>
</html>

Rendering a partial view

Notice how the Auctions.cshtml view is rendered inside the site’s layout. This is exactly
what users need to see when they browse to the page for the first time. But what if we
want to reuse the layout markup that effectively stays the same for every page in the
site, and update just the auction information in order to display the details of another
auction without the user being required to navigate to another page?

The answer is to use the Controller.PartialView() method to create a PartialViewRe
sult instead of the ViewResult that the Controller.View() method generates:

public class AuctionsController : Controller
{
 public ActionResult Auction(long id)
 {
 var db = new DataContext();

114 | Chapter 6: Enhancing Your Site with AJAX

 var auction = db.Auctions.Find(id);

 return View("Auction", auction);
 }

 public ActionResult PartialAuction(long id)
 {
 var db = new DataContext();
 var auction = db.Auctions.Find(id);

 return PartialView("Auction", auction);
 }
}

Notice how nothing else has changed except the switch from the View() method to the
PartialView() method. The PartialViewResult can even use exactly the same views
that the ViewResult depends on. In fact, the PartialViewResult and ViewResult are
nearly identical, except for one very important difference: the PartialViewResult ren-
ders only the markup in the view itself and does not render any layout or master page
that the view may specify. What’s more, partial views behave the same way as normal
views, so you are free to use any type of syntax you like (such as the Razor syntax) and
make full use of ASP.NET MVC view functionality such as HTML helpers.

Since partial pages do not execute the layout, you may have to include
some dependencies, such as CSS or JavaScript, directly in the partial
view rather than including them in the page’s layout.

This means that—using the same view shown in Auction.cshtml in the previous section
—the PartialView result will render the markup in Example 6-2.

Example 6-2. Rendered markup for the partial auction view

<div class="title">Xbox 360 Kinect Sensor with Game Bundle</div>

<div class="overview">
 <img src="/Content/images/products/kinect.jpg" alt="Xbox 360 Kinect Sensor with Game ↵
 Bundle" />
 <p>
 Closing in 4 days, 19 hours
 </p>
 <div>
 Bid History
 </div>
 <p>
 Current Price:
 $43.00
 </p>
</div>

<h3>Description</h3>
<div class="description">

Partial Rendering | 115

 You are the controller with Kinect for Xbox 360!
</div>

With these changes, you can now use the following jQuery client-side code to load the
HTML for new auctions without having to navigate to a new page:

function showAuction(auctionId) {
 $('#main').load('/Auctions/PartialAuction/' + auctionId);
}

If you write the previous snippet inside of a Razor view, you can leverage
the ASP.NET MVC UrlHelper to generate the correct route to the Auc
tionsController.Auction action.

Simply replace this:

'/Auctions/PartialAuction/' + auctionId

with:

'@Url("PartialAuction", "Auctions")/' + auctionId

Managing complexity with partial views

The previous example showed how you can use partial views to display a page without
its layout. Partial views needn’t always be full pages, however—splitting a page into
multiple partial views is often a very good way to help simplify an otherwise over-
whelming and complex view.

Perhaps the best example of managing complexity with partial views is when you need
to display something in a foreach loop, as in the list of auctions shown in the following
snippet:

@model IEnumerable<Auction>

<h1>Auctions</h1>
<section class="auctions">

@foreach(var auction in Model) {
 <section class="auction">
 <div class="title">@auction.Title</div>

 <div class="overview">

 <p>
 Current Price:
 @auction.CurrentPrice
 </p>
 </div>

 <h3>Description</h3>
 <div class="description">
 @auction.Description
 </div>

116 | Chapter 6: Enhancing Your Site with AJAX

 </section>
}

</section>

Take a close look at the markup inside of the foreach loop—does it remind you of
something you’ve seen before? It’s exactly the same markup from Auctions.cshtml that
we used as a partial rendering result!

That means we should be able to replace that whole section with a call to the Html.Par
tial() helper to render the partial view we’ve already created:

@model IEnumerable<Auction>

<h1>Auctions</h1>
<section class="auctions">

@foreach(var auction in Model) {
 <section class="auction">
 @Html.Partial("Auction", auction)
 </section>
}

</section>

Notice how we can specify the model that the partial view renders by passing it as the
second parameter to the Html.Partial() helper. This allows us to iterate through the
entire list of Auction objects and apply the same view to each instance.

As the examples in this section show, effectively applying partial views can not only
help simplify each individual view and reduce the amount of duplicate code in your
application, it is also a great way to maintain consistency throughout your site.

JavaScript Rendering
Although the prerendered HTML approach is very easy and effective, it can also be
quite wasteful to transmit both the data you’d like to display and the markup to display
it, when the browser is perfectly capable of creating that markup itself. Thus, the al-
ternative to retrieving prerendered HTML from the server is to retrieve the raw data
that you’d like to display, then use that data to create and update HTML elements by
manipulating the DOM directly.

In order to implement a client-side rendering approach, you must have two things: a
server that can produce the serialized data, and client-side logic that knows how to
parse the serialized data and convert it into HTML markup.

JavaScript Rendering | 117

Rendering JSON Data
Let’s tackle the server-side piece first: responding to an AJAX request with serialized
data. Before we can do this, however, we must decide what technique we are going to
use to serialize that data.

JavaScript Object Notation (JSON) is a simple and very effective format for transmitting
data over the Web. JSON objects leverage two types of data structures to represent
data: collections of name/value pairs, and ordered lists of values (aka arrays). And, as
its name implies, JavaScript Object Notation is based on a subset of the JavaScript
language, so all modern browsers already understand it.

ASP.NET MVC offers native JSON support in the form of the JsonResult action result,
which accepts a model object that it serializes into the JSON format. In order to add
AJAX support to your controller actions via JSON, simply use the Controller.Json()
method to create a new JsonResult containing the object to be serialized.

To show the Json() helper and JsonResult in action, let’s add a JsonAuction action to
the AuctionsController:

public ActionResult JsonAuction(long id)
{
 var db = new DataContext();
 var auction = db.Auctions.Find(id);

 return Json(auction, JsonRequestBehavior.AllowGet);
}

This new controller action responds to requests with the JSON-serialized version of
the auction data. For example:

{
 "Title": "XBOX 360",
 "Description": "Brand new XBOX 360 console",
 "StartTime": "01/12/2012 12:00 AM",
 "EndTime": "01/31/2012 12:00 AM",
 "CurrentPrice": "$199.99",
 "Bids": [
 {
 "Amount" : "$200.00",
 "Timestamp": "01/12/2012 6:00 AM"
 },
 {
 "Amount" : "$205.00",
 "Timestamp": "01/14/2012 8:00 AM"
 },
 {
 "Amount" : "$210.00",
 "Timestamp": "01/15/2012 12:32 PM"
 }
]
}

118 | Chapter 6: Enhancing Your Site with AJAX

This snippet is a great example of JSON’s simplicity and elegance—notice how
[and] define arrays and how property values can be simple data types or complex data
types represented by JSON objects themselves. This syntax also has the positive side
effect of making JSON data very human-readable.

Avoiding JSON hijacking with JsonRequestBehavior

Notice that the Json() method’s second parameter is JsonRequestBehavior.AllowGet,
which explicitly informs the ASP.NET MVC Framework that it’s acceptable to return
JSON data in response to an HTTP GET request.

The JsonRequestBehavior.AllowGet parameter is necessary in this case because, by de-
fault, ASP.NET MVC disallows returning JSON in response to an HTTP GET request
in order to avoid a potentially dangerous security vulnerability known as JSON hijack-
ing. This vulnerability takes advantage of a glitch in the way that many browsers handle
JavaScript <script> tags that can lead to exposing sensitive information if the data in
the request includes a JSON array.

Though it is somewhat complex, all you really need to know to avoid this vulnerability
is that you should never return data from a GET request that you would not want shared
with the world. Therefore, ASP.NET MVC makes you deliberately opt in to delivering
JSON data through this insecure way when you are returning publicly accessible (non-
sensitive) data by leveraging the JsonRequestBehavior.AllowGet option.

In scenarios where you need to transmit sensitive information via a JSON response,
you can protect yourself from this vulnerability by restricting access to your controller
method to HTTP POST requests only by applying the HttpPostAttribute:

[HttpPost]
public ActionResult JsonAuction(long id)
{
 var db = new DataContext();
 var auction = db.Auctions.Find(id);

 return Json(auction);
}

Requesting JSON Data
With the server-side functionality in place, we now need to make a request to retrieve
the JSON data so that we can use it to build markup in the client. Luckily, jQuery makes
this very easy to do.

To request JSON data from an ASP.NET MVC controller action, simply make an
$.ajax() call to the controller action URL and specify a success function to handle the
response. The first parameter of the success function (named “result” in the example
below) contains the deserialized object returned from the server.

JavaScript Rendering | 119

The following snippet demonstrates this by calling our new JsonAuction controller ac-
tion and using jQuery’s .val() and .html() methods to update the DOM with the
JSON-serialized Auction data that the controller action returns:

function updateAuctionInfo(auctionId) {
 $.ajax({
 url: "/Auctions/JsonAuction/" + auctionId,
 success: function (result) {
 $('#Title').val(result.Title);
 $('#Description').val(result.Description);
 $('#CurrentPrice').html(result.CurrentPrice);
 }
 });
}

While this client-side rendering approach may require a bit more code, it allows you
to send the least amount of data over the wire, which generally makes it a much more
efficient method of transmitting and displaying AJAX data.

Client-Side Templates
While the string concatenation approach shown above is an effective way to generate
client-side markup, it is really only suitable for small sections of markup. As the amount
of markup grows, it adds to the complexity of the code that needs to concatenate it,
resulting in something that is increasingly difficult to maintain.

Client-side templates are a powerful alternative to simple string concatenation that let
you quickly and efficiently transform JSON data into HTML in a very maintainable
way. Client-side templates define reusable sections of markup by combining simple
HTML with data expressions that can range from simple placeholders to be replaced
with data values, to full-blown JavaScript logic that can perform even more powerful
data processing directly within the template.

Note that the concept of client-side templates is not part of any official specification,
so in order to take advantage of this approach, you will need to rely on a JavaScript
library to help you out. Though the exact syntax will differ between the various libraries,
the fundamental concept remains the same: the library will take client template markup
and parse it into a function that knows how to produce HTML markup from a JSON
object.

The following examples use the Mustache template syntax to define the client template
markup and the mustache.js JavaScript library to parse and execute the client templates
in the browser. However, there are plenty of client template libraries available for you
to choose from, so be sure to research each of them and choose the one that best fits
the needs of your application.

To see client-side templates in action, let’s rewrite the Auction view from earlier in the
chapter into client template syntax:

120 | Chapter 6: Enhancing Your Site with AJAX

http://mustache.github.com/
https://github.com/janl/mustache.js

<div class="title">{{Title}}</div>

<div class="overview">

 <p>
 Current Price:
 {{CurrentPrice}}
 </p>
</div>

<h3>Description</h3>
<div class="description">
 {{Description}}
</div>

Notice how the markup of the client template looks almost identical to the final output.
In fact, the only difference is that the client template has data placeholders instead of
actual data. Also note that this is a very simple example to show the fundamental
concept of client templating—most client template libraries offer far more functionality
than simple placeholders.

The second step is to compile the client template, or convert the client template HTML
into an executable JavaScript function.

Since compiling the template is often the most expensive operation in
the process, it’s often a good idea to compile it once and save the com-
piled function in a variable.

This way, you can execute the compiled template multiple times while
only performing the compilation once.

Finally, we invoke the compiled template by passing it the data that we wish to convert
into HTML. The compiled template then returns formatted HTML, which we can
insert into the DOM wherever we like.

Take a look at Example 6-3 for an end-to-end example of a page that leverages client
templates.

Example 6-3. A complete client template example

@model IEnumerable<Auction>

<h2>Auctions</h2>

<ul class="auctions">
 @foreach(var auction in Model) {
 <li class="auction" data-key="@auction.Key">

 @auction.Title

JavaScript Rendering | 121

D
ow

n
lo

a
d
 f
ro

m
 W

o
w

!
e
B
o
o
k

<
w

w
w

.w
o
w

e
b
o
o
k.

co
m

>

 }

<section id="auction-details">
 @Html.Partial("Auction", Model.First())
</section>

<script id="auction-template" type="text/x-template">
 <div class="title">{{Title}}</div>

 <div class="overview">

 <p>
 Current Price:
 {{CurrentPrice}}
 </p>
 </div>

 <h3>Description</h3>
 <div class="description">
 {{Description}}
 </div>
</script>

<script type="text/javascript" src="~/scripts/mustache.js"></script>

<script type="text/javascript">
 $(function() {
 var templateSource = $('#auction-template').html();
 var template = Mustache.compile(templateSource);

 $('.auction').click(function() {
 var auctionId = $(this).data("key");
 $.ajax({
 url: '@Url.Action("JsonAuction", "Auctions")/' + auctionId,
 success: function(auction) {
 var html = template(auction);
 $('#auction-details').html(html);
 }
 });
 });
 });
</script>

While it looks like there is quite a bit going on in this example, it is actually quite simple:

1. When the page loads, the script block at the bottom retrieves the client template
markup from the inner HTML of the auction-template element.

2. The script then passes the client template markup to the Mustache.compile()
method to compile it into a JavaScript function, which it saves to the template
variable.

122 | Chapter 6: Enhancing Your Site with AJAX

3. The script block then listens for the click event on each Auction element in the list
of Auction+s, which triggers an AJAX request to retrieve the JSON-serialized
data for that +Auction.

• Upon successfully retrieving the Auction data, the success handler executes
the previously compiled client template (stored in the template variable) to
produce markup from the JSON data.

• Finally, the success handler calls the .html() method to replace the content of
the auction-details element with the markup generated from the template
function.

The "text/x-template" MIME type is an arbitrary, made-up type—you
are free to use just about any invalid MIME type value here.

Browsers ignore script tags that specify MIME types that the browser
doesn’t understand, so wrapping the template markup in a script tag
and setting its MIME type to an “invalid” value such as "text/x-tem
plate" prevents the browser from rendering it as normal HTML with
the rest of the page.

While the client template approach may seem like a lot of work, in most cases the ease
of maintenance and the lower bandwidth costs that it allows make it well worth the
up-front cost. When your application relies on lots of AJAX interactions that result in
complex client-side markup, client templates are often a great choice.

Reusing Logic Across AJAX and Non-AJAX Requests
The Model-View-Controller pattern that drives the ASP.NET MVC Framework lever-
ages a strong separation of concerns to help ensure that individual components are
isolated from each other. Though our PartialAuction and JsonAuction controller ac-
tions might do exactly what we want them to, if we take a step back to scrutinize them,
we begin to see that we’ve broken several of the patterns and practices that are so
fundamental to the MVC philosophy.

When done right, MVC application logic should not be tied to a particular view. Why,
then, do we have three controller actions (shown in Example 6-4) that perform the same
logic and only differ in the way that they return the content to the browser?

Example 6-4. AuctionsController.cs with three ways to retrieve an Auction

public class AuctionsController : Controller
{
 public ActionResult Auction(long id)
 {
 var db = new DataContext();
 var auction = db.Auctions.Find(id);

Reusing Logic Across AJAX and Non-AJAX Requests | 123

 return View("Auction", auction);
 }

 [HttpPost]
 public ActionResult JsonAuction(long id)
 {
 var db = new DataContext();
 var auction = db.Auctions.Find(id);

 return Json(auction);
 }

 public ActionResult PartialAuction(long id)
 {
 var db = new DataContext();
 var auction = db.Auctions.Find(id);

 return PartialView("Auction", auction);
 }
}

Responding to AJAX Requests
In order to help alleviate this duplication of logic and code, ASP.NET MVC provides
the Request.IsAjaxRequest() extension method, which lets us know whether or not the
request is an AJAX request. We can then use this information to determine what format
the requester expects to receive its response in and which action result we should choose
to generate that response.

The Request.IsAjaxRequest() method is quite simple: it merely checks
the HTTP headers for the incoming request to see if the value of the X-
Requested-With header is XMLHttpRequest, which is automatically ap-
pended by most browsers and AJAX frameworks.

If you ever need to trick ASP.NET MVC into thinking that a request is
an AJAX request, simply add the X-Requested-With: XMLHttpRequest
HTTP header.

To demonstrate the Request.IsAjaxRequest() method in action, let’s first try to merge
the Auction and PartialAuction controller actions together. The combined controller
action should retrieve the auction instance from the data context, then choose which
way to display it. If the request is an AJAX request, use the PartialView() method to
return a PartialViewResult, and otherwise, use the View() method to return a
ViewResult:

public ActionResult Auction(long id)
{
 var db = new DataContext();
 var auction = db.Auctions.Find(id);

124 | Chapter 6: Enhancing Your Site with AJAX

 if (Request.IsAjaxRequest())
 return PartialView("Auction", auction);

 return View("Auction", auction);
}

With this change in place, the Auction controller action is able to respond to both
“normal” HTTP GET requests and AJAX requests with the appropriate view, using the
same application logic.

Responding to JSON Requests
Unfortunately, ASP.NET does not provide a helpful method such as Request.IsAjax
Request() to help determine whether the requester expects JSON data. However, with
a little creativity we can easily implement this logic ourselves.

We’ll start with perhaps the simplest solution: adding a custom parameter to the con-
troller action to indicate that the request expects JSON data in response.

For instance, we can look for a request parameter named format and return a JsonRe
sult whenever the value of this parameter is "json":

public ActionResult Auction(long id)
{
 var db = new DataContext();
 var auction = db.Auctions.Find(id);

 if (string.Equals(request["format"], "json"))
 return Json(auction);

 return View("Auction", auction);
}

Clients may then request auction data from this action in JSON format by appending
the query string “?format=json” to their request; for example, /Auctions/Auction/1234?
format=json.

We can also take this one step further by moving this logic into its own extension
method so that we can call it from anywhere, just like the Request.IsAjaxRequest()
extension method:

using System;
using System.Web;

public static class JsonRequestExtensions
{
 public static bool IsJsonRequest(this HttpRequestBase request)
 {
 return string.Equals(request["format"], "json");
 }
}

Reusing Logic Across AJAX and Non-AJAX Requests | 125

With the IsJsonRequest() extension method, the previous snippet can be cleaned up
as follows:

public ActionResult Auction(long id)
{
 var db = new DataContext();
 var auction = db.Auctions.Find(id);

 if (Request.IsJsonRequest())
 return Json(auction);

 return View("Auction", auction);
}

Applying the Same Logic Across Multiple Controller Actions
If we combine the partial rendering and JSON conditional approaches shown above
into the same controller action, we end up with a very flexible approach that is able to
produce different outputs based on the same application logic. Take a look at the op-
timized AuctionsController.cs:

public class AuctionsController : Controller
{
 public ActionResult Auction(long id)
 {
 var db = new DataContext();
 var auction = db.Auctions.Find(id);

 // Respond to AJAX requests
 if (Request.IsAjaxRequest())
 return PartialView("Auction", auction);

 // Respond to JSON requests
 if (Request.IsJsonRequest())
 return Json(auction);

 // Default to a "normal" view with layout
 return View("Auction", auction);
 }
}

The code that drives this controller action may be flexible, but the fact that it is defined
inside the Auction controller action means that no other actions are able to leverage it.
Luckily, ASP.NET MVC offers the perfect mechanism to reuse logic across multiple
controller actions: action filters.

To move this logic into an action filter that can be applied to other controller actions,
begin by creating a class that implements the System.Web.Mvc.ActionFilterAttribute
type and override its OnActionExecuted() method. This will allow us to modify the result
of the action after the action has executed, but before the action result has been
executed:

126 | Chapter 6: Enhancing Your Site with AJAX

public class MultipleResponseFormatsAttribute : ActionFilterAttribute
{
 public override void OnActionExecuted(ActionExecutedContext filterContext)
 {
 // We will add the logic here
 }
}

Then, move the logic from the Auction controller action into this new class and use it
to replace the action result that the controller originally returned (filterCon
text.Result) when the request is an AJAX or JSON request:

using System;
using System.Web.Mvc;

public class MultipleResponseFormatsAttribute : ActionFilterAttribute
{
 public override void OnActionExecuted(ActionExecutedContext filterContext)
 {
 var request = filterContext.HttpContext.Request;
 var viewResult = filterContext.Result as ViewResult;

 if (viewResult == null)
 return;

 if (request.IsAjaxRequest())
 {
 // Replace result with PartialViewResult
 filterContext.Result = new PartialViewResult
 {
 TempData = viewResult.TempData,
 ViewData = viewResult.ViewData,
 ViewName = viewResult.ViewName,
 };
 }

 else if (Request.IsJsonRequest())
 {
 // Replace result with JsonResult
 filterContext.Result = new JsonResult
 {
 Data = viewResult.Model
 };
 }
 }
}

Now you can easily apply the MultipleResponseFormatsAttribute action filter to any
controller action in your website, instantly adding the ability to dynamically choose
between returning a view, partial view, or JSON response, depending on the incoming
request.

Reusing Logic Across AJAX and Non-AJAX Requests | 127

Sending Data to the Server
The first half of this chapter concentrated on requesting content and data from the
server via AJAX. Now it’s time to take a look at the other half of the equation: sending
data to the server via AJAX.

The two most popular ways to “send” data to any web server are through URL query
string parameters (generally via an HTTP GET request) and form post data (generally
via an HTTP POST request). The first chapter of the book introduced the concept of
ASP.NET MVC model binding, showing off ASP.NET MVC’s ability to “automagi-
cally” populate controller action parameters from values in the request.

What the introductory chapter didn’t show is that, in addition to mapping query string
and “normal” HTTP form post values, ASP.NET MVC’s model binding framework
also knows how to bind JSON objects to action parameters. This means that you do
not need to do anything at all to your controller actions to make them accept JSON
data—it just works out of the box!

So, now we’ll skip over to the client side, where jQuery’s $.post() method makes it
very easy to post JSON data to our controller actions. To post an object to the server,
simply provide the URL that you’d like to post to and the object containing what you’d
like to send—jQuery takes care of serializing the object to JSON and attaching it as the
request’s form post data.

To see this in action, take a look at this example, which populates a new Auction object
via JavaScript and posts it to the Create controller action (shown in the example that
follows):

var auction = {
 "Title": "New Auction",
 "Description": "This is an awesome item!",
 "StartPrice": "$5.00",
 "StartTime": "01/12/2012 6:00 AM",
 "EndTime": "01/19/2012 6:00 AM"
};

$.post('@Url.Action("Create", "Auctions")', auction);

Remember, the controller action doesn’t need to do anything special—the JSON data
is automatically bound to the auction controller action parameter. All that’s left for the
controller action to do is perform its logic (i.e., adding the auction to the database) and
return a result. The Create controller action looks like this:

[HttpPost]
public ActionResult Create(Auction auction)
{
 if(ModelState.IsValid)
 {
 var db = new DataContext();
 db.Auctions.Add(auction);

128 | Chapter 6: Enhancing Your Site with AJAX

 return View("Auction", auction);
 }

 return View("Create", auction);
}

Posting Complex JSON Objects
The default JSON model binding logic does have one important limitation: it is im-
plemented as an all-or-nothing approach. That is, the factory expects the entire re-
sponse to include a single JSON object and does not support the ability for individual
fields to deliver data in JSON format.

Let’s look at an example where the default approach will lead to trouble. Suppose we
have a collection of Bid objects, each with two properties, Amount and Timestamp:

Bid[0].Timestamp="01/12/2012 6:00 AM" &
Bid[0].Amount=100.00 &

Bid[1].Timestamp="01/12/2012 6:42 AM" &
Bid[1].Amount=73.64

Here is how that same request would be represented in JSON format:

[
 { "Timestamp":"01/12/2012 6:00 AM", "Amount":100.00 },
 { "Timestamp":"01/12/2012 6:42 AM", "Amount":73.64 }
]

Not only is the JSON array much cleaner, simpler, and smaller, it’s also much easier
to build and manage using JavaScript in the browser. This simplicity is particularly
helpful when building a form dynamically, for example, allowing the user to bid on
multiple auctions at one time.

However, in order to represent the Bid field as JSON using the DefaultModelBinder,
you’d need to post the entire object as a JSON object. For example:

{
 Bids:
 [
 { "Timestamp":"01/12/2012 6:00 AM", "Amount":100.00 },
 { "Timestamp":"01/12/2012 6:42 AM", "Amount":73.64 }
],
}

On the surface, posting JSON objects to be used for model binding looks like a great
idea. However, this approach has a number of downsides.

First, the client must build the entire request dynamically, and this logic must know
how to explicitly manage every field that must be sent down—the HTML form ceases
to become a form and simply becomes a way for the JavaScript logic to collect data
from the user.

Sending Data to the Server | 129

Then, on the server side, the JSON value provider ignores all HTTP requests except
those with the Content Type header set to "application/json", so this approach will
not work for standard GET requests; it only works for AJAX requests that contain the
correct header. Finally, when the default validation logic fails for even just one field,
the model binder considers the entire object to be invalid!

To help reduce these drawbacks, we can introduce an alternative to the built-in JSON
model binding logic by creating our own custom JSON model binder, shown in Ex-
ample 6-5. JsonModelBinder differs from the JSON value provider factory in that it
allows each individual field to contain JSON, eliminating the need to send the entire
request as a single JSON object. Since the model binder binds each property separately,
you can mix and match which fields contain simple values and which fields support
JSON data. As with most custom model binders, the JSON model binder derives from
DefaultModelBinder so that it can fall back to the default binding logic when fields do
not contain JSON data.

Example 6-5. JsonModelBinder

public class JsonModelBinder : DefaultModelBinder
{
 public override object BindModel
 (
 ControllerContext controllerContext,
 ModelBindingContext bindingContext
)
 {
 string json = string.Empty;

 var provider = bindingContext.ValueProvider;
 var providerValue = provider.GetValue(bindingContext.ModelName);

 if (providerValue != null)
 json = providerValue.AttemptedValue;

 // Basic expression to make sure the string starts and ends
 // with JSON object ({}) or array ([]) characters
 if (Regex.IsMatch(json, @"^(\[.*\]|{.*})$"))
 {
 return new JavaScriptSerializer()
 .Deserialize(json, bindingContext.ModelType);
 }

 return base.BindModel(controllerContext, bindingContext);
 }
}

130 | Chapter 6: Enhancing Your Site with AJAX

Model Binder Selection
Given ASP.NET MVC’s focus on extensibility, it is probably no surprise to find out
that there are quite a few ways to specify which model binder should be used for any
given model. In fact, the comments in the source code for the ModelBinderDiction
ary.GetBinder() method literally spell out how the framework discovers the appropri-
ate model binder for each type:

private IModelBinder GetBinder(Type modelType, IModelBinder fallbackBinder) {

 // Try to look up a binder for this type. We use this order of precedence:
 // 1. Binder returned from provider
 // 2. Binder registered in the global table
 // 3. Binder attribute defined on the type
 // 4. Supplied fallback binder

Let’s tackle this list from the bottom up.

Replacing the default (fallback) binder

With no additional configuration, ASP.NET MVC will bind all models using the
DefaultModelBinder. You can replace this global default handler by setting the Model
Binders.Binders.DefaultBinder property to a new model binder. For example:

protected void Application_Start()
{
 ModelBinders.Binders.DefaultBinder = new JsonModelBinder();
 // ...
}

With this setting in place, the instance of JsonModelBinder will act as the new fallback
binder, handling the binding of all models that haven’t specified otherwise.

Adorning models with custom attributes

Perhaps the most elegant approach for specifying model binders is to use the abstract
System.Web.Mvc.CustomModelBinderAttribute to decorate both classes and individual
properties in a nicely declarative way. Though you can apply this approach to any model
that you wish to bind, it is best combined with the request model approach because
the model binding is the sole reason the request model exists!

In order to leverage the CustomModelBinderAttribute approach, you first need to create
an implementation. The following code shows an example of a CustomModelBinder
Attribute and how it can be applied to the CreateProductRequest model:

[AttributeUsage(AttributeTargets.Class | AttributeTargets.Enum |
 AttributeTargets.Interface | AttributeTargets.Parameter |
 AttributeTargets.Struct | AttributeTargets.Property,
 AllowMultiple = false, Inherited = false)]
public class JsonModelBinderAttribute : CustomModelBinderAttribute
{
 public override IModelBinder GetBinder()

Sending Data to the Server | 131

 {
 return new JsonModelBinder();
 }
}

public class CreateProductRequest
{
 // ...

 [Required]
 [JsonModelBinder]
 public IEnumerable<CurrencyRequest> UnitPrice { get; set; }
}

Decorating CreateProductRequest.UnitPrice with the JsonModelBinderAttribute indi-
cates that the model binder should use the JsonModelBinder (created with a call to
JsonModelBinderAttribute.GetBinder()) to bind the CreateProductRequest.UnitPrice
property.

That is, unless a global handler or model binder provider has been registered for the
CurrencyRequest type…

Registering a global binder

In much the same way that you can set the default model binder as the fallback for all
model types, you can register model binders for individual types as well. Like setting
the default model binder, the syntax is very simple.

This example tells the framework to use the JsonModelBinder for every Currency model
it comes across:

ModelBinders.Binders.Add(typeof(Currency), new JsonModelBinder());

This approach allows you to associate a model binder with a particular type across the
entire application in a single line. It’s also an effective way to control how business
models are bound without having to decorate those models with custom model binder
attributes.

Sending and Receiving JSON Data Effectively
JSON is a fundamental building block for building rich, interactive AJAX-based web
applications, so it’s important to understand how to properly utilize it. As the following
section shows, jQuery makes it easy for you to work with JSON data and query HTML
elements.

One of the most challenging things to deal with when working with JSON data is
serialization. Complex objects that have many relationships or are tightly coupled to a
specific data access technology such as Entity Framework may present problems. When
returning a JSON result, if the object passed in cannot be serialized, a 500 internal
server error will be returned.

132 | Chapter 6: Enhancing Your Site with AJAX

The other major drawback to working with complex objects is that they may be heavy
or challenging to work with via JavaScript. A good practice to help avoid these chal-
lenges is to create a special, lightweight version of the entity called a data transfer ob-
ject (DTO) that is more easily converted into JSON. DTOs should use simple data
structures and avoid complex multilevel relationships.

Additionally, DTOs should contain only the fields that the application or request re-
quires, and no more. It is perfectly acceptable to have multiple DTO classes—even for
the same entity—to act as the responses for various requests.

The following code shows an example of a simple DTO object. Its simplified data
structure is specifically designed to make it easier to work with in JavaScript. What’s
more, the fact that the DTO is smaller than the Auction model makes it an optimal data
structure for an AJAX response:

public class AuctionDto
{
 public string Title { get; set; }
 public string Description { get; set; }
}

Cross-Domain AJAX
By default, web browsers restrict AJAX calls to be made only to the web application’s
site of origin. This restriction is a good thing to prevent nasty security issues like cross-
site scripting (XSS) attacks. Sometimes, though, applications require the ability to in-
teract with externally hosted Representational State Transfer (REST) API(s) like Twitter
or Google.

For these scenarios to work, the externally hosted web application must support JSONP
requests or Cross-Origin Resource Sharing (CORS). Out of the box, ASP.NET MVC
does not offer any direct support for either option; adding these features requires a little
bit of coding and configuration.

JSONP
JSONP (which stands for “JSON with Padding”) is a clever trick that takes advantage
of the Cross-Site Request Forgery exploit on page 199, allowing you to make cross-
domain AJAX calls even when browsers are trying as hard as they can to keep you from
doing so.

From a high level, a JSONP interaction involves several steps:

Cross-Domain AJAX | 133

1. The client creates a JavaScript function that it expects to be called upon receiving
the JSONP response from the server; e.g., updateAuction.

2. The client dynamically adds a <script> tag to the DOM, tricking the browser into
thinking it is making a standard script include and taking advantage of the fact that
browsers allow <script> references to other domains.

3. The <script> tag references a call to a data service that supports JSONP and the
client specifies the name of the callback function created in step 1 in the URL; e.g.,
<script href="http://other.com/auctions/1234?callback=updateAuction" />.

4. The server processes the request and proceeds to render it just as it would any other
JSON request, with one important distinction: instead of returning the JSON ob-
ject as the full content of the response, it wraps the object in a call to the client-
side callback function name that the client provided (as shown in the example
below).

Note that the server neither knows nor cares about what the callback function does.
The server’s only responsibility is to call the function and assume that the function
exists on the client side:

updateAuction({
 "Title": "XBOX 360",
 "Description": "Brand new XBOX 360 console",
 "StartTime": "01/12/2012 12:00 AM",
 "EndTime": "01/31/2012 12:00 AM",
 "CurrentPrice": "$199.99",
 "Bids": [
 {
 "Amount" : "$200.00",
 "Timestamp": "01/12/2012 6:00 AM"
 },
 {
 "Amount" : "$205.00",
 "Timestamp": "01/14/2012 8:00 AM"
 },
 {
 "Amount" : "$210.00",
 "Timestamp": "01/15/2012 12:32 PM"
 }
]
});

It’s very important to note that the JSONP approach describes a different method of
client/server data exchange. Rather than returning raw JSON data (as is the case in
normal AJAX responses), in a JSONP response the server wraps the raw JSON data in
a call to the specified client-side function (JSONP responses are, after all, JavaScript
script files, and accordingly, they can execute client-side logic). Consequently, the only
way to access data returned via a JSONP call is within the client-side function—it
cannot be accessed directly.

134 | Chapter 6: Enhancing Your Site with AJAX

In the above example, for instance, the JSONP response consisted merely of a call to
the client-side callback that passed the serialized JSON object. The JSONP response
could just as well have executed other logic prior to executing the callback, however:
for example, converting the timestamps into the user’s local time zone before displaying
them on the screen:

var data = {
 "Title": "XBOX 360",
 "Description": "Brand new XBOX 360 console",
 "StartTime": "01/12/2012 12:00 AM",
 "EndTime": "01/31/2012 12:00 AM",
 "CurrentPrice": "$199.99",
 "Bids": [
 {
 "Amount" : "$200.00",
 "Timestamp": "01/12/2012 6:00 AM"
 },
 {
 "Amount" : "$205.00",
 "Timestamp": "01/14/2012 8:00 AM"
 },
 {
 "Amount" : "$210.00",
 "Timestamp": "01/15/2012 12:32 PM"
 }
]
};

/* Convert times to local time */

function toLocalTime(src) {
 return new Date(src+" UTC").toString();
}

bid.StartTime = toLocalTime(bid.StartTime);
bid.EndTime = toLocalTime(bid.EndTime);

for(var i = 0; i < data.Bids.length; i++) {
 var bid = data.Bids[i];
 bid.Timestamp = toLocalTime(bid.Timestamp);
}

/* Execute the callback */
updateAuction(data);

Making a JSONP request

The jQuery $.ajax method offers first-class support for JSONP requests. All you have
to do is pass in the dataType and jsonpCallback options to specify the jsonp data type
and the name of the client-side callback function (respectively).

The following example shows a jQuery $.ajax JSONP request in action:

Cross-Domain AJAX | 135

function updateAuction(result) {
 var message = result.Title + ": $" + result.CurrentPrice;
 $('#Result').html(message);
}

$.ajax({
 type: "GET",
 url: "http://localhost:11279/Auctions/Auction/1234",
 dataType: "jsonp",
 jsonpCallback: "updateAuction"
});

Note that because it is a query string parameter and not an actual JavaScript function
like the ones you register with the .success() and .error() events, the callback method
must be a globally accessible, uniquely named function. Otherwise, the JSONP script
will not be able to execute it.

Adding JSONP support to ASP.NET MVC controller actions

ASP.NET MVC has no built-in support for JSONP, so in order to leverage this approach
you will need to implement everything yourself. Luckily, JSONP results are little more
than a modified version of the ASP.NET MVC Framework’s JsonResult action result.

Perhaps the best way to add support for JSONP to your controller actions is to create
a custom ActionResult. Example 6-6 shows an example.

Example 6-6. JsonpResult: custom JSONP action result

using System.Web.Mvc;

public class JsonpResult : JsonResult
{
 public string Callback { get; set; }

 public JsonpResult()
 {
 JsonRequestBehavior = JsonRequestBehavior.AllowGet;
 }

 public override void ExecuteResult(ControllerContext context)
 {
 var httpContext = context.HttpContext;
 var callback = Callback;

 if(string.IsNullOrWhiteSpace(callback))
 callback = httpContext.Request["callback"];

 httpContext.Response.Write(callback + "(");
 base.ExecuteResult(context);
 httpContext.Response.Write(");");
 }
}

136 | Chapter 6: Enhancing Your Site with AJAX

You may have noticed that the JsonpResult hardcodes the JsonRequestBehavior prop-
erty to JsonRequestBehavior.AllowGet. This is because—by definition—all JSONP re-
quests are GET requests.

Thus, every JSONP request is subject to the aforementioned security
vulnerability, so you must avoid sending sensitive information via
JSONP!

Then, to provide a JSONP response to a JSONP request, simply return an instance of
the JsonpResult:

public ActionResult Auction(long id)
{
 var db = new DataContext();
 var auction = db.Auctions.Find(id);

 return new JsonpResult { Data = auction };
}

Enabling Cross-Origin Resource Sharing
When it’s supported, the preferred method for cross-domain AJAX calls is to use Cross-
Origin Resource Sharing (CORS). Unlike JSONP, CORS does not take advantage of
security holes; instead, it uses a special HTTP header to let the browser know that the
server allows cross-domain AJAX calls. Avoiding “hacks” also makes a CORS approach
much more straightforward, because it does not require a JavaScript callback method
or custom action result class.

To enable CORS support, simply set the Access-Control-Allow-Origin header value for
each request that requires CORS support. You can set the value of this header to a
“whitelist” of allowed domains, or simply “*” to grant access from any domain:

HttpContext.Response.AppendHeader("Access-Control-Allow-Origin", "*");

Alternatively, you can enable CORS for the entire application by adding the HTTP
header to the system.webServer > httpProtocol > customHeaders configuration section:

<system.webServer>
 <httpProtocol>
 <customHeaders>
 <add name="Access-Control-Allow-Origin" value="*" />
 </customHeaders>
 </httpProtocol>
</system.webServer>

Then, make a “normal” jQuery $.ajax() request:

$.ajax({
 type: "GET",
 url: "http://localhost:11279/Auctions/Auction/1234",
 dataType: "json",
 success: function (result) {

Cross-Domain AJAX | 137

 var message = result.Title + ": $" + result.CurrentPrice;
 $('#Result').html(message);
 },
 error: function (XMLHttpRequest, textStatus, errorThrown) {
 alert("Error: " + errorThrown);
 }
});

With CORS support in place, we are back to a simple and effective AJAX call and all
the hoops that we have to jump through in order to make JSONP requests are a thing
of the past.

CORS Browser Support
At the time of this writing, Cross-Origin Resource Sharing (CORS) is still a working
draft, so it’s not yet fully supported by all the major browsers. Therefore, before using
this approach be sure to verify whether it works with the browsers your website targets.

Summary
Understanding when and how to use AJAX properly is an important tool for developers
who want to offer a better user experience to their users.This chapter outlined the
different ways you can use AJAX to enhance your web applications, featuring an in-
depth overview of the ways ASP.NET MVC supports handling AJAX requests. We also
explored how jQuery’s powerful APIs make it very easy to add AJAX communication
to your site.

138 | Chapter 6: Enhancing Your Site with AJAX

CHAPTER 7

The ASP.NET Web API

As your application’s client-side UI grows beyond a few simple AJAX requests, you
may begin to find that ASP.NET MVC’s JsonResult-based controller actions don’t quite
meet the needs of an advanced AJAX frontend. When this happens, it may be time to
look for a more simple and elegant way to handle advanced AJAX requests. It may be
time to start using the ASP.NET Web API.

The ASP.NET Web API Framework leverages both web standards—such as HTTP,
JSON, and XML—and a standard set of conventions to provide a simple way to build
and expose REST-based data services. From an architectural standpoint, the ASP.NET
Web API is very similar to ASP.NET MVC in that it leverages some of the same core
concepts, such as routing, controllers, and even controller action results. It uses these
concepts, however, to support a very different set of scenarios: scenarios that involve
working with data as opposed to generating HTML markup.

This chapter gives you a basic introduction to the ASP.NET Web API Framework,
showing you how to create and expose ASP.NET Web API services, then consume
those services via AJAX from a browser.

Building a Data Service
Adding an ASP.NET Web API controller to your application is almost exactly like
adding an ASP.NET MVC controller. The following sections walk you through the
process by showing how you can add a Web API controller to the Ebuy reference ap-
plication.

Before you begin, you’ll need a folder in which to store your new Web API controller.
Web API controllers can live just about anywhere, so it’s really up to you to come up
with a convention that works for you. For instance, we prefer to create a new folder
named Api in the root of the website, but you can feel free to store your Web API
controllers in the Controllers folder right next to the ASP.NET MVC controllers—as
long as you don’t have any naming conflicts, ASP.NET will be able to tell them apart
just fine.

139

To add a new Web API controller, simply right-click on the folder you’d like to add
the service to (in our case, the Api folder) and choose the “Controller…” context menu
item. This will bring up the same Add Controller dialog that you use to create ASP.NET
MVC controllers (Figure 7-1), only this time you will choose the “API controller with
empty read/write actions” template rather than one of the ASP.NET MVC controller
templates. (For more on the available options, refer back to “Controller tem-
plates” on page 36.) To begin, give the new controller a name. For this example, we’ll
use the name AuctionsController.cs.

Figure 7-1. Adding a Web API controller

When you’re done, click the Add button to add the Web API controller to your project.
Example 7-1 contains the code for the new Web API controller.

Example 7-1. Web API controller

using System;
using System.Collections.Generic;
using System.Linq;
using System.Net;
using System.Net.Http;
using System.Web.Http;

namespace Ebuy.Website.Api
{
 public class AuctionsDataController : ApiController
 {

140 | Chapter 7: The ASP.NET Web API

 // GET api/auctions
 public IEnumerable<string> Get()
 {
 return new string[] { "value1", "value2" };
 }

 // GET api/auctions/5
 public string Get(int id)
 {
 return "value";
 }

 // POST api/auctions
 public void Post(string value)
 {
 }

 // PUT api/auctions/5
 public void Put(int id, string value)
 {
 }

 // DELETE api/auctions/5
 public void Delete(int id)
 {
 }
 }
}

Registering Web API Routes
Before we can use this new controller, however, we must register it with the ASP.NET
routing framework so that it can begin to receive requests.

As with ASP.NET MVC, ASP.NET Web API requests are based on routing URLs to
their corresponding controller actions. In fact, ASP.NET Web API routes are registered
in almost exactly the same way as ASP.NET MVC routes are registered. The only dif-
ference is that instead of the RouteTable.MapRoute() helper extension, Web API routes
use the RouteTable.MapHttpRoute() extension.

routes.MapHttpRoute(
 name: "DefaultApi",
 routeTemplate: "api/{controller}/{id}",
 defaults: new { id = RouteParameter.Optional }
);

This is because the Web API Framework figures out the controller action to execute
using convention over configuration.

Building a Data Service | 141

You are not required to begin your route with the literal api path segment
—feel free to change the Web API route pattern to whatever route you
like, as long as it doesn’t conflict with any other routes registered in the
same application.

The same rules that apply to ASP.MVC routing also apply to Web API
data services—be careful that your route patterns aren’t too specific, or
overly vague.

Leaning on Convention over Configuration
Like ASP.NET MVC, ASP.NET Web API makes heavy use of convention over config-
uration to lighten the workload involved in creating web data services. For example,
instead of requiring you to annotate each method with an attribute such as HttpPost
Attribute to identify what type of requests an action may handle (as you must do
with ASP.NET MVC controller actions), ApiController methods rely on names that
correspond to the standard HTTP actions.

Using this convention makes it really easy to perform CRUD (Create, Read, Update,
Delete) operations on a resource (entity). The standard HTTP actions and their corre-
sponding CRUD operations are:

GET (Read)
Retrieves the representation of the resource

PUT (Update)
Updates an existing resource (or creates a new instance)

POST (Create)
Creates a new instance of a resource

DELETE (Delete)
Deletes a resource

The PUT method will replace the entire entity. To support partial up-
dating, the PATCH method should be used instead.

Interacting with an ASP.NET Web API data service is incredibly easy.

For example, the snippet below shows how to use the jQuery $.getJSON() method to
make a GET request to the /api/auction service, which returns a collection of auctions
serialized in JSON format:

<script type="text/javascript">

 $(function () {
 $.getJSON("api/auction/",
 function (data) {

142 | Chapter 7: The ASP.NET Web API

 $.each(data, function (key, val) {
 var str = val.Description;
 $('', { html: str }).appendTo($('#auctions'));
 });
 });
 });

</script>

Overriding Conventions
It’s important to note that the controller action naming convention only applies when
the name corresponds to one of the standard REST actions (GET, POST, PUT, and
DELETE). However, if you’d like to name your methods differently but still leverage
the rest of the Web API’s functionality, you can apply the AcceptVerbsAttribute—or
its aliases, such as HttpGetAttribute or HttpPostAttribute—to the Web API controller
methods, just as you would apply the attribute on an ASP.NET MVC controller action.

The following code snippet shows this in action:

[HttpGet]
public Auction FindAuction(int id)
{
}

In this example, we’ve decided to break the REST convention and name our controller
action FindAuction rather than using the conventional Get method name. In order to
do this, we applied the HttpGetAttribute to the FindAuction controller action to indicate
that this action handles GET requests.

Hooking Up the API
Now let’s walk through setting up the Web API controller that we created earlier so it
can perform CRUD operations on auctions.

In order to access the Ebuy database, an instance of the application’s data repository
class is passed in to the AuctionsDataController constructor:

public class AuctionsDataController : ApiController
{
 private readonly IRepository _repository;

 public AuctionsDataController(IRepository repository)
 {
 _repository = repository;
 }
}

By default, Web API controllers require a default (empty parameter) constructor. Since
an IRepository needs to be passed in to the controller, a custom dependency resolver
class needs to be initialized during application startup:

Building a Data Service | 143

GlobalConfiguration.Configuration.DependencyResolver =
new NinjectWebApiResolver(kernel);

Here is an example of a custom dependency resolver that is using a Ninject IoC con-
tainer. Since Web API controllers are created per request, the custom resolver needs to
create a new dependency scope (e.g., NinjectWebApiScope) for each request:

using System.Web.Http.Dependencies;
using Ninject;

public class NinjectWebApiResolver : NinjectWebApiScope, IDependencyResolver
{
 private IKernel kernel;

 public NinjectWebApiResolver(IKernel kernel) : base(kernel)
 {
 this.kernel = kernel;
 }

 public IDependencyScope BeginScope()
 {
 return new NinjectWebApiScope(kernel.BeginBlock());
 }
}

Here are the contents of the custom Ninject scope class. When a Web API controller
is requested, the GetService() method will be called; Resolve() will handle injecting
the repository when it creates an instance of the controller:

using System;
using System.Collections.Generic;
using System.Linq;
using System.Web.Http.Dependencies;
using Ninject.Activation;
using Ninject.Parameters;
using Ninject.Syntax;

public class NinjectWebApiScope : IDependencyScope
{

 protected IResolutionRoot resolutionRoot;

 public NinjectWebApiScope(IResolutionRoot resolutionRoot)
 {
 this.resolutionRoot = resolutionRoot;
 }

 public object GetService(Type serviceType)
 {
 return resolutionRoot.Resolve(this.CreateRequest(serviceType)).SingleOrDefault();
 }

 public IEnumerable<object> GetServices(Type serviceType)
 {
 return resolutionRoot.Resolve(this.CreateRequest(serviceType))

144 | Chapter 7: The ASP.NET Web API

 }

 private IRequest CreateRequest(Type serviceType)
 {
 return resolutionRoot.CreateRequest(serviceType,
 null,
 new Parameter[0],
 true,
 true);
 }

 public void Dispose()
 {
 resolutionRoot = null;
 }
}

The following code shows the fully implemented Web API controller that has been
updated to use the repository to peform CRUD operations on the Auctions class:

public class AuctionsDataController : ApiController
{
 private readonly IRepository _repository;

 public AuctionsDataController(IRepository repository)
 {
 _repository = repository;
 }

 public IEnumerable<Auction> Get()
 {
 return this._repository.All<Auction>();
 }

 public Auction Get(string id)
 {
 return _repository.Single<Auction>(id);
 }

 public void Post(Auction auction)
 {
 _repository.Add<Auction>(auction);
 }

 public void Put(string id, Auction auction)
 {
 var currentAuction = _repository.Single<Auction>(id);

 if (currentAuction != null)
 {
 currentAuction = Mapper.DynamicMap<Auction>(auction);
 }
 }

Building a Data Service | 145

 public void Delete(string id)
 {
 _repository.Delete<Auction>(id);
 }
}

Paging and Querying Data
One of the most powerful aspects of the ASP.NET Web API Framework is its support
for paging and filtering data via the Open Data Protocol (OData) for expression queries
via web URL parameters. For example, the URI /api/Auction?$top=3&$orderby=Cur-
rentBid returns the top three auctions, ordered by the value of their CurrentBid property.

Table 7-1 lists a few of the common query parameters that OData understands.

Table 7-1. Supported OData query string parameters

Query string parameter Description Example

$filter Filters entities that match the Boolean
expression

/api/Auction?$filter=CurrentBid gt 2

$orderby Returns a group of entities ordered by
the specified field

/api/Auction?$orderby=Description

$skip Skips the first n entities /api/Auction?$skip=2

$top Returns the first n entities /api/Auction?$top=3&

See the OData website to learn more about the Open Data Protocol
(OData) specification.

To support paging and filtering, a Web API controller action must return an IQuerya
ble<T> result. When data is not in IQueryable<T>, you can use the AsQueryable() LINQ
extension. The Web API then takes the IQueryable<T> result and converts the OData
query string into a LINQ expression that it uses to filter the items in the IQuerya
ble<T> collection.

Next, the Web API Framework takes the result of the LINQ expression and converts
it to a JSON object, which gets delivered via an HTTP result:

public IQueryable<Auction> Get()
{
 return _repository.All<Auction>().AsQueryable();
}

146 | Chapter 7: The ASP.NET Web API

http://www.odata.org/

Exception Handling
Developers building AJAX-based applications need to take extra care when handling
exceptions. By default, if an error occurs on the server while processing an AJAX request
an internal server (500) error will be returned. This can introduce a number of prob-
lems.

First, telling the user there was an internal server error is not very valuable. Plus, re-
turning error messages offers limited information for developers to use to debug and
track down the problem. But perhaps most important of all is that sending error mes-
sages to users without “sanitizing” them in some way has the potential to be a serious
security risk: the error message could contain exception call stacks or other information
an attacker could use to compromise your site!

Figure 7-2 is an example of an internal server error returned from the Web API con-
troller. The message returned doesn’t contain anything useful other than a call stack.

Figure 7-2. Internal server error

Fortunately, ASP.NET Web API offers some options for handing exceptions and re-
turning more meaningful information to the client application. For instance, the
HttpResponseException class gives you much more control over the HTTP status codes
and response messages sent back to the client than traditional error handling
approaches.

The following example demonstrates using the HttpResponseException class to set the
HTTP status code (404) and customize the content of the error message returned to
the client:

Exception Handling | 147

public Auction Get(string id)
{
 var result = _repository.Single<Auction>(id);
 if (result == null)
 {
 var errorMessage = new HttpResponseMessage(HttpStatusCode.NotFound);
 errorMessage.Content = new StringContent
 (string.Format("Invalid id, no auction available for id: {0}.", id));
 errorMessage.ReasonPhrase = "Not Found";

 throw new HttpResponseException(errorMessage);
 }
 return result;
}

In addition to using HttpResponseException, the ASP.NET WEB API allows you to cre-
ate exception filters. Exception filters get invoked when unhandled exceptions that are
not of type HttpResponseException are raised from a controller.

To create an exception filter, you can directly implement the System.Web.Http.Fil
ters.IExceptionFilter interface or inherit from ExceptionFilterAttribute. Creating a
custom attribute is the easy and preferred way of creating exception filters. This ap-
proach only requires you to override the OnException() method:

using System.Diagnostics;
using System.Web.Http.Filters;

public class CustomExceptionFilter : ExceptionFilterAttribute
{
 public override void OnException(HttpActionExecutedContext context)
 {
 base.OnException(context);
 }
}

It is also possible to override the HTTP response sent back to the client. You can do
this by modifying the HttpActionExecutedContext parameter:

using System.Web.Http.Filters;
using System.Net.Http;
using System.Net;

public class CustomExceptionFilter : ExceptionFilterAttribute
{
 public override void OnException(HttpActionExecutedContext context)
 {
 if (context.Response == null)
 {
 context.Response = new HttpResponseMessage();
 }
 context.Response.StatusCode = HttpStatusCode.NotImplemented;
 context.Response.Content = new StringContent("Custom Message");
 base.OnException(context);
 }
}

148 | Chapter 7: The ASP.NET Web API

After a custom exception filter has been created, it must be registered. There are two
ways to register an exception filter: you can register it globally by adding it to the
GlobalConfiguration.Configuration.Filters collection, or you can add it as an at-
tribute to a Web API controller method. Globally registered exceptions will be executed
for all exceptions raised except HttpResponseException, across all Web API controllers.

Registering global exception filters is easy—just add any custom filters to the Global
Configuration.Configuration.Filters collection during the application’s startup
phase:

public class MvcApplication : System.Web.HttpApplication
{
 static void ConfigureApi(HttpConfiguration config)
 {
 config.Filters.Add(new CustomExceptionFilter());
 }

 protected void Application_Start()
 {
 ConfigureApi(GlobalConfiguration.Configuration);
 }
}

Alternatively, a Web API controller method can be annotated directly using the custom
exception filter attribute:

[CustomExceptionFilter]
public Auction Get(string id)
{
 var result = _repository.Single<Auction>(id);
 if (result == null)
 {
 throw new Exception("Item not Found!");
 }
 return result;
}

ASP.NET Web API exception filters are similar to ASP.NET MVC filters except that
they are defined in a different namespace and behave slightly differently. For example,
the ASP.NET MVC HandleErrorAttribute class cannot handle exceptions thrown from
Web API controllers.

Media Formatters
One of the more powerful aspects of the ASP.NET Web API framework is the ability
to work with many different media (MIME) types. MIME types are used to describe the
format of the data in an HTTP request. A MIME type consists of two strings, a type
and a subtype: for example, text.html is used for describing an HTML format.

Media Formatters | 149

D
ow

n
lo

a
d
 f
ro

m
 W

o
w

!
e
B
o
o
k

<
w

w
w

.w
o
w

e
b
o
o
k.

co
m

>

A client can set the HTTP Accept header to tell the server which MIME types the client
wants sent back. For example, the following Accept header tells the server that the client
wants either HTML or XHTML returned:

Accept: text/html,application/xhtml+xml,application

The ASP.NET Web API uses the media type to determine how to serialize and deseri-
alize the HTTP message body. It provides support for XML, JSON, and form-encoded
data right out of the box.

To create a custom media formatter, simply derive from one of the MediaTypeFormat
ter or BufferedMediaTypeFormatter classes. MediaTypeFormatter uses an asynchronous
read and write approach; BufferedMediaTypeFormatter inherits from MediaTypeFormat
ter and wraps the asynchronous read and write methods and exposes them as syn-
chronous operations. While inheriting from BufferedMediaTypeFormatter is simpler, it
can cause a thread blocking issue.

The following example shows how to create a custom media type for serializing an
Auction item into a comma-separated values (CSV) format. To keep things simple, the
custom formatter inherits from BufferedMediaTypeFormatter. In the formatter’s con-
structor, the supported media types need to be defined:

using System;
using System.Collections.Generic;
using System.IO;
using System.Net;
using System.Net.Http.Formatting;
using System.Net.Http.Headers;
using DemoSite.Models;

public class AuctionCsvFormatter : BufferedMediaTypeFormatter
{
 public AuctionCsvFormatter()
 {
 this.SupportedMediaTypes.Add(new MediaTypeHeaderValue("text/csv"));
 }
}

To serialize or deserialize entities, the CanWriteType() and CanReadType() methods must
be overwritten. These methods are used to define which types the custom formatter
supports:

protected override bool CanWriteType(Type type)
{
 if (type == typeof(Auction))
 {
 return true;
 }
 else
 {
 Type enumerableType = typeof(IEnumerable<Auction>);
 return enumerableType.IsAssignableFrom(type);
 }

150 | Chapter 7: The ASP.NET Web API

}

protected override bool CanReadType(Type type)
{
 return false;
}

When the formatter is executed, the OnWriteToStream() method is called for serializing
a type to a stream, and OnReadFromStream() is called to deserialize a type from a stream.
Example 7-2 shows how to serialize a single Auction type, or a collection of Auction
types. Take note of how the Encode method is escaping out some characters. This is an
important step to keep in mind when working with custom formatters.

Example 7-2. Serializing a type

protected override void OnWriteToStream(Type type,
 object value, Stream stream,
 HttpContentHeaders contentHeaders,
 FormatterContext formatterContext,
 TransportContext transportContext)
{
 var source = value as IEnumerable<Auction>;
 if (source != null)
 {
 foreach (var item in source)
 {
 WriteItem(item, stream);
 }
 }
 else
 {
 var item = value as Auction;
 if (item != null)
 {
 WriteItem(item, stream);
 }
 }
}

private void WriteItem(Auction item, Stream stream)
{
 var writer = new StreamWriter(stream);
 writer.WriteLine("{0},{1},{2}",
 Encode(item.Title),
 Encode(item.Description),
 Encode(item.CurrentPrice.Value));

 writer.Flush();
}

Media Formatters | 151

static char[] _specialChars = new char[] { ',', '\n', '\r', '"' };
private string Encode(object o)
{
 string result = "";

 if (o != null)
 {
 string data = o.ToString();
 if (data.IndexOfAny(_specialChars) != -1)
 {
 result = String.Format("\"{0}\"", data.Replace("\"", "\"\""));
 }
 }

 return result;
}

To use a custom media formatter, it has to be registered. Inside the Global.asax.cs
Application_Start() method, add the custom media formatter to the GlobalConfigura
tion.Configuration.Filters collection:

static void ConfigureApi(HttpConfiguration config)
{
 config.Formatters.Add(new AuctionCsvFormatter());
}

Once it’s registered, the custom media formatter will execute for any request that con-
tains the text/csv Accept header.

Summary
This chapter introduced Microsoft’s new ASP.NET Web API Framework and showed
how you can leverage this framework as an easy way to expose data services to your
web applications.

152 | Chapter 7: The ASP.NET Web API

CHAPTER 8

Advanced Data

The main focus throughout this book so far has been on the key components of
ASP.NET MVC: the model, view, and controller. This chapter switches the focus to
the data access layer and shows how to leverage the repository and object relational
mapping data access patterns when building ASP.NET MVC web applications.

Data Access Patterns
One of the key features of the ASP.NET MVC Framework is extensibility. The frame-
work was designed to give developers lots of flexibility to plug in different components
and frameworks. Since ASP.NET MVC is built on top of .NET 4.5, any of the popular
data access frameworks—including ADO.NET, LINQ to SQL, ADO.NET Entity
Framework, or NHibernate—can be used in building the data access layer for an
application.

No matter which data access framework you choose, it’s important to understand the
key data access design patterns that complement the Model-View-Controller pattern.

Plain Old CLR Objects
A Plain Old CLR Object (POCO) is a .NET class that is used to represent a business
entity (model) class. The class focuses on the key business attributes (properties) and
behaviors (methods) of a business entity and its associated entities, without requiring
any specific database infrastructure code.

The main goal behind using POCO classes is to design the application’s business model
to have persistence ignorance (PI). This design approach allows the application’s busi-
ness model to evolve independently of its data access model. Since the business model
does not contain any specific data access code, it is easier to test the model in isolation,
and the underlying data store can easily be swapped out to meet changing business
requirements.

Here is an example of a simple POCO class that only contains properties and methods:

153

public class Product
{
 public long Id { get; set; }
 public string Name { get; set; }
 public double Price { get; set; }
 public int NumberInStock { get; set; }

 public double CalculateValue()
 {
 return Price * NumberInStock;
 }
}

Note that the class contains no specific database infrastructure code. Later in this
chapter we will talk about how to use an object relational mapper (ORM) and the
repository pattern to persist POCO classes.

The business model for an application can easily contain dozens or even hundreds of
classes, in more complex scenarios. Even for simple models that only contain a few
classes, it makes sense to create a base entity class that contains common properties
and methods.

The following is an example of a base entity class. Note how the class and its methods
are marked abstract; this is a common approach in a base entity class to enforce con-
sistency across the model:

public abstract class BaseEntity
{
 public string Key { get; set; }

 public abstract void GenerateKey();

}

Using the Repository Pattern
The respository pattern is a data access pattern that promotes a more loosely coupled
approach to data access. Instead of having a controller or the business model contain
the data access logic, a separate class or set of classes called a repository takes on the
responsibility of persisting the application’s business model.

The repository pattern nicely complements the key design principle of the MVC pattern
—separation of concerns. By using this pattern, we isolate the data access layer from
the rest of the application and take advantage of the benefits of using POCO classes.

There are several different approaches to designing a repository:

One per business model
The most straightforward way is to create a repository for each business model
class. While this approach is easy, it can lead to problems, such as duplicate code
or complexity, when multiple repositories need to interact with each other.

154 | Chapter 8: Advanced Data

Using aggregate root
An aggregate root is a class that can exist by itself and is responsible for managing
the associations to other related classes. For example, in an ecommerce application,
you would have an OrderRepository that would handle the creation of an order
and its related order detail items.

Generic repository
Instead of creating specific repository classes, a developer can instead take advan-
tage of .NET generics to build a common repository that can be used across mul-
tiple applications. The Ebuy reference application includes an example of a generic
repository.

Here is the structure of a stubbed-out repository class:

public class ModelRepository
{

 public ModelRepository()
 {
 }

 public void Add(Model instance)
 {
 }

 public void Update(Model instance)
 {
 }

 public void Delete(Model instance)
 {
 }

 public Model Get(string id)
 {
 }

 public ICollection<Model> GetAll()
 {
 }

}

In addition to performing the CRUD (Create, Read, Update, and Delete) operations
for an entity, a repository sometimes takes on the responsibility of caching entities.
Caching works great for entities that are fairly static, such as lookup values for drop-
down lists, but it can be problematic for entities that are frequently updated.

See Chapter 12 for additional details about caching data.

In ASP.NET MVC controllers interact with repositories to load and persist an appli-
cation business model. By taking advantage of dependency injection (DI), repositories

Data Access Patterns | 155

can be injected into a controller’s constructor. Figure 8-1 shows the relationship be-
tween the repository and the Entity Framework data context, in which ASP.NET MVC
controllers interact with the repository rather than directly with Entity Framework.

Figure 8-1. Interactions when using a repository

The following example shows how a repository is injected into a controller using the
dependency injection technique and how the controller uses the injected repository to
retrieve a list of auctions. Using dependency injection makes it easier to test the con-
troller by mocking out the repository passed in:

public class AuctionsController : Controller
{
 private readonly IRepository _repository;

 public AuctionsController(IRepository repository)
 {
 _repository = repository;
 }

 public ActionResult Index()
 {
 var auctions = _repository.GetAll<Auction>();
 return auctions;
 }
}

Object Relational Mappers
An object relational mapper (ORM) is a data access pattern that supports mapping
entities between classes (.NET Framework types) and a relational database model. The
main reason for using this pattern is that there can be a significant disconnect between
the structure of the application business model and the database model. This discon-
nect is called the object relational impedance mismatch, which is just a fancy way of
saying that the best structures for the application’s business layer and data access layer
are usually not compatible.

156 | Chapter 8: Advanced Data

It is easy to fall into the trap of just reflecting the relational database
model in the business layer. The problem with this approach is that it
limits your ability to take advantage of the full power of the .NET plat-
form.

Here are the main pain points of the object relational impedance mismatch:

Granularity
Sometimes your model will contain more classes than the number of matching
tables in the database. A good example of this is an Address class, because there
can be different behaviors associated with the different kinds of addresses that exist
in the real world—a billing address may be handled differently than a shipping
address, for example. Even though it is often a good idea to represent these differ-
ences using different classes to contain each specific set of behaviors, they may all
contain (mostly) the same data, so you may want to store all Address types in a
single database table.

Inheritance
The concept of inheritance—or classes deriving from other classes in order to share
common logic—is one of the most important aspects of object-oriented develop-
ment. Regardless of its importance in object-oriented development, however, re-
lational databases generally don’t understand the concept of inheritance. For ex-
ample, while your relational database may have a single Customers table with a
special column that determines whether the customer is domestic or international,
your business domain model may express this relationship via a base Customer class
and several subclasses—such as DomesticCustomer and InternationalCustomer—
to represent the different kinds of customers your business interacts with.

Identity
Relational databases rely on a single table column (i.e., the table’s primary key) to
act as a unique identifier for each row. This often conflicts with the .NET Frame-
work world, in which objects can be identified both by their object identity (a ==
b) and by their object equality (a.Equals(b)), neither of which depends on the
object having a single unique property or field.

Associations
A relational database uses primary and foreign keys to establish the association
between entities. Meanwhile, the .NET Framework represents object associations
as unidirectional references. For example, in a relational database it’s possible to
query data across tables in either direction. However, in .NET the association is
owned by only one class, so to get bidirectional support you would need to copy
the association. In addition, it’s impossible to know the multiplicity of an
association in a class. The concepts of “one to many” and “many to many” are
indistinguishable.

Data Access Patterns | 157

Data navigation
The way you access data in a .NET Framework class is fundamentally different
from the way you would do it inside a relational database. In a domain model
implemented using .NET, you walk one associate relationship to another across
the whole model object graph, while typically you try to minimize the number of
SQL queries required by loading several entities using JOIN(s) and specific SELECT
statements.

While developers may use the model to perform data access operations such as loading
and saving data, the importance and responsibility of the database is still paramount.
The traditional data access design rules should still be followed. Each table should have
a single primary key, one-to-many relationships should be defined using foreign keys,
etc. For example, to represent the relationship between students and teachers, there
should be a third table (e.g., Class), since students and teachers both can have one or
more classes.

Entity Framework Overview
Crafting an ORM by hand can be an impossible journey. Fortunately, instead of build-
ing everything themselves, developers can look to one of the myriad ORM frameworks
available. These include a couple provided by Microsoft—such as LINQ to SQL and
ADO.NET Entity Framework—and the many popular third-party commercial or open
source frameworks, such as nHibernate.

The ADO.NET Entity Framework (simply known as EF) is an object relational mapper
included with the .NET framework. When using EF, a developer interacts with an entity
model instead of the application’s relational database model. This abstraction allows
the developer to focus on the business behavior and the relationships between entities,
instead of on the details of storing entities into a relational data model. To interact with
the entity model, the developer uses the Entity Framework data context to perform
queries or persist the model. When one of these operations is invoked, EF will generate
the necessary SQL to perform the operation.

One of the more controversial subjects when switching from traditional data access
approaches (e.g., ADO.NET Datasets) to an object relational mapping approach is
deciding what role stored procedures should play, if any. Since the entity model is the
primary focus when using an ORM, developers are encouraged to let the framework
handle mapping entities, instead of worrying about writing SQL queries themselves.
Fortunately, if you work in an organization that requires stored procedures, or you
need to interact with an existing database that leverages stored procedures, ADO.NET
Entity Framework offers support for calling stored procedures. See http://msdn.micro
soft.com/en-us/library/bb399203(v=VS.90).aspx for additional details.

158 | Chapter 8: Advanced Data

http://www.nhibernate.com
http://msdn.microsoft.com/en-us/library/bb399203(v=VS.90).aspx
http://msdn.microsoft.com/en-us/library/bb399203(v=VS.90).aspx

Here is an example of how to use the Entity Framework data context for adding and
saving new products. When the SaveChanged() method is called, Entity Framework will
generate the SQL for inserting two new products:

using (var db = new ProductModelContainer())
{
 db.Product.Add(new Product { Id = "173", Name = "XBox 360" });
 db.Product.Add(new Product { Id = "225", Name = "Halo 4" });
 db.SaveChanges()
}

Choosing a Data Access Approach
Microsoft recognizes that a one-size-fits-all approach for data access does not work.
Some developers prefer a more data-centric approach that focuses on designing the
database first, then generating the business model for their application, largely driven
by the structure of the database. Other developers want to use POCO classes to define
the structure of the business model and either generate the database from the POCO
classes or hook up the model to an existing database.

As a result, the ADO.NET Entity Framework allows developers to choose between
three different styles:

Database First
For developers who prefer a more data-centric design or starting from an existing
database, Entity Framework is able to generate a business model based on the tables
and columns in a relational database. Entity Framework uses a special configura-
tion file (stored with the .edmx file extension) to store the information about the
database schema, the conceptual data model, and the mapping between them.
Developers can use the Entity Framework designer included with Visual Studio to
generate, display, and edit the conceptual model used by Entity Framework.

Model First
For developers who do not have an existing database, Entity Framework offers a
designer that can be used to create a conceptual data model. As with the Database
First model, Entity Framework uses a schema file to store the information related
to mapping the model to a database schema. After the model has been created, the
EF designer can generate the database schema that can be used to create a database.

Code First
Developers who want to use more of a persistence ignorance approach can create
the business model directly in code. Entity Framework provides a special mapping
API and supports a set of conventions to make this approach work. Under the Code
First approach, Entity Framework does not leverage any kind of external configu-
ration file to store the database schema, because the mapping API uses these con-
ventions to generate the database schema dynamically at runtime.

Entity Framework Overview | 159

Currently, the Entity Framework Code First approach does not support
mapping to stored procedures. The ExecuteSqlCommand() or
SqlQuery() methods can be used to execute stored procedures.

Database Concurrency
Handling concurrency conflicts is one of the most important aspects developers need
to manage when building web applications. A concurrency conflict occurs when mul-
tiple users try to change the same data simultaneously. By default, unless you configure
Entity Framework to detect conflicts, the “last in” rule applies. For example, if user one
and user two load the same product, the user who clicks the submit button last will be
the one who wins, and that user’s data will override the first user’s data without any
warning being given to either user.

Depending on the type of the application and the volatility of its data, a developer can
decide if the cost of programming for concurrency outweighs its benefits. Two ap-
proaches can be taken to handle concurrency:

Pessimistic concurrency
The pessimistic concurrency approach requires the use of database locks to prevent
multiple users from overriding each other’s changes. When a row of data is re-
trieved, a read-only lock is applied and kept until the same user updates the data
or removes the read-only lock. This approach can cause a lot of issues in web
applications since the Web relies heavily on a stateless model. The major issue to
watch out for is managing when read-only locks get removed; since a web browser
is used to access the web application, there is no guarantee of when and if the user
will perform an action that can trigger the removal of a read-only lock.

Optimistic concurrency
Instead of relying on database locks, the optimistic concurrency approach chooses
to verify that the data to be updated has not been modified since it was originally
retrieved. This is typically accomplished by adding a timestamp field to the table
that tracks the last time each row was updated. Then, prior to applying any updates
to the row, the application checks the timestamp field to see if the row has been
changed by anyone since the user retrieved the data.

ADO.NET Entity Framework does not offer support for pessimistic concurrency out
of the box. Instead, it is recommended that optimistic concurrency be used. Entity
Framework offers two ways to utilize optimistic concurrency: by adding a timestamp
property to an entity and by handling any OptimisticConcurrencyException exceptions
returned from the Entity Framework data context.

Here is an example of using the Timestamp attribute to add a timestamp field to an entity.
When this attribute is applied, the corresponding database column will be added as a
condition to the SQL Where clause during any UPDATE or DELETE operations:

160 | Chapter 8: Advanced Data

[Timestamp]
public Byte[] Timestamp { get; set; }

To trap OptimisticConcurrencyException errors, use normal .NET try/catch techni-
ques to retrieve and compare the state of the entity the user is trying to save, along with
the current state of the entity saved in the database:

try
{
 dbContext.Set<Product>().Add(instance);
 dbContext.SaveChanges();
}
catch (DbUpdateConcurrencyException ex)
{
 var entry = ex.Entries.Single();
 var databaseValues = (Product)entry.GetDatabaseValues().ToObject();
 var clientValues = (Product)entry.Entity;

 if (databaseValues.Name != clientValues.Name)
 //Log concurrency exception

}
catch (DataException ex)
{
 //Log data exception errors
}
catch (Exception ex)
{
 //Log general exception errors
}

Building a Data Access Layer
Picking the design of the data access layer is a critical decision that can influence the
rest of the application. For the Ebuy reference application, the Entity Framework Code
First approach was chosen. The main reasons for this choice were that the Ebuy busi-
ness model is designed using the concepts of domain-driven design (http://www.do
maindrivendesign.org) and that the development team wanted to use a persistence
ignorance approach to ensure that the application would be able to easily support
multiple types of persistence models, including rational databases, cloud storage, and
NoSQL databases.

Using Entity Framework Code First
The driving force behind the Code First approach is the ability to use POCO (Plain Old
CLR Objects) classes. Under the Database First or Model First approaches, the EF-
generated model classes inherit from the EntityObject base class, which provides the
necessary plumbing to map the class to its underlying database schema. Because the
Database First and Model First approaches require persisted classes to inherit from
the EntityObject class, they do not support persistence ignorance.

Building a Data Access Layer | 161

http://www.domaindrivendesign.org
http://www.domaindrivendesign.org

Instead of using a base entity class for mapping, Code First uses a set of conventions
to map POCO classes:

• Table names are defined using the pluralized form of the entity class name.

• Column names are derived from the property names.

• Primary keys are based on properties named ID or classNameID.

• The default connection string matches the name of the DataContext class.

Code First data annotations

Entity Framework includes several data annotation attributes developers can use to
control how the framework handles mapping entities (see Table 8-1). Note that the
ASP.NET MVC Framework uses some of the same attributes for field-level validation.

Table 8-1. Code First data annotations

Property Description

Column The database column name, ordinal position, and data type to
map the property to.

ComplexType Used on classes that do not contain keys and cannot be man-
aged by Entity Framework. Typically used to manage scalar
properties in related entity.

ConcurrencyCheck Used to specify whether a property should participate in
optimistic concurrency checks.

DatabaseGenerated Used to mark a property that should be generated by the
database.

ForeignKey Used to identify a related entity; represents the foreign key
constraint used between tables.

InverseProperty Used to identify a property that represents the other end of a
relationship.

Key One or more properties used to uniquely identify an entity.

MaxLength The maximum length for the property (column).

MinLength The minimum length for the property (column).

NotMapped Marks a property that will not be mapped by Entity Framework.

Required Marks a property as being required (non-nullable).

StringLength Defines the minimum and maximum length of a field.

Table Used to define the table name to use for an entity.

Timestamp Marks a property (column) that contains a timestamp that is
checked prior to saving changes.

162 | Chapter 8: Advanced Data

Overriding conventions

While conventions aim to enhance developer productivity, Entity Framework recog-
nizes that there may be times when you need to break one or more of the conventions
it applies and exposes an API that allows developers to bypass its conventions.

Here is an example of an entity class that has been configured to use the Key attribute,
a data annotation that overrides the default primary key mapping:

public class Product
{
 [Key]
 public string MasterKey { get; set; }
 public string Name { get; set; }
}

In addition to using attributes to override Entity Framework conventions, developers
may also choose to remove any of the default conventions or even enhance the default
conventions by creating their own.

The following code shows how to remove the PluralizingTableNameConvention so sin-
gular names can be used for tables:

public class ProductEntities : DbContext
{
 protected override void OnModelCreating(DbModelBuilder modelBuilder)
 {
 // Modify the Code First conventions to not use PluralizingTableName
 modelBuilder.Conventions.Remove<PluralizingTableNameConvention>();
 }
}

The EBuy Business Domain Model
The business model of the Ebuy reference application is made up of several POCO
classes that have been designed using the principles of domain-driven design. Each
POCO entity inherits from a base entity class that contains common behaviors and
attributes shared across all classes in the business model.

Since EBuy has been designed with the SOLID design principles in mind (see
“SOLID” on page 96), the Entity base class implements two interfaces: the custom
IEntity interface, which defines the naming rules for the URL-safe key name for an
entity, and the .NET Framework IEquatable interface, which compares different in-
stances of the same entity type to each other. The base class looks like this:

public interface IEntity
{
 /// <summary>
 /// The entity's unique (and URL-safe) public identifier
 /// </summary>
 /// <remarks>
 /// This is the identifier that should be exposed via the Web, etc.
 /// </remarks>

Building a Data Access Layer | 163

 string Key { get; }
}

public abstract class Entity<TId> : IEntity, IEquatable<Entity<TId>>
where TId : struct
{

 [Key]
 public virtual TId Id
 {
 get
 {
 if (_id == null && typeof(TId) == typeof(Guid))
 _id = Guid.NewGuid();

 return _id == null ? default(TId) : (TId)_id;
 }
 protected set { _id = value; }
 }
 private object _id;

 [Unique, StringLength(50)]
 public virtual string Key
 {
 get { return _key = _key ?? GenerateKey(); }
 protected set { _key = value; }
 }
 private string _key;

 protected virtual string GenerateKey()
 {
 return KeyGenerator.Generate();
 }
}

A class that inherits from the Entity class must define the type used for its ID. Take
note of the other behaviors defined in the class, such as how the Key property must
contain a unique value and that value must be 50 characters or less. Notice, too, how
the class overrides the equal operators to properly compare multiple instances of the
same model object.

The Payment model inherits from the base Entity class; it uses a GUID-based identifier
and contains both primitive and complex properties. Complex properties are used to
represent relationships to other entities in the model. For example, Payment includes
relationships to an Auction and to the User object:

public class Payment : Entity<Guid>
{
 public Currency Amount { get; private set; }
 public Auction Auction { get; private set; }
 public DateTime Timestamp { get; private set; }
 public User User { get; set; }

 public Payment(User user, Auction auction, Currency amount)

164 | Chapter 8: Advanced Data

 {
 User = user;
 Auction = auction;
 Amount = amount;
 Timestamp = Clock.Now;
 }

 private Payment()
 {
 }
}

One important concept of working with a domain model is to divide the model into
one or more contexts, wherein each context is defined as an aggregate cluster that is
made up of associated objects that act as a single logical unit. Each cluster contains a
single aggregate root that is the main entity that all other entities are associated with
and that the other entities cannot exist without.

The EBuy reference application’s aggregate root is the Auction class. The Auction class
represents the main entity in the application that all other classes can’t exist without.

Figure 8-2 shows the core classes that make up the EBuy domain model and the asso-
ciations between them. Since Auction is the aggregate root, it has relationships to the
other core entities—including Bid, which is a collection of bids made by different users
for an auction, the User class, which represents two different roles (auctioneer and
bidder), and a Payment class that represents the payment the winning bidder makes to
an auctioneer.

Figure 8-2. Domain model

Building a Data Access Layer | 165

The following code shows the inner workings of the Auction class, along with all its
related entities and behaviors. The ICollection<T> type is used to define the different
related classes, including Bid, Category, and Image. The main behaviors of the class are
related to posting new bids:

public class Auction : Entity<Guid>
{
 public virtual string Title { get; set; }
 public virtual string Description { get; set; }
 public virtual DateTime StartTime { get; set; }
 public virtual DateTime EndTime { get; set; }
 public virtual Currency CurrentPrice { get; set; }

 public Guid? WinningBidId { get; set; }
 public virtual Bid WinningBid { get; private set; }

 public bool IsCompleted
 {
 get { return EndTime <= Clock.Now; }
 }

 public virtual bool IsFeaturedAuction { get; private set; }

 public virtual ICollection<Category> Categories { get; set; }

 public virtual ICollection<Bid> Bids { get; set; }

 public virtual ICollection<WebsiteImage> Images { get; set; }

 public long OwnerId { get; set; }
 public virtual User Owner { get; set; }

 public virtual CurrencyCode CurrencyCode
 {
 get
 {
 return (CurrentPrice != null) ? CurrentPrice.Code : null;
 }
 }

 public Auction()
 {
 Bids = new Collection<Bid>();
 Categories = new Collection<Category>();
 Images = new Collection<WebsiteImage>();
 }

 public void FeatureAuction()
 {
 IsFeaturedAuction = true;
 }

 public Bid PostBid(User user, double bidAmount)
 {
 return PostBid(user, new Currency(CurrencyCode, bidAmount));

166 | Chapter 8: Advanced Data

 }

 public Bid PostBid(User user, Currency bidAmount)
 {
 Contract.Requires(user != null);

 if (bidAmount.Code != CurrencyCode)
 throw new InvalidBidException(bidAmount, WinningBid);

 if (bidAmount.Value <= CurrentPrice.Value)
 throw new InvalidBidException(bidAmount, WinningBid);

 var bid = new Bid(user, this, bidAmount);

 CurrentPrice = bidAmount;
 WinningBidId = bid.Id;

 Bids.Add(bid);

 return bid;
 }

}

Working with a Data Context
The ADO.NET Entity Framework Code First data access approach requires the devel-
oper to create a data access context class that inherits from DbContext. This class must
contain properties for each of the entities in the domain model. The custom data con-
text class can override the methods of the base context class to handle any special logic
for queries and saving data, along with any custom logic for mapping entities.

Here is an Entity Framework Code First data context that contains two entities: Cate
gories and Products. Below the definition of the data context class, a LINQ query is
used to retrieve a list of products for a specific category:

public partial class DataContext : DbContext
{
 public DbSet<Category> Categories { get; set; }
 public DbSet<Product> Products { get; set; }
}

public IList<Product> GetProductsByCategory(Category item)
{
 IList<Product> result = null;

 var db = new DataContext();
 result = db.Products.Where(q => q.Category.Equals(item)).ToList();

 return resut;
}

Building a Data Access Layer | 167

To handle special entity mappings such as many-to-many relationships, the OnModel
Creating() method of the data context needs to be overridden. Below is an example of
setting up a many-to-many relationship between the Bids and Auctions database tables:

protected override void OnModelCreating(DbModelBuilder modelBuilder)
{
 modelBuilder.Entity<Bid>()
 .HasRequired(x => x.Auction)
 .WithMany()
 .WillCascadeOnDelete(false);
}

By default, Entity Framework will look in the ASP.NET MVC web application’s
web.config file for a connection string that has the same name as the custom data access
class:

<connectionStrings>
 <add name="Ebuy.DataAccess.DataContext" providerName="System.Data.SqlClient"
 connectionString="Data Source=.\SQLEXPRESS;AttachDbFilename=
 |DataDirectory|\Ebuy.mdf;Initial Catalog=Ebuy;↵
 Integrated Security=True;User Instance=True;↵
 MultipleActiveResultSets=True"
 />
</connectionStrings>

Instead of working directly with the Entity Framework data context, the developer can
use the repository pattern. This will give a level of abstraction between the application’s
controllers and Entity Framework. Having the repository class implement an interface
(IRepository) allows the developer to use an IoC container to inject the repository into
the controller.

Here is an example of a repository that has been set up to abstract away the Entity
Framework data context:

public class Repository : IRepository
{
 private readonly DbContext _context;

 public Repository(DbContext context)
 {
 _context = context;
 _isSharedContext = isSharedContext;
 }
}

Sorting, Filtering, and Paging Data
In order to support the sorting, filtering, and paging of data, the ADO.NET Entity
Framework relies on Language Integrated Query (LINQ) queries to interact with the
database.

168 | Chapter 8: Advanced Data

Developers create and invoke LINQ queries against the Entity Framework data context.
Once a LINQ query has been defined, a developer calls one of the LINQ methods, such
as ToList(), to invoke the query. Entity Framework converts the LINQ commands into
their corresponding SQL syntax and executes the query. When the query is done exe-
cuting, the returned result is converted into a strongly typed collection based on the
entity type defined by the query.

The EBuy reference application’s search page (Figure 8-3) shows several of these meth-
ods working together to provide filtering, sorting, and paging of search results. Users
can enter a keyword to search for, change the property to sort on, and page through
the search results returned from the database, all through simple LINQ queries.

Figure 8-3. EBuy search page

After a user enters a keyword and clicks submit, the SearchController will be invoked.
The Index method accepts a SearchCriteria parameter. This class contains all the key
fields that the user can change on the search screen: the keyword, the field to sort by,
and the number of items to display per page.

When the method is invoked, the ASP.NET MVC model binder magic will map the
search form’s fields to the SearchCriteria class. In addition to fields on the search page,
the class contains a few helper methods to make it easier to get the sort by field and
number of items to display per page:

public class SearchCriteria
{
 public enum SearchFieldType
 {
 Keyword,

Sorting, Filtering, and Paging Data | 169

 Price,
 RemainingTime
 }

 public string SearchKeyword { get; set; }
 public string SortByField { get; set; }
 public string PagingSize { get; set; }
 public int CurrentPage { get; set; }

 public int GetPageSize()
 {
 int result = 5;

 if (!string.IsNullOrEmpty(this.PagingSize))
 {
 int.TryParse(this.PagingSize, out result);
 }

 return result;
 }

 public SearchFieldType GetSortByField()
 {
 SearchFieldType result = SearchFieldType.Keyword;

 switch (this.SortByField)
 {
 case "Price":
 result = SearchFieldType.Price;
 break;
 case "Remaining Time":
 result = SearchFieldType.RemainingTime;
 break;
 default:
 result = SearchFieldType.Keyword;
 break;
 }

 return result;
 }
}

The Search view (Example 8-1) involves a number of important concepts that should
be familiar by now. The view leverages jQuery events to trap the events associated with
the search criteria fields, so when one of these fields changes, the hidden field for
tracking the current page is updated and the form is submitted to the SearchControl
ler. The view also uses a SearchViewModel class that contains properties for setting the
search criteria and results.

Example 8-1. The Search view

@model SearchViewModel

@{

170 | Chapter 8: Advanced Data

 ViewBag.Title = "Index";
}

<script type="text/javascript">

 $(function () {
 $("#SortByField").change(function () {
 $("#CurrentPage").val(0);
 SubmitForm();
 });

 $("#PagingSize").change(function () {
 $("#CurrentPage").val(0);
 SubmitForm();
 });

 $("#Previous").click(function () {
 var currentPage = $("#CurrentPage").val();
 if (currentPage != null && currentPage > 0) {
 currentPage--;
 $("#CurrentPage").val(currentPage);
 }
 SubmitForm();
 });

 $("#Next").click(function () {
 var currentPage = $("#CurrentPage").val();
 if (currentPage) {
 currentPage++;
 $("#CurrentPage").val(currentPage);
 }
 SubmitForm();
 });

 });

 function SubmitForm() {
 document.forms["SearchForm"].submit();
 }

</script>

@using (Html.BeginForm("Index", "Search", FormMethod.Post, new { id = "SearchForm" }))
{

 <div class="SearchKeyword">
 @Html.TextBoxFor(m => m.SearchKeyword, new {@class="SearchBox"})
 <input id="Search" type="submit" value=" " class="SearchButton" />
 </div>

 <h2>Search Result</h2>

 <div>
 <div class="SearchHeader">
 @Html.Hidden("CurrentPage", @Model.CurrentPage)

Sorting, Filtering, and Paging Data | 171

 <div class="PagingContainer">
 Page @Model.CurrentPage of @Model.MaxPages
 <img id="Previous" src="@Url.Content("~/Content/Images/PagingPrevious.png")"↵
 class="PagingButton" />
 <img id="Next" src="@Url.Content("~/Content/Images/PagingNext.png")" ↵
 class="PagingButton" />
 <div class="PageSize">
 @Html.DropDownListFor(m => m.PagingSize, new SelectList↵
 (Model.PagingSizeList))
 </div>
 </div>
 <div class="SortingContainer">
 Sort By:
 @Html.DropDownListFor(m => m.SortByField, new SelectList↵
 (Model.SortByFieldList))
 </div>
 </div>
 <div class="SearchResultContainer">
 <table>
 @foreach (var item in @Model.SearchResult)
 {
 var auctionUrl = Url.Auction(item);
 <tr>
 <td class="searchDescription">
 <div class="fieldContainer">
 @Html.SmallThumbnail(@item.Image, ↵
 @item.Title)
 </div>
 <div class="fieldContainer">
 <div class="fieldTitle">@item.Title</div>
 <div class="fieldDescription">
 @item.Description
 </div>
 </div>
 </td>
 <td class="centered-field">@item.CurrentPrice</td>
 <td class="centered-field">@item.RemainingTimeDisplay</td>
 </tr>
 }
 </table>
 </div>
 </div>

}

After the user enters a search keyword or changes one of the search criteria fields, the
SearchController is invoked. The Index action handles the incoming requests and
checks to see if the search criteria input model contains any criteria data. If the user
enters a keyword, it is used to filter the auction items returned in the search result. The
Query() method in the repository is used for sending the filter data (e.g., keyword) to
the Entity Framework data context, which builds an SQL query and returns the filtered
data to the controller:

172 | Chapter 8: Advanced Data

public ActionResult Index(SearchCriteria criteria)
{
 IQueryable<Auction> auctionsData = null;

 // Filter auctions by keyword
 if (!string.IsNullOrEmpty(criteria.SearchKeyword))
 auctionsData = _repository.Query<Auction>(q => q.Description.Contains↵
 (criteria.SearchKeyword));
 else
 auctionsData = _repository.All<Auction>();

 // Code for loading view model

 return View(viewModel);
}

When the user changes the sort by field, the SearchController will be invoked. The
controller checks the SearchCriteria class to determine which field to sort the search
result by. To sort data, LINQ OrderBy command is called, passing in the field to sort
by (q ⇒ q.CurrentPrice.Value):

switch (criteria.GetSortByField())
{
 case SearchCriteria.SearchFieldType.Price:
 auctionsData = auctionsData.OrderBy(q => q.CurrentPrice.Value);
 break;
 case SearchCriteria.SearchFieldType.RemainingTime:
 auctionsData = auctionsData.OrderBy(q => q.EndTime);
 break;
 case SearchCriteria.SearchFieldType.Keyword:
 default:
 auctionsData = auctionsData.OrderBy(q => q.Description);
 break;
}

When the user clicks on the previous or next page button or changes the number of
items to display per page, the SearchController is invoked. The controller checks the
criteria parameter to determine how many pages to display and gets the previous or
next page of search results. The PageSearchResult() method then calls the custom
Page() extension method to see how many auctions to display after all the search filters
have been applied.

If the number of auctions is greater than the requested page count, the search result for
the current page is returned. If the page size is greater than or equal to the number of
auctions, however, the method returns all the auctions that matched the search request:

private IEnumerable<Auction> PageSearchResult(SearchCriteria criteria, IQueryable ↵
<Auction>auctionsData)
{
 IEnumerable<Auction> result = null;

 var NumberOfItems = auctionsData.Count();

 if (NumberOfItems > criteria.GetPageSize())

Sorting, Filtering, and Paging Data | 173

 {
 var MaxNumberOfPages = NumberOfItems / criteria.GetPageSize();

 if (criteria.CurrentPage > MaxNumberOfPages)
 criteria.CurrentPage = MaxNumberOfPages;

 result = auctionsData.Page(criteria.CurrentPage, criteria.GetPageSize());
 }
 else
 {
 result = auctionsData.ToArray();
 }

 return result;
}

To make paging data easier, a C# extension method for IEnumerable<T> types has been
created. The method uses the LINQ Skip and Take commands to return only the number
of items specified by the current page index and page size parameters:

public static class CollectionExtensions
{
 public static IEnumerable<T> Page<T>(this IEnumerable<T> source, ↵
 int pageIndex, int pageSize)
 {
 Contract.Requires(pageIndex >= 0, "Page index cannot be negative");
 Contract.Requires(pageSize >= 0, "Page size cannot be negative");

 int skip = pageIndex * pageSize;

 if (skip > 0)
 source = source.Skip(skip);

 source = source.Take(pageSize);

 return source;
 }
}

Summary
This chapter outlined the common data access patterns and how to apply them using
the ADO.NET Entity Framework, exploring the different data access approaches sup-
ported by Entity Framework and how to use the Code First approach to build a data
access layer. It also looked at how to use the POCO classes and the repository pattern
when building an ASP.NET MVC web application.

174 | Chapter 8: Advanced Data

CHAPTER 9

Security

This chapter discusses the details of how to build secure ASP.NET MVC web applica-
tions, including guidance on how to secure web applications; the differences that need
to be taken into account when securing Internet, intranet, or extranet applications; as
well as how to take advantage of functionality built right into the .NET Framework
that can help prevent the common security issues that most web applications face.

Building Secure Web Applications
Benjamin Franklin once said that “an ounce of prevention is worth a pound of cure.”
This statement conveys the philosophy that you should embrace when it comes to
securing your web applications: the world is a dangerous place and web applications
often represent attractive targets for would-be attackers, so you’re going to want to be
prepared.

Unfortunately, there are no silver bullets when it comes to web application security. It
isn’t as simple as including a library or making a method call. Security is something
that needs to be baked into an application right from the start and not an afterthought
that is tacked on at the last minute.

There are, however, a few security principles that we will explain over the next few
sections that can have a great impact on creating more secure ASP.NET MVC web
applications. If you keep these principles in mind as you design and implement your
web applications, you have a much greater chance of avoiding some of the more com-
mon and serious security mistakes.

Defense in Depth
Just because a website is the only application layer that directly interacts with the out-
side world doesn’t mean that it is the only layer responsible for enforcing security. Much
to the contrary, secure systems are based on the notion that each application layer and
subsystem is responsible for its own security and should act as its own gatekeeper—it

175

is often assumed that a particular layer will only be called from another, trusted layer,
but that is not always the case! Instead, each layer should act as if it is always interacting
directly with the outside world, authenticating and authorizing users before allowing
them to perform any actions.

Never Trust Input
Any input from a user or another system should always be treated as a potential threat,
so always be sure to validate any input before using it. Don’t ever assume that you can
trust the data because it has already been validated elsewhere.

For example, client-side form validation using JavaScript in the browser helps to create
a more enjoyable user experience, but this should not be your only line of defense, since
it is very easy for a would-be attacker to submit a form post directly to the server and
bypass any client validation you may have in place. Client validation should be con-
sidered a convenience feature—not a security feature—and controllers should always
validate the data they accept.

Enforce the Principle of Least Privilege
Execute code using an account with only those privileges that are required for the task
at hand (the principle of least privilege) and design your application not to require
elevated rights unless they are really necessary. In scenarios that do require elevated
rights, restrict those rights by granting them for as short a period of time as possible:
complete the work, and then immediately remove the rights. For example, instead of
running an entire website under an administrator account just to allow disk access to
save uploaded files, create a user account that has no direct access to the local machine,
except to a specific folder where the account has access to create new files but not to
delete, update, or execute them.

Assume External Systems Are Insecure
It’s just as important to authenticate and authorize a computer or an external applica-
tion as it is a human end user. When systems need to interact with each other, consider
using different system accounts for each external system that your application com-
municates with, then restrict each account’s permissions so that it can only access
operations that the external system needs to perform.

Reduce Surface Area
Avoid exposing information or operations unnecessarily. For instance, ASP.NET MVC
controllers should minimize the number of actions that they expose and restrict those
actions’ input parameters only to the data that is necessary for each action to do what
it needs to.

176 | Chapter 9: Security

ASP.NET MVC’s model binding BindAttribute provides Include and
Exclude properties that allow you to specify a comma-delimited list of
model properties that should be bound or ignored, respectively.

Likewise, log and handle any exceptions that your application generates, making sure
to never return system details such as file paths, account names, or database schema
information that an attacker could use to take advantage of the system.

Disable Unnecessary Features
The most common attacks are automated attacks that target widely known vulnera-
bilities in popular platforms or services. To avoid becoming a target of this type of
attack, it is a good idea to reduce your exposure by uninstalling or disabling features
or services that your application does not require.

For instance, if your application does not send email, you should disable all email on
the host machine.

Securing an Application
Web applications often deal with several kinds of users. For example, your application
may interact with end users, who are the primary audience of your application; ad-
ministrators, who perform tasks related to monitoring and deploying the application;
and application or service account “users,” which are accounts that are used to com-
municate between different layers of an application or interact with external services.

At a high level, the first thing you need to consider when designing an ASP.NET web
application is the authentication model your site requires; then you can divide the
features of your application into different security authorization roles. Before we go
any further, let’s define these terms:

Authentication
Authentication is the process of identifying who is accessing the application. Au-
thentication provides an answer to the following questions: who is the current user
and does that user represent who it says it does? Both ASP.NET and ASP.NET
MVC allow you to choose between either Windows Authentication or Forms
Authentication.

Authorization
Authorization is the process of determining what level of rights an authenticated
user should have for accessing secured resources. The ASP.NET MVC Framework
allows you to declaratively add the AuthorizeAttribute to controller actions (or
entire controllers) to programmatically check to see if a user is in a specific role.

Securing an Application | 177

Once you have defined the security model that your application will use for end users,
it is time to decide how the various application layers will communicate with each other.

One of the most popular ways to enable interapplication communication is to create
an application service account that is granted the least amount of privileges required for
the layers to communicate with each other.

For example, if a web application only requires the ability to search and report on data
and not modify it, the service account would only be granted read access to the web
server’s local filesystem and the application’s database.

In cases where read and write access is required, the attack surface can still be minimized
by granting the service account very fine-grained access to specific systems and features
—for instance, restricting uploads to a single folder and only granting the service ac-
count write access to the specific database tables the application needs to update or
insert into.

Securing an Intranet Application
Both intranet and extranet web applications are most often configured to use Windows
Authentication. Under this approach, a user’s Windows security token is sent with the
HTTP request as the user navigates through the web application.

The application then uses this token to verify that the user has a valid account on the
local machine (or domain), as well as evaluating the roles that the user belongs to in
order to validate that user’s ability to perform a given action. When users are not prop-
erly authenticated or authorized, they are prompted by the web browser to enter their
security credentials.

Setting up Windows Authentication

ASP.NET MVC makes it easy to create a web application that uses Windows Authen-
tication. All you need to do is create a new ASP.NET MVC 4 application using the
Intranet Application template, as shown in Figure 9-1. This template sets the authen-
tication mode <authentication mode="Windows" /> in the application’s web.config file.

In order to deploy an ASP.NET MVC intranet application, you must first configure
Windows Authentication on the web server that will be hosting your application. The
following sections explain how to configure both the Internet Information Server (IIS)
and IIS Express web servers.

178 | Chapter 9: Security

Figure 9-1. Creating a new ASP.NET MVC intranet application

Visual Studio’s built-in web server is great for local development, but it
does not handle Windows Authentication failures the same way IIS
does. So, in order to develop and test web application functionality that
requires Windows Authentication, you must use an IIS Express or IIS
7.0+ web server.

Configuring IIS Express

The following steps outline how to configure IIS Express to host an ASP.NET web
application that requires Windows Authentication:

1. In the Solution Explorer, right-click the ASP.NET web project and select “Use IIS
Express…” from the menu (Figure 9-2). Say yes to the IIS Express dialog that is
displayed.

Securing an Application | 179

2. Back in the Solution Explorer, select your project and hit F4 to display the project’s
properties. Then, set Anonymous Authentication to Disabled and set Windows
Authentication to Enabled, as shown in Figure 9-3.

Figure 9-2. Choosing IIS Express

Figure 9-3. Configuring the project’s properties

180 | Chapter 9: Security

Configuring IIS 7

Configuring Windows Authentication in IIS 7 is a bit different than configuring it in
IIS Express. The following steps outline how to enable Windows Authentication on IIS
7:

1. Load IIS 7.0 Manager, right-click on one of the websites (e.g., “Default Web Site”),
as shown in (Figure 9-4), and select “Add Web Application.”

2. In the Add Application dialog (Figure 9-5), choose an alias, an application pool
(make sure to select an ASP.NET 4.0 application pool), and a physical path that
will act as the website’s root folder.

3. Select the newly created web application and click on the Authentication option,
then disable Anonymous Authentication and enable Windows Authentication, as
shown in Figure 9-6:

Figure 9-4. Choosing a website on which to configure Windows Authentication

Figure 9-5. The IIS Manager Add Application dialog

Securing an Application | 181

D
ow

n
lo

a
d
 f
ro

m
 W

o
w

!
e
B
o
o
k

<
w

w
w

.w
o
w

e
b
o
o
k.

co
m

>

Figure 9-6. Configuring the authentication options

Using the AuthorizeAttribute

The AuthorizeAttribute allows you to declaratively restrict access to a controller action
by rejecting requests whenever a user tries to access a controller action that the user
doesn’t have rights to.

If the Visual Studio built-in web server is hosting the application a blank
page will be returned, since it doesn’t support Windows Authorization
failures.

Table 9-1 lists the available AuthorizeAttribute properties.

Table 9-1. AuthorizeAttribute properties

Properties Description

Order Defines the order in which the action filter is executed
(inherited from FilterAttribute)

Roles Gets or sets the roles required to access the action

Users Gets or sets the usernames allowed to access the action

182 | Chapter 9: Security

The following code snippet shows how to configure an action that is only available to
certain users. In this example, only the Company\Jess and Company\Todd users are able
to access the AdminProfile controller action; all other users will be denied:

[Authorize(Users = @"Company\Jess, Company\Todd")]
public ActionResult AdminProfile()
{
 return View();
}

Though this example specifies a list of explicit usernames, it is generally a better idea
to use Windows Groups instead. This makes application access management signifi-
cantly easier, since the same Windows Group name can be used in multiple places and
the members of the Windows Group can be modified using standard Windows tools.

In order to leverage Windows Groups instead of usernames, simply populate the
Roles property with the Windows Group names:

[Authorize(Roles = "Admin, AllUsers")]
public ActionResult UserProfile()
{
 return View();
}

[Authorize(Roles = "Executive")]
public ActionResult ExecutiveProfile()
{
 return View();
}

Forms Authentication
The limitations of the Windows Authentication approach can become really clear as
soon as your application’s user base extends outside of your local domain. In these
scenarios—that is, most publicly accessible Internet sites—you’ll want to use
ASP.NET’s Forms Authentication instead.

Using the Forms Authentication approach, ASP.NET issues an encrypted HTTP cookie
(or query string value, if the user has cookies disabled) to identify authenticated users
across all future requests. This cookie is tightly coupled to the user’s ASP.NET session,
such that when the session times out or the user closes the web browser, the session
and cookie will become invalid and the user will need to log in again to establish another
session.

Securing an Application | 183

It’s highly recommended that you use SSL in conjunction with Forms
Authentication whenever possible. SSL encryption will automatically
encrypt the user’s sensitive credentials, which would otherwise be sent
to the server in clear, human-readable text.

To learn more about setting up SSL, visit http://learn.iis.net/page.aspx/
144/how-to-set-up-ssl-on-iis/.

Since it is by far the most commonly used authentication technique, most of the
ASP.NET MVC web application templates (all except the Intranet Application tem-
plate) come preconfigured to use Forms Authentication.

ASP.NET MVC’s Internet Application template even goes so far as to provide a default
implementation right out of the box, generating a controller class named AccountCon
troller and its associated login and new user registration views.

Figure 9-7 shows the default login form that ships with the ASP.NET Internet template.
The form includes the typical features of a login form, including fields for the user’s
username and password, a “Remember me?” checkbox, and a Register link for new
users.

Figure 9-7. The ASP.NET Internet Application template’s default login form

The default New User Registration Form (Figure 9-8) also includes built-in password
validation to verify that the two password fields match and that users enter passwords
that are at least six characters long.

184 | Chapter 9: Security

http://learn.iis.net/page.aspx/144/how-to-set-up-ssl-on-iis/
http://learn.iis.net/page.aspx/144/how-to-set-up-ssl-on-iis/

Figure 9-8. The default registration form for new users

Consider these views as a starting point for your website and feel free to modify them
to meet your application’s particular needs.

AccountController

The AccountController comes fully equipped for supporting typical ASP.NET form-
based authentication scenarios. Out of the box, supports registering new users with
the site, authenticating existing users, and even includes logic that lets users change
their passwords.

Under the covers, the controller uses the standard ASP.NET membership and roles
providers, as configured in the application’s web.config file. The default ASP.NET
membership provider configuration stores the site’s membership data in an SQL Ex-
press database called ASPNETDB.MDF, located under the application’s /App_Data
folder. Since SQL Express is generally only suitable for development scenarios, how-
ever, you will probably want to switch to a more production-ready data store, such as
the full version of Microsoft SQL Server or even Active Directory. Alternatively, you
can create and register your own custom providers in order to extend the capabilities
of the membership provider to include additional fields or to provide additional features
that the default providers do not offer.

Luckily, changing the settings for the default membership provider or even switching
to a custom membership provider is only a matter of configuration. To change the
membership provider configuration, simply update the <membership> section of the
application’s web.config:

Securing an Application | 185

<membership defaultProvider="DefaultMembershipProvider">
 <providers>
 <add name="DefaultMembershipProvider" type="System.Web.Providers.DefaultMembership↵
 Provider, System.Web.Providers, Version=1.0.0.0, Culture=neutral, PublicKey↵
 Token=31bf3856ad364e35"
 connectionStringName="DefaultConnection" enablePasswordRetrieval="false" ↵
 enablePasswordReset="true"
 requiresQuestionAndAnswer="false" requiresUniqueEmail="false" maxInvalid↵
 PasswordAttempts="5"
 minRequiredPasswordLength="6" minRequiredNonalphanumericCharacters="0" password↵
 AttemptWindow="10" applicationName="/" />
 </providers>
</membership>

Authenticating users

When a user tries to access a secure section of a web application, he or she will be
redirected to the login form. The AccountController leverages the AllowAnonymous
Attribute to indicate that the Login action is an exception to the authorization rules
and that unauthenticated users may access it. If this were not the case, users would
never be able to see the login form in order to authenticate themselves!

Since the Login controller action is accessible both by standard HTML login forms and
by AJAX-based forms, the action looks at the content property of the query string to
determine which one of these it is being called from. When the content parameter is
not null, the action returns the AJAX version of the login form; otherwise, it is assumed
that the request is a standard full-page browser request and the action returns the full
login form view. The user login code looks like this:

[AllowAnonymous]
public ActionResult Login()
{
 return ContextDependentView();
}

private ActionResult ContextDependentView()
{
 string actionName = ControllerContext.RouteData.GetRequiredString("action");
 if (Request.QueryString["content"] != null)
 {
 ViewBag.FormAction = "Json" + actionName;
 return PartialView();
 }
 else
 {
 ViewBag.FormAction = actionName;
 return View();
 }
}

After the user enters his security credentials and hits submit, the login form posts the
credentials back to the HttpPost version of the Login action in order to try to authen-
ticate the user.

186 | Chapter 9: Security

Authenticating users using ASP.NET Forms Authentication is a two-step process:

1. First, the Login action calls the Membership.ValidateUser() method to see if the
user is valid.

2. Then, if the membership provider says that the credentials are valid, the action
calls FormsAuthentication.SetAuthCookie() to create the user’s security token.

Finally, if the user is successfully logged in, he will be either redirected to the URL that
originally failed authentication or, if he navigated directly to the login page, returned
to the application’s home page. If an error occurs during authentication, the user is
returned back to the login form to try again. The code to handle all of this looks like
the following:

[AllowAnonymous]
[HttpPost]
public ActionResult Login(LoginModel model, string returnUrl)
{
 if (ModelState.IsValid)
 {
 if (Membership.ValidateUser(model.UserName, model.Password))
 {
 FormsAuthentication.SetAuthCookie(model.UserName, model.RememberMe);
 if (Url.IsLocalUrl(returnUrl))
 {
 return Redirect(returnUrl);
 }
 else
 {
 return RedirectToAction("Index", "Home");
 }
 }
 else
 {
 ModelState.AddModelError("", "The user name or password provided is ↵
 incorrect.");
 }
 }

 // If we got this far, something failed; redisplay form
 return View(model);
}

Registering new users

Before users are able to authenticate themselves with the site, they must first have an
account. Though it is possible for website administrators to manage user accounts
manually, the much more common approach is to allow users to register their own
accounts. In the ASP.NET MVC Internet Application template, it’s the Register con-
troller action’s job to interact with the user and collect all the data necessary to create
a new user account with the membership provider.

Securing an Application | 187

At a glance, the Register action looks a lot like the Login action we saw previously—
the AllowAnonymous attribute allows users to access the action, and it leverages context-
specific logic to return a partial view or a full view, depending on whether the request
is an AJAX request or not.

Instead of authenticating users, however, form posts to the Register action tell the
application to register a new user with the ASP.NET membership provider using its
Membership.CreateUser() API method.

When the new user is successfully registered, the action uses the same FormsAuthenti
cation.SetAuthCookie() method shown in the Login action to automatically authenti-
cate the new user, then redirects the user to the application’s home page:

[AllowAnonymous]
public ActionResult Register()
{
 return ContextDependentView();
}

[AllowAnonymous]
[HttpPost]
public ActionResult Register(RegisterModel model)
{
 if (ModelState.IsValid)
 {
 // Attempt to register the user
 MembershipCreateStatus createStatus;
 Membership.CreateUser(model.UserName, model.Password, model.Email, password↵
 Question: null, passwordAnswer: null, isApproved: true, providerUserKey: null,↵
 status: out createStatus);

 if (createStatus == MembershipCreateStatus.Success)
 {
 FormsAuthentication.SetAuthCookie(model.UserName, createPersistentCookie: ↵
 false);
 return RedirectToAction("Index", "Home");
 }
 else
 {
 ModelState.AddModelError("", ErrorCodeToString(createStatus));
 }
 }

 // If we got this far, something failed; redisplay form
 return View(model);
}

Changing passwords

The AccountController provides one additional action that is typical in most Forms
Authentication web applications: ChangePassword.

188 | Chapter 9: Security

The process begins with a request to the ChangePassword action from a user who wants
to change her password. The controller attempts to locate the user’s account using the
Membership.GetUser API to get an instance of MembershipUser, which contains the user’s
authentication information.

If it successfully locates the user’s account, the ChangePassword action then calls the
ChangePassword() method on the MembershipUser, passing in the user’s new password.

After the password is successfully changed, the user is redirected to the ChangePass-
wordSuccess view, confirming to the user that everything went well and that the
password has been changed:

public ActionResult ChangePassword()
{
 return View();
}

[HttpPost]
public ActionResult ChangePassword(ChangePasswordModel model)
{
 if (ModelState.IsValid)
 {

 // ChangePassword will throw an exception rather
 // than return false in certain failure scenarios.
 bool changePasswordSucceeded;
 try
 {
 MembershipUser currentUser = Membership.GetUser(User.Identity.Name, ↵
 userIsOnline: true);
 changePasswordSucceeded = currentUser.ChangePassword(model.OldPassword, ↵
 model.NewPassword);
 }
 catch (Exception)
 {
 changePasswordSucceeded = false;
 }

 if (changePasswordSucceeded)
 {
 return RedirectToAction("ChangePasswordSuccess");
 }
 else
 {
 ModelState.AddModelError("", "The current password is incorrect or the new ↵
 password is invalid.");
 }
 }

 // If we got this far, something failed; redisplay form
 return View(model);
}

Securing an Application | 189

Interacting via AJAX

In addition to the standard HTML GET/POST model, the AccountController also supports
logging in and registering users via AJAX. The following code snippet shows the AJAX
methods for these features:

[AllowAnonymous]
[HttpPost]
public JsonResult JsonLogin(LoginModel model, string returnUrl)
{
 if (ModelState.IsValid)
 {
 if (Membership.ValidateUser(model.UserName, model.Password))
 {
 FormsAuthentication.SetAuthCookie(model.UserName, model.RememberMe);
 return Json(new { success = true, redirect = returnUrl });
 }
 else
 {
 ModelState.AddModelError("", "The user name or password provided is ↵
 incorrect.");
 }
 }

 // If we got this far, something failed
 return Json(new { errors = GetErrorsFromModelState() });
}

[AllowAnonymous]
[HttpPost]
public ActionResult JsonRegister(RegisterModel model)
{
 if (ModelState.IsValid)
 {
 // Attempt to register the user
 MembershipCreateStatus createStatus;
 Membership.CreateUser(model.UserName, model.Password, model.Email, ↵
 passwordQuestion: null, passwordAnswer: null, isApproved: true, ↵
 providerUserKey: null, status: out createStatus);

 if (createStatus == MembershipCreateStatus.Success)
 {
 FormsAuthentication.SetAuthCookie(model.UserName, createPersistentCookie:↵
 false);
 return Json(new { success = true });
 }
 else
 {
 ModelState.AddModelError("", ErrorCodeToString(createStatus));
 }
 }

 // If we got this far, something failed
 return Json(new { errors = GetErrorsFromModelState() });
}

190 | Chapter 9: Security

If you think these methods look familiar, you’re right—the only major difference be-
tween the AJAX-based actions and the GET-based actions is that the controller returns
a JSON response (via a JSONResult) rather than an HTML response (via a ViewResult).

User authorization

User authorization works the same in Forms Authentication as it does with Windows
Authentication—placing the AuthorizeAttribute on a controller action restricts the
action to only authenticated users:

[Authorize]
public ActionResult About()
{
 return View();
}

When a non-authenticated user attempts to access the controller action, ASP.NET
MVC will reject the request by redirecting the user to the login page instead.

When this happens, the original request page is passed as a parameter (ReturnUrl) to
the login page, e.g., /Account/LogOn?ReturnUrl=%2fProduct%2fCreateNew. After the
user successfully logs in, he will be redirected to the original requested view.

When working with Forms Authentication, certain pages, such as the application’s
home or Contact Us page, may be accessible to all users. The AllowAnonymous attribute
grants access to nonauthenticated users:

[AllowAnonymous]
public ActionResult Register()
{
 return ContextDependentView();
}

In addition to declaratively authorizing the user using the User or Groups properties of
the AuthorizeAttribute, you may also access the logged-in user directly by calling the
User.Identity.Name() or User.IsInRole() method to check if the user is authorized to
perform a given action:

[HttpPost]
[Authorize]
public ActionResult Details(int id)
{
 Model model = new Model();

 if (!model.IsOwner(User.Identity.Name))
 return View("InvalidOwner");

 return View();
}

Securing an Application | 191

Guarding Against Attacks
Managing user security is just the first step in securing a web application. The second,
more important challenge is guarding against attacks from potential intruders.

While most users do not typically go around trying to hack the applications they use,
people using your application are very good at discovering bugs that can lead to security
holes. What’s more, intruders come in many forms, from a simple attacker out to have
some fun to sophisticated automated attacks that leverage worms and viruses designed
to attack known vulnerabilities.

Regardless of the type of intruder, the most important weapons that you have at your
disposal to defend against attacks are planning and implementing the security princi-
ples discussed in this chapter. It is also important that proper monitoring and auditing
are carried out, so if an attack occurs, the operation and development teams can identify
its cause and guard against future attacks.

The next few sections discuss the most common types of web application attacks and
what steps you can take to protect yourself against them.

SQL Injection
A SQL injection attack occurs when an attacker tricks the web application into ac-
cepting parameters that cause a query you may not have planned for that uses untrusted
data to be run. For demonstration purposes, the examples given here are simple and
straightforward. Keep in mind, though, that attackers generally do not leverage simple
logic; instead, they try to create complex algorithms that identify exploits and then
attack those exploits.

Let’s start with a simple example that is vulnerable to an SQL injection attack. All the
examples use the database schema from the EBuy reference application, which includes
tables such as Auctions and Categories. The Auctions and Categories tables (Figure 9-9
and Figure 9-10) have a many-to-many relationship, managed by the CategoryAuc-
tions table (Figure 9-11).

192 | Chapter 9: Security

Figure 9-9. EBuy Auctions table

Figure 9-10. EBuy Categories table

Figure 9-11. EBuy CategoryAuctions table

Here is an example of a controller class that accepts an ID and queries the Categories
table:

Guarding Against Attacks | 193

public ActionResult Details(string id)
{
 var viewModel = new CategoriesViewModel();

 var sqlString = "SELECT * FROM Categories WHERE id = " + id;
 var connString = WebConfigurationManager.ConnectionStrings["Ebuy.DataAccess.↵
 DataContext"].ConnectionString;
 using (var conn = new SqlConnection(connString))
 {
 var command = new SqlCommand(sqlString, conn);
 command.Connection.Open();

 IDataReader reader = command.ExecuteReader();

 while (reader.Read())
 {
 viewModel.Categories.Add(new Category { Name = reader[1].ToString()});
 }
 }

 return View(viewModel);
}

When users navigate to the view ~/category/details/1%20or%201=1 under normal cir-
cumstances, everything works as expected—the controller loads a single category based
on the ID passed in via the query string (Figure 9-12).

Figure 9-12. SQL injection attack view

However, by simply modifying the query string to ~/category/details/1 or 1=1, a security
hole is exposed. Now, instead of a single category being displayed, all of the records in
the Categories table are returned (Figure 9-13).

194 | Chapter 9: Security

Figure 9-13. SQL injection attack exploiting a hole

When attackers successfully identify holes such as this, they will start seeing what else
they can discover by modifying the query string to use other types of SQL statements.
In fact, the entire process can be automated so that the attacker doesn’t even have to
be at the keyboard.

The following are some examples of really dangerous SQL statements that allow an
attacker to not only discover what other tables the application uses, but modify the
contents of those tables as well.

The first thing an attacker will try to discover is which fields exist in the table being
displayed. This is very useful because it allows the attacker to discover foreign keys that
can be used to grab data from other tables. In this example, the attacker submits a query
that includes a CategoryName column ~/category/details/1 or categoryname=\''. And,
since the Categories table does not have this column, the database responds with an
exception (Figure 9-14).

Displaying the full details of the error—the default, in any ASP.NET application—is
just about the worst thing to do, because it exposes the call stack and other sensitive
application information that the attacker can use to locate and exploit other security
holes in the application.

Guarding Against Attacks | 195

Figure 9-14. SQL injection attack missing field

Here is another sequence of queries an attacker might try to send to a web application
she has exploited. The first query is used to discover what other tables exist. Once an
attacker knows a table exists, she can then try to insert, update, or even delete data
from the application’s SQL database, as shown in the second query:

1 OR 1=(SELECT COUNT(1) FROM Auctions)

1; INSERT INTO Auctions VALUES (1, "Test", "Description")

Fortunately, there are many techniques you can use to guard against SQL injection
attacks, so you are not defenseless against this kind of threat. The best option to deflect
a would-be attacker is to treat all input as evil. This includes data from query strings,
HTML forms, request headers, and any other input that comes into your system.

From a high level, there are two approaches you can take to validate input data:

Blacklists
A blacklist-based approach depends on validating incoming data against a list of
known values to exclude. Blacklists often seem like a good starting point because
they actively guard against known threats. However, the effectiveness of a blacklist
approach is only as good as the data you give it, and it can often provide a false
sense of security as potentially malicious input changes and new values are able to
sneak through.

196 | Chapter 9: Security

Whitelists
Whitelist-based approaches follow the opposite mind-set, wherein incoming data
is only considered valid when it matches values included in the list of known values.
In other words, whitelists block all values except values that are explicitly allowed.
This makes whitelist approaches generally much safer, by placing tighter control
over the data that is allowed to flow into the system.

While both whitelist and blacklist approaches require care and maintenance of the
values they allow or disallow, the possible effects of allowing malicious input (as is the
danger with a blacklist approach) typically far outweigh the effects of blocking input
that should be considered valid but is not explicitly allowed (as in the whitelist ap-
proach).

To see a whitelist approach in action, check out the code below, which shows an
example of verifying that the input parameter passed in is a numeric value:

var message = "";
var positiveIntRegex = new Regex(@"^0*[1-9][0-9]*$");
if (!positiveIntRegex.IsMatch(id))
{
 message = "An invalid Category ID has been specified.";
}

Though object-relational mappers such as LINQ to SQL and Entity
Framework automatically take care of many SQL injection issues, these
frameworks can’t protect against everything.

Here is the guidance from Microsoft on how to handle SQL injection
attacks when working with Entity Framework:

Entity SQL injection attacks:

SQL injection attacks can be performed in Entity SQL by
supplying malicious input to values that are used in a query
predicate and in parameter names. To avoid the risk of SQL
injection, you should never combine user input with Entity
SQL command text.

Entity SQL queries accept parameters everywhere that literals are
accepted. You should use parameterized queries instead of injecting lit-
erals from an external agent directly into the query. You should also
consider using query builder methods to safely construct Entity SQL.

LINQ to Entities injection attacks:

Although query composition is possible in LINQ to Entities,
it is performed through the object model API. Unlike Entity
SQL queries, LINQ to Entities queries are not composed by
using string manipulation or concatenation, and they are not
susceptible to traditional SQL injection attacks.

Guarding Against Attacks | 197

http://http://msdn.microsoft.com/en-us/library/cc716760.aspx

Cross-Site Scripting
Like SQL injection attacks, cross-site scripting (XSS) attacks represent a serious threat
to web applications that accept input from users.

The root cause of these types of attacks is insufficient validation of input data. XSS
attacks usually occur when the attacker is able to trick the user into viewing fake pages
that look similar to the target web application, or uses embedded links in innocent-
looking emails that take the user to an unexpected location.

Web applications that contain sensitive data are highly susceptible to XSS attacks. At-
tackers often try to hijack cookies that may contain a user’s login credentials or session
IDs, since they can use these cookies to try to get access to the user’s information or
trick the user into doing something harmful, such as submitting extra HTML content
or malicious JavaScript.

Fortunately, Microsoft recognizes the threat of cross-site scripting and has built basic
protection right into the framework in the form of request validation. When ASP.NET
receives a request, it will examine it to look for markup or scripts submitted in the
request (such as form field values, headers, cookies, etc.). If suspicious content is de-
tected, ASP.NET rejects the request by throwing an exception. In addition, the popular
Microsoft XSS library has been included in ASP.NET 4.5.

In some scenarios, applications such as content management systems (CMSs), forums,
and blogs need to support the input of HTML content. To this end, ASP.NET 4.5
introduces the ability to use deferred (or “lazy”) request validation, and methods for
accessing unvalidated request data. It is important to use these features with caution,
though, and remember that when you do so, you assume the responsibility of validating
input on your own.

To configure ASP.NET to use deferred request validation, update the httpRuntime >
requestValidationMode attribute in web.config to 4.5:

<httpRuntime requestValidationMode="4.5" />

When deferred request validation is enabled, the validation process will get triggered
the first time the application calls the request collection (e.g., Request.Form["post_con
tent"]). To skip the input validation, use the HttpRequest.Unvalidated() helper
method to access an unvalidated collection:

using System.Web.Helpers;

var data = HttpContext.Request.Unvalidated().Form["post_content"];

Microsoft has included a portion of the popular Microsoft Anti-XSS Library in
ASP.NET 4.5. The encoding features are part of the AntiXSSEncoded class, which is in
the System.Web.Security.AntiXss namespace. The library can be used directly by calling
one of the static encoding methods in the AntiXSSEncoded class.

198 | Chapter 9: Security

An easy way to utilize the new anti-XSS functionality is to set up an ASP.NET web
application to use the class by default. This is done by setting the encoderType in
web.config to AntiXssEncoded. When this is turned on, all output encoding will auto-
matically use the new XSS encoding functionality:

<httpRuntime ...
 encoderType="System.Web.Security.AntiXss.AntiXssEncoder,System.Web, Version=4.0.0.0, ↵
 Culture=neutral, PublicKeyToken=b03f5f7f11d50a3a" />

Here are the features from the Anti-XSS library included in ASP.NET 4.5:

• HtmlEncode, HtmlFormUrlEncode, and HtmlAttributeEncode

• XmlAttributeEncode and XmlEncode

• UrlEncode and UrlPathEncode (new to ASP.NET 4.5!)

• CssEncode

Cross-Site Request Forgery
The Web is not a safe place, and no matter how secure you try to make your applica-
tions, there will always be someone who tries to get around the restrictions you put in
place. While cross-site scripting and SQL injection attacks get a lot of attention, there
is another—potentially more serious—issue that a lot of web developers overlook:
Cross-Site Request Forgery (CSRF).

The reason CSRF is such a potential security risk is that it exploits how the Web works.
Here is an example of a controller that is susceptible to a CSRF attack. Everything looks
straightforward and fairly innocent, but the controller is a prime target for a CSRF
attack:

public class ProductController : Controller
{
 public ViewResult Details()
 {
 return View();
 }

 public ViewResult Update()
 {
 Product product = DbContext.GetProduct();

 product.ProductId = Request.Form["ProductId"];
 product.Name = Request.Form["Name"];
 SaveUProduct(product);

 return View();
 }
}

Guarding Against Attacks | 199

To exploit the controller, all a resourceful attacker needs to do is set up a page that
targets it. Once the attacker persuades a user to visit his page, that page will try to post
to the controller:

<body onload="document.getElementById('productForm').submit()">
 <form id=" productForm'" action="http://.../Product/Update" method="post">
 <input name="ProductId" value="123456" />
 <input name="Name" value="My Awesome Hack" />
 </form>
</body>

If the user has already been authenticated using either Windows Authentication or
Forms Authentication, the controller will be oblivious to the CSRF attack. So, what’s
the cure to this potentially serious security risk?

There are two main ways of blocking a CSRF attack:

Domain referrer
Check to see if the incoming request has a referrer header for your domain. This
will help prevent requests submitted from external third-party sources. This ap-
proach has a couple of drawbacks: a user can disable sending a referrer header for
privacy reasons, and attackers can spoof the header if the user has an older version
of Adobe Flash installed.

User-generated token
Using a hidden HTML field, store a user-specific token (e.g., generated from your
server) and verify that the submitted token is valid. The generated token can be
stored in the user session or in an HTTP cookie.

Using ASP.NET MVC to avoid Cross-Site Request Forgery

ASP.NET MVC includes a set of helpers that help you detect and block CSRF attacks
by creating a user-specific token that is passed between the view and the controller and
verified on each request. All you need to do to take advantage of this functionality is
to use the @Html.AntiForgeryToken() HTML helper to add a hidden HTML field to your
page that the controller will verify at each request. For increased security, the HTML
helper also accepts a salted key that will be used to increase the randomization of the
generated token:

@Html.AntiForgeryToken()
@Html.AntiForgeryToken("somerandomsalt")

For this antiforgery approach to work, the controller action that handles the form post
needs to be aware that the form contains an antiforgery token. To ensure this, you
apply the ValidateAntiForgeryTokenAttribute to it. This attribute will verify that the
incoming request includes both a cookie value and a form field named RequestVerifi
cationToken, and that both of their values match:

200 | Chapter 9: Security

[ValidateAntiForgeryToken]
public ViewResult Update()
{
}

The anti-CSRF helpers included with ASP.NET MVC are very useful, but they have
some limitations that you need to keep in mind as you use them:

• Legitimate users must accept cookies. If the user has cookies disabled in her web
browser, the ValidateAntiForgeryTokenAttribute filter will reject that user’s
requests.

• This method only works with POST requests, not GET requests. In reality, this is not
a big deal because you should be using only GET requests for read-only operations.

• If you have any cross-site scripting (XSS) holes in your domain, it’s easy for an
attacker to access and read the antiforgery token.

• Out-of-the-box web frameworks like jQuery do not automatically pass the required
cookie and hidden HTML field when making AJAX requests. You have to build
your own solution for passing and reading the anti-CSRF token.

Summary
This chapter outlined how to build secure ASP.NET MVC web applications. It explored
the differences between using Windows Authentication and Forms Authentication,
how to use the AuthorizeAttribute to authorize different users and groups and how to
guard against SQL injection, and cross-site scripting attacks and how to use the CSRF
antiforgery helpers.

Summary | 201

CHAPTER 10

Mobile Web Development

The mobile web offers a powerful medium to deliver your content to a greater number
of users. With the increasing number of smartphones in use and the subsequent
explosion in the market penetration of mobile web users, it has become increasingly
important to incorporate mobile devices into your projects’ initial planning and re-
quirements phases.

The most painful part of developing for the mobile web is that not all mobile devices
are created equal. Different devices have different hardware capabilities, resolutions,
browsers, feature support, touch capabilities—and the list goes on. Adapting your
website to deliver a consistent experience across all mobile devices is a nontrivial task.

This chapter will show you how to use the features in the ASP.NET MVC Framework
—particularly the new features added in ASP.NET MVC 4—to deliver a rich and con-
sistent experience across as many devices as possible, and to gracefully handle the
scenarios where you can’t.

ASP.NET MVC 4 Mobile Features
From version 3, the ASP.NET MVC Framework provides a set of features that help
make mobile web development a bit more straightforward. These features were en-
hanced in version 4.

The following list gives a brief description of each of the mobile development features
new to version 4 of ASP.NET MVC. The rest of this chapter will show you how to put
these new features to use in your application.

The ASP.NET MVC 4 Mobile template
If you want to create a purely mobile web application from scratch, ASP.NET MVC
4 includes a Mobile Application template that allows you to jump-start your mobile
application development. Just like the regular MVC web application templates,
version 4 automatically adds scaffolding code to render mobile-specific views, sets
up jQuery Mobile MVC NuGet packages, and creates a bare-bones application for

203

you to build upon. “The ASP.NET MVC 4 Mobile Template” on page 224 provides
an in-depth description of the new ASP.NET MVC 4 Mobile Application template.

Display modes
To make it easier to target different devices, the ASP.NET MVC 4 Framework offers
display modes, a feature that helps detect and cater to different devices.

Different mobile devices have different resolutions, different browser behavior, and
even different features for your web application to take advantage of. Instead of
retrofitting all possible device variations into a single view, you can isolate different
behaviors and features into separate, device-specific views.

For example, say you have a regular desktop view called Index.cshtml and you need
to create some mobile-specific variations of it, such as a view for smartphones and
another for tablets. Using display modes, you can create device-specific views such
as Index.iPhone.cshtml and Index.iPad.cshtml and register them with the ASP.NET
MVC 4 Framework’s DisplayModeProvider on application startup. Based on your
filter criteria, the ASP.NET MVC Framework can automatically look for views that
contain one of these suffixes (“iPhone” or “iPad”) and render them instead of the
regular desktop view. (Note that ASP.NET MVC follows a simple file naming con-
vention of “[View Name].[Device].[Extension]” for alternate views.) In “Browser-
Specific Views” on page 221, you’ll see how you can use this feature to serve
different devices.

Overriding regular views with mobile views
ASP.NET MVC 4 introduces a simple mechanism that lets you override any view
(including layouts and partial views) for any specific browser, including mobile
browsers. To provide a mobile-specific view, you just need to create a view file
with .Mobile in the filename. For example, to create a mobile Index view, copy
Views\Home\Index.cshtml to Views\Home\Index.Mobile.cshtml, and ASP.NET will
automatically render this view in a mobile browser instead of the desktop view. It
is interesting to note that while display modes allow you to specifically target a
particular mobile browser, this feature provides similar functionality on a more
generic level. This feature is helpful if your view is generic enough for different
mobile browsers, or if you use a framework like jQuery Mobile that provides a
consistent experience across most mobile platforms.

jQuery Mobile
The jQuery Mobile Framework brings all the richness and goodness of jQuery and
jQuery UI to mobile applications. Instead of having to deal with the browser in-
consistencies for different devices, you can create a single application that works
on all modern mobile devices. It brings all the virtues of progressive enhancement
techniques and provides a flexible design so that older devices can still see a func-
tional (but not as pretty or rich) application, while allowing modern devices to
benefit from all the rich interactivity that comes with newer HTML 5 features. The
jQuery Mobile Framework also has great theme support, which makes it very easy
to create a branded site with a rich user experience that doesn’t sacrifice the benefits

204 | Chapter 10: Mobile Web Development

of progressive enhancement. Throughout this chapter, you’ll see how the jQuery
Mobile Framework makes it easy to take your application to the next level.

Making Your Application Mobile Friendly
The topic of “mobile web development” is vast and includes a lot of things that website
producers need to consider as they create their sites. Perhaps the most important issue
is how best to provide information to—and interact with—your users.

Consider the desktop web experience, where the browser has a nice big screen, web
access is fast and reliable, and users can interact with applications using both a keyboard
and mouse. In sharp contrast, the mobile web experience is often limited to a small
screen, web access is intermittent, and you only have a stylus or a couple of fingers to
input data.

These limitations invariably lead to selective content and a reduced feature set as com-
pared to desktop browser-based web applications. However, the mobile web also pro-
vides opportunities that are largely unavailable in the desktop web environment, such
as location-specific data, on-the-go communication, and video and voice communica-
tion.

Understanding the needs of the target audience is the first step in formulating a mobile
strategy. For example, consider these common examples of mobile device usage:

• Walking down the street, trying to catch up on emails (while glancing up occa-
sionally to make sure you don’t bump into the next pole)

• Traveling on the subway or a train, trying to read the latest news

• Holding a coffee cup in one hand and the phone in another, trying to check the
balance of a bank account

The thing that all of these scenarios have in common is that the user’s attention is
divided—he is trying to accomplish a task as quickly as possible so that he can move
on with his busy day.

What all of this means for your website is that it needs to focus on getting the user the
content he needs in a manner that is quickly and easily comprehensible and highly
relevant to the task at hand.

Creating the Auctions Mobile View
When developing for the mobile web, you can start by either adding mobile-specific
views to your existing application, or creating a new mobile application from the
ground up. Many factors can influence which path you take, and both have their own
advantages and disadvantages in terms of how the development goes. Keeping this in
mind, ASP.NET MVC 4 offers tools to aid in both the workflows, as you’ll see as we
go along in this chapter.

Making Your Application Mobile Friendly | 205

In this section, we begin by adding a mobile view to an existing desktop view and then
slowly enhancing the mobile view with the new features that ASP.NET MVC 4 offers.

To begin, make a copy of the Auctions.cshtml view and name it Auctions.Mo-
bile.cshtml, to indicate that it is a mobile-specific view.

To distinguish that our mobile view is being rendered, let’s also change the <H1> heading
in the mobile view to “Mobile Auctions”.

We can verify this by running the application right now and navigating to the Auctions
page from a mobile browser. The result is shown in Figure 10-1.

Figure 10-1. The ASP.NET MVC Framework can detect and render mobile-specific views
automatically

You can see that the page heading shows “Mobile Auctions,” which confirms that the
mobile view is being rendered (navigating to the Auctions page from a regular browser
shows the heading as “Auctions”). The display modes feature of the framework is able
to detect the client browser and load the appropriate view for it.

ASP.NET MVC doesn’t just automatically load “mobile” views when the request is
coming from a mobile device; in fact, this extends to layouts and partial views also—

206 | Chapter 10: Mobile Web Development

a fact that is utilized by the jQuery.Mobile.MVC package to create jQuery Mobile-based
layouts optimized for mobile devices.

Getting Started with jQuery Mobile
jQuery Mobile allows you to quickly enhance an existing view to create a more native
look and feel for mobile devices. Along with that, it allows you to “theme” the appli-
cation, and its progressive enhancements ensure that older and lower-grade browsers
get a reduced (and not a very pretty look and feel) but nevertheless functional and usable
page.

To use jQuery Mobile, install the jQuery.Mobile.MVC package from the NuGet pack-
age gallery (Figure 10-2).

Figure 10-2. Adding the jQuery Mobile Framework via NuGet

This package adds the following files:

jQuery Mobile Framework
A set of JavaScript (jQuery.mobile-1.1.0.js) and CSS (jQuery.mobile-1.1.0.css) files,
along with their minified versions and supporting images.

/Content/Site.Mobile.css
A new mobile-specific stylesheet.

Views/Shared/_Layout.Mobile.cshtml
A layout optimized for mobile devices that references jQuery Mobile Framework
files (JS and CSS). ASP.NET MVC will automatically load this layout for mobile
views.

Making Your Application Mobile Friendly | 207

The view-switcher component
Consists of the Views/Shared/_ViewSwitcher.cshtml partial view and the View-
SwitcherController.cs controller. This component shows a link on mobile browsers
to enable users to switch to the desktop version of the page. We’ll explore how this
works in “Switching between desktop and mobile views” on page 212.

jQuery Mobile is under constant development, so you may see a newer
version number in the files.

To allow the jQuery Mobile Framework to style the page accordingly, open up Views/
Shared/_Layout.Mobile.cshtml and modify the content as shown in the following snip-
pet:

<body>
 <div data-role="page" data-theme="b">
 <header data-role="header">
 <h1>@Html.ActionLink("EBuy: The ASP.NET MVC Demo Site", "Index", "Home")</h1>
 </header>
 <div id="body" data-role="content">
 @RenderBody()
 </div>
 </div>
</body>

And then modify Auctions.Mobile.cshtml to optimize it for mobile layout:

@model IEnumerable<AuctionViewModel>
<link href="@Url.Content("~/Content/product.css")" rel="stylesheet" type="text/css" />
@{
 ViewBag.Title = "Auctions";
}

<header>
 <h3>Mobile Auctions</h3>
</header>

<ul id="auctions">
 @foreach (var auction in Model)
 {

 @Html.Partial("_AuctionTile", auction);

 }

208 | Chapter 10: Mobile Web Development

When you’re finished, build and run the application, then navigate to the application’s
home page using a mobile browser to see the changes. You should see something like
Figure 10-3.

Figure 10-3. The EBuy application, optimized for mobile layout

You can see how the Auctions view changes to adapt to the mobile browser. While the
appearance is not perfect, the jQuery.Mobile.MVC package provides a foundation upon
which you can quickly and easily build your mobile views.

Enhancing the View with jQuery Mobile
The jQuery.Mobile.MVC package does a lot of groundwork for us, but the UI still
doesn’t look and feel like a native mobile application. However, jQuery Mobile offers
a lot of components and styles to make your application look like a true mobile
application.

Making Your Application Mobile Friendly | 209

Improving the auctions list with jQuery Mobile’s “listview”

Let’s start by enhancing the auctions list by using jQuery Mobile’s “listview” compo-
nent. jQuery Mobile operates on data-role attributes to perform most of its mobile
transformations, so to render the auctions as a listview, add the data-role="list
view" attribute to the Auction’s tag:

<ul id="auctions" data-role="listview">
 @foreach (var auction in Model.Auctions)
 {

 @Html.Partial("_AuctionTileMobile", auction);

 }

and modify the _AuctionTileMobile partial view as follows:

@model AuctionViewModel
@{
 var auctionUrl = Url.Auction(Model);
}

 @Html.Thumbnail(Model.Image, Model.Title)
 <h3>@Model.Title</h3>
 <p>
 Closing in:
 ↵
 @Model.RemainingTimeDisplay
 </p>
 <p>
 Current Price:
 @Model.CurrentPrice
 @Model.WinningBidUsername
 </p>

Navigating to the Auctions view on a mobile browser now produces the much nicer
view shown in Figure 10-4.

Given the fact that is already a list element, you may find it redundant to add the
“listview” role. The will display a list, but the link area would be too small to tap
on a mobile device with a small screen. What data-role="listview" actually does is
make the list items easier to “tap” by displaying a larger link area!

210 | Chapter 10: Mobile Web Development

Figure 10-4. Rendering the auctions as a listview with jQuery Mobile

Making the auctions list searchable with jQuery Mobile’s “data-filter”

Next, let’s make the view bit more friendly by adding a handy Search box that allows
users to quickly filter the list of auctions. The jQuery Mobile framework makes this
very easy—simply add the data-filter="true" attribute to the auctions tag:

<ul id="auctions" data-role="listview" data-filter="true">
 @foreach (var auction in Model.Auctions)
 {
 <li class="listitem">
 @Html.Partial("_AuctionTileMobile", auction);

 }

Refresh the mobile browser to see the Search text box at the top (Figure 10-5).

Making Your Application Mobile Friendly | 211

Figure 10-5. Making the auctions list searchable with jQuery Mobile

Try typing in the Search text box to see how jQuery Mobile automatically filters the
list to show only the entries that match the text you’ve entered (Figure 10-6).

You’ve seen how jQuery Mobile makes it super easy to transform any page to look and
behave like a native view. In addition to these features, jQuery Mobile comes with many
other handy components that you can use to make any view in your site more accessible
to mobile users. To see a comprehensive list of such attributes, check out the ever-
evolving API docs.

Switching between desktop and mobile views

Whenever you provide a mobile-specific version of your website, it’s generally a good
idea to automatically direct mobile users to your mobile site, but also to provide them
with the ability to switch to the full site should they feel the need to.

Notice that the top of the mobile view that’s included in the default ASP.NET MVC
Mobile Application template displays a link that allows users to switch to the “desktop

212 | Chapter 10: Mobile Web Development

http://jquerymobile.com/test/docs/api/data-attributes.html

view.” This is known as the ViewSwitcher widget and is installed as part of the
jQuery.Mobile.MVC NuGet package.

To see how the widget works under the hood, let’s take a deep dive into its components.

Taking a look at the new partial view, _ViewSwitcher.cshtml, shows us the following
markup:

@if (Request.Browser.IsMobileDevice && Request.HttpMethod == "GET")
{
 <div class="view-switcher ui-bar-a">
 @if (ViewContext.HttpContext.GetOverriddenBrowser().IsMobileDevice)
 {
 @: Displaying mobile view
 @Html.ActionLink("Desktop view", "SwitchView", "ViewSwitcher",
 new { mobile = false, returnUrl = Request.Url.PathAndQuery },
 new { rel = "external" })
 }
 else
 {
 @: Displaying desktop view
 @Html.ActionLink("Mobile view", "SwitchView", "ViewSwitcher",

Figure 10-6. jQuery Mobile automatically filters the list based on the search text

Making Your Application Mobile Friendly | 213

D
ow

n
lo

a
d
 f
ro

m
 W

o
w

!
e
B
o
o
k

<
w

w
w

.w
o
w

e
b
o
o
k.

co
m

>

 new { mobile = true, returnUrl = Request.Url.PathAndQuery },
 new { rel = "external" })
 }
 </div>
}

The GetOverriddenBrowser() method returns an HttpBrowserCapabilities object listing
the capabilities of the overridden browser, or the actual browser if not overridden,
which allows you to check whether the requesting device is a mobile device or not. The
widget then checks to see if it is being rendered in a desktop view or a mobile view and
renders appropriate links to switch between the desktop and mobile views.

As a bonus, it also sets the property mobile in the RouteValue dictionary to indicate
whether the mobile or the desktop view is active.

Next we’ll take a look at the ViewSwitcherController class, which contains the logic
that performs the switching action:

public class ViewSwitcherController : Controller
{
 public RedirectResult SwitchView(bool mobile, string returnUrl) {
 if (Request.Browser.IsMobileDevice == mobile)
 HttpContext.ClearOverriddenBrowser();
 else
 HttpContext.SetOverriddenBrowser(mobile ? BrowserOverride.Mobile
 : BrowserOverride.Desktop);

 return Redirect(returnUrl);
 }
}

Depending on whether or not the request originates from a mobile device (as indicated
by the Request.Browser.IsMobileDevice property), the controller uses the ClearOver
riddenBrowser() and SetOverriddenBrowser() methods to tell ASP.NET MVC how to
treat the request, as a mobile browser and display the mobile version of the site, or as
a desktop browser and display the full version of the site.

Add the following snippet before the closing <body> tag in Layout.mobile.cshtml to
render the ViewSwitcher partial view as a footer (Figure 10-7):

<div data-role="footer">
 @Html.Partial("_ViewSwitcher")
</div>

214 | Chapter 10: Mobile Web Development

Figure 10-7. View switcher in action in the page footer

If you click the “Desktop view” link, you’ll see the regular desktop Auctions view. No-
tice how the desktop view does not have a link to switch to the mobile view, though.
To fix that, open up the _Layout.cshtml shared view and add this line of code:

@Html.Partial("_ViewSwitcher")

Run the application and navigate to any page from a mobile browser—you’ll see that
the view switcher widget shows links to render the mobile view and the full desktop
view (Figure 10-8).

Making Your Application Mobile Friendly | 215

Figure 10-8. View switcher in desktop view

Avoiding Desktop Views in the Mobile Site
You will notice how, in the absence of a mobile view, ASP.NET MVC renders the
desktop view in a mobile layout.

Adhering to standards-based markup does help in displaying a somewhat usable view,
but there may be cases where you simply want to turn this feature off.

In order to do so, set RequireConsistentDisplayMode to true:

@{
 Layout = "~/Views/Shared/_Layout.cshtml";
 DisplayModeProvider.Instance.RequireConsistentDisplayMode = true;
}

This will disable any default (non-mobile) view from rendering inside a mobile layout.
You can also do it globally for all views by setting this property to true in the /Views/
_ViewStart.cshtml file.

Improving Mobile Experience
Mobile browsers are capable of displaying HTML pages, to varying degrees. However,
relying on the browser to make the display good may not provide the best user expe-
rience, given that browsers can only operate at a generic level of resizing pages and
images. As the content author, only you can decide what elements are the most relevant,
and consequently which ones should be highlighted on a smaller screen and which ones

216 | Chapter 10: Mobile Web Development

can be dropped. Therefore, the onus is on you to make your site look pretty and keep
it functional across different browsers.

Fortunately, you can use techniques like adaptive rendering and progressive enhance-
ments to improve your site’s display, and ASP.NET MVC 4 and jQuery Mobile allow
you to do so easily. We’ll look at these next.

Adaptive Rendering
Adaptive rendering is the technique that allows your view to “adapt” to the browser’s
capabilities. For example, say you have a bunch of tabs on the page and each tab, when
clicked, makes an AJAX call to fetch the content and display it. If JavaScript is disabled,
the tab would normally fail to display any content. However, using adaptive rendering,
the tab will simply point to a URL with the content, so the user can still see the content.

Another example would be a navigation bar that displays a horizontal list of links. While
this looks good in a desktop view, it can be overwhelming on the smaller screen of a
mobile device. Using adaptive rendering, the navigation bar can render as a dropdown
to present the same functionality adapted to the smaller device.

The benefit of using this technique is that it allows you to present a “functional” or
“usable” site to different browsers and devices with different capabilities. The level of
service may vary based on the device’s capabilities, but nevertheless, your site remains
useful.

Remember, if you want your users to return to your site again and again, you need to
ensure that their experience remains enjoyable, regardless of the device they are using.

ASP.NET MVC 4 includes such adaptive techniques primarily via the jQuery Mobile
Framework.

The Viewport Tag
In computer graphics, “viewport” means a rectangular viewing region. When applied
to browsers, it is the browser window in which the HTML document displays. In other
words, it is the imaginary construct that contains the <html> tag, which in turn is the
root element for all your markup.

What happens when you zoom in or zoom out of the browser window? And what
happens when you change the orientation of the device—does it change the viewport?

In mobile devices, the answer is slightly tricky, because in actuality, there exists not
one but two viewports—the “layout” viewport and the “visual” viewport.

The “layout” viewport never changes—it is the imaginary construct that constrains the
<html> of your page. What changes with zoom level or orientation is the “visual” view-
port, and that affects what is visible through the borders of the device’s frame.

Adaptive Rendering | 217

You need to consider the role of the viewport as a way to provide a functional and
usable experience to your end users. When your page is rendered on the mobile device,
it is important that the width of the page is not too large or too small, but rather fits
nicely on the screen. And when it fits, the page should not appear as a micro, shrunken
version of the full page; rather, it should be a readable view of the actual page.

In modern browsers, it is not CSS but the meta viewport tag that allows you to configure
the dimensions of the visual viewport.

You can set the size of the viewport using the viewport meta tag like this:

<meta name="viewport" content="width=device-width" />

The "width=device-width" value used here is a special value that says to set the viewport
width to whatever the device’s actual width is. This is the most flexible and frequently
used value.

You can also set the content property to a fixed value if your content is better adapted
that way:

<meta name="viewport" content="width=320px" />

Now, irrespective of how wide the device’s screen is, the content will always be dis-
played at 320 pixels wide, which means that on larger screens the user may want to
zoom in, and on smaller screens he may have to zoom out.

The <meta name="viewport"> tag is a de facto industry standard, but it
is not actually part of the W3C standard.

The feature was first implemented in the iPhone’s web browser, and
pretty soon—due to the iPhone’s overwhelming popularity—every
other manufacturer began to support it.

Mobile Feature Detection
Since every mobile device supports a different set of features, you can never safely
assume that a particular feature will be available in every browser.

For instance, let’s say your application uses HTML 5’s Web Storage, which many
smartphones (such as iPhone, Android, Blackberry, and Windows Phone devices) sup-
port, but others do not.

Traditionally, developers have relied on techniques like browser detection to check if
their application can be run on a particular browser or not.

Rather than checking whether Web Storage is supported, a classical approach is to
check if the target browser is Opera Mini.

This approach has several major pitfalls, though, not the least of which are:

218 | Chapter 10: Mobile Web Development

• The potential to exclude browsers that you did not explicitly include, but that
support the feature

• The possibility that your site will not function properly if the user visits it from a
another device

Here’s an example of this approach:

// Warning: do not use this code!
if (document.all) {
 // Internet Explorer 4+
 document.write('<link rel="stylesheet" type="text/css" src="style-ie.css">');
}
else if (document.layers) {
 // Navigator 4
 document.write('<link rel="stylesheet" type="text/css" src="style-nn.css">');
}

Note how the above example only provides stylesheets for Internet Explorer and Net-
scape Navigator 4; even then, the browser must have JavaScript support enabled. This
means that other browsers, such as Netscape 6, Netscape 7, CompuServe 7, Mozilla,
and Opera may not be able to view the site properly.

Even if you do add explicit support for most browsers, you may still miss out on a new
browser version that gets released with support for the feature you’re looking for.

Another potential problem is wrongly identifying the browser.

Since browser detection largely involves guessing based on a user agent string and cer-
tain properties, it is quite possible that you may wrongly identify a particular browser:

// Warning: do not use this code!
if (document.all) {
 // Internet Explorer 4+
 elm = document.all['menu'];
}
else {
 // Assume Navigator 4
 elm = document.layers['menu'];
}

Note how the previous example assumed that any browser that was not Internet Ex-
plorer was Navigator 4 and attempted to use layers.

This is a common source of problems when using browsers based on Gecko and Opera.

Due to all of these reasons, it’s generally a good idea to explicitly check for the existence
of a feature rather than assuming that a set of known browser versions does or does
not support that feature.

Here is the same example as above, refactored to use feature detection rather than
browser detection:

// if localStorage is present, use that
if (('localStorage' in window) && window.localStorage !== null) {

Adaptive Rendering | 219

 // easy object property API
 localStorage.wishlist = '["Unicorn","Narwhal","Deathbear"]';

} else {

 // without sessionStorage we'll have to use a far-future cookie
 // with document.cookie's awkward API :(
 var date = new Date();
 date.setTime(date.getTime()+(365*24*60*60*1000));
 var expires = date.toGMTString();
 var cookiestr = 'wishlist=["Unicorn","Narwhal","Deathbear"];'+
 ' expires='+expires+'; path=/';
 document.cookie = cookiestr;
}

Not only is this much more robust, it is also future-proof—any browser that adds
support for Web Storage will automatically get the new features.

CSS Media Queries
CSS media queries are a progressive enhancement technique that lets you adapt or
display alternate styles based on different browser conditions.

Version 2 of the CSS specification (aka “CSS2”) allows you to specify styles based on
media type, such as screen and print.

Version 3 of the CSS specification (aka “CSS3”) provides the concept of media quer-
ies, a technique that expands on this concept to help detect browser features in a stan-
dard way.

Unfortunately, the CSS3 specification is still in the “candidate recom-
mendation” phase, which means that media queries—and the other
new features in version 3 of the CSS specification—are not necessarily
well supported across all browsers.

Therefore, it is important to have default styles to provide browsers that
don’t support these features with something to fall back on.

You have seen how the viewport tag can define a default width based on device size.
While the viewport makes the page looks good at the default zoom level, it does not
help when the user zooms in or out on the device.

As the layout width changes, you need a way to tell the browser to restrict your content
to a certain width so that it displays properly at all times.

Let’s take a look at a simple example to see how this can be done with a CSS media
query:

220 | Chapter 10: Mobile Web Development

body {background-color:blue;}
@media only screen and (max-width: 800px) {
 body {background-color:red;}
}

Since CSS rules are evaluated top to bottom, we start out by specifying a general rule
that the body background will be blue.

We then surround a device-specific rule with a media query and override the back-
ground color to red on devices whose screen width is narrower than 800 pixels.

On devices where CSS3 media queries are supported and the width is narrower than
800 pixels, the background will be shown in red; otherwise, it will be blue. (Note that
changing the background color as the user zooms in or out is not something you’d
normally do in a real application; rather, the focus of this example is to show how to
use a CSS media query to apply different styles based on certain conditions.)

It is very important to start with a general rule and then enhance that rule with the
support of media queries and feature detection.

This will allow your site to present a rich experience on browsers that support the newer
features and, at the same time, still render a useful display on older browsers.

Browser-Specific Views
The new display modes feature in ASP.NET MVC 4 allows us to load different views
based on predefined conditions. A simple example of this feature would be to create
separate views for smartphones, which have smaller screens, and tablets, which sport
a larger display than mobile devices but a smaller one than desktops. Creating different
views for these classes of device enables us to make optimum use of the screen space
and provide an efficient and rich user experience that is customized, keeping the de-
vice’s capabilities in mind.

First, register the display modes on application startup:

using System.Web.WebPages;

// register iPhone-specific views
DisplayModeProvider.Instance.Modes.Insert(0, new DefaultDisplayMode("iPhone")
{
 ContextCondition = (ctx => ctx.Request.UserAgent.IndexOf(
 "iPhone", StringComparison.OrdinalIgnoreCase) >= 0)
});

// register Windows Phone-specific views
DisplayModeProvider.Instance.Modes.Insert(0, new DefaultDisplayMode("WindowsPhone")
{
 ContextCondition = (ctx => ctx.Request.UserAgent.IndexOf(
 "Windows Phone", StringComparison.OrdinalIgnoreCase) >= 0)
});

Adaptive Rendering | 221

Now, create an iPhone-specific view by copying Auctions.mobile.cshtml and renaming
it to Auctions.iPhone.cshtml. Then change the title to “iPhone Auctions” to distinguish
it from the mobile view. Run the application using a mobile browser emulator (the
examples shown here use Firefox’s User Agent Switcher add-on to emulate the iPhone’s
browser) to see this in action (Figure 10-9).

Figure 10-9. iPhone-specific view

To see the Windows Phone version of the page, create another copy of Auctions.mo-
bile.cshtml and rename it Auctions.WindowsPhone.cshtml. Then change the title to
“Windows Phone Auctions” to distinguish it from the other mobile views. Run the
application using a mobile browser emulator to see this in action (Figure 10-10).

222 | Chapter 10: Mobile Web Development

https://addons.mozilla.org/en-US/firefox/addon/user-agent-switcher/

Figure 10-10. Windows Phone-specific view

To see whether the request is coming from a mobile device or not, in-
ternally ASP.NET checks it against a predefined set of well known mo-
bile browser definitions.

It provides a whole lot of information about the browser’s capabilities
through HttpBrowserCapabilities, which is accessible through the
Request.Browser property.

Or, rather than relying on the built-in browser definitions, you can use
a service like 51Degrees.mobi, which maintains a much more up-to-date
bank of information about various mobile devices.

Adaptive Rendering | 223

http://msdn.microsoft.com/en-us/library/system.web.httpbrowsercapabilities.aspx
http://51degrees.mobi/Support/Blogs/tabid/212/EntryId/26/51Degrees-mobi-and-MVC4.aspx

Creating a New Mobile Application from Scratch
ASP.NET MVC 4 makes it easy to add mobile views to your existing application, but
you can create a mobile application from scratch just as easily. This is helpful if you
don’t have an existing application to use as a starting point or if, for whatever reason,
you do not want to mix your mobile and desktop sites.

ASP.NET MVC 4 includes a Mobile Application template that lets you get off the
ground quickly with your mobile application development. The template relies heavily
on jQuery Mobile for most of its magic, so to build an effective application, you need
to understand jQuery Mobile first.

The jQuery Mobile Paradigm Shift
Perhaps the most important distinction while working with jQuery Mobile is the notion
of a “page.” In traditional web development, a page refers to a single HTML document
or an .aspx page in ASP.NET Web Forms or a .cshtml view in ASP.NET MVC. These
files contain the markup and logic to render a single page to the browser.

However, in the jQuery Mobile Framework, a single file can contain multiple mobile
“pages.” Technically speaking, a jQuery Mobile page is really just a <div> tag with the
data-role="page" attribute. You can put as many of those as you like in a single view
file, and jQuery will turn them into multiple pages showing one at a time.

Since a single, regular desktop view can lead to smaller chunks of multiple views on a
mobile device (mainly due to the redesign of the page to make it suitable for mobile
navigation), this approach helps in reducing the file cutter that would otherwise be
created with the small chunks of the desktop view.

The ASP.NET MVC 4 Mobile Template
To create a new mobile web application, you begin the same way as you would for any
other ASP.NET MVC web application: select the File > New > Project menu option
and choose the “ASP.NET MVC 4 Web Application” type (Figure 10-11).

At the next screen (Figure 10-12), select the Mobile Application template.

This creates a new ASP.NET MVC application with example controllers and views that
showcase ASP.NET MVC’s mobile features and helps you get started quickly.

224 | Chapter 10: Mobile Web Development

Figure 10-11. Creating a new project

Figure 10-12. Choosing the Mobile Application template

Creating a New Mobile Application from Scratch | 225

Run this project by hitting F5 or by choosing the Debug > Start menu option. This will
build the solution and start a browser instance pointing to the website’s mobile-friendly
home page (Figure 10-13).

Figure 10-13. Mobile application default start page

Using the ASP.NET MVC 4 Mobile Application Template
As you can see, a lot of scaffolding code has already been written for us. The project
structure is very similar to the one we saw for the regular website, with a few additions:

• The Content folder now includes stylesheets for jQuery Mobile, as shown
in Figure 10-14:

— jquery.mobile-1.1.0.css (and its minified version)

— jquery.mobile.structure-1.1.0.css (and its minified version)

226 | Chapter 10: Mobile Web Development

Figure 10-14. The new project’s Content folder

• The Scripts folder contains two new files, as you can see in Figure 10-15:

— jquery.mobile-1.1.0.js

— jquery.mobile-1.1.0.min.js

Figure 10-15. The new project’s Scripts folder

These new files are part of the jQuery Mobile Framework, a JavaScript framework that
brings all the jQuery and jQuery UI goodness to mobile devices.

Now take a look at the modified _Layout.cshtml. The head tag contains few new lines.

The meta viewport tag specifies the size of the viewport. This is important because,
while most browsers allow users to zoom in or out as they please, setting an initial
width for your content provides a better user experience. As mentioned earlier, the
"width-device-width" value automatically sets the content width to the width of the
device’s screen:

<meta name="viewport" content="width=device-width" />

Creating a New Mobile Application from Scratch | 227

Alternatively, you can set the viewport’s width to any value you like by specifying a
fixed value in pixels. For example, this code sets the initial width of the page to 320
pixels:

<meta name="viewport" content="width=320px" />

The following tag includes jQuery Mobile styles onto the page. It also enables you to
configure themes via the jQuery Theming framework:

<link rel="stylesheet" a href="@Url.Content("~/Content/jquery.mobile-1.0b2.min.css")" />

Finally, this script tag includes the jQuery Mobile Framework on the page. This enables
scripting support such as performing AJAX operations, animations, validations, and
so on:

<script type="text/javascript" src="@Url.Content("~/Scripts/jquery.mobile-1.0b2.min.js")">↵
</script>

Now let’s take a look at the modified HTML on the page, which includes a few new
attributes. jQuery Mobile identifies various elements, such as pages, buttons, listviews,
etc., by data-role attributes. Looking at the body tag, you can see how the default
template has decorated certain <div>+s with these +data-role attributes:

<body>
 <div data-role="page" data-theme="b">
 <div data-role="header">
 @if (IsSectionDefined("Header")) {
 @RenderSection("Header")
 } else {
 <h1>@ViewBag.Title</h1>
 @Html.Partial("_LogOnPartial")
 }
 </div>

 <div data-role="content">
 @RenderBody()
 </div>
 </div>
</body>

The first <div> has the data-role="page" attribute, which identifies the <div> as a single
page in the mobile application. Similarly, the page header is identified by the data-
role="header" attribute and the body content is identified by the data-role="con
tent" attribute.

jQuery Mobile defines various attributes for known HTML elements, such as <H1>,
<H2>, <P>, and <table>, as well as list and form elements such as buttons, text fields,
select lists, etc. As further reading, visit the jQuery Mobile website for in-depth docu-
mentation, demos, and a lot more!

228 | Chapter 10: Mobile Web Development

http://jquerymobile.com/demos/1.0/docs/api/themes.html
http://jQueryMobile.com

Summary
This chapter talked about various aspects of programming for the mobile web, such as
what, exactly, “the mobile web” really means and how mobile websites differ from
desktop websites. We also explored the various development frameworks and techni-
ques at your disposal to help make your mobile web development more productive,
and we looked at how you can provide the best possible user experience by leveraging
the various browser capabilities that are available to you.

This includes all of the mobile features in ASP.NET MVC 4, such as:

• Improvements to the default Mobile Application template

• Ability to customize the default template by overriding the layout, views, and
partial views

• Browser-specific support (such as iPhone-specific views) and ability to override
browser capabilities

• Enhancing the mobile view by using the jQuery Mobile Framework

Summary | 229

PART III

Going Above and Beyond

CHAPTER 11

Parallel, Asynchronous, and Real-Time
Data Operations

The web application programming model has traditionally been based on synchronous
client/server communication, in which the browser makes an HTTP request and waits
for the server to return a response. While this model works well for a majority of sce-
narios, it can be very inefficient in handling long-running or complex transactions.

This chapter shows you how to take advantage of the powerful asynchronous and
parallel processing capabilities in ASP.NET MVC to deal with more complex scenarios,
such as asynchronous request processing and the use of real-time communication to
send and receive messages to/from many simultaneously connected clients at once.

Asynchronous Controllers
When a request arrives, ASP.NET grabs one of the threads from the pool to handle the
request. If the process is synchronous, the thread will be blocked from handling other
incoming requests until the current process is complete.

In most scenarios, the process being executed is short-lived enough that ASP.NET can
handle a few blocked threads. However, if the application needs to handle a large
number of incoming requests or there are too many long-running requests, the thread
pool might become depleted, and a condition known as thread starvation will occur.
When this happens, the web server will start queuing new incoming requests. At some
point, the queue will fill up and any new requests will be rejected, returning an HTTP
503 (server too busy) status code.

To prevent the thread pool from being fully utilized, ASP.NET MVC controllers can
be set up to execute asynchronously instead of synchronously (the default). Using an
asynchronous controller does not change the amount of time the request will take. It
just frees up the thread executing the request so it can be allocated back into the
ASP.NET thread pool.

233

Here are the steps for handling an asynchronous request . ASP.NET grabs a thread from
the thread pool and executes it to handle the incoming request. After invoking the
ASP.NET MVC action asynchronously, it returns the thread to the thread pool so it
can handle other requests. The asynchronous operation executes on a different thread;
when it’s done it notifies ASP.NET. ASP.NET grabs a thread (which may be different
than the original thread) and invokes it to finish processing the request. This includes
rendering the process (output).

Creating an Asynchronous Controller
Creating an asynchronous controller is fairly easy. Simply inherit from the AsyncCon
troller base class, which provides methods to help manage asynchronous request
processing:

public class SearchController : AsyncController
{

}

An asynchronous controller is required because the SearchForBids() method uses a
complex LINQ query, which could take several seconds to process:

public ActionResult SearchForBids(DateTime startingRange, DateTime endingRange)
{
 var bids = _repository
 .Query<Bid>(x => x.Timestamp >= startingRange && x.Timestamp ↵
 <= endingRange)
 .OrderByDescending(x => x.Timestamp)
 .ToArray();

 return Json(bids, JsonRequestBehavior.AllowGet);
}

Prior to ASP.NET MVC 4, the following conventions had to be followed to create
asynchronous controller methods:

Action Name Async
The method has to return void; it starts the asynchronous process

Action Name Completed
This method is called when the asynchronous process is complete; it handles re-
turning the ActionResult

Here is the updated SearchForBids() method that has been set up to use Background
Worker to asynchronously search for bids:

public void SearchForBidsAsync(DateTime startingRange, DateTime endingRange)
{
 AsyncManager.OutstandingOperations.Increment();

 var worker = new BackgroundWorker();
 worker.DoWork += (o, e) => SearchForBids(Id, e);

234 | Chapter 11: Parallel, Asynchronous, and Real-Time Data Operations

 worker.RunWorkerCompleted += (o, e) =>
 {
 AsyncManager.Parameters["bids"] = e.Result;
 AsyncManager.OutstandingOperations.Decrement();
 };

 worker.RunWorkerAsync();
}

private void SearchForBids(string Id, DoWorkEventArgs e)
{
 var bids = _repository
 .Query<Bid>(x => x.Timestamp >= startingRange && x.Timestamp <= endingRange)
 .OrderByDescending(x => x.Timestamp).ToList();

 e.Result = bids;
}

public ActionResult SearchForBidsCompleted(IEnumerable<Bid> bids)
{
 return Json(bids, JsonRequestBehavior.AllowGet);
}

Note how AsyncManager.OutstandingOperations is Increment prior to the operation be-
ing started and Decrement when the operation is completed. This is required to notify
ASP.NET about how many pending operations the method contains. When the value
of the OutstandingOperations property reaches zero, ASP.NET completes the asyn-
chronous processing of the method and calls SearchForBidsCompleted().

That’s a lot of code. Fortunately, version 4.5 of the .NET Framework introduces the
new async and await keywords to help make asynchronous programming much
simpler.

See the following link to get additional details about asynchronous
programming in .NET 4.5: http://msdn.microsoft.com/en-us/library/
hh191443(v=vs.110).aspx.

Here is the final SearchForBids() method, updated to use the new asynchronous key-
words:

public async Task<ActionResult> SearchForBids(string Id)
{
 var bids = await Search(Id);
 return Json(bids, JsonRequestBehavior.AllowGet);
}

private async Task<IEnumerable<Bid>> Search(string Id)
{
 var bids = _repository
 .Query<Bid>(x => x.Timestamp >= startingRange && x.Timestamp <= endingRange)

Asynchronous Controllers | 235

http://msdn.microsoft.com/en-us/library/hh191443(v=vs.110).aspx
http://msdn.microsoft.com/en-us/library/hh191443(v=vs.110).aspx

 .OrderByDescending(x => x.Timestamp).ToList();
 return bids;
}

Controller actions that return a Task instance can be configured with a timeout. To set
a timeout, use the AsyncTimeout attribute. The following example shows a controller
action that has a timeout of 2,500 milliseconds. If the timeout occurs, the AjaxTimed-
Out view will be returned:

[AsyncTimeout(2500)]
[HandleError(ExceptionType = typeof(TaskCanceledException), View = "AjaxTimedOut")]
public async Task<ActionResult> SearchForBids(string Id)
{
}

Choosing When to Use Asynchronous Controllers
There are no hard and fast rules regarding when to use asynchronous actions. The
following guidelines will help make your decision about when to take advantage of
asynchronous actions.

These are the typical scenarios where it’s best to use synchronous actions:

• Simple and short-running operations

• Cases where simplicity is more important than efficiency

• CPU-intensive operations (asynchronous actions provide no benefit and can add
overhead for such operations)

These are the typical scenarios where it’s preferable to use asynchronous actions:

• Long-running operations that are causing a bottleneck in performance

• Network- or I/O-intensive operations

• When the application requires the ability for users to cancel a long-running oper-
ation

Real-Time Asynchronous Communication
The World Wide Web is an ever-changing environment; application models that
worked even a few months ago may no longer meet user expectations. Instead of build-
ing monolithic web applications with dozens of pages, more and more developers are
building applications using a single-page architecture approach, or a small set of pages
that are dynamically updated in real time.

The adoption of real-time data techniques can be traced to the explosion of social
networking and mobile devices. In today’s world, people are always on the go, and they
want instant access to the latest information, whether it’s their favorite team’s sports
score, the price of a hot stock, or new posts from their friends. And since more people
are accessing websites using mobile devices, it’s important that a web application be

236 | Chapter 11: Parallel, Asynchronous, and Real-Time Data Operations

able to detect network availability and gracefully handle the features of web browsers
across a multitude of different devices.

Comparing Application Models
The traditional web application model relies on synchronous communication. As a user
interacts with the application, the host web browser makes requests to the server, which
processes them and returns a snapshot of the current state of the application. Since
there is no guarantee that the user will trigger another request, there is a high potential
that the content the user is looking at may become stale, leading to data conflict issues.

Using techniques like AJAX only addresses part of the problem. In most cases the user
still needs to trigger a request. AJAX relies on the traditional request/response ap-
proach, where interactions are very transactional and atomic, and anything that
changes outside of the current transaction cannot be communicated—in order to get
“back in sync,” another request must be made. As such, this approach does not handle
real-time updates very well. More advanced techniques that create longer-lived con-
versations between the server and the browser must be applied in order to support such
scenarios.

Let’s take a look at the different real-time communication models available. Keep in
mind that the HTTP protocol is designed around the request/response communication
pattern and does not directly support the ability for the server to communicate with a
client without the client first submitting a request.

HTTP Polling
Figure 11-1 involves creating an ongoing conversation by mimicking a “constant con-
nection” with the server based on a series of standard AJAX requests. This is usually
achieved by sending AJAX requests on a regular basis using a JavaScript timer.

Figure 11-1. HTTP polling

Figure 11-1 shows polling in action. The most important thing about this technique is
that the browser creates a new request immediately after each existing request is com-
plete (regardless of whether the completed request actually succeeded or contained
data), so fault tolerance is effectively built in.

Real-Time Asynchronous Communication | 237

As such, polling is one of the most reliable and fail safe “real-time” communication
methods—but this reliability comes at a cost. As Figure 11-2 shows, polling produces
a relatively huge amount of network traffic and server load, especially considering re-
quests are processed regardless of whether the server has any updates (so many, if not
most, of the requests will return no data).

Browser support

Polling utilizes various browser technologies that have been around essentially since
the origin of the graphical web browser, so it works anywhere and everywhere that
JavaScript is enabled.

Downsides

Polling has several drawbacks. The inordinate number of requests compared to the
amount of actual data that is transferred makes this technique incredibly wasteful.
Client requests and server events are not always in sync; it’s possible for multiple server
events to occur between client requests. If not kept in check, this approach can inad-
vertently create a denial-of-service attack on your own servers!

HTTP Long Polling
The HTTP Long Polling technique is primarily a server-side implementation wherein
the browser makes an AJAX request to the server to retrieve data, and the server keeps
the connection open until it has data to return. This is in stark contrast to the traditional
request/response approach, wherein the server immediately responds that it has no
data if it is unable to supply the data when it receives the AJAX request.

Figure 11-2. HTTP long polling

Long polling entails making a request in anticipation of a possible future server event.
Instead of the server immediately returning a response, the incoming request is blocked
until a server event occurs or the request times out (or the connection is broken). Then
the client must initiate a new long polling request in order to start the next interaction
and continue to retrieve updated data.

238 | Chapter 11: Parallel, Asynchronous, and Real-Time Data Operations

Browser support

Because there are many different long polling implementations, this technique works
—with varying degrees of reliability—on all browsers.

Downsides

Because the Internet infrastructure is built around simple HTTP request/response in-
teractions and not built to handle long-lived connections, long polling requests are not
reliable, because they tend to get disconnected frequently. Broken connections are ac-
tually part of the long polling workflow, so handling them is the same as handling a
successful request: you start a new request. However, this complexity adds to the un-
reliability of the approach as a whole.

Further, as with most widely supported techniques, long polling implementations are
often limited to the lowest common feature set that all browsers support, which
amounts to a simple HTTP GET request (the URL that can be applied to an IFRAME or
<script> tag).

Server-Sent Events
The server-sent events (aka “EventSource”) approach is quite similar to long polling in
that the client makes an HTTP request to the server, and the resulting connection
remains open until the server has data that satisfies the client’s request. The funda-
mental difference between the two approaches is that the server-sent events approach
does not close the connection once the initial server response is returned. Instead, the
server keeps the connection open in order to send additional updates to the client as
they become available (see Figure 11-3).

Figure 11-3. Server-sent events

Note that the server-sent events approach, as its name indicates, facilitates one-way
communication from the server to the client. That is, the client is not able to send
additional information back to the server after the initial request on the same connec-
tion. In order for the client to communicate back to the server, it must make additional
AJAX requests. However, the client does not need to close the server-sent event channel
in order to make these additional requests—the client can use standard AJAX
techniques to send information to the server and the server can choose to respond to

Real-Time Asynchronous Communication | 239

D
ow

n
lo

a
d
 f
ro

m
 W

o
w

!
e
B
o
o
k

<
w

w
w

.w
o
w

e
b
o
o
k.

co
m

>

those events via the open server-sent events channel or the other AJAX request (or
both).

The “EventSource” part of the name refers to the JavaScript EventSource API, a stan-
dard client-side API (defined as part of the larger HTML 5 specification) that facilitates
server-sent event approach in the browser.

Browser support

Most mainstream browsers have some kind of server-sent event support, with the no-
table exception of Internet Explorer. Specifically, native support is available in Chrome
9+, Firefox 6+, Opera 11+, and Safari 5+.

Downsides

Though it allows the server to deliver real-time updates, this approach only allows one-
way communication from the client to the server. That is, the open channel is not
bidirectional. However, clients can still communicate with the server by issuing addi-
tional AJAX requests.

WebSockets
The WebSocket API is a new protocol (proposed as part of the HTML 5 specification)
that effectively converts standard HTTP request connections into bidirectional, full-
duplex TCP communications channels. More recent (and not widely supported) ver-
sions of the protocol also offer the option for secure communication. Figure 11-4 shows
how WebSockets work.

Figure 11-4. WebSockets

240 | Chapter 11: Parallel, Asynchronous, and Real-Time Data Operations

Browser support

Most mainstream browsers have some kind of WebSocket support, with the notable
exceptions of Internet Explorer and Opera. Specifically, native support is available in
IE 10, Firefox 6.0+, Chrome 4.0+, Safari 5.0+, and iOS 4.2+.

In cases where browsers do not have a native WebSocket implementa-
tion, certain shims (such as web-socket-js, which uses a Flash imple-
mentation) may be used. These shims can hardly be considered “na-
tive,” but they do help to fill in the gaps.

Downsides

Though browser adoption is growing, WebSocket support is not fully implemented in
all major browsers just yet. Also, just having support for WebSockets doesn’t guarantee
they will work for every user. Antivirus programs, firewalls, and HTTP proxies may
interfere with WebSocket connections, sometimes rendering them useless.

Empowering Real-Time Communication
Adding real-time communication into a web application can be a nontrivial task for
developers to tackle alone. Fortunately, Microsoft has recognized the need for real-time
communication and responded by including libraries for task-level parallel processing
in version 4.0 of the .NET Framework and creating SignalR, an open source asynchro-
nous signaling library for ASP.NET.

SignalR makes building real-time communication into a web application easy. It acts
as an abstraction over an HTTP connection and gives developers two programming
models to choose from: hubs and persistent connections. The library consists of a server
API and client libraries for both .NET and JavaScript.

It supports several different transport models. Each model decides how to send and
receive data and how the client and server connect and disconnect. By default, SignalR
will choose the “best” transport model based on what the hosted browser supports
(developers also have the option of choosing a specific transport).

The transport models SignalR supports are:

• WebSockets

• Server-sent events

• Forever frames

• Long polling

The easy way to get started with SignalR is to use NuGet to install its package:

Install-Package SignalR

Real-Time Asynchronous Communication | 241

Persistent connections

As soon as you’ve installed the package, you can start building a real-time communi-
cation application. Let’s get started by examining how to set up a persistent connection
to send messages between a client and a server.

First we need to create a custom connection object by inheriting from the Persistent
Connection base class. The following code snippet shows an example of a custom con-
nection class. Note the overridden OnReceivedAsync() method, which sends a broadcast
to all the clients currently connected to the server:

using System.Threading.Tasks;
using SignalR;

public class EbuyCustomConnection : PersistentConnection
{
 protected override Task OnReceivedAsync(IRequest request, string connectionId,↵
 string data)
 {
 // Broadcast data to all clients
 return Connection.Broadcast(data);
 }
}

The next step is to register the custom connection by adding it to the ASP.NET MVC
route table (make sure to set up the SignalR mapping before any other routes, to avoid
conflicts!).

RouteTable.Routes.MapConnection<EbuyCustomConnection>("echo", "echo/{*operation}");

Now, on the client, you need to add a reference to the required SignalR JavaScript files:

<script src="http://code.jquery.com/jquery-1.7.js" type="text/javascript"></script>
<script src="Scripts/jquery.signalR-0.5.0.min.js" type="text/javascript"></script>
<script type="text/javascript">

To receive a message, initialize the connection object and subscribe to its received
event. The final step is to start the connection by calling connection.start():

$(function () {
 var connection = $.connection('/echo');

 connection.received(function (data) {
 $('#messages').append('' + data + '');
 });

 connection.start();
});

To send a message, call the send() method on the connection object:

connection.send("Hello SignalR!");

242 | Chapter 11: Parallel, Asynchronous, and Real-Time Data Operations

Hubs

Using hubs is much easier than creating custom low-level connection objects. Hubs
provide a Remote Procedure Call (RPC) framework built on top of PersistentConnec
tion. Hubs should be used over custom connection objects to avoid having to handle
dispatching messages directly.

Unlike custom +PersistentConnection+s, hubs do not require any special routing con-
figuration because they are accessible over a special URL (/signalr).

Creating a custom hub is straightforward: just create a class that inherits from the
Hub base class and add a method for sending messages. Use the dynamically typed
Clients instance exposed from the base class to define a custom method (e.g., Display
Message) that will be used for communicating with the clients connected to the hub:

public class EbuyCustomHub: Hub
{
 public void SendMessage(string message)
 {
 Clients.displayMessage(message);
 }
}

To communicate with a hub, first add the necessary SignalR JavaScript files:

<script src="Scripts/jquery-1.6.2.min.js" type="text/javascript"></script>
<script src="Scripts/jquery.signalR-0.5.0.min.js" type="text/javascript"></script>
<script src="/signalr/hubs" type="text/javascript"></script>

To receive a message, create an instance of the hub’s JavaScript proxy class and sub-
scribe to one or more of the methods defined by the Clients dynamic object. Call
$.connection.hub.start() to initialize the communication channel between the client
and server:

$(function () {
 // Proxy created on the fly
 var proxy = $.connection.ebuyCustomHub;

 // Declare callback function
 proxy.displayMessage = function(message) {
 $('#messages').append('' + message + '');
 };

 // Start the connection
 $.connection.hub.start();
});

To send a message, call one of the public methods defined for the hub (e.g., sendMes
sage()).

connection.sendMessage("Hello SignalR!");

Real-Time Asynchronous Communication | 243

Hubs are very extensible. It’s easy to create multiple different methods for handling
different types of server events. Also, in addition to sending string-based messages, it’s
possible to send JSON objects between the client and the server.

Here is an example of a hub that supports multiple message types:

public class EbuyCustomHub : Hub
{
 public void PlaceNewBid(string jsonObject)
 {
 var serializer = new JavaScriptSerializer();
 var bid = serializer.Deserialize<Bid>(jsonObject);

 Clients.newBidPosted(bid);
 }

 public void AuctionClosed(Auction auction)
 {
 Clients.auctionClosed(auction);
 }
}

Out of the box .NET types sent to the Clients object will automatically
be serialized into JSON. Incoming messages require manual deseriali-
zation using a JSON serializer.

The following code snippet shows the JavaScript used in the Ebuy reference application
for receiving and sending notifications about new bids. To send a new bid, a JSON
object needs to be created and serialized into a string; the incoming hub event parameter
(bid) will be passed in as a JSON object:

 $(function () {

 // Proxy created on the fly
 var proxy = $.connection.ebuyCustomHub;

 // Declare server callback methods
 proxy.newBidPosted = function (bid) {
 $('#bids').append('Auction: ' + bid.Auction.Title + ' Latest Bid: ' ↵
 + bid.Amount.Value + ' ');
 };

 // Start the connection
 $.connection.hub.start();

 $("#postBid").click(function () {
 var bidToPost = GetBid();
 proxy.placeNewBid(bidToPost);
 });
 });

 function GetBid() {

244 | Chapter 11: Parallel, Asynchronous, and Real-Time Data Operations

 var bidPrice = $('#bidPrice').val();
 var newBid = "{ 'Code': 'USD', 'Value': '" + bidPrice + "' }";
 return "{ 'Auction': {'Id': '61fdb6eb-b565-4a63-b048-0418dcb8b28d', 'Title': ↵
 'XBOX 360'}, 'Amount': " + newBid + "}";
 }

Configuring and Tuning
Unlike traditional web applications that require short-lived connections, real-time
communication requires connections that can have a significantly longer lifespan.
Proper monitoring and tuning are required to effectively tweak SignalR to get the best
performance and to balance its resource requirements against the rest of the web ap-
plication’s needs.

Managing SignalR connections

The SignalR runtime exposes an IConfigurationManager interface that can be used to
tweak the connection settings used by SignalR. Table 11-1 lists the configurable
settings.

Table 11-1. Configurable SignalR settings

Settings Description

ConnectionTimeout The amount of time to keep an idle connection open before
closing it (defaults to 110 seconds).

DisconnectTimeout The amount of time to wait after a connection closes before
raising a disconnected event to the client (defaults to 20
seconds).

HeartBeatInterval The interval at which to check the state of a connection (defaults
to 10 seconds).

KeepAlive The amount of time to wait before sending a keepalive ping
on an idle connection (defaults to 30 seconds). When this is
active, ConnectionTimeout has no effect; set to null to
disable.

Specifying the SignalR settings should be done during the initial startup of the web
application, e.g.:

// Change the connection timeout to 60 seconds
GlobalHost.Configuration.ConnectionTimeout = TimeSpan.FromSeconds(60);

Configuring the environment

By default, ASP.NET and Internet Information Services (IIS) are configured to offer the
best scalability for managing lots of requests per second. To support real-time com-
munication, a few settings need to be modified to properly handle large numbers of
concurrent connections.

Real-Time Asynchronous Communication | 245

To increase the maximum number of concurrent requests IIS will handle, open a com-
mand prompt with administrator privileges and change the directory to %windir%
\System32\inetsrv\‘. Then, run the following command to change the appConcurrentRe
questLimit from the IIS 7 default of 5,000 connections to 100,000 connections:

appcmd.exe set config /section:serverRuntime /appConcurrentRequestLimit:100000

By default, ASP.NET 4.0 is configured to support 5,000 connections per CPU. To sup-
port additional connections per CPU, change the maxConcurrentRequestsPerCPU setting
in aspnet.config:

<system.web>
 <applicationPool maxConcurrentRequestsPerCPU="20000" />
</system.web>

This file is located in the .NET Framework system directory (%windir%\Microsoft.NET
\Framework\v4.0.30319 for 32-bit and %windir%\Microsoft.NET\Frame-
work64\v4.0.30319 for 64-bit operating systems).

ASP.NET will start throttling requests using a queue when the total number of con-
nections exceeds the maximum concurrent requests per CPU (i.e., maxConcurrentRe
questsPerCPU – number of logical processors on the machine). To control the size of
the throttling queue, alter the requestQueueLimit setting in machine.config (located in
the same place as aspnet.config.

To modify the request queue limit, set the autoConfig attribute to false under the
processModel element and update the requestQueueLimit size:

<processModel autoConfig="false" requestQueueLimit="250000" />

Summary
This chapter covered how to incorporate parallelization when designing and building
a web application. It also introduced how to use asynchronous controllers to handle
long-running requests, and how to use SignalR to incorporate real-time communication
into your web application.

246 | Chapter 11: Parallel, Asynchronous, and Real-Time Data Operations

CHAPTER 12

Caching

Just about every website serves some amount of content that changes infrequently, be
it static pages that only change with an application update, or content pages that change
every few days or even every few hours.

The problem is, your web application is working hard to generate this content from
scratch every time it’s requested, blissfully unaware that it has generated the same thing
perhaps thousands of times already. Wouldn’t it make more sense to try to avoid gen-
erating the same content over and over again, choosing instead to generate and store
the content once, then use that same content again in response to future requests?

The concept of storing and reusing generated data is called caching, and it’s one of the
most effective ways to improve your web application’s performance. Which content
should be cached, however—and how long to cache it for—is not typically something
a web application can figure out by itself. Instead, you must provide your application
with the information it needs in order to determine which content makes a good can-
didate for caching.

Luckily, both the core ASP.NET Framework and the ASP.NET MVC Framework pro-
vide a number of caching APIs to meet all of your caching needs. This chapter explores
the various caching techniques and APIs that are available to you and how you can
leverage these techniques to improve the performance of your ASP.NET MVC appli-
cations.

Types of Caching
Web application caching techniques generally fall into one of two categories: server-
side and client-side caching. While both categories have the same goal of limiting the
amount of duplicate content that gets generated and transmitted over the wire, the
primary difference between them is where the cached data is stored—on the server, or
on the client’s browser.

247

Server-Side Caching
Server-side caching techniques focus on optimizing the way that the server retrieves,
generates, or otherwise manipulates content. The main goal in server-side caching is
to limit the amount of work involved in processing a request, be it by avoiding calls to
retrieve data from a database or even reducing the number of CPU cycles it takes to
generate HTML—every little bit counts.

Limiting the work involved in processing requests not only lowers the time it takes to
complete each request, but it also makes more server resources available to handle even
more requests at the same time.

Client-Side Caching
In addition to caching content on the server, modern browsers offer several caching
mechanisms of their own. Client-side techniques open up whole new opportunities for
improving application performance, from intelligently avoiding duplicate requests all
the way to storing content directly to a user’s local environment.

Whereas the main goal of server-side caching is to handle requests as quickly and
efficiently as possible, the primary goal of client-side caching techniques is to avoid
making any requests at all. Not only does avoiding unnecessary requests improve the
experience for the users who would have made them, it also helps to lower the overall
load on the server, which improves the experience of all users of the site at the same
time.

It’s important to keep in mind that client-side and server-side caching techniques both
have their place, and neither one is necessarily more important than the other. The
most effective caching strategies typically combine the two types of caching techniques
to get the best of both worlds.

Server-Side Caching Techniques
When it comes to server-side caching, there are plenty of techniques for you to choose
from, ranging from simple in-memory storage to dedicated caching servers. In fact,
most of the caching options available in ASP.NET MVC applications don’t come from
the ASP.NET MVC Framework, but from the core ASP.NET Framework.

The following sections explore the server-side caching techniques that are most com-
monly used within the context of ASP.NET MVC web applications.

Request-Scoped Caching
Every ASP.NET request begins with the ASP.NET Framework creating a new instance
of the System.Web.HttpContext object to act as the central point of interaction between
components throughout the request.

248 | Chapter 12: Caching

One of the many properties of the HttpContext is the HttpContext.Items property, a
dictionary that lives throughout the lifetime of the request and which any component
may manipulate.

The accessibility of this property—coupled with the fact that it is always scoped to the
current request—makes the Items dictionary an excellent place to store data that is
relevant only to the current request. Its accessibility also makes it a great way for com-
ponents to pass data to each other in a loosely coupled manner, using the common
HttpContext.Items object as the middleman rather than interacting directly with one
another.

Since it’s just a simple IDictionary, working with the Items collection is pretty straight-
forward. For instance, here’s how to store data in the collection:

HttpContext.Items["IsFirstTimeUser"] = true;

Retrieving data from the dictionary is just as easy:

bool IsFirstTimeUser = (bool)HttpContext.Items["IsFirstTimeUser"];

Notice that the Items dictionary is not strongly typed, so you must first cast the stored
object to your desired type before using it.

User-Scoped Caching
ASP.NET session state allows you to store data that persists between multiple requests.
ASP.NET session state is a semidurable data store that applications can use to store
information on a per-user basis.

When sessions are enabled, components can access the HttpContext.Session or Session
property in order to save information for a future request by the same user, and to
retrieve information that was stored in previous requests by that user.

Since ASP.NET session state is scoped to the current user, it cannot be
used to share information across users.

Like the HttpContext.Item dictionary, the Session object is an untyped dictionary, so
you’ll interact with it in the same way.

For instance, the following code shows how to store the username in a session:

HttpContext.Session["username"] = "Hrusi";

And here’s how you retrieve and cast the untyped value:

string name = (string)HttpContext.Session["username"];

Server-Side Caching Techniques | 249

Session lifetime

Objects stored in the user’s Session live until the session is destroyed by the server,
usually after the user has been inactive for a certain period of time.

The default timeout value of 20 minutes can easily be changed by modifying the value
of the system.web > sessionState timeout attribute in the application’s web.config file.

For example, the following configuration extends the default timeout from 20 minutes
to 30 minutes:

<system.web>
 <sessionState timeout="30" />
</system.web>

Storing session data

There’s a lot of flexibility in terms of where session state is stored. The default behavior
is to store all of the session state information in memory, but you can also choose to
persist the data to the ASP.NET Session State Service, a SQL Server database, or any
other data source by implementing your own custom provider.

Application-Scoped Caching
ASP.NET offers an HttpApplicationState class to store application-wide data, exposed
by the HttpContext.Application property. HttpContext.Application is a key/value-
based collection similar to HttpContext.Items and HttpContext.Session, except that it
lives at the application-level scope so the data that is added to it is able to span users,
sessions, and requests.

You can store data in HttpApplicationState like this:

Application["Message"] = "Welcome to EBuy!";
Application["StartTime"] = DateTime.Now;

And read data stored in HttpApplicationState like this:

DateTime appStartTime = (DateTime)Application["StartTime"];

Data stored in HttpApplicationState lives for the lifetime of the Internet Information
Services worker process that hosts the application instance. Because it’s IIS—not
ASP.NET—that manages the lifetime of the worker threads, be aware that HttpAppli
cationState may not be a reliable way to store and retrieve persistent values.

Because of this, HttpApplicationState should only be used when the data is guaranteed
to be the same across all worker processes. For example, if you are reading the contents
of a file on disk or fetching values from a database and those values rarely change, you
can use HttpApplicationState as a caching layer to avoid making the expensive calls to
retrieve those values.

250 | Chapter 12: Caching

The ASP.NET Cache
A better alternative to storing application-level data in HttpApplicationState is to use
the System.Web.Cache object exposed by the HttpContext.Cache property.

System.Web.Cache is a key/value store that acts just like HttpContext.Items and HttpSes
sionState; however, the data that it stores is not limited to individual requests or user
sessions. In fact, the Cache is much more similar to HttpApplicationState, except that
it is able to cross worker process boundaries and so eliminates most of the headaches
inherent to HttpApplicationState, which generally makes it a better choice.

ASP.NET automatically manages removal of cached items, and notifies the application
when such removals happen so that you can repopulate the data. ASP.NET removes
cached items when any one of the following occurs:

• The cached item expires.

• The cached item’s dependency changes, invalidating the item.

• The server runs on low resources and must reclaim memory.

Expiration

When you add items to the Cache, you can indicate how long it should keep the data
around before it expires and should no longer be used. This time span can be expressed
in one of two ways:

Sliding expiration
Specifies that an item should expire a certain amount of time after it was last ac-
cessed. For example, if you cache an item with a sliding expiration of 20 minutes
and the application continuously accesses the item every few minutes, the item
should stay cached indefinitely (assuming the cached item has no dependencies
and the server does not run low on memory). The moment the application stops
accessing the item for at least 20 minutes, the item will expire.

Absolute expiration
Specifies that an item expires at a specific moment in time, regardless of how often
it is accessed. For example, if you cache an item with an absolute expiration of
10:20:00 PM, the item will no longer be available beginning at 10:20:01 PM.

Only one type of expiration—sliding or absolute—may be specified for
each item. You cannot use both expiration types on the same cached
item.

You can use different types of expiration for different cached items,
however.

Server-Side Caching Techniques | 251

Cache dependencies

You can also configure an item’s lifetime in the cache to be dependent on other appli-
cation elements, such as files or databases. When the element that a cache item depends
on changes, ASP.NET removes the item from the cache.

For example, if your website displays a report that the application creates from an XML
file, you can place the report in the cache and configure it to have a dependency on the
XML file. When the XML file changes, ASP.NET removes the report from the cache.
The next time your code requests the report, the code first determines whether the
report is in the cache and, if not, re-creates it. This ensures that an up-to-date version
of the report is always available.

File dependency is not the only dependency that is available in ASP.NET—ASP.NET
offers all of the types of dependencies listed in Table 12-1 out of the box, along with
the ability to create your own dependency policies.

Table 12-1. Cache dependency policies

Dependency
type

Definition

Aggregate This type combines multiple dependencies (via the System.Web.Caching.AggregateCache
Dependency class). The cached item is removed when any of the dependencies in the aggregate change.

Custom The cached item depends on a custom class that derives from System.Web.Caching.Cache
Dependency. For example, you can create a custom web service cache dependency that removes data
from the cache when a call to a web service results in a particular value.

File The cached item depends on an external file and is removed when the file is modified or deleted.

Key The cached item depends on another item in the application cache (referred to by its cache key). The cached
item is removed when the target item is removed from the cache.

SQL The cached item depends on changes in a table in a Microsoft SQL Server database. The cached item is
removed when the table is updated.

Scavenging

Scavenging is the process of deleting items from the cache when memory is scarce. The
items that are removed are typically those that have not been accessed in some time,
or those that were marked as low priority when they were added to the cache. ASP.NET
uses the CacheItemPriority object to determine which items to scavenge first.

In all cases, ASP.NET provides CacheItemRemovedCallback to notify the application that
an item is being removed.

The Output Cache
While all of the caching techniques mentioned above focus on caching data, ASP.NET
provides the ability to operate at a higher level, caching the HTML that is generated as

252 | Chapter 12: Caching

a result of a request. This technique is called output caching, and it is a powerful feature
that dates all the way back to the first version of the ASP.NET Framework.

In order to make output caching as easy as possible, the ASP.NET MVC Framework
provides OutputCacheAttribute, an action filter that tells ASP.NET MVC to add the
rendered results of the controller action to the output cache.

Opting controller actions in to output caching is as simple as adorning the controller
action with the OutputCacheAttribute. By default, this attribute will cache the rendered
HTML content with an absolute expiration of 60 seconds. On the next request to the
controller action after the cached content expires, ASP.NET MVC will execute the
action again and cache the HTML that it renders once more.

To see ASP.NET MVC output caching in action, try adding the OutputCacheAttri
bute to a controller action in the EBuy reference application:

[OutputCache(Duration=60, VaryByParam="none")]
public ActionResult Contact()
{
 ViewBag.Message = DateTime.Now.ToString();
 return View();
}

When you execute this action after the output caching is in place, you’ll see that the
value of ViewBag.Message only changes every 60 seconds. For further proof, try adding
a breakpoint to the controller method. You’ll see that the breakpoint only gets hit the
first time the page is executed (when the cached version does not exist), and anytime
after the cached version expires.

Configuring the cache location

The OutputCacheAttribute contains several parameters that give you complete control
over how and where the page’s content is cached.

By default, the Location parameter is set to Any, which means content is cached in three
locations: the web server, any proxy servers, and the user’s web browser. You can
change the Location parameter to any of the following values: Any, Client, Down
stream, Server, None, or ServerAndClient.

The default Any setting is appropriate for most scenarios, but there are times when you
need more fine-grained control over where data is cached.

For example, say you want to cache a page that displays the current user’s name. If you
use the default Any setting, the name of the first person to request the page will incor-
rectly be displayed to all users.

To avoid this, configure the output cache with the Location property set to Output
CacheLocation.Client and NoStore set to true so that the data is stored only in the user’s
local web browser:

Server-Side Caching Techniques | 253

[OutputCache(Duration = 3600, VaryByParam = "none", Location = OutputCacheLocation.Client, ↵
NoStore = true)]
public ActionResult About()
{
 ViewBag.Message = "The current user name is " + User.Identity.Name;
 return View();
}

Varying the output cache based on request parameters

One of the most powerful aspects of output caching is being able to cache multiple
versions of the same controller action based on the request parameters used to call the
action.

For example, say you have a controller action named Details that displays the details
of an auction:

public ActionResult Details(string id)
{
 var auction = _repository.Find<Auction>(id);
 return View("Details", auction);
}

If you use the default output caching setup, the same product details will be displayed
for each request. To resolve this issue, you can set the VaryByParam property to create
different cached versions of the same content based on a form parameter or query string
parameter:

[OutputCache(Duration = int.MaxValue, VaryByParam = "id")]
public ActionResult Details(string id)
{
 var auction = _repository.Find<Auction>(id);
 return View("Details", auction);
}

The VaryByParam property offers quite a few options to help specify when a new version
cache will be created. If you specify "none", you will always get the first cached version
of the page. If you use "*", a different cached version will be created whenever any of
the form or query string values vary. You can define the list of form or query string
parameter caching rules by separating the entries using a query string.

Table 12-2 gives the complete list of properties available on the OutputCacheAttribute.

Table 12-2. Output caching parameters

Parameter Description

CacheProfile The name of the output cache policy to use

Duration The amount of time in seconds to cache the content

Enabled Enables/disables output cache for the current content

Location The location of where to cache the content

NoStore Enables/disables HTTP Cache-Control

254 | Chapter 12: Caching

Parameter Description

SqlDependency The database and table name pairs that the cache entry depends on

VaryByContentEn
coding

A comma-delimited list of character sets (content encodings) that the output cache uses to vary
the cache entries

VaryByCustom A list of custom strings that the output cache uses to vary the cache entries

VaryByHeader A comma-delimited list of HTTP header names used to vary the cache entries

VaryByParam A semicolon-delimited list of form POST or query string parameters that the output cache uses to
vary the cache entry

Output cache profiles

Instead of adorning every controller action with an OutputCacheAttribute, you can cre-
ate global output caching rules through the use of output cache profiles in your appli-
cation’s web.config file.

The fact that output cache profiles live in a single location makes it very easy to tweak
and maintain the output caching logic for your entire site all at once. As an added
benefit, none of these changes require recompiling and redeploying the application in
order to take effect.

To use output cache profiles, you need to add the output caching section to your
application’s web.config. Then, define one or more cache profiles and the parameters
associated with each caching profile.

For example, the following ProductCache profile caches a page’s content for an hour
and varies each cache by the "id" request parameter:

<caching>
 <outputCacheSettings>
 <outputCacheProfiles>
 <add name="ProductCache" duration="3600" varyByParam="id"/>
 </outputCacheProfiles>
 </outputCacheSettings>
</caching>

You can use this caching profile as follows:

[OutputCache(Duration = 0, VaryByParam = "none")]
public JSONResult Index()
{
 User user = new User { FirstName = "Joe", LastName = "Smith"};
 return Json(user);
}

Donut Caching
In a complex dynamic web application, you’ll often come across the need to cache an
entire page but continue to generate specific portions of the page.

Server-Side Caching Techniques | 255

For example, in the EBuy application, it makes sense to cache most of the home page,
but not the portions of the page that change based on the logged in user, such as the
login section that displays the current user’s username—clearly, you don’t want one
user’s username to be shown for all users!

If you think the answer is to use OutputCache with VaryByParam and vary by user ID,
think again. OutputCache stores the entire page, so with this approach, you would store
the entire page every time for each user with a different username (or whatever your
dynamic section is). Barring a few tidbits, most of that data is simply redundant.

This is where donut caching comes into play. Donut caching is a server-side caching
technique in which the entire page gets cached, except for small portions that remain
dynamic. These small portions are like holes in the cached content, much like in a donut
(hence the technique’s name).

While ASP.NET MVC’s Razor view engine does not have first-class support for donut
caching, ASP.NET Web Forms offers the Substitution control to carve out the “holes”
or dynamic sections, like this:

<header>
 <h1>Donut Caching Demo</h1>

 <div class="userName">
 <asp:Substitution runat="server" MethodName="GetUserName" />
 </div>
</header>

<!-- Rest of the page with cacheable content goes here -->

This control registers a callback event within the ASP.NET output cache, which then
invokes a static method on your page when the cached page is requested:

partial class DonutCachingPage : System.Web.UI.MasterPage
{
 public static string GetUserName(HttpContext Context)
 {
 return "Hello " + Context.User.Identity.Name;
 }
}

Whenever DonutCachingPage is requested, the entire cached page is returned except for
the username section, which continues to get generated for each request.

Leveraging the fact that ASP.NET MVC is built on top of ASP.NET, we can use the
APIs that the Substitution control uses to implement something similar in ASP.NET
MVC: the HttpResponse class has a WriteSubstitution() method, which is what the
Substitution control uses behind the scenes.

Using this method, you can write a custom HtmlHelper to duplicate this same logic:

public delegate string CacheCallback(HttpContextBase context);

public static object Substitution(this HtmlHelper html, CacheCallback ccb) {

256 | Chapter 12: Caching

 html.ViewContext.HttpContext.Response.WriteSubstitution(
 c => HttpUtility.HtmlEncode(
 ccb(new HttpContextWrapper(c))
));
 return null;
}

With this extension method in place, we can rewrite the previous example to use the
new helper:

<header>
 <h1>MVC Donut Caching Demo</h1>

 <div class="userName">
 Hello @Html.Substitution(context => context.User.Identity.Name)
 </div>
</header>

<!-- Rest of the page with cacheable content goes here -->

Now the entire view is cached except for the section within the <div class="user
Name"> tag, bringing functionality similar to the Web Forms Substitution control to
ASP.NET MVC.

The MvcDonutCaching NuGet Package
The example used here shows a simplified version of donut caching and is not well
suited to more advanced scenarios. While donut caching is still not available out of the
box with ASP.NET MVC 4, the MvcDonutCaching NuGet package can help you im-
plement more advanced scenarios with ease.

This package adds several extensions to existing HTML helper methods, and also adds
a custom DonutOutputCacheAttribute that can be placed on any action that needs donut
caching.

Donut Hole Caching
Donut hole caching is the inverse of donut caching: while the donut caching technique
caches the entire page, leaving out only a few small sections, donut hole caching caches
only one or a few portions of the page (the donut “holes”).

For example, the Ebuy reference application contains a list of auction categories that
do not change often, so it makes sense to render all of the categories just once and cache
the resulting HTML.

Donut hole caching is very useful in these kinds of scenarios, where most of the elements
in your page are dynamic, with the exception of a few sections that rarely change, or
are changed based on a request parameter. And, unlike donut caching, ASP.NET MVC
has great support for donut hole caching through the use of child actions.

Server-Side Caching Techniques | 257

http://mvcdonutcaching.codeplex.com/

Let’s see donut hole caching in action by applying it to the Ebuy auction categories
example mentioned above. Here is the partial view that we will be caching:

@{
 Layout = null;
}

 @foreach(var category in ViewBag.Categories as IEnumerable<Category>)
 @Html.ActionLink(@category.Name, "category", "categories",
 new { categoryId = category.Id })

This partial view enumerates through all the categories and renders each one as a list
item in an unordered list. Each item in the list is a link to the Category action in the
Categories controller, passing the category’s Id as an action parameter.

Next, create a child action that displays this view:

[ChildActionOnly]
[OutputCache(Duration=60)]
public ActionResult CategoriesChildAction()
{
 // Fetch Categories from the database and
 // pass it to the child view via its ViewBag
 ViewBag.Categories = Model.GetCategories();

 return View();
}

Notice how the OutputCacheAttribute caches the result of this method for 60 seconds.

Then you can call this new action from a parent view by calling @Html.Action("Catego
riesChildAction"), as shown in the following example:

<header>
 <h1>MVC Donut Hole Caching Demo</h1>
</header>

<aside>
 <section id="categories">
 @Html.Action("CategoriesChildAction")
 </section>
</aside>

<!-- Rest of the page with non cacheable content goes here -->

Now when the page is rendered, the Categories child action is called to generate the
list of categories.

The results of this call get cached via the OutputCacheAttribute, so when the page is
rendered the next time, the Categories list is rendered from the cache while the rest of
the page is generated from scratch.

258 | Chapter 12: Caching

Distributed Caching
In cases where multiple instances of your application are running on more than one
web server, requests to the application may be served by any one of those servers. And
every time a request goes to a new server, the cached items have to be regenerated if
they have not been generated on that server already.

Depending on how complex a process it is to generate the cached items, it may be
terribly inefficient to regenerate the same data again and again. Instead, it can be much
more efficient to generate the data once and store it in multiple servers or web farms.
This technique of caching data on one application instance and sharing it with other
instances is known as distributed caching, and it is the most elaborate of all caching
techniques.

Distributed caching is an extension of normal caching techniques by which data from
a database or session is stored in a central location that all instances of an application
have access to.

There are a number of benefits to using a distributed caching layer, such as:

Performance
Because a high volume of data can be stored in memory on the servers, read per-
formance improves significantly, which benefits all pages downstream by making
them load faster.

Scalability
Scalability becomes a function of adding more capacity or nodes to the clusters,
allowing the application to scale to higher demands and load easily. Combined
with cloud storage, nodes can be spun up on demand and freed when not required,
increasing cost efficiency.

Redundancy
Redundancy ensures that if one node or server fails, the whole application does
not suffer. Instead, another failover node can simply pick up the request and serve
it without any manual intervention. Failover and redundancy are essential features
of many distributed caching solutions.

Distributed caching solutions

There are a number of distributed caching products available today, and although each
of these products offer very different APIs and ways of working with the data they
manage, the basic concepts of distributed caching remain the same. In order to give
you an idea of how to implement a distributed caching solution, the next few sections
show how to implement Microsoft’s distributed caching solution, called Velocity,
within the Ebuy reference application.

Velocity is the Windows AppFabric (aka Microsoft Application Server)
caching layer. So in order to install Velocity, you must download Windows AppFabric
or install it via the Web Platform Installer.

Installing Velocity.

Server-Side Caching Techniques | 259

http://msdn.com/appfabric
http://www.microsoft.com/web/downloads/platform.aspx

After you’ve started the installer and gotten to the Feature Selection page (shown in
Figure 12-1), select the “Caching Services” and “Cache Administration” features. If you
are using Windows 7, install the IIS 7 Manager for Remote Administration extension,
which will let you manage remote IIS servers from the Windows 7 machine.

If you just want to use the caching part, perform an automated instal-
lation or use SETUP /i CACHINGSERVICE.

Figure 12-1. The Feature Selection page of the Windows AppFabric installer

Once Windows AppFabric is installed it will display a configuration wizard to help
walk you through the rest of the process, starting with where to store Velocity’s con-
figuration information.

For this demo, choose the database option and click Next to configure the database
options (Figure 12-2):

260 | Chapter 12: Caching

http://www.iis.net/download/IISManager
http://msdn.microsoft.com/en-us/library/ff637714.aspx

Figure 12-2. Configuring the database options

The next step is to administer the cache
using PowerShell. At this point, you should have a new item called “Caching Admin-
istration Windows PowerShell” in your Programs menu.

Using this console, you can manage your caches, check the activity, and create new
ones.

Before you begin, you must “start” a cache cluster. In your PowerShell console, issue
the following command:

C:\> Start-CacheCluster

Next, run the following command to grant your user account access to the cache cluster
as a client:

C:\> Grant-CacheAllowedClientAccount 'domain\username'

To verify that your user account has been granted access, use the Get-CacheAllowed
ClientAccounts command.

Administering your memory cluster from PowerShell.

Server-Side Caching Techniques | 261

If you want to see all the cache-related commands that are available, use
the command get-command *cache*.

The cache can be hooked up in the web.config file or from code. Here’s
a code example where the helper method does this manually:

using Microsoft.ApplicationServer.Caching;
using System.Collections.Generic;

public class CacheUtil
{

 private static DataCacheFactory _factory = null;
 private static DataCache _cache = null;

 public static DataCache GetCache()
 {
 if (_cache != null)
 return _cache;

 //Define array for 1 cache host
 List<DataCacheServerEndpoint> servers = new List<DataCacheServerEndpoint>(1);

 // Specify cache host details
 // Parameter 1 = host name
 // Parameter 2 = cache port number
 servers.Add(new DataCacheServerEndpoint("mymachine", 22233));

 //Create cache configuration
 DataCacheFactoryConfiguration configuration = new DataCacheFactoryConfiguration();

 //Set cache host(s)
 configuration.Servers = servers;

 //Set default properties for local cache (local cache disabled)
 configuration.LocalCacheProperties = new DataCacheLocalCacheProperties();

 //Disable tracing to avoid informational/verbose messages on the web page
 DataCacheClientLogManager.ChangeLogLevel(System.Diagnostics.TraceLevel.Off);

 //Pass configuration settings to cacheFactory constructor
 _factory = new DataCacheFactory(configuration);

 //Get reference to named cache called "default"
 _cache = _factory.GetCache("default");

 return _cache;
 }
}

Once your cache is set up, it’s trivial to use. Here’s how to add an item to the Cache
object created in the previous listing:

Using the cache.

262 | Chapter 12: Caching

var cache = CacheUtil.GetCache();

cache.Add(orderid, order);

Retrieving the cached item is also straightforward:

Order order = (Order)cache.Get(orderid);

As is updating an existing object:

cache.Put(orderid, order);

You can also swap out the default session provider with AppFabric caching.

Here’s a sample web.config:

<?xml version="1.0" encoding="utf-8" ?>
<configuration>

 <!--configSections must be the FIRST element -->
 <configSections>
 <!-- required to read the <dataCacheClient> element -->
 <section name="dataCacheClient"
 type="Microsoft.ApplicationServer.Caching.DataCacheClientSection,
 Microsoft.ApplicationServer.Caching.Core, Version=1.0.0.0,
 Culture=neutral, PublicKeyToken=31bf3856ad364e35"
 allowLocation="true"
 allowDefinition="Everywhere"/>
 </configSections>

 <!-- cache client -->
 <dataCacheClient>
 <!-- cache host(s) -->
 <hosts>
 <host
 name="CacheServer1"
 cachePort="22233"/>
 </hosts>
 </dataCacheClient>

 <system.web>
 <sessionState mode="Custom" customProvider="AppFabricCacheSessionStoreProvider">
 <providers>
 <!-- specify the named cache for session data -->
 <add
 name="AppFabricCacheSessionStoreProvider"
 type="Microsoft.ApplicationServer.Caching.DataCacheSessionStoreProvider"
 cacheName="NamedCache1"
 sharedId="SharedApp"/>
 </providers>
 </sessionState>
 </system.web>
</configuration>

As you can see, AppFabric offers elaborate features that allow it to range from being a
simple caching mechanism to replacing the default session state provider with ease.

Server-Side Caching Techniques | 263

You can learn more about AppFabric’s concepts, features, and architecture on its
MSDN page.

Client-Side Caching Techniques
Browsers display web pages to the user by fetching HTML, data, and supporting re-
sources such as CSS files, images, JavaScript files, cookies, Flash media, etc. But no
matter how fast the user’s Internet connection is, it is always faster to display something
by fetching it from the user’s hard disk, rather than having to travel across the Internet.

Browser designers know this, and employ caching to store resources on the disk to
avoid network access whenever possible. The process is simple: anytime you access a
web page, the browser checks the local disk to see if it has local copies of any files that
are part of the page. If not, it downloads the resources from the server. For the first visit
to a page, this amounts to everything. For subsequent visits, the browser should load
the page faster, given that it already has local access to the resources required to display
the page (unless the page requests new or different resources).

The browser caches the resources by storing them locally on the hard disk in a preal-
located area of predefined size. Users can control how much disk space is allocated to
this storage. The browser takes care of clearing out old items and managing the re-
sources without any intervention or input required from the user.

Next, let’s take a look at how we can leverage client-side caching or the browser cache
to speed up our application.

Understanding the Browser Cache
The resources that are cached locally by the browser are controlled by three basic
mechanisms: freshness, validation, and invalidation. They are part of HTTP itself and
are defined by HTTP headers.

Freshness allows a response to be used without rechecking it on the origin server, and
can be controlled by both the server and the client. For example, the Expires response
header gives a date when the document becomes stale, and the Cache-Control: max-
age directive tells the cache how many seconds the response is fresh for.

The following code shows how to set these headers via server-side code:

public ActionResult CacheDemo()
{
 // Sets the Cache-Control header to one of the values of
 http://msdn.microsoft.com/en-us/library/system.web.httpcacheability(v=vs.110).aspx↵
 [HttpCacheability]

 // Sets Cache-Control: public to specify that the response is cacheable by
 clients and shared (proxy) caches.
 Response.Cache.SetCacheability(HttpCacheability.Public);

264 | Chapter 12: Caching

http://msdn.microsoft.com/en-us/library/ff383731%28v=azure.10%29

 // Sets the Cache-Control: max-age header to 20 minutes.
 Response.Cache.SetMaxAge(DateTime.Now.AddMinutes(20));

 // Sets the Expires header to 11:00 P.M. local time on the current expiration
 day.
 Response.Cache.SetExpires(DateTime.Parse("11:00:00PM"));

 return View();
}

Validation is used to check whether a cached response is still good after it becomes
stale. For example, if the response has a Last-Modified header, a cache can make a
conditional request using the If-Modified-Since header to see if the content has
changed. This is a fairly weak form of validation, however; if you want stronger vali-
dation you can use the ETag (entity tag) mechanism instead.

The following code demonstrates both approaches:

public ActionResult CacheDemo()
{
 // Sets the Last-Modified HTTP header to the DateTime value supplied.
 Response.Cache.SetLastModified(DateTime.Parse("1/1/2012 00:00:01AM"));

 // Sets the ETag HTTP header to the specified string.
 Response.Cache.SetETag("\"someuniquestring:version\"");

 return View();
}

Invalidation is usually a side effect of another request that passes
through the cache. For example, if the URL associated with a cached
response subsequently gets a POST, PUT, or DELETE request, the cached
response will be invalidated.

Although it’s a great feature to help the pages load faster, the browser-based cache has
had its own share of issues over the years. Bugs, security concerns, and the lack of fine-
grained control over what gets cached have presented numerous challenges to web
developers. Further, the inability to invalidate the cache when an item on the server
has changed often requires you to implement special techniques (also known as
“hacks”) that inherently lead to messy code.

The new HTML 5 specification aims to eliminate some of these concerns by providing
developers with new techniques and more granular control over the client-side cache.

App Cache
The HTML 5 specification defines the ApplicationCache (or AppCache) API to give
developers direct access to the local browser content cache.

In order to enable the App Cache in your application, you need to complete three steps:

Client-Side Caching Techniques | 265

http://www.whatwg.org/specs/web-apps/current-work/#applicationcache

1. Define the manifest.

2. Reference the manifest.

3. Serve the manifest to the user.

Let’s take a detailed look at each of these steps to see how you can implement them.

Define the manifest

Defining the manifest file is as simple as creating a text file with a .manifest extension:

CACHE MANIFEST

version 0.1

home.html
site.css
application.js
logo.jpg

This is a simple manifest file that tells the browser to cache the four files mentioned in
it. The first line of the file must contain the text “CACHE MANIFEST”.

As this slightly more complex example demonstrates, you have fine-grained control
over what gets cached:

CACHE MANIFEST
Generated on 04-23-2012:v2

Cached entries.
CACHE:
/favicon.ico
home.html
site.css
images/logo.jpg
scripts/application.js

Resources that are "always" fetched from the server
NETWORK:
login.asmx

Serve index.html (static version of home page) if /Home/Index is inaccessible
Serve offline.jpg in place of all images in images/ folder
Serve appOffline.html in place of all other routes
FALLBACK:
/Home/Index /index.html
images/ images/offline.jpg
* /appOffline.html

You can see that the manifest file utilizes few basic conventions:

266 | Chapter 12: Caching

• Lines starting with # are comment lines.

• The CACHE section lists resources that will be cached after the website is accessed
for the first time.

• The NETWORK section lists resources the browser must always fetch from the server
—in other words, these resources are never cached.

• The FALLBACK section defines resources that should be served if the corresponding
resource is inaccessible or unavailable. This is completely optional and supports
wildcards.

The next step is to tell the browser about this manifest file for your application.

Reference the manifest

To reference the manifest file, simply define the manifest attribute on the <html> tag:

<!DOCTYPE html>
<html manifest="site.manifest">
...
</html>

When the browser sees the manifest attribute, it recognizes that your application de-
fines a cache manifest and attempts to download the manifest file automatically.

Serve the manifest correctly

The key to using this manifest is to serve it with the correct MIME type (”text/cache-
manifest“):

Response.ContentType = "text/cache-manifest";

Without this MIME type specified, the browser won’t recognize this file as a manifest
file, and AppCache will not be enabled for your site.

With AppCache enabled for your application, the browser will fetch server resources
only in these three cases:

1. When the user clears the cache, which removes all the cached content.

2. When the manifest file changes on the server. Simply updating a comment and
saving the file can trigger an update.

3. When the cache is updated programmatically via JavaScript.

As you can see, AppCache gives you complete control over what gets cached and allows
you to trigger updates when needed, without resorting to any workarounds or hacks.

The next section will explore yet another new feature of the HTML 5 specification that
allows you to cache items on the browser, albeit differently than AppCache.

Client-Side Caching Techniques | 267

Local Storage
Another new feature introduced in the HTML 5 specification is the support for an
offline, browser-based storage mechanism called Local Storage. You can think of Local
Storage as a “super cookie” that is not limited by the size of normal browser cookies:
it allows you to persist large amounts of data to the user’s device.

The Local Storage API consists of two endpoints for managing local data storage:
localStorage and sessionStorage. While localStorage and sessionStorage both expose
similar methods, the key difference between the two is that the data stored in local
Storage is available indefinitely, whereas data stored in sessionStorage is wiped out
when the page in the browser is closed.

Like most server-side caching objects, Local Storage uses a string-based
dictionary data structure. So, if you are retrieving anything other than
strings, you may need to use functions like parseInt() or parse
Float() to cast the data back to native JavaScript data types.

To store an item in localStorage, you can use setItem():

localStorage.setItem("userName", "john");
localStorage.setItem("age", 32);

Or, you can use square bracket syntax:

localStorage[userName"] = "john";
localStorage["age"] = 32;

Retrieving an item is straightforward as well:

var userName = localStorage.getItem("userName");
var age = parseInt(localStorage.getItem("age"));

// or use square brackets...

var userName = localStorage["userName"];
var age = parseInt(localStorage["age"]);

You can also use the removeItem() function to remove any individual item from storage:

localStorage.removeItem("userName");

Or, you can clear all keys at once:

localStorage.clear();

The memory allocated to Local Storage is not infinite; there is a limit to how much you
can store. This limit is arbitrarily set to 5 megabytes in the draft specification, although
browsers can implement a higher limit. An application can request more storage, which
results in a prompt being shown to the user. This puts the user in control of whether
or not more storage is allowed.

268 | Chapter 12: Caching

Local Storage offers APIs to detect how much space is remaining in the quota, and to
request more storage. localStorage.remainingSpace() gives you the amount of disk
space remaining, in bytes. When the amount of data you have stored exceeds the set
limit, the browser can throw a QuotaExceededError exception or request the user to
allow for more storage.

Most modern browsers support localStorage; regardless, it is always a good practice
to detect whether or not a particular browser feature exists prior to using it. The fol-
lowing snippet shows how to check whether or not localStorage is supported in the
current browser:

function IsLocalStorageSupported() {
 try {
 return 'localStorage' in window && window['localStorage'] !== null;
 } catch (e) {
 return false;
 }
}

Summary
Caching is an important aspect of building highly scalable and performant applications.
This chapter showed you several caching techniques and discussed their practical usage
scenarios. Apart from built-in caching mechanisms such as HttpContext.Application,
HttpContext.Session, and OutputCache, you can also use a distributed caching layer to
achieve greater efficiency. Donut and donut hole caching techniques provide some
interesting variations to regular caching and can be very effective in appropriate sce-
narios. Finally, caching is not limited to the server side. With the new features added
in HTML 5, you can extend the idea of caching to the client side as well. The HTML
5 specification brings two new, highly flexible mechanisms to enable client-side or
browser caching, putting you and the users in direct control over the cached data.
Further, the new client-side storage options available under the HTML 5 specification
make it easier than ever to support an “offline” mode, enabling your application to
continue to work without an active Internet connection.

Summary | 269

CHAPTER 13

Client-Side Optimization Techniques

The ultimate performance goal of any developer is to have a web page that loads as
quickly as possible. The faster your page loads, the more responsive your site appears,
and the happier your users are. Client-side optimization collectively refers to the set of
techniques that can help you speed up the page load time.

This chapter focuses on the few basic techniques that give you the most bang for your
buck. While no single technique is a silver bullet, following these rules should help any
fairly well designed page achieve a boost in its load time.

Most of the techniques presented here will not require you to rewrite a significant
amount of your code; rather, they can be applied to any well-designed application
outside of code.

Why optimize? A page that loads quickly also appears more responsive in limited-
bandwidth scenarios. If your target audience is on a slow network, it helps even more
to have a leaner page that the user can see quickly.

Anatomy of a Page
In order to understand what affects the page load times, let’s look at how the browser
renders a page.

A web page primarily consists of HTML, JavaScript files, and stylesheets, but also con-
tains images and possibly other media, such as Flash or Silverlight objects.

Browsers follow a top-down approach to rendering a web page: they start at the top of
the HTML and start downloading resources as they appear in the markup (Fig-
ure 13-1). The page is not rendered or displayed completely until all resources have
been downloaded, which means that even if all the HTML for the page has been down-
loaded, users will still see a blank screen until the browser has finished downloading
and loading other resources on the page (such as images, stylesheets, and JavaScript
files).

271

Figure 13-1. Anatomy of a page

To sum it up:

• Having fewer resources cuts down on page load times.

• Rearranging the resources in your page can make a difference in when the page (or
part of it) is displayed.

Anatomy of an HttpRequest
More requests make a page slower. But why? Let’s look at what happens when a re-
source is requested to see what affects the download times. These are the steps:

1. DNS lookup. The first step is to resolve the domain name for the request:

• First, the browser or client sends a DNS query to the local ISP’s DNS server.

• Then, the DNS server responds with the IP address for the given hostname.

2. Connect. The client establishes a TCP connection with the IP address of the host-
name.

3. Initiate HttpRequest. The browser sends the HTTP request to the web server.

4. Wait. The browser then waits for the web server to respond to the request:

272 | Chapter 13: Client-Side Optimization Techniques

• On the server side, the web server processes the request, which includes finding
the resource, and sends the response to the client.

• The browser then receives the first byte of the first packet from the web server,
which contains the HTTP response headers and content.

5. Load. The browser loads the content of the response.

6. Close. After receiving the last byte, the browser then requests the server to close
the connection.

These steps (illustrated in Figure 13-2) are repeated for every request not already present
in the browser cache. If the requested resource is present in the browser cache, the
browser simply loads the resource from the cache and doesn’t go to the server to
download the resource. The browser also tries to cache the resource locally once it has
downloaded it from the server.

Figure 13-2. Anatomy of an HttpRequest

Optimizing parts of these steps can help you bring down the response time.

Best Practices
Yahoo!’s Exceptional Performance team identifies 35 best practices that help improve
web page performance. They start with 13 simple rules and then expand the rule set to

Best Practices | 273

35 rules spanning 7 categories. The complete list can be found at the team’s developer
blog.

Google also came up with its own set of rules to enhance the performance of websites.
Google’s recommendation spans over 30 rules across 6 categories.

The next few sections will present a quick summary of some of the basic rules that can
help you in creating a highly responsive website.

Make Fewer HTTP Requests
Some 80% of the end-user response time is spent on the frontend. Most of this time is
tied up in downloading the components in the page, such as images, stylesheets, scripts,
Flash, etc. Reducing the number of components in turn reduces the number of HTTP
requests (see Figure 13-3). This is the key to faster pages.

You can redesign your page to reduce the number of components in the page, or com-
bine the number of external resources (JavaScript files, stylesheets, images) to reduce
the number of components that get downloaded to the client. ASP.NET MVC 4 offers
“bundling” out of the box that can help you combine several JavaScript files and style-
sheets into a “bundled” resource, which in turn reduces the number of downloaded
components. “Bundling and Minification” on page 289 explains this feature in detail.

This technique reduces the number of script and stylesheet requests, but it cannot be
applied to images as such. If your page has a lot of images, consider using CSS
Sprites to reduce the number of image requests. Another technique is to have inline
images or image data embedded in the page or stylesheet using the data: URL
scheme, but be aware that these are not supported across all major browsers.

Use a Content Delivery Network
A content delivery network (CDN) is a collection of web servers distributed across mul-
tiple locations to deliver content more efficiently to users. Which server is selected for
delivering content to a specific user is typically based on network proximity: the server
with the fewest network hops or the quickest response time is chosen. Switching to a
CDN is a relatively easy change that will dramatically improve the speed of your web-
site.

Further, you can maximize the number of images, stylesheets, and scripts that are
downloaded by using multiple subdomains on the server or CDN. A browser limits the
number of connections to download resources per domain. By scattering resources on
multiple subdomains, you’re essentially increasing the number of parallel downloads,
because the browser treats them as separate domains and uses more connections for
different domains (see Figure 13-4).

274 | Chapter 13: Client-Side Optimization Techniques

http://developer.yahoo.com/performance/rules.html
http://developer.yahoo.com/performance/rules.html
https://developers.google.com/speed/docs/best-practices/rules_intro
http://www.alistapart.com/articles/sprites
http://www.alistapart.com/articles/sprites
http://tools.ietf.org/html/rfc2397
http://tools.ietf.org/html/rfc2397
http://en.wikipedia.org/wiki/Data_URI_scheme#Web_browser_support

Figure 13-3. Fewer requests help the page load faster

Best Practices | 275

Figure 13-4. Using a CDN

Add an Expires or a Cache-Control Header
According to research, 40-60% of daily visitors to your site come in with an empty
cache. The previous techniques (fewer HTTP requests, using a CDN) help speed up
the first-time experience, and using Expires or a Cache-Control header helps speed up
subsequent page visits by enabling caching on the client side.

Browsers (and proxies) use a cache to reduce the number and size of HTTP requests,
making web pages load faster. A web server uses the Expires header in the HTTP re-
sponse to tell the client how long a component can be cached. This is a far-future
Expires header, telling the browser that this response won’t be stale until May 20, 2013:

276 | Chapter 13: Client-Side Optimization Techniques

D
ow

n
lo

a
d
 f
ro

m
 W

o
w

!
e
B
o
o
k

<
w

w
w

.w
o
w

e
b
o
o
k.

co
m

>

http://yuiblog.com/blog/2007/01/04/performance-research-part-2/

Expires: Wed, 20 May 2013 20:00:00 GMT

You can add the Expires and Cache-Control headers in IIS, or programmatically through
ASP.NET MVC.

Set up client caching in IIS

IIS 7 allows you to set up client caching headers with the <clientCache> element of the
<staticContent> element.

The httpExpires attribute adds the HTTP Expires header, which specifies a date and
time when the content should expire. Cache-Control headers can be added with the
cacheControlMaxAge attribute (note that its behavior depends on the cacheControl
Mode attribute).

Set up client caching through ASP.NET MVC

You can also add Expires and Cache-Control headers programmatically by calling
Cache.SetExpires() and Cache.SetMaxAge(), respectively.

The following snippet shows an example:

// Sets the Cache-Control: max-age header to 1 year.
Response.Cache.SetMaxAge(DateTime.Now.AddYears(1));

// Sets the Expires header to 11:00 P.M. local time on the current expiration day.
Response.Cache.SetExpires(DateTime.Parse("11:00:00PM"));

You can find in-depth coverage of the Cache-Control: max-age and Expires headers in
“Understanding the Browser Cache” on page 264.

Note that it is redundant to specify both Expires and Cache-Control headers—specify
only one of them for each resource.

Cache busting

If you use a far-future Expires header, you have to notify the browser when cached
content changes. If you fail to do so, the browser will continue to use the stale, cached
copy of the content.

Since the browser caches the component by its URL, you have to change the URL in
some way. Usually this is done by appending a “version” query string parameter. In
fact, ASP.NET MVC’s bundling and minification feature provides a built-in “cache-
busting” feature that takes care of this automatically whenever any component changes.

Using a far-future Expires header affects page views only after a user has already visited
your site. It has no effect on the number of HTTP requests when a user visits your site
for the first time and the browser’s cache is empty. Therefore, the performance impact
of this improvement depends on how often users hit your pages with a “primed” cache,
when the browser already contains all of the components in the page.

Best Practices | 277

http://www.iis.net/ConfigReference/system.webServer/staticContent/clientCache

GZip Components
Compressing text-based content such as HTML, JavaScript, CSS, and even JSON data
reduces the time required to transfer a component over the wire, thereby improving
the response time significantly.

On average, compressing components with GZip compression generally reduces the
response time by about 70%. Older browsers and proxy servers are known to have
issues with compressed content because they may see a mismatch in what is expected
and what is received. These are edge cases, though, and with older browser support
dropping off, this should not be a major concern.

Some proxies and antivirus software are known to remove the Accept-
Encoding: gzip, deflate header from HTTP requests, causing the
server to simply return the uncompressed content. This is generally in-
nocuous, however. It causes no side effects other than reduced perfor-
mance.

The web server can be configured to compress content based on file or MIME types,
or it can figure it out on the fly. While it is worthwhile to enable compression on any
text-based response, it is often counterproductive to enable compression on binary
components such as images, audio, and PDFs that are already compressed. In these
cases, attempting to compress them further may actually increase the file size.

Compressing as many file types as possible is an easy way to reduce overall page weight,
which will make your pages load faster, improving the user’s experience.

In IIS 7, the <httpCompression> element specifies the HTTP compression settings.
Compression is enabled by default, provided the Performance module is installed.

The following snippet shows the default configuration of this element in the Applica-
tionHost.config file:

<httpCompression
 directory="%SystemDrive%\inetpub\temp\IIS Temporary Compressed Files">
 <scheme name="gzip" dll="%Windir%\system32\inetsrv\gzip.dll" />
 <dynamicTypes>
 <add mimeType="text/*" enabled="true" />
 <add mimeType="message/*" enabled="true" />
 <add mimeType="application/javascript" enabled="true" />
 <add mimeType="*/*" enabled="false" />
 </dynamicTypes>
 <staticTypes>
 <add mimeType="text/*" enabled="true" />
 <add mimeType="message/*" enabled="true" />
 <add mimeType="application/javascript" enabled="true" />
 <add mimeType="*/*" enabled="false" />
 </staticTypes>
</httpCompression>

278 | Chapter 13: Client-Side Optimization Techniques

http://www.iis.net/ConfigReference/system.webServer/httpCompression
http://learn.iis.net/page.aspx/124/introduction-to-applicationhostconfig/
http://learn.iis.net/page.aspx/124/introduction-to-applicationhostconfig/

You can override some or all of the values by specifying your own <httpCompression>
element under <system.webserver> in your application’s web.config file.

Note that dynamic compression can increase CPU usage, since it performs the com-
pression for every request. The results cannot be cached effectively because they are
dynamic in nature.

If your dynamic content is relatively static (in other words, it doesn’t
change per request), you can still cache it by setting the dynamicCompres
sionBeforeCache attribute of the <urlCompression> element.

Put Stylesheets at the Top
Putting stylesheets in the document head allows the page to render progressively.

Since you care about performance, you want the page to load progressively, that is, you
want the browser to display whatever content it has as soon as possible. This is espe-
cially important for pages with a lot of content and for users on slower Internet con-
nections.

In our case, the HTML page is the progress indicator! When the browser loads the page
progressively, the header, the navigation bar, the logo at the top, and other elements
such as these all serve as visual feedback to the user that the page is loading.

The problem with putting stylesheets near the bottom of the document is that it pro-
hibits progressive rendering in many browsers, including Internet Explorer. These
browsers block rendering to avoid having to redraw elements of the page if their styles
change, which usually means that users get stuck viewing a blank page.

Put Scripts at the Bottom
Scripts block parallel downloads. The HTTP/1.1 specification suggests that browsers
download no more than two (although newer browsers allow slightly more) compo-
nents in parallel per hostname. If you serve your images from multiple hosts, you can
get more than two downloads to occur in parallel. While a script is downloading, how-
ever, the browser won’t start any other downloads, even on different hosts (Fig-
ure 13-5).

Best Practices | 279

http://www.iis.net/ConfigReference/system.webServer/urlCompression
http://www.w3.org/Protocols/rfc2616/rfc2616-sec8.html#sec8.1.4

Figure 13-5. Effect of browser rendering with scripts at the bottom

In some situations, it’s not easy to move scripts to the bottom. If, for example, the script
uses document.write to insert part of the page’s content, it can’t be moved lower in the
page. In many cases, though, there are ways to work around these situations. We’ll
look at a few of those next.

Defer script execution

The parsing of a script block can be deferred by using the DEFER attribute in the
<script> tag. The DEFER attribute is a clue to browsers that they can continue rendering.

However, different browsers process this attribute differently, making it fairly unreli-
able. The good news is that if a script can be deferred, it can also be moved to the bottom
of the page, which makes the web page render faster.

Lazy loading scripts

Some applications, such as Gmail, use the lazy loading technique to render the Java-
Script inside comment blocks. The browser simply ignores the comments and contin-
ues rendering the page. When a script block is needed (on some user action), the mod-

280 | Chapter 13: Client-Side Optimization Techniques

http://googlecode.blogspot.com/2009/09/gmail-for-mobile-html5-series-reducing.html

ule’s script is accessed by stripping out the comment tags and then using eval() to parse
the JavaScript. While certainly not elegant, this technique can be more beneficial than
putting scripts at the bottom or deferring them.

Make Scripts and Styles External
Placing styles and scripts in separate external files, as opposed to inline with the markup
in the HTML document, enables browsers to cache them. This makes subsequent page
loads faster, as illustrated in Figure 13-6:

Figure 13-6. External styles and scripts

Including styles and scripts inline makes them noncacheable and increases the size of
the response. However, it also reduces the number of HTTP requests, because every-
thing gets downloaded as a single resource.

So the question is, what offers greater benefits: reducing the number of requests or
making them external and cacheable? The answer to this question will vary for different
applications. While it can be tricky to quantify the benefits, they can be estimated and
measured to some extent. For example, if your application reuses resources across
different pages, making them external will offer more benefits. However, if your ap-
plication only has a few pages or uses different resources for each page, rendering them
inline may offer greater benefits (although external files will still help here).

A middle ground is to load the resources on the landing page inline and dynamically
load the external resources (using asynchronous loading techniques such as AJAX or

Best Practices | 281

the async attribute for <script> tags). This makes the initial page load faster, and sub-
sequent page views will be able to benefit from the cached resources. This technique
is employed by Yahoo! on its home page.

Reduce DNS Lookups
DNS lookup is the process of resolving a hostname to its IP address. On average, it takes
20−120 milliseconds per request, and during this time the browser cannot perform any
other tasks, so it is effectively blocked.

Reducing the number of HTTP requests minimizes this issue, but you will still end up
having some resources on the page (such as images, stylesheets, and JavaScript files)
that need to be requested. Reducing the number of unique hostnames in a page allows
you to optimize this process, since browsers typically cache the results of DNS lookups.
Figure 13-7 illustrates this effect.

Figure 13-7. Reducing DNS lookups improves performance

Reducing the number of unique hostnames leads to the side effect of having fewer
parallel downloads. There is therefore a trade-off between the number of unique host-
names and the number of subdomains for parallel downloading. Yahoo!’s team rec-
ommends splitting these resources between two, three, or four hosts for the optimum
balance.

Minify JavaScript and CSS
Minification is the practice of removing unnecessary characters from code to reduce its
size, thereby improving load times. When code is minified, all comments are removed,
along with unneeded whitespace characters (spaces, newlines, and tabs). Figure 13-8
illustrates the result. In the case of JavaScript, this improves response times because
the size of the downloaded file is reduced. Two popular tools for minifying JavaScript
code are JSMin and YUI Compressor. The YUI Compressor can also minify CSS.

282 | Chapter 13: Client-Side Optimization Techniques

http://davidwalsh.name/html5-async

Figure 13-8. Minifying scripts and styles improves response times

Obfuscation is an alternative optimization that can be applied to source code. In a survey
of 10 top U.S. websites, minification achieved a 21% size reduction versus 25% for
obfuscation. However, while obfuscation may result in a greater reduction in the size
of the code, minifying JavaScript is less risky. Obfuscation is more complex than min-
ification and thus more likely to generate bugs as a result of the obfuscation step itself.

In addition to minifying external scripts and styles, in-lined <script> and <style> blocks
can and should be minified. Even if you GZip your scripts and stylesheets, minifying
them will still reduce their size by 5% or more. As the use and size of JavaScript and
stylesheets increases, so will the savings gained by minifying your code.

Avoid Redirects
A redirect happens when a browser opens a different URL than the one that is requested.
It is accomplished using HTTP status codes 301 and 302.

Redirects are considered bad performance-wise, because their results are usually not
cached (unless caching explicitly indicated by Expires or Cache-Control headers) and
they incur the same processing delay as a new request. Figure 13-9 illustrates what
happens when redirects are made.

Best Practices | 283

Figure 13-9. Redirects should be avoided in most cases

Redirects can be useful in fixing broken links (e.g., when old pages are moved to a new
location), in URL-shortening services, or for redirecting users from multiple (but some-
what similar) domain names to a single domain (such as from wikipedia.net to wikipe-
dia.com).

While the above are legitimate uses for redirects and cannot be avoided, many times
redirects happen without the developer’s knowledge. For instance, in your ASP.NET
MVC application (or any application running in IIS), a call to http://www.ebuy.biz/
Home/About will cause a redirection to http://ebuy.biz/Home/About/”—the same action
but with a trailing “/”.

This can be fixed by making the redirect “permanent” (HTTP status code 301).

Here’s how sample HTTP headers look in a 301 response:

HTTP/1.1 301 Moved Permanently
Location: http://yourhostname.com/Home/About
Content-Type: text/html

There are many ways to handle this, such as:

• Writing your own HttpModule

• Doing the redirection on your controller

• Using the IIS URL Rewrite module to rewrite the URL

The IIS Rewrite module is an HTTP module that is built right into IIS. You can configure
the IIS Rewrite module using the system.webServer > rewrite element in your web.con-
fig file.

The following snippet shows an example of doing such a redirection:

<rewrite>
 <rules>
 <!-- remove the trailing slash from the URL -->
 <rule name="Strip trailing slash" stopProcessing="true">
 <match url="(.*)/$" />
 <conditions>
 <add input="{REQUEST_FILENAME}" matchType="IsFile" negate="true" />
 <add input="{REQUEST_FILENAME}" matchType="IsDirectory" negate="true" />
 </conditions>

284 | Chapter 13: Client-Side Optimization Techniques

http://www.iis.net/download/urlrewrite

 <action type="Redirect" redirectType="Permanent" url="{R:1}" />
 </rule>
 </rules>
</rewrite>

The above snippet adds rules that leverage regular expressions to detect if the request
contains a trailing slash. If found, the trailing slash is stripped out and a permanent
redirect response header is returned back, with the rewritten URL without the trailing
slash.

Remove Duplicate Scripts
It hurts performance to include the same JavaScript file twice in one page—and this
isn’t as unusual as you might think. A review of 10 top U.S. websites showed that two
of them contained a duplicated script. Two main factors increase the odds of a script
being duplicated in a single web page: team size and number of scripts. When it does
happen, it can hurt performance.

Duplicated scripts will result in unnecessary HTTP requests in Internet Explorer (but
not in Firefox). In Internet Explorer, if an external script is included twice and is not
cacheable, it will generate two HTTP requests during page loading. Even if the script
is cacheable, extra HTTP requests will occur when a user reloads the page.

In addition to generating wasteful HTTP requests, time is wasted evaluating the script
multiple times. This redundant JavaScript execution happens in both Firefox and In-
ternet Explorer, regardless of whether the script is cacheable.

One way to avoid accidentally including the same script twice is to implement a script
management module in your templating system. The typical way to include a script is
to use the <script> tag in your HTML page.

Configure ETags
An ETag (Entity Tag) is a string that uniquely identifies a specific version of a resource
or component, such as an image, stylesheet, or script. ETags are a mechanism that web
servers and browsers use to determine whether the component in the browser’s cache
matches the one on the origin server.

ETags were added to provide a mechanism for validating entities that is more flexible
and robust than the last-modified date, which provides only a weak form of validation
(browsers apply heuristics to determine whether or not to fetch a resource from the
server, and each browser applies the heuristics differently).

Here’s what the ETag response header looks like:

HTTP/1.1 200 OK
Last-Modified: Tue, 29 May 2012 00:00:00 GMT
ETag: "8e12af-3bd-632a2d18"
Content-Length: 14625

Best Practices | 285

To validate the resource at a later stage, the browser uses the If-None-Match header to
pass the ETag back to the origin server. A server returns a 304 status code if the ETags
match (in this case, reducing the size of the response by 14,625 bytes):

GET /images/logo.png HTTP/1.1
Host: yourhostname.com
If-Modified-Since: Tue, 29 May 2012 00:00:00 GMT
If-None-Match: "8e12af-3bd-632a2d18"
HTTP/1.1 304 Not Modified

If your application uses a web farm or cluster of web servers, it is important that each
server assign the same unique ETag—otherwise, the browser will treat them as different
versions and download the full resource when served by different servers, defeating the
purpose of providing an ETag.

Unfortunately, both Apache and IIS include data in the ETag that make it practically
impossible to generate the same ETag across servers in a web farm. This greatly reduces
their chance of passing a validity test on the browser in a web farm scenario. In such
cases, it might be easier to just use the Last-Modified header to perform this validation.
If you take this route, you should remove the ETag header from the response altogether,
which will reduce the size of the HTTP request and response. This Microsoft Support
article describes how to remove ETags from IIS: http://support.microsoft.com/?
id=922733.

Note that you only need to set Last-Modified or an ETag. Setting them both is redun-
dant.

Measuring Client-Side Performance
In order to “optimize” something, you first need to be able to “measure” or “quantify”
it. Without profiling or instrumenting, you cannot identify bottlenecks, much less sub-
stantiate the improvements.

There are many tools available for this purpose, but probably the easiest and simplest
to use is YSlow. YSlow is available for many browsers, and while the rest of this section
will focus on Firefox, you can choose the one you like because the core concepts and
techniques remain the same. YSlow uses all 23 of the 35 rules that Yahoo!’s performance
team outlined as quantifiable or testable.

To get started, install the YSlow Firefox add-on. Once it’s installed, you can create a
new basic ASP.NET MVC project and see how it grades on YSlow’s benchmarks.

To do so, go to File > New Project > ASP.NET MVC 4 Application and choose the
Internet Application template, as shown in Figure 13-10.

286 | Chapter 13: Client-Side Optimization Techniques

http://support.microsoft.com/?id=922733
http://support.microsoft.com/?id=922733
http://yslow.org
https://addons.mozilla.org/en-US/firefox/addon/5369

Figure 13-10. Creating a basic ASP.NET MVC 4 application

Without touching a single line of code, build and run the application. If your default
browser is not Firefox, open up Firefox and navigate to the new application. Bring up
Firebug, navigate to the YSlow tab (shown in Figure 13-11) and hit Run Test.

Figure 13-11. The YSlow tab in Firebug

Measuring Client-Side Performance | 287

Using the default rule set (YSlow V2), the results are impressive. The starter template
already follows many of the best practices and scores an A grade in almost all sections,
as you can see in Figure 13-12. Overall, the page gets a B grade.

Figure 13-12. The starter template scores pretty well on its own!

The first bad score is on rule# 1, “Make fewer HTTP requests.” The Grade tab suggests
an immediate way to improve this—combining 13 stylesheet files. If you check the
Components tab (Figure 13-13), you’ll see how many components of different types
the page requests. Note that only two JavaScript (JS) files are being used in the starter
template, but as your application grows, you’ll have more JavaScript files that you will
need to bundle together.

288 | Chapter 13: Client-Side Optimization Techniques

Figure 13-13. YSlow’s Components tab shows how many components this page requests

Let’s see how we can use ASP.NET MVC 4’s built-in bundling feature to reduce the
number of HTTP requests on this page.

Putting ASP.NET MVC to Work
ASP.NET MVC 4 and .NET Framework 4.5 provide a new System.Web.Optimization
library that offers bundling and minification support out of the box. It provides basic
features for bundling different resources according to custom rules (we’ll see how in
coming sections), as well as a built-in JavaScript minifier and stylesheets. It also includes
automatic cache busting—i.e., invalidating the browser cache when any content
changes. Another important feature that it offers is the ability to duplicate stylesheets
and script files automatically (as long as they are not in different paths).

For most scenarios, this will suffice. However, you can always choose to implement
third-party solutions if your application’s needs demand more.

Bundling and Minification
If you inspect the head of Layout.cshtml, you’ll notice two new helpers provided by the
System.Web.Optimization library, @Styles and @Scripts:

@Styles.Render("~/Content/themes/base/css", "~/Content/css")
@Scripts.Render("~/bundles/modernizr")

As their names suggest, they bundle and minify stylesheets and JavaScript files or
resources, respectively.

Putting ASP.NET MVC to Work | 289

The Render() method takes a list of virtual paths to render. These paths are translated
to regular HTML tags at runtime, like so:

<link href="/Content/site.css" rel="stylesheet" type="text/css" />
<script src="/Scripts/modernizr-2.0.6.js" type="text/javascript"></script>

You have full control over defining these bundles, as you’ll see in the next section. For
instance, as the above example illustrates, you can create multiple bundles and render
them in a single call. Here, two style bundles are rendered in one call—one for the base
theme and one for the site’s default stylesheet.

Looking further, you’ll find that just above the closing body tag, you have the remaining
JavaScript Render() call:

@Scripts.Render("~/bundles/jquery")

The starter template therefore automatically adheres to our “stylesheets at the top” and
“JavaScript at the bottom” rules.

The only exception is modernizr.js, which is being rendered in the docu-
ment head. The role of the Modernizr JavaScript library is to detect the
features (such as video, audio, SVG, newer HTML 5 features, etc.) that
are supported by the target browser and to attach stylesheet class names
to the <head> tag. Using these classes, you can style and script your page
to degrade gracefully in the absence of a particular feature on which the
page depends. Moving Modernizr to the bottom will defer this detection
until page load, and thus your styles will not work initially, creating a
glitch as the page loads (certain elements will appear broken or not
styled at first, and then, as the page loads, they will appear correctly).

Defining bundles

You define a bundle by calling BundleCollection.Add() (in System.Web.Optimization)
and passing in an instance of a ScriptBundle or a StyleBundle. To create a ScriptBun
dle, you instantiate it by giving it a virtual path (that will be used in views) and including
one or more scripts, like this:

// wildcard inclusion - include all scripts that start with "jquery-1"
var jQueryBundle = new ScriptBundle("~/bundles/jquery").Include(
 "~/Scripts/jquery-1.*");

// explicit script file inclusion
var jQueryValBundle = new ScriptBundle("~/bundles/jqueryval").Include(
 "~/Scripts/jquery.unobtrusive-ajax.js",
 "~/Scripts/jquery.validate.js",
 "~/Scripts/jquery.validate.unobtrusive.js")

290 | Chapter 13: Client-Side Optimization Techniques

You can create a StyleBundle in a similar fashion:

var siteBundle = new StyleBundle("~/Content/css").Include("~/Content/site.css")

The starter template does this automatically for you for the included resources—head
over to App_Start\BundleConfig.cs. This file is thoughtfully placed under the
App_Start folder to highlight the fact that this code needs to run only once, at appli-
cation startup. However, you can define bundles anywhere in the project, as long as
you don’t forget to register them during the application’s startup phase:

public class MvcApplication : System.Web.HttpApplication
{
 protected void Application_Start()
 {
 AreaRegistration.RegisterAllAreas();

 FilterConfig.RegisterGlobalFilters(GlobalFilters.Filters);
 RouteConfig.RegisterRoutes(RouteTable.Routes);

 // Registers bundles
 BundleConfig.RegisterBundles(BundleTable.Bundles);
 }
}

Enabling bundles

If you remember, on our first test, YSlow complained about too many HTTP requests
—which brings us to the question, with all this plumbing code already there, why didn’t
bundling combine them into fewer requests?

The answer is that the bundling and other optimizations are automatically disabled in
Debug mode, to make it more convenient to develop and debug your code. You can
force the optimizations in Debug mode by setting BundleTable.EnableOptimizations to
true.

To see it in action, let’s compile our application under Release mode and rerun the
YSlow test. The overall grade is still B (due to other factors), but you can see that YSlow
is happy about the reduced number of HTTP requests on the page (Figure 13-14). The
Components tab (Figure 13-15) reflects the bundling in action and shows only two
stylesheet files now: /Content/themes/base/css and /Content/css, just as we defined
earlier.

Doing a “view source” on the stylesheet URLs also confirms the minification!

Putting ASP.NET MVC to Work | 291

Figure 13-14. Using bundles to reduce the number of HTTP requests

Figure 13-15. The stylesheet files are now bundled into two files

Cache busting

Remember that browsers cache resources based on URLs. Whenever a page requests
a resource, the browser first checks in its cache to see if it has a resource with a matching
URL. If yes, then it simply uses the cached copy instead of fetching a new one from the
server. So, in order to be able to leverage the browser cache, the URL must not change
between visits.

292 | Chapter 13: Client-Side Optimization Techniques

This, however, presents a dilemma to you as the web developer. When you change the
content in JavaScript files or stylesheet files, you’d like the browser to get the updated
copy instead of the old cached copy. However, keeping the same URL is not going to
help, because the browser will continue to use the old cached copy. A common solution
is to append the version number to the URL, as in:

<link type="text/css" rel="stylesheet" href="/Content/site.css?v=1.0">

Now when you change the content, you can simply bump up the version and the
browser will download the new copy instead. This method of manually editing the
version numbers is tedious and error prone, however. Bundles automatically take care
of this by adding a hashcode of the bundle as a query parameter to the URL, like this:

<link type="text/css" rel="stylesheet"
 href="/Content/themes/base/css?v=UM624qf1uFt8dYtiIV9PCmYhsyeewBIwY4Ob0i8OdW81">

Now anytime you change the file’s content, a new hash will get generated and will be
rendered to the page automatically. The browser, seeing a different URL, will fetch the
newer copy instead of using the cached version.

Summary
This chapter showed you basic rules for making your pages run faster. You saw how
to implement some of the rules it outlined using IIS and leveraging ASP.NET MVC’s
built-in features, such as bundling, minification, and cache busting. The tips shown
here are simple enough to implement and will give you a head start in optimizing the
performance of your pages.

Summary | 293

CHAPTER 14

Advanced Routing

The first chapter of this book gave you a brief introduction to the fundamentals of
ASP.NET MVC routing. That chapter shows the default route that Visual Studio gen-
erates for you when you create a new ASP.NET MVC project, and it talks about how
the routing framework uses that route to determine which controller and action should
be used to execute each request.

For the most part, you will not need to worry about anything more advanced than the
default route that Visual Studio initially generates. The default route follows the stan-
dard ASP.NET MVC convention and allows you to create new controllers and actions
without having to worry much about how the routing engine will locate them. Only if
your application moves beyond these common scenarios will you have to gain a better
understanding of ASP.NET MVC’s powerful routing framework in order to operate
outside of the default URL pattern and the default values.

In this chapter, we will go beyond ASP.NET MVC’s conventional route and take a
deeper look at the powerful routing engine that drives ASP.NET MVC applications.
We’ll start with a discussion about why URLs are so important to a web application’s
user experience and how your application’s URLs can affect how your site ranks in
search engine results. Then we’ll dive into creating more advanced routes by exploring
different URL patterns. We’ll also consider defining constraints on those routes and
look at a useful tool, called Glimps, for helping to debug routing failures. Finally, we
will look at ways that you can extend the basic routing framework to help improve your
development experience, then see how you can leverage the routing engine’s extensi-
bility to create your own custom routing logic.

Wayfinding
The term wayfinding refers to all of the ways that people orient themselves in a space
and navigate from place to place. In the context of browsing the World Wide Web, one
of the most natural mechanisms for wayfinding is URLs. In fact, that’s how most people
initially orient themselves on the Web: by opening a browser and entering a URL.

295

For example, everyone knows Yahoo’s URL:

www.yahoo.com

URLs are a simple and intuitive way for users to get to where they want to go and, more
importantly, to get to the information they are seeking. URLs are easy to remember
and also easy to communicate to others.

In the early days of the Web, URLs’ simplicity extended from the domain name through
the entire URL, as you’ll see in the following URL for a specific page from a 1996 version
of Yahoo!:

http://www.yahoo.com/Computers_and_Internet/Software/Data_Formats/HTML/HTML_2_0/

In this example URL, the directory structure is fairly logical and very readable. It’s also
what some would call “hackable,” meaning users can easily experiment by changing
parts of the URL to navigate up to higher levels in the site hierarchy, as well as making
fairly well-educated guesses as to what other categories in the URL might be.

Simple URLs are an important—if often overlooked—aspect of the experience that a
website gives its users. In fact, over a decade ago noted usability expert Jacob Nielsen
recognized that a good URL structure contributes to the overall usability of a website,
and as recently as 2007, separate eye-tracking studies performed by Nielsen’s team and
by Edward Cutrell and Zhiwei Guan from Microsoft Research showed that users spend
24% of their gaze time looking at the URLs.

As dynamic web page frameworks became more popular, developers saw that they
could use URLs not just as a means to let users access resources on their sites, but also
as a place to store information about a user’s activity and the application’s state. As
developers applied this technique more and more, URLs became increasingly oriented
toward the machines running a website rather than the humans using it, full of cryptic
codes and database IDs such as:

http://demo.com/store.aspx?v=c&p=56&id=1232123&s=12321-12321321312-12312&s=0&f=red

These kinds of URLs are certainly not very readable or memorable. Try telling someone
that URL over the phone!

Thankfully, those same web developers have subsequently started to recognize what
Nielson and others have long known: the structure of a URL is important, and URLs
play an important role in the usability of a website. To address the problems that have
arisen and bring some sanity back to URLs, newer web frameworks often introduce the
concept of routing as a layer of indirection between URLs and the application func-
tionality to which they refer.

Routing allows you to place the facade of a URL over the logic of the application. For
example, applying routing to the previous URL allows you to hide the store.aspx end-
point and all of its query string values and instead map friendly URL segments into the
parameters that the page needs in order to function.

In other words, you can turn that ugly URL into something more meaningful, like:

296 | Chapter 14: Advanced Routing

http://example.com/store/toys/RadioFlyer/ClassicRedWagon/12321-12321321312-12312/red

While it conveys much of the same information as the previous URL, this URL does so
in a far more user-friendly way. You can easily tell that we are in the store, shopping
for a “Radio Flyer Classic Red Wagon” in the “toys” category. A user can even remove
the bulk of the URL to experiment with navigating to other pages on the site.

In the world of ASP.NET MVC, rather than acting as a facade over .aspx endpoints,
the routing engine acts as a facade over the application’s controllers and actions. So,
as you write your ASP.NET MVC application, it’s helpful to take a step back and think
about the URLs that your application will expose to the world.

URLs and SEO
In addition to general website usability, creating friendlier URLs can offer your site yet
another very important benefit: improved search engine rankings. URLs that are more
human-friendly also happen to be more search-engine friendly. URL optimization is
part of a larger technique for improving search engine ranking called Search Engine
Optimization (SEO).

The goal of SEO is to optimize a site in such a way that it increases how high the site’s
pages rank in search engine results. If search ranking is an important consideration for
your website, there are a number of tips for SEO that may influence how you design
your application’s URLs. Keep in mind, however, that SEO remains a bit of a black art
and that each search engine uses its own proprietary—and usually secret—algorithms
for ranking web pages, so there are no clear-cut rules.

In general, though, here are a few good tips to consider when optimizing your site:

Short URLs are better.
Google has stated that its algorithms give less weight to words occurring after the
first five in a URL, so longer URLs are not really an advantage. Additionally, shorter
URLs help to increase usability and readability.

Separate multiple words using dashes instead of underscores.
Google will interpret the dashes as a word delimiter and index each of those words
separately.

Stick to lowercase.
Be conscious of capitalization in your URLs and try to stick to all lowercase
if possible. Most search engines follow the HTTP standard, which states that
URLs are case-sensitive; therefore, a search engine recognizes Page1.htm and
page1.htm as two different pages. This can cause the content to be indexed twice,
which may result in a penalty to the ranking for those pages.

URLs and SEO | 297

For more information about optimizing URLs, check out the SEO Cheat
Sheet created by the folks at SEOmoz.org.

Building Routes
Hopefully, by now we have thoroughly convinced you of how important URLs are to
your site’s overall user experience. With that in mind, let’s look at how you can use the
ASP.NET MVC routing framework to control which URLs users will use to access your
site.

We’ll start by taking a deeper look at the different ways you can define a URL pattern
in a route. We will use the URL defined in the default route that is created when you
create a new ASP.NET MVC project as a point of reference:

routes.MapRoute(
 "Default", // Route name
 "{controller}/{action}/{id}", // URL with parameters
 new { controller = "Home", action = "Index", id = UrlParameter.Optional }
);

The URL in a route is formed by combining a series of one or more “segments.” Seg-
ments can be constants or placeholders and are delimited by the forward slash
character.

Because routes are always relative to the application root, they cannot
start with a forward slash (/) or a tilde (~). The routing engine will throw
an exception if it comes across routes that break this rule.

You can tell each of these segments is a placeholder because they are each wrapped in
curly braces:

{controller}

In this case, each placeholder is also a single segment, delimited by a forward slash. It’s
possible to create segments that contain multiple placeholders by separating each
placeholder with a string constant, as in:

{param1}-{param2}-{param3}

When the routing engine parses a URL, it extracts the values at each placeholder po-
sition and uses them to populate an instance of the RouteData class. This class maintains
a dictionary of all the important values contained in the route and is used by the
ASP.NET MVC Framework itself. It’s also important to know that the values added to
the dictionary are converted to strings by default.

298 | Chapter 14: Advanced Routing

http://www.seomoz.org/blog/seo-cheat-sheet-anatomy-of-a-url
http://www.seomoz.org/blog/seo-cheat-sheet-anatomy-of-a-url

In the case of the default route shown earlier, this means that if the actual requested
URL were:

http://demo.com/Home/Index/1234

the routing engine would parse the three key/value pairs listed in Table 14-1 into the
RouteData class.

Table 14-1. Key/value pairs passed to the RouteData class

Parameter Value

{controller} Home

{action} Index

{id} 1234

Default and Optional Route Parameters
As shown in Chapter 1, the routing system uses the {controller} and {action} values
to determine which controller to instantiate and which action to execute. But if you
recall, the URL that is loaded in the browser does not contain any values for the URL
placeholders. This is where the third parameter of the MapRoute() method comes into
play, allowing you to set default values for any of the placeholders.

If we go back and look at the default route, you’ll see that in the call to MapRoute() an
anonymous type—which is a special object type that the compiler generates on the fly
—is created that sets the default values for each of the three defined placeholders:

routes.MapRoute(
 "Default", // Route name
 "{controller}/{action}/{id}", // URL with parameters
 new { controller = "Home", action = "Index", id = UrlParameter.Optional }
);

Ah ha, we’ve now solved the mystery of how an application knows to load the Home
Controller by default! Even though the request URL does not contain values for the
controller or action, the route has default values defined, which the routing system uses
to locate the default controller and action. As the routing engine evaluates a URL, the
default values are inserted into the RouteData dictionary, and if a placeholder value is
found during the parsing of the URL, it simply overwrites the default value.

Let’s take a look at some other examples of route URLs. In the following example, a
constant segment has been prepended to the beginning of the URL. That means that
the request URL must contain that segment in order to match this route:

routes.MapRoute(
 "Default",
 "Admin/{controller}/{action}/{id}",
 new { controller = "Home", action = "Index", id = UrlParameter.Optional }
);

Building Routes | 299

http://demo.com/Home/Index/1234

Here are some examples of URLs that would match this route:

• http://demo.com/Admin

• http://demo.com/Admin/Home

• http://demo.com/Admin/Home/Index

• http://demo.com/Admin/Home/Index/1234

routes.MapRoute(
 "Default",
 "{site}/{controller}/{action}/{id}",
 new { controller = "Home", action = "Index", id = UrlParameter.Optional }
);

Here are some examples of URLs that satisfy this route:

• http://demo.com/Admin

• http://demo.com/Store/Home

• http://demo.com/Store/Home/Index

• http://demo.com/Store/Home/Index/1234

The following route definition contains a single placeholder for an ID, relying on the
default values set for the controller and action:

routes.MapRoute(
 "Default",
 "{id}",
 new { controller = "Home", action = "Index", id = UrlParameter.Optional }
);

This route matches URLs such as:

• http://demo.com/

• http://demo.com/1234

This next route combines the constant segment with a single placeholder value, again
relying on the default values for the controller and action:

routes.MapRoute(
 "Default",
 "users/{id}",
 new { controller = "Home", action = "Index", id = UrlParameter.Optional }
);

Examples of URLs that would match this route are:

• http://demo.com/users

• http://demo.com/users/1234

routes.MapRoute(
 "Default",
 "category/{id}/export{type}.{format}/",

300 | Chapter 14: Advanced Routing

http://demo.com/Admin
http://demo.com/Admin/Home
http://demo.com/Admin/Home/Index
http://demo.com/Admin/Home/Index/1234
http://demo.com/Admin
http://demo.com/Store/Home
http://demo.com/Store/Home/Index
http://demo.com/Store/Home/Index/1234
http://demo.com/
http://demo.com/1234
http://demo.com/users
http://demo.com/users/1234

 new { controller = "Category", action = "Export" }
);

An example of a URL that would match this route is:

• http://demo.com/category/123abc/exportEvents.json

Routing Order and Priority
As your application becomes more complex, you are likely to want to register multiple
routes. When you do this, it is important that you consider the order in which you
register them. When the routing engine attempts to locate a matching route, it simply
enumerates the collection of routes, and it stops enumerating as soon as it finds a match.

This behavior can cause plenty of problems if you’re not expecting it. Consider the
following snippet, which registers two routes:

routes.MapRoute(
 "generic",
 "{site}",
 new { controller = "SiteBuilder", action = "Index" }
);

routes.MapRoute(
 "admin",
 "Admin",
 new { controller = "Admin", action = "Index" }
);

The first route contains a single placeholder segment and sets the default value of the
controller parameter to SiteBuilder. The second route contains a single constant seg-
ment and sets the default value of the controller parameter to Admin.

Both of these routes are completely valid, but the order in which they are mapped may
cause unexpected problems because the first route matches just about any value en-
tered. That means it will be the first to match http://demo.com/Admin, and since the
routing engine stops after finding the first match, the second route will never get used.

Be sure to keep this scenario in mind, and consider the order in which you define custom
routes.

Routing to Existing Files
The ASP.NET MVC routing engine gives preference to physical files located on the
server over “virtual” routes defined in the route table. Thus, a request made for a phys-
ical file will short-circuit the routing process, and the engine will simply return that file
rather than trying to parse the URL and locate a matching route. In certain cases, it can
be useful to override this behavior, forcing ASP.NET MVC to attempt to route all re-
quests. You can do this by setting the RouteCollections. RouteExistingFiles property
to false.

Building Routes | 301

http://demo.com/category/123abc/exportEvents.json

Ignoring Routes
In addition to defining routes that map to controllers and actions, ASP.NET MVC also
allows you to define routes with URL patterns that it should simply ignore. The same
RoutesTable object that exposes the MapRoute() method also exposes an Ignore
Route() method, which adds a special route that tells the routing engine to ignore re-
quests for any URL that matches a given pattern.

Consider the following snippet from the default routing logic that Visual Studio
generates, which instructs ASP.NET MVC to ignore routes that contain .axd, the
file extension used for common ASP.NET handlers such as Trace.axd and
WebResource.axd:

routes.IgnoreRoute("{resource}.axd/{*pathInfo}");

With this call to IgnoreRoute() in place, requests for these URLs are handled as normal
requests to ASP.NET instead of being handled by the routing engine.

You can use the IgnoreRoute() method to ignore other requests as well. For instance,
consider a scenario in which a section of your website contains code written in another
framework or language that should not be handled by the ASP.NET MVC runtime. In
this case you might use something like the following snippet to tell ASP.NET MVC to
ignore URLs that start with php-app:

routes.IgnoreRoute("php-app/{*pathInfo}");

Note that if you are going to use the IgnoreRoute() method in your application, it’s
important to place calls to this method before adding standard routes via the Map
Route() method.

Catch-All Routes
Another feature of the URL parsing engine in ASP.NET MVC is the ability to specify a
“catch-all placeholder.” Catch-all placeholders are created by placing an asterisk (*)
character at the beginning of the placeholder and can only be included as the last seg-
ment of a route.

In fact, you saw an example of the catch-all placeholder in action in the previous php-
app example:

routes.IgnoreRoute("php-app/{*pathInfo}");

Catch-all placeholders can also be used in normal mapped routes. For example, you
can use a catch-all placeholder in a search scenario to gather raw search terms:

routes.MapRoute(
 "Default",
 "{controller}/{action}/{*queryValues}",
 new { controller = "Store", action = "Search" }
);

302 | Chapter 14: Advanced Routing

In this route we’ve used the normal controller and action placeholders, but added a
catch-all placeholder to capture everything that follows the controller and action por-
tions of the URL. So, if the requested URL were http://demo.com/store/search/wagon/
RadioFlyer, the routing engine would parse it as shown in Table 14-2.

Thus, if the user types in a URL such as http://demo.com/store/search/wagon/Radio-
Flyer, the routing engine parses the \{controller\} and \{action\} placeholders, then as-
signs any other content after the \{action\} placeholder to a single key in the RouteData
dictionary named queryValues:

Table 14-2. Parsing a catch-all route

Parameter Value

{controller} store

{action} search

{queryValues} wagon/RadioFlyer

You can also use the catch-all parameter to have the routing engine ignore any request
that contains a specific file extension. For instance, if you want the routing engine to
ignore any request for an ASPX file, you could use a catch-all route like this:

routes.IgnoreRoute("{*allaspx}", new {allaspx=@".*\.aspx(/.*)?"});

In this case we’re using an overload of the IgnoreRoute method that takes both the URL
to ignore and a set of expressions that specify values for the URL parameter. The URL
is a catch-all URL that basically says evaluate every URL request, while the expression
assigned to the URL parameter is a regular expression that evaluates whether or not
the request contains a file with the .aspx extension.

Route Constraints
So far we’ve looked at how you can create routes in your application and the different
ways that you can construct URLs using placeholders, but one aspect of the routes
we’ve shown so far is that they do not restrict the values that users can enter. This
means that even if you intend the URL to contain only an int, for example, the user is
free to specify some other type of value, causing model binding to fail for strongly typed
action parameters that expect an int.

Thankfully, the routing engine includes a way to let you put some validation around
the placeholder values, called route constraints.

The MapRoute() method includes a method override that allows you to set constraints
in the placeholders in your route. Much like setting default placeholder values, setting
constraints is as easy as creating a new anonymous type.

In this example, a simple regular expression is used to restrict the values that can be
used as the value of the ID placeholder:

Route Constraints | 303

routes.MapRoute(
 "Default",
 "{controller}/{action}/{id}",
 new { controller = "Home", action = "Index", id = UrlParameter.Optional },
 new { id = "(|Ford|Toyota|Honda)" }
);

while this example restricts the id value to only numeric values:

routes.MapRoute(
 "Default",
 "{controller}/{action}/{id}",
 new { controller = "Home", action = "Index", id = UrlParameter.Optional },
 new { id = "\d+" }
);

and this one restricts it to only three numeric digits:

routes.MapRoute(
 "Default",
 "{controller}/{action}/{id}",
 new { controller = "Home", action = "Index", id = UrlParameter.Optional },
 new { id = "\d{3}" }
);

By using regular expressions to define constraints, you have an immense amount of
power to control the placeholder values.

If a constraint is not met by a route, the routing engine considers that route not to be
a match and continues enumerating the route table looking for a matching route.
Knowing this, you can actually use constraints to help you resolve scenarios where you
have identical route URLs that you want to resolve to different controllers or actions.

The code below shows two routes that have identical URLs set, but different
constraints:

 routes.MapRoute(
 "noram",
 "{controller}/{action}/{id}",
 new { controller = "noram", action = "Index", id = UrlParameter.Optional },
 new { id = "(us|ca)" }
);

routes.MapRoute(
 "europe",
 "{controller}/{action}/{id}",
 new { controller = "europe", action = "Index", id = UrlParameter.Optional },
 new { id = "(uk|de|es|it|fr|be|nl)" }
);

Finally, while the majority of validation use cases can be covered by providing a regular
expression constraint, there are times when you need more complex validation rou-
tines. In those cases you can use the IRouteConstraint interface to create a custom
constraint.

304 | Chapter 14: Advanced Routing

As shown in the following code, the IRouteConstraint interface has a single method,
Match(), that must be implemented:

public class CustomerConstraint : IRouteConstraint
{
 public bool Match(HttpContextBase httpContext, Route route, string parameterName,
 RouteValueDictionary values, RouteDirection routeDirection)
 {
 var cdx = new UsersDataContext();

 //Perform a database lookup
 var result = (from u in cdx.Users
 where u.Username = values["user"]
 select u).FirstOrDefault();

 return result != null;
 }
}

This code shows how you can create a more complex route constraint that performs a
query to verify that the provided value exists in a database. The following code shows
how you would use this custom constraint when creating a route:

routes.MapRoute(
 "Default",
 "{controller}/{action}/{id}",
 new { controller = "Home", action = "Index" },
 new { id = new CustomerConstraint() }
);

Keep in mind that while this is a valid use case for a route constraint, and one that may
be fairly common, in a real-world scenario you would want to make sure that you take
into consideration the performance implications of needing to look up a value on an
application request.

It’s also worth mentioning that there are a number of open source projects that offer
prebuilt route constraints that provide a level of capability beyond what the simple
regular expression provides—which means you don’t have to write your own. One of
those is the ASP.NET MVC Extensions project, which includes a number of routing
constraints such as Range, Positive Int/Long, Guid, and Enum.

Peering into Routes Using Glimpse
Because routing adds a level of indirection to an application, debugging route problems
can be a bit tricky. One really useful tool for letting you see route information at runtime
is Glimpse.

Glimpse includes a Routes tab that shows you not only what routes have been regis-
tered, but also lots of other information, like which route was matched to load the
current page, what the default values and constraints are for defined routes, and what

Route Constraints | 305

http://mvcextensions.codeplex.com/

the actual values are for route placeholders. Figure 14-1 shows the Routes tab in
Glimpse.

Figure 14-1. The Routes tab in Glimpse

Attribute-Based Routing
Using the MapRoute() method is a simple way to register routes for your application,
but it does have some drawbacks. Routing registration code is isolated from the actual
controllers and actions that they are ultimately mapping to, which in large applications
can be a maintenance headache.

One way to work around this issue is to use a technique called attribute-based rout-
ing. This simple technique builds on top of the base routing engine, combining it with
standard .NET attributes, and it allows you to apply specific routes directly to actions
by adorning them with custom attributes.

To show how this technique works, let’s build a simple route attribute. To do this we’re
going to need to build two pieces of infrastructure:

• An attribute class

• A class that generates new routes from those attributes

To start, let’s build the new RouteAttribute class that derives from System.Attribute:

[AttributeUsage(AttributeTargets.Method, Inherited = true, AllowMultiple = true)]
public class RouteAttribute : Attribute
{
 /// <summary>

306 | Chapter 14: Advanced Routing

 /// JSON object containing route data part constraints
 /// </summary>
 public string Constraints { get; set; }

 /// <summary>
 /// JSON object containing route data part defaults
 /// </summary>
 public string Defaults { get; set; }

 /// <summary>
 /// URL routing pattern, including route data part placeholders
 /// </summary>
 public string Pattern { get; set; }

 public RouteAttribute(string pattern)
 {
 Pattern = pattern;
 }
}

The RouteAttribute class exposes a few simple properties for defining the route’s URL,
default placeholder values, and placeholder constraints. That’s all there is to it: the
attribute portion of our attribute-based routing sample is done.

To use the attribute, you simply decorate an action in your controller like so:

[Route("auctions/{key}-{title}/bids")]
public ActionResult Auctions(string key, string title)
{
 // Retrieve and return the Auction
}

In this case, the Route attribute is simply defining the routing pattern that should map
to this controller action. You could use the other attribute properties to set default
placeholder values or placeholder constraints. You can even apply more than one
Route attribute in order to map multiple routes to the same action.

Next, we need to create a way for our application to turn the RouteAttribute we’ve
applied into real route registrations. For that, we’ll create a new class called RouteGen
erator.

The constructor of our RouteGenerator class will require us to pass in a number of
parameters, including the RouteCollection instance, the current RequestContext, and
a collection of all the controller actions in the application. In the constructor, we’re
also going to create a new instance of the JavaScriptSerializer object, which will allow
us to serialize and deserialize JSON objects:

public RouteGenerator(
 RouteCollection routes, RequestContext requestContext,
 ControllerActions controllerActions
)
{
 _routes = routes;
 _controllerActions = controllerActions;

Attribute-Based Routing | 307

 _requestContext = requestContext;

 _javaScriptSerializer = new JavaScriptSerializer();
}

Next, we need a method that generates new routes:

public virtual IEnumerable<RouteBase> Generate()
{
 IEnumerable<Route> customRoutes =
 from controllerAction in _controllerActions
 from attribute in controllerAction.Attributes.OfType<RouteAttribute>()
 let defaults = GetDefaults(controllerAction, attribute)
 let constraints = GetConstraints(attribute)
 let routeUrl = ResolveRoute(attribute, defaults)
 select new Route(routeUrl, defaults, constraints, new MvcRouteHandler());

 return customRoutes;
}

The Generate() method takes the list of controller actions and uses a LINQ query to
select all those that have been marked with the RouteAttribute, registering a new route
for each of them. In order to accomplish this, the LINQ query applies a number of
helper methods whose job it is to retrieve the attribute’s properties, URL, default values,
and constants, and convert them into values that the new route instance understands.

Example 14-1 shows the RouteGenerator class in its entirety.

Example 14-1. RouteGenerator

public class RouteGenerator
{
 private readonly RouteCollection _routes;
 private readonly RequestContext _requestContext;
 private readonly JavaScriptSerializer _javaScriptSerializer;
 private readonly ControllerActions _controllerActions;

 public RouteGenerator(
 RouteCollection routes, RequestContext requestContext,
 ControllerActions controllerActions
)
 {
 Contract.Requires(routes != null);
 Contract.Requires(requestContext != null);
 Contract.Requires(controllerActions != null);

 _routes = routes;
 _controllerActions = controllerActions;
 _requestContext = requestContext;

 _javaScriptSerializer = new JavaScriptSerializer();
 }

 public virtual IEnumerable<RouteBase> Generate()

308 | Chapter 14: Advanced Routing

D
ow

n
lo

a
d
 f
ro

m
 W

o
w

!
e
B
o
o
k

<
w

w
w

.w
o
w

e
b
o
o
k.

co
m

>

 {
 IEnumerable<Route> customRoutes =
 from controllerAction in _controllerActions
 from attribute in controllerAction.Attributes.OfType<RouteAttribute>()
 let defaults = GetDefaults(controllerAction, attribute)
 let constraints = GetConstraints(attribute)
 let routeUrl = ResolveRoute(attribute, defaults)
 select new Route(routeUrl, defaults, constraints, new MvcRouteHandler());

 return customRoutes;
 }

 private RouteValueDictionary GetDefaults(
 ControllerAction controllerAction,
 RouteAttribute attribute
)
 {
 var routeDefaults = new RouteValueDictionary(new {
 controller = controllerAction.ControllerShortName,
 action = controllerAction.Action.Name,
 });

 if (string.IsNullOrWhiteSpace(attribute.Defaults) == false)
 {
 var attributeDefaults =
 _javaScriptSerializer.Deserialize<IDictionary<string, object>>(
 attribute.Defaults);

 foreach (var key in attributeDefaults.Keys)
 {
 routeDefaults[key] = attributeDefaults[key];
 }
 }

 return routeDefaults;
 }

 private RouteValueDictionary GetConstraints(RouteAttribute attribute)
 {
 var constraints =
 _javaScriptSerializer.Deserialize<IDictionary<string, object>>(
 attribute.Constraints ?? string.Empty);

 return new RouteValueDictionary(constraints ?? new object());
 }

 private string ResolveRoute(
 RouteAttribute attribute,
 RouteValueDictionary defaults
)
 {
 // An explict URL trumps everything
 string routeUrl = attribute.Pattern;

 // If one doesn't exist, try to figure it out

Attribute-Based Routing | 309

 if (string.IsNullOrEmpty(routeUrl))
 routeUrl = _routes.GetVirtualPath(_requestContext, defaults).VirtualPath;

 if ((routeUrl ?? string.Empty).StartsWith("/"))
 routeUrl = routeUrl.Substring(1);

 return routeUrl;
 }
}

Finally, we need to wire up the RouteGenerator class so that it is able to run and register
all of the routes when the application starts. To do this, we’ll create a new instance of
RouteGenerator in the RegisterRoutes() method, tell it to generate all of the routes, and
then simply loop through them, inserting each route into the RouteTable:

var routeGenerator = new RouteGenerator(routes,
 HttpContext.Current.Request.RequestContext,
 ControllerActions.Current);

var actionroutes = routeGenerator.Generate();

foreach (var route in actionroutes)
{
 RouteTable.Routes.Insert(0, route);
}

With the RouteGenerator in place, we can now register routes simply by decorating our
actions with attributes, instead of having them isolated from the actions. Obviously,
the RouteGenerator shown here is merely one way to accomplish this. There are actually
a number of good open source projects available that take attribute-based route regis-
tration to the next level, so if you don’t feel like writing your own implementation, you
can quickly and easily add one of these libraries to your application.

Extending Routing
At this point, you should have a fairly extensive understanding of how to create routes
in an ASP.NET MVC application, and it’s likely that what you’ve learned so far will be
all you ever need to know. However, there are times when the built-in capabilities of
ASP.NET MVC are simply not enough.

Thankfully, the framework was designed in such a way that there are multiple exten-
sibility points throughout, including in the routing engine. In this section, we will look
at some of the lower-level details of the routing pipeline and talk about some of the
extensibility points it offers.

The Routing Pipeline
We’ll start by looking in more detail at the ASP.NET MVC pipeline (Figure 14-2).

310 | Chapter 14: Advanced Routing

Figure 14-2. The ASP.NET MVC pipeline

First, the incoming request is handled by the UrlRouteModule, which is responsible for
matching the requested URL to a route in the application. If the module finds a match,
it creates an instance of the IRouteHandler associated with the route. By default in
ASP.NET MVC, this is an instance of the MvcRouteHandler class. It’s the job of the
IRouteHandler to return an instance of the HTTP handler that will actually handle the
incoming request.

You can probably guess that in ASP.NET, the default IRouteHandler is the MvcRoute
Handler and the default Http hander it creates is the MvcHandler. This HTTP handler
uses a controller factory to create a new instance of the correct controller class. The
amazing part about this pipeline is there are extensibility points along the entire path.
It’s entirely possible to derive from the UrlRouteModule to add additional functionality
to its route mapping behavior, or to plug in your own implementation of the IRoute
Handler or IHttpHandler interfaces.

Let’s look at a simple custom route handler class:

public class SimpleRouteHandler : IRouteHandler
{
 public IHttpHandler GetHttpHandler(RequestContext requestContext)
 {
 return new SimpleHandler(requestContext);
 }
}

Extending Routing | 311

As this example shows, the IRouteHandler interface has a single method that you
must implement called GetHttpHandler(). Inside this method, you can control which
IHttpHandler is instantiated and used to process the route. MvcRouteHandler normally
creates an instance of the MvcHandler class, but with a custom IRouteHandler, you can
instantiate instances of your own custom handler classes. In this sample, we created a
new SimpleHandler class, passing in the requestContent to its constructor and then
returning the handler.

The following code shows how you can register the newly created SimpleRoute
Handler with your application:

routes.Add(new Route("{controller}/{action}/{id}", new SimpleRouteHandler()));

As you can see, one of the Route class’s constructors takes a route handler as a param-
eter. If this route is chosen by the UrlRoutingModule, it will know to create an instance
of the SimpleRouteHandler, instead of defaulting to the MvcRouteHandler.

Now let’s take a look at a real-world example of how building your own route handler
can be useful. When you work in an organization that has been around for more than
a few years, you may occasionally have to deal with legacy Component Object Model
(COM) objects that provide functionality on which your site depends. Though
the .NET Framework makes it easy to call COM components, this kind of interaction
is not quite as simple as interacting with native .NET Framework objects.

For example, in the ASP.NET runtime, each request is handled in its own thread, and
when it comes to dealing with COM, each of these threads is its own “multithreaded
apartment,” or MTA.

However, VB6 COM components are not compatible with ASP.NET’s COM MTAs;
thus, every time an ASP.NET request interacts with one of these COM objects, COM
must execute these requests through a “single-threaded apartment,” or STA. This sit-
uation can result in a serious bottleneck because, as the name implies, each application
can have only one STA, and this becomes the bottleneck that all COM requests must
wait in line to execute against.

It’s very simple to find out the apartment state of your request by using the GetApart
mentState() method, as shown by the following code:

public string ThreadState()
{
 var thread = System.Threading.Thread.CurrentThread;
 ApartmentState state = thread.GetApartmentState();
 return state.ToString();
}

If you run this method in a normal ASP.NET application, you will see that it spits out
“MTA” to the browser.

By design, COM doesn’t spin up multiple STA threads per request. When the first
request comes in, COM creates the STA thread to process it. Then, for each subsequent

312 | Chapter 14: Advanced Routing

request, rather than spinning up a new thread, COM queues up the calls with the same
thread.

ASP.NET Web Forms offers a simple solution: the AspCompat page directive. If you set
the AspCompat directive to true on a Web Forms page, COM gets access to the page’s
request and response objects, along with creating and using a pool of STA threads. This
also lets the COM objects that are registered with ThreadingModel="Apartment" be cre-
ated in their creators’ apartments, provided the creators are running in STAs them-
selves. The advantage to this is, because the COM object shares the apartment with
the creator, multiple requests can now execute in parallel without any bottlenecks.

Unfortunately, ASP.NET MVC doesn’t offer anything that works like AspCompat out of
the box, so you need to implement your own solution to mimic the behavior of the
AspCompat directive. This is a perfect opportunity for you to create your own custom
route handler that allows the request thread to be run in an STA instead of an MTA.

Let’s take a look at how we can create some custom logic using the extensibility points
of ASP.NET MVC to mimic the AspCompat directive in an ASP.NET MVC application.
We’ll start by creating a new route handler that redirects incoming URL requests to
our custom HTTP handler class:

public class AspCompatHandler : IRouteHandler
{
 protected IHttpHandler GetHttpHandler(RequestContext requestContext)
 {
 return new AspCompatHandler(requestContext);
 }
}

As shown earlier, in the AspCompatHandler class we are using the GetHttpHandler to
provide ASP.NET MVC, an instance of the AspCompatHandler, which is what we want
to use to route incoming requests.

Next, we can create the AspCompatHandler. To do that, we start by creating a new class
derived from the System.Web.UI.Page class. By deriving from the standard Web Forms
Page class, we can access ASP.NET’s AspCompat directive:

public class AspCompatHandler : System.WebForms.UI.Page
{
 public AspCompatHandler(RequestContext requestContext)
 {
 this.RequestContext = requestContext;
 }

 public RequestContext RequestContext { get; set; }

 protected override void OnInit(EventArgs e)
 {
 string requiredString = this.RequestContext.RouteData.GetRequiredString↵
 ("controller");
 var controllerFactory = ControllerBuilder.Current.GetControllerFactory();
 var controller = controllerFactory.CreateController(this.RequestContext,↵

Extending Routing | 313

 requiredString);
 if (controller == null)
 throw new InvalidOperationException("Could not find controller: " ↵
 + requiredString);
 try
 {
 controller.Execute(this.RequestContext);
 }
 finally
 {
 controllerFactory.ReleaseController(controller);
 }
 this.Context.ApplicationInstance.CompleteRequest();
 }
}

In this class, we override the OnInit() method to add the code that finds and executes
the controller we want to process the request. This mimics the basic behavior of the
standard MvcHandler class, which is normally used to route requests. We are also going
to override the Page class’s ProcessRequest() method and make sure it won’t get called
accidentally.

Once we have the basic route class created, we need to add an implementation
of the IHttpAsyncHandler interface to the class. Implementing this interface is what
allows ASP.NET MVC to use the AspCompatHandler class as a route handler. The
IHttpAsyncHandler interface has two methods that we need to implement, the Begin
ProcessRequest() and EndProcessRequest() methods, which we will use to tell
ASP.NET to process the request using the AspCompat directive:

public IAsyncResult BeginProcessRequest(HttpContext context, AsyncCallback cb, ↵
object extraData)
{
 return this.AspCompatBeginProcessRequest(context, cb, extraData);
}

public void EndProcessRequest(IAsyncResult result)
{
 this.AspCompatEndProcessRequest(result);
}

You can see that using the IHttpAsyncHandler methods, we are simply passing the re-
quest to the AspCompatBeginProcessRequest() method and then receiving the result back
from the AspCompatEndProcessRequest() method (both of which are exposed by the
Page class).

Now that we have the route handler written, the final piece to the puzzle is to attach
this RouteHandler to a route definition:

context.MapRoute("AspCompatRoute", "{controller/{action}",
 new { controller = "Home", action = "Index"}
).RouteHandler = new AspCompatHandler();

314 | Chapter 14: Advanced Routing

If you now run the same code to retrieve the current ApartmentState, you’ll see that the
controller is now executing in STA mode.

And, since requests are running in STA threads, COM doesn’t have to create its own
STA threads in order to execute calls to COM components. Further, since the COM
components live in their creators’ STAs, they can all execute independently of each
other, allowing for true parallel execution.

Summary
This chapter introduced you to the major concepts of routes and routing in the
ASP.NET MVC Framework. We started by explaining why thinking about the URLs
of your application is important, both from a usability standpoint and from an SEO
standpoint.

We then moved on to demonstrate how to create new routes by using the RouteTa
ble.MapRoute() method, which adds routes to the static RouteTable dictionary, as well
as how to form different structures of route URL.

Next, we looked at how to create and use route constraints to control the values the
users can submit to your applications via routes, as well as how to create custom route
constraints for your application.

Finally, we looked at an alternative way to create routes using an attribute-based
approach, as well as some of the lower-level extensibility points in the ASP.NET MVC
routing pipeline. You should now understand routing in the ASP.NET MVC
Framework.

Summary | 315

CHAPTER 15

Reusable UI Components

So far, you have seen a variety of options for creating reusable components for your
ASP.NET MVC application. However, these options allow you to create views or ac-
tions that can be reused only within a single project. In other words, they are more
“shareable” components than truly “reusable ones,” since you cannot use them outside
of your project without resorting to “code reuse” (aka “copy/paste”).

In this chapter, you’ll learn how to create truly reusable components that can be used
as a library across different projects.

What ASP.NET MVC Offers out of the Box
Before we take a deep dive into creating cross-project reusable components, let’s take
a quick look at what ASP.NET MVC offers out of the box.

Partial Views
Partial views allow you to create reusable content. In order to remain truly reusable,
partial views should contain little or no functional logic, as they represent a modular
unit of layout in a larger view. Partial views are files that have the same .cshtml
or .vbhtml extension but are created under the /Views/Shared/ folder. To render them,
you use the syntax @Html.Partial("_partialViewName") as shown below:

 @Html.Partial("_Auction")

HtmlHelper Extensions or Custom HtmlHelpers
Custom HTML helpers are extension methods applied to the HtmlHelper class that can
be used in views to output clean HTML. They follow the same rules as partial views—
i.e., having no functional logic and representing a small unit of layout—but are more
focused. A common example is an HTMLHelper extension that renders a text box along
with a matching label, often for accessibility purposes:

317

@Html.TextBoxAccessible("FirstName", @Model.FirstName)

And here’s the corresponding extension code:

public static class HtmlHelperExtensions
{
 public static HtmlString TextBoxAccessible(this HtmlHelper html, string id, ↵
 string text)
 {
 return new HtmlString(html.Label(id)
 + html.TextBox(id, text).ToString());
 }
}

Display and Editor Templates
Display and editor templates were introduced in ASP.NET MVC 2 and allow you to
create strongly typed views such as:

@Html.DisplayFor(model => model.Product)

Display and editor templates are partial views located in the DisplayTemplates or Edi-
torTemplates subfolders under the controller (or under Views\Shared). For example, if
you create a partial view called Product.cshtml in Views\Shared\DisplayTemplates or
Views\Product\DisplayTemplates, with some markup to display a “Product” in a certain
way, @Html.DisplayFor(model ⇒ model.Product) will use this DisplayTemplate to render
a Product:

@model Product

@if (Model != null) {
 <!-- Markup to render a product -->
}

If it cannot match a type to a template, it’ll fall back to the .ToString() representation
of the object.

Since they are often tied to a specific model, these templates can contain a certain
amount of business logic. Being strongly typed, they also help catch errors during com-
pile time, rather than at runtime.

Html.RenderAction()
The RenderAction() helper method executes a controller action and then inserts the
HTML output into the parent view. Because of this, RenderAction() allows for reuse of
functional logic as well as layout. This HTML helper is used when the layout is complex
and often when the business logic needs to be reused.

318 | Chapter 15: Reusable UI Components

Taking It a Step Further
The previously discussed options work well when it comes to reusing a component
within the same application. Multiple controller actions can reference the same view
when the shared view lives in the same folder as the other views for that controller or
in the website’s Shared folder, and different views can call custom helpers within them-
selves to reuse the presentation logic. But how do you share views/components across
projects?

In the ASP.NET Web Forms world, you can achieve this by creating user controls or
custom controls that can be compiled into standalone assemblies. These assemblies
can be distributed across projects, thereby enabling their reuse across projects.

The Web Forms view engine offers the ViewUserControl class, which can be leveraged
to create such components for the MVC framework. The Razor view engine in
ASP.NET MVC, however, does not offer any such method out of the box. In this sec-
tion, you’ll see how you can achieve something similar using the Razor API.

The Razor Single File Generator
Razor views are really just fancy designers that eventually generate .NET code that can
be compiled into assemblies, and compiled assemblies are certainly reusable across
projects! Thus, what you need is a tool that can take the Razor views that you author
in a separate project and run the Razor API directly against them to generate .NET
code. Though this chapter gives you all the information you need to build such a tool,
the good news is that you don’t have to. Some folks in the open source community
have already created it for you!

Installing the Razor Single File Generator

Though the complete source code is hosted on CodePlex, the Razor Single File Gen-
erator installer is available in the Visual Studio Extensions Gallery, so the easiest way
to get started with the Generator is to install it from the Gallery. Open the Visual Studio
Extension Manager (Tools→Extension Manager…) and search the Online Gallery for
“Razor Generator,” as shown in Figure 15-1.

After the Razor Generator is installed (be sure to restart Visual Studio!), create a new
project to house the shared views. Aside from the fact that you will be applying a custom
tool to your view files, there is nothing special about this new project. Just create a new
Class Library project (as shown in Figure 15-2) in the solution that you’ve been working
in and name it ReusableComponents.

Taking It a Step Further | 319

Figure 15-1. Installing the Razor Generator in the Extension Manager

Figure 15-2. Creating the new Class Library project for reusable views

320 | Chapter 15: Reusable UI Components

Creating Reusable ASP.NET MVC Views
One of the most widely used scenarios for a view that is shared across projects is a
generic error page. So let’s create one and see how the Razor Single File Generator
handles ASP.NET MVC views.

Creating reusable ASP.NET MVC views with the Razor Single File Generator is almost
the same as creating views within an ASP.NET MVC project itself. When you create a
folder structure similar to the ~/Views folder convention that ASP.NET MVC expects,
the only thing you have to do is associate the views with the Razor Single File Generator
by setting each view’s Custom Tool property to RazorGenerator.

Since the new ReusableComponents class library is not an ASP.NET MVC project, it
will not have the ~/Views folder, so go ahead and create one. The new view you are
about to add will be used across multiple controllers, so the class library’s folder struc-
ture should reflect this: create another folder directly under ~/Views named Shared,
mirroring the ASP.NET MVC application folder convention. When you’re done, the
ReusableComponents class library should look like Figure 15-3.

Figure 15-3. The ReusuableComponents project with the ~/Views folder structure

Now that the folder structure is in place, add a new file named GenericError.cshtml to
the Shared folder by right-clicking on it and selecting Add→New Item… from the con-
text menu. Since the project is a Class Library project and not an ASP.NET MVC
project, Visual Studio will refuse to show the MVC 4 View Page (Razor) item type.
That’s OK; just choose another plain-content item type such as Text File or HTML
Page. Since your new item (GenericError.cshtml) has the .cshtml file extension, Visual
Studio will know that it is a Razor template.

Though Visual Studio recognizes the new file as a Razor template, you need to tell the
Razor Single File Generator to start generating code from that template. To wire up the
Generator, open up the properties for the GenericError.cshtml file and set its Custom
Tool property to RazorGenerator. Figure 15-4 shows a properly configured Razor
Generator.

Taking It a Step Further | 321

Figure 15-4. Setting the RazorGenerator Custom Tool property

Completely replace any content in the new GenericError.cshtml file with the following
Razor markup:

@{ Layout = null; }
<html>
<head>
 <title>Website Error!</title>
 <style>
 body { text-align: center; background-color: #6CC5C3; }
 .error-details .stack-trace { display: none; }
 .error-details:hover .stack-trace { display: block; }
 </style>
</head>
<body>
 <h2>We're sorry, but our site has encountered an error!</h2>

@if (ViewData["ErrorMessage"] != null) {
 <div class="error-details">
 <h2>@ViewData["ErrorMessage"]</h2>
 <div class="stack-trace">@ViewData["StackTrace"]</div>
 </div>
}
</body>
</html>

Immediately after you specify the Custom Tool property, you should see that the Razor
Single File Generator has generated the class GenericError.cs, grouped underneath
GenericError.cshtml (Figure 15-5).

Figure 15-5. New file generated by the Razor Generator

322 | Chapter 15: Reusable UI Components

If you do not see the generated file, something has gone wrong! Be sure
that you have spelled the name of the custom tool correctly (RazorGen
erator, with no spaces). If it still does not work, try going back and
following the steps from the beginning of this section. Make sure that
you restart Visual Studio after installing the Razor Generator tool and
check all the installation logs to make sure that there were no errors
during installation.

Feel free to open this new file and inspect its generated contents. The generated code
acts like any other code, compiling into an assembly that you can share with any number
of websites.

Including Precompiled views in an ASP.NET MVC web application

After following the steps in this section you are left with a project library filled with
precompiled ASP.NET MVC Razor views. So now what? Due to the standard conven-
tions that the ASP.NET MVC Razor view engine uses, the view engine will not be able
to locate views outside of its standard search paths (the Views folders in the ASP.NET
MVC web application), so it has no idea that your precompiled views even exist, let
alone how to execute them.

The answer to this problem is to use the PrecompiledMvcEngine, a custom view engine
built by the developers of the Razor Single File Generator that extends the core Razor
view engine to look for precompiled views. The easiest way to begin using the Precom
piledMvcEngine is to use the NuGet Package Manager to install the Precom-
piledMvcEngine package to the class library project that contains your precompiled
views. The PrecompiledMvcEngine package adds several artifacts to your project:

Several web.config files
The Razor API and Visual Studio Razor IntelliSense assume that Razor views live
within a web application project, and read their configuration information from
the project’s web.config files. Even though your project is a class library project,
the web.config files that the PrecompiledMvcEngine package adds give Visual Studio
enough information to enable Razor IntelliSense, even for views that use the Razor
Single File Generator.

A sample Razor view
The PrecompiledMvcEngine package adds a sample Razor view named
Test.cshtml in the project’s ~/Views/Home folder to show how precompiled views
should be configured. If everything is working properly, you should see this view
generate a code-behind (Test.cs) file immediately. The Test.cshtml view is just a
reference, so you can modify it as you wish, rename it, or even delete it entirely.

~/App_Start/PrecompiledMvcViewEngineStart.cs
Though its name is not important, the PrecompiledMvcViewEngineStart.cs file
contains logic (shown below) that tells your ASP.NET MVC application to use the
PrecompiledMvcEngine for all the precompiled Razor views in this class library

Taking It a Step Further | 323

project. The PrecompiledMvcViewEngineStart.cs file also includes the WebActiva
tor.PreApplicationStartMethod attribute, which tells the WebActivator library to
execute the PrecompiledMvcViewEngineStart.Start() method when the web appli-
cation starts up, registering the PrecompiledMvcEngine in the web application’s
ViewEngines collection. The contents of the PrecompiledMvcViewEngineStart.cs file
look like this:

[assembly: WebActivator.PreApplicationStartMethod(
 typeof(ReusableComponents.App_Start.PrecompiledMvcViewEngineStart),
 "Start"
)]

public static class PrecompiledMvcViewEngineStart {
 public static void Start() {
 var currentAssembly = typeof(PrecompiledMvcViewEngineStart).Assembly;
 var engine = new PrecompiledMvcEngine(currentAssembly);
 ViewEngines.Engines.Insert(0, engine);
 VirtualPathFactoryManager.RegisterVirtualPathFactory(engine);
 }
}

Once the PrecompiledMvcViewEngine NuGet package is installed and you’ve moved
the ~/Views/Home/Index.cshtml file from the sample blog site to the ReusableCompo-
nents class library project, you should be able to run the website and see that everything
works just as it did before. ASP.NET MVC now executes the precomplied In-
dex.cshtml file from the class library, not caring that the file did not exist in its local ~/
Views folder. But how did the PrecompiledMvcViewEngine know which view to render?

We’ve seen that the PrecompiledMvcViewEngine knows how to render precompiled Ra-
zor views in an ASP.NET MVC application and that PrecompiledMvcViewEngineStart
takes care of registering the PrecompiledMvcViewEngine with the web application, so
there is only one missing piece in the puzzle: locating the precompiled view. Though
it may be surprising, the PrecompiledMvcViewEngine still relies on the ASP.NET MVC
Views folder convention, using relative file paths to locate the views. However, this is
slightly misleading. The PrecompiledMvcViewEngine doesn’t look at physical files—it
looks for the System.Web.WebPages.PageVirtualPathAttribute that the Razor Single File
Generator adds to every view that it generates, which includes the view’s relative file
path.

The following shows the first few lines of the sample view, Test.cshtml, which includes
that PageVirtualPathAttribute:

[System.Web.WebPages.PageVirtualPathAttribute("~/Views/Home/Test.cshtml")]
public class Test : System.Web.Mvc.WebViewPage<dynamic>

Since the virtual path name is relative, regardless of whether the ~/Views/Home/
Test.cshtml view resides in the ASP.NET MVC application or in the class library project,
its virtual path is the same. Thus, when the ASP.NET MVC application requests the
Test view in the Home Controller, the PrecompiledMvcViewEngine knows to use the pre-
compiled Test.cshtml view registered with the virtual path ~/Views/Home/Test.cshtml.

324 | Chapter 15: Reusable UI Components

Be sure to add the PrecompiledMvcEngine package to the class library
project that contains your precompiled views, not your ASP.NET MVC
web application project. Your web application will need the Pre-
compiledMvcEngine assembly at runtime, but the artifacts that the Nu-
Get package installs to your package are only meant for class library
projects that contain precompiled Razor views.

Creating Reusable ASP.NET MVC Helpers
You can also apply the Razor Single File Generator to Razor templates that include
Razor helpers to produce a similar result as if the templates resided in an ASP.NET
MVC application’s App_Code folder.

The Razor Single File Generator expects Razor helper templates to live in the ~/Views/
Helpers folder, so before you can create any helpers you’ll need to create this folder.
After you create the Helpers folder, follow the same steps you followed earlier to add a
Razor template file to the new Helpers folder. Name the file TwitterHelpers.cshtml.
Then set the Custom Tool property to RazorGenerator, just as you did for the ASP.NET
MVC view template.

Immediately after setting the property, you should see the autogenerated file Twitter-
Helpers.cs. Open the file and take a look: the Razor Generator has successfully parsed
the empty Razor template and generated a C# class for you, ready to hold some helper
functions.

An empty class doesn’t do you any good, however, so let’s create a helper function
using the standard Razor syntax:

@helper TweetButton(string url, string text) {
 <script src="http://platform.twitter.com/widgets.js" type="text/javascript">
 </script>
 <div>
 <a href="http://twitter.com/share" class="twitter-share-button"
 data-url="@url" data-text="'@text'">Tweet
 </div>
}

Saving the file and switching back to the generated TwitterHelpers.cs file shows that
it’s been updated again in real time. This time the static helper class contains the code
for our custom TweetButton helper. Example 15-1 contains the complete autogenerated
code (the comments and some whitespace have been removed for better readability).

Example 15-1. Auto-generated MvcHelper code

namespace ReusableComponents.Views.Helpers
{
 using System;
 using System.Collections.Generic;
 using System.IO;
 using System.Linq;
 using System.Net;

Taking It a Step Further | 325

 using System.Text;
 using System.Web;
 using System.Web.Helpers;
 using System.Web.Mvc;
 using System.Web.Mvc.Ajax;
 using System.Web.Mvc.Html;
 using System.Web.Routing;
 using System.Web.Security;
 using System.Web.UI;
 using System.Web.WebPages;

 [System.CodeDom.Compiler.GeneratedCodeAttribute("RazorGenerator", "1.1.0.0")]
 public static class TwitterHelpers
 {
 public static System.Web.WebPages.HelperResult
 TweetButton(string url, string text) {
 return new System.Web.WebPages.HelperResult(__razor_helper_writer => {
 WebViewPage.WriteLiteralTo(@__razor_helper_writer,
 "<script src=\"http://platform.twitter.com/widgets.js\" "+
 "type=\"text/javascript\">" +
 "</script>\r\n");

 WebViewPage.WriteLiteralTo(@__razor_helper_writer,
 "<div>\r\n" +
 "<a href=\"http://twitter.com/share\" "+
 "class=\"twitter-share-button data-url=\""
);

 WebViewPage.WriteTo(@__razor_helper_writer, url);

 WebViewPage.WriteLiteralTo(@__razor_helper_writer, "\" data-text=\"\'");

 WebViewPage.WriteTo(@__razor_helper_writer, text);

 WebViewPage.WriteLiteralTo(@__razor_helper_writer,
 "\'\">Tweet\r\n" +
 "</div>\r\n"
);
 });
 }
 }
}

With the autogenerated class in place, ASP.NET MVC websites that reference the
ReusableComponents assembly will be able to use the TweetButton helper just like any
other helper method defined in the website’s App_Code folder.

For example:

@using ReusableComponents.Views.Helpers
<div>
 @TwitterHelpers.TweetButton(url, message)
</div>

326 | Chapter 15: Reusable UI Components

Unit Testing Razor Views
Many best practices advocate keeping the logic in your views as limited and simple as
possible. However, the ability to execute unit tests against Razor-based MVC views can
still be beneficial in some scenarios.

Take a look at the code snippet below for an example of an ASP.NET MVC Razor view:

<p>
 Order ID:
 @Model.OrderID
</p>
<p>
 Customer:
 @(Html.ActionLink(
 @Model.CustomerName,
 "Details", "Customer",
 new { id = @Model.CustomerID },
 null))
</p>

The default ASP.NET MVC Razor view class exposes properties such as Model, Html,
etc., that this view relies on. Thus, in order to compile and execute the view outside of
the ASP.NET MVC runtime, you must create a custom template base class that imple-
ments these properties as well. This next example contains a snippet from the OrderIn
foTemplateBase class, modified to include the Model and Html properties so that it may
be used to compile the previous view:

public abstract class OrderInfoTemplateBase
{
 public CustomerOrder Model { get; set; }
 public HtmlHelper Html { get; set; }
}

The OrderInfoTemplateBase class now fulfills the template’s dependencies on the
ASP.NET MVC base classes, causing it to act as a stand-in for the ASP.NET MVC base
classes. Introducing custom base classes such as OrderInfoTemplateBase provides you
with complete control over the properties and functionality provided to the template.
Custom base classes also alleviate the need to execute ASP.NET MVC views within the
ASP.NET MVC runtime.

Example 15-2 shows the power of swapping production components with mock
objects.

Example 15-2. Unit test executing a Razor template instance using mock objects

public void ShouldRenderLinkToCustomerDetails()
{
 var mockHtmlHelper = new Mock<HtmlHelper>();
 var order = new CustomerOrder()
 {
 OrderID = 1234,
 CustomerName = "Homer Simpson",

Unit Testing Razor Views | 327

 };

 // Create the instance and set the properties
 var template = (OrderInfoTemplateBase)Activator.CreateInstance(/*...*/);

 template.Html = mockHtmlHelper.Object;
 template.Model = customerOrder;

 template.Execute();

 // Verify that the link was generated
 mockHtmlHelper.Verify(htmlHelper =>
 htmlHelper.ActionLink(
 order.CustomerName,
 "Details", "Customer",
 It.IsAny<object>()
);
}

By replacing the production HtmlHelper class with a mock implementation, the unit
test can easily make assertions against—and therefore confirm the validity of—code in
the view without relying on the ASP.NET MVC runtime.

If you are using the Razor Single File Generator to create reusable views,
you do not need to use reflection-based approaches such as Activa
tor.CreateInstance().

Since the Razor Single File Generator generates actual classes, all you
need to do is create a new instance of the class (e.g., var template = new
CustomerOrderTemplate();) and run tests against the new instance.

The ability to inject mock and stub objects to take the place of production types is a
great boon for unit tests. Without this ability, most sites must resort to running all UI
tests through slow and unreliable browser-based testing. In stark contrast, injecting
mock and stub objects allows developers to create unit tests that execute in mere
milliseconds.

Summary
ASP.NET MVC offers many ways to create reusable components. Partial views, display
and editor templates, HTML helpers/functions, and RenderAction() offer easy ways to
reuse components within a single project. Using the Razor API, it is also possible to
create reusable components that can be shared across projects. This chapter walked
you through installing and using the Razor Single File Generator to create reusable
views. Finally, you learned how to unit test the views, using mock objects.

328 | Chapter 15: Reusable UI Components

PART IV

Quality Control

CHAPTER 16

Logging

Software bugs are a fact of life—no matter how much thought you put into your ap-
plication’s architecture or how well you write your code, sooner or later you will ex-
perience issues.

In order to minimize the impact that these errors can have on your site, you need to
treat error handling and logging just like you would treat any other important feature:
by planning to put it into your project and your application design as early as possible.

In this chapter, we’ll take a look at the error handling, logging, and monitoring tools
that you can use to help increase your application’s performance, and we’ll track down
issues when they arise.

Error Handling in ASP.NET MVC
There are plenty of things that can go wrong when your application is busy processing
an HTTP request. Fortunately, ASP.NET MVC makes it relatively easy to handle all of
these situations with ease.

Since ASP.NET MVC applications run on top of the core ASP.NET Framework, they
have access to the same core framework capabilities as Web Forms applications, in-
cluding the ability to set up a custom error page to handle specific status codes when
they occur.

Let’s see how to deal with errors in your ASP.NET MVC web application by deliberately
introducing an exception to the Ebuy reference application. To introduce the excep-
tion, open up the HomeController and add code to throw a new exception into the
About controller action:

public ActionResult About()
{
 ViewBag.Message = "Your quintessential app description page.";

 throw new Exception("Something went wrong!");
}

331

To trigger this exception, simply run your site and navigate to the /home/about URL,
which should greet you with the standard ASP.NET error page (Figure 16-1).

Figure 16-1. Standard ASP.NET error page

Now that the site is producing an exception, let’s add the proper error handling to deal
with it!

Enabling Custom Errors
The first step to handling errors in an ASP.NET MVC application is the same as in any
ASP.NET application: enabling ASP.NET’s custom errors feature.

This feature offers three modes:

On
Enables custom error handling, displaying the custom error pages when different
errors occur.

Off
Disables custom error handling, displaying the default diagnostic error page when-
ever an error occurs.

RemoteOnly
Enables custom error handling, but only for requests that originate from a remote
machine. If you access your application from the server it’s hosted on, you will see
the default diagnostic error page to help debug issues with your application. Your
users, however, will continue to see the custom error pages.

To enable custom errors, simply change the mode attribute of the system.web > custom
Errors configuration setting in the application’s web.config file to either On or
RemoteOnly:

332 | Chapter 16: Logging

<customErrors mode="On" defaultRedirect="GenericErrorPage.htm">
 <error statusCode="404" redirect="~/error/notfound"></error>
</customErrors>

With this configuration in place, the next step is to enhance the default ASP.NET MVC
error handling experience.

Handling Errors in Controller Actions
While enabling custom error handling gives you the ability to display a custom error
page whenever an error occurs in your site, there may be times when a custom error
page simply isn’t enough.

For these cases, ASP.NET MVC offers the HandleErrorAttribute, which provides you
with much more fine-grained control over what happens when errors occur in your
controller actions.

The HandleErrorAttribute exposes two properties:

ExceptionType
The type of exception to handle

View
The name of the view to display when the given exception type is encountered

Just apply this attribute to any controller action to tell it how to react when a given
exception occurs.

For instance, whenever a database exception (System.Data.DataException) occurs dur-
ing the execution of the Auction action in the following example, ASP.NET MVC will
display the DatabaseError view:

[HandleError(ExceptionType = typeof(System.Data.DataException),
View = "DatabaseError")]]
public ActionResult Auction(long id)
{
 var db = new EbuyDataContext();
 return View("Auction", db.Auctions.Single(x => x.Id == id));
}

Like most other controller action attributes, the HandleErrorAttribute may also be
placed at the controller level so that it applies to all the actions in the controller:

[HandleError(ExceptionType = typeof(System.Data.DataException),
View = "DatabaseError")]]
public class AuctionsController : Controller
{
 /* Controller actions with HandleError applied to them */
}

Error Handling in ASP.NET MVC | 333

Defining Global Error Handlers
If you’d like to go even higher in the hierarchy than the controller level, you can also
apply the HandleErrorAttribute to the entire site by registering it as a global error han-
dler.

To register a global error handler, open the /App_Start/FilterConfig.cs file and find the
RegisterGlobalFilters() method. Here you can see that the ASP.NET MVC template
has already registered a global HandleErrorAttribute to the GlobalFilterCollection for
you.

To register your own custom logic, simply add your custom filter to the global filter
collection:

public static void RegisterGlobalFilters(GlobalFilterCollection filters)
{
 filters.Add(new HandleErrorAttribute
 {
 ExceptionType = typeof(System.Data.DataException),
 View = "DatabaseError"
 });

 filters.Add(new HandleErrorAttribute());
}

Keep in mind that, by default, global filters are executed in the order that they are
registered, so be sure to register error filters for specific exception types before any
other, more generic error filters (as shown above).

Alternatively, you may provide a second parameter to the filters.Add() method to
specify the order of execution for the filters, like so:

 public static void RegisterGlobalFilters(GlobalFilterCollection filters)
 {
 filters.Add(new HandleErrorAttribute
 {
 ExceptionType = typeof(System.Data.DataException),
 View = "DatabaseError"
 }, 1);

 filters.Add(new HandleErrorAttribute(), 2);
 }

Here you can see the ordinal values 1 and 2 applied when each filter is registered. This
will guarantee that our custom DatabaseError filter will always execute before the more
generic error handler.

Customizing the error page

When custom errors are enabled, the global HandleError filter you added intercepts the
error and redirects to the error page (see Figure 16-2).

334 | Chapter 16: Logging

Figure 16-2. Custom error page

The HandleErrorAttribute only handles 500 errors (exceptions) raised
by the ASP.NET MVC pipeline; you will need to define custom error
rules for the other types of HTTP errors, such as 404.

If custom errors are enabled and you are using the HandleErrorAttribute, the ASP.NET
MVC runtime looks for the Error.chtml file in the current requests folder or in the shared
views folder. In this setup, the defaultRedirect (to GenericErrorPage.htm) and status
code redirect URI are ignored.

If custom errors are enabled and you are not using the HandleErrorAttribute, the ap-
plication will redirect the user to the defaultRedirect attribute in web.config. To
demonstrate this behavior, comment out the call to FilterConfig.RegisterGlobalFil
ters(GlobalFilters.Filters); in Global.asax.cs .

The ASP.NET MVC project templates include a default error page (~/Views/Shared/
Error.cshtml) that you can customize for your application. The HTML for the default
error page looks like this:

@model System.Web.ASP.NET MVC.HandleErrorInfo

@{
 ViewBag.Title = "Error";
}

<hgroup class="title">
 <h1 class="error">Error.</h1>
 <h2 class="error">An error occurred while processing your request.</h2>
</hgroup>

The default error page is very basic, so you’re going to want to spruce it up a bit with
your own custom content. For example, you may want to provide information on how
users can contact your customer support services to help resolve the problem.

Error Handling in ASP.NET MVC | 335

The default error page is also a strongly typed view that references the HandleError
Info model class. This class exposes properties with information about the exception
that triggered the error page, as well as the controller action where the error occurred.

Logging and Tracing
When an issue occurs in your application, you need as much information as possible
to track down and fix whatever caused it. And while displaying error pages is a great
way to inform users that an application exception has occurred, it doesn’t do anything
to let you, the developer, know about the problem.

In order for you to find out about any issues that occur on your site, you must add logic
to your application to enable it to keep a record of what it does and any problems it
may experience. This record keeping is referred to as logging, and it is perhaps the most
important tool in your debugging arsenal.

Logging Errors
When it comes to logging exceptions in your ASP.NET MVC web application, you have
plenty of options.

A Simple Logging Helper
The following examples refer to a custom logging helper called Logger, shown below.
This class logs exceptions to the local machine event log, and if you are trying this code
on your machine, you will first need to create an event source for your application.

public class Logger
{
 public static void LogException(Exception ex)
 {
 EventLog log = new EventLog();
 log.Source = "Ebuy";
 log.WriteEntry(ex.Message);
 }
}

The easiest way to do this is to use regedit.exe to add a new key called Ebuy to the
registry hive at HKEY_LOCAL_MACHINE\SYSTEM\CurrentControlSet\Services\Eventlog
\Application.

Simple try/catch handler

Your first option is to place a try/catch block inside each of your controller’s controller
actions, as shown below:

public ActionResult About()
{
 try

336 | Chapter 16: Logging

 {
 ViewBag.Message = "Your quintessential app description page.";
 throw new Exception("Something went wrong!");
 }
 catch (Exception ex)
 {
 LogException(ex);
 }

 return View();
}

However, this approach requires you to add a lot of code to each controller method,
and it should be avoided unless there is a specific type of exception you want to handle
directly or you have some special requirement for logging.

Overriding Controller.OnException()

Rather than adding try/catch blocks to each controller method, you can instead over-
ride the OnException() method of your controller, like so:

protected override void OnException(ExceptionContext filterContext)
{
 if (filterContext == null)
 base.OnException(filterContext);

 LogException(filterContext.Exception);

 if (filterContext.HttpContext.IsCustomErrorEnabled)
 {
 // If the global handle error filter is enabled, this is not needed
 filterContext.ExceptionHandled = true;
 this.View("Error").ExecuteResult(this.ControllerContext);
 }
}

An even better option would be to create a base controller so you only have the logging
code in one place. When you override the method, you should make sure the context
passed in is not null and mark the exception as handled. If you don’t mark the exception
as handled, it will continue to propagate up the ASP.NET MVC pipeline.

If you are using the HandleError global filter shown earlier, you should
remove the code for marking the exception handled and for displaying
the error view, since the global filter will have already handled the error.

Custom error filters

Yet another option for handling errors in an ASP.NET MVC application is to create a
custom error filter. Custom error filters allow you to define error handling logic in one
place and apply it throughout your site, limiting the amount of duplicate code that you

Logging and Tracing | 337

have to maintain. Custom error filters also allow controllers to stay focused on the logic
of processing requests, rather than worrying about what to do when exceptions occur.

To create a custom error filter, inherit from the HandleErrorAttribute class and override
the OnException() method. After you log the exception, you should check to see if
custom errors are enabled:

public class CustomHandleError : HandleErrorAttribute
{
 public override void OnException(ExceptionContext filterContext)
 {
 if (filterContext == null)
 base.OnException(filterContext);

 LogException(filterContext.Exception);

 if (filterContext.HttpContext.IsCustomErrorEnabled)
 {
 filterContext.ExceptionHandled = true;
 base.OnException(filterContext);
 }
 }

 private void LogException(Exception ex)
 {
 EventLog log = new EventLog();
 log.Source = "Ebuy";
 log.WriteEntry(ex.Message);
 }
}

ASP.NET Health Monitoring
While logging to the event log is a good first step in monitoring your application, an
even better option is to enable ASP.NET health monitoring. ASP.NET health monitor-
ing goes beyond logging exceptions to include monitoring events that occur during an
application and a request’s lifetime.

The ASP.NET health monitoring system monitors the following events:

• Application lifetime events, including when an application starts or stops.

• Security events, such as failed login attempts and URL authorization requests.

• Application errors, including unhandled exceptions, request validation excep-
tions, compilation errors, etc.

ASP.NET health monitoring is configured through the healthMonitoring section of
your application’s web.config file, which contains three main subsections:

338 | Chapter 16: Logging

D
ow

n
lo

a
d
 f
ro

m
 W

o
w

!
e
B
o
o
k

<
w

w
w

.w
o
w

e
b
o
o
k.

co
m

>

eventMappings
Defines the types of events you want to monitor

providers
Defines the list of available providers

rules
Defines the mapping between events and the providers used for logging an event

You configure ASP.NET health monitoring as follows:

<healthMonitoring enabled="true">
 <eventMappings>
 <clear />
 <!-- Log ALL error events -->
 <add name="All Errors"
 type="System.Web.Management.WebBaseErrorEvent"
 startEventCode="0"
 endEventCode="2147483647" />
 <!-- Log application startup/shutdown events -->
 <add name="Application Events"
 type="System.Web.Management.WebApplicationLifetimeEvent"
 startEventCode="0"
 endEventCode="2147483647" />
 </eventMappings>
 <providers>
 <clear />
 <add connectionStringName="DefaultConnection"
 maxEventDetailsLength="1073741823"
 buffer="false"
 name="SqlWebEventProvider"
 type="System.Web.Management.SqlWebEventProvider" />
 </providers>
 <rules>
 <clear />
 <add name="All Errors Default"
 eventName="All Errors"
 provider="SqlWebEventProvider"
 profile="Default"
 minInstances="1"
 maxLimit="Infinite"
 minInterval="00:00:00" />
 <add name="Application Events Default"
 eventName="Application Events"
 provider="SqlWebEventProvider"
 profile="Default"
 minInstances="1"
 maxLimit="Infinite"
 minInterval="00:00:00" />
 </rules>
</healthMonitoring>

Out of the box, ASP.NET health monitoring includes providers for logging to a
Microsoft SQL Server database, logging to the local event log, as well as notifying

Logging and Tracing | 339

administrators via email. It also allows you to create your own health monitoring pro-
viders that enable you to log to additional data sources.

To use the SQL database health monitoring provider, you need to add
the necessary tables to your web application database using the
aspnet_regsql.exe command located in your .NET Framework direc-
tory.

Now that you have health monitoring enabled, you need to update the custom error
filter you previously created so it logs exceptions to the health monitoring providers
you just set up.

Since the health monitoring system’s System.Web.Management.WebRequestErrorEvent
class does not have any public constructors, you must first create a custom web request
error event class:

public class CustomWebRequestErrorEvent : WebRequestErrorEvent
{
 public CustomWebRequestErrorEvent(
 string message, object eventSource,
 int eventCode, Exception exception)
 : base(message, eventSource, eventCode, exception)
 {
 }

 public CustomWebRequestErrorEvent(
 string message, object eventSource, int eventCode,
 int eventDetailCode, Exception exception)
 : base(message, eventSource, eventCode,
 eventDetailCode, exception)
 {
 }
}

After you create the class, update CustomHandleError to call the custom web request
error class:

public class CustomHandleError : HandleErrorAttribute
{
 public override void OnException(ExceptionContext filterContext)
 {
 if (filterContext.HttpContext.IsCustomErrorEnabled)
 {
 base.OnException(filterContext);
 new CustomWebRequestErrorEvent(
 "An unhandled exception has occurred.",
 this, 103005, filterContext.Exception)
 .Raise();
 }
 }
}

340 | Chapter 16: Logging

With this class in place—and registered as a global error filter—all of your site’s ex-
ceptions will now be routed to the ASP.NET health monitoring system.

Summary
When designing and building a web application, it’s important to consider how you
will handle errors, log and monitor events that occur while your application is running,
and tune your application to increase performance.

In this chapter, you learned about the powerful built-in features of ASP.NET for error
handling, logging, and health monitoring. You can leverage all of these techniques to
build a rock-solid web application using the ASP.NET MVC Framework.

Summary | 341

CHAPTER 17

Automated Testing

Throughout this book , we’ve promoted architectural patterns and application devel-
opment practices such as the Model-View-Controller pattern, separation of concerns,
SOLID, and others, stating that they make the components in your application more
reusable and maintainable, resulting in a higher-quality application. The problem with
these techniques is that they focus on long-term benefits whose value is not always
apparent in the short term. For instance, why does it matter that a component is
extensible, if it never gets extended in the first iteration of an application?

The true value of these techniques really starts to become clear in the later stages of an
application’s life, when it has been released and developers must be able to fix out-
standing issues and add new features while reducing the risk of introducing new break-
ing changes to the working, released application.

However, these techniques can also provide value in the short term. Luckily, there is
one way to take advantage of that value and help guarantee the ongoing quality of your
application at the same time: by testing your components with automated testing tech-
niques.

This chapter discusses what it takes to test your application, using various tools and
techniques to write and exercise your code effectively and verify that it does what it
was designed to do. We’ll also explore how to apply these concepts to your entire
codebase, with an emphasis on testing ASP.NET MVC applications all the way from
server-side controllers and services to the client-side code running within the browser.

The Semantics of Testing
Software development focuses on the task of creating software applications that solve
problems by performing any number of specific behaviors that we developers call
“requirements.” But before we put our applications into widespread use (a.k.a. “pro-
duction”), we must first somehow verify that those behaviors are properly imple-
mented. That is, we must validate that we have written high-quality code that performs
in the intended manner and is reliable.

343

Manual Testing
The easiest way to verify that a feature has been implemented is also the most literal:
run the application and attempt to trigger the behavior just like any normal user would
do. For the purposes of this chapter, we’ll refer to this approach—and any other
approach that involves human verification—as manual testing, and it has plenty of
negatives associated with it.

Humans are error prone

First and foremost, manual testing is based on human judgment, and humans are no-
toriously error prone.

While a human will eventually need to make the final judgment call to say whether a
feature has been implemented correctly or not, most human judgment up to that point
is subjective, sometimes to the extent that it becomes impossible for a human to tell
whether something works or not.

For instance, even when you are awake, alert, and ready to spot even the smallest bug,
will you ever be able to tell the difference between the string value 1 and the int value
1 just by looking at it on the screen? As any developer who’s done any kind of bug fixing
knows, these kinds of issues may sound innocuous, but they can end up meaning the
difference between an application that works and one that fails miserably.

Computers are more efficient

Next comes the matter of efficiency. When a human user tests an application, he is not
instantiating classes and calling methods; he is interacting with the application through
some kind of UI.

The user must use the application as it was intended, since changing the application to
allow for easier testing may jeopardize the results of the test, or those changes may even
introduce bugs themselves.

This often means that a single test to reproduce a particular scenario can involve many
steps that must be followed correctly and in a specific order, making manual testing
quite tedious and laborious, and making the chances of human error even greater.
Computers are much more efficient at performing such procedures.

Manual testing takes time

And then there is the biggest issue: manual testing takes time—human time that could
be better spent doing something else.

Consider, for instance, a developer implementing a feature and having to stop after
each small change she makes to (correctly) execute a series of potentially complex steps
in order to verify that change. Now consider what happens if that small change doesn’t
work and another change needs to be made. And another, and another…

344 | Chapter 17: Automated Testing

Now think about how that same developer is supposed to test an exceptional condition
—a condition that, by its very nature, is very difficult to reproduce!

Clearly, computers are much better suited to performing these types of tasks. The an-
swer to all the problems inherent in manual testing, then, is to automate these tests so
that the computer can run them for you.

Automated Testing
Automated testing refers to the idea of writing software that tests other software and,
in doing so, helps address the shortcomings of manual testing methods by asking the
computer to do what it does best: automating our testing tasks. Using automated test-
ing approaches, humans are still able to define the tests that they’d like to execute—
and make assertions against the results of those tests—just as they have always done.
The biggest difference is that after an automated test is first created, it can easily be run
as many times as needed in order to verify that the test continues to pass. Not only is
it easier to run automated tests than it is to execute manual tests, but computers can
perform the same tasks exponentially quicker than humans can, drastically reducing
the time it takes to achieve the same results!

Clearly, automated testing is the way to go. In the remainder of this chapter, we’ll look
at the different levels of automated testing, learn how to create an automated test
project, and explore some best practices for testing an ASP.NET MVC application.

Levels of Automated Testing
In addition to reducing the time it takes to run tests, automated tests are better able to
target specific components, such as the unit under test (sometimes referred to as the
system under test, or SUT), a term that refers to the component whose quality, perfor-
mance, or reliability is being tested.

In the context of software development, the “unit under test” may refer to any level of
software architecture, such as methods, classes, entire applications, or even multiple
applications working together. Likewise, it is a good idea to create multiple sets of
automated tests, with each set of tests targeting a particular level of the software
architecture.

Depending on which architectural layer they target, each set of tests may be classified
as unit tests, integration tests, or acceptance tests, and as you’ll see in the following
sections, each of these categories has a pretty specific meaning.

Unit Tests
Unit tests aim to validate the lowest levels of an application through a very narrow focus.
In a unit test, the unit under test is a very specific, low-level component, such as a class

Levels of Automated Testing | 345

or even a single method in a class. In fact, since they are testing such specific, low-level
functionality, it often takes a number of unit tests to validate just one unit under test.

The goal of unit tests is to verify the actual logic of the unit under test. In short, failed
unit tests should indicate a legitimate bug in the code and nothing else.

In order to accomplish this level of reliability, unit tests must be atomic, repeatable,
isolated, and fast. Tests that do not meet these four fundamental requirements cannot
be considered true “unit tests.”

The following sections explain what each concept means in the context of automated
testing.

Atomic

A unit test should focus on validating one small piece of functionality. Generally, this
will be a single behavior or business case that a class exhibits. Quite often, this focus
may be as narrow as a single method in a class (sometimes even a specific condition in
a single method). In practice, this equates to short tests with only a couple of deliberate
and meaningful assertions (Assert.That([…])).

Common pitfalls and code smells include:

• Dozens of lines of code in one test

• More than two or three assertions, especially when they’re against multiple objects

Repeatable

A unit test should produce exactly the same result at any time in any environment,
given that the environment fulfills a known set of dependencies (e.g., the .NET Frame-
work). Tests cannot rely on anything in the external environment that isn’t under your
direct control. For instance, you should never have to worry about having network/
Internet connectivity, access to a database, filesystem permissions, or even the time of
day (think DateTime.Now).

Common pitfalls and code smells include:

• Tests pass on the first execution, yet some or all fail on subsequent executions (or
vice versa). For example, you might see a comment like this: “NOTE: The XYZTest
must be run prior to this or it will fail!”

Isolated/Independent

As an extension of the first two qualities, a unit test should be completely isolated from
any other system or test. That is to say, a unit test should not assume that any other
test has been run, or depend on any external system (e.g., database) having a specific
state or producing some specific result. Additionally, a unit test should not create or
leave behind any artifacts that may trip up other tests. This is certainly not to say that
unit tests cannot share methods or even whole classes between one other—in fact, that

346 | Chapter 17: Automated Testing

is encouraged. What this really means is that a unit test should not assume that some
other test has run previously or will run subsequently. These dependencies should
instead be represented as explicit function calls or be contained in your test fixture’s
setup and tear-down methods that run prior to and immediately following every single
test.

Common pitfalls and code smells include:

• Database access

• Tests fail when your network or VPN connection is disabled

• Tests fail when you have not run some kind of external script (other than perhaps
a build script to execute)

• Tests fail when configuration settings change or are not correct

• Tests must be executed under specific permissions

Fast
Assuming all of the above conditions are met, all tests will be fast (i.e., complete in
fractions of a second). Regardless, it is still beneficial to explicitly state that all unit tests
should execute almost instantaneously. After all, one of the main benefits of an auto-
mated test suite is the ability to get near-instant feedback about the current quality of
your code. As the time required to run the test suite increases, the frequency with which
you execute it decreases. This directly translates into a larger amount of time between
when bugs are introduced and when they are actually discovered.

Common pitfalls and code smells include:

• Individual tests take longer than a fraction of a second to run

Clever readers might notice that the above list could be arranged into a
cute little acronym like FAIR. While this can be helpful for remembering
the four key characteristics of unit tests, the order used here is delib-
erate—it represents their rough order of importance.

To help demonstrate these guidelines, here is an example unit test that follows all of
them:

[TestMethod]
public void CalculatorShouldAddTwoNumbers()
{
 var sum = new Calculator().Add(1, 2);
 Assert.AreEqual(1+2, sum);
}

This test is quite simple and straightforward. To begin, it creates a new instance of the
Calculator class and calls its Add() method, passing in the two numbers that should be

Levels of Automated Testing | 347

added together. Next, the test uses the Assert.AreEqual() method to make the assertion
that ensures the Add() method did what it was supposed to: add the two numbers.

Not only is this test easy to read and understand, but it also adheres to all of the guide-
lines above that make for a good unit test:

• First, it is atomic: it focuses on validating the behavior of the Calculator.Add()
method (the unit under test) and nothing more. What’s more, it does so in a simple
and direct way.

• Second, it is repeatable: this test will produce the same result at any time of day,
on any developer’s machine, no matter how many times it’s executed.

• Next, it is isolated. The test does not have any preconditions that must be met, nor
does it change the state of the testing environment when it’s done. It executes
independently of any other test.

• Finally, it is fast. It’s conceivable that buried within that Add() method might be a
horrible algorithm that takes over an hour to add two numbers, but fortunately
that is not the case. This test produces a reliable result within milliseconds.

Integration Tests
As opposed to unit tests—whose sole purpose is to validate the logic or functionality
of a specific class or method—integration tests exist to validate the interaction (or “in-
tegration”) between two or more components. In other words, integration tests give
the system a good workout to make sure that all of the individual parts work together
to achieve the desired result: a working application.

Integration tests do have their drawbacks, however. Since they focus on verifying that
multiple components work well together, it becomes increasingly difficult to isolate
those components from the outside world while trying to test them. This opens the
door to a whole slew of problems, starting with the fact that you usually have to break
most—if not all—of the rules outlined above that apply to unit tests.

The slow speed and fragility of integration tests can be major drawbacks. Not only does
this mean that they will get executed less frequently than unit tests, but the rate of false
negatives (test failures that do not correspond to broken application logic) tends to be
much higher.

When a unit test fails, it is a sure indication of a bug in the code. In contrast, when an
integration test fails, it may mean there is a bug in the code, but the problem could also
have been caused by other issues in the testing environment, such as a lost database
connection or unexpected test data. These false positives—though a useful indicator
that something is wrong in the developer’s environment—usually just serve to slow
down the development process by taking the developer’s focus away from writing
working code.

348 | Chapter 17: Automated Testing

Despite this somewhat negative description, integration tests are just as valuable as unit
tests—if not more so.

Assuming you strive to avoid potential distractions whenever possible, you should also
strive to rely on extensive test coverage via a solid unit test suite, then supplement that
coverage with an integration test suite (and not vice versa).

Acceptance Tests
The final type of test is the acceptance test, which has one goal: to ensure that the system
that has been built meets the requirements that were requested. In short, acceptance
tests make sure that the system does everything the users expect it to do.

Since acceptance tests are—by their very definition—usually pretty subjective, they are
often difficult to automate. That said, there are several different techniques that allow
developers to automate the execution of their applications in order to validate that they
behave as they should. By applying these techniques, developers are able to avoid te-
dious manual testing of their applications while still maintaining a high level of confi-
dence that the applications will function in a way that makes their users happy.

User acceptance testing

How do you know when your users are happy with your application? Ask them!

Though this chapter concentrates on developers exercising their own applications in
order to verify that they work properly, a subset of acceptance testing named user ac-
ceptance testing (UAT) brings the user directly into the development process by getting
the software into their hands and having them test it. Even if it is generally not wise to
expose all of your users to a product that is, perhaps, not final-release quality, user
acceptance testing embraces the fact that an application’s users are the only ones who
can truly call a product “done.”

What’s more, involving application users in the development process by allowing them
to use even a partially working implementation of an application can help expose both
technical and communication issues. And the earlier in the process that users are able
to provide feedback, the easier and cheaper it is to fix those issues. So, while user
acceptance testing may not be easy to automate into your default solution, performing
testing early and often can reap great benefits.

Though anyone may write any of these three types of tests, the first few
levels—unit and integration tests—are generally very technical and im-
plementation-specific, so they are usually written by the development
team in order to validate that the technical requirements have been met
before passing the application on to other groups of testers (e.g., the
Quality Assurance, or QA, team) to verify that the business require-
ments have been met.

Levels of Automated Testing | 349

What Is an Automated Test Project?
In order to create and execute the kinds of automated tests discussed in this chapter,
you will need to create a test project to contain them.

In the Visual Studio world, a test project is a relatively normal class library project
comprising a group of test classes (often referred to as test fixtures), each of which is a
normal .NET class that contains a set of tests represented as methods of that class. Each
of these test methods creates the unit under test, then executes that component to
validate its behavior by using the test API to make assertions about the component
(such as whether the value of a property is equal to an expected value).

This approach—in which components are created, executed, and vali-
dated in that order—is known as the “Arrange-Act-Assert” pattern.

In order to execute automated tests in a test project, the project is compiled and passed
to a test runner, an application that locates all of the tests within that assembly and
executes them, keeping track of the outcome for each test. As the test runner executes
each test, it also keeps track of everything that happens during the course of the test,
including any console or debug output that the test produces.

As each test succeeds or fails, the test runner displays the results of the test in a summary
that allows users to easily see at a glance how many of their tests pass and how many fail.

The following examples use the tools and APIs included by default in
all non-Express versions of Visual Studio, but if you are using an Express
version of Visual Studio—or if you find yourself at all unhappy with the
automated testing tools built into Visual Studio and the .NET Frame-
work—you’ll be happy to know that there are several other automated
testing tools and frameworks available to choose from, and many of
them are open source software. Though they may or may not provide
the same level of integration as the Visual Studio tools, they all tend to
follow this same basic workflow, so everything you learn in this book
should translate quite easily.

It is a good idea to evaluate all of the tools available to you to determine
which is the best fit for you and your team. An Internet search for the
term “.NET unit testing” should get you started.

Creating a Visual Studio Test Project
There are several ways to create a new Visual Studio unit test project.

350 | Chapter 17: Automated Testing

The first way is to check the “Create a unit test project” checkbox in the New ASP.NET
MVC 4 Project dialog (Figure 17-1), which will automatically create the unit test project
and add it to your ASP.NET MVC website solution.

Figure 17-1. Creating a new unit test project in Visual Studio

Alternatively, you can add a new unit test project to an existing solution at any time by
selecting File> Add > New Project…, then selecting the Unit Test Project type in the
Test category for your favorite language (see Figure 17-2).

What Is an Automated Test Project? | 351

Figure 17-2. Adding a unit test project to an existing application

Either one of these approaches will add a new unit test project to your solution, ready
for you to begin adding unit tests.

Creating and Executing a Unit Test
To verify that everything works, try to add a new unit test by right-clicking on a folder
in the unit test project and choosing Add > Unit Test… from the context menu. Add
your test logic in the method that is created for you, and make use of the testing API’s
helper functions to help make assertions about your code.

For example, try typing in the following code so that your test class looks like this:

using Microsoft.VisualStudio.TestTools.UnitTesting;

namespace Ebuy.Tests
{
 [TestClass]
 public class UnitTestExample
 {
 [TestMethod]
 public void CanAddTwoNumbersTogether()
 {
 var sum = 1 + 2;
 Assert.AreEqual(3, sum);

352 | Chapter 17: Automated Testing

 }
 }
}

When you’re finished, you can right-click anywhere in the code editor and choose “Run
Unit Tests…” (or use the Ctrl-R, T shortcut if you have the default Visual Studio key-
bindings) to run the test. This will compile the unit test project (if it needs to be com-
piled) and bring up the Unit Test Explorer window (Figure 17-3) to show you the status
of your running tests. When the test completes, you will see a green checkmark next
to it to indicate that the test has passed.

Figure 17-3. Checking the status of your running tests

If the test fails—say, if you somehow break the logic that the test is validating (such as
changing var sum = 1 + 2; to var sum = 1 + 3;)—the Unit Test Explorer will display
a red cross next to the failed test, as shown in Figure 17-4. Plus, if you click on the failed
test in the Unit Test Explorer, you will be able to see the details of why the test failed.

What Is an Automated Test Project? | 353

Figure 17-4. The Unit Test Explorer will show you when a test fails, and why

Notice in this example the message Message: Assert.AreEqual failed. Expected: <3>.
Actual: <4>., indicating that we told the Assert.AreEqual() helper call that the value
should be 3, but the test failed because the actual value at runtime was 4.

Now that you know your way around the Visual Studio unit test project, it’s time to
put that knowledge to good use and test your ASP.NET MVC application!

Testing an ASP.NET MVC Application
In order to effectively test your ASP.NET MVC application and ensure that it works
properly at every level, you’ll need a suite of automated tests that includes a generous
mix of unit, integration, and acceptance tests.

Though there are plenty of different approaches to accomplish this kind of coverage,
one approach that works very well is to take advantage of ASP.NET MVC’s separation
of concerns and test each architectural layer in isolation. As the following sections
show, testing each architectural layer by itself is also a good idea because some testing
techniques work better on some layers than others. However, if you take care to thor-
oughly test each layer in isolation, you can be much more confident that the layers will
experience few problems when it comes time to test them all together.

354 | Chapter 17: Automated Testing

Testing the Model
Since the model is arguably the most important part of your application, it is the most
logical place to focus most of your testing efforts. As you will see when we test the other
layers, the model is also the easiest layer to test, because it is typically the most straight-
forward and has the fewest external dependencies. In other words, models usually
consist of plain old .NET classes that are easy to instantiate and execute in isolation.

To demonstrate, let’s write some unit tests that validate the logic in the Auction.Post
Bid() method:

public class Auction
{
 public long Id { get; internal set; }
 public decimal CurrentPrice { get; private set; }
 public ICollection<Bid> Bids { get; private set; }

 // ...

 public Bid PostBid(User user, decimal bidAmount)
 {
 if(bidAmount <= CurrentPrice)
 throw new InvalidBidAmountException(bidAmount, CurrentPrice);

 var bid = new Bid(user, bidAmount);

 Bids.Add(bid);

 CurrentPrice = bidAmount;

 return bid;
 }
}

Focus on the positive

Before testing any component, you first need to take a moment to define in simple terms
what, exactly, the component does. Only then can you write unit tests to validate that
behavior! With this information in mind, consider what tests need to be written in order
to validate those behaviors, starting with the positive outcomes that you expect to occur
in the best-case scenario(s).

In the case of Auction.PostBid(), the method is responsible for adding a winning bid
to the auction’s bid history and updating the auction’s current bid price accordingly.
In other words, when the winning bid amount exceeds the current bid amount, the
following should happen:

• A new bid should be added to the auction’s bid history (Bids), containing the user
who submitted the bid (user) and the bid amount (bidAmount).

• The auction’s current price (CurrentPrice) should be updated with the winning
bid amount (bidAmount).

Testing an ASP.NET MVC Application | 355

Here are those expectations translated into unit tests:

using System.Linq;
using Microsoft.VisualStudio.TestTools.UnitTesting;

namespace Ebuy.Tests
{
 [TestClass]
 public class AuctionTests
 {
 [TestMethod]
 public void ShouldAddWinningBidToBidHistory()
 {
 var user = new User();
 var auction = new Auction { CurrentPrice = 1.00m };

 var bid = auction.PostBid(user, 2.00m);

 CollectionAssert.Contains(auction.Bids.ToArray(), bid);
 }

 [TestMethod]
 public void ShouldUpdateCurrentPriceWithWinningBidAmount()
 {
 var user = new User();
 var auction = new Auction { CurrentPrice = 1.00m };

 var bid = auction.PostBid(user, 2.00m);

 Assert.AreEqual(auction.CurrentPrice, 2.00m);
 }
 }
}

When you compile and run these tests using the Visual Studio test runner you should
see them both pass, indicating that the Auction.PostBid() method does what it’s sup-
posed to do (see Figure 17-5).

Protect against the negative

Now that we’ve validated that the Auction.PostBid() method does what it’s supposed
to do, let’s make sure that it doesn’t do what it’s not supposed to do. In other words,
let’s try to break it!

We’ll start by flipping the expected condition around. The previous tests validated what
the correct behavior was when the winning bid amount exceeds the current bid amount,
so we will now validate what is supposed to happen when the attempted bid amount
is less than the current bid amount:

356 | Chapter 17: Automated Testing

Figure 17-5. Verifying that the Auction.PostBid() method does what it should

[TestMethod]
[ExpectedException(typeof(InvalidBidAmountException))]
public void ShouldThrowExceptionWhenBidAmountIsLessThanCurrentBidAmount()
{
 var user = new User();
 var auction = new Auction { CurrentPrice = 1.00m };

 auction.PostBid(user, 0.50m);

 // No assertions because the previous line threw an exception!
}

This test tries to post a bid (0.50m) that is less than the current winning bid amount
(1.00m) and uses the ExpectedExceptionAttribute to indicate that the logic within the
test should throw an exception of type InvalidBidAmountException. If the test finishes
executing without throwing the exception, the test is considered a failure.

What might happen when we pass in a null user? The Auction.PostBid() method
doesn’t currently check for a null user, but it should. Here, we see that it’s possible to
discover an issue with the code simply by applying the process of unit testing, rather
than writing a unit test for it.

Testing an ASP.NET MVC Application | 357

Test-Driven Development
Instead of correcting the Auction.PostBid() code immediately, let’s take this opportu-
nity to try a style of automated test authoring called test-driven development (also known
as TDD, or sometimes test-first development).

Test-driven development follows the mantra “Red-Green-Refactor,” which means that
you start with a failing (“red light”) test, then write the bare minimum (and perhaps
messiest and shameful) code possible in order to get that test to pass (“green light”).
Finally, when you’ve got a passing test in place to guarantee that your code works,
circle back and refactor the code you just wrote in order to clean it up and bring it in
line with your project’s standards.

To apply the TDD approach to the Auction.PostBid() method, we must define our goal
—to guard against null user values—and start in the “red” state with a failing test:

[TestMethod]
[ExpectedException(typeof(ArgumentNullException))]
public void ShouldThrowAnExceptionWhenUserIsNull()
{
 var auction = new Auction { CurrentPrice = 1.00m };

 auction.PostBid(null, auction.CurrentPrice + 1);

 // No assertions because the previous line threw an exception!
}

This test creates a new auction and attempts to pass a null value as the user parameter
to the PostBid() method. This test also uses the ExpectedExceptionAttribute to assert
that the code within the test triggers the exception that we expect, just as in the previous
example.

The difference between what we did in the previous example and what we’re doing
now is that when we run this test with the current implementation of the Auction.Post
Bid() method, the test will fail because the method does not yet check to make sure
the user parameter is not null.

Now that we are in the “red” state with a broken test, let’s make the test pass.

To do this, simply add a condition that checks to see if the user value is null:

public Bid PostBid(User user, decimal bidAmount)
{
 if(user == null)
 throw new ArgumentNullException("user");

 if(bidAmount <= CurrentPrice)
 throw new InvalidBidAmountException(bidAmount, CurrentPrice);

 var bid = new Bid(user, bidAmount);

 Bids.Add(bid);

358 | Chapter 17: Automated Testing

 CurrentPrice = bidAmount;

 return bid;
}

With the null user check in place, our new unit test will pass: we’re now in the “green”
state.

Typically, after you reach the “green” state with all of your tests passing, you can take
some time to circle back and review the code you just wrote to make sure that there
are no optimizations that can make it cleaner, faster, or otherwise better.

Writing Clean Automated Tests
Though they are written for an entirely different purpose than “production” code,
automated tests are still code, so most of the standard coding practices apply.

Duplicate code

For starters, duplicate code is discouraged just as much in automated tests as it is in
production code.

Take the tests that we just wrote, for example. Almost all of them start with the same
two lines:

var user = new User();
var auction = new Auction { CurrentPrice = 1.00m };

Though these two lines create objects that are crucial to executing our tests, they are
not particularly relevant to the logic that we are testing. For instance, the tests we’ve
written so far don’t care what the exact value of the auction’s CurrentPrice property
is, only that it has one.

Luckily, just about all unit test frameworks provide a way to execute setup code right
before every test is executed. The Visual Studio test API supports this by allowing you
to use the TestInitializeAttribute to specify a method in the test class that contains
the test setup code.

Example 17-1 shows what the example unit test class looks like after applying the
TestInitializeAttribute to centralize all of that duplicate code.

Example 17-1. AuctionTests.cs

using System;
using System.Linq;
using Microsoft.VisualStudio.TestTools.UnitTesting;

namespace Ebuy.Tests
{
 [TestClass]
 public class AuctionTests
 {

Testing an ASP.NET MVC Application | 359

 private User _user;
 private Auction _auction;

 [TestInitialize]
 public void TestInitialize()
 {
 _user = new User();
 _auction = new Auction { CurrentPrice = 1.00m };
 }

 [TestMethod]
 public void ShouldAddWinningBidToBidHistory()
 {
 var bid = _auction.PostBid(_user, _auction.CurrentPrice + 1);

 CollectionAssert.Contains(_auction.Bids.ToArray(), bid);
 }

 [TestMethod]
 public void ShouldUpdateCurrentPriceWithWinningBidAmount()
 {
 var winningBidAmount = _auction.CurrentPrice + 1;

 _auction.PostBid(_user, winningBidAmount);

 Assert.AreEqual(_auction.CurrentPrice, winningBidAmount);
 }

 [TestMethod]
 [ExpectedException(typeof(InvalidBidAmountException))]
 public void ShouldThrowExceptionWhenBidAmountIsLessThanCurrentBidAmount()
 {
 _auction.PostBid(_user, 0.50m);
 }

 [TestMethod]
 [ExpectedException(typeof(ArgumentNullException))]
 public void ShouldThrowAnExceptionWhenUserIsNull()
 {
 _auction.PostBid(null, _auction.CurrentPrice + 1);
 }
 }
}

As you can see, moving the duplicate initialization logic to the TestInitialize()
method makes each individual test much simpler and more to the point.

Naming

Since automated test code will never be consumed by an application (other than the
test runner), there are a few notable exceptions to standard coding rules. Naming is
one area where such exceptions arise. Class and method names are incredibly important

360 | Chapter 17: Automated Testing

in production code because they inform developers how the class or method partici-
pates in the application—what a method does or what a class is responsible for.

Naming is equally important in the context of automated testing, with one fundamental
difference: test classes always serve the single purpose of acting as containers for test
methods, and test methods always serve the single purpose of testing a particular unit.
Therefore, test classes should be named for the units that their test methods target, and
test methods should describe the behavior that they validate.

Go back and take a look at the class and method names that we’ve applied to the tests
we’ve shown in this chapter. So far, we’ve only tested a single target class, so we only
have one test class: it is named AuctionTests, indicating that all of the methods in the
class target the Auction class in our model.

The test method names are far more interesting. Notice how the test methods have
names that are not only very descriptive, but they almost read like an actual sentence.
For example, the ShouldAddWinningBidToBidHistory test validates that the Auction class
should add a winning bid to its bid history. Test method names can be as long as the
language will allow (e.g., ShouldThrowExceptionWhenBidAmountIsLessThanCurrentBidA
mount).

We can feel free to take these liberties with our naming scheme because of the role that
test classes and methods serve: they exist to validate our code and alert us to potential
issues. So, whenever a test fails, it helps that the name itself is as descriptive as possible.
That way, it’s very easy to determine which part of the application’s logic failed.

Testing Controllers
The great thing about the ASP.NET MVC Framework is that it is written with testability
in mind. That means that it’s very easy to create an instance of just about any class in
the framework and execute it within a unit test, just as we are able to do with our
models.

ASP.NET MVC controllers are no exception to this rule—in fact, they are nothing but
simple classes, and controller actions are nothing but simple methods!

Take the default HomeController, for instance:

using System.Web.Mvc;

namespace Ebuy.Website.Controllers
{
 public class HomeController : Controller
 {
 public ActionResult Index()
 {
 ViewBag.Message = "Your app description page.";

 return View();
 }

Testing an ASP.NET MVC Application | 361

 public ActionResult About()
 {
 ViewBag.Message = "Your quintessential app description page.";

 return View();
 }

 public ActionResult Contact()
 {
 ViewBag.Message = "Your quintessential contact page.";

 return View();
 }
 }
}

In order to test the HomeController controller actions, all we need to do is create a new
instance using the default constructor and call the action. To demonstrate, let’s perform
a simple test that validates that the Index action returns a view:

[TestClass]
public class HomeControllerTests
{
 [TestMethod]
 public void ShouldReturnView()
 {
 var controller = new HomeController();

 var result = controller.Index();

 Assert.IsInstanceOfType(result, typeof(ViewResult));
 }
}

Notice how the unit test is able to create an instance of the HomeController and call its
action entirely outside of the ASP.NET MVC pipeline. Here is where you start to see
the power of the ASP.NET MVC Framework’s loose coupling and why controller ac-
tions return ActionResult objects rather than executing the rest of the request them-
selves. Not only does it provide great power and flexibility during the execution of
requests; it also allows unit tests to validate the behavior of each part of the request
individually.

Testing data access logic

With the HomeController Index action example out of the way, let’s move on to an
example that involves data access. Take a look at the Auction action of the original
AuctionsController implementation from early on in the book, before we refactored it
in Chapter 8 to use the more testable repository pattern:

public ActionResult Auction(long id)
{
 var db = new EbuyDataContext();

362 | Chapter 17: Automated Testing

 var auction = db.Auctions.Find(id);

 return View(auction);
}

Just as with the tests that we wrote previously, we’ll start the testing process by defining
exactly what this controller action is supposed to do, using normal language. It retrieves
the auction with the given Id from the database and displays it in a view. Simple, right?

But when it comes time to write the unit test, some complications arise, such as:

• Do any auctions even exist in the database for the test to retrieve?

• If auctions exist, which Id should the test use to retrieve them?

• And, assuming that auctions exist and we know their Id, how can the test verify
that it has retrieved the correct auction? (For example, if the test requests auction
5, how can it test to make sure that it didn’t receive auction 8?)

The simple answer to all of these questions is to have the test create an auction in the
database so it’s guaranteed to have an auction to retrieve every time it runs.

So, let’s try that out and see how it works:

using Ebuy.Website.Controllers;
using Microsoft.VisualStudio.TestTools.UnitTesting;

namespace Ebuy.Tests.Website.Controllers
{
 [TestClass]
 public class AuctionsControllerTests
 {
 private Auction _auction;

 [TestInitialize]
 public void TestInitialize()
 {
 using(var db = new EbuyDataContext())
 {
 _auction = new Auction { Title = "Test Auction" };
 db.Auctions.Add(_auction);
 db.SaveChanges();
 }
 }

 [TestMethod]
 public void ShouldRetrieveAuctionById()
 {
 var controller = new AuctionsController();

 dynamic result = controller.Auction(_auction.Id);

 Assert.AreEqual(_auction.Id, result.Model.Id);
 Assert.AreEqual(_auction.Title, result.Model.Title);
 }

Testing an ASP.NET MVC Application | 363

 }
}

Notice how this test class leverages the TestInitialize() method to add the test auction
to the database prior to executing the test logic. The test can then reference the test
auction’s Id value to retrieve the auction from the database. Finally, in order to confirm
that the controller action retrieved the correct auction, we ensure that the Id and
Title properties are the same.

Note that before you can run this test successfully, you must first configure the Entity
Framework connection string in the test project’s configuration. To configure the con-
nection string (if you have not already done so), add the following section to the
App.config file:

<connectionStrings>
<add name="DefaultConnection"
 connectionString="Data Source=(LocalDb)\v11.0;Initial Catalog=EBuy.Tests;↵
 Integrated Security=true"
 providerName="System.Data.SqlClient" />
</connectionStrings>

When everything is configured and ready to go, run the test to see that it passes and
that your controller works as it should. You have now used automated testing to vali-
date your controller logic!

Refactoring to Unit Tests
Though the tests in the previous example may validate the logic in the AuctionsCon
troller, they also inadvertently test the data access logic at the same time. While this
approach is valuable in that it does a good job of mimicking the integration that will
occur in a production environment, it also suffers from all of the unfortunate side effects
that integration tests bring to the table, which make these kinds of tests slow and un-
reliable. The biggest issue with testing two components at the same time comes when
the tests fail. How do you easily determine which component is to blame?

The best way to pinpoint issues when they arise is to focus on validating each compo-
nent’s logic with targeted unit tests individually, and then put multiple components
together to see how well they integrate. As you test each component in your application,
stop to consider what, exactly, that component’s job is, and be sure that your tests
target only that component’s behavior and do not accidentally expand to a wider scope.

364 | Chapter 17: Automated Testing

When writing automated tests—particularly unit tests—it is much eas-
ier to focus on the unit under test if you assume that all other compo-
nents that the unit under test interacts with work as they should.

In fact, when you write tests for all of your components in this way, what
you end up with is a comprehensive suite of very focused tests! With
this kind of focused automated test suite in place, it is generally much
easier to pinpoint problem components when something goes wrong,
because the tests that focus on that component will be the ones to break,
rather than a bunch of tests for other, unrelated components.

For example, when you write tests for a controller action that retrieves data from a
repository and performs some action on that data, what you are really testing is the
logic within the controller action, not the data access layer that retrieves the data. The
problem is, the tests that we just wrote test both layers. In the next section, we’ll look
at a way to work around this issue.

Mocking Dependencies
When you run into problems like the one just described, techniques such as the repos-
itory pattern described in Chapter 8 really start to show their value. Patterns like this
one introduce a layer of abstraction that lets you easily replace production components
with fake components so you can control the data that is provided to the unit under
test (the controller action, in this case).

The act of replacing components with their fake counterparts for the purpose of testing
is called mocking, and the replacement components are called test doubles. They are
also commonly referred to by any number of other names, such as dummies, fakes,
stubs, and (most commonly) mocks.

Once you are able to ensure that the behavior of the dependency will never change by
using these techniques, you can begin turning your integration tests into unit tests by
removing the external dependency and focusing only on the controller’s logic. To
demonstrate how to perform this transformation, let’s take a look at how we can apply
the mocking technique to the AuctionsController, as refactored to the repository pat-
tern in Chapter 8:

using System.Web.Mvc;

namespace Ebuy.Website.Controllers
{
 public class AuctionsController : Controller
 {
 private readonly IRepository _repository;

 public AuctionsController()
 : this(new DataContextRepository(new EbuyDataContext()))
 {

Testing an ASP.NET MVC Application | 365

 }

 public AuctionsController(IRepository repository)
 {
 _repository = repository;
 }

 public ActionResult Index()
 {
 var auctions = _repository.Query<Auction>();

 return View(auctions);
 }

 public ActionResult Auction(long id)
 {
 var auction = _repository.Single<Auction>(id);

 return View(auction);
 }
 }
}

Notice that there are two constructors: one that accepts an IRepository that the con-
troller uses for all of its data access, and another that creates the default implementation
of the IRepository that will be used in production.

This way, when the controller is created using the default constructor (i.e., the con-
structor that the ASP.NET MVC Framework uses), it will use the production IReposi
tory implementation (DataContextRepository). However, the constructor that accepts
the IRepository provides a seam into which unit tests may inject a mock object to
control the data provided to the controller.

Manually creating mock objects

Before we can take advantage of the fact that the AuctionsController is able to accept
a mock IRepository, we must first create one. Perhaps the most straightforward way
to create a mock IRepository is to write one ourselves—that is, create a class that
implements the IRepository interface and exists for the sole purpose of aiding auto-
mated tests.

The following code snippet shows an example of a very basic implementation of
IRepository that enables us to control what the Single<TModel>() method returns:

public class MockAuctionRepository : IRepository
{
 private readonly Auction _auction;

 public MockAuctionRepository(Auction auction)
 {
 _auction = auction;
 }

366 | Chapter 17: Automated Testing

 public TModel Single<TModel>(object id) where TModel : class
 {
 return _auction as TModel;
 }

 public IQueryable<TModel> Query<TModel>() where TModel : class
 {
 throw new System.NotImplementedException();
 }
}

The MockAuctionRepository class has several important distinctions:

• First—and most importantly—the class exposes methods that behave the same
way every time they are called, which makes other components’ interaction with
class very predictable.

• Second, the mock class allows tests to control the data that the Single<TModel>()
method returns. It does this by returning the Auction object that is passed via the
constructor every time the Single<TModel>() method is executed.

• Finally, the MockAuctionRepository implements the bare minimum of the IReposi
tory contract necessary to be useful in our automated tests. In other words, the
MockAuctionRepository targets a specific test scenario and is not designed to be a
general-purpose repository. This is evident in the fact that the Query<TModel>()
class throws a NotImplementedException, and it does so on purpose—since we
know that the unit under test (the AuctionsController.Auction() method) is only
supposed to call the IRepository.Single<TModel>() method. If Query<TModel>()
ever executes in the course of our tests, this exception will be thrown and that test
will (correctly) fail.

Now let’s rewrite our earlier integration test (shown in “Testing data access logic” on
page 362) to make use of this new mock repository class:

[TestClass]
public class AuctionsControllerTests
{
 [TestMethod]
 public void ShouldRetrieveAuctionById()
 {
 var auction = new Auction { Id = 123 };
 var mockRepository = new MockAuctionRepository(expectedAuction);

 var controller = new AuctionsController(mockRepository);
 dynamic result = controller.Auction(expectedAuction.Id);

 Assert.AreSame(expectedAuction, result.Model);
 }
}

Here you can see how the test makes use of the repository-based AuctionsController
by creating and passing an instance of our new MockAuctionRepository class to take the
place of the default database-based IRepository implementation. The test can then call

Testing an ASP.NET MVC Application | 367

the controller.Auction() method with the expectation that it will call the MockAuction
Repository.Single<Auction>() method. The test then makes any assertions against the
result.Model object that it needs to make in order to prove that it is the same Auction
instance (expectedAuction) that the test provided to the mock repository.

Notice how this test sets the value of the Auction.Id property even
though the setter for this property is marked with the internal access
modifier and the test class is located in a different assembly than the
Auction class (i.e., it’s not in the same internal scope). This is possible
by applying the following InternalsVisibleTo assembly-level attribute
to the Ebuy.Core project (where the Auction class is defined), which
exposes all of the internals of Ebuy.Core to the Ebuy.Tests test project:

[assembly: InternalsVisibleTo("Ebuy.Tests")]

This approach offers yet another bonus: since the test replaces the database-based
IRepository implementation with our new mock IRepository, it no longer needs to
make sure that an Auction with the specific Id exists in the database (the test creates
this Auction itself).

And just like that, we are able to replace an external dependency on a database with a
mock object and turn an integration test into a unit test!

Using a mock framework

Though manually creating mock classes such as MockAuctionRepository is a great way
to replace production components during testing, it has its share of problems.

To begin with, despite the fact that mock classes are only used during testing, they are
still real implementations of application interfaces, which means that not only do de-
velopers need to write more code in order to write effective unit tests, they must con-
tinue to maintain that code as the codebase matures. This issue is compounded by the
fact that it is common for developers to write multiple mock implementations of a single
interface to target various usages of that interface, just as the MockAuctionRepository
example only implemented the Single<Auction>() method and nothing more. Consider
the effect of changing the underlying interface when there are dozens or more mock
implementations of that interface!

Luckily, there is an alternative to manually creating mock classes: use a mock frame-
work to do it for you.

A mock framework is a framework that provides developers with an API to dynamically
create mock classes on the fly and easily configure those classes to suit a particular
situation. In short, mock frameworks give you all the benefits of manually created mock
classes with a fraction of the work, during both the initial test development and the
ongoing maintenance of the unit test suite.

368 | Chapter 17: Automated Testing

Though there are a wide variety of mock frameworks available to .NET
developers, they all perform essentially the same task: creating mock
objects on the fly. Since their major differences tend to be in the form
of the syntax they use to create those mock objects, the choice of which
mock framework to use generally comes down to developer preference.

In this book, we’ve chosen to show examples of the excellent open
source Moq framework, but you are free to use any mock framework
that you like. For instance, you may want to look into some of the other
open source mock frameworks, such as Rhino Mocks, Easy-
Mock.NET, NMock, or FakeItEasy, or even one of the several com-
mercial frameworks that are available.

For example, take a look at the following snippet, which replaces the manual MockAuc
tionRepository from the previous example with a mock IRepository object generated
by the Moq framework:

[TestClass]
public class AuctionsControllerTests
{
 [TestMethod]
 public void ShouldRetrieveAuctionById()
 {
 var expectedAuction = new Auction { Id = 123 };

 var mockRepository = new Moq.Mock<IRepository>();
 mockRepository
 .Setup(repo => repo.Single<Auction>(expectedAuction.Id))
 .Returns(expectedAuction);

 var controller = new AuctionsController(mockRepository.Object);
 dynamic result = controller.Auction(expectedAuction.Id);

 Assert.AreSame(expectedAuction, result.Model);
 }
}

Here you can see that the mock framework is able to stand in for the IRepository
interface with just a few lines of code. First, the test dynamically creates a new mock
IRepository instance via the Moq.Mock<T> object: new Moq.Mock<IRepository>(). Next,
the test tells the mock object how it should behave, using the Moq framework’s
Setup() method to specify the exact call the mock object should expect (repo.Sin
gle<Auction>(expectedAuction.Id)) and the Returns() method to indicate the value
that should be returned in response to the expected call.

The net result of this example is that we are able to replace the manually created
MockAuctionRepository class with a dynamic mock IRepository implementation that
provides all the benefits of a mock class, but requires a lot less code and ongoing main-
tenance. And since the mock framework drastically reduces the amount of effort it takes

Testing an ASP.NET MVC Application | 369

http://code.google.com/p/moq/
http://hibernatingrhinos.com/open-source/rhino-mocks
http://sourceforge.net/projects/easymocknet/
http://sourceforge.net/projects/easymocknet/
http://www.nmock.org/
https://github.com/FakeItEasy/FakeItEasy

to effectively mock out dependencies, this approach helps developers write more ef-
fective test suites that consist of far more unit tests than integration tests.

Testing Views
With the model and controller layers successfully under test, it’s time to move on to
testing views. There is some bad news, though: you’ve got your work cut out for you.

To see why it’s going to be so much work, ask yourself the same question we’ve been
asking throughout this chapter before we begin testing something: what, exactly, am I
trying to test here? Consider the interaction that a user has with an ASP.NET MVC
application. The ASP.NET MVC Framework is strictly worried about rendering HTML
to the user’s browser, but as far as the user’s browser is concerned that’s just the
beginning!

As Chapter 4 discusses, there is far more to a modern web page than just rendering
HTML and CSS in a browser. Advanced JavaScript and AJAX techniques have evolved
the modern Web from a simple content-delivery mechanism to an immersive experi-
ence that can turn the browser into a full-fledged application development platform in
itself—and this platform may have very little to do with ASP.NET MVC!

What this all boils down to is that testing your application’s view layer is a lot more
involved than simply instantiating an object and writing a few lines of code to validate
its behavior. In fact, the “view layer” can actually be divided into several different layers
itself: the rendered HTML that contains the initial content and structure of the page,
the JavaScript that contains the application logic, and the CSS rules that style it all. All
three of these aspects of a page need to be perfect in order to achieve the desired
experience—and all of them require very different testing approaches and techniques.

Testing application logic in the browser

While the above examples show that text-based automated testing of your website is
certainly possible, the benefits of a text-based approach can be rather limited, because
the content that the browser receives and the way that it chooses to render that content
can be two very different things. And it gets even worse when you consider just how
differently the various browsers can render the same HTML markup. In order to truly
test how your site will interact with actual users, you’ll inevitably need to load it into
a browser and see the site like your users will see it.

This approach is called browser testing, because it involves opening up an actual
browser and using virtual mouse clicks and keystrokes to mimic actions that the users
of your site will carry out. Clearly, the easiest way to perform browser testing is to
manually open a browser and begin interacting with it as you expect a normal user
would. However, this chapter is about automated testing, so we’ll focus instead on the
various ways that you can have the computer perform those tasks for you; in other
words, automated browser testing.

370 | Chapter 17: Automated Testing

There are a number of tools that let you perform browser testing from within an auto-
mated test suite, but the one we’re going to look at in this chapter is a tool called WatiN.

To begin using WatiN in your solution, all you need to do is use the NuGet Package
Manager to add the WatiN package to your test project’s list of references. After the
reference is added, create a normal test class and a normal test method—just as we did
in the previous sections—and import the WatiN.Core namespace. Then, use an instance
of the WatiN.Core.IE class to open up an instance of Internet Explorer and begin inter-
acting with the browser in your tests.

For example, the following test uses Internet Explorer to navigate around the EBuy
website:

using Microsoft.VisualStudio.TestTools.UnitTesting;
using WatiN.Core;

namespace Ebuy.Tests.Website.Browser
{
 [TestClass]
 public class AuctionTests
 {
 [TestMethod]
 public void ShouldNavigateToAnAuctionListingFromTheAuctionsList()
 {
 const string baseUrl = "http://localhost:65193";
 using (var browser = new IE(baseUrl + "/auctions", true))
 {
 var auctionDiv = browser.Div(Find.ByClass("auction"));
 var auctionTitle = auctionDiv.Element(Find.ByClass("title")).Text;

 auctionDiv.Links.First().Click();

 Assert.IsFalse(string.IsNullOrWhiteSpace(auctionTitle));
 Assert.AreEqual(
 auctionTitle,
 browser.Element(Find.BySelector("h2.title")).Text);
 }
 }
 }
}

This test instructs Internet Explorer to navigate to http://localhost:65193/auctions, the
URL to display the list of auctions running on the local development web server on
port 65193. Once the page loads, the test locates the first Auction element (<div
class="auction">), then snoops further in the Auction element to discover the title of
the auction (), which it saves to confirm that the correct page is
loaded later in the test.

After all of this discovery is complete, it’s time to execute the test. The test finds the
first link in the Auction element and triggers a click using the link’s .Click() method,
which redirects the browser to the details page for the selected auction.

Testing an ASP.NET MVC Application | 371

http://watin.org/

Finally, the test validates that everything worked as expected by asserting that the auc-
tion’s title (which it retrieved from the auction list page) matches the text in the <h2
class="title"> element on the details page. If everything went as planned, there should
be no problem locating the <h2> element and it should contain the proper auction title.

If you attempt to execute the unit test and receive a message indicating
that the test runner could not load the assembly Interop.SHDocVw, this
means that the COM interop object is not being properly located.

In order to fix this issue, find the Interop.SHDocVw assembly in your
test project’s References list and change the value of the Embed Interop
Types property to false and the Copy Local value to true.

This should allow the test runner to communicate with Internet Ex-
plorer and execute the tests successfully.

This example, while simple, is a powerful demonstration of the capabilities of auto-
mated browser testing. Notice the various ways in which the test is able to interact with
the browser through WatiN’s extensive API. For instance, the IE class provides a rep-
resentation of the browser that tests can order around, while the various helper methods
available on the Find class offer many different ways to quickly and effectively search
through the DOM to find elements. And not only can you locate and analyze browser
elements, but various methods available off of the element objects—such as
the .Click() method—give tests a way to mimic user interaction with the browser.

Code Coverage
Code coverage is a code analysis technique that judges how well an automated test suite
tests an application based on how many lines of code are executed over the course of
executing the test suite. Code coverage is generally stated in terms of percentages; e.g.,
if a component contains 100 lines of code and a test suite executes 75 of those lines,
that component is said to have 75% code coverage.

In order to evaluate a project’s code coverage, you must use a code coverage tool. This
tool executes a suite of automated tests within a profiler process and keeps track of
every line of code that gets executed over the course of each unit test run. When the
test run is complete, the code coverage tool typically creates a report to show you how
well the tests covered the various parts of your application.

If you are running a non-Express version of Visual Studio, you are in luck, because it
ships with a code coverage tool built right into the IDE. To use the Visual Studio Code
Coverage tool, expand the Unit Test > Analyze Code Coverage menu and choose one
of the “Selected Tests” or “All Tests” options.

372 | Chapter 17: Automated Testing

This will cause the tool to execute your unit tests, analyze the code coverage results,
and display them in the Code Coverage Results window in your IDE (as shown in
Figure 17-6).

Figure 17-6. Visual Studio code coverage results

As this image shows, Visual Studio can show you—right down to the method level—
exactly how much of your code is “covered” or “not covered” through your automated
test suite.

In this case, you can see that 63.38% of the entire ebuy.core.dll assembly is getting
covered. If you assume that this project has an extensive automated test suite in place,
this number may come as a surprise, since you may have expected something much
closer to 100%.

To see what is keeping us from 100% code coverage, first try to find where the holes
in the coverage are. A quick glance down the list of methods shows that two methods
are not covered: DataContextRepository.Query<T>() and EbuyDataContext.Initial
izer.Seed().

These methods have one thing in common: they both interact with the database. Fur-
thermore, EbuyDataContext.Initializer.Seed() only gets executed when the database
is first created and never again after that.

This information has several implications, but one of the more important things that
it points out is that our tests always execute against an existing database and never
create a new database. This may be by design, in which case the lack of code coverage
on this method may be acceptable. Or, it may expose that we’ve made a very important
mistake and that our tests should be creating a new database for every test run!

The fact that the DataContextRepository.Query<T>() method was never executed is in-
teresting as well. This information may also indicate that we need to write some more
tests that target this method, or perhaps that the method may not even be needed at all.

Code Coverage | 373

Ultimately, these are all judgment calls that you must make. Depending on the situa-
tion, you may have very valid reasons for leaving parts of your code uncovered by
automated tests and not obtaining “100% code coverage”—and that’s OK!

The Myth of 100% Code Coverage
Evaluating your test suite’s code coverage is an excellent way to make sure that you are
exercising as much of your application as possible, and you should strive to test as many
lines of code as you are realistically able to.

However, while it’s sensible to try to test every single line of code in your application,
there are two problems with the quest for 100% code coverage:

1. It’s practically impossible. Even though there are plenty of ways to develop code so
that it is very easy to test (as the next section shows), there are many situations that
are very difficult to cover with automated tests. One of the best examples of this is
any component that interacts directly with an HttpRequest, a framework compo-
nent that takes quite a bit of work to instantiate. The simplest and most effective
way to test these components is to run them within the ASP.NET pipeline, which
breaks most of the unit test guidelines mentioned earlier in this chapter.

2. It gives a false sense of security. Consider the sample unit test we created earlier.
Assume that this test provides 100% code coverage of the Calculate.Add() method
—that is, it executes every single line of code in that method without failing. Does
that mean that the Calculate.Add() method can never fail? We only tested it with
the values 1 and 2; does that mean that it will properly support any value it’s given?
(Hint: try Calculate.Add(double.MaxValue, double.MaxValue).)

This is not to say that it is not a noble cause to shoot for as high a code coverage
percentage as you can achieve. Just be sure to keep these concepts in mind as you do,
and don’t consider your test suite a failure if you’re not able to reach the mythical 100%
code coverage!

Developing Testable Code
If effective software testing focuses on verifying that a component or an application will
work as expected in a production environment, then anything that stands in the way
of running that code as closely to how it will run in a production environment can be
said to make that code more difficult to verify and thus less “testable.”

For instance, think of the most recent component you’ve worked with and ask yourself
a few questions:

• How much setup or configuration does it take to prepare the component for test-
ing?

374 | Chapter 17: Automated Testing

• How many other components (which may demand their own additional configu-
ration) does that component interact with?

• Does the component depend on any third-party libraries, databases, external web
services, or even the local filesystem?

• How reliable and consistent are these dependencies? For example, do you have a
test web service that always returns the same results?

All of these things can affect the “testability” of a software component.

Take, for example, the two methods shown below. Though both methods contain only
one line of code, the first method is far more testable than the second method, which
represents one of the most difficult scenarios to test reliably. First up is GetVersion
Number():

public static int GetVersionNumber()
{
 return 1;
}

What makes GetVersionNumber() so testable is the fact that it will always return the
same result (the int value 1) regardless of how many times it’s called. Perhaps even
more important is how accessible this method is. Since it is exposed with a public access
level, any component may execute the method and evaluate its response. Its static
modifier also means that consumers don’t need to create an instance of the containing
class in order to execute the method—it’s just a simple method call.

The CallRemoteWebService() method, on the other hand, is an entirely different story:

private ServiceResult CallRemoteWebService()
{
 return new WebService("http://thirdparty.com/service")↵
 .GetServiceResult("some special value");
}

For starters, this method is closed off from the world via its private access level. This
means that in order to even execute the method, a test must first call another method
in the same class, introducing unrelated logic into the mix that we’d rather avoid. It
also means that the test will have to create an instance of the class before being able to
call any of its methods, which, depending on the class’s dependencies, may not be a
trivial task.

The next thing that CallRemoteWebService() has going against it is that it accesses an
external dependency (a remote web service), which introduces a whole slew of issues
that can occur when attempting to execute this method. Is the web service active? Might
we run into networking issues attempting to access it? Is it returning the correct data?
If it’s a third-party service, have we paid our bill lately?

The final, most notable issue that makes CallRemoteWebService() difficult to test is
how it accesses the external web service dependency. Notice that the method creates a
new instance of the WebService class and uses a hardcoded URL to reference the external

Developing Testable Code | 375

service. Because of this, there is no way to test this method without making the actual
call to the external production web service, which means that there is no way to control
the behavior of the web service dependency.

Be wary of the new keyword—it’s usually an indication that there is an
opportunity to use dependency injection to help create a looser coupling
between components.

When a component receives an instance of the other object via depend-
ency injection, it makes it much easier to replace that behavior with a
test object during testing. But when that component creates an instance
itself, replacing that logic is nearly impossible.

Therefore, any test that executes this method is effectively a test of the integration with
the external web service. While this is not a bad thing, it means that this method can
never be unit tested, since it breaks all of the aforementioned guidelines for a true unit
test.

When you consider the downstream effects of this situation, it gets much worse. Not
only can this method not be unit tested, but no other method that calls this method
can be unit tested either. If you get enough of these methods in your application, pretty
soon it becomes impossible to unit test the entire application!

Summary
Automated testing is a great way to ensure the ongoing quality and functionality of
your entire application. Traditionally, it’s been somewhat difficult to apply automated
testing techniques to ASP.NET web applications. However, the loosely coupled archi-
tecture that the ASP.NET MVC Framework provides makes automated testing of
ASP.NET MVC applications a cinch.

Couple the ASP.NET MVC Framework with the helpful patterns, practices, and tools
introduced here, and pretty soon you’ll be able to bask in the confidence that a full
suite of automated tests brings.

376 | Chapter 17: Automated Testing

CHAPTER 18

Build Automation

In order to move from raw source code to a fully functioning application, many things
need to happen. For instance, applications written using a static language such as C#
must be compiled and, perhaps, copied to a special folder (such as the bin folder in the
case of an ASP.NET web application). An application may also require a number of
other artifacts to function properly, such as images, script files, or even entire database
schemas. The act of preparing these artifacts—as well as anything else that an appli-
cation requires in order to function—is often referred to as “the build.”

Previous chapters explored the idea that, while humans are notoriously bad at per-
forming repetitive tasks with accuracy, computers handle these types of tasks with ease
and precision. Chapter 17 demonstrated a great example of this by taking advantage
of the computer’s talents to perform automated testing of an application.

This chapter expands on the theme of automating the various aspects of software de-
velopment by applying automation techniques to the act of building and deploying
your application. Along the way, we’ll explore how to use automation to improve the
interaction between members of your development team and the other groups involved
in creating, validating, and delivering your software.

Though the examples in this chapter demonstrate common automated
build and deployment scenarios using Microsoft’s MSBuild and Team
Foundation Server tools, there are numerous commercial and open
source alternatives to MSBuild and Team Foundation Server, and each
has its own way of creating and executing build scripts.

Despite their differences, however, almost all build and deployment
frameworks are driven by the same fundamental concepts and techni-
ques. So, as you follow the examples in this chapter, keep in mind that
it’s the concepts of automated build and deployment that are important,
not which tools you use to implement them.

377

Creating Build Scripts
Before you can begin automating a build, you must first define what it is that you’d like
the computer to do for you. You do this through the use of build scripts—files that
contain a set of tasks you need the computer to perform.

The actual format and syntax of the build scripts will vary depending on the tool that
you use, but regardless of how they are written, build scripts can contain logic that
extends far beyond simple code compilation to include tasks such as executing the
application’s unit test suite, evaluating the application’s source code quality, generating
and executing database scripts—just about any task you can imagine.

Development environments such as Visual Studio often set the groundwork for build
automation via concepts such as “solutions” and “projects” that make it very easy to
define which artifacts the application requires, and what to do with those artifacts in
order to produce a working application. For example, a Visual Studio C# Project
(.csproj) file may include a collection of C# source code files as well as the logic to call
the C# compiler (csc.exe) to compile those source code files into a .NET assembly or
executable. Regardless of how useful they might be within the Visual Studio IDE,
projects and solutions only begin to scratch the surface of what is possible in the world
of automated builds.

Visual Studio Projects Are Build Scripts!
While there are numerous scripting tools available to help you create automated tasks,
you may be surprised to find that you already have a very powerful scripting tool in-
stalled as part of Visual Studio: the Microsoft Build Engine (or, as it’s more commonly
known, MSBuild). MSBuild relies on scripts defined using a custom XML schema to
execute various tasks. In fact, all of Visual Studio’s project and solution files are just
MSBuild files with special file extensions, and—every time you hit F5—Visual Studio
hands these files to MSBuild in order to compile your application!

Adding a Simple Build Task
To prove it, open up Windows Explorer, navigate to the EBuy.Website folder inside of
the Ebuy solution folder, and open the EBuy.Website.csproj file in a text editor by right-
clicking on it and selecting “Open With,” then choosing your favorite text editor. Inside
the project file, you’ll find a <Project> XML node with various children such as
<Import>, <PropertyGroup>, and <ItemGroup> elements—these elements all work to-
gether to tell MSBuild how to build the project.

378 | Chapter 18: Build Automation

Scroll to the end of the project file and look for the following commented-out lines:

<!-- To modify your build process, add your task inside one of the targets below and
 uncomment it. Other similar extension points exist, see Microsoft.Common.targets.
<Target Name="BeforeBuild">
</Target>
<Target Name="AfterBuild">
</Target> -->

As their names imply, these two targets—BeforeBuild and AfterBuild—allow you to
execute tasks before and after the rest of the build tasks execute.

To see how easy it is to modify a build file, let’s change the file so it displays a message
after the build completes. To do this, we’ll uncomment the AfterBuild target and add
a call to the MSBuild <Message> task within it, like so:

<!-- To modify your build process, add your task inside one of the targets below and
 uncomment it. Other similar extension points exist, see Microsoft.Common.targets.
<Target Name="BeforeBuild">
</Target>
 -->
<Target Name="AfterBuild">
 <Message Importance="High" Text="**** The build has completed! ****" />
</Target>

Executing the Build
Now that this change is in place, it’s time to execute the build to see it in action. You
have two options here: build within Visual Studio or execute MSBuild directly from
the command line.

Building in Visual Studio

Executing MSBuild from within Visual Studio is trivial—in fact, it’s exactly what you’ve
been doing for as long as you’ve been using Visual Studio to develop and execute .NET
applications! Open the solution that contains your project and hit one of the many
Visual Studio shortcuts (such as Ctrl-B) that trigger a build.

Once the build completes, you will see your custom message displayed in Visual Stu-
dio’s Output window. For example:

3>---- Rebuild All started: Project: Ebuy.Website, Configuration: Debug Any CPU ----
3> Ebuy.Website -> C:\Code\EBuy\trunk\Website\bin\Ebuy.Website.dll
3> **** The build has completed! ****
========== Rebuild All: 3 succeeded, 0 failed, 0 skipped ==========

Creating Build Scripts | 379

Building from the command line

One of the nice things about Visual Studio projects and solutions is that you don’t
actually have to open them in Visual Studio in order to build them. Instead, you can
skip Visual Studio all together and execute your project file’s “build script” by invoking
MSBuild directly from the command line.

To do this, find and execute the Visual Studio Command Prompt shortcut in your Start
menu. This will open a Windows command prompt (cmd.exe) and automatically con-
figure its environment so the .NET tools—including MSBuild—are available.

Then, you can execute the msbuild command and pass the solution or project file name
as an argument to execute the build:

msbuild Ebuy.sln

This command executes the MSBuild toolchain against the solution and produces a
much more verbose version of the text in Visual Studio’s Output window. Somewhere
within this verbose output you should be able to locate your custom AfterBuild mes-
sage:

[...]
AfterBuild:
 The build has completed!
Done Building Project "C:\Code\EBuy\Website\Ebuy.Website.csproj" (default targets).
[...]

The Possibilities Are Endless!
Though adding a custom message to Visual Studio’s build output may seem under-
whelming, keep in mind that this is a simple example. What this example really dem-
onstrates is the ability to insert your own custom logic into the build process, allowing
you to execute literally any logic that you can call from .NET code or script via the
command line.

Automating the Build
While it’s nice to be able to execute a build script by triggering it with a keystroke within
Visual Studio or executing a command-line tool, these approaches are less than ideal
because they require manual, human intervention. Build automation, where the com-
puter is able to execute build scripts without human involvement, exposes the true
value in creating build scripts.

Once you’ve created build scripts that detail what you’d like to happen during the
course of an automated build, the next step in removing human involvement from the
mix is to hand the script off to the build automation service, more commonly known as
the build server. A build server is a service that is always running, waiting for the
opportunity to execute the build scripts it’s been given.

380 | Chapter 18: Build Automation

One build server product favored by .NET development teams is Microsoft’s Team
Foundation Server (TFS). The Team Foundation Server product is a popular choice
because it integrates a number of important concepts of the application development
lifecycle, such as source control, work item tracking, reporting, and automated build
and deployment.

Since this chapter is only concerned with demonstrating the concepts
of automated builds, we are going to assume that you have already in-
stalled and configured Team Foundation Server and are using it as your
source control system. If you would like to follow along with the fol-
lowing examples but do not have access to a Team Foundation Server
installation, you may be eligible for free or low-cost access to Microsoft’s
Team Foundation Server hosting, which provides all of the features that
we cover in this chapter. If you choose to use one of the many other
popular build automation servers, it is up to you to apply the concepts
shown in this chapter to your specific tool.

Types of Automated Builds
Because build scripts may execute just about any logic you can imagine, it’s important
to define a scope for each build that determines what, exactly, the build expects to
accomplish.

For example, the following list includes several common types of automated builds:

Continuous builds
Continuous builds are triggered whenever any team member commits a change to
the codebase and their primary purpose is to provide near-immediate feedback
about the quality of the change that was committed. In order to validate quality,
the tasks that a continuous build executes are usually restricted to compiling the
application and running a suite of unit tests that provide a baseline verification that
the code works. These unit tests complete in a short amount of time. Because of
the frequency with which continuous builds are triggered, it is crucial that these
types of builds finish as quickly as possible in order to both tighten the feedback
loop and avoid multiple builds stacking up on one another.

Rolling builds
Rolling builds are just like continuous builds, except they impose limits as to how
many builds may execute within a certain timeframe. For instance, you may con-
figure a rolling build to execute only once every five minutes, rather than every time
someone commits a change. As developers commit changes within that five-minute
period, those changes accumulate until the five minutes elapse and the next build
executes.

Automating the Build | 381

http://tfspreview.com
http://tfspreview.com

Gated check-in builds
Gated check-in builds are also like continuous builds, but rather than raising a red
flag when someone commits a breaking change, gated check-ins serve to disallow
the breaking commit from even reaching the codebase. Gated check-ins may exe-
cute once per commit (like continuous builds), or you may impose a limit on how
many times they can run in a given timespan (as with rolling builds).

Scheduled builds
Scheduled builds execute on a specific schedule and are not explicitly tied to com-
mit activity. The most popular example of a scheduled build approach is known
as a nightly build, because it is scheduled to run at the same time every night, after
the development team is done working for the day. Since these types of builds are
not directly tied to commit activity, it is generally more acceptable for them to be
somewhat out-of-date and to not reflect the most up-to-date code in the codebase.
Scheduled builds are also able to take more time to execute, perhaps executing
more in-depth automated tests or creating artifacts such as installation packages
that should only be produced in limited quantities.

The primary theme among the various types of automated builds is how often they
execute and how long each build execution takes to finish. The work each type of build
performs is an extension of this. As builds become less frequent, they have more time
to accomplish their tasks and thus can perform a larger number of increasingly complex
and time-consuming tasks.

For instance, continuous builds focus on performing the minimum amount of work in
order to verify the ongoing quality of the codebase, while at the other end of the spec-
trum, nightly or weekly builds may take hours or even days to perform massive tasks,
such as executing an extensive suite of in-depth automated tests, compiling large
amounts of documentation, or packaging a product suite for release.

The best approach to build automation typically includes a few different
types of builds operating at the same time, each with different priorities.

For instance, you might consider implementing three different builds
for the same application:

1. A continuous build to validate the quality of every check-in

2. A rolling build that occurs no more than once every hour and ex-
ecutes more detailed automated tests, but takes a while to do so

3. A nightly build that publishes the day’s changes to a test website
so users or a QA team can track progress and report bugs as early
as possible

382 | Chapter 18: Build Automation

Creating the Automated Build
After you’ve determined what type of build you’d like to create, it’s time to define it.
There are a few things that the build server requires in order to do its job: first, the build
script that contains the tasks that the build server must execute; and second, the source
code (and other artifacts) that the build script will be executed against.

To define a build using Team Foundation Server, select the Builds option from within
the Team Explorer tab, then click “New Build Definition.” This will bring up the New
Build Definition Wizard, allowing you to configure your new build.

For this example, we’ll be creating a continuous build, so enter Continuous in the “Build
definition name” field on the General tab (Figure 18-1), and leave the rest of the defaults
alone.

Figure 18-1. New Build Definition Wizard—General tab

Next, choose the “Continuous Integration” option from the Trigger tab (Figure 18-2).

You can skip the Workspace and Build Defaults tabs because their default values are
fine. Instead, click on the Process tab and look for the Items to Build configuration
property (Figure 18-3).

Automating the Build | 383

Figure 18-2. New Build Definition Wizard—Trigger tab

Figure 18-3. New Build Definition Wizard—Process tab

The Items to Build configuration property contains the list of MSBuild project files that
the build will execute. Visual Studio automatically selects the current solution,

384 | Chapter 18: Build Automation

assuming that you want to at least compile everything. Use this configuration property
to select any additional MSBuild project files you’ve created to provide additional build
logic. When you supply multiple project files, MSBuild will execute them in the order
that you provide, stopping on any failures that may occur.

Also notice the Automated Tests configuration property, whose default behavior is to
execute all automated tests that it can discover in any assemblies whose name matches
the expression ***test*.dll. This default value means that if you’ve created any automa-
ted test projects with the word “test” somewhere in their name, Team Foundation
Server will automatically execute them without any further configuration.

When you’re finished configuring the new build definition, save the definition just like
you would any other file (e.g., Ctrl-S). It should then appear under the “All Build Def-
initions” section in the Team Explorer tab (Figure 18-4).

Figure 18-4. New Build Definition Wizard—Team Explorer tab

To see if it works, try to commit a changeset into source control, or right-click the new
build, select the “Queue New Build…” menu option, then click Queue in the dialog.
Team Foundation Server will then start the build, retrieving the solution’s source code
from version control and executing the build scripts you specified.

With any luck, the build should succeed, indicating that you’ve done everything cor-
rectly. If the build fails, correct any build errors that you find in the detailed logs. The
next time you check in, a new build will automatically be triggered.

Congratulations—you’ve created your first working build!

Automating the Build | 385

Continuous Integration
Though it may have seemed innocuous among the list of automated build types above,
continuous integration is actually much more than a type of automated build that
executes every time someone commits code.

In fact, continuous integration (or CI) also describes a process of ensuring the quality
of an application by implementing small, focused sets of functionality and integrating
that functionality into the larger application on a regular basis. This practice not only
tightens the feedback loop so that new features are introduced as quickly as possible;
it also serves a much more important role in discovering—and fixing—issues with the
codebase as soon as they are introduced.

Under continuous integration, all members of the team are encouraged to check their
changes into a centralized source control repository early and often, integrating their
work with that of the other team members frequently. This helps avoid the alternative,
where individual developers modify their local copies of the application but don’t
commit the changes to the centralized repository. As time goes by, the differences be-
tween the central version of the application and each developer’s local copy become so
unwieldy that it takes hours to reconcile the differences. Had the developers merged
early and often, the integration time would have been spread out in small doses across
several check-ins, drastically reducing the impact.

Discovering Issues
Consider the “software development lifecycle” that is so common: requirements are
gathered, the software is built, and then the completed software is tested to make sure
that it was built correctly. These steps are repeated until the product is released. The
fundamental problem with this approach is that there is often a good deal of time in
between the development phase, when a bug is introduced, and the testing phase, when
it is discovered—which makes the bug exponentially more costly to fix.

There is a simple reason for this: when you’ve just finished writing code to implement
a feature, that code is fresh in your mind, which generally makes it easy to locate and
fix the issue quickly. On the other hand, if a considerable amount of time elapses be-
tween when you wrote that code and when the bug is found, not only might you have
become unfamiliar with the code, but it may have gone through several more iterations
that serve to compound the issue. Thus, it makes sense to raise issues as early as
possible.

The Principles of Continuous Integration
Below is a list of the 10 core principles that are crucial to effectively implementing
continuous integration. You may not need to implement all of them in order to benefit

386 | Chapter 18: Build Automation

D
ow

n
lo

a
d
 f
ro

m
 W

o
w

!
e
B
o
o
k

<
w

w
w

.w
o
w

e
b
o
o
k.

co
m

>

from continuous integration, but the benefit you gain is usually proportional to the
number of principles that you are able to incorporate.

These principles are generally attributed to Martin Fowler, one of the
originators of the Agile software development movement. For more in-
formation about continuous integration (and much more), feel free to
peruse the extensive set of articles on his website.

Maintain a single source repository

Source control systems provide a centralized repository that enables members of a team
to share source code and other artifacts effectively. Centralized source control systems
also represent “the truth”—the centralized repository is the one place that contains
that latest, working version of the application.

Automate the build

You should be able to build the entire application on any given machine in two steps:

1. Retrieve the source from the source control repository.

2. Execute a single command.

In order for this to work, you must make sure that the source control repository contains
everything that the build needs, outside of core, system-level dependencies (such as the
operating system features, database services, or the .NET Framework). Nothing more
should need to be installed in order to build and execute the application. When addi-
tional installations are unavoidable, they should be included as part of the automation
process that occurs when that single command is executed.

This rule particularly includes databases. Whenever possible, local builds should not
rely on existing, remote databases; instead, the automated build should include the
database schema and seed data required to create the database from scratch. Preferably,
this is accomplished without having to install anything on the local machine (for ex-
ample, using an embedded version of Microsoft’s LocalDb rather than a native instal-
lation of Microsoft SQL Server or SQL Server Express).

Make your build self-testing

This is the point where many of the patterns and practices that you’ve learned through-
out this book all come together. The SOLID practices and loosely coupled architecture
pave the way for fast and effective unit tests, which makes it possible to exercise your
code very frequently.

Continuous Integration | 387

http://martinfowler.com/articles/continuousIntegration.html

The continuous integration process can then leverage these tests by executing the au-
tomated test suite against every source code check-in to discover issues as soon as they
are introduced. When a unit test fails during the course of a continuous integration
build, the tight scope of the failed test coupled with the relatively low number of changes
to the source code make locating and fixing the issue very easy.

A continuous integration build that does not know how to verify the quality of its output
is not very valuable at all.

Have everyone commit to the mainline frequently

In order to do their work, developers must get a local copy of the source code. Over
time, the number of changes that the developers make to their local copies increases,
as does the disconnect between their local copies and the main source control repository
(the “truth”). If this pattern is allowed to continue, these differences can become so
overwhelming that it takes considerable effort to reintegrate the two sources.

Thus, it’s important that all members of the team avoid their local repositories becom-
ing out of sync with the main repository by committing to the main repository as fre-
quently as possible—no less than once a day, and preferably multiple times a day. This
way, everyone on the team can remain in sync and the main source control repository
is always an accurate representation of the current state of the project.

Every commit should build the mainline on an integration machine

The claim “It works on my machine!” is commonly heard throughout development
teams everywhere. This phrase refers to the fact that, when one developer configures
everything just right on his individual workstation, the application works perfectly. On
the one hand, this is a great sign that a feature has been implemented or a bug has been
fixed; on the other hand, the phrase is a very bad omen, indicating that the feature or
bug fix may not work at all on any other machine.

To address this problem, continuous integration dictates that you set up a machine (or
set of machines)—known as the integration machine(s)—that compiles and executes
every commit to the mainline branch of the codebase. The integration machine must
try to mirror the production environment as closely as possible, such that the assump-
tion can be made that if the application compiles and executes on the integration
machine, there is an excellent chance that it should do the same in the production
environment.

With the integration machine in place validating every commit, the fact that the ap-
plication runs on a given developer’s machine is irrelevant—the application must run
on the integration machine, and if it doesn’t, the build (and the application) should be
considered “broken” and be fixed immediately.

388 | Chapter 18: Build Automation

Keep the build fast

Since discovering issues as close as possible to the time that they are introduced is
perhaps the most crucial aspect of continuous integration, it is imperative that contin-
uous integration builds complete quickly, reporting any issues that arise as quickly as
possible.

Time is money: the longer it takes between the time the issue is introduced and the
time it’s discovered, the more that issue costs to fix.

Test in a clone of the production environment

When an application is tested in an environment that does not match the environment
it will be expected to work in upon release, it becomes less likely that errors associated
with the release environment will be identified.

Make it easy for anyone to get the latest executable

Continuous integration encourages a tighter feedback loop that allows customers to
take an active role in the development of their application.

Being able to access the actual assemblies from the latest build is usually quite benefi-
cial, but in the case of web applications, it is sometimes even better for the application
to be deployed to a centralized test server so that anyone is able to test the application
and provide feedback.

Everyone can see what’s happening

Perhaps you’ve heard the age-old philosophical question, “If a tree falls in the woods
and no one is around, does it make a sound?” The software development equivalent to
this question is: “If a build fails and no one knows (or cares), does it offer any value?”

The status of the continuous build has a direct correlation to the overall health of the
codebase and, perhaps, to the entire project. This extends far beyond the obvious metric
—whether the build is passing or failing—into other metrics such as the time it takes
for a build to complete and the amount of code coverage that occurs during the build.
Therefore, it is crucial for everyone involved in the project to have access to all the
details of the automated builds, and to pay close attention to how they perform.

People have come up with many creative ways to keep their teams in
the loop on the status of the build. These ideas range from notifications
by system tray applications all the way to large televisions mounted on
the wall for everyone to see.

What’s important is that everyone is aware of the builds, not necessarily
the way that they get the information. So, pick a way that works for you
and make sure you pay attention to it.

Continuous Integration | 389

The most important concept to understand about continuous integration is this: when
a build breaks, it means that your application is broken in some way, and nothing is
more important than getting it fixed. When a build breaks, the team needs to drop
whatever they’re doing and make fixing the build—fixing the application—their top
priority.

A broken build should always be a show-stopper. If you consistently
experience broken builds that are not the result of your application be-
ing broken (e.g., they may be caused by network connectivity issues,
errors accessing third-party APIs, etc.), you need to strongly reconsider
how you can rearrange your builds or refactor your tests to avoid these
false positives.

In such circumstances, your continuous build is no longer an accurate
reflection of the health of your codebase, and its value decreases dra-
matically. You may start to become inured to broken builds, and stop
paying attention to them.

A broken build should always indicate a problem with the codebase,
and never become such a common occurrence that it’s considered ac-
ceptable to ignore it.

Automate deployment

The final continuous integration principle focuses on making it easy for people to use
your application. Just as it’s wise to test in a clone of the production environment,
successful continuous integration builds should always include an automated deploy-
ment of the application to an environment that mimics the production environment as
closely as possible.

Automated deployment has two primary benefits. First, it offers the obvious benefit of
being able to see and use the latest version of the application at all times, making it
much easier to test for bugs and verify when bugs have been fixed.

Second, carrying out automated deployments of your application to a production-like
environment as often as possible extends the value of continuous integration well past
validating that your application works and into validating that your application de-
ployment works. Much as automated tests can help to expose bugs as soon as they are
introduced into the codebase, automated deployments can uncover deployment issues
(such as missing dependencies or security permissions issues) as soon as they are
introduced.

390 | Chapter 18: Build Automation

While you won’t ever be able to avoid deployment issues, you’ll at least experience
them outside of the production environment, well before it’s time for the final release.
This means that you will know exactly what needs to happen to get your application
into the production environment because you will have already encountered and ad-
dressed the deployment issues that would have delayed your production release. Now,
instead of being exceptions, they are simply another step in the (automated) deploy-
ment process.

See Chapter 19 for more detail about how to automate your
deployments.

Summary
This chapter showed how you can leverage the patterns and practices that you’ve
learned throughout this book to reduce the amount of human effort that goes into your
software development lifecycle by automating as much of that lifecycle as possible.
Once you’ve invested in things such as SOLID development practices and a suite of
automated tests that validate your application, it’s incredibly easy to leverage that effort
to ensure the continued quality of your application.

Summary | 391

PART V

Going Live

CHAPTER 19

Deployment

You can spend plenty of time using ASP.NET MVC to build the best website in the
world, but it’s not going to do anyone any good until it gets hosted on a web server so
that users can actually access it. The act of copying your website to a web server and
exposing the site to users is called deployment, and it is certainly not a concept that is
unique to ASP.NET MVC websites.

In this chapter, we’ll cover a handful of the most popular techniques that you can
choose from to get your website onto the Internet—everything from simple file copying
to working with “cloud” hosting providers for the ultimate in scalability and uptime.

As you read this chapter, keep in mind that many web applications have unique de-
ployment needs, and the techniques that we show in this chapter may not directly apply
to your exact situation. Instead of seeing this chapter as a “how-to” guide with detailed
steps, try to think of it as an overview of the various deployment tools at your disposal
and be on the lookout for the tools and techniques that apply to your situation.

What Needs to Be Deployed
Before we start creating websites and copying files, let’s take a step back to discuss what
it is that we’re going to be doing. At a high level, there are three kinds of dependencies
that most web applications have: the .NET assemblies and various files that contain
the logic for the site, any custom content (such as CSS or JavaScript files) that the site
relies on, and any kind of external runtime dependencies that the website requires (such
as a database or external services).

Core Website Files
At a minimum, every ASP.NET web application must include a /bin folder that contains
the assemblies with the application’s compiled code and other .NET assemblies that
the application depends on. As such, the /bin folder is a crucial part of any ASP.NET
web application deployment strategy.

395

So too, however, are the various other “special” files that are not necessarily required
for the site to function properly, but often contain crucial information such as the site’s
configuration. These files—files such as web.config and Global.asax—almost always
must be included, in addition to the assemblies in the /bin folder.

If you’re already an ASP.NET Web Forms developer, none of this will come as a surprise
to you, since what we have described up to this point is how to deploy a plain old
ASP.NET web application.

However, ASP.NET MVC web application deployments begin to diverge from those
of traditional ASP.NET Web Forms applications when it comes to the views. In addi-
tion to the application assemblies in the /bin folder and any “special” ASP.NET-related
files, ASP.NET MVC web applications must also include local copies of all of their
views (i.e., the /Views folder), along with the rest of the deployed content. This is be-
cause ASP.NET MVC views follow the same Just-In-Time (JIT) compilation, deploy-
ment, and maintenance procedures as Web Forms .aspx views; in fact, the two are
practically synonymous.

“bin-deploying” ASP.NET MVC libraries

It probably goes without saying, but in order for your ASP.NET MVC website to work,
the deployed application will need access to the ASP.NET MVC Framework assemblies.
You can go about this in two ways: you can install the ASP.NET MVC Framework
directly on the web server, or you can include the ASP.NET MVC libraries along with
the rest of the assemblies in the application’s /bin folder.

The steps to install the ASP.NET MVC Framework on the server are exactly the same
as those covered in the first chapter of this book—simply run the Web Platform In-
staller directly on the server and choose to install the ASP.NET MVC Framework
package.

It’s often a good idea to avoid installing anything at all on the web server, so you may
prefer to treat the ASP.NET MVC assemblies just like any other application dependency
and copy them into the /bin folder along with everything else. This technique is often
referred to as “bin-deploying,” and it is usually the approach that is the simplest, most
stable, and easiest to maintain.

Thankfully, Visual Studio makes bin-deployment very easy by including a menu option
that automatically adds a folder containing the ASP.NET MVC dependencies to your
application: simply right-click on the ASP.NET MVC project in Visual Studio and
choose the “Add Deployable Dependencies…” option, as shown in Figure 19-1.

396 | Chapter 19: Deployment

http://www.microsoft.com/web/downloads/platform.aspx
http://www.microsoft.com/web/downloads/platform.aspx

Figure 19-1. The menu option to add a folder containing the ASP.NET MVC dependencies to your
application

When you choose this option Visual Studio will let you select which dependencies you
want to include in your project. Choose the ASP.NET MVC option, as shown
in Figure 19-2, and click OK.

Figure 19-2. Select ASP.NET MVC

Visual Studio will then create a new folder called /_bin_deployableAssemblies that
contains the framework assemblies to include in the deployment (Figure 19-3).

Figure 19-3. The new _bin_deployableAssemblies folder

What Needs to Be Deployed | 397

Now when you publish the website, Visual Studio will deploy the assemblies in this
new folder along with the rest of your application.

Static Content
Static content can refer to any type of file, but the majority of these files will almost
always be the JavaScript files, CSS stylesheets, and images that provide your applica-
tion’s client-side logic and styling. Although these files can technically live anywhere
in your site’s folder structure, the default ASP.NET MVC project templates create
the /Scripts, /Images, and /Content folders for you to place all of your JavaScript files
and other content in. Therefore, if you use this out-of-the-box convention, these three
folders will contain all of your site’s static content.

Be sure to set the Build Action property on each static content file in your
Visual Studio project to Content so that Visual Studio is aware that it is
static content that should be deployed along with your site.

What Not to Deploy
If you’re following the conventions defined in the default ASP.NET MVC project tem-
plates, just about every ASP.NET MVC website deployment will look similar to the
directory hierarchy shown in Figure 19-4.

Figure 19-4. Conventional ASP.NET MVC deployment hierarchy

Note that this directory structure is very different from the set of files that you work
with in the application’s Visual Studio project (for example, the project shown in
Figure 19-5).

398 | Chapter 19: Deployment

Figure 19-5. Default ASP.NET MVC project structure

More specifically, the deployed application will not include any of the source code files
that define the application’s logic. Since the project is compiled before it is deployed,
these source code files are already “included” in the deployment in the form of the
application’s compiled assemblies in the /bin directory. With this in mind, you’re free
to create any folder structure that you please to store and organize your source code
files, since these folders will not become part of the deployed application.

Databases and Other External Dependencies
Though almost every ASP.NET MVC application deployment will include a directory
structure similar to the one shown in Figure 19-5, this is where the similarities between
ASP.NET MVC application deployments usually end and the unique deployment needs
begin.

Most web applications will also depend on things other than the physical files that get
deployed to the server, such as the ability to store data in and retrieve it from a database,
or to interact with a web service. These dependencies only increase as applications
become less tightly coupled and distributed or service-oriented architectures grow more
common.

While exploring the details of how to coordinate the deployment of your website with
these systems is well beyond the scope of this book, the high-level discussion of how
to plan for these kinds of deployments is not. Below is a list of questions you can ask
to help discover the dependencies and tasks that your application deployment requires:

1. What system-level applications and APIs does the application require (e.g., OS
version, IIS version, .NET Framework version)?

• Does any software need to be installed on the server?

2. What system-level folders or files does the application require?

What Needs to Be Deployed | 399

• Does the application require a specific folder path to anything? (This is usually
something that you should avoid.)

3. Does the application require a database?

• If so, have there been any updates to the database schema since the last release?

• Does the application use a particular database user? If so, is that user’s database
access properly configured?

4. What other servers or services does the application interact with?

• Are any networking changes required to access them (e.g., firewall rules, user
or role security)?

5. Do I have all of the appropriate licenses purchased and available?

Note that this list certainly does not include everything that you’ll need to consider in
order to have a successful release. These questions should, however, help address the
most common situations and get you thinking about any additional requirements that
your particular application may have.

What the EBuy Application Requires
To give an example of the thinking that goes into website deployment, let’s take stock
of what dependencies and configurations might be involved in deploying the EBuy
reference application:

• System-level APIs and services. The EBuy application is a pretty basic applica-
tion that doesn’t depend on any system-level APIs other than the .NET 4.5 Frame-
work. It provides all its other API dependencies—including ASP.NET MVC 4—in
its /bin folder (which, of course, must be deployed).

• Views, scripts, stylesheets, and images. In addition to the assembly dependen-
cies, such as the .NET Framework and the assembly that includes the application’s
logic, these artifacts are the most obvious dependencies that the application re-
quires in order to function. We’ll need to be sure these files get copied along with
everything else

• A database. The EBuy website is a data-driven website, backed by an Entity
Framework Code First data model that requires a database to persist the applica-
tion’s data.

• A place to store uploaded images. When users create a new auction listing, they
have the option to upload images of the item to display in the listing, and the
application must store these images somewhere. The actual location and method
of storing the image files may vary, depending on whether the application is hosted
on a single server, a server farm, or with a cloud hosting service such as Azure.
Regardless of where they are stored, the application must be sure to have both
“physical” access (i.e., network or filesystem access) to the location, and the
appropriate security permissions to read and write the images.

400 | Chapter 19: Deployment

Once we have answered all of these questions and made sure that we know everything
that must be deployed in order for our application to function properly, it’s time to
begin deploying!

Deploying to Internet Information Server
Perhaps the most common ASP.NET MVC application hosting scenario involves cre-
ating and configuring a website using Internet Information Server (IIS). The good news
is that ASP.NET MVC applications are—for the most part—just like any other
ASP.NET application, so if you are already familiar with deploying an ASP.NET web
application to IIS, you do not have much to learn, and none of the steps should come
as a surprise to you. If this is your first time working with IIS websites or ASP.NET
applications, fear not—the following sections will walk you through everything you
need to know in order to get started.

Prerequisites
Before we can create and deploy our website, we first need to ensure that the target web
server has all of the prerequisites necessary to host an ASP.NET MVC application. In
the early days of the .NET Framework, it took quite a few steps to get an ASP.NET
application and all of its prerequisites deployed to a web server.

Luckily, things have progressed to the point where the only prerequisite that needs to
be installed on the web server—other than IIS itself—is the .NET Framework (version
4.0 or greater).

Deploying the ASP.NET MVC Framework assemblies

The ASP.NET MVC 4 assemblies themselves also need to be available, but you have
two options for deploying those. You can either:

1. Run the ASP.NET MVC 4 installer as described in Chapter 1.

2. Include the ASP.NET MVC Framework assemblies in your application’s /bin folder
using the bin-deploying method mentioned earlier in this chapter.

If you plan to run many ASP.NET MVC 4 websites on a single server, it may make sense
to choose the first option: install ASP.NET MVC 4 once and not worry about it again.
However, there is no compelling reason to go this route other than saving the disk space
that the ASP.NET MVC Framework assemblies would occupy in each application.

In almost every scenario, it is advisable to choose the second option and deploy the
ASP.NET MVC Framework assemblies in your application’s /bin folder, just as you
would any other assembly that your application depends on. Deploying the assemblies
with the application makes it very easy to manage, maintain, and even upgrade each
individual website in isolation, without worrying about the effect that a server-wide
change might have on other sites.

Deploying to Internet Information Server | 401

Creating and Configuring an IIS Website
Creating a new IIS website is a very straight-forward process.

To begin, create the directory that your website will be hosted from; for example, C:
\inetpub\wwwroot\Ebuy. Then, open the IIS management application (Internet Infor-
mation Services (IIS) Manager), right-click on “Default Web Site,” and choose the “Add
Application…” menu option, as shown in Figure 19-6, to display the Add Application
dialog.

Figure 19-6. Creating a new IIS website

In this dialog (Figure 19-7), enter the name of your website (e.g., Ebuy) and the path
to the directory that you created in the first step (e.g., C:\inetpub\wwwroot\Ebuy).

Figure 19-7. The Add Application dialog

402 | Chapter 19: Deployment

You can feel free to leave the rest of the defaults in this dialog alone, but—just for good
measure—click the Select… button next to the “Application pool” field to pop up the
Select Application Pool dialog and verify that the default application pool uses version
4.0 of the .NET Framework (as shown in Figure 19-8).

If the default application pool is not configured to use version 4.0 of the .NET Frame-
work, create a new application pool that does use .NET 4.0.

If you do not see version 4.0 in the list of available .NET Frameworks, it may mean
that the .NET Framework was not properly installed. Try reinstalling the .NET
Framework and, if necessary, running the %FrameworkDir%\%FrameworkVersion%
\aspnet_regiis.exe command to properly configure the .NET Framework inside IIS.

Figure 19-8. The default application pool configured to use .NET Framework version 4.0

Finally, click OK to have IIS create your website. Now you have a website that you can
deploy your site to!

Previous versions of ASP.NET MVC hosted in IIS 6 required special
configuration steps to allow for ASP.NET MVC’s extension-less URL
routing. This is no longer an issue, however, because ASP.NET 4 con-
figures IIS to route anything without an extension directly to ASP.NET.

Note that if you are running IIS 7 or IIS 7.5 on Windows Vista SP2,
Windows Server 2008, Windows Server 2008 R2 SP2, or Windows 7,
you will need to apply a patch to your system.

Publishing from Within Visual Studio
Once you have your application created and configured in IIS, you have several
deployment techniques at your disposal.

The most accessible deployment technique is Visual Studio’s built-in publishing mech-
anism. To use it, right-click on the ASP.NET MVC project and choose the “Publish”

Deploying to Internet Information Server | 403

http://support.microsoft.com/kb/980368

option from the context menu, as shown in Figure 19-9, to open the Publish Web
wizard.

Figure 19-9. Opening the Visual Studio Publish Web wizard

To create a new publishing profile that will allow you to deploy your website, select
the “<New…>” option from the drop-down list in the Profile tab and give the new
profile a name (e.g., “Local IIS Website”). Then, since we are deploying to the local
filesystem, select the “File System” option from the list of available publish methods,
as shown in Figure 19-10.

Figure 19-10. The Publish Web wizard

The “File System” publishing option is only suitable if you are deploying
to a web server that you have direct filesystem access to via your net-
work. If you are using a web hosting service, this is probably not the
case, so you will have to choose the FTP publishing approach to deploy
your website via the universal FTP protocol that all major web hosts
support.

404 | Chapter 19: Deployment

Once you choose a publish method, the dialog will change to allow you to fill in the
rest of the configuration information needed for Visual Studio to publish using the
selected method. You can even save multiple publish configurations by choosing a
profile name from the publish profile list and then clicking the Save button.

When you’ve configured all of the required publish method options, click the Publish
button and Visual Studio will deploy your site to the location you specified. After it has
successfully deployed the website, Visual Studio will automatically open your browser
and navigate to the newly deployed site.

If you’ve been following along and trying this out on your machine, however, the de-
ployment has probably failed—this was deliberate, in order to show you how to diag-
nose deployment issues! As it deploys your site, Visual Studio logs everything it’s doing
to the Output window. If it comes across any issues during deployment, they should
be displayed here.

For example, the deployment you just tried to execute may have failed due to the fact
that you do not have access to the C:\inetpub\wwwroot\Ebuy folder. If this is the case,
you should see the “ACCESS DENIED” message in the Output window. To fix this
error, update the security options on the target folder to include write access for the
current user and try to publish the site again. This time the publish should succeed and
a browser window should now open displaying your deployed site.

Copying files with MSBuild

As Chapter 18 showed, it’s a good idea to automate as much of your application de-
velopment process as possible—and nowhere else is this more true than when it comes
to deployment. Though Visual Studio’s publishing mechanism is quite convenient,
having to open Visual Studio every time you need to deploy your site can become pretty
tedious. So, let’s see how we can reproduce what Visual Studio’s Publish Web wizard
does with an automated MSBuild script.

The following example shows an MSBuild script that first builds the solution using the
MSBuild build task, then copies the web application files to the destination website
directory using the Copy task:

<?xml version="1.0" encoding="utf-8"?>
<Project ToolsVersion="4.0" DefaultTargets="Deploy"
 xmlns="http://schemas.microsoft.com/developer/msbuild/2003">

 <PropertyGroup>
 <BuildDir>$(MSBuildProjectDirectory)\build\</BuildDir>
 </PropertyGroup>

 <Target Name="Deploy">
 <MSBuild Projects="EBuy.sln" Properties="OutDir=$(BuildDir)" />

 <ItemGroup>
 <WebsiteFiles Include="$(BuildDir)_PublishedWebsites\Ebuy.Website**" />

Deploying to Internet Information Server | 405

 </ItemGroup>

 <Copy SourceFiles="@(WebsiteFiles)"
 DestinationFiles="@(WebsiteFiles->'$(DeploymentDir)\%(RecursiveDir)%↵
 (Filename)%(Extension)')"
 SkipUnchangedFiles="true"
 />
 </Target>
</Project>

In order to execute this script, open the Visual Studio Command Prompt, navigate to
the Ebuy solution folder, then execute the following command:

msbuild.exe deploy.proj /p:DeploymentDir="_[Path to Destination]_"

This will build the application and direct the output to a temporary build directory
(build in the current directory), then copy the contents of the _PublishedWebsites folder
that MSBuild creates for web applications to the destination folder of your choosing.

Executing database scripts with MSBuild

Both the Visual Studio File System Publish and the MSBuild deployment mechanisms
are great for deploying files, but what happens when your application depends on a
database that can’t be deployed with a simple file copy?

One of the great features of Entity Framework Code First is its ability to automatically
manage database versions for you—you can tell the framework to upgrade the database
automatically during the startup phase of your site whenever it sees that there has been
a model change that necessitates a database schema change. If, however, you are not
using this Entity Framework Code First feature, it is up to you to track and deploy any
database schema changes that may arise during the course of development.

When it comes to deploying database changes, you typically have two choices:

1. Recreate the entire database every time.

2. Keep each database upgrade in its own script file, and execute these files in order
to bring the target database up-to-date with the latest schema.

Naturally, Option 1 is the easiest solution during development—it is always less com-
plex to build a database from scratch than to worry about upgrading an existing data-
base. Unless you are developing toward your first production release, however, this
approach does not match your final production deployment and therefore does not
fulfill the spirit of continuous integration: testing the production deployment as often
as possible to discover issues as early as possible.

If you take Option 1 off the table, Option 2—multiple script files with incremental
database schema changes—becomes your de facto choice.

406 | Chapter 19: Deployment

Luckily, deploying either of these approaches is pretty simple using MSBuild and SQL
Server’s SQLCMD utility. To add SQL script execution to your build, add the following
lines to your MSBuild file:

<Target Name="DeployDatabase">
 <ItemGroup>
 <ScriptFiles Include="$(ScriptsDir)*.sql" />
 </ItemGroup>

 <Exec Command="sqlcmd -E -S $(SqlServer) -i "%(ScriptFiles.FullPath)"" />
</Target>

These few lines will locate the SQL scripts in the path that you’ve provided ($(Scripts-
Dir)*.sql), then execute the SQLCMD utility for each .sql file it finds against the SQL
Server instance configured in the $(SqlServer) property. Note that these scripts will
execute in the order in which MSBuild discovers them. This will be the order in which
they appear on the filesystem—by filename—so it often helps to apply a naming con-
vention such as a number prefix on each of the script filenames.

Then you can execute the following command (all on one line) to have MSBuild execute
the SQL scripts and build your database automatically:

msbuild.exe deploy.proj /t:DeployDatabase /p:ScriptsDir=Scripts /p:SqlServer=.\SQLEXPRESS

The SQLCMD utility is installed as part of the standard Microsoft SQL
Server installation, but you do not need to have Microsoft SQL Server
installed in order to use SQLCMD.

As an alternative to installing Microsoft SQL Server, you can install the
free Microsoft SQL Server Feature Pack. You can download and install
the latest version of the Microsoft SQL Server Feature Pack by using
your favorite search engine to find it by name, or you can use the fol-
lowing link for the Microsoft SQL Server 2008 R2 SP1 Feature Pack:
http://www.microsoft.com/en-us/download/details.aspx?id=26728.

Deploying to Windows Azure
If you’d like to avoid hosting your own website and take advantage of the increasing
amount of “cloud capacity” available to you, one other deployment and hosting option
is Microsoft’s cloud hosting platform, Windows Azure. With Windows Azure, you can
concentrate on your application and let Microsoft worry about the infrastructure re-
quired to host it on the Internet.

The rest of this section will walk you through the simple steps for deploying your
application to the cloud using Windows Azure. When you’re finished, you will have a
public website hosted in the cloud.

Deploying to Windows Azure | 407

http://www.microsoft.com/en-us/download/details.aspx?id=26728

Creating a Windows Azure Account
Before you can deploy your website to the cloud using Windows Azure, you must first
register for a Windows Azure account. To do so, visit the Windows Azure website, find
and click the link that says “Free trial” or “Register,” and create your new account.

Once your account is created, you’ll be taken to the Windows Azure Management
Portal, the online portal for managing your cloud hosting services.

Creating a New Windows Azure Website
To create a new website using the Windows Azure portal, click the New menu at the
bottom-left of the page and choose the “Web Site” option, then click “Create with
Database” to open the New Web Site wizard (Figure 19-11). Fill out the information
for your new site, such as the DNS name of the site and the region (i.e., data center) in
which the site should be hosted. Since the EBuy application requires a database to store
its information, choose the “Create new SQL database” option from the Database drop-
down list.

Figure 19-11. The Windows Azure New Web Site wizard

The next few steps will help you configure your new database; the default values are
generally fine for most small websites. When you’re done providing all the information
for your new site and its database, click “Create Web Site” to create your new site.

408 | Chapter 19: Deployment

http://www.windowsazure.com

After providing Windows Azure with plenty of time to create and provision your new
web application, click on the web application from the list of applications to begin
managing it.

Publishing a Windows Azure Website via Source Control
By far the easiest way to deploy your application to a Windows Azure website is to
leverage the built-in support for source control publishing via the Team Foundation
Server (TFS) or Git source control systems.

Since Chapter 18 already introduced TFS, we’ll continue to use it in this example.
However, keep in mind that the overall process you’re about to see is the same process
that’s used with the Git source control publishing method.

To begin using TFS source control publishing, click the “Set up TFS publishing” link
from your Azure website dashboard (Figure 19-12) to bring up the TFS source control
configuration wizard. Then, enter the username that you used to create your TFS Pre-
view account in the previous chapter (or click on the link to create a new TFS Preview
account if you have not already done so) and click on the “Authorize now” link to
authorize Windows Azure to access your TFS Preview account.

Figure 19-12. The Azure website dashboard

Deploying to Windows Azure | 409

After you’ve successfully authorized Windows Azure, go to the next dialog and select
the source control project that you’d like to link with this website, then click the check-
mark to complete. After a few seconds, Windows Azure will link your website to the
TFS project that you specified.

With this link in place, every checkin that you perform on your TFS project will trigger
a new build of your project in TFS. Upon each successful build, the newly built website
will be deployed to Windows Azure and your new changes will be live, without any
additional effort on your part.

Continuous Deployment
One of the primary benefits of automated deployments is that it becomes incredibly
easy—and often relatively quick—to deploy the application to any environment. Once
you have an automated deployment in place, the next logical step is to execute that
deployment as often as possible—perhaps even with every checkin. This process of
deploying the application very frequently is referred to as continuous deployment.

Continuous deployment is a great way to increase the transparency of a project by
providing an easy way for anyone to see exactly what condition the application is in at
the current moment. This allows users to try out new features the moment they are
checked in and begin providing feedback on them very early in their development.
Consider this the manual, human-driven variation of the continuous integration con-
cept of catching issues as soon as possible.

If you’re using TFS deployment with Windows Azure as shown in the previous section,
you’re already performing continuous deployments. But if you’re not using Windows
Azure with TFS, that doesn’t mean that you can’t still take advantage of continuous
deployment—it just means that you’re going to have to do a little more work to get it
set up.

To add a similar sort of continuous deployment mechanism to your project, take some
time to determine which of the concepts from this chapter and Chapter 18 apply to
your project and combine them together to automate all the steps that it takes to deploy
your application.

Done properly, continuous deployment can be a great way to keep an application
moving forward by getting changes to the application into users’ hands as quickly as
possible, and gaining valuable feedback in the process.

Summary
The final task in developing any kind of software is getting it into the hands of your
end users. In the case of an ASP.NET MVC website, this may include several tasks, but
the most important of them all is copying the files that run the application to a properly
configured IIS-powered website, whether it’s on your local network or hosted some-
where in the cloud.

410 | Chapter 19: Deployment

D
ow

n
lo

a
d
 f
ro

m
 W

o
w

!
e
B
o
o
k

<
w

w
w

.w
o
w

e
b
o
o
k.

co
m

>

There are plenty of ways to deploy an ASP.NET MVC application—from Visual Stu-
dio’s built-in publishing mechanism to a custom automated deployment using
MSBuild—and no one way is appropriate for every application, so it’s important to
find the approach that works for your project.

Once you’ve found your ideal publishing mechanism, try to automate it to make your
life—and the lives of anyone else who needs to deploy your application in the future—
much easier.

Summary | 411

PART VI

Appendixes

APPENDIX A

ASP.NET MVC and Web Forms
Integration

The ASP.NET MVC Framework was not Microsoft’s first foray into the web develop-
ment ecosystem. Far from it, in fact. ASP.NET MVC’s predecessor, dubbed ASP.NET
Web Forms (simply referred to as “ASP.NET” before the introduction of ASP.NET
MVC), was introduced with the first version of the .NET Framework in early 2002.
Over the next decade, adoption of the ASP.NET Web Forms Framework steadily grew
to achieve a critical mass, powering a good deal of the websites on the Internet. Like-
wise, a significant number of developers built a strong skill set around creating and
maintaining ASP.NET Web Forms websites. Then, a few years later, ASP.NET MVC
was released.

Existing websites and skill sets don’t cease to exist or immediately get thrown to one
side simply because a new technology gets released. Quite the opposite, in fact—many
of these sites represent a significant investment and deliver real, ongoing business value.
This appendix takes a look at various concepts and strategies that can help you intro-
duce the ASP.NET MVC Framework into existing ASP.NET Web Forms applications.
You’ll also see several pitfalls to avoid to help make your transition much smoother.

The following sections will show a variety of techniques to achieve increasing levels of
integration and cohabitation between ASP.NET MVC and Web Forms applications.
Feel free to pick and choose which techniques work for you and your team.

Choosing Between ASP.NET MVC and ASP.NET Web Forms
In many ways, despite sharing a common platform, ASP.NET MVC and ASP.NET Web
Forms represent two competing frameworks. Both frameworks help ASP.NET devel-
opers quickly and efficiently deliver web-based solutions, but they each do so in their
own unique ways.

415

Web Forms applications don’t generally encourage the SOLID design practices detailed
in Chapter 2. This means that many developers who prefer a SOLID approach have
begrudgingly used ASP.NET Web Forms to deliver .NET-based web applications, yet
yearned for a framework that better suited their needs. When these developers en-
countered ASP.NET MVC, they immediately saw how it met their needs as developers
by allowing them to better leverage the SOLID principles, and they were instantly sold
on the framework.

If you and your team do not fit into this group of developers—if the concepts and
techniques described in this book have not gotten you excited about using the new
framework—then perhaps ASP.NET MVC is not the right framework for your project.
If this is the case, there is absolutely nothing wrong with continuing to use the Web
Forms Framework rather than switching to ASP.NET MVC. The Web Forms Frame-
work is certainly not going anywhere; in fact, it continues to get more and better func-
tionality with each release of the .NET Framework.

Before deciding to migrate to the new framework, be sure that you and
your team understand and agree with the fundamental concepts that
drive ASP.NET MVC—those described in Chapter 2—such as SOLID
architecture.

Transitioning applications or teams from Web Forms to ASP.NET MVC
without this solid understanding, just for the sake of using the “latest,
greatest framework,” can have disastrous effects. Because the two
frameworks are so closely related and share the same underlying plat-
form, it is very easy to write a “Web Forms application” by applying
Web Forms principles to the ASP.NET MVC Framework. This is exactly
why it’s often beneficial for developers to have no previous Web Forms
experience: so that their prior training doesn’t interfere with applying
MVC concepts.

Keep this in mind if you or members of your team are seasoned Web
Forms developers, and continually evaluate the code you write to ensure
that you are following the MVC pattern and not “falling back to the
Web Forms ways.”

Transitioning a Web Forms Site to ASP.NET MVC
For new “greenfield” applications, it is generally advisable to pick one framework and
use it exclusively. However, if you have an existing Web Forms application that you
would like to port to ASP.NET MVC, it is not necessarily an either/or decision. The
reason that the previous section describes the two frameworks as competing with each
other is also the reason that makes it quite possible to integrate the two in a single
application: they are both built on the ASP.NET platform.

Consider how requests are processed in a Web Forms application: IIS receives the
request, finds that it maps to a physical file (an .aspx page) in the site’s folder structure,

416 | Appendix A: ASP.NET MVC and Web Forms Integration

then executes the Web Forms HTTP handler to execute the page. Then consider
ASP.NET MVC request handling. IIS receives the request but does not find a corre-
sponding physical file, so it queries the route table, which states that the request should
be handled by the MVC HTTP handler, and then executes that handler. Now consider
this: the route table is a core ASP.NET feature that works just as well in Web Forms
applications as it does in ASP.NET MVC applications!

It’s quite easy to grasp the notion of ASP.NET MVC and Web Forms concepts coex-
isting in the same application when you take a step back to see that you are not creating
“an ASP.NET MVC application” (based on controllers and views) or “a Web Forms
application” (based on .aspx pages), but rather an ASP.NET application based on
HttpModules and HttpHandlers. When you consider your application in these terms,
getting the two frameworks to work together is simply a matter of file placement and
configuration!

The following sections describe several techniques that you can leverage to make the
transition from Web Forms to ASP.NET MVC much less painful, allowing you to get
the most out of your existing Web Forms investment. However, all of these techniques
rely on one fundamental concept: IIS needs to be able to figure out whether a given
request is an ASP.NET MVC or a Web Forms request. Once it determines that, IIS can
send the request to the appropriate handler and the application behaves as you’d
expect.

Adding ASP.NET MVC to an Existing Web Forms Application
If you are very risk-averse and would like to change as little of your application as
possible, you might consider augmenting your existing Web Forms application with
ASP.NET MVC functionality. In other words, you are not letting ASP.NET MVC “take
over” your application; you’re letting it handle certain very specific requests. Using this
approach, you will define which requests ASP.NET MVC will handle by registering
specific routing rules.

In order to have your existing application start routing requests to ASP.NET MVC, you
will first need to perform a few configuration steps:

1. Add the System.Web.Mvc and System.Web.Razor assemblies to your application’s
assembly references.

2. Add the following entries to the system.web > compilation > assemblies collection
in your root web.config:

System.Web.Mvc,Version=4.0.0.0,Culture=neutral,PublicKeyToken=31BF3856AD364E35
System.Web.WebPages,Version=2.0.0.0,Culture=neutral,PublicKeyToken=31BF3856AD364E35

3. Create a /Views folder in the root of your application. The location of this folder
within your application is important because the ViewFactory will attempt to look
in the same physical file paths as in a regular ASP.NET MVC application.

Transitioning a Web Forms Site to ASP.NET MVC | 417

• As you would do in a standard ASP.NET MVC application, create a /Views/
Shared folder to hold any common views.

• Copy the /Views/web.config file from an existing ASP.NET MVC website, or
use the file shown in Example A-1. This configuration file is important because
it registers the Razor file type handler and tells IIS that the files underneath
this folder are for internal application use only and should not be accessible
to the public (if they are requested, IIS should return a “404 Not Found” error).

4. Optionally, create a Controllers folder to hold your ASP.NET MVC controllers.
Unlike with the /Views folder, the location of ASP.NET MVC controllers does not
matter, so you can feel free to put this folder wherever you like. Technically speak-
ing, you can even put your controllers in a completely different project.

5. Finally, you’ll need to add the routing configuration in the class that defines your
HttpApplication (generally in your Global.asax.cs file), just as in a standard
ASP.NET MVC application. From a technical standpoint you’ll use the same API
to register which routes the ASP.NET MVC portion of your site will handle. The
fundamental difference in this scenario is that you have two frameworks competing
for the same URLs, so you’ll need to consider this when creating your routes.

Example A-1 shows the sample /Views/web.config file mentioned above.

Example A-1. /Views/web.config configuration file

<?xml version="1.0"?>

<configuration>
 <configSections>
 <sectionGroup name="system.web.webPages.razor"
 type="System.Web.WebPages.Razor.Configuration.RazorWebSectionGroup,System.Web.↵
 WebPages.Razor,Version=2.0.0.0,Culture=neutral,PublicKeyToken=31BF3856AD364E35">
 <section name="host"
 type="System.Web.WebPages.Razor.Configuration.HostSection,System.Web.WebPages.Razor,↵
 Version=2.0.0.0,Culture=neutral,PublicKeyToken=31BF3856AD364E35"
 requirePermission="false" />
 <section name="pages"
 type="System.Web.WebPages.Razor.Configuration.RazorPagesSection,System.Web.WebPages.↵
 Razor,Version=2.0.0.0,Culture=neutral,PublicKeyToken=31BF3856AD364E35"
 requirePermission="false" />
 </sectionGroup>
 </configSections>

 <system.web.webPages.razor>
 <host factoryType="System.Web.Mvc.MvcWebRazorHostFactory,System.Web.Mvc,Version=4.0.0.0,↵
 Culture=neutral,PublicKeyToken=31BF3856AD364E35" />
 <pages pageBaseType="System.Web.Mvc.WebViewPage">
 <namespaces>
 <add namespace="System.Web.Mvc" />
 <add namespace="System.Web.Mvc.Ajax" />
 <add namespace="System.Web.Mvc.Html" />
 <add namespace="System.Web.Routing" />
 </namespaces>

418 | Appendix A: ASP.NET MVC and Web Forms Integration

 </pages>
 </system.web.webPages.razor>

 <appSettings>
 <add key="webpages:Enabled" value="false" />
 </appSettings>

 <system.web>
 <httpHandlers>
 <add path="*" verb="*" type="System.Web.HttpNotFoundHandler"/>
 </httpHandlers>

 <pages
 validateRequest="false"
 pageParserFilterType="System.Web.Mvc.ViewTypeParserFilter, System.Web.Mvc, ↵
 Version=4.0.0.0, Culture=neutral, PublicKeyToken=31BF3856AD364E35"
 pageBaseType="System.Web.Mvc.ViewPage, System.Web.Mvc, Version=4.0.0.0, ↵
 Culture=neutral, PublicKeyToken=31BF3856AD364E35"
 userControlBaseType="System.Web.Mvc.ViewUserControl, System.Web.Mvc, ↵
 Version=4.0.0.0, Culture=neutral, PublicKeyToken=31BF3856AD364E35">
 <controls>
 <add assembly="System.Web.Mvc, Version=4.0.0.0, Culture=neutral, ↵
 PublicKeyToken=31BF3856AD364E35" namespace="System.Web.Mvc" tagPrefix="mvc" />
 </controls>
 </pages>
 </system.web>

 <system.webServer>
 <validation validateIntegratedModeConfiguration="false" />

 <handlers>
 <remove name="BlockViewHandler"/>
 <add name="BlockViewHandler" path="*" verb="*"
 preCondition="integratedMode" type="System.Web.HttpNotFoundHandler" />
 </handlers>
 </system.webServer>
</configuration>

Keep in mind that physical files (e.g., Web Forms .aspx pages) will always take prece-
dence over any routes you define, which means that the Web Forms portions of your
application will be chosen over any ASP.NET MVC controller logic. With this excep-
tion aside, you are free to follow the rest of the techniques in this book to build your
Web Forms/MVC hybrid application just like a “pure” ASP.NET MVC application.

Copying Web Forms Functionality to an ASP.NET MVC Application
As the previous section shows, the bulk of the work in getting ASP.NET MVC and Web
Forms to play well together in the same application is in configuring the ASP.NET MVC
side of things. Thus, it makes sense—depending on your current Web Forms applica-
tion—to create a new ASP.NET MVC application to start with, and port your existing
Web Forms pages over to this new application.

Transitioning a Web Forms Site to ASP.NET MVC | 419

Although this new application will be configured with ASP.NET MVC in mind, the
fact still remains that physical Web Forms .aspx pages will take precedence over any
ASP.NET MVC routing logic. Regardless of how you get there, both approaches achieve
the same result: Web Forms and ASP.NET MVC functionality coexisting in the same
site.

Integrating Web Forms and ASP.NET MVC Functionality
The previous few sections described techniques that allowed the ASP.NET MVC and
Web Forms Frameworks to coexist in the same application. However, since these two
frameworks are built on top of the ASP.NET platform, they both share core function-
ality that allows them to go beyond simply “coexisting” with each other to actually
sharing data and functionality—in other words, integrating—with each other.

User Management
Perhaps the most important—or at least the most frequently used—bit of shared func-
tionality is user management based on ASP.NET’s Forms Authentication, Windows
Authentication, Role, Membership, and Profile providers. Not only will these providers
continue to work perfectly well with your ASP.NET MVC application, but you may
even be able to retain any Web Forms code (such as login pages, user profile or ad-
ministration pages, etc.) that leverage the providers.

For example, when a Web Forms page uses the Forms Authentication provider to val-
idate and authenticate a user, the token that is generated for that user is an ASP.NET
session token that is used by the core ASP.NET API to authenticate the user for each
request. This means that a user can authenticate herself via a Web Forms page, then
be redirected to an ASP.NET MVC controller and still show up as authenticated.

Cache Management
Yet another widely used integration point is ASP.NET’s caching functionality. Web
Forms developers have been leveraging the application-scoped System.Web.Cach
ing.Cache class (typically accessed via the HttpContext.Cache property) and the user-
scoped System.Web.HttpSessionState+class (available via the +HttpContext.Ses
sion property) to manage cached data since .NET Framework version 1.1, and there’s
no reason to stop now!

Just like the previously mentioned user management providers, these two classes are
part of the core ASP.NET API and are accessible to both Web Forms and ASP.NET
MVC developers alike. When Web Forms and ASP.NET MVC coexist in the same
website, they also share the application processes, which means data written via the
Cache and HttpSessionState APIs by one framework will be available during subsequent
requests to the other framework.

420 | Appendix A: ASP.NET MVC and Web Forms Integration

Many, Many More!
There are plenty more APIs that play well with both ASP.NET MVC and Web Forms.
To find them, check the API documentation and your existing code—just about any
namespace that doesn’t start with System.Web.UI is probably a candidate for cross-
framework integration.

Though many parts of the ASP.NET Framework are accessible by both
Web Forms and ASP.NET MVC, one significant piece of the Web Forms
Framework that is not supported in ASP.NET MVC is ViewState. Most
often, ViewState is used for a Web Forms page to communicate with
itself, so the chances of running into ViewState issues when cross-post-
ing between Web Forms pages and ASP.NET MVC controllers are slim.

However, when transitioning your Web Forms application to ASP.NET
MVC, be on the lookout for any code in your Web Forms application
that expects ViewState—the ViewState data will not exist during the
course of an ASP.NET MVC request, so code that depends on it will
likely break!

Summary
This appendix analyzed how the “new” ASP.NET MVC Framework fits into existing
“legacy” ASP.NET Web Forms applications. As it turns out, the ASP.NET API that
they both share provides an impressive upgrade path to port existing Web Forms code
to ASP.NET MVC. When existing code can’t be easily upgraded or replaced, the un-
derlying ASP.NET platform also supports a largely seamless cohosting environment
where the two frameworks can not only live side-by-side, but even integrate with each
other.

Summary | 421

APPENDIX B

Leveraging NuGet as a Platform

Chapter 1 introduced the NuGet package management tool, which helps you install,
configure, and maintain your application’s various dependencies, and other chapters
throughout the book showed a handful of examples of consuming packages published
and maintained by Microsoft and the community at large. However, you don’t have to
limit yourself to packages that other people have published.

This appendix will provide a brief introduction to creating your own packages and an
overview of what, exactly, a NuGet package really is. Once you have the basics down,
you’ll find some NuGet tips and tricks that may help make development more enjoyable
for you and your team.

The goal of this appendix is not to teach you everything there is to know
about NuGet—NuGet’s own documentation is far too good to compete
with! Instead, this appendix briefly shows the fundamentals of using
NuGet as a tool, then quickly moves on to showing how you and your
team can leverage NuGet as a platform.

Installing the NuGet Command-Line Tool
Though the ASP.NET MVC installation package installs the NuGet Package Manager
to consume NuGet packages in your projects, in order to create and distribute your
own packages you’ll first need to download the NuGet command-line tool from the
NuGet CodePlex site.

Look for the download called “NuGet Command Line Bootstrapper” in the Downloads
section of the NuGet CodePlex site, then download and execute it. This initial down-
load is actually just a bootstrapper—the first time it executes it will retrieve the latest
version of the actual NuGet command-line tool and replace itself with this updated
version.

423

http://nuget.codeplex.com/releases
http://nuget.codeplex.com/releases

After you’ve downloaded and executed the bootstrapper to upgrade to the latest version
of the NuGet command-line tool, move the executable to a folder that is available from
your Visual Studio command prompt (e.g., the .NET Framework directory).

Then it’s time to create packages!

Creating NuGet Packages
The easiest way to create a NuGet package is to execute the nuget pack command
against an existing Visual Studio project. For example:

nuget pack MyApplication.csproj

This command will create a NuGet package using the assembly version, project name,
and other metadata that it retrieves from your project’s AssemblyInfo.cs file.

The NuSpec File
A NuSpec file is an XML configuration file that specifies a package’s contents and
metadata (e.g., package ID, version, name, dependencies, etc.). NuGet requires this
file for every package it creates, because the metadata contains crucial information that
NuGet uses to determine which packages—and which versions of those packages—it
needs to download in order to satisfy a dependency.

This is true even when generating a NuGet package from a Visual Studio project file,
as in the previous example. Even though you never saw it, NuGet actually generated a
temporary NuSpec file that it used to generate the final NuGet package.

The problem with allowing NuGet to automatically generate this crucial file is that you
give up a lot of control over the generated package. What’s more, you probably have
a much better idea about what your assemblies depend on than what NuGet can
determine from looking at your project file.

Therefore, it is a good idea to generate and customize your own NuSpec file rather than
letting NuGet generate it for you. The following sections show several methods that
you can use to create and customize NuSpec files.

Using the NuGet command-line tool

The first method of creating a NuSpec file is a variation of a previously used command:
nuget spec. The nuget spec command is very much like the nuget pack command,
except that the nuget spec command saves the generated NuSpec file to disk so that
you can continue modifying it prior to using it to generate the final package.

For example, you could execute the following statement in the Visual Studio command
prompt to generate the NuSpec file for the aforementioned MyApplication.csproj:

nuget spec MyApplication.csproj

424 | Appendix B: Leveraging NuGet as a Platform

Alternatively, you can execute the same command against a prebuilt assembly:

nuget spec -a MyApplication.dll

These commands will both create a file named MyApplication.nuspec that looks like
this:

<?xml version="1.0"?>
<package >
 <metadata>
 <id>id</id>
 <version>$version$</version>
 <title>$title$</title>
 <authors>$author$</authors>
 <owners>$author$</owners>
 <licenseUrl>http://LICENSE_URL_HERE_OR_DELETE_THIS_LINE</licenseUrl>
 <projectUrl>http://PROJECT_URL_HERE_OR_DELETE_THIS_LINE</projectUrl>
 <iconUrl>http://ICON_URL_HERE_OR_DELETE_THIS_LINE</iconUrl>
 <requireLicenseAcceptance>false</requireLicenseAcceptance>
 <description>$description$</description>
 <releaseNotes>Summary of changes made in this release of the package.</releaseNotes>
 <copyright>Copyright 2012</copyright>
 <tags>Tag1 Tag2</tags>
 </metadata>
</package>

In its initial state, the fields in the generated NuSpec file are all populated with tokens
following the pattern $[name]$, which NuGet replaces with actual values during exe-
cution of the nuget pack command.

Clearly, this template doesn’t have very specific information. It merely defines a starting
point that you can customize to define the details related to your project.

At this point, you’ll need to open the NuSpec file in your favorite XML editor (such as
Visual Studio’s built-in XML editor) and modify the file by hand to define how you’d
like your package to be configured.

Using the NuGet Package Explorer

As an alternative to manually editing NuSpec XML files, you can revisit the NuGet
download page and download the NuGet Package Explorer.

Along with other package management functionality, the NuGet Package Explorer
provides an excellent GUI that can help you build your NuSpec files.

The NuGet Package Explorer makes it somewhat easier to create a NuSpec file:

1. First, select the Create New Package (Ctrl-N) option from the application’s home
screen.

2. Then choose the Edit > Edit Package Metadata… menu option to create a new
project that you can begin editing.

3. At this point, the Package Explorer is in edit mode (Figure B-1), and you can use
the GUI to specify the various aspects of your packages.

Creating NuGet Packages | 425

http://nuget.codeplex.com/releases
http://nuget.codeplex.com/releases

Figure B-1. Editing a package with the NuGet Package Explorer

4. Once you’ve finished customizing your package, you can use the File > Save menu
option (or hit Ctrl-S) to generate and save the NuGet package to disk, and/or
choose File > Save Metadata As… to save the NuSpec file to disk.

Generating the NuGet Package from a NuSpec File
Once you have a NuSpec file that defines the contents of your package, you can then
use the nuget pack command to generate the NuGet package.

For example, in order to generate a NuGet package from the MyApplication.nuspec file
created in the previous example, you’d execute the following command:

nuget pack MyApplication.nuspec

426 | Appendix B: Leveraging NuGet as a Platform

With any luck, this command will generate a new NuGet package named MyApplica-
tion.1.0.0.nupkg containing all of the content and assemblies specified in the NuSpec
file.

You can then deploy this NuGet package to a NuGet package repository to begin using
it in your applications!

Specifying token values

When your NuSpec file contains tokens such as those in the default generated template,
the nuget pack command will likely complain that it does not know how to handle
them. When this is the case, you can specify the values for these tokens by using the -
Properties switch and providing a semicolon-delimited list of key/value pairs.

For example, the following command (which should all be typed on a single line!) will
substitute any references to the $description$ token with the phrase “My custom
package description”:

nuget pack MyApplication.nuspec -Properties description="My custom package description"

Setting the version

Likewise, the nuget pack command exposes a -Version switch that enables you to
specify the version of the package you’d like to generate. The -Version switch can be
applied to any NuSpec file, regardless of whether it specifies a token value for its Version
field.

For example, the following command will generate version 1.7.0 of the “MyApplica-
tion” package, regardless of the value of the version property that may or may not be
specified in the NuSpec file:

nuget pack MyApplication.nuspec -Version 1.7.0

The Anatomy of a NuGet Package
Now that you’ve seen how to create your own NuGet packages, let’s take a step back
and analyze what a NuGet package really is.

When it comes down to it, NuGet packages are just fancy ZIP files that contain custom
metadata (in the form of .nuspec files) and some or all of the following: assemblies
(a.k.a. “libs”), content, and tools.

For example, if you open a NuGet package using your favorite archiving program, you
might see a folder structure that resembles Example B-1.

Example B-1. Example NuGet folder structure
\Content
 \App_Start
 ConfigureMyApplication.cs.pp
 web.config.transform

The Anatomy of a NuGet Package | 427

 [Other content files and folders]
\libs
 \net40
 MyApplication.dll
 \sl4
 MyApplication.dll
 [Folders for other supported frameworks]
\tools
 init.ps1
 install.ps1
 uninstall.ps1
MyApplication.nuspec

Content
The Content folder represents the root folder of the target application. Anything that
is placed in this folder—images, text files, class templates, or even subfolders—will be
copied directly into the target application.

In addition to normal file-copying behavior, the Content folder may also include con-
figuration file and source code transformation templates. These make it easy to selectively
modify certain parts of the target project.

For instance, Example B-1 shows the web.config.transform configuration file transform.
This file may include the following:

<configuration>
 <system.webServer>
 <handlers>
 <add name="MyHandler" path="MyHandler.axd" verb="GET,POST"
 type="MyApplication.MyHandler, MyApplication" preCondition=↵
 "integratedMode" />
 </handlers>
 </system.webServer>
</configuration>

When NuGet adds the package containing this web.config.transform to a project, Nu-
Get will update that project’s web.config and add the “MyHandler” HTTP handler
configuration.

Example B-1 also contains the App_Start\ConfigureMyApplication.cs.pp source code
transformation template, which may resemble the following:

[assembly: WebActivator.PreApplicationStartMethod(
 typeof($rootnamespace$.MyHandlerInitializer), "Initialize")]

namespace $rootnamespace$
{
 public class MyHandlerInitializer
 {
 public static void Initialize()
 {
 // Configure MyHandler settings at runtime
 }

428 | Appendix B: Leveraging NuGet as a Platform

 }
}

As with the web.config transform, when NuGet installs this package, it will copy Con-
figureMyApplication.cs.pp into the project’s App_Start folder, run the transformation,
then remove the .pp extension, creating a fully functional class that the project can use
immediately.

Assemblies
After the Content folder is the libs folder. This folder is pretty straightforward: any
assembly contained within it is added to the target project’s References collection.

Assemblies may be placed in the root of the folder or—even better—placed within a
framework-specific folder, such as net40, to indicate which framework and version
those assemblies target. By splitting assemblies into several different folders, you can
effectively target multiple frameworks and multiple versions of those frameworks with
a single package.

As of this writing, NuGet recognizes three different frameworks, listed in Table B-1.

Table B-1. Frameworks recognized by NuGet

Framework Abbreviation

.NET Framework net

Silverlight sl

.NET Micro Framework netmf

Example B-1 shows this functionality in action by including two versions of the MyAp-
plication.dll assembly: one that targets .NET Framework version 4.0 (“net40”), and a
second that targets version 4 of the Silverlight framework (“sl4”).

Tools
Finally, there is the tools folder. This folder contains any scripts, executables, or other
content that developers may be interested in consuming, but not interested in including
in their project, as content or referenced assemblies.

The tools folder can also contain one or more of the following “special” PowerShell
scripts, which NuGet looks for and executes as it processes each package:

init.ps1
Runs the first time a package is installed in a solution

install.ps1
Runs each time a package is installed

The Anatomy of a NuGet Package | 429

uninstall.ps1
runs every time a package is uninstalled

NuGet executes these scripts within the context of Visual Studio, providing them with
full access to Visual Studio’s DTE API. This enables you to use these scripts to query
and manipulate just about anything within Visual Studio any time a package is initial-
ized, installed, or uninstalled.

In addition to executing the special scripts noted above, NuGet will add any tools folder
to the path available in the Package Management Console whenever it installs a package
in a solution. This makes it very easy to distribute scripts and executables that support
active development but won’t be deployed with the final application.

For example, the MvcScaffolding package contains a handful of PowerShell scripts that
help developers generate models, views, and controllers in their ASP.NET MVC ap-
plications. These PowerShell scripts are incredibly valuable time-savers and produc-
tivity boosters, but they are meant to aid in the development process and are not in-
tended to actually ship along with the final product.

Types of NuGet Packages
Now that you’ve seen what a NuGet package can contain, let’s take a look at how you
can use NuGet packages to your advantage.

From a high level, NuGet packages tend to fall into a few categories: assembly pack-
ages, tool packages, and meta packages. Though they are all created using the same
specification and managed via NuGet, packages from each category are used for very
different reasons.

Assembly Packages
Assembly packages are packages whose purpose is to add one or more assemblies to a
project, as well as any auxiliary content or configuration that those assemblies require
or expect. Assembly packages are the most common, since they are the primary reason
that NuGet was created in the first place.

Tool Packages
Tool packages introduce tools into the development environment for use during de-
velopment. In this context, “tools” are meant to help aid development and testing and
are generally not part of the final released application. Tools can be anything from
PowerShell scripts to full-blown applications.

430 | Appendix B: Leveraging NuGet as a Platform

D
ow

n
lo

a
d
 f
ro

m
 W

o
w

!
e
B
o
o
k

<
w

w
w

.w
o
w

e
b
o
o
k.

co
m

>

Meta Packages
Meta packages are packages that reference other packages. The primary purpose for
meta packages is to help get a project up and running quickly by automatically down-
loading and configuring a number of dependencies with the installation of one package.

For example, we might create the theoretical “EF Code First + ELMAH + Glimpse +
Ninject” package, which includes all of the packages you need to write the sample
application in this book. Then, to follow all of the examples in the book, all you’d need
to do is go to File > New Application… > ASP.NET MVC 4 Web Application and use
NuGet to install this meta package, and you’d have all the references you need.

Sharing Your NuGet Packages
Once you’ve created a NuGet package, you’ll need to add it to a package repository in
order to distribute it to other developers so they can consume it in their applications.

When it comes to distributing packages you’ve built, you essentially have two options
to choose from: publish your package to the public NuGet.org package repository, or
host your own package repository.

Publishing to the Public NuGet.org Package Repository
During installation, the NuGet installer preconfigures a single repository for you—the
public NuGet package repository hosted on NuGet.org. Because it comes preconfig-
ured, the public NuGet.org package repository is the most convenient way to share
packages with other developers, and if the package you’ve created contains function-
ality that you’d like to share with the world, uploading the package to the public Nu-
Get.org repository is generally a great idea.

Before you can publish a package to the public NuGet.org repository, you’ll first need
to create an account on the NuGet.org website by visiting http://nuget.org and choosing
the Register option in the main menu.

Using the NuGet.org package upload wizard

Once you’ve created your account, you can begin using the public repository to dis-
tribute your packages. The easiest way to get a package onto the public repository is
to use the online package upload wizard, which walks you through all the steps required
to upload your package.

You can begin the online package upload wizard by choosing the Upload Package menu
option on the NuGet.org website.

Sharing Your NuGet Packages | 431

http://nuget.org

Using the NuGet command-line tool

Alternatively, you can utilize the publishing functionality built into the NuGet com-
mand-line tool to deploy your packages. This method is often preferred over using the
NuGet.org website directly, because if you used the command-line tool to generate
your packages, it’s easy to execute the tool one more time to publish those packages
as well.

The command is pretty straightforward: nuget push [package name].

For instance, the command to publish the MyApplication package created earlier would
be:

nuget push MyApplication

The first time you attempt to execute this command, you’ll most likely encounter an
error indicating that you have not specified an API key for the package source that
you’re attempting to publish to (the public NuGet.org repository). API keys are unique
and secret tokens created by the repository so that it can control access to the repository.
While the public NuGet.org repository allows anyone with an account to publish
packages, you must at least have an account in order to do so. Luckily, NuGet.org
automatically generates an API key for you when you create your account. In order to
retrieve the key, simply log in to the site and visit your profile page. On this page there
is an “API Key” section that contains a link that says “click to show.” Click this link
and copy your API key.

Once you’ve copied your API key, you’ll need to tell NuGet about it. To do this, execute
the command nuget setApiKey [API key]. For example:

nuget setApiKey ae19257f-9f0c-4dcf-b46a-60792fd5ff2d

With your API key in place, you should now be able to execute the nuget push command
to publish your packages to the public NuGet.org package repository.

Host Your Own Package Repository
You don’t have to put packages on the public NuGet.org repository to consume them
in your projects. In fact, you don’t even need to leave your local machine!

NuGet offers two primary ways to host and consume your own packages: setting up a
file system repository, and hosting your own instance of the NuGet web server.

Using a filesystem repository

A filesystem repository is exactly what it sounds like—a collection of packages stored
on a filesystem that you have access to. What’s more, it’s very easy to get up and
running.

432 | Appendix B: Leveraging NuGet as a Platform

To see the filesystem repository in action, follow these few short steps:

1. Begin by creating a new folder named C:\NuGetPackages on your local hard drive.

2. Then, open up NuGet’s settings dialog (Tools > Library Package Manager > Pack-
age Manager Settings in Visual Studio), and switch to the Package Sources section
to add the new package source.

3. Next, add a new package source by specifying a name for the new source in the
Name field and entering the path to the package source in the Source field (in this
case, C:\NuGetPackages), as shown in Figure B-2.

Figure B-2. Adding a new package source

4. Finally, click the Add button to add the repository to the list of sources.

The next time you use the Package Manager, you’ll see your new source listed, and any
packages you add to the source (i.e., your C:\NuGetPackages folder) should show up
in the Package Manager’s list of packages for installation into your project
(see Figure B-3).

Sharing Your NuGet Packages | 433

Figure B-3. Your new source should now show up in the Package Manager’s list

At this point you might be thinking that cultivating a package repository on your local
hard drive seems kind of silly—and you’re probably right. However, keep in mind that
the file path doesn’t have to be on your local hard drive. The “filesystem” that hosts
your packages can be any share that you can access via the Windows File Explorer—
including network file shares! In fact, hosting your team’s custom NuGet package on
a centralized file share is an easy and efficient way to ensure that everyone has access
to the same packages.

Hosting a NuGet Server repository

The NuGet Server is a website that hosts a set of OData web services that contain NuGet
package information—it’s the same website that powers the public NuGet.org package
repository. While hosting a filesystem package repository is an easy way to get up and
running quickly, hosting your own NuGet Server instance is almost as easy but provides
you with much more power and flexibility.

Here’s how to host your own NuGet Server instance:

1. To begin, open Visual Studio and create a new web application project using the
ASP.NET Empty Web Application template.

2. Use the NuGet Package Manager to find and install the NuGet.Server NuGet pack-
age, which will download and configure everything you need to run a NuGet
Server.

3. By default, the NuGet.Server package also creates a Packages folder to act as the
default location for hosting your NuGet package files. If you would like to store
your NuGet packages somewhere else, enter the path to the new Packages folder
in the appSettings > packagesPath setting in the project’s web.config file.

434 | Appendix B: Leveraging NuGet as a Platform

4. Once you have everything up and running, you can deploy the website just as you
would any other site. Keep in mind that the site does need to be able to access files
in the Packages directory, wherever that may be.

After you’ve deployed your site and determined that everything is working, it’s time to
add the new site as another package source via the NuGet settings dialog (Tools >
Library Package Manager > Package Manager Settings in Visual Studio).

This step is just like adding the filesystem repository in the previous example, except
this time the value of the Source field will be the URL to your NuGet Server instance.
Your list of available package sources should now look like Figure B-4.

Figure B-4. Available package sources

Once again, the next time you use the Package Manager, you’ll see your new source
listed, and any packages you add to the source should show up in the Package Man-
ager’s list of packages for installation into your project.

Tips, Tricks, and Pitfalls
From a technical standpoint, it is very easy to use NuGet to download, install, and
configure assembly dependencies, and even add content to your application. It’s also
very easy to create and distribute your own custom NuGet packages. There are, how-
ever, a few scenarios in which NuGet can introduce some friction, particularly when
dealing with large applications with many projects and/or multiple development teams.

Tips, Tricks, and Pitfalls | 435

The following list contains some pitfalls to watch out for when working with NuGet,
as well as some tips and tricks to help you get the most out of NuGet in your projects.

Pitfall: NuGet Does Not Solve “DLL Hell”
The phrase “DLL hell” (or the more general “dependency hell”) refers to the difficulties
that arise when applications have dependencies such as assemblies or other libraries
that are dynamically referenced at runtime. While it’s true that one of NuGet’s main
goals is to ensure that your assemblies are both up-to-date and do not conflict with one
another—and it generally does a great job of this—it’s not always possible to deliver
on this promise.

The most common conflict occurs when two packages expect very different versions
of a third package. For example, both Ninject and Glimpse share a dependency on
NLog; however, Ninject depends on a maximum NLog version of 2.0 and Glimpse
depends on a minimum NLog version of 2.5. Clearly, the two packages can’t be included
in the same project! Luckily, this conflict arises very early and NuGet makes it easy to
discover (NuGet will display an error and fail to add the packages), so its effects can
be minimized.

An even worse conflict can arise when two packages depend on different versions of a
third package—as in the first conflict—but their NuSpec metadata does not provide
enough information to let NuGet know that the two packages conflict with each other.
In other words, the logic that NuGet uses to determine which assembly versions belong
in your application is only as good as the information provided in the specification files
it reads, so when packages fail to accurately and fully describe their dependencies, they
open the door to unintended conflicts.

Consider the previous example, in which Ninject depends on NLog v2.0 and Glimpse
depends on NLog v2.5. Let’s assume in this case that the specifications for the Ninject
package fail to mention that it only works with NLog v2.0 and earlier and does not
support NLog v2.5. Without this information, NuGet will happily install the incom-
patible NLog v2.5—and the Ninject assemblies will fail at runtime.

These are just a few examples of classic assembly versioning conflicts that continue to
be a problem, even when using tools such as NuGet. With proper version and depend-
ency information, NuGet is very effective at helping you avoid potential dependency
problems, but nothing is foolproof—you still need to be cautious when mixing and
matching various assemblies!

Tip: Use Install-Package -Version to Install a Specific Package Version
There may be times when you need to install or upgrade a package, but would like to
avoid the most recent version of that package.

436 | Appendix B: Leveraging NuGet as a Platform

For example, suppose your application is currently using Ninject v2.1.0 and you’d like
to upgrade to a later version (e.g., v2.2.5) that has some new features that you want to
take advantage of. The problem is, you’ve also discovered that the latest Ninject release
(e.g., v2.4.0) has a known bug that will break your application.

In this scenario, if you request the Ninject package using the Manage NuGet Packages
GUI or the Install-Package command-line prompt, NuGet will see that version v2.4.0
is the latest version and assume that it is the version you’d like to have installed. Of
course, you know otherwise.

Luckily, NuGet offers the -Version flag: a mechanism that allows you, the developer,
to override NuGet’s versioning intelligence and specify the exact version of a package
that you’d like to install (although this option is not exposed in the UI). In order to use
this option, simply tack it on to the end of an Install-Package command in the Package
Manager Console.

For example, you could use the following command to install the specific Ninject
package version 2.2.5 and avoid upgrading to version 2.4.0:

Install-Package Ninject -Version 2.2.5

This command will download and install Ninject v 2.2.5, regardless of what NuGet
calculates the most recent version of the Ninject package to be.

Tip: Use Semantic Versioning
Regardless of whether you actually care about an assembly’s version number, all as-
semblies must have one. What’s more, in order to create and distribute NuGet pack-
ages, you must give them unique version numbers that not only distinguish them from
other releases of the same package, but also indicate their order of release. By default,
Visual Studio generates these version numbers for you, but when you start creating
custom NuGet packages version numbers become much more meaningful, and you’ll
likely want to take a more active role in defining and managing them.

By their very nature, product and assembly versions are relative at best—and arbitrary
at worst. For instance, “version 1.0” of one product usually doesn’t have anything to
do with “version 1.0” of another product. For that matter, what does “version 1.0”
mean, anyway? How does it differ from versions “0.1”, “1.5”, or “2.0” of the same
product?

Since package versioning is arguably the most important aspect of dependency man-
agement, NuGet employs a popular versioning scheme called Semantic Versioning.
While the Semantic Versioning specification lays out a number of detailed rules that
define the various parts of version numbers, semantic versions really boil down to the
pattern [Major].[Minor].[Patch]. Each part in the semantic version is a non-negative
integer that starts at 0 and is incremented by 1 each time there is a change to the co-
debase that is significant enough to warrant a change in version.

Tips, Tricks, and Pitfalls | 437

http://semver.org

What, then, is “a change to the codebase that is significant enough to warrant a change
in version”? Generally speaking, semantic version parts are incremented in the follow-
ing instances:

Major
Any time backward-incompatible changes are introduced

Minor
Any time new backward-compatible changes are introduced

Patch
Any time backward-compatible changes to existing behavior are introduced

You are free to apply any kind of versioning scheme you like to the NuGet packages
that you distribute, but NuGet will apply the above rules to any version numbers in
order to determine when updates are appropriate.

Tip: Mark “Beta” Packages with Prerelease Version Markers
What happens when you’d like to distribute a “test” package to certain users that is
not quite ready to be released to the general population? In most cases, when you release
this package to a repository, NuGet will automatically download and install it for all
users, which is clearly not what you want to happen! Luckily, NuGet supports the
concept of prerelease packages—packages that live side-by-side in the same repository
with normal “release” packages, yet are hidden to users unless they specifically ask to
see them.

In order to mark a package as a prerelease package, convert the package’s version
number to a Semantic Versioning prerelease version number by adding a dash (“-”)
after the primary version number, then any alphanumeric prerelease version number.
For instance, the version number “1.0-beta” indicates that the package is a prerelease
package for “version 1.0,” which will come sometime in the future.

Then, deploy the prerelease package to the same repository as your normal packages,
where they will be available to NuGet but not visible to users performing normal pack-
age-management actions. In order to consume prerelease packages, add the -Prere
lease flag to any NuGet queries or installation commands. For example, if a version of
the MyApplication package is released with the prerelease version number “1.0-beta”,
the Get-Packages command without the -Prerelease flag will fail to find any available
packages:

PM> Get-Packages MyApplication

However, adding the -Prerelease flag shows the beta package in the same repository:

PM> Get-Package -ListAvailable -Filter -Prerelease MyApplication

Id Version Description/Release Notes
-- ------- -------------------------
MyApplication 1.0-beta My awesome package.

438 | Appendix B: Leveraging NuGet as a Platform

The prerelease package can then be installed with the standard Install-Package com-
mand by applying the same -Prerelease flag:

PM> Install-Package -Prerelease MyApplication

Finally, when testing is complete and the package is ready to be released, the “-beta”
suffix can be dropped; the package version “1.0” will be visible to everyone and from
that point on, it will be included as a possible installation candidate in all of NuGet’s
package operations.

Prerelease versioning is defined as part of the Semantic Versioning
schema, so this tip is, in fact, just an extension to the previous Semantic
Versioning tip.

One more reason to apply Semantic Versioning to your packages!

Pitfall: Avoid Specifying “Strict” Version Dependencies in Your NuSpec Files
NuSpec configuration files allow packages to specify other packages—and versions of
those packages—that they depend on. The dependencies section of a NuSpec file
should be as extensive and detailed as possible so that NuGet has as much information
as possible in order to make the correct decision about which packages may conflict
with one another and which package versions it can safely install.

As the earlier “DLL hell” section pointed out, it is a hard fact of software development
that sometimes versions of various assemblies simply don’t mix. The effects can cripple
an application. Thus, when a package that you are distributing has known issues with
the latest versions of a library that it depends on, it is generally a good idea to specify
that conflict very clearly in your package’s NuSpec configuration file.

For example, the Ninject package in the “DLL hell” example was only compatible with
NLog versions up to v2.0, and has known issues with NLog v2.5. Its NuSpec file may
contain the following line, indicating that it expects at maximum v2.0 of NLog, and
that NuGet should not install any NLog package version higher than this:

<dependency id="NLog" version="2.0" />

Though specific version specifications such as this may be necessary to avoid runtime
conflicts, keep in mind that they indirectly affect all of the packages in your project and
the restrictions they impose can produce numerous conflicts, making it very difficult
to manage packages. In fact, the worst part is that these conflicts often apply when
upgrading to later versions of the same package in which the specific version depend-
ency has been resolved.

Having to depend on a specific version of an assembly is indeed unavoidable sometimes,
but be very hesitant before introducing such a restriction, because this decision is very
time-consuming to undo later on.

Tips, Tricks, and Pitfalls | 439

If you ever do come across the situation of trying to upgrade from a specific version of
a package to a higher, non-specific version of that package, you will need to drop to
the Package Management Console and use the -IgnoreDependencies switch of the
Install-Packages command to override any conflicts that NuGet reports. For example:

Install-Package -IgnoreDependencies Ninject

This will inform NuGet that it should install the latest version of the package and ignore
any dependency conflicts that it may discover.

Keep in mind that when you use the -IgnoreDependencies flag you are
circumventing all of NuGet’s safeguards, and it is now your responsi-
bility to ensure that all package dependencies are correct!

Tip: Use Custom Repositories to Control Package Versions
NuGet comes preconfigured with a single repository: the public repository hosted on
NuGet.org. For most developers this is a good thing, given that the public NuGet.org
repository is likely all they will ever want to use. The downside of using the public
NuGet repository is that you and your organization have no control over the packages
hosted on that repository.

While a steady package release cycle with constant updates and increasing versions is
generally hailed as a good thing, some teams might be uncomfortable with the frequent
change and lack of control that come with it. For example, if you are using the public
NuGet repository as your primary package source and the Ninject team releases a new
version that is incompatible with your application, NuGet will attempt to get you to
upgrade to the latest Ninject package, even if you are aware of the incompatibilities
with your application.

Though it’s easy to ignore NuGet’s update recommendations, the situation gets a bit
more complicated when other packages that your application uses release updates that
list a dependency on this later version of Ninject, and NuGet refuses to update these
packages without getting the latest version of Ninject as well.

One way to avoid these “forced” updates is to regain control over package updates by
removing the default public NuGet repository and replacing it with your own custom
repository. Then, you can fill your custom repository with only the packages that you
and your team deem “acceptable.”

These packages can come from anywhere. Some of them may be custom packages that
you’ve created, but most of them will likely be packages that you’ve cherry-picked right
from the public NuGet repository. Replacing the default NuGet repository with your
own repository provides you with the best of both worlds. It allows you to continue to
use NuGet’s powerful dependency management features while still retaining full con-
trol over the packages available for installation.

440 | Appendix B: Leveraging NuGet as a Platform

It’s true that many developers may not be interested in choosing specific packages that
NuGet has access to, but in some scenarios—particularly when multiple teams are
involved—establishing a stable, cultivated repository helps create a controlled envi-
ronment to minimize the effects of DLL hell.

Tip: Configure Your Continuous Integration Builds to Generate NuGet
Packages
Continuous integration builds and NuGet are a match made in heaven!

Though the specifics will be different for different continuous integration platforms,
the general process of producing NuGet packages from a continuous integration build
is the same:

1. Create NuSpec files for all of the NuGet packages you’d like to generate, and be
sure to check them into source control.

2. Configure your builds to execute the NuGet command-line tool at the end of each
successful build.

3. Be sure to pass along a unique package version each time you generate a new set
of packages. In fact, most continuous integration systems include a unique build
number for each build that you may be able to use.

4. Finally, have the build server move the generated packages to a central repository.

See “Host Your Own Package Repository” on page 432 for more information on how
to set up a custom NuGet repository.

Generating NuGet packages as part of a continuous integration build can be an in-
credibly valuable addition to your continuous integration and deployment process.

Summary
Though the act of managing assembly references can still be difficult at times, NuGet
is a powerful dependency management system that helps take a lot of the pain out of
doing so. NuGet packages are incredibly easy to consume and almost as easy to create
and distribute. When used wisely, NuGet can be the next most powerful tool in your
development toolbox after Visual Studio itself.

Summary | 441

APPENDIX C

Best Practices

This book covers a multitude of topics in varying degrees of detail and offers a lot of
advice. However, it is sometimes difficult to judge just how important any given piece
of information is in the context of a long, technical description.

This appendix consolidates many of the best practices noted throughout the book into
a single list, so you can tell at a glance whether you are following the popular and
recommended patterns and practices set forth in this book.

Use the NuGet Package Manager to Manage Dependencies
The NuGet package manager is a great boon to developers and teams alike. Instead of
spending loads of time checking to see if the projects that your application depends on
have released new versions, let NuGet handle all of that for you!

If your organization has several teams that share common libraries, consider creating
custom NuGet packages for those shared libraries and hosting a custom NuGet repos-
itory to provide more effective distribution and versioning.

Depend on Abstractions
Abstractions encourage loosely coupled systems with a healthy separation of contracts
and implementations. Abstractions are easily interchanged, which not only provides
easier maintenance but is also crucial to unit testing.

Avoid the New Keyword
Any time you employ the new keyword to create a new instance of a concrete type, you
are—by definition—not depending on an abstraction. Though this is often not a prob-
lem at all (e.g., new StringBuilder(), new List<string>(), etc.), take a moment any
time you use the new keyword to consider whether the object you are creating might be

443

better expressed as a dependency to be injected. Whenever possible, let another
component create it!

Avoid Referring to HttpContext Directly (Use HttpContextBase)
ASP.NET MVC (and later, .NET 4) introduced System.Web.Abstractions, a set of ab-
stractions over many of the core parts of the ASP.NET Framework. The “depend on
abstractions” advice given earlier extends to these classes as well. In particular, one of
the most often referenced objects in ASP.NET development is HttpContext—prefer
using the HttpContextBase abstraction instead.

Avoid “Magic Strings”
“Magic strings”—crucial, yet arbitrary string values—may be convenient and in many
situations, required; however, they have many issues. Some of the biggest issues with
magic strings are that they:

• Don’t have any intrinsic meaning (e.g., it’s difficult to tell how or if one “ID” relates
to another “ID”)

• Are easily broken with misspellings or incorrect case

• Don’t react well to refactoring

• Promote rampant, pervasive duplication

Here are two examples, the first using magic strings to access data in a ViewData dic-
tionary, and the second a refactored example with that same data in a strongly typed
model:

<p>
 <label for="FirstName">First Name:</label>
 @ViewData["FirstName"]
</p>

<p>
 <label for="FirstName">First Name:</label>
 @Model.FirstName
</p>

Magic strings carry the allure of being very simple to use when you introduce them,
but that ease of use often comes back to bite you later when it comes time to maintain
them.

Prefer Models over ViewData
As the preceding example suggested, the ViewData dictionary is one of the most tempt-
ing places to leverage magic strings in an ASP.NET MVC application. However, these

444 | Appendix C: Best Practices

are best avoided. Strongly typed models can be a handy tool to avoid assigning and
retrieving data directly to and from the ViewData dictionary.

Do Not Write HTML in “Backend” Code
Follow the practice of separation of concerns: it is not the responsibility of controllers
and other “backend code” to render HTML. The exceptions here, of course, are UI
helper methods and classes whose only job is to help the views render code. These
classes should be considered part of the view, not “backend” classes.

Do Not Perform Business Logic in Views
The inverse of the previous best practice is true as well: views should not contain any
business logic. In fact, views should contain as little logic as possible! Views should
concentrate on how to display the data that they have been provided and should not
take action on that data.

Consolidate Commonly Used View Snippets with Helper
Methods
The notions of “user controls,” “server controls,” and “controls” in general are very
widespread—and for good reason. These concepts help consolidate commonly used
code and logic in a central location to make it easier to reuse and maintain. ASP.NET
MVC is not control-driven, however—instead, it relies on the “helper method” para-
digm in which methods do the work that controls once did. This can pertain to an
entire section of HTML (what we’re used to calling a “control”), or to something as
simple as strongly typed access to a commonly referred URL. For example, you may
notice many of the same references to the Membership page (~/membership), like so:

@Html.ActionLink("Membership", "Index", "Membership", [...])

You can consolidate this call (and eliminate the magic strings!) by turning it into a
helper method instead:

@Html.MembershipLink()

Prefer Presentation Models over Direct Usage of Business
Objects
In general, try to avoid allowing changes to the business model to directly affect the
view. Presentation models help with this.

Prefer Presentation Models over Direct Usage of Business Objects | 445

Encapsulate if Statements with HTML Helpers in Views
Integrating code and markup is quite powerful; however, it can get quite messy. Con-
sider the following (relatively simple) if/else statement:

@if(Model.IsAnonymousUser) {

} else if(Model.IsAdministrator) {

} else if(Model.Membership == Membership.Standard) {

} else if(Model.Membership == Membership.Preferred) {

}

That’s quite obscure code for rendering out essentially the same markup with the
exception of one part (the URL). Consider this approach instead:

public static string UserAvatar(this HtmlHelper<User> helper)
{
 var user = helper.ViewData.Model;

 string avatarFilename = "anonymous.jpg";

 if (user.IsAnonymousUser)
 {
 avatarFilename = "anonymous.jpg";
 }
 else if (user.IsAdministrator)
 {
 avatarFilename = "administrator.jpg";
 }
 else if (user.Membership == Membership.Standard)
 {
 avatarFilename = "member.jpg";
 }
 else if (user.Membership == Membership.Preferred)
 {
 avatarFilename = "preferred_member.jpg";
 }

 var urlHelper = new UrlHelper(helper.ViewContext.RequestContext);
 var contentPath = string.Format("~/content/images/{0}", avatarFilename);
 string imageUrl = urlHelper.Content(contentPath);

 return string.Format("", imageUrl);
}

You can now simply call this helper method everywhere you need the user’s avatar:

 @Html.UserAvatar()

Not only is this cleaner, it’s also more declarative and moves this logic into a central
location so that it can be maintained more easily. For instance, if the requirements

446 | Appendix C: Best Practices

change and the site needs to support custom avatars, the Html.UserAvatar() helper
method can be modified in one place.

Prefer Explicit View Names
A majority of ASP.NET MVC controller action code samples call the View() method
without specifying a view name. This is suitable for simple demo code, but when tests
or other actions begin calling each other, the detriments to this approach become clear.
When no view name is specified, the ASP.NET MVC Framework defaults to the name
of the action that was originally called. Thus, calling the Index action in the following
example will cause the framework to attempt to locate a view named Index.cshtml—a
view that probably doesn’t exist (but List.cshtml certainly does!):

public ActionResult Index()
{
 return List();
}

public ActionResult List()
{
 var employees = Employee.GetAll();
 return View(employees);
}

If the List action is modified to call the View() method with a specific view name (as
shown below), everything works fine:

public ActionResult List()
{
 var employees = Employee.GetAll();
 return View("List", employees);
}

Prefer Parameter Objects over Long Lists of Parameters
This advice is not specific to ASP.NET MVC—long parameter lists are commonly con-
sidered a “code smell” and should be avoided whenever possible. Additionally,
ASP.NET MVC’s powerful model binders make following this advice incredibly easy.
Consider the following two contrasting snippets, the first using a long parameter list:

public ActionResult Create(
 string firstName, string lastName, DateTime? birthday,
 string addressLine1, string addressLine2,
 string city, string region, string regionCode, string country
 [... and many, many more]
)
{
 var employee = new Employee([Long list of parameters...])
 employee.Save();

Prefer Parameter Objects over Long Lists of Parameters | 447

 return View("Details", employee);
}

and the second a parameter object:

public ActionResult Create(Employee employee)
{
 employee.Save();
 return View("Details", employee);
}

The parameter object example is much more straightforward, and it leverages the
ASP.NET MVC Framework’s powerful model binders and model validation, making
this code much safer and easier to maintain.

Encapsulate Shared/Common Functionality, Logic, and Data
with Action Filters or Child Actions (Html.RenderAction)
Every website of any significant complexity will have common elements that appear on
multiple (or perhaps all) pages in the application. A global website navigation menu—
the kind that appears on every page in the site—is a canonical example of this type of
globally applied logic and content. The data for these common elements needs to come
from somewhere, yet explicitly retrieving the data in every controller action would
create a maintenance nightmare. Action filters and/or child actions (executed via the
Html.RenderAction() method) provide a central location to hold this kind of logic.

Consider the following layout snippet (cut from the larger layout page), which renders
navigation items in a list:

<ul id="global-menu">
 @foreach (var menuItem in ViewData.SingleOrDefault<NavigationMenu>()) {
 <li class="@(menuItem.IsSelected ? "selected" : null)">
 @Html.RouteLink(menuItem.DisplayName, menuItem.RouteData)

 }

The NavigationMenu ViewData object needs to come from somewhere. Since they can
be configured to execute prior to every controller request, action filters make an ex-
cellent candidate to populate ViewData with globally required data like this. Here is the
action filter that populates the navigation menu data required in the previous example:

public class NavigationMenuPopulationFilter : ActionFilterAttribute
{
 private readonly INavigationDataSource _dataSource;

 public NavigationMenuPopulationFilter(INavigationDataSource dataSource)
 {
 _dataSource = dataSource;
 }

448 | Appendix C: Best Practices

 public override void OnActionExecuting(ActionExecutingContext filterContext)
 {
 NavigationMenu mainMenu = _dataSource.GetNavigationMenu("main-menu");
 filterContext.Controller.ViewData["MainNavigationMenu"] = mainMenu;
 }
}

This filter is pretty straightforward—it gets the correct navigation menu data model
from some data source and adds it to the ViewData collection prior to executing the
requested action. From this point on, any component that requires it can retrieve the
navigation menu from ViewData.

Prefer Grouping Actions into Controllers Based on How They
Relate to Business Concepts
For example, consider creating a CustomersController to hold the actions related to
dealing with customers.

Avoid Grouping Actions into Controllers Based on Technical
Relation
For example, avoid creating an AjaxController to contain all of the AJAX actions that
your site exposes. Instead, group these actions together with their related concepts (e.g.,
the AJAX actions that provide customer data or partial views should be in the Custom
ersController with all of the other customer-related actions).

Prefer Placing Action Filters at the Highest Appropriate Level
Most action filter attributes can be applied at either the method (action) or class (con-
troller) level. When an attribute applies to all actions in a controller, prefer placing that
attribute on the controller itself rather than on each individual class. Also consider
whether or not the attribute may be appropriate further up the controller’s dependency
chain (i.e., on one of its base classes) instead.

Prefer Multiple Views (and/or Partial Views) over Complex If-
Then-Else Logic That Shows and Hides Sections
The Web Forms Page Controller pattern encourages posting back to the same page,
possibly showing or hiding certain sections of the page, depending on the request. Due
to ASP.NET MVC’s separation of concerns, this can often be avoided by creating sep-
arate views for each of these situations, lowering or eliminating entirely the need for
complex view logic. Consider the following example, Wizard.cshtml:

Prefer Multiple Views (and/or Partial Views) over Complex If-Then-Else Logic That Shows and Hides Sections |
449

D
ow

n
lo

a
d
 f
ro

m
 W

o
w

!
e
B
o
o
k

<
w

w
w

.w
o
w

e
b
o
o
k.

co
m

>

@if(Model.WizardStep == WizardStep.First) {
 <!-- The first step of the wizard -->
} else if(Model.WizardStep == WizardStep.Second) {
 <!-- The second step of the wizard -->
} else if(Model.WizardStep == WizardStep.Third) {
 <!-- The third step of the wizard -->
}

Here the view is deciding which step of the wizard to display, which is dangerously
close to business logic! Let’s move this logic to the controller (WizardController.cs),
where it belongs:

public ActionResult Step(WizardStep currentStep)
{
 // This is simple logic, but it could be MUCH more complex!
 string view = currentStep.ToString();

 return View(view);
}

and split the original view into multiple views, e.g., First.cshtml:

<!-- The first step of the wizard -->

Second.cshtml:

<!-- The second step of the wizard -->

and Third.cshtml:

<!-- The third step of the wizard -->

Prefer the Post-Redirect-Get Pattern When Posting Form Data
The Post-Redirect-Get (PRG) pattern is a common design pattern used by web devel-
opers to help avoid certain duplicate form submissions and allow user agents to behave
more intuitively with bookmarks and the Refresh button. Because the Web Forms Page
Controller pattern typically requires developers to post back to the same page for all
actions in a particular context (e.g., displaying employee data so it can be edited and
resubmitted), the PRG pattern is not used as much in Web Forms environments. How-
ever, because ASP.NET MVC separates actions into separate URLs, it is easy to run
into trouble with update scenarios. Consider the following EmployeeController imple-
mentation:

public class EmployeeController : Controller
{
 public ActionResult Edit(int id)
 {
 var employee = Employee.Get(id);

 return View("Edit ", employee);
 }

 [AcceptVerbs(HttpVerbs.Post)]

450 | Appendix C: Best Practices

 public ActionResult Update(int id)
 {
 var employee = Employee.Get(id);

 UpdateModel(employee);

 return View("Edit", id);
 }
}

In this example, when a user posts to the Update action, even though the user will be
looking at the Edit view as desired, the resulting URL in the browser will be /employees/
update/1. If the user refreshes the page, bookmarks a link to that URL, etc., subsequent
visits will update the employee information again, or possibly not even work at all.
What we really want the Update action to do is update the employee information and
then redirect the user back to the Edit page so he is back at the original “Edit” location.
In this scenario, the PRG pattern may be applied thusly (the first part of the file has
been omitted, we’re showing only the changed Update section):

[AcceptVerbs(HttpVerbs.Post)]
public ActionResult Update(int id)
{
 var employee = Employee.Get(id);

 UpdateModel(employee);

 return RedirectToAction("Edit", new { id });
}

Though it’s a subtle change, switching from the View() method to the RedirectToAc
tion() method will produce a client-side redirect (as opposed to a server-side redirect
in the original example) after the Update() method has finished updating the employee
information, landing the user on the proper URL: /employees/edit/1.

Prefer Startup Tasks over Logic Placed in Application_Start
(Global.asax)
Most ASP.NET MVC demos will advise modifying the Application_Start() method in
the Global.asax file in order to introduce logic that will execute when the application
starts. While this is certainly the easiest and most straightforward approach, the We-
bActivator framework provides the alternative concept of startup tasks. These tasks are
easy to implement and are automatically discovered and executed during application
startup. They help provide cleaner code and encourage proper adherence to the Single
Responsibility Principle mentioned in Chapter 5.

Prefer Startup Tasks over Logic Placed in Application_Start (Global.asax) | 451

Prefer Authorize Attribute over Imperative Security Checks
Traditionally, authorization control resembles the following:

public ActionResult Details(int id)
{
 if (!User.IsInRole("EmployeeViewer"))
 return new HttpUnauthorizedResult();

 // Action logic
}

This is an imperative approach, and it makes it difficult to implement application-wide
changes. The ASP.NET MVC AuthorizeAttribute provides a simple and declarative
way to authorize access to actions. This same code may be rewritten as:

[Authorize(Roles = "EmployeeViewer")]
public ActionResult Details(int id)
{
 // Action logic
}

Prefer Using the Route Attribute over More Generic Global
Routes
Of course, the most specific route is one that maps directly to one action and one action
only.

Consider Using an Antiforgery Token to Avoid CSRF Attacks
For form posts where security is a concern, ASP.NET MVC provides measures to help
deter certain kinds of common attacks. One of these measures is the antiforgery token.
The token has both server- and client-side components. This code will insert a user-
specific token in a hidden field on your form:

@using(Html.Form("Update", "Employee")) {
 @Html.AntiForgeryToken()
 <!-- rest of form goes here -->
}

and this code will validate that token on the server side prior to executing any further
processing of the data being posted:

[ValidateAntiForgeryToken]
[AcceptVerbs(HttpVerbs.Post | HttpVerbs.Put)]
public ActionResult Update(int id)
{
 // Process validated form post
}

452 | Appendix C: Best Practices

Consider Using the AcceptVerbs Attribute to Restrict How
Actions May Be Called
Many actions rest on a number of assumptions about how and when they will be called
in the context of an application. For instance, one assumption might be that an
Employee.Update action will be called from some kind of Employee Edit page containing
a form with the employee properties to post to the Employee.Update action in order to
update an employee record. If this action is called in an unexpected way (e.g., via a
GET request with no form posts), the action will probably not work, and in fact may
produce unforeseen problems.

The ASP.NET MVC Framework offers the AcceptVerbs attribute to help restrict action
calls to specific HTTP methods. Thus, the answer to the aforementioned
Employee.Update scenario would be:

[AcceptVerbs(HttpVerbs.Post | HttpVerbs.Put)]
public ActionResult Update(int id)

Applying the AcceptVerbs attribute in this way will restrict requests to this action to
those made specifying the POST or PUT HTTP methods. All others (e.g., GET requests)
will be ignored.

Consider Output Caching
Output caching is one of the easiest ways to get additional performance from a web
application. Caching the rendered HTML is a great way to speed up response times
when little or no content has changed since the previous request. The ASP.NET MVC
Framework offers the OutputCacheAttribute to accomplish this. This attribute mirrors
the Web Forms output caching functionality and accepts many of the same properties.

Consider Removing Unused View Engines
ASP.NET MVC registers both the Web Forms and Razor view engines by default, which
means that the view locator will search the view locations for both Web Forms and
Razor views. This makes it possible to use either or both types of views in your appli-
cation.

However, for consistency’s sake, most teams choose one type of view and use that type
exclusively throughout the application, making it a bit wasteful for the ASP.NET MVC
view locator to look for views of the type that aren’t being used. For example, if you
choose to use only Razor views in your application, the view locator will continue to
search for Web Forms views even though you know that it will never find one.

Luckily, you can avoid this unnecessary overhead and slightly optimize your applica-
tion by unregistering the view engine that you are not using.

Consider Removing Unused View Engines | 453

The following example shows how to unregister the Web Forms view engine (leaving
only the Razor view engine):

var viewEngines = System.Web.Mvc.ViewEngines.Engines;

var webFormsEngine = viewEngines.OfType<WebFormViewEngine>().FirstOrDefault();

if (webFormsEngine != null)
 viewEngines.Remove(webFormsEngine);

Just execute this snippet during the application’s startup phase, and the view locator
will no longer waste time looking for views that aren’t there!

Consider Custom ActionResults for Unique Scenarios
The ASP.NET MVC request pipeline has a deliberate separation of concerns in which
each step in the process completes its task and no more. Each step does just enough to
provide the subsequent tasks with enough information to do what they need to do. For
instance, a controller action that decides a view should be rendered to the client does
not load up a view engine and order it to execute the view. It merely returns a ViewRe
sult object with the information that the framework needs to take the next steps (most
likely loading a view engine and executing the view!).

When it comes to the results of controller actions, declarative is the name of the game.
For instance, the ASP.NET MVC Framework provides an HttpStatusCodeResult class
with a StatusCode property, but it also goes one step further, defining a custom HttpSta
tusCodeResult named HttpUnauthorizedResult. Though the following two lines are ef-
fectively the same, the latter provides a more declarative and strongly typed expression
of the controller’s intent:

 return new HttpStatusCodeResult(HttpStatusCode.Unauthorized);

 return new HttpUnauthorizedResult();

When your actions produce results that don’t fit the “normal” results, take a moment
to consider whether returning a custom action result may be more appropriate. Some
common examples include things like RSS feeds, Word documents, Excel spreadsheets,
etc.

Consider Asynchronous Controllers for Controller Tasks That
Can Happen in Parallel
Parallel execution of multiple tasks can offer significant opportunities to enhance the
performance of your site. To this end, ASP.NET MVC offers the AsyncController base
class to help make processing multithreaded requests easier. When creating an action
with processor-intensive logic, consider whether that action has any elements that may
safely be run in parallel. See Chapter 11 for more information.

454 | Appendix C: Best Practices

APPENDIX D

Cross-Reference: Targeted Topics,
Features, and Scenarios

The following are lists of the concepts that we’ve targeted, cross-referenced with where
they appear throughout the book.

Topic Chapter(s)

Features new in ASP.NET MVC 4 Features new in ASP.NET MVC 4

Mobile templates Chapter 10

JavaScript bundling and minification Chapter 13

ASP.NET Web API Chapter 7

Asynchronous controllers Chapter 11

AllowAnonymousAttribute Chapter 9

ASP.NET MVC features ASP.NET MVC features

Controller actions Chapter 1

Action filters Chapter 1

Routing Chapter 1, Chapter 14

Razor markup Chapter 1

HTML helpers Chapter 1, Chapter 3

URL helpers Chapter 1

Form helpers Chapter 3

Client validation Chapter 3, Chapter 8

Areas Chapter 1

JSON result Chapter 6

Partial views Chapter 1, Chapter 6Chapter 15,

Razor @Helper Chapter 15

Model binding Chapter 6

455

Topic Chapter(s)

Validation Chapter 3

Error handling Chapter 16

View engines Chapter 1

Child actions Chapter 12

Output caching Chapter 12

bin_DeployableAssemblies Chapter 19

Custom item templates Chapter 15

ASP.NET MVC project types ASP.NET MVC project types

Empty Chapter 1

Internet Application Chapter 1

Intranet Application Chapter 9

Mobile Application Chapter 10

Web API Chapter 6

Patterns and practices Patterns and practices

Model-View-Controller pattern Chapter 5

N-Tier model Chapter 5

SOLID Chapter 5

Model binding & validation Chapter 6

Object-Relational Mapping (ORM) Chapter 8

Logging and health monitoring Chapter 16

Unit testing Chapter 17

Automated browser testing Chapter 17

SEO Chapter 14

Graceful degradation Chapter 13

Progressive enhancement Chapter 10

Client-side templates Chapter 4

Mobile development Chapter 10

Cross-site scripting attacks (XSS) Chapter 9

Cross-site request forgery (CSRF) Chapter 9

SQL injection attacks Chapter 9

Web services and REST Chapter 7

Repository pattern Chapter 8

Continuous integration Chapter 18

Continuous deployment Chapter 18

456 | Appendix D: Cross-Reference: Targeted Topics, Features, and Scenarios

Topic Chapter(s)

Cloud/farm deployment Chapter 19

Server-side caching Chapter 12

Client-side caching Chapter 12

Tools, Frameworks, and Technologies Tools, Frameworks, and Technologies

jQuery Chapter 4

Client validation Chapter 3

Authentication/authorization Chapter 9

Bundling and minification Chapter 13

ASP.NET Web API Chapter 7

Entity Framework Chapter 3, Chapter 8

jQuery Mobile Chapter 10

Web Sockets Chapter 11

SignalR Chapter 11

Windows Azure Chapter 19

Browser: local storage Chapter 12

Cross-Reference: Targeted Topics, Features, and Scenarios | 457

Index

Symbols
symbol, 73
$() function, 71, 73
: (semicolon), 27
<% %> code syntax, 54
> symbol, 74
@ symbol, 27, 54

A
absolute expiration, 251
abstractions

best practices, 443
repository pattern and, 365

Accept header (HTTP), 150
acceptance tests, 349
AcceptVerbsAttribute class, 143, 453
ActionFilterAttribute class

about, 23, 90
OnActionExecuted() method, 126

ActionResult class, 19, 24, 454
actions (see controller actions)
Active Server Pages (ASP), 3
adaptive rendering

about, 217
browser-specific views, 221–222
CSS media queries, 220
mobile feature detection, 218–220
viewport tag, 217

Add Application dialog box, 403
Add Controller dialog box, 36
Add View wizard, 39
ADO.NET Entity Framework (see Entity

Framework)
aggregate root, 155

AggregateCacheDependency class, 252
AJAX (Asynchronous JavaScript and XML)

client-side development and, 77–79
cross-domain, 133–138
Forms Authentication and, 190
JavaScript rendering, 117–123
partial rendering and, 111–117
responding to requests from, 124
reusing logic across requests, 123–127
sending data to the server, 128–133

AllowAnonymousAttribute class, 186, 188,
191

AntiXssEncoder class
about, 198
CssEncode() method, 199
HtmlAttributeEncode() method, 199
HtmlEncode() method, 199
HtmlFormUrlEncode() method, 199
UrlEncode() method, 199
UrlPathEncode() method, 199
XmlAttributeEncode() method, 199
XmlEncode() method, 199

App Cache, 265–267
application development (see web applications)
application service account, 178
application-scoped caching, 250
ASP (Active Server Pages), 3
ASP.NET health monitoring, 338–341
ASP.NET MVC Framework

about, 3, 4, 317–318
adding to existing Web Forms, 417–419
associated namespace, 17, 45
authentication, 41–43
authoring using Web Forms syntax, 54
choosing between Web Forms and, 415

We’d like to hear your suggestions for improving our indexes. Send email to index@oreilly.com.

459

D
ow

n
lo

a
d
 f
ro

m
 W

o
w

!
e
B
o
o
k

<
w

w
w

.w
o
w

e
b
o
o
k.

co
m

>

creating applications, 9–15, 35–40
deployment and runtime, 47
differences from Web Forms, 47–54
EBuy project, 8
HTTP handlers and modules, 46
installing, 9
integrating with Web Forms functionality,

420–421
IoC and, 108
logical design in, 90–92
MVC pattern and, 4–6
new features, 6–7
open source availability, 8
project folder structure, 13
rendering HTML, 50–54
routing traffic, 15–18
state management, 46, 49
tools, languages, APIs, 46
transitioning from Web Forms, 416–420
web development platforms, 3–4

ASP.NET platform
about, 45
routing and, 49

ASP.NET session state, 249
ASP.NET Web API

about, 7, 139
building data service, 139–145
exception handling, 147–149
media formatters, 149–152
paging and querying data, 146

asp:Hyperlink tag, 53
asp:Repeater tag, 52
AspCompat page directive, 313
aspnet_regsql.exe command, 340
.aspx pages, 48
ASPX view engine, 55
assemblies

dependencies and, 436
naming, 93
semantic versioning, 437

assembly packages, 430
AsyncController class, 234, 454
asynchronous controllers

about, 6, 233
creating, 234–236
usage considerations, 236

Asynchronous JavaScript and XML (see AJAX)
AsyncManager.OutstandingOperations

property, 235

attribute-based routing, 306–310
authentication

about, 41–43, 177
Forms Authentication, 183–191
Single Sign On Authentication, 90
user, 186–187
Windows Authentication, 178–181

authorization
defined, 177
user, 191

AuthorizeAttribute class
action filters and, 23
best practices, 452
controller actions and, 42, 177
usage considerations, 182–183
user authorization and, 191

Autofac site, 107
automated testing

defined, 345
levels of, 345–349
test projects for, 350–354
writing clean tests, 359–361

.axd file extension, 302

B
“backend code”, 445
Basic template, 11
BindAttribute class, 176
blacklist-based approach, 196
browsers, 271

(see also web pages)
cache management, 264, 292
HTTP polling and, 238, 239
server-sent events, 240
specific views for, 221–222
testing application logic in, 370
WebSocket API, 241

BufferedMediaTypeFormatter class, 150
build automation

about, 377, 380
continuous integration and, 386, 441
creating, 383–385
creating build scripts, 378–380
executing the build, 379
types of, 381

build scripts, 378–380
bundling concept, 7, 289–293
business rules, specifying with Data

Annotations API, 63–65

460 | Index

C
Cache class

about, 251–252
adding items to, 262

cache management
about, 420
best practices, 276–277, 292, 453
cache dependencies, 252
client-side, 248, 264–269, 277
scavenging process and, 252
server-side, 248–264

Cache-Control header, 264, 276–277
CacheDependency class, 252
CacheItemPriority enumeration, 252
CacheItemRemovedCallback delegate, 252
Castle Windsor site, 107
CDN (content delivery network), 274
CI (continuous integration), 386–391, 441
client-side caching

about, 248
App Cache, 265–267
browser cache, 264
LocalStorage mechanism, 268
setting up, 277

client-side development
AJAX technique and, 77–79
DOM manipulation, 76–77
JavaScript and, 69–71
responding to events, 74–76
selectors in, 71–74
validating data, 79–83

client-side optimization
about, 271
anatomy of web pages, 271–273
ASP.NET MVC support, 289
avoiding redirects, 283–285
cache expiration, 276–277
configuring ETags, 285
content delivery networks and, 274
externalizing scripts and styles, 281
GZip compression, 278
HTTP requests and, 274
measuring client-side performance, 286
minifying JavaScript and CSS, 282
reducing DNS lookups, 282
removing duplicate scripts, 285
script placement on web pages, 279
stylesheets and, 279

client-side templates, 120–123

code blocks, 27
code coverage in testing, 372–374
Code First approach

about, 159
annotation attributes, 162
convention over configuration, 60
usage considerations, 161
working with data context, 167–168

code nuggets, 27
comma-separated values (CSV) format, 150
concurrency conflicts (databases), 160
configuring

ETags, 285
IIS, 178
real-time communication, 245–246
routes, 16–18

#container element, 112
containers, IoC, 107–109
content delivery network (CDN), 274
Content folder, 428
continuous builds, 381
continuous deployment, 410
continuous integration (CI), 386–391, 441
controller actions

about, 19
action filters, 23, 449
action parameters, 21–23
asynchronous, 233–236
AuthorizeAttribute class and, 42
best practices, 447, 449
building HTML forms, 57–59
error handling and, 333
implementation example, 35–37
JSONP support, 136
logging errors, 336
names corresponding to HTTP actions,

142
properties for, 16
repositories and, 155
returning results, 19
reusing logic across requests, 123–127
testing, 361–364

Controller class
about, 35
Content() method, 20
File() method, 20
HttpNotFound() method, 20
JavaScript() method, 20
Json() method, 20, 118

Index | 461

OnException() method, 337
PartialView() method, 20, 112, 114, 124
Redirect() method, 20
RedirectToAction() method, 20
RedirectToRoute() method, 20
View() method, 20, 112

Controller component (MVC pattern)
about, 6, 18
component interaction and, 88–90

Controllers folder, 14, 35
convention over configuration concept

about, 13, 17
Code First approach and, 60
usage considerations, 141–143

CORS (Cross-Origin Resource Sharing), 133,
137

Cross-Site Request Forgery (CSRF), 133, 199–
201, 452

cross-site scripting (XSS) attacks, 133, 198
CRUD operations, 142, 143, 155
.cshtml file extension, 317
CSRF (Cross-Site Request Forgery), 133, 199–

201, 452
CSS

media queries, 220
minifying, 282

CSV (comma-separated values) format, 150
CustomModelBinderAttribute class, 131
CustomValidationAttribute class, 64
Cutrell, Edward, 296

D
data access layer

about, 161
Code First approach, 161–163
EBuy business model and, 163–166
working with data context, 167–168

data access patterns
about, 153
choosing approach, 159
object relational mappers, 156–158
POCO classes, 153
repository pattern, 154–156

Data Annotations API
client-side validation and, 80
Error Message property, 64
specifying business rules with, 63–65

data manipulation
building data access layer, 161–168

building forms, 57–59
data access patterns, 153–158
Entity Framework and, 158–161
filtering data, 168–174
handling form posts, 59
paging data, 146, 168–174
querying data, 146, 168–174
saving data to databases, 59–61
sorting data, 168–174
validating data, 61–67

data services
building, 139–145
exception handling, 147–149
media formatters, 149–152
paging data, 146
querying data, 146

data transfer objects (DTOs), 133
data:URL scheme, 274
Database class

ExecuteSqlCommand() method, 159
SqlQuery() method, 159

Database First model, 159
databases

concurrency conflicts, 160
deployment considerations, 399
many-to-many relationships, 168, 192
object relational impedance mismatch, 156–

158
saving data to, 59–61

DbContext class
about, 61, 167
OnModelCreating() method, 168

DbSet class, 61
DefaultModelBinder class, 129, 131
DELETE method (HTTP), 142
dependencies

best practices, 443
cache, 252
deployment considerations, 399
IoC principle and, 102
mocking, 365–370
version, 439

dependency injection (DI) pattern, 102, 104,
156

Dependency Inversion Principle (DIP), 101
dependency management, 13
DependencyResolver class, 109
deployment

ASP.NET MVC, 47

462 | Index

automating, 390
considerations for, 395–401
continuous, 410
to Internet Information Server, 401–407
web application options, 94
Web Forms, 47
to Windows Azure, 407–410

desktop views
avoiding in mobile site, 216
switching between mobile and, 212

development, application (see web
applications)

DI (dependency injection) pattern, 102, 104,
156

DIP (Dependency Inversion Principle), 101
display modes feature, 7, 204
display templates, 318
distributed caching, 259–264
“DLL hell”, 436
DNS lookup, 272, 282
document object

DocumentElement property, 70
getElementById() method, 71
write() method, 280

DOM (Document Object Model)
manipulating, 76–77
referencing elements, 71–74

donut caching, 255–257
donut hole caching, 257–258
DRY (Don’t Repeat Yourself) principle, 110
DTOs (data transfer objects), 133

E
EBuy project

about, 8
business domain model, 163–166
creating, 9
deployment considerations, 400

editor templates, 318
.edmx file extension, 159
Empty template, 10
Entity class, 164
Entity Framework

about, 60, 158
Code First approach, 60, 159, 161–163,

167–168
database concurrency, 160
Database First model, 159
Model First approach, 159, 161

Entity Tag (ETag), 285
EntityObject class, 161
error and exception handling

about, 331
ASP.NET Web API, 147–149
concurrency conflicts, 160
controller actions and, 333
Data Annotation API, 64
data validation and, 65–67
defining global error handlers, 334–336
enabling custom errors, 332
logging errors, 336–338

ETag (Entity Tag), 285
events

monitoring, 338–341
responding to, 74–76
server-sent, 239

exception handling (see error and exception
handling)

ExceptionFilterAttribute.OnException()
method, 148

ExpectedExceptionAttribute class, 357
expiration, cache, 251, 276–277
Expires header, 264, 276–277
extension methods, 53

F
filesystem repositories, 432
filtering

controller actions, 23, 449
data, 168–174
errors, 337

foreach loop, managing complexity with, 116
formatters, media, 149–152
forms (see HTML forms; Web Forms)
Forms Authentication, 183–191
FormsAuthentication.SetAuthCookie()

method, 187, 188
Fowler, Martin, 387
Franklin, Benjamin, 175
front controller pattern, 89

G
gated check-in builds, 382
GET method (HTTP), 119, 128, 142
Get-Packages command, 438
Git source control systems, 409
Glimpse tool, 305

Index | 463

Global.asax file, 107, 451
GlobalFilterCollection class, 334
Google’s best practices rules, 274
Grant-CacheAllowedClientAccount cmdlet,

261
Guan, Zhiwei, 296
GZip compression, 278

H
HandleErrorAttribute class, 149, 333–336,

338
health monitoring, 338–341
HTML

building forms, 57–59
handling form posts, 59
rendering, 50–54, 58

HTML helpers, 52, 317, 446
HtmlHelper class

about, 33, 317
ActionLink() method, 53
EditorFor method, 57
extending, 53
HiddenField method, 57
LabelFor method, 57
Partial() method, 117
Password method, 57
RenderAction() method, 318
TextBox method, 57
ValidationMessage() method, 66
ValidationSummary() method, 66

HTTP handlers, 46
HTTP headers, 150
HTTP Long Polling technique, 238
HTTP methods

best practices, 274, 285
CRUD operations and, 142
JSON hijacking and, 119
sending data to servers, 128

HTTP modules, 46
HTTP polling, 237–239
HttpActionExecutedContext class, 148
HttpApplicationState class, 250, 251
HttpBrowserCapabilities class, 214, 224
HttpContext class

Application property, 250
best practices, 444
Cache property, 251, 420
Items property, 47, 249
Session property, 249, 420

HttpGetAttribute class, 143
HttpPostAttribute class, 142, 143
HttpRequest class

anatomy of request, 272
Browser property, 214, 224
Unvalidated() method, 198

HttpResponse.WriteSubstitution() method,
256

HttpResponseException class, 147
HttpSessionState class, 251, 420
HttpStatusCodeResult class, 454
HttpUnauthorizedResult class, 454
Hub class, 243
hubs, connections and, 243–244

I
ICollection<T> interface, 166
IComparable interface, 64
IConfigurationManager interface, 245
IController interface, 17
IDependencyResolver interface, 109
IDictionary interface, 249
IDisposable interface, 100
IEntity interface, 163
IEnumerable<T> interface, 174
IEquatable interface, 163
IExceptionFilter interface, 148
If-Modified-Since header, 265
If-None-Match header, 286
if/else statement

best practices, 446
Web Forms example, 26

IHttpAsyncHandler interface, 314
IHttpHandler interface, 311
IIS (Internet Information Server)

asynchronous controllers and, 6
client caching and, 277
configuring, 178–181
deploying to, 401–407

IIS Express dialog box, 179
IKernel interface, 109
inheritance concept, 157, 242
Install-Package command, 13, 437, 440
installing

ASP.NET MVC Framework, 9
NuGet Package Manager, 423
packages from PackageManager Console

window, 13
Razor Single File Generator, 319

464 | Index

Velocity, 259
integration machines, 388
integration tests, 348
Interface Segregation Principle (ISP), 100
Internet Application template, 11, 42, 184
Internet Information Server (IIS)

asynchronous controllers and, 6
client caching and, 277
configuring, 178–181
deploying to, 401–407

Intranet Application template, 11, 178
intranet applications, securing, 178–183
Inversion of Control design principle (see IoC

design principle)
IoC (Inversion of Control) design principle

about, 102
dependencies and, 102
dependency injection pattern, 104
picking containers, 106–109
service location and, 104

IQueryable<T> interface, 146
IRepository interface, 143, 168, 366
IRouteConstraint interface, 304
IRouteHandler interface, 311
ISerializable interface, 100
ISP (Interface Segregation Principle), 100

J
JavaScript language

client-side development and, 69–71
minifying, 282
referencing DOM elements, 71–74
rendering and, 117–123
responding to events, 74

JavaScript Object Notation (see JSON)
JavaScriptSerializer class, 307
jQuery library

$() function, 71, 73
about, 69–71
.after() method, 77
.ajax() method, 79, 135
.before() method, 77
.click() method, 75
client-side validation, 79–83
.contains() method, 74
.css() method, 73
.done() method, 79
.error() method, 79, 136
.fail() method, 79

.getJSON() method, 142

.height() method, 71

.html() method, 77, 120, 123
JSON data and, 132
.load() method, 112
manipulating elements, 76
.post() method, 128
.prepend() method, 77
referencing DOM elements, 71–74
responding to events, 75
.success() method, 79, 136
.text() method, 73
.val() method, 120
.width() method, 71

jQuery Mobile Framework
about, 204
adaptive rendering, 217–222
creating mobile applications from scratch,

224–228
data-filter attribute, 211
data-role attribute, 210, 228
enhancing views with, 209–215
getting started with, 207–209
improving mobile experience, 216
Mobile Application template and, 12, 203
paradigm shift, 224
“listview” component, 210

jQuery.Mobile.MVC package, 207, 213
JSON (JavaScript Object Notation)

posting complex objects, 129
rendering data, 118–119
requesting data, 119
responding to requests, 125
sending and receiving data effectively, 132

JSON hijacking, 119
JSONP (JSON with Padding)

about, 133–135
controller actions and, 136
making requests, 135

JsonRequestBehavior enumeration, 137

L
Language Integrated Query (LINQ), 168–174,

308
Last-Modified header, 265, 286
layout template, 28
layouts

loading for mobile views, 207
master pages versus, 54

Index | 465

web applications and, 28
lazy loading technique, 280
least privilege, principle of, 176
Library Package Manager Console, 13
libs folder, 429
LINQ (Language Integrated Query), 168–174,

308
LINQ to Entities injection attacks, 197
Liskov Substitution Principle (LSP), 98
“listview” component (jQuery Mobile), 210
LocalStorage mechanism, 268
Logger class, 336
logging errors, 336–338
logical design in web applications, 90–93
LSP (Liskov Substitution Principle), 98

M
magic strings, 444
.manifest file extension, 266–267
manual testing, 344
many-to-many relationships, 168, 192
MapRoute() extension method

about, 17
method override and, 303
parameters and, 299
registering routes for applications, 306

master pages, layouts versus, 54
media formatters, 149–152
media queries, 220
MediaTypeFormatter class

about, 150
CanReadType() method, 150
CanWriteType() method, 150

MEF site, 107
Membership class

CreateUser() method, 188
GetUser() method, 189
ValidateUser() method, 187

MembershipUser class, 189
meta packages, 431
MIME types, 149, 267
minification concept, 7, 282, 289–293
Mobile Application template

about, 12, 203
usage considerations, 226–228
ViewSwitcher widget and, 212

mobile feature detection, 218–220
Mobile template, 224
mobile views

browser-specific, 221–222
creating, 205
enhancing with jQuery Mobile, 209–215
loading layouts for, 207
overriding regular views with, 204
switching between desktop and, 212

mobile web development
adaptive rendering, 217–222
creating applications from scratch, 224–

228
features supporting, 203–205
improving mobile experience, 216
usability considerations, 205–216

mocking dependencies, 365–370
model binding

about, 21–23
data annotations and, 63
JSON and, 128, 130
registering binders, 132
specifying, 131–132

Model component (MVC pattern)
about, 5, 34
component interaction and, 88–90

Model First approach, 159, 161
@model keyword, 33
Model-View-Controller pattern (see MVC

pattern)
ModelBinderDictionary.GetBinder() method,

131
ModelBinders class, 131
Models folder, 13
ModelState class

about, 62
AddModelError() method, 62

monitoring system health, 338–341
MSBuild tool, 380, 405–407
Mustache template syntax, 120
mustache.js library, 120
MVC (Model-View-Controller) pattern

about, 4–6, 87
component interaction and, 88–90
Controller component, 6, 88–90
Model component, 5, 34, 88–90
reusing logic across requests, 123–127
separation of concerns principle, 87, 154
View component, 6, 88–90

MvcDonutCaching NuGet package, 257
MvcRouteHandler class, 311

466 | Index

N
namespaces

ASP.NET-related, 45
naming, 93

navigating data, 158
New ASP.NET MVC Project dialog box, 12
new keyword, 443
Ninject IoC containers, 107, 144
nuget pack command

about, 424
-Properties switch, 427
-Version switch, 427

NuGet Package Explorer, 425
NuGet package management tool

anatomy of NuGet packages, 427–430
creating NuGet packages, 424–427
hosting package repositories, 432–435
installing, 423
sharing NuGet packages, 431–435
SignalR signaling library and, 241
tips, tricks, and pitfalls, 435–441
types of NuGet packages, 430
usage considerations, 424

NuGet Package Manager
about, 12
accessing, 13
best practices, 443
installing, 423

NuGet packages
anatomy of, 427–430
controlling versions, 440
creating, 424–427
generating from NuSpec files, 426
sharing, 431–435
types of, 430
version control, 436–441

nuget push command, 432
NuGet Server repository, 434
nuget setApiKey command, 432
nuget spec command, 424
NuGet.org repository

NuGet package upload wizard, 431
publishing to, 431

NuSpec files
about, 424–426
generating NuGet packages from, 426
version dependencies, 439

O
obfuscation technique, 283
object relational impedance mismatch, 156–

158
object relational mappers (ORMs), 154, 156–

158
observer pattern, 88
OCP (Open/Closed Principle), 97
OData (Open Data Protocol), 146
onClick event, 74–76
onsubmit event, 83
Open Data Protocol (OData), 146
Open/Closed Principle (OCP), 97
optimistic concurrency approach, 160
OptimisticConcurrencyException class, 160
optimization techniques (see client-side

optimization)
ORMs (object relational mappers), 154, 156–

158
output caching, 252–255, 453
OutputCache class, 253, 256
OutputCacheAttribute class

about, 253
best practices, 453
donut hole caching and, 258
parameters supported, 253–255

P
Page class, 313
paging data, 146, 168–174
partial rendering, 111–117
partial views

about, 29, 317
rendering, 112–117
user controls versus, 54

password management, 188
persistence ignorance (PI), 153
persistent connections, 242
PersistentConnection class, 242, 243
pessimistic concurrency approach, 160
physical design in web applications, 93, 94–96
PI (persistence ignorance), 153
pipeline, routing, 310–315
Plain Old CLR Objects (POCOs), 60, 153
PluralizingTableNameConvention class, 163
POCOs (Plain Old CLR Objects), 60, 153
POST method (HTTP), 128, 142
Post/Redirect/Get (PRG) pattern, 450

Index | 467

precompiled views, 323–324
PrecompiledMvcEngine package, 323
prerelease packages, 438
prerelease versioning, 439
principle of least privilege, 176
project templates, 10–12
projects, naming, 93
properties, controller actions, 16
publishing

from within Visual Studio, 403–407
to NuGet.org repository, 431
Windows Azure website via source control,

409
PUT method (HTTP), 142

Q
quality control

automated testing and, 343–376
build automation and, 377–391
logging and, 331–341

querying data, 146, 168–174

R
RangeAttribute class, 64
Razor Single File Generator

creating reusable helpers, 325–326
creating reusable views, 321–324
installing, 319
unit testing Razor views, 327–328

Razor syntax
@ symbol, 27, 54
about, 12, 26–27
differentiating code and markup, 27
layouts and, 28
rendering web pages, 51

Razor view engine, 256, 323
real-time data operations

about, 236
comparing application models, 237
configuring and tuning, 245–246
empowering communication, 241–244
HTTP Long Polling technique, 238
HTTP polling, 237
server-sent events, 239
WebSocket API, 240

redirects, avoiding, 283–285
Remote Procedure Call (RPC) framework, 243
rendering

adaptive, 217–222
HTML, 50–54, 58
JavaScript, 117–123
JSON data, 118–119
partial, 111–117
partial views, 112–117
web pages, 271–273, 280

repository pattern, 154–156, 365
request-scoped caching, 248
Request.IsAjaxRequest() method, 124, 125
RequiredAttribute class, 63
rolling builds, 381
RouteData class, 298
RouteGenerator class, 308–310
RouteValue dictionary, 214
routing

about, 15
ASP.NET approach, 49
attribute-based, 306–310
best practices, 452
building routes, 298–303
catch-all routes, 302
configuring routes, 16–18
determining pattern for, 35
extending, 310–315
ignoring routes, 302
registering Web API routes, 141
route constraints, 303–306
URLs and SEO, 297
wayfinding, 295–297

RPC (Remote Procedure Cal) framework, 243
runtime considerations

ASP.NET MVC, 47
Web Forms, 47

S
scavenging process, 252
scheduled builds, 382
scripts

build, 378–380
deferring execution of, 280
executing with MSBuild, 406–407
externalizing, 281
lazy loading technique, 280
placement on web pages, 279–281
removing duplicate, 285

@Scripts annotation, 289
Search Engine Optimization (SEO), 297
Search view, 170

468 | Index

securing web applications
about, 177
defense in depth, 175
disabling unnecessary features, 177
distrusting input, 176
Forms Authentication, 183–191
guarding against attacks, 192–201
insecurity of external systems, 176
intranet applications, 178–183
principle of least privilege, 176
reducing surface area, 176

selectors in client-side development, 71–74
Semantic Versioning scheme, 437, 439
semicolon (;), 27
SEO (Search Engine Optimization), 297
separation of concerns principle, 87, 154
server controls, 52
server-sent events, 239
server-side caching

about, 248
application-scoped caching, 250
distributed caching, 259–264
donut caching, 255–257
donut hole caching, 257–258
output caching, 252–255
request-scoped caching, 248
user-scoped caching, 249

service locator pattern, 102, 104
session states, 249
SignalR signaling library, 241, 243, 245
Single Responsibility Principle (SRP), 96
Single Sign On Authentication, 90
sliding expiration, 251
SOLID design principles, 96–101, 163
sorting data, 168–174
SQL injection attack, 192–197
SQLCMD utility, 407
SRP (Single Responsibility Principle), 96
SSL encryption, 183
StandardKernel class, 109
Start-CacheCluster cmdlet, 261
state management, 46, 49
static content, 398
stored procedures, 158, 159
storing session data, 250
StringLengthAttribute class, 63
StructureMap site, 107
@Styles annotation, 289
stylesheets, best practices, 279

Substitution control, 256
SUT (system under test), 345
synchronous communication, 78
system under test (SUT), 345
System.Data.Entity namespace, 60
System.Web namespace, 45
System.Web.Mvc namespace, 17, 45
System.Web.Optimization namespace, 289
System.Web.Security.AntiXss namespace, 198
System.Web.UI namespace, 45
System.Xml namespace, 46

T
TDD (test-driven development), 358
Team Foundation Server tool, 381, 383–385,

409
TempData dictionary, 31
templates

authentication and, 178, 184
client-side, 120–123
controller, 36
display, 318
editor, 318
layout, 28
mobile application, 12, 203, 212, 226–228
project, 10–12

test classes, 350
test doubles, 365
test fixtures, 350
test projects

creating, 350
defined, 350

test-driven development (TDD), 358
testing

applications, 354–372
automated, 345–349, 359–361
builds, 387
code coverage in, 372–374
controllers, 361–364
developing testable code, 374–376
manual, 344
mocking dependencies, 365–370
models, 355–357
refactoring to unit tests, 364
TDD and, 358
test projects and, 350–354
views, 370–372

TestInitializeAttribute class, 359
timestamps, 135, 160

Index | 469

D
ow

n
lo

a
d
 f
ro

m
 W

o
w

!
e
B
o
o
k

<
w

w
w

.w
o
w

e
b
o
o
k.

co
m

>

tool packages, 430
tools folder, 429
try/catch block, 161, 336
tuning real-time communication, 245–246

U
UAT (user acceptance testing), 349
unit testing

about, 345–348
creating and executing, 352
Razor views, 327–328
refactoring to, 364

Unity site, 107
UrlHelper class, 33, 116
UrlRoutingModule class, 311
URLs

ASP.NET MVC approach, 48
SEOs and, 297
wayfinding and, 295–297
Web Forms approach, 48

user acceptance testing (UAT), 349
User class, 164, 191
user controls, partial views versus, 54
user management

about, 420
authenticating users, 186–187
authorization process, 191
changing passwords, 188
registering new users, 187

user-scoped caching, 249

V
ValidateAntiForgeryTokenAttribute class, 200
validating data

about, 61
best practices, 92
client-side development and, 79–83
displaying errors, 65–67
specifying business rules, 63–65

.vbhtml file extension, 317
Velocity distributed caching solution, 259
View component (MVC pattern)

about, 6
component interaction and, 88–90

view engines
about, 12
ASPX, 55
best practices, 453

Razor, 256, 323
Web Forms, 319

View State mechanism
about, 46, 50
usage considerations, 54, 55, 421

View Switcher component, 208
ViewBag object, 32
ViewData dictionary, 31, 65, 444
viewport tag, 217
ViewResult class, 19, 24, 454
views, 204

(see also mobile views)
about, 24
best practices, 445
creating reusable, 321–324
differentiating code and markup, 27
display modes feature and, 204
displaying data, 31–33
HTML and URL helpers, 33
implementation example, 38–40
layouts and, 28
locating, 24
overriding regular with mobile, 204
partial, 29, 54, 112–117, 317
precompiled, 323–324
Razor, 26–27, 319, 327–328
Search, 170
separation of application and view logic,

48
testing, 370–372
Web Forms syntax and, 54

Views folder, 14
ViewSwitcher widget, 213–215
ViewUserControl class, 319
Visual Studio, publishing from within, 403–

407

W
WatiN tool, 371
wayfinding, 295–297
Web API (see ASP.NET Web API)
Web API template, 12
web applications, 69

(see also client-side development; mobile
web development; securing web
applications)
architecting, 90–96
authentication and, 41–43

470 | Index

convention over configuration, 13, 17, 60,
141–143

creating, 9, 35–40
deployment options, 94
development techniques, 49
differentiating code and markup, 27
DRY principle, 110
IoC design principle, 102–109
layouts and, 28
logical design in, 90–93
Microsoft development platforms, 3–4
MVC pattern, 4–6, 87–90
naming considerations, 93
physical design in, 93, 94–96
project templates, 10–12
Razor syntax and, 26–27
running, 15
separation of application and view logic,

48
SOLID design principles, 96–101, 163
testing, 354–372

web browsers, 271
(see also web pages)
cache management, 264, 292
HTTP polling and, 238, 239
mobile feature detection, 218–220, 218–

220
server-sent events, 240
specific views for, 221–222
testing application logic in, 370
WebSocket API, 241

Web Forms
about, 4
adding ASP.NET MVC to existing

applications, 417
AspCompat page directive, 313
associated namespace, 45
authoring ASP.NET MVC views using, 54
choosing between ASP.NET MVC and,

415
deployment and runtime, 47
differences from ASP.NET MVC, 47–54
HTTP handlers and modules, 46
if/else statement example, 26
integrating with ASP.NET MVC

functionality, 420–421
rendering HTML, 50–54
state management, 46, 49
tools, languages, APIs, 46

transitioning to ASP.Net MVC, 416–420
ViewUserControl class and, 319

Web Forms Page Controller pattern, 449
web pages

anatomy of, 271–273
avoiding redirects, 283–285
cache expiration, 276–277
configuring ETags, 285
content delivery networks and, 274
externalizing scripts and styles, 281
GZIP compression, 278
HTTP requests and, 274
minifying JavaScript and CSS, 282
reducing DNS lookups, 282
removing duplicate scripts, 285
script placement on, 279–281
stylesheets and, 279

web.config file
authentication-mode element, 178
client-side validation settings, 80
data access class names in, 168
distributed caching settings, 262
membership and role providers, 185
output caching section, 255
packagesPath setting, 434

WebRequestErrorEvent class, 340
WebSocket API, 240
whitelist-based approach, 197
window object

about, 71
onload event, 75

Windows Authentication, 178–181
Windows Azure, 407–410

X
XmlHttpRequest object

about, 77
open() method, 78
send() method, 78
status attribute, 78

XSS (cross-site scripting) attacks, 133, 198

Y
Yahoo!’s Exceptional Performance team, 273
YSlow tool, 286
YUI Compressor, 282

Index | 471

About the Authors
Jess Chadwick is an independent software consultant specializing in web technolo-
gies. He has more than a decade of development experience, ranging from embedded
devices in start-ups to enterprise-scale web farms at Fortune 500s. He is an ASPInsider,
Microsoft MVP in ASP.NET, and is an avid community member, frequently delivering
technical presentations as well as leading the NJDOTNET Central New Jersey .NET
user group. Jess lives in the Philadelphia, PA, area with his wonderful wife, baby
daughter, and black lab.

Also contributing to this book are:

Todd Snyder: Principle Consultant, Infragistics

Hrusikesh Panda: Architect and RIA Specialist

Colophon
The animal on the cover of Programming ASP.NET MVC 4 is the silver scabbardfish
(Lepidopus caudatus). Fish of this family are long, slender, and generally steely blue or
silver in color, giving rise to their name. They have reduced or absent pelvic and caudal
fins, giving them an eel-like appearance, and large fang-like teeth. They grow to over 2
meters in length and reach 9 kg in weight. Their scaleless bodies are compressed and
ribbon-like, and leave a silvery tint on anything with which they come into contact.
They have long sharp teeth along both jaws, and the lower jaw is very prominent. The
female lives longer than the male and is also bigger.

The silver scabbardfish forms schools and is a mesopelagic predator that primarily feeds
on crustaceans (especially krill and decapods), small mollusks, and ray-finned fish such
as lanternfish, boarfish, and herring. Its major predators are sharks, hake, and squid.

This species is found as far down as 1,000 meters in both cold and warm waters around
the Atlantic, Mediterranean, and Pacific. They are so widespread in the Straits of Mes-
sina that they have given rise to a profession: the spadularu, or silver scabbardfish fish-
erman. Their tastiness has earned them the name of “young lady of the seas” in the
Messina dialect. They are readily consumed (despite their ugly appearance) because of
their soft, delicately flavored white meat and lack of scales.

The cover image is from Johnson’s Natural History. The cover font is Adobe ITC Ga-
ramond. The text font is Linotype Birka; the heading font is Adobe Myriad Condensed;
and the code font is LucasFont’s TheSansMonoCondensed.

	Table of Contents
	Preface
	Audience
	Assumptions This Book Makes
	Conventions Used in This Book
	Using Code Examples
	Safari® Books Online
	How to Contact Us

	Part I. Up and Running
	Chapter 1. Fundamentals of ASP.NET MVC
	Microsoft’s Web Development Platforms
	Active Server Pages (ASP)
	ASP.NET Web Forms
	ASP.NET MVC

	The Model-View-Controller Architecture
	The Model
	The View
	The Controller

	What’s New in ASP.NET MVC 4?
	Introduction to EBuy
	Installing ASP.NET MVC
	Creating an ASP.NET MVC Application
	Project Templates
	Convention over Configuration
	Running the Application

	Routing
	Configuring Routes

	Controllers
	Controller Actions
	Action Results
	Action Parameters
	Model binding basics
	Model binding complex objects

	Action Filters

	Views
	Locating Views
	Hello, Razor!
	Differentiating Code and Markup
	Code nuggets
	Code blocks

	Layouts
	Partial Views
	Displaying Data
	Cleaner access to ViewData values via ViewBag
	View models
	Strongly typed views

	HTML and URL Helpers

	Models
	Putting It All Together
	The Route
	The Controller
	Controller templates

	The View

	Authentication
	The AccountController

	Summary

	Chapter 2. ASP.NET MVC for Web Forms Developers
	It’s All Just ASP.NET
	Tools, Languages, and APIs
	HTTP Handlers and Modules
	Managing State
	Deployment and Runtime

	More Differences than Similarities
	Separation of Application Logic and View Logic
	URLs and Routing
	State Management
	Rendering HTML
	HTML helpers versus server controls
	Partial views versus user controls
	Layouts versus master pages

	Authoring ASP.NET MVC Views Using Web Forms Syntax
	A Word of Caution

	Summary

	Chapter 3. Working with Data
	Building a Form
	Handling Form Posts
	Saving Data to a Database
	Entity Framework Code First: Convention over Configuration
	Creating a Data Access Layer with Entity Framework Code First

	Validating Data
	Specifying Business Rules with Data Annotations
	Required fields
	Valid ranges
	Custom error messages

	Displaying Validation Errors

	Summary

	Chapter 4. Client-Side Development
	Working with JavaScript
	Selectors
	Responding to Events
	DOM Manipulation
	AJAX
	Client-Side Validation
	Summary

	Part II. Going to the Next Level
	Chapter 5. Web Application Architecture
	The Model-View-Controller Pattern
	Separation of Concerns
	MVC and Web Frameworks

	Architecting a Web Application
	Logical Design
	ASP.NET MVC Web Application Logical Design
	Logical Design Best Practices
	Physical Design
	Project Namespace and Assembly Names
	Deployment Options
	Physical Design Best Practices
	Performance and scalability
	Bandwidth and latency

	Design Principles
	SOLID
	The Single Responsibility Principle
	The Open/Closed Principle
	The Liskov Substitution Principle
	The Interface Segregation Principle
	The Dependency Inversion Principle

	Inversion of Control
	Understanding dependencies
	Service location
	Dependency injection
	Picking an IoC container
	Using Inversion of Control to extend ASP.NET MVC

	Don’t Repeat Yourself
	Summary

	Chapter 6. Enhancing Your Site with AJAX
	Partial Rendering
	Rendering Partial Views
	Rendering a “normal” view
	Rendering a partial view
	Managing complexity with partial views

	JavaScript Rendering
	Rendering JSON Data
	Avoiding JSON hijacking with JsonRequestBehavior

	Requesting JSON Data
	Client-Side Templates

	Reusing Logic Across AJAX and Non-AJAX Requests
	Responding to AJAX Requests
	Responding to JSON Requests
	Applying the Same Logic Across Multiple Controller Actions

	Sending Data to the Server
	Posting Complex JSON Objects
	Model Binder Selection
	Replacing the default (fallback) binder
	Adorning models with custom attributes
	Registering a global binder

	Sending and Receiving JSON Data Effectively

	Cross-Domain AJAX
	JSONP
	Making a JSONP request
	Adding JSONP support to ASP.NET MVC controller actions

	Enabling Cross-Origin Resource Sharing

	Summary

	Chapter 7. The ASP.NET Web API
	Building a Data Service
	Registering Web API Routes
	Leaning on Convention over Configuration
	Overriding Conventions
	Hooking Up the API

	Paging and Querying Data
	Exception Handling
	Media Formatters
	Summary

	Chapter 8. Advanced Data
	Data Access Patterns
	Plain Old CLR Objects
	Using the Repository Pattern
	Object Relational Mappers

	Entity Framework Overview
	Choosing a Data Access Approach
	Database Concurrency

	Building a Data Access Layer
	Using Entity Framework Code First
	Code First data annotations
	Overriding conventions

	The EBuy Business Domain Model
	Working with a Data Context

	Sorting, Filtering, and Paging Data
	Summary

	Chapter 9. Security
	Building Secure Web Applications
	Defense in Depth
	Never Trust Input
	Enforce the Principle of Least Privilege
	Assume External Systems Are Insecure
	Reduce Surface Area
	Disable Unnecessary Features

	Securing an Application
	Securing an Intranet Application
	Setting up Windows Authentication
	Configuring IIS Express
	Configuring IIS 7
	Using the AuthorizeAttribute

	Forms Authentication
	AccountController
	Authenticating users
	Registering new users
	Changing passwords
	Interacting via AJAX
	User authorization

	Guarding Against Attacks
	SQL Injection
	Cross-Site Scripting
	Cross-Site Request Forgery
	Using ASP.NET MVC to avoid Cross-Site Request Forgery

	Summary

	Chapter 10. Mobile Web Development
	ASP.NET MVC 4 Mobile Features
	Making Your Application Mobile Friendly
	Creating the Auctions Mobile View
	Getting Started with jQuery Mobile
	Enhancing the View with jQuery Mobile
	Improving the auctions list with jQuery Mobile’s “listview”
	Making the auctions list searchable with jQuery Mobile’s “data-filter”
	Switching between desktop and mobile views

	Avoiding Desktop Views in the Mobile Site

	Improving Mobile Experience
	Adaptive Rendering
	The Viewport Tag
	Mobile Feature Detection
	CSS Media Queries
	Browser-Specific Views

	Creating a New Mobile Application from Scratch
	The jQuery Mobile Paradigm Shift
	The ASP.NET MVC 4 Mobile Template
	Using the ASP.NET MVC 4 Mobile Application Template

	Summary

	Part III. Going Above and Beyond
	Chapter 11. Parallel, Asynchronous, and Real-Time Data Operations
	Asynchronous Controllers
	Creating an Asynchronous Controller
	Choosing When to Use Asynchronous Controllers

	Real-Time Asynchronous Communication
	Comparing Application Models
	HTTP Polling
	Browser support
	Downsides

	HTTP Long Polling
	Browser support
	Downsides

	Server-Sent Events
	Browser support
	Downsides

	WebSockets
	Browser support
	Downsides

	Empowering Real-Time Communication
	Persistent connections
	Hubs

	Configuring and Tuning
	Managing SignalR connections
	Configuring the environment

	Summary

	Chapter 12. Caching
	Types of Caching
	Server-Side Caching
	Client-Side Caching

	Server-Side Caching Techniques
	Request-Scoped Caching
	User-Scoped Caching
	Session lifetime
	Storing session data

	Application-Scoped Caching
	The ASP.NET Cache
	Expiration
	Cache dependencies
	Scavenging

	The Output Cache
	Configuring the cache location
	Varying the output cache based on request parameters
	Output cache profiles

	Donut Caching
	Donut Hole Caching
	Distributed Caching
	Distributed caching solutions
	Installing Velocity
	Administering your memory cluster from PowerShell
	Using the cache

	Client-Side Caching Techniques
	Understanding the Browser Cache
	App Cache
	Define the manifest
	Reference the manifest
	Serve the manifest correctly

	Local Storage

	Summary

	Chapter 13. Client-Side Optimization Techniques
	Anatomy of a Page
	Anatomy of an HttpRequest

	Best Practices
	Make Fewer HTTP Requests
	Use a Content Delivery Network
	Add an Expires or a Cache-Control Header
	Set up client caching in IIS
	Set up client caching through ASP.NET MVC
	Cache busting

	GZip Components
	Put Stylesheets at the Top
	Put Scripts at the Bottom
	Defer script execution
	Lazy loading scripts

	Make Scripts and Styles External
	Reduce DNS Lookups
	Minify JavaScript and CSS
	Avoid Redirects
	Remove Duplicate Scripts
	Configure ETags

	Measuring Client-Side Performance
	Putting ASP.NET MVC to Work
	Bundling and Minification
	Defining bundles
	Enabling bundles
	Cache busting

	Summary

	Chapter 14. Advanced Routing
	Wayfinding
	URLs and SEO
	Building Routes
	Default and Optional Route Parameters
	Routing Order and Priority
	Routing to Existing Files
	Ignoring Routes
	Catch-All Routes

	Route Constraints
	Peering into Routes Using Glimpse

	Attribute-Based Routing
	Extending Routing
	The Routing Pipeline

	Summary

	Chapter 15. Reusable UI Components
	What ASP.NET MVC Offers out of the Box
	Partial Views
	HtmlHelper Extensions or Custom HtmlHelpers
	Display and Editor Templates
	Html.RenderAction()

	Taking It a Step Further
	The Razor Single File Generator
	Installing the Razor Single File Generator

	Creating Reusable ASP.NET MVC Views
	Including Precompiled views in an ASP.NET MVC web application

	Creating Reusable ASP.NET MVC Helpers

	Unit Testing Razor Views
	Summary

	Part IV. Quality Control
	Chapter 16. Logging
	Error Handling in ASP.NET MVC
	Enabling Custom Errors
	Handling Errors in Controller Actions
	Defining Global Error Handlers
	Customizing the error page

	Logging and Tracing
	Logging Errors
	Simple try/catch handler
	Overriding Controller.OnException()
	Custom error filters

	ASP.NET Health Monitoring

	Summary

	Chapter 17. Automated Testing
	The Semantics of Testing
	Manual Testing
	Humans are error prone
	Computers are more efficient
	Manual testing takes time

	Automated Testing

	Levels of Automated Testing
	Unit Tests
	Atomic
	Repeatable
	Isolated/Independent

	Fast
	Integration Tests
	Acceptance Tests
	User acceptance testing

	What Is an Automated Test Project?
	Creating a Visual Studio Test Project
	Creating and Executing a Unit Test

	Testing an ASP.NET MVC Application
	Testing the Model
	Focus on the positive
	Protect against the negative

	Test-Driven Development
	Writing Clean Automated Tests
	Duplicate code
	Naming

	Testing Controllers
	Testing data access logic

	Refactoring to Unit Tests
	Mocking Dependencies
	Manually creating mock objects
	Using a mock framework

	Testing Views
	Testing application logic in the browser

	Code Coverage
	The Myth of 100% Code Coverage

	Developing Testable Code
	Summary

	Chapter 18. Build Automation
	Creating Build Scripts
	Visual Studio Projects Are Build Scripts!
	Adding a Simple Build Task
	Executing the Build
	Building in Visual Studio
	Building from the command line

	The Possibilities Are Endless!

	Automating the Build
	Types of Automated Builds
	Creating the Automated Build

	Continuous Integration
	Discovering Issues
	The Principles of Continuous Integration
	Maintain a single source repository
	Automate the build
	Make your build self-testing
	Have everyone commit to the mainline frequently
	Every commit should build the mainline on an integration machine
	Keep the build fast
	Test in a clone of the production environment
	Make it easy for anyone to get the latest executable
	Everyone can see what’s happening
	Automate deployment

	Summary

	Part V. Going Live
	Chapter 19. Deployment
	What Needs to Be Deployed
	Core Website Files
	“bin-deploying” ASP.NET MVC libraries

	Static Content
	What Not to Deploy
	Databases and Other External Dependencies
	What the EBuy Application Requires

	Deploying to Internet Information Server
	Prerequisites
	Deploying the ASP.NET MVC Framework assemblies

	Creating and Configuring an IIS Website
	Publishing from Within Visual Studio
	Copying files with MSBuild
	Executing database scripts with MSBuild

	Deploying to Windows Azure
	Creating a Windows Azure Account
	Creating a New Windows Azure Website
	Publishing a Windows Azure Website via Source Control

	Summary

	Part VI. Appendixes
	Appendix A. ASP.NET MVC and Web Forms Integration
	Choosing Between ASP.NET MVC and ASP.NET Web Forms
	Transitioning a Web Forms Site to ASP.NET MVC
	Adding ASP.NET MVC to an Existing Web Forms Application
	Copying Web Forms Functionality to an ASP.NET MVC Application

	Integrating Web Forms and ASP.NET MVC Functionality
	User Management
	Cache Management
	Many, Many More!

	Summary

	Appendix B. Leveraging NuGet as a Platform
	Installing the NuGet Command-Line Tool
	Creating NuGet Packages
	The NuSpec File
	Using the NuGet command-line tool
	Using the NuGet Package Explorer

	Generating the NuGet Package from a NuSpec File
	Specifying token values
	Setting the version

	The Anatomy of a NuGet Package
	Content
	Assemblies
	Tools

	Types of NuGet Packages
	Assembly Packages

	Tool Packages
	Meta Packages

	Sharing Your NuGet Packages
	Publishing to the Public NuGet.org Package Repository
	Using the NuGet.org package upload wizard
	Using the NuGet command-line tool

	Host Your Own Package Repository
	Using a filesystem repository
	Hosting a NuGet Server repository

	Tips, Tricks, and Pitfalls
	Pitfall: NuGet Does Not Solve “DLL Hell”
	Tip: Use Install-Package -Version to Install a Specific Package Version
	Tip: Use Semantic Versioning
	Tip: Mark “Beta” Packages with Prerelease Version Markers
	Pitfall: Avoid Specifying “Strict” Version Dependencies in Your NuSpec Files
	Tip: Use Custom Repositories to Control Package Versions
	Tip: Configure Your Continuous Integration Builds to Generate NuGet Packages

	Summary

	Appendix C. Best Practices
	Use the NuGet Package Manager to Manage Dependencies
	Depend on Abstractions
	Avoid the New Keyword
	Avoid Referring to HttpContext Directly (Use HttpContextBase)
	Avoid “Magic Strings”
	Prefer Models over ViewData
	Do Not Write HTML in “Backend” Code
	Do Not Perform Business Logic in Views
	Consolidate Commonly Used View Snippets with Helper Methods
	Prefer Presentation Models over Direct Usage of Business Objects
	Encapsulate if Statements with HTML Helpers in Views
	Prefer Explicit View Names
	Prefer Parameter Objects over Long Lists of Parameters
	Encapsulate Shared/Common Functionality, Logic, and Data with Action Filters or Child Actions (Html.RenderAction)
	Prefer Grouping Actions into Controllers Based on How They Relate to Business Concepts
	Avoid Grouping Actions into Controllers Based on Technical Relation
	Prefer Placing Action Filters at the Highest Appropriate Level
	Prefer Multiple Views (and/or Partial Views) over Complex If-Then-Else Logic That Shows and Hides Sections
	Prefer the Post-Redirect-Get Pattern When Posting Form Data
	Prefer Startup Tasks over Logic Placed in Application_Start (Global.asax)
	Prefer Authorize Attribute over Imperative Security Checks
	Prefer Using the Route Attribute over More Generic Global Routes
	Consider Using an Antiforgery Token to Avoid CSRF Attacks
	Consider Using the AcceptVerbs Attribute to Restrict How Actions May Be Called
	Consider Output Caching
	Consider Removing Unused View Engines
	Consider Custom ActionResults for Unique Scenarios
	Consider Asynchronous Controllers for Controller Tasks That Can Happen in Parallel

	Appendix D. Cross-Reference: Targeted Topics, Features, and Scenarios

	Index

